ide: use lock bitops for ports serialization (v2)
[deliverable/linux.git] / drivers / ide / ide-io.c
... / ...
CommitLineData
1/*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
60{
61 int ret = 1;
62 int error = 0;
63
64 if (uptodate <= 0)
65 error = uptodate ? uptodate : -EIO;
66
67 /*
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
70 */
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
73
74 if (!blk_fs_request(rq) && error && !rq->errors)
75 rq->errors = -EIO;
76
77 /*
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
80 */
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84 ide_dma_on(drive);
85 }
86
87 if (!blk_end_request(rq, error, nr_bytes))
88 ret = 0;
89
90 if (ret == 0 && dequeue)
91 drive->hwif->hwgroup->rq = NULL;
92
93 return ret;
94}
95
96/**
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
99 * @uptodate:
100 * @nr_sectors: number of sectors completed
101 *
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
105 */
106
107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108{
109 unsigned int nr_bytes = nr_sectors << 9;
110 struct request *rq = drive->hwif->hwgroup->rq;
111
112 if (!nr_bytes) {
113 if (blk_pc_request(rq))
114 nr_bytes = rq->data_len;
115 else
116 nr_bytes = rq->hard_cur_sectors << 9;
117 }
118
119 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120}
121EXPORT_SYMBOL(ide_end_request);
122
123/**
124 * ide_end_dequeued_request - complete an IDE I/O
125 * @drive: IDE device for the I/O
126 * @uptodate:
127 * @nr_sectors: number of sectors completed
128 *
129 * Complete an I/O that is no longer on the request queue. This
130 * typically occurs when we pull the request and issue a REQUEST_SENSE.
131 * We must still finish the old request but we must not tamper with the
132 * queue in the meantime.
133 *
134 * NOTE: This path does not handle barrier, but barrier is not supported
135 * on ide-cd anyway.
136 */
137
138int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139 int uptodate, int nr_sectors)
140{
141 BUG_ON(!blk_rq_started(rq));
142
143 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144}
145EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147/**
148 * ide_end_drive_cmd - end an explicit drive command
149 * @drive: command
150 * @stat: status bits
151 * @err: error bits
152 *
153 * Clean up after success/failure of an explicit drive command.
154 * These get thrown onto the queue so they are synchronized with
155 * real I/O operations on the drive.
156 *
157 * In LBA48 mode we have to read the register set twice to get
158 * all the extra information out.
159 */
160
161void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
162{
163 ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
164 struct request *rq = hwgroup->rq;
165
166 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167 ide_task_t *task = (ide_task_t *)rq->special;
168
169 if (task) {
170 struct ide_taskfile *tf = &task->tf;
171
172 tf->error = err;
173 tf->status = stat;
174
175 drive->hwif->tp_ops->tf_read(drive, task);
176
177 if (task->tf_flags & IDE_TFLAG_DYN)
178 kfree(task);
179 }
180 } else if (blk_pm_request(rq)) {
181 struct request_pm_state *pm = rq->data;
182
183 ide_complete_power_step(drive, rq);
184 if (pm->pm_step == IDE_PM_COMPLETED)
185 ide_complete_pm_request(drive, rq);
186 return;
187 }
188
189 hwgroup->rq = NULL;
190
191 rq->errors = err;
192
193 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
194 blk_rq_bytes(rq))))
195 BUG();
196}
197EXPORT_SYMBOL(ide_end_drive_cmd);
198
199static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
200{
201 if (rq->rq_disk) {
202 ide_driver_t *drv;
203
204 drv = *(ide_driver_t **)rq->rq_disk->private_data;
205 drv->end_request(drive, 0, 0);
206 } else
207 ide_end_request(drive, 0, 0);
208}
209
210static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
211{
212 ide_hwif_t *hwif = drive->hwif;
213
214 if ((stat & ATA_BUSY) ||
215 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
216 /* other bits are useless when BUSY */
217 rq->errors |= ERROR_RESET;
218 } else if (stat & ATA_ERR) {
219 /* err has different meaning on cdrom and tape */
220 if (err == ATA_ABORTED) {
221 if ((drive->dev_flags & IDE_DFLAG_LBA) &&
222 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
223 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
224 return ide_stopped;
225 } else if ((err & BAD_CRC) == BAD_CRC) {
226 /* UDMA crc error, just retry the operation */
227 drive->crc_count++;
228 } else if (err & (ATA_BBK | ATA_UNC)) {
229 /* retries won't help these */
230 rq->errors = ERROR_MAX;
231 } else if (err & ATA_TRK0NF) {
232 /* help it find track zero */
233 rq->errors |= ERROR_RECAL;
234 }
235 }
236
237 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
238 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
239 int nsect = drive->mult_count ? drive->mult_count : 1;
240
241 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
242 }
243
244 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
245 ide_kill_rq(drive, rq);
246 return ide_stopped;
247 }
248
249 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
250 rq->errors |= ERROR_RESET;
251
252 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
253 ++rq->errors;
254 return ide_do_reset(drive);
255 }
256
257 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
258 drive->special.b.recalibrate = 1;
259
260 ++rq->errors;
261
262 return ide_stopped;
263}
264
265static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
266{
267 ide_hwif_t *hwif = drive->hwif;
268
269 if ((stat & ATA_BUSY) ||
270 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
271 /* other bits are useless when BUSY */
272 rq->errors |= ERROR_RESET;
273 } else {
274 /* add decoding error stuff */
275 }
276
277 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
278 /* force an abort */
279 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
280
281 if (rq->errors >= ERROR_MAX) {
282 ide_kill_rq(drive, rq);
283 } else {
284 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
285 ++rq->errors;
286 return ide_do_reset(drive);
287 }
288 ++rq->errors;
289 }
290
291 return ide_stopped;
292}
293
294ide_startstop_t
295__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
296{
297 if (drive->media == ide_disk)
298 return ide_ata_error(drive, rq, stat, err);
299 return ide_atapi_error(drive, rq, stat, err);
300}
301
302EXPORT_SYMBOL_GPL(__ide_error);
303
304/**
305 * ide_error - handle an error on the IDE
306 * @drive: drive the error occurred on
307 * @msg: message to report
308 * @stat: status bits
309 *
310 * ide_error() takes action based on the error returned by the drive.
311 * For normal I/O that may well include retries. We deal with
312 * both new-style (taskfile) and old style command handling here.
313 * In the case of taskfile command handling there is work left to
314 * do
315 */
316
317ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
318{
319 struct request *rq;
320 u8 err;
321
322 err = ide_dump_status(drive, msg, stat);
323
324 if ((rq = HWGROUP(drive)->rq) == NULL)
325 return ide_stopped;
326
327 /* retry only "normal" I/O: */
328 if (!blk_fs_request(rq)) {
329 rq->errors = 1;
330 ide_end_drive_cmd(drive, stat, err);
331 return ide_stopped;
332 }
333
334 if (rq->rq_disk) {
335 ide_driver_t *drv;
336
337 drv = *(ide_driver_t **)rq->rq_disk->private_data;
338 return drv->error(drive, rq, stat, err);
339 } else
340 return __ide_error(drive, rq, stat, err);
341}
342
343EXPORT_SYMBOL_GPL(ide_error);
344
345static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
346{
347 tf->nsect = drive->sect;
348 tf->lbal = drive->sect;
349 tf->lbam = drive->cyl;
350 tf->lbah = drive->cyl >> 8;
351 tf->device = (drive->head - 1) | drive->select;
352 tf->command = ATA_CMD_INIT_DEV_PARAMS;
353}
354
355static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
356{
357 tf->nsect = drive->sect;
358 tf->command = ATA_CMD_RESTORE;
359}
360
361static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
362{
363 tf->nsect = drive->mult_req;
364 tf->command = ATA_CMD_SET_MULTI;
365}
366
367static ide_startstop_t ide_disk_special(ide_drive_t *drive)
368{
369 special_t *s = &drive->special;
370 ide_task_t args;
371
372 memset(&args, 0, sizeof(ide_task_t));
373 args.data_phase = TASKFILE_NO_DATA;
374
375 if (s->b.set_geometry) {
376 s->b.set_geometry = 0;
377 ide_tf_set_specify_cmd(drive, &args.tf);
378 } else if (s->b.recalibrate) {
379 s->b.recalibrate = 0;
380 ide_tf_set_restore_cmd(drive, &args.tf);
381 } else if (s->b.set_multmode) {
382 s->b.set_multmode = 0;
383 ide_tf_set_setmult_cmd(drive, &args.tf);
384 } else if (s->all) {
385 int special = s->all;
386 s->all = 0;
387 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
388 return ide_stopped;
389 }
390
391 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
392 IDE_TFLAG_CUSTOM_HANDLER;
393
394 do_rw_taskfile(drive, &args);
395
396 return ide_started;
397}
398
399/**
400 * do_special - issue some special commands
401 * @drive: drive the command is for
402 *
403 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
404 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
405 *
406 * It used to do much more, but has been scaled back.
407 */
408
409static ide_startstop_t do_special (ide_drive_t *drive)
410{
411 special_t *s = &drive->special;
412
413#ifdef DEBUG
414 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
415#endif
416 if (drive->media == ide_disk)
417 return ide_disk_special(drive);
418
419 s->all = 0;
420 drive->mult_req = 0;
421 return ide_stopped;
422}
423
424void ide_map_sg(ide_drive_t *drive, struct request *rq)
425{
426 ide_hwif_t *hwif = drive->hwif;
427 struct scatterlist *sg = hwif->sg_table;
428
429 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
430 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
431 } else {
432 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
433 hwif->sg_nents = 1;
434 }
435}
436
437EXPORT_SYMBOL_GPL(ide_map_sg);
438
439void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
440{
441 ide_hwif_t *hwif = drive->hwif;
442
443 hwif->nsect = hwif->nleft = rq->nr_sectors;
444 hwif->cursg_ofs = 0;
445 hwif->cursg = NULL;
446}
447
448EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
449
450/**
451 * execute_drive_command - issue special drive command
452 * @drive: the drive to issue the command on
453 * @rq: the request structure holding the command
454 *
455 * execute_drive_cmd() issues a special drive command, usually
456 * initiated by ioctl() from the external hdparm program. The
457 * command can be a drive command, drive task or taskfile
458 * operation. Weirdly you can call it with NULL to wait for
459 * all commands to finish. Don't do this as that is due to change
460 */
461
462static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
463 struct request *rq)
464{
465 ide_hwif_t *hwif = HWIF(drive);
466 ide_task_t *task = rq->special;
467
468 if (task) {
469 hwif->data_phase = task->data_phase;
470
471 switch (hwif->data_phase) {
472 case TASKFILE_MULTI_OUT:
473 case TASKFILE_OUT:
474 case TASKFILE_MULTI_IN:
475 case TASKFILE_IN:
476 ide_init_sg_cmd(drive, rq);
477 ide_map_sg(drive, rq);
478 default:
479 break;
480 }
481
482 return do_rw_taskfile(drive, task);
483 }
484
485 /*
486 * NULL is actually a valid way of waiting for
487 * all current requests to be flushed from the queue.
488 */
489#ifdef DEBUG
490 printk("%s: DRIVE_CMD (null)\n", drive->name);
491#endif
492 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
493 ide_read_error(drive));
494
495 return ide_stopped;
496}
497
498int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
499 int arg)
500{
501 struct request_queue *q = drive->queue;
502 struct request *rq;
503 int ret = 0;
504
505 if (!(setting->flags & DS_SYNC))
506 return setting->set(drive, arg);
507
508 rq = blk_get_request(q, READ, __GFP_WAIT);
509 rq->cmd_type = REQ_TYPE_SPECIAL;
510 rq->cmd_len = 5;
511 rq->cmd[0] = REQ_DEVSET_EXEC;
512 *(int *)&rq->cmd[1] = arg;
513 rq->special = setting->set;
514
515 if (blk_execute_rq(q, NULL, rq, 0))
516 ret = rq->errors;
517 blk_put_request(rq);
518
519 return ret;
520}
521EXPORT_SYMBOL_GPL(ide_devset_execute);
522
523static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
524{
525 u8 cmd = rq->cmd[0];
526
527 if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
528 ide_task_t task;
529 struct ide_taskfile *tf = &task.tf;
530
531 memset(&task, 0, sizeof(task));
532 if (cmd == REQ_PARK_HEADS) {
533 drive->sleep = *(unsigned long *)rq->special;
534 drive->dev_flags |= IDE_DFLAG_SLEEPING;
535 tf->command = ATA_CMD_IDLEIMMEDIATE;
536 tf->feature = 0x44;
537 tf->lbal = 0x4c;
538 tf->lbam = 0x4e;
539 tf->lbah = 0x55;
540 task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
541 } else /* cmd == REQ_UNPARK_HEADS */
542 tf->command = ATA_CMD_CHK_POWER;
543
544 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
545 task.rq = rq;
546 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
547 return do_rw_taskfile(drive, &task);
548 }
549
550 switch (cmd) {
551 case REQ_DEVSET_EXEC:
552 {
553 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
554
555 err = setfunc(drive, *(int *)&rq->cmd[1]);
556 if (err)
557 rq->errors = err;
558 else
559 err = 1;
560 ide_end_request(drive, err, 0);
561 return ide_stopped;
562 }
563 case REQ_DRIVE_RESET:
564 return ide_do_reset(drive);
565 default:
566 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
567 ide_end_request(drive, 0, 0);
568 return ide_stopped;
569 }
570}
571
572/**
573 * start_request - start of I/O and command issuing for IDE
574 *
575 * start_request() initiates handling of a new I/O request. It
576 * accepts commands and I/O (read/write) requests.
577 *
578 * FIXME: this function needs a rename
579 */
580
581static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
582{
583 ide_startstop_t startstop;
584
585 BUG_ON(!blk_rq_started(rq));
586
587#ifdef DEBUG
588 printk("%s: start_request: current=0x%08lx\n",
589 HWIF(drive)->name, (unsigned long) rq);
590#endif
591
592 /* bail early if we've exceeded max_failures */
593 if (drive->max_failures && (drive->failures > drive->max_failures)) {
594 rq->cmd_flags |= REQ_FAILED;
595 goto kill_rq;
596 }
597
598 if (blk_pm_request(rq))
599 ide_check_pm_state(drive, rq);
600
601 SELECT_DRIVE(drive);
602 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
603 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
604 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
605 return startstop;
606 }
607 if (!drive->special.all) {
608 ide_driver_t *drv;
609
610 /*
611 * We reset the drive so we need to issue a SETFEATURES.
612 * Do it _after_ do_special() restored device parameters.
613 */
614 if (drive->current_speed == 0xff)
615 ide_config_drive_speed(drive, drive->desired_speed);
616
617 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
618 return execute_drive_cmd(drive, rq);
619 else if (blk_pm_request(rq)) {
620 struct request_pm_state *pm = rq->data;
621#ifdef DEBUG_PM
622 printk("%s: start_power_step(step: %d)\n",
623 drive->name, pm->pm_step);
624#endif
625 startstop = ide_start_power_step(drive, rq);
626 if (startstop == ide_stopped &&
627 pm->pm_step == IDE_PM_COMPLETED)
628 ide_complete_pm_request(drive, rq);
629 return startstop;
630 } else if (!rq->rq_disk && blk_special_request(rq))
631 /*
632 * TODO: Once all ULDs have been modified to
633 * check for specific op codes rather than
634 * blindly accepting any special request, the
635 * check for ->rq_disk above may be replaced
636 * by a more suitable mechanism or even
637 * dropped entirely.
638 */
639 return ide_special_rq(drive, rq);
640
641 drv = *(ide_driver_t **)rq->rq_disk->private_data;
642
643 return drv->do_request(drive, rq, rq->sector);
644 }
645 return do_special(drive);
646kill_rq:
647 ide_kill_rq(drive, rq);
648 return ide_stopped;
649}
650
651/**
652 * ide_stall_queue - pause an IDE device
653 * @drive: drive to stall
654 * @timeout: time to stall for (jiffies)
655 *
656 * ide_stall_queue() can be used by a drive to give excess bandwidth back
657 * to the hwgroup by sleeping for timeout jiffies.
658 */
659
660void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
661{
662 if (timeout > WAIT_WORSTCASE)
663 timeout = WAIT_WORSTCASE;
664 drive->sleep = timeout + jiffies;
665 drive->dev_flags |= IDE_DFLAG_SLEEPING;
666}
667EXPORT_SYMBOL(ide_stall_queue);
668
669static inline int ide_lock_port(ide_hwif_t *hwif)
670{
671 if (hwif->busy)
672 return 1;
673
674 hwif->busy = 1;
675
676 return 0;
677}
678
679static inline void ide_unlock_port(ide_hwif_t *hwif)
680{
681 hwif->busy = 0;
682}
683
684static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
685{
686 int rc = 0;
687
688 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
689 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
690 if (rc == 0) {
691 /* for atari only */
692 ide_get_lock(ide_intr, hwif);
693 }
694 }
695 return rc;
696}
697
698static inline void ide_unlock_host(struct ide_host *host)
699{
700 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
701 /* for atari only */
702 ide_release_lock();
703 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
704 }
705}
706
707/*
708 * Issue a new request to a drive from hwgroup
709 */
710void do_ide_request(struct request_queue *q)
711{
712 ide_drive_t *drive = q->queuedata;
713 ide_hwif_t *hwif = drive->hwif;
714 struct ide_host *host = hwif->host;
715 ide_hwgroup_t *hwgroup = hwif->hwgroup;
716 struct request *rq = NULL;
717 ide_startstop_t startstop;
718
719 /*
720 * drive is doing pre-flush, ordered write, post-flush sequence. even
721 * though that is 3 requests, it must be seen as a single transaction.
722 * we must not preempt this drive until that is complete
723 */
724 if (blk_queue_flushing(q))
725 /*
726 * small race where queue could get replugged during
727 * the 3-request flush cycle, just yank the plug since
728 * we want it to finish asap
729 */
730 blk_remove_plug(q);
731
732 spin_unlock_irq(q->queue_lock);
733
734 if (ide_lock_host(host, hwif))
735 goto plug_device_2;
736
737 spin_lock_irq(&hwgroup->lock);
738
739 if (!ide_lock_port(hwif)) {
740 ide_hwif_t *prev_port;
741repeat:
742 prev_port = hwif->host->cur_port;
743 hwgroup->rq = NULL;
744
745 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
746 if (time_before(drive->sleep, jiffies)) {
747 ide_unlock_port(hwif);
748 goto plug_device;
749 }
750 }
751
752 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
753 hwif != prev_port) {
754 /*
755 * set nIEN for previous port, drives in the
756 * quirk_list may not like intr setups/cleanups
757 */
758 if (prev_port && hwgroup->cur_dev->quirk_list == 0)
759 prev_port->tp_ops->set_irq(prev_port, 0);
760
761 hwif->host->cur_port = hwif;
762 }
763 hwgroup->cur_dev = drive;
764 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
765
766 spin_unlock_irq(&hwgroup->lock);
767 spin_lock_irq(q->queue_lock);
768 /*
769 * we know that the queue isn't empty, but this can happen
770 * if the q->prep_rq_fn() decides to kill a request
771 */
772 rq = elv_next_request(drive->queue);
773 spin_unlock_irq(q->queue_lock);
774 spin_lock_irq(&hwgroup->lock);
775
776 if (!rq) {
777 ide_unlock_port(hwif);
778 goto out;
779 }
780
781 /*
782 * Sanity: don't accept a request that isn't a PM request
783 * if we are currently power managed. This is very important as
784 * blk_stop_queue() doesn't prevent the elv_next_request()
785 * above to return us whatever is in the queue. Since we call
786 * ide_do_request() ourselves, we end up taking requests while
787 * the queue is blocked...
788 *
789 * We let requests forced at head of queue with ide-preempt
790 * though. I hope that doesn't happen too much, hopefully not
791 * unless the subdriver triggers such a thing in its own PM
792 * state machine.
793 */
794 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
795 blk_pm_request(rq) == 0 &&
796 (rq->cmd_flags & REQ_PREEMPT) == 0) {
797 /* there should be no pending command at this point */
798 ide_unlock_port(hwif);
799 goto plug_device;
800 }
801
802 hwgroup->rq = rq;
803
804 spin_unlock_irq(&hwgroup->lock);
805 startstop = start_request(drive, rq);
806 spin_lock_irq(&hwgroup->lock);
807
808 if (startstop == ide_stopped)
809 goto repeat;
810 } else
811 goto plug_device;
812out:
813 spin_unlock_irq(&hwgroup->lock);
814 if (rq == NULL)
815 ide_unlock_host(host);
816 spin_lock_irq(q->queue_lock);
817 return;
818
819plug_device:
820 spin_unlock_irq(&hwgroup->lock);
821 ide_unlock_host(host);
822plug_device_2:
823 spin_lock_irq(q->queue_lock);
824
825 if (!elv_queue_empty(q))
826 blk_plug_device(q);
827}
828
829/*
830 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
831 * retry the current request in pio mode instead of risking tossing it
832 * all away
833 */
834static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
835{
836 ide_hwif_t *hwif = HWIF(drive);
837 struct request *rq;
838 ide_startstop_t ret = ide_stopped;
839
840 /*
841 * end current dma transaction
842 */
843
844 if (error < 0) {
845 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
846 (void)hwif->dma_ops->dma_end(drive);
847 ret = ide_error(drive, "dma timeout error",
848 hwif->tp_ops->read_status(hwif));
849 } else {
850 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
851 hwif->dma_ops->dma_timeout(drive);
852 }
853
854 /*
855 * disable dma for now, but remember that we did so because of
856 * a timeout -- we'll reenable after we finish this next request
857 * (or rather the first chunk of it) in pio.
858 */
859 drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
860 drive->retry_pio++;
861 ide_dma_off_quietly(drive);
862
863 /*
864 * un-busy drive etc and make sure request is sane
865 */
866
867 rq = HWGROUP(drive)->rq;
868
869 if (!rq)
870 goto out;
871
872 HWGROUP(drive)->rq = NULL;
873
874 rq->errors = 0;
875
876 if (!rq->bio)
877 goto out;
878
879 rq->sector = rq->bio->bi_sector;
880 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
881 rq->hard_cur_sectors = rq->current_nr_sectors;
882 rq->buffer = bio_data(rq->bio);
883out:
884 return ret;
885}
886
887static void ide_plug_device(ide_drive_t *drive)
888{
889 struct request_queue *q = drive->queue;
890 unsigned long flags;
891
892 spin_lock_irqsave(q->queue_lock, flags);
893 if (!elv_queue_empty(q))
894 blk_plug_device(q);
895 spin_unlock_irqrestore(q->queue_lock, flags);
896}
897
898/**
899 * ide_timer_expiry - handle lack of an IDE interrupt
900 * @data: timer callback magic (hwgroup)
901 *
902 * An IDE command has timed out before the expected drive return
903 * occurred. At this point we attempt to clean up the current
904 * mess. If the current handler includes an expiry handler then
905 * we invoke the expiry handler, and providing it is happy the
906 * work is done. If that fails we apply generic recovery rules
907 * invoking the handler and checking the drive DMA status. We
908 * have an excessively incestuous relationship with the DMA
909 * logic that wants cleaning up.
910 */
911
912void ide_timer_expiry (unsigned long data)
913{
914 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
915 ide_hwif_t *uninitialized_var(hwif);
916 ide_drive_t *uninitialized_var(drive);
917 ide_handler_t *handler;
918 ide_expiry_t *expiry;
919 unsigned long flags;
920 unsigned long wait = -1;
921 int plug_device = 0;
922
923 spin_lock_irqsave(&hwgroup->lock, flags);
924
925 if (((handler = hwgroup->handler) == NULL) ||
926 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
927 /*
928 * Either a marginal timeout occurred
929 * (got the interrupt just as timer expired),
930 * or we were "sleeping" to give other devices a chance.
931 * Either way, we don't really want to complain about anything.
932 */
933 } else {
934 drive = hwgroup->cur_dev;
935 if (!drive) {
936 printk(KERN_ERR "%s: ->cur_dev was NULL\n", __func__);
937 hwgroup->handler = NULL;
938 } else {
939 ide_startstop_t startstop = ide_stopped;
940
941 if ((expiry = hwgroup->expiry) != NULL) {
942 /* continue */
943 if ((wait = expiry(drive)) > 0) {
944 /* reset timer */
945 hwgroup->timer.expires = jiffies + wait;
946 hwgroup->req_gen_timer = hwgroup->req_gen;
947 add_timer(&hwgroup->timer);
948 spin_unlock_irqrestore(&hwgroup->lock, flags);
949 return;
950 }
951 }
952 hwgroup->handler = NULL;
953 /*
954 * We need to simulate a real interrupt when invoking
955 * the handler() function, which means we need to
956 * globally mask the specific IRQ:
957 */
958 spin_unlock(&hwgroup->lock);
959 hwif = HWIF(drive);
960 /* disable_irq_nosync ?? */
961 disable_irq(hwif->irq);
962 /* local CPU only,
963 * as if we were handling an interrupt */
964 local_irq_disable();
965 if (hwgroup->polling) {
966 startstop = handler(drive);
967 } else if (drive_is_ready(drive)) {
968 if (drive->waiting_for_dma)
969 hwif->dma_ops->dma_lost_irq(drive);
970 (void)ide_ack_intr(hwif);
971 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
972 startstop = handler(drive);
973 } else {
974 if (drive->waiting_for_dma) {
975 startstop = ide_dma_timeout_retry(drive, wait);
976 } else
977 startstop =
978 ide_error(drive, "irq timeout",
979 hwif->tp_ops->read_status(hwif));
980 }
981 spin_lock_irq(&hwgroup->lock);
982 enable_irq(hwif->irq);
983 if (startstop == ide_stopped) {
984 ide_unlock_port(hwif);
985 plug_device = 1;
986 }
987 }
988 }
989 spin_unlock_irqrestore(&hwgroup->lock, flags);
990
991 if (plug_device) {
992 ide_unlock_host(hwif->host);
993 ide_plug_device(drive);
994 }
995}
996
997/**
998 * unexpected_intr - handle an unexpected IDE interrupt
999 * @irq: interrupt line
1000 * @hwif: port being processed
1001 *
1002 * There's nothing really useful we can do with an unexpected interrupt,
1003 * other than reading the status register (to clear it), and logging it.
1004 * There should be no way that an irq can happen before we're ready for it,
1005 * so we needn't worry much about losing an "important" interrupt here.
1006 *
1007 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1008 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1009 * looks "good", we just ignore the interrupt completely.
1010 *
1011 * This routine assumes __cli() is in effect when called.
1012 *
1013 * If an unexpected interrupt happens on irq15 while we are handling irq14
1014 * and if the two interfaces are "serialized" (CMD640), then it looks like
1015 * we could screw up by interfering with a new request being set up for
1016 * irq15.
1017 *
1018 * In reality, this is a non-issue. The new command is not sent unless
1019 * the drive is ready to accept one, in which case we know the drive is
1020 * not trying to interrupt us. And ide_set_handler() is always invoked
1021 * before completing the issuance of any new drive command, so we will not
1022 * be accidentally invoked as a result of any valid command completion
1023 * interrupt.
1024 */
1025
1026static void unexpected_intr(int irq, ide_hwif_t *hwif)
1027{
1028 u8 stat = hwif->tp_ops->read_status(hwif);
1029
1030 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1031 /* Try to not flood the console with msgs */
1032 static unsigned long last_msgtime, count;
1033 ++count;
1034
1035 if (time_after(jiffies, last_msgtime + HZ)) {
1036 last_msgtime = jiffies;
1037 printk(KERN_ERR "%s: unexpected interrupt, "
1038 "status=0x%02x, count=%ld\n",
1039 hwif->name, stat, count);
1040 }
1041 }
1042}
1043
1044/**
1045 * ide_intr - default IDE interrupt handler
1046 * @irq: interrupt number
1047 * @dev_id: hwif
1048 * @regs: unused weirdness from the kernel irq layer
1049 *
1050 * This is the default IRQ handler for the IDE layer. You should
1051 * not need to override it. If you do be aware it is subtle in
1052 * places
1053 *
1054 * hwif is the interface in the group currently performing
1055 * a command. hwgroup->cur_dev is the drive and hwgroup->handler is
1056 * the IRQ handler to call. As we issue a command the handlers
1057 * step through multiple states, reassigning the handler to the
1058 * next step in the process. Unlike a smart SCSI controller IDE
1059 * expects the main processor to sequence the various transfer
1060 * stages. We also manage a poll timer to catch up with most
1061 * timeout situations. There are still a few where the handlers
1062 * don't ever decide to give up.
1063 *
1064 * The handler eventually returns ide_stopped to indicate the
1065 * request completed. At this point we issue the next request
1066 * on the hwgroup and the process begins again.
1067 */
1068
1069irqreturn_t ide_intr (int irq, void *dev_id)
1070{
1071 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
1072 ide_hwgroup_t *hwgroup = hwif->hwgroup;
1073 ide_drive_t *uninitialized_var(drive);
1074 ide_handler_t *handler;
1075 unsigned long flags;
1076 ide_startstop_t startstop;
1077 irqreturn_t irq_ret = IRQ_NONE;
1078 int plug_device = 0;
1079
1080 if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE) {
1081 if (hwif != hwif->host->cur_port)
1082 goto out_early;
1083 }
1084
1085 spin_lock_irqsave(&hwgroup->lock, flags);
1086
1087 if (!ide_ack_intr(hwif))
1088 goto out;
1089
1090 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1091 /*
1092 * Not expecting an interrupt from this drive.
1093 * That means this could be:
1094 * (1) an interrupt from another PCI device
1095 * sharing the same PCI INT# as us.
1096 * or (2) a drive just entered sleep or standby mode,
1097 * and is interrupting to let us know.
1098 * or (3) a spurious interrupt of unknown origin.
1099 *
1100 * For PCI, we cannot tell the difference,
1101 * so in that case we just ignore it and hope it goes away.
1102 *
1103 * FIXME: unexpected_intr should be hwif-> then we can
1104 * remove all the ifdef PCI crap
1105 */
1106#ifdef CONFIG_BLK_DEV_IDEPCI
1107 if (hwif->chipset != ide_pci)
1108#endif /* CONFIG_BLK_DEV_IDEPCI */
1109 {
1110 /*
1111 * Probably not a shared PCI interrupt,
1112 * so we can safely try to do something about it:
1113 */
1114 unexpected_intr(irq, hwif);
1115#ifdef CONFIG_BLK_DEV_IDEPCI
1116 } else {
1117 /*
1118 * Whack the status register, just in case
1119 * we have a leftover pending IRQ.
1120 */
1121 (void)hwif->tp_ops->read_status(hwif);
1122#endif /* CONFIG_BLK_DEV_IDEPCI */
1123 }
1124 goto out;
1125 }
1126
1127 drive = hwgroup->cur_dev;
1128 if (!drive) {
1129 /*
1130 * This should NEVER happen, and there isn't much
1131 * we could do about it here.
1132 *
1133 * [Note - this can occur if the drive is hot unplugged]
1134 */
1135 goto out_handled;
1136 }
1137
1138 if (!drive_is_ready(drive))
1139 /*
1140 * This happens regularly when we share a PCI IRQ with
1141 * another device. Unfortunately, it can also happen
1142 * with some buggy drives that trigger the IRQ before
1143 * their status register is up to date. Hopefully we have
1144 * enough advance overhead that the latter isn't a problem.
1145 */
1146 goto out;
1147
1148 hwgroup->handler = NULL;
1149 hwgroup->req_gen++;
1150 del_timer(&hwgroup->timer);
1151 spin_unlock(&hwgroup->lock);
1152
1153 if (hwif->port_ops && hwif->port_ops->clear_irq)
1154 hwif->port_ops->clear_irq(drive);
1155
1156 if (drive->dev_flags & IDE_DFLAG_UNMASK)
1157 local_irq_enable_in_hardirq();
1158
1159 /* service this interrupt, may set handler for next interrupt */
1160 startstop = handler(drive);
1161
1162 spin_lock_irq(&hwgroup->lock);
1163 /*
1164 * Note that handler() may have set things up for another
1165 * interrupt to occur soon, but it cannot happen until
1166 * we exit from this routine, because it will be the
1167 * same irq as is currently being serviced here, and Linux
1168 * won't allow another of the same (on any CPU) until we return.
1169 */
1170 if (startstop == ide_stopped) {
1171 if (hwgroup->handler == NULL) { /* paranoia */
1172 ide_unlock_port(hwif);
1173 plug_device = 1;
1174 } else
1175 printk(KERN_ERR "%s: %s: huh? expected NULL handler "
1176 "on exit\n", __func__, drive->name);
1177 }
1178out_handled:
1179 irq_ret = IRQ_HANDLED;
1180out:
1181 spin_unlock_irqrestore(&hwgroup->lock, flags);
1182out_early:
1183 if (plug_device) {
1184 ide_unlock_host(hwif->host);
1185 ide_plug_device(drive);
1186 }
1187
1188 return irq_ret;
1189}
1190
1191/**
1192 * ide_do_drive_cmd - issue IDE special command
1193 * @drive: device to issue command
1194 * @rq: request to issue
1195 *
1196 * This function issues a special IDE device request
1197 * onto the request queue.
1198 *
1199 * the rq is queued at the head of the request queue, displacing
1200 * the currently-being-processed request and this function
1201 * returns immediately without waiting for the new rq to be
1202 * completed. This is VERY DANGEROUS, and is intended for
1203 * careful use by the ATAPI tape/cdrom driver code.
1204 */
1205
1206void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1207{
1208 ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
1209 struct request_queue *q = drive->queue;
1210 unsigned long flags;
1211
1212 hwgroup->rq = NULL;
1213
1214 spin_lock_irqsave(q->queue_lock, flags);
1215 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
1216 spin_unlock_irqrestore(q->queue_lock, flags);
1217}
1218EXPORT_SYMBOL(ide_do_drive_cmd);
1219
1220void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1221{
1222 ide_hwif_t *hwif = drive->hwif;
1223 ide_task_t task;
1224
1225 memset(&task, 0, sizeof(task));
1226 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1227 IDE_TFLAG_OUT_FEATURE | tf_flags;
1228 task.tf.feature = dma; /* Use PIO/DMA */
1229 task.tf.lbam = bcount & 0xff;
1230 task.tf.lbah = (bcount >> 8) & 0xff;
1231
1232 ide_tf_dump(drive->name, &task.tf);
1233 hwif->tp_ops->set_irq(hwif, 1);
1234 SELECT_MASK(drive, 0);
1235 hwif->tp_ops->tf_load(drive, &task);
1236}
1237
1238EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1239
1240void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1241{
1242 ide_hwif_t *hwif = drive->hwif;
1243 u8 buf[4] = { 0 };
1244
1245 while (len > 0) {
1246 if (write)
1247 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1248 else
1249 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1250 len -= 4;
1251 }
1252}
1253EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.054896 seconds and 5 git commands to generate.