ide: BUG() on unknown flags in ide_disk_special()
[deliverable/linux.git] / drivers / ide / ide-io.c
... / ...
CommitLineData
1/*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58 unsigned int nr_bytes)
59{
60 /*
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
63 */
64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 drive->retry_pio <= 3) {
66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67 ide_dma_on(drive);
68 }
69
70 return blk_end_request(rq, error, nr_bytes);
71}
72EXPORT_SYMBOL_GPL(ide_end_rq);
73
74void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75{
76 const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77 struct ide_taskfile *tf = &cmd->tf;
78 struct request *rq = cmd->rq;
79 u8 tf_cmd = tf->command;
80
81 tf->error = err;
82 tf->status = stat;
83
84 if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
85 u8 data[2];
86
87 tp_ops->input_data(drive, cmd, data, 2);
88
89 cmd->tf.data = data[0];
90 cmd->hob.data = data[1];
91 }
92
93 ide_tf_readback(drive, cmd);
94
95 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97 if (tf->lbal != 0xc4) {
98 printk(KERN_ERR "%s: head unload failed!\n",
99 drive->name);
100 ide_tf_dump(drive->name, cmd);
101 } else
102 drive->dev_flags |= IDE_DFLAG_PARKED;
103 }
104
105 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106 struct ide_cmd *orig_cmd = rq->special;
107
108 if (cmd->tf_flags & IDE_TFLAG_DYN)
109 kfree(orig_cmd);
110 else
111 memcpy(orig_cmd, cmd, sizeof(*cmd));
112 }
113}
114
115/* obsolete, blk_rq_bytes() should be used instead */
116unsigned int ide_rq_bytes(struct request *rq)
117{
118 if (blk_pc_request(rq))
119 return rq->data_len;
120 else
121 return rq->hard_cur_sectors << 9;
122}
123EXPORT_SYMBOL_GPL(ide_rq_bytes);
124
125int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
126{
127 ide_hwif_t *hwif = drive->hwif;
128 struct request *rq = hwif->rq;
129 int rc;
130
131 /*
132 * if failfast is set on a request, override number of sectors
133 * and complete the whole request right now
134 */
135 if (blk_noretry_request(rq) && error <= 0)
136 nr_bytes = rq->hard_nr_sectors << 9;
137
138 rc = ide_end_rq(drive, rq, error, nr_bytes);
139 if (rc == 0)
140 hwif->rq = NULL;
141
142 return rc;
143}
144EXPORT_SYMBOL(ide_complete_rq);
145
146void ide_kill_rq(ide_drive_t *drive, struct request *rq)
147{
148 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
149 u8 media = drive->media;
150
151 drive->failed_pc = NULL;
152
153 if ((media == ide_floppy || media == ide_tape) && drv_req) {
154 rq->errors = 0;
155 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
156 } else {
157 if (media == ide_tape)
158 rq->errors = IDE_DRV_ERROR_GENERAL;
159 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
160 rq->errors = -EIO;
161 ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
162 }
163}
164
165static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166{
167 tf->nsect = drive->sect;
168 tf->lbal = drive->sect;
169 tf->lbam = drive->cyl;
170 tf->lbah = drive->cyl >> 8;
171 tf->device = (drive->head - 1) | drive->select;
172 tf->command = ATA_CMD_INIT_DEV_PARAMS;
173}
174
175static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
176{
177 tf->nsect = drive->sect;
178 tf->command = ATA_CMD_RESTORE;
179}
180
181static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
182{
183 tf->nsect = drive->mult_req;
184 tf->command = ATA_CMD_SET_MULTI;
185}
186
187static ide_startstop_t ide_disk_special(ide_drive_t *drive)
188{
189 special_t *s = &drive->special;
190 struct ide_cmd cmd;
191
192 memset(&cmd, 0, sizeof(cmd));
193 cmd.protocol = ATA_PROT_NODATA;
194
195 if (s->b.set_geometry) {
196 s->b.set_geometry = 0;
197 ide_tf_set_specify_cmd(drive, &cmd.tf);
198 } else if (s->b.recalibrate) {
199 s->b.recalibrate = 0;
200 ide_tf_set_restore_cmd(drive, &cmd.tf);
201 } else if (s->b.set_multmode) {
202 s->b.set_multmode = 0;
203 ide_tf_set_setmult_cmd(drive, &cmd.tf);
204 } else
205 BUG();
206
207 cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
208 cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
209 cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
210
211 do_rw_taskfile(drive, &cmd);
212
213 return ide_started;
214}
215
216/**
217 * do_special - issue some special commands
218 * @drive: drive the command is for
219 *
220 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
221 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
222 *
223 * It used to do much more, but has been scaled back.
224 */
225
226static ide_startstop_t do_special (ide_drive_t *drive)
227{
228 special_t *s = &drive->special;
229
230#ifdef DEBUG
231 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
232#endif
233 if (drive->media == ide_disk)
234 return ide_disk_special(drive);
235
236 s->all = 0;
237 drive->mult_req = 0;
238 return ide_stopped;
239}
240
241void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
242{
243 ide_hwif_t *hwif = drive->hwif;
244 struct scatterlist *sg = hwif->sg_table;
245 struct request *rq = cmd->rq;
246
247 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
248}
249EXPORT_SYMBOL_GPL(ide_map_sg);
250
251void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
252{
253 cmd->nbytes = cmd->nleft = nr_bytes;
254 cmd->cursg_ofs = 0;
255 cmd->cursg = NULL;
256}
257EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
258
259/**
260 * execute_drive_command - issue special drive command
261 * @drive: the drive to issue the command on
262 * @rq: the request structure holding the command
263 *
264 * execute_drive_cmd() issues a special drive command, usually
265 * initiated by ioctl() from the external hdparm program. The
266 * command can be a drive command, drive task or taskfile
267 * operation. Weirdly you can call it with NULL to wait for
268 * all commands to finish. Don't do this as that is due to change
269 */
270
271static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
272 struct request *rq)
273{
274 struct ide_cmd *cmd = rq->special;
275
276 if (cmd) {
277 if (cmd->protocol == ATA_PROT_PIO) {
278 ide_init_sg_cmd(cmd, rq->nr_sectors << 9);
279 ide_map_sg(drive, cmd);
280 }
281
282 return do_rw_taskfile(drive, cmd);
283 }
284
285 /*
286 * NULL is actually a valid way of waiting for
287 * all current requests to be flushed from the queue.
288 */
289#ifdef DEBUG
290 printk("%s: DRIVE_CMD (null)\n", drive->name);
291#endif
292 rq->errors = 0;
293 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
294
295 return ide_stopped;
296}
297
298static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
299{
300 u8 cmd = rq->cmd[0];
301
302 switch (cmd) {
303 case REQ_PARK_HEADS:
304 case REQ_UNPARK_HEADS:
305 return ide_do_park_unpark(drive, rq);
306 case REQ_DEVSET_EXEC:
307 return ide_do_devset(drive, rq);
308 case REQ_DRIVE_RESET:
309 return ide_do_reset(drive);
310 default:
311 BUG();
312 }
313}
314
315/**
316 * start_request - start of I/O and command issuing for IDE
317 *
318 * start_request() initiates handling of a new I/O request. It
319 * accepts commands and I/O (read/write) requests.
320 *
321 * FIXME: this function needs a rename
322 */
323
324static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
325{
326 ide_startstop_t startstop;
327
328 BUG_ON(!blk_rq_started(rq));
329
330#ifdef DEBUG
331 printk("%s: start_request: current=0x%08lx\n",
332 drive->hwif->name, (unsigned long) rq);
333#endif
334
335 /* bail early if we've exceeded max_failures */
336 if (drive->max_failures && (drive->failures > drive->max_failures)) {
337 rq->cmd_flags |= REQ_FAILED;
338 goto kill_rq;
339 }
340
341 if (blk_pm_request(rq))
342 ide_check_pm_state(drive, rq);
343
344 drive->hwif->tp_ops->dev_select(drive);
345 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
346 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
347 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
348 return startstop;
349 }
350 if (!drive->special.all) {
351 struct ide_driver *drv;
352
353 /*
354 * We reset the drive so we need to issue a SETFEATURES.
355 * Do it _after_ do_special() restored device parameters.
356 */
357 if (drive->current_speed == 0xff)
358 ide_config_drive_speed(drive, drive->desired_speed);
359
360 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
361 return execute_drive_cmd(drive, rq);
362 else if (blk_pm_request(rq)) {
363 struct request_pm_state *pm = rq->special;
364#ifdef DEBUG_PM
365 printk("%s: start_power_step(step: %d)\n",
366 drive->name, pm->pm_step);
367#endif
368 startstop = ide_start_power_step(drive, rq);
369 if (startstop == ide_stopped &&
370 pm->pm_step == IDE_PM_COMPLETED)
371 ide_complete_pm_rq(drive, rq);
372 return startstop;
373 } else if (!rq->rq_disk && blk_special_request(rq))
374 /*
375 * TODO: Once all ULDs have been modified to
376 * check for specific op codes rather than
377 * blindly accepting any special request, the
378 * check for ->rq_disk above may be replaced
379 * by a more suitable mechanism or even
380 * dropped entirely.
381 */
382 return ide_special_rq(drive, rq);
383
384 drv = *(struct ide_driver **)rq->rq_disk->private_data;
385
386 return drv->do_request(drive, rq, rq->sector);
387 }
388 return do_special(drive);
389kill_rq:
390 ide_kill_rq(drive, rq);
391 return ide_stopped;
392}
393
394/**
395 * ide_stall_queue - pause an IDE device
396 * @drive: drive to stall
397 * @timeout: time to stall for (jiffies)
398 *
399 * ide_stall_queue() can be used by a drive to give excess bandwidth back
400 * to the port by sleeping for timeout jiffies.
401 */
402
403void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
404{
405 if (timeout > WAIT_WORSTCASE)
406 timeout = WAIT_WORSTCASE;
407 drive->sleep = timeout + jiffies;
408 drive->dev_flags |= IDE_DFLAG_SLEEPING;
409}
410EXPORT_SYMBOL(ide_stall_queue);
411
412static inline int ide_lock_port(ide_hwif_t *hwif)
413{
414 if (hwif->busy)
415 return 1;
416
417 hwif->busy = 1;
418
419 return 0;
420}
421
422static inline void ide_unlock_port(ide_hwif_t *hwif)
423{
424 hwif->busy = 0;
425}
426
427static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
428{
429 int rc = 0;
430
431 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
432 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
433 if (rc == 0) {
434 if (host->get_lock)
435 host->get_lock(ide_intr, hwif);
436 }
437 }
438 return rc;
439}
440
441static inline void ide_unlock_host(struct ide_host *host)
442{
443 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
444 if (host->release_lock)
445 host->release_lock();
446 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
447 }
448}
449
450/*
451 * Issue a new request to a device.
452 */
453void do_ide_request(struct request_queue *q)
454{
455 ide_drive_t *drive = q->queuedata;
456 ide_hwif_t *hwif = drive->hwif;
457 struct ide_host *host = hwif->host;
458 struct request *rq = NULL;
459 ide_startstop_t startstop;
460
461 /*
462 * drive is doing pre-flush, ordered write, post-flush sequence. even
463 * though that is 3 requests, it must be seen as a single transaction.
464 * we must not preempt this drive until that is complete
465 */
466 if (blk_queue_flushing(q))
467 /*
468 * small race where queue could get replugged during
469 * the 3-request flush cycle, just yank the plug since
470 * we want it to finish asap
471 */
472 blk_remove_plug(q);
473
474 spin_unlock_irq(q->queue_lock);
475
476 /* HLD do_request() callback might sleep, make sure it's okay */
477 might_sleep();
478
479 if (ide_lock_host(host, hwif))
480 goto plug_device_2;
481
482 spin_lock_irq(&hwif->lock);
483
484 if (!ide_lock_port(hwif)) {
485 ide_hwif_t *prev_port;
486repeat:
487 prev_port = hwif->host->cur_port;
488 hwif->rq = NULL;
489
490 if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
491 time_after(drive->sleep, jiffies)) {
492 ide_unlock_port(hwif);
493 goto plug_device;
494 }
495
496 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
497 hwif != prev_port) {
498 /*
499 * set nIEN for previous port, drives in the
500 * quirk_list may not like intr setups/cleanups
501 */
502 if (prev_port && prev_port->cur_dev->quirk_list == 0)
503 prev_port->tp_ops->write_devctl(prev_port,
504 ATA_NIEN |
505 ATA_DEVCTL_OBS);
506
507 hwif->host->cur_port = hwif;
508 }
509 hwif->cur_dev = drive;
510 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
511
512 spin_unlock_irq(&hwif->lock);
513 spin_lock_irq(q->queue_lock);
514 /*
515 * we know that the queue isn't empty, but this can happen
516 * if the q->prep_rq_fn() decides to kill a request
517 */
518 rq = elv_next_request(drive->queue);
519 spin_unlock_irq(q->queue_lock);
520 spin_lock_irq(&hwif->lock);
521
522 if (!rq) {
523 ide_unlock_port(hwif);
524 goto out;
525 }
526
527 /*
528 * Sanity: don't accept a request that isn't a PM request
529 * if we are currently power managed. This is very important as
530 * blk_stop_queue() doesn't prevent the elv_next_request()
531 * above to return us whatever is in the queue. Since we call
532 * ide_do_request() ourselves, we end up taking requests while
533 * the queue is blocked...
534 *
535 * We let requests forced at head of queue with ide-preempt
536 * though. I hope that doesn't happen too much, hopefully not
537 * unless the subdriver triggers such a thing in its own PM
538 * state machine.
539 */
540 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
541 blk_pm_request(rq) == 0 &&
542 (rq->cmd_flags & REQ_PREEMPT) == 0) {
543 /* there should be no pending command at this point */
544 ide_unlock_port(hwif);
545 goto plug_device;
546 }
547
548 hwif->rq = rq;
549
550 spin_unlock_irq(&hwif->lock);
551 startstop = start_request(drive, rq);
552 spin_lock_irq(&hwif->lock);
553
554 if (startstop == ide_stopped)
555 goto repeat;
556 } else
557 goto plug_device;
558out:
559 spin_unlock_irq(&hwif->lock);
560 if (rq == NULL)
561 ide_unlock_host(host);
562 spin_lock_irq(q->queue_lock);
563 return;
564
565plug_device:
566 spin_unlock_irq(&hwif->lock);
567 ide_unlock_host(host);
568plug_device_2:
569 spin_lock_irq(q->queue_lock);
570
571 if (!elv_queue_empty(q))
572 blk_plug_device(q);
573}
574
575static void ide_plug_device(ide_drive_t *drive)
576{
577 struct request_queue *q = drive->queue;
578 unsigned long flags;
579
580 spin_lock_irqsave(q->queue_lock, flags);
581 if (!elv_queue_empty(q))
582 blk_plug_device(q);
583 spin_unlock_irqrestore(q->queue_lock, flags);
584}
585
586static int drive_is_ready(ide_drive_t *drive)
587{
588 ide_hwif_t *hwif = drive->hwif;
589 u8 stat = 0;
590
591 if (drive->waiting_for_dma)
592 return hwif->dma_ops->dma_test_irq(drive);
593
594 if (hwif->io_ports.ctl_addr &&
595 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
596 stat = hwif->tp_ops->read_altstatus(hwif);
597 else
598 /* Note: this may clear a pending IRQ!! */
599 stat = hwif->tp_ops->read_status(hwif);
600
601 if (stat & ATA_BUSY)
602 /* drive busy: definitely not interrupting */
603 return 0;
604
605 /* drive ready: *might* be interrupting */
606 return 1;
607}
608
609/**
610 * ide_timer_expiry - handle lack of an IDE interrupt
611 * @data: timer callback magic (hwif)
612 *
613 * An IDE command has timed out before the expected drive return
614 * occurred. At this point we attempt to clean up the current
615 * mess. If the current handler includes an expiry handler then
616 * we invoke the expiry handler, and providing it is happy the
617 * work is done. If that fails we apply generic recovery rules
618 * invoking the handler and checking the drive DMA status. We
619 * have an excessively incestuous relationship with the DMA
620 * logic that wants cleaning up.
621 */
622
623void ide_timer_expiry (unsigned long data)
624{
625 ide_hwif_t *hwif = (ide_hwif_t *)data;
626 ide_drive_t *uninitialized_var(drive);
627 ide_handler_t *handler;
628 unsigned long flags;
629 int wait = -1;
630 int plug_device = 0;
631
632 spin_lock_irqsave(&hwif->lock, flags);
633
634 handler = hwif->handler;
635
636 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
637 /*
638 * Either a marginal timeout occurred
639 * (got the interrupt just as timer expired),
640 * or we were "sleeping" to give other devices a chance.
641 * Either way, we don't really want to complain about anything.
642 */
643 } else {
644 ide_expiry_t *expiry = hwif->expiry;
645 ide_startstop_t startstop = ide_stopped;
646
647 drive = hwif->cur_dev;
648
649 if (expiry) {
650 wait = expiry(drive);
651 if (wait > 0) { /* continue */
652 /* reset timer */
653 hwif->timer.expires = jiffies + wait;
654 hwif->req_gen_timer = hwif->req_gen;
655 add_timer(&hwif->timer);
656 spin_unlock_irqrestore(&hwif->lock, flags);
657 return;
658 }
659 }
660 hwif->handler = NULL;
661 hwif->expiry = NULL;
662 /*
663 * We need to simulate a real interrupt when invoking
664 * the handler() function, which means we need to
665 * globally mask the specific IRQ:
666 */
667 spin_unlock(&hwif->lock);
668 /* disable_irq_nosync ?? */
669 disable_irq(hwif->irq);
670 /* local CPU only, as if we were handling an interrupt */
671 local_irq_disable();
672 if (hwif->polling) {
673 startstop = handler(drive);
674 } else if (drive_is_ready(drive)) {
675 if (drive->waiting_for_dma)
676 hwif->dma_ops->dma_lost_irq(drive);
677 if (hwif->ack_intr)
678 hwif->ack_intr(hwif);
679 printk(KERN_WARNING "%s: lost interrupt\n",
680 drive->name);
681 startstop = handler(drive);
682 } else {
683 if (drive->waiting_for_dma)
684 startstop = ide_dma_timeout_retry(drive, wait);
685 else
686 startstop = ide_error(drive, "irq timeout",
687 hwif->tp_ops->read_status(hwif));
688 }
689 spin_lock_irq(&hwif->lock);
690 enable_irq(hwif->irq);
691 if (startstop == ide_stopped) {
692 ide_unlock_port(hwif);
693 plug_device = 1;
694 }
695 }
696 spin_unlock_irqrestore(&hwif->lock, flags);
697
698 if (plug_device) {
699 ide_unlock_host(hwif->host);
700 ide_plug_device(drive);
701 }
702}
703
704/**
705 * unexpected_intr - handle an unexpected IDE interrupt
706 * @irq: interrupt line
707 * @hwif: port being processed
708 *
709 * There's nothing really useful we can do with an unexpected interrupt,
710 * other than reading the status register (to clear it), and logging it.
711 * There should be no way that an irq can happen before we're ready for it,
712 * so we needn't worry much about losing an "important" interrupt here.
713 *
714 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
715 * the drive enters "idle", "standby", or "sleep" mode, so if the status
716 * looks "good", we just ignore the interrupt completely.
717 *
718 * This routine assumes __cli() is in effect when called.
719 *
720 * If an unexpected interrupt happens on irq15 while we are handling irq14
721 * and if the two interfaces are "serialized" (CMD640), then it looks like
722 * we could screw up by interfering with a new request being set up for
723 * irq15.
724 *
725 * In reality, this is a non-issue. The new command is not sent unless
726 * the drive is ready to accept one, in which case we know the drive is
727 * not trying to interrupt us. And ide_set_handler() is always invoked
728 * before completing the issuance of any new drive command, so we will not
729 * be accidentally invoked as a result of any valid command completion
730 * interrupt.
731 */
732
733static void unexpected_intr(int irq, ide_hwif_t *hwif)
734{
735 u8 stat = hwif->tp_ops->read_status(hwif);
736
737 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
738 /* Try to not flood the console with msgs */
739 static unsigned long last_msgtime, count;
740 ++count;
741
742 if (time_after(jiffies, last_msgtime + HZ)) {
743 last_msgtime = jiffies;
744 printk(KERN_ERR "%s: unexpected interrupt, "
745 "status=0x%02x, count=%ld\n",
746 hwif->name, stat, count);
747 }
748 }
749}
750
751/**
752 * ide_intr - default IDE interrupt handler
753 * @irq: interrupt number
754 * @dev_id: hwif
755 * @regs: unused weirdness from the kernel irq layer
756 *
757 * This is the default IRQ handler for the IDE layer. You should
758 * not need to override it. If you do be aware it is subtle in
759 * places
760 *
761 * hwif is the interface in the group currently performing
762 * a command. hwif->cur_dev is the drive and hwif->handler is
763 * the IRQ handler to call. As we issue a command the handlers
764 * step through multiple states, reassigning the handler to the
765 * next step in the process. Unlike a smart SCSI controller IDE
766 * expects the main processor to sequence the various transfer
767 * stages. We also manage a poll timer to catch up with most
768 * timeout situations. There are still a few where the handlers
769 * don't ever decide to give up.
770 *
771 * The handler eventually returns ide_stopped to indicate the
772 * request completed. At this point we issue the next request
773 * on the port and the process begins again.
774 */
775
776irqreturn_t ide_intr (int irq, void *dev_id)
777{
778 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
779 struct ide_host *host = hwif->host;
780 ide_drive_t *uninitialized_var(drive);
781 ide_handler_t *handler;
782 unsigned long flags;
783 ide_startstop_t startstop;
784 irqreturn_t irq_ret = IRQ_NONE;
785 int plug_device = 0;
786
787 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
788 if (hwif != host->cur_port)
789 goto out_early;
790 }
791
792 spin_lock_irqsave(&hwif->lock, flags);
793
794 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
795 goto out;
796
797 handler = hwif->handler;
798
799 if (handler == NULL || hwif->polling) {
800 /*
801 * Not expecting an interrupt from this drive.
802 * That means this could be:
803 * (1) an interrupt from another PCI device
804 * sharing the same PCI INT# as us.
805 * or (2) a drive just entered sleep or standby mode,
806 * and is interrupting to let us know.
807 * or (3) a spurious interrupt of unknown origin.
808 *
809 * For PCI, we cannot tell the difference,
810 * so in that case we just ignore it and hope it goes away.
811 */
812 if ((host->irq_flags & IRQF_SHARED) == 0) {
813 /*
814 * Probably not a shared PCI interrupt,
815 * so we can safely try to do something about it:
816 */
817 unexpected_intr(irq, hwif);
818 } else {
819 /*
820 * Whack the status register, just in case
821 * we have a leftover pending IRQ.
822 */
823 (void)hwif->tp_ops->read_status(hwif);
824 }
825 goto out;
826 }
827
828 drive = hwif->cur_dev;
829
830 if (!drive_is_ready(drive))
831 /*
832 * This happens regularly when we share a PCI IRQ with
833 * another device. Unfortunately, it can also happen
834 * with some buggy drives that trigger the IRQ before
835 * their status register is up to date. Hopefully we have
836 * enough advance overhead that the latter isn't a problem.
837 */
838 goto out;
839
840 hwif->handler = NULL;
841 hwif->expiry = NULL;
842 hwif->req_gen++;
843 del_timer(&hwif->timer);
844 spin_unlock(&hwif->lock);
845
846 if (hwif->port_ops && hwif->port_ops->clear_irq)
847 hwif->port_ops->clear_irq(drive);
848
849 if (drive->dev_flags & IDE_DFLAG_UNMASK)
850 local_irq_enable_in_hardirq();
851
852 /* service this interrupt, may set handler for next interrupt */
853 startstop = handler(drive);
854
855 spin_lock_irq(&hwif->lock);
856 /*
857 * Note that handler() may have set things up for another
858 * interrupt to occur soon, but it cannot happen until
859 * we exit from this routine, because it will be the
860 * same irq as is currently being serviced here, and Linux
861 * won't allow another of the same (on any CPU) until we return.
862 */
863 if (startstop == ide_stopped) {
864 BUG_ON(hwif->handler);
865 ide_unlock_port(hwif);
866 plug_device = 1;
867 }
868 irq_ret = IRQ_HANDLED;
869out:
870 spin_unlock_irqrestore(&hwif->lock, flags);
871out_early:
872 if (plug_device) {
873 ide_unlock_host(hwif->host);
874 ide_plug_device(drive);
875 }
876
877 return irq_ret;
878}
879EXPORT_SYMBOL_GPL(ide_intr);
880
881void ide_pad_transfer(ide_drive_t *drive, int write, int len)
882{
883 ide_hwif_t *hwif = drive->hwif;
884 u8 buf[4] = { 0 };
885
886 while (len > 0) {
887 if (write)
888 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
889 else
890 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
891 len -= 4;
892 }
893}
894EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.030324 seconds and 5 git commands to generate.