iommu/vt-d: Remove device_to_iommu() call from domain_remove_dev_info()
[deliverable/linux.git] / drivers / iommu / dmar.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */
30
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/iova.h>
34#include <linux/intel-iommu.h>
35#include <linux/timer.h>
36#include <linux/irq.h>
37#include <linux/interrupt.h>
38#include <linux/tboot.h>
39#include <linux/dmi.h>
40#include <linux/slab.h>
41#include <asm/irq_remapping.h>
42#include <asm/iommu_table.h>
43
44#include "irq_remapping.h"
45
46/*
47 * Assumptions:
48 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
49 * before IO devices managed by that unit.
50 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
51 * after IO devices managed by that unit.
52 * 3) Hotplug events are rare.
53 *
54 * Locking rules for DMA and interrupt remapping related global data structures:
55 * 1) Use dmar_global_lock in process context
56 * 2) Use RCU in interrupt context
57 */
58DECLARE_RWSEM(dmar_global_lock);
59LIST_HEAD(dmar_drhd_units);
60
61struct acpi_table_header * __initdata dmar_tbl;
62static acpi_size dmar_tbl_size;
63static int dmar_dev_scope_status = 1;
64
65static int alloc_iommu(struct dmar_drhd_unit *drhd);
66static void free_iommu(struct intel_iommu *iommu);
67
68static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69{
70 /*
71 * add INCLUDE_ALL at the tail, so scan the list will find it at
72 * the very end.
73 */
74 if (drhd->include_all)
75 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76 else
77 list_add_rcu(&drhd->list, &dmar_drhd_units);
78}
79
80void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81{
82 struct acpi_dmar_device_scope *scope;
83
84 *cnt = 0;
85 while (start < end) {
86 scope = start;
87 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ACPI ||
88 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90 (*cnt)++;
91 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93 pr_warn("Unsupported device scope\n");
94 }
95 start += scope->length;
96 }
97 if (*cnt == 0)
98 return NULL;
99
100 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101}
102
103void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104{
105 int i;
106 struct device *tmp_dev;
107
108 if (*devices && *cnt) {
109 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110 put_device(tmp_dev);
111 kfree(*devices);
112 }
113
114 *devices = NULL;
115 *cnt = 0;
116}
117
118/* Optimize out kzalloc()/kfree() for normal cases */
119static char dmar_pci_notify_info_buf[64];
120
121static struct dmar_pci_notify_info *
122dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123{
124 int level = 0;
125 size_t size;
126 struct pci_dev *tmp;
127 struct dmar_pci_notify_info *info;
128
129 BUG_ON(dev->is_virtfn);
130
131 /* Only generate path[] for device addition event */
132 if (event == BUS_NOTIFY_ADD_DEVICE)
133 for (tmp = dev; tmp; tmp = tmp->bus->self)
134 level++;
135
136 size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
137 if (size <= sizeof(dmar_pci_notify_info_buf)) {
138 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
139 } else {
140 info = kzalloc(size, GFP_KERNEL);
141 if (!info) {
142 pr_warn("Out of memory when allocating notify_info "
143 "for %s.\n", pci_name(dev));
144 if (dmar_dev_scope_status == 0)
145 dmar_dev_scope_status = -ENOMEM;
146 return NULL;
147 }
148 }
149
150 info->event = event;
151 info->dev = dev;
152 info->seg = pci_domain_nr(dev->bus);
153 info->level = level;
154 if (event == BUS_NOTIFY_ADD_DEVICE) {
155 for (tmp = dev, level--; tmp; tmp = tmp->bus->self) {
156 info->path[level].device = PCI_SLOT(tmp->devfn);
157 info->path[level].function = PCI_FUNC(tmp->devfn);
158 if (pci_is_root_bus(tmp->bus))
159 info->bus = tmp->bus->number;
160 }
161 }
162
163 return info;
164}
165
166static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
167{
168 if ((void *)info != dmar_pci_notify_info_buf)
169 kfree(info);
170}
171
172static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
173 struct acpi_dmar_pci_path *path, int count)
174{
175 int i;
176
177 if (info->bus != bus)
178 return false;
179 if (info->level != count)
180 return false;
181
182 for (i = 0; i < count; i++) {
183 if (path[i].device != info->path[i].device ||
184 path[i].function != info->path[i].function)
185 return false;
186 }
187
188 return true;
189}
190
191/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
192int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
193 void *start, void*end, u16 segment,
194 struct dmar_dev_scope *devices,
195 int devices_cnt)
196{
197 int i, level;
198 struct device *tmp, *dev = &info->dev->dev;
199 struct acpi_dmar_device_scope *scope;
200 struct acpi_dmar_pci_path *path;
201
202 if (segment != info->seg)
203 return 0;
204
205 for (; start < end; start += scope->length) {
206 scope = start;
207 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
208 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
209 continue;
210
211 path = (struct acpi_dmar_pci_path *)(scope + 1);
212 level = (scope->length - sizeof(*scope)) / sizeof(*path);
213 if (!dmar_match_pci_path(info, scope->bus, path, level))
214 continue;
215
216 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT) ^
217 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL)) {
218 pr_warn("Device scope type does not match for %s\n",
219 pci_name(info->dev));
220 return -EINVAL;
221 }
222
223 for_each_dev_scope(devices, devices_cnt, i, tmp)
224 if (tmp == NULL) {
225 devices[i].bus = info->dev->bus->number;
226 devices[i].devfn = info->dev->devfn;
227 rcu_assign_pointer(devices[i].dev,
228 get_device(dev));
229 return 1;
230 }
231 BUG_ON(i >= devices_cnt);
232 }
233
234 return 0;
235}
236
237int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
238 struct dmar_dev_scope *devices, int count)
239{
240 int index;
241 struct device *tmp;
242
243 if (info->seg != segment)
244 return 0;
245
246 for_each_active_dev_scope(devices, count, index, tmp)
247 if (tmp == &info->dev->dev) {
248 rcu_assign_pointer(devices[index].dev, NULL);
249 synchronize_rcu();
250 put_device(tmp);
251 return 1;
252 }
253
254 return 0;
255}
256
257static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
258{
259 int ret = 0;
260 struct dmar_drhd_unit *dmaru;
261 struct acpi_dmar_hardware_unit *drhd;
262
263 for_each_drhd_unit(dmaru) {
264 if (dmaru->include_all)
265 continue;
266
267 drhd = container_of(dmaru->hdr,
268 struct acpi_dmar_hardware_unit, header);
269 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
270 ((void *)drhd) + drhd->header.length,
271 dmaru->segment,
272 dmaru->devices, dmaru->devices_cnt);
273 if (ret != 0)
274 break;
275 }
276 if (ret >= 0)
277 ret = dmar_iommu_notify_scope_dev(info);
278 if (ret < 0 && dmar_dev_scope_status == 0)
279 dmar_dev_scope_status = ret;
280
281 return ret;
282}
283
284static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
285{
286 struct dmar_drhd_unit *dmaru;
287
288 for_each_drhd_unit(dmaru)
289 if (dmar_remove_dev_scope(info, dmaru->segment,
290 dmaru->devices, dmaru->devices_cnt))
291 break;
292 dmar_iommu_notify_scope_dev(info);
293}
294
295static int dmar_pci_bus_notifier(struct notifier_block *nb,
296 unsigned long action, void *data)
297{
298 struct pci_dev *pdev = to_pci_dev(data);
299 struct dmar_pci_notify_info *info;
300
301 /* Only care about add/remove events for physical functions */
302 if (pdev->is_virtfn)
303 return NOTIFY_DONE;
304 if (action != BUS_NOTIFY_ADD_DEVICE && action != BUS_NOTIFY_DEL_DEVICE)
305 return NOTIFY_DONE;
306
307 info = dmar_alloc_pci_notify_info(pdev, action);
308 if (!info)
309 return NOTIFY_DONE;
310
311 down_write(&dmar_global_lock);
312 if (action == BUS_NOTIFY_ADD_DEVICE)
313 dmar_pci_bus_add_dev(info);
314 else if (action == BUS_NOTIFY_DEL_DEVICE)
315 dmar_pci_bus_del_dev(info);
316 up_write(&dmar_global_lock);
317
318 dmar_free_pci_notify_info(info);
319
320 return NOTIFY_OK;
321}
322
323static struct notifier_block dmar_pci_bus_nb = {
324 .notifier_call = dmar_pci_bus_notifier,
325 .priority = INT_MIN,
326};
327
328/**
329 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
330 * structure which uniquely represent one DMA remapping hardware unit
331 * present in the platform
332 */
333static int __init
334dmar_parse_one_drhd(struct acpi_dmar_header *header)
335{
336 struct acpi_dmar_hardware_unit *drhd;
337 struct dmar_drhd_unit *dmaru;
338 int ret = 0;
339
340 drhd = (struct acpi_dmar_hardware_unit *)header;
341 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
342 if (!dmaru)
343 return -ENOMEM;
344
345 dmaru->hdr = header;
346 dmaru->reg_base_addr = drhd->address;
347 dmaru->segment = drhd->segment;
348 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
349 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
350 ((void *)drhd) + drhd->header.length,
351 &dmaru->devices_cnt);
352 if (dmaru->devices_cnt && dmaru->devices == NULL) {
353 kfree(dmaru);
354 return -ENOMEM;
355 }
356
357 ret = alloc_iommu(dmaru);
358 if (ret) {
359 dmar_free_dev_scope(&dmaru->devices,
360 &dmaru->devices_cnt);
361 kfree(dmaru);
362 return ret;
363 }
364 dmar_register_drhd_unit(dmaru);
365 return 0;
366}
367
368static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
369{
370 if (dmaru->devices && dmaru->devices_cnt)
371 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
372 if (dmaru->iommu)
373 free_iommu(dmaru->iommu);
374 kfree(dmaru);
375}
376
377static int __init dmar_parse_one_andd(struct acpi_dmar_header *header)
378{
379 struct acpi_dmar_andd *andd = (void *)header;
380
381 /* Check for NUL termination within the designated length */
382 if (strnlen(andd->object_name, header->length - 8) == header->length - 8) {
383 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
384 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
385 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
386 dmi_get_system_info(DMI_BIOS_VENDOR),
387 dmi_get_system_info(DMI_BIOS_VERSION),
388 dmi_get_system_info(DMI_PRODUCT_VERSION));
389 return -EINVAL;
390 }
391 pr_info("ANDD device: %x name: %s\n", andd->device_number,
392 andd->object_name);
393
394 return 0;
395}
396
397#ifdef CONFIG_ACPI_NUMA
398static int __init
399dmar_parse_one_rhsa(struct acpi_dmar_header *header)
400{
401 struct acpi_dmar_rhsa *rhsa;
402 struct dmar_drhd_unit *drhd;
403
404 rhsa = (struct acpi_dmar_rhsa *)header;
405 for_each_drhd_unit(drhd) {
406 if (drhd->reg_base_addr == rhsa->base_address) {
407 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
408
409 if (!node_online(node))
410 node = -1;
411 drhd->iommu->node = node;
412 return 0;
413 }
414 }
415 WARN_TAINT(
416 1, TAINT_FIRMWARE_WORKAROUND,
417 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
418 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
419 drhd->reg_base_addr,
420 dmi_get_system_info(DMI_BIOS_VENDOR),
421 dmi_get_system_info(DMI_BIOS_VERSION),
422 dmi_get_system_info(DMI_PRODUCT_VERSION));
423
424 return 0;
425}
426#endif
427
428static void __init
429dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
430{
431 struct acpi_dmar_hardware_unit *drhd;
432 struct acpi_dmar_reserved_memory *rmrr;
433 struct acpi_dmar_atsr *atsr;
434 struct acpi_dmar_rhsa *rhsa;
435
436 switch (header->type) {
437 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
438 drhd = container_of(header, struct acpi_dmar_hardware_unit,
439 header);
440 pr_info("DRHD base: %#016Lx flags: %#x\n",
441 (unsigned long long)drhd->address, drhd->flags);
442 break;
443 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
444 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
445 header);
446 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
447 (unsigned long long)rmrr->base_address,
448 (unsigned long long)rmrr->end_address);
449 break;
450 case ACPI_DMAR_TYPE_ATSR:
451 atsr = container_of(header, struct acpi_dmar_atsr, header);
452 pr_info("ATSR flags: %#x\n", atsr->flags);
453 break;
454 case ACPI_DMAR_HARDWARE_AFFINITY:
455 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
456 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
457 (unsigned long long)rhsa->base_address,
458 rhsa->proximity_domain);
459 break;
460 case ACPI_DMAR_TYPE_ANDD:
461 /* We don't print this here because we need to sanity-check
462 it first. So print it in dmar_parse_one_andd() instead. */
463 break;
464 }
465}
466
467/**
468 * dmar_table_detect - checks to see if the platform supports DMAR devices
469 */
470static int __init dmar_table_detect(void)
471{
472 acpi_status status = AE_OK;
473
474 /* if we could find DMAR table, then there are DMAR devices */
475 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
476 (struct acpi_table_header **)&dmar_tbl,
477 &dmar_tbl_size);
478
479 if (ACPI_SUCCESS(status) && !dmar_tbl) {
480 pr_warn("Unable to map DMAR\n");
481 status = AE_NOT_FOUND;
482 }
483
484 return (ACPI_SUCCESS(status) ? 1 : 0);
485}
486
487/**
488 * parse_dmar_table - parses the DMA reporting table
489 */
490static int __init
491parse_dmar_table(void)
492{
493 struct acpi_table_dmar *dmar;
494 struct acpi_dmar_header *entry_header;
495 int ret = 0;
496 int drhd_count = 0;
497
498 /*
499 * Do it again, earlier dmar_tbl mapping could be mapped with
500 * fixed map.
501 */
502 dmar_table_detect();
503
504 /*
505 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
506 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
507 */
508 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
509
510 dmar = (struct acpi_table_dmar *)dmar_tbl;
511 if (!dmar)
512 return -ENODEV;
513
514 if (dmar->width < PAGE_SHIFT - 1) {
515 pr_warn("Invalid DMAR haw\n");
516 return -EINVAL;
517 }
518
519 pr_info("Host address width %d\n", dmar->width + 1);
520
521 entry_header = (struct acpi_dmar_header *)(dmar + 1);
522 while (((unsigned long)entry_header) <
523 (((unsigned long)dmar) + dmar_tbl->length)) {
524 /* Avoid looping forever on bad ACPI tables */
525 if (entry_header->length == 0) {
526 pr_warn("Invalid 0-length structure\n");
527 ret = -EINVAL;
528 break;
529 }
530
531 dmar_table_print_dmar_entry(entry_header);
532
533 switch (entry_header->type) {
534 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
535 drhd_count++;
536 ret = dmar_parse_one_drhd(entry_header);
537 break;
538 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
539 ret = dmar_parse_one_rmrr(entry_header);
540 break;
541 case ACPI_DMAR_TYPE_ATSR:
542 ret = dmar_parse_one_atsr(entry_header);
543 break;
544 case ACPI_DMAR_HARDWARE_AFFINITY:
545#ifdef CONFIG_ACPI_NUMA
546 ret = dmar_parse_one_rhsa(entry_header);
547#endif
548 break;
549 case ACPI_DMAR_TYPE_ANDD:
550 ret = dmar_parse_one_andd(entry_header);
551 break;
552 default:
553 pr_warn("Unknown DMAR structure type %d\n",
554 entry_header->type);
555 ret = 0; /* for forward compatibility */
556 break;
557 }
558 if (ret)
559 break;
560
561 entry_header = ((void *)entry_header + entry_header->length);
562 }
563 if (drhd_count == 0)
564 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
565 return ret;
566}
567
568static int dmar_pci_device_match(struct dmar_dev_scope devices[],
569 int cnt, struct pci_dev *dev)
570{
571 int index;
572 struct device *tmp;
573
574 while (dev) {
575 for_each_active_dev_scope(devices, cnt, index, tmp)
576 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
577 return 1;
578
579 /* Check our parent */
580 dev = dev->bus->self;
581 }
582
583 return 0;
584}
585
586struct dmar_drhd_unit *
587dmar_find_matched_drhd_unit(struct pci_dev *dev)
588{
589 struct dmar_drhd_unit *dmaru;
590 struct acpi_dmar_hardware_unit *drhd;
591
592 dev = pci_physfn(dev);
593
594 rcu_read_lock();
595 for_each_drhd_unit(dmaru) {
596 drhd = container_of(dmaru->hdr,
597 struct acpi_dmar_hardware_unit,
598 header);
599
600 if (dmaru->include_all &&
601 drhd->segment == pci_domain_nr(dev->bus))
602 goto out;
603
604 if (dmar_pci_device_match(dmaru->devices,
605 dmaru->devices_cnt, dev))
606 goto out;
607 }
608 dmaru = NULL;
609out:
610 rcu_read_unlock();
611
612 return dmaru;
613}
614
615static void __init dmar_acpi_insert_dev_scope(u8 device_number,
616 struct acpi_device *adev)
617{
618 struct dmar_drhd_unit *dmaru;
619 struct acpi_dmar_hardware_unit *drhd;
620 struct acpi_dmar_device_scope *scope;
621 struct device *tmp;
622 int i;
623 struct acpi_dmar_pci_path *path;
624
625 for_each_drhd_unit(dmaru) {
626 drhd = container_of(dmaru->hdr,
627 struct acpi_dmar_hardware_unit,
628 header);
629
630 for (scope = (void *)(drhd + 1);
631 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
632 scope = ((void *)scope) + scope->length) {
633 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ACPI)
634 continue;
635 if (scope->enumeration_id != device_number)
636 continue;
637
638 path = (void *)(scope + 1);
639 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
640 dev_name(&adev->dev), dmaru->reg_base_addr,
641 scope->bus, path->device, path->function);
642 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
643 if (tmp == NULL) {
644 dmaru->devices[i].bus = scope->bus;
645 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
646 path->function);
647 rcu_assign_pointer(dmaru->devices[i].dev,
648 get_device(&adev->dev));
649 return;
650 }
651 BUG_ON(i >= dmaru->devices_cnt);
652 }
653 }
654 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
655 device_number, dev_name(&adev->dev));
656}
657
658static int __init dmar_acpi_dev_scope_init(void)
659{
660 struct acpi_dmar_andd *andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
661
662 while (((unsigned long)andd) <
663 ((unsigned long)dmar_tbl) + dmar_tbl->length) {
664 if (andd->header.type == ACPI_DMAR_TYPE_ANDD) {
665 acpi_handle h;
666 struct acpi_device *adev;
667
668 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
669 andd->object_name,
670 &h))) {
671 pr_err("Failed to find handle for ACPI object %s\n",
672 andd->object_name);
673 continue;
674 }
675 acpi_bus_get_device(h, &adev);
676 if (!adev) {
677 pr_err("Failed to get device for ACPI object %s\n",
678 andd->object_name);
679 continue;
680 }
681 dmar_acpi_insert_dev_scope(andd->device_number, adev);
682 }
683 andd = ((void *)andd) + andd->header.length;
684 }
685 return 0;
686}
687
688int __init dmar_dev_scope_init(void)
689{
690 struct pci_dev *dev = NULL;
691 struct dmar_pci_notify_info *info;
692
693 if (dmar_dev_scope_status != 1)
694 return dmar_dev_scope_status;
695
696 dmar_acpi_dev_scope_init();
697
698 if (list_empty(&dmar_drhd_units)) {
699 dmar_dev_scope_status = -ENODEV;
700 } else {
701 dmar_dev_scope_status = 0;
702
703 for_each_pci_dev(dev) {
704 if (dev->is_virtfn)
705 continue;
706
707 info = dmar_alloc_pci_notify_info(dev,
708 BUS_NOTIFY_ADD_DEVICE);
709 if (!info) {
710 return dmar_dev_scope_status;
711 } else {
712 dmar_pci_bus_add_dev(info);
713 dmar_free_pci_notify_info(info);
714 }
715 }
716
717 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
718 }
719
720 return dmar_dev_scope_status;
721}
722
723
724int __init dmar_table_init(void)
725{
726 static int dmar_table_initialized;
727 int ret;
728
729 if (dmar_table_initialized == 0) {
730 ret = parse_dmar_table();
731 if (ret < 0) {
732 if (ret != -ENODEV)
733 pr_info("parse DMAR table failure.\n");
734 } else if (list_empty(&dmar_drhd_units)) {
735 pr_info("No DMAR devices found\n");
736 ret = -ENODEV;
737 }
738
739 if (ret < 0)
740 dmar_table_initialized = ret;
741 else
742 dmar_table_initialized = 1;
743 }
744
745 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
746}
747
748static void warn_invalid_dmar(u64 addr, const char *message)
749{
750 WARN_TAINT_ONCE(
751 1, TAINT_FIRMWARE_WORKAROUND,
752 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
753 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
754 addr, message,
755 dmi_get_system_info(DMI_BIOS_VENDOR),
756 dmi_get_system_info(DMI_BIOS_VERSION),
757 dmi_get_system_info(DMI_PRODUCT_VERSION));
758}
759
760static int __init check_zero_address(void)
761{
762 struct acpi_table_dmar *dmar;
763 struct acpi_dmar_header *entry_header;
764 struct acpi_dmar_hardware_unit *drhd;
765
766 dmar = (struct acpi_table_dmar *)dmar_tbl;
767 entry_header = (struct acpi_dmar_header *)(dmar + 1);
768
769 while (((unsigned long)entry_header) <
770 (((unsigned long)dmar) + dmar_tbl->length)) {
771 /* Avoid looping forever on bad ACPI tables */
772 if (entry_header->length == 0) {
773 pr_warn("Invalid 0-length structure\n");
774 return 0;
775 }
776
777 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
778 void __iomem *addr;
779 u64 cap, ecap;
780
781 drhd = (void *)entry_header;
782 if (!drhd->address) {
783 warn_invalid_dmar(0, "");
784 goto failed;
785 }
786
787 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
788 if (!addr ) {
789 printk("IOMMU: can't validate: %llx\n", drhd->address);
790 goto failed;
791 }
792 cap = dmar_readq(addr + DMAR_CAP_REG);
793 ecap = dmar_readq(addr + DMAR_ECAP_REG);
794 early_iounmap(addr, VTD_PAGE_SIZE);
795 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
796 warn_invalid_dmar(drhd->address,
797 " returns all ones");
798 goto failed;
799 }
800 }
801
802 entry_header = ((void *)entry_header + entry_header->length);
803 }
804 return 1;
805
806failed:
807 return 0;
808}
809
810int __init detect_intel_iommu(void)
811{
812 int ret;
813
814 down_write(&dmar_global_lock);
815 ret = dmar_table_detect();
816 if (ret)
817 ret = check_zero_address();
818 {
819 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
820 iommu_detected = 1;
821 /* Make sure ACS will be enabled */
822 pci_request_acs();
823 }
824
825#ifdef CONFIG_X86
826 if (ret)
827 x86_init.iommu.iommu_init = intel_iommu_init;
828#endif
829 }
830 early_acpi_os_unmap_memory((void __iomem *)dmar_tbl, dmar_tbl_size);
831 dmar_tbl = NULL;
832 up_write(&dmar_global_lock);
833
834 return ret ? 1 : -ENODEV;
835}
836
837
838static void unmap_iommu(struct intel_iommu *iommu)
839{
840 iounmap(iommu->reg);
841 release_mem_region(iommu->reg_phys, iommu->reg_size);
842}
843
844/**
845 * map_iommu: map the iommu's registers
846 * @iommu: the iommu to map
847 * @phys_addr: the physical address of the base resgister
848 *
849 * Memory map the iommu's registers. Start w/ a single page, and
850 * possibly expand if that turns out to be insufficent.
851 */
852static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
853{
854 int map_size, err=0;
855
856 iommu->reg_phys = phys_addr;
857 iommu->reg_size = VTD_PAGE_SIZE;
858
859 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
860 pr_err("IOMMU: can't reserve memory\n");
861 err = -EBUSY;
862 goto out;
863 }
864
865 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
866 if (!iommu->reg) {
867 pr_err("IOMMU: can't map the region\n");
868 err = -ENOMEM;
869 goto release;
870 }
871
872 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
873 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
874
875 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
876 err = -EINVAL;
877 warn_invalid_dmar(phys_addr, " returns all ones");
878 goto unmap;
879 }
880
881 /* the registers might be more than one page */
882 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
883 cap_max_fault_reg_offset(iommu->cap));
884 map_size = VTD_PAGE_ALIGN(map_size);
885 if (map_size > iommu->reg_size) {
886 iounmap(iommu->reg);
887 release_mem_region(iommu->reg_phys, iommu->reg_size);
888 iommu->reg_size = map_size;
889 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
890 iommu->name)) {
891 pr_err("IOMMU: can't reserve memory\n");
892 err = -EBUSY;
893 goto out;
894 }
895 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
896 if (!iommu->reg) {
897 pr_err("IOMMU: can't map the region\n");
898 err = -ENOMEM;
899 goto release;
900 }
901 }
902 err = 0;
903 goto out;
904
905unmap:
906 iounmap(iommu->reg);
907release:
908 release_mem_region(iommu->reg_phys, iommu->reg_size);
909out:
910 return err;
911}
912
913static int alloc_iommu(struct dmar_drhd_unit *drhd)
914{
915 struct intel_iommu *iommu;
916 u32 ver, sts;
917 static int iommu_allocated = 0;
918 int agaw = 0;
919 int msagaw = 0;
920 int err;
921
922 if (!drhd->reg_base_addr) {
923 warn_invalid_dmar(0, "");
924 return -EINVAL;
925 }
926
927 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
928 if (!iommu)
929 return -ENOMEM;
930
931 iommu->seq_id = iommu_allocated++;
932 sprintf (iommu->name, "dmar%d", iommu->seq_id);
933
934 err = map_iommu(iommu, drhd->reg_base_addr);
935 if (err) {
936 pr_err("IOMMU: failed to map %s\n", iommu->name);
937 goto error;
938 }
939
940 err = -EINVAL;
941 agaw = iommu_calculate_agaw(iommu);
942 if (agaw < 0) {
943 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
944 iommu->seq_id);
945 goto err_unmap;
946 }
947 msagaw = iommu_calculate_max_sagaw(iommu);
948 if (msagaw < 0) {
949 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
950 iommu->seq_id);
951 goto err_unmap;
952 }
953 iommu->agaw = agaw;
954 iommu->msagaw = msagaw;
955
956 iommu->node = -1;
957
958 ver = readl(iommu->reg + DMAR_VER_REG);
959 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
960 iommu->seq_id,
961 (unsigned long long)drhd->reg_base_addr,
962 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
963 (unsigned long long)iommu->cap,
964 (unsigned long long)iommu->ecap);
965
966 /* Reflect status in gcmd */
967 sts = readl(iommu->reg + DMAR_GSTS_REG);
968 if (sts & DMA_GSTS_IRES)
969 iommu->gcmd |= DMA_GCMD_IRE;
970 if (sts & DMA_GSTS_TES)
971 iommu->gcmd |= DMA_GCMD_TE;
972 if (sts & DMA_GSTS_QIES)
973 iommu->gcmd |= DMA_GCMD_QIE;
974
975 raw_spin_lock_init(&iommu->register_lock);
976
977 drhd->iommu = iommu;
978 return 0;
979
980 err_unmap:
981 unmap_iommu(iommu);
982 error:
983 kfree(iommu);
984 return err;
985}
986
987static void free_iommu(struct intel_iommu *iommu)
988{
989 if (iommu->irq) {
990 free_irq(iommu->irq, iommu);
991 irq_set_handler_data(iommu->irq, NULL);
992 destroy_irq(iommu->irq);
993 }
994
995 if (iommu->qi) {
996 free_page((unsigned long)iommu->qi->desc);
997 kfree(iommu->qi->desc_status);
998 kfree(iommu->qi);
999 }
1000
1001 if (iommu->reg)
1002 unmap_iommu(iommu);
1003
1004 kfree(iommu);
1005}
1006
1007/*
1008 * Reclaim all the submitted descriptors which have completed its work.
1009 */
1010static inline void reclaim_free_desc(struct q_inval *qi)
1011{
1012 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1013 qi->desc_status[qi->free_tail] == QI_ABORT) {
1014 qi->desc_status[qi->free_tail] = QI_FREE;
1015 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1016 qi->free_cnt++;
1017 }
1018}
1019
1020static int qi_check_fault(struct intel_iommu *iommu, int index)
1021{
1022 u32 fault;
1023 int head, tail;
1024 struct q_inval *qi = iommu->qi;
1025 int wait_index = (index + 1) % QI_LENGTH;
1026
1027 if (qi->desc_status[wait_index] == QI_ABORT)
1028 return -EAGAIN;
1029
1030 fault = readl(iommu->reg + DMAR_FSTS_REG);
1031
1032 /*
1033 * If IQE happens, the head points to the descriptor associated
1034 * with the error. No new descriptors are fetched until the IQE
1035 * is cleared.
1036 */
1037 if (fault & DMA_FSTS_IQE) {
1038 head = readl(iommu->reg + DMAR_IQH_REG);
1039 if ((head >> DMAR_IQ_SHIFT) == index) {
1040 pr_err("VT-d detected invalid descriptor: "
1041 "low=%llx, high=%llx\n",
1042 (unsigned long long)qi->desc[index].low,
1043 (unsigned long long)qi->desc[index].high);
1044 memcpy(&qi->desc[index], &qi->desc[wait_index],
1045 sizeof(struct qi_desc));
1046 __iommu_flush_cache(iommu, &qi->desc[index],
1047 sizeof(struct qi_desc));
1048 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1049 return -EINVAL;
1050 }
1051 }
1052
1053 /*
1054 * If ITE happens, all pending wait_desc commands are aborted.
1055 * No new descriptors are fetched until the ITE is cleared.
1056 */
1057 if (fault & DMA_FSTS_ITE) {
1058 head = readl(iommu->reg + DMAR_IQH_REG);
1059 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1060 head |= 1;
1061 tail = readl(iommu->reg + DMAR_IQT_REG);
1062 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1063
1064 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1065
1066 do {
1067 if (qi->desc_status[head] == QI_IN_USE)
1068 qi->desc_status[head] = QI_ABORT;
1069 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1070 } while (head != tail);
1071
1072 if (qi->desc_status[wait_index] == QI_ABORT)
1073 return -EAGAIN;
1074 }
1075
1076 if (fault & DMA_FSTS_ICE)
1077 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1078
1079 return 0;
1080}
1081
1082/*
1083 * Submit the queued invalidation descriptor to the remapping
1084 * hardware unit and wait for its completion.
1085 */
1086int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1087{
1088 int rc;
1089 struct q_inval *qi = iommu->qi;
1090 struct qi_desc *hw, wait_desc;
1091 int wait_index, index;
1092 unsigned long flags;
1093
1094 if (!qi)
1095 return 0;
1096
1097 hw = qi->desc;
1098
1099restart:
1100 rc = 0;
1101
1102 raw_spin_lock_irqsave(&qi->q_lock, flags);
1103 while (qi->free_cnt < 3) {
1104 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1105 cpu_relax();
1106 raw_spin_lock_irqsave(&qi->q_lock, flags);
1107 }
1108
1109 index = qi->free_head;
1110 wait_index = (index + 1) % QI_LENGTH;
1111
1112 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1113
1114 hw[index] = *desc;
1115
1116 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
1117 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1118 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
1119
1120 hw[wait_index] = wait_desc;
1121
1122 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
1123 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
1124
1125 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1126 qi->free_cnt -= 2;
1127
1128 /*
1129 * update the HW tail register indicating the presence of
1130 * new descriptors.
1131 */
1132 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1133
1134 while (qi->desc_status[wait_index] != QI_DONE) {
1135 /*
1136 * We will leave the interrupts disabled, to prevent interrupt
1137 * context to queue another cmd while a cmd is already submitted
1138 * and waiting for completion on this cpu. This is to avoid
1139 * a deadlock where the interrupt context can wait indefinitely
1140 * for free slots in the queue.
1141 */
1142 rc = qi_check_fault(iommu, index);
1143 if (rc)
1144 break;
1145
1146 raw_spin_unlock(&qi->q_lock);
1147 cpu_relax();
1148 raw_spin_lock(&qi->q_lock);
1149 }
1150
1151 qi->desc_status[index] = QI_DONE;
1152
1153 reclaim_free_desc(qi);
1154 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1155
1156 if (rc == -EAGAIN)
1157 goto restart;
1158
1159 return rc;
1160}
1161
1162/*
1163 * Flush the global interrupt entry cache.
1164 */
1165void qi_global_iec(struct intel_iommu *iommu)
1166{
1167 struct qi_desc desc;
1168
1169 desc.low = QI_IEC_TYPE;
1170 desc.high = 0;
1171
1172 /* should never fail */
1173 qi_submit_sync(&desc, iommu);
1174}
1175
1176void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1177 u64 type)
1178{
1179 struct qi_desc desc;
1180
1181 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1182 | QI_CC_GRAN(type) | QI_CC_TYPE;
1183 desc.high = 0;
1184
1185 qi_submit_sync(&desc, iommu);
1186}
1187
1188void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1189 unsigned int size_order, u64 type)
1190{
1191 u8 dw = 0, dr = 0;
1192
1193 struct qi_desc desc;
1194 int ih = 0;
1195
1196 if (cap_write_drain(iommu->cap))
1197 dw = 1;
1198
1199 if (cap_read_drain(iommu->cap))
1200 dr = 1;
1201
1202 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1203 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1204 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1205 | QI_IOTLB_AM(size_order);
1206
1207 qi_submit_sync(&desc, iommu);
1208}
1209
1210void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1211 u64 addr, unsigned mask)
1212{
1213 struct qi_desc desc;
1214
1215 if (mask) {
1216 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1217 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1218 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1219 } else
1220 desc.high = QI_DEV_IOTLB_ADDR(addr);
1221
1222 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1223 qdep = 0;
1224
1225 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1226 QI_DIOTLB_TYPE;
1227
1228 qi_submit_sync(&desc, iommu);
1229}
1230
1231/*
1232 * Disable Queued Invalidation interface.
1233 */
1234void dmar_disable_qi(struct intel_iommu *iommu)
1235{
1236 unsigned long flags;
1237 u32 sts;
1238 cycles_t start_time = get_cycles();
1239
1240 if (!ecap_qis(iommu->ecap))
1241 return;
1242
1243 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1244
1245 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
1246 if (!(sts & DMA_GSTS_QIES))
1247 goto end;
1248
1249 /*
1250 * Give a chance to HW to complete the pending invalidation requests.
1251 */
1252 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1253 readl(iommu->reg + DMAR_IQH_REG)) &&
1254 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1255 cpu_relax();
1256
1257 iommu->gcmd &= ~DMA_GCMD_QIE;
1258 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1259
1260 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1261 !(sts & DMA_GSTS_QIES), sts);
1262end:
1263 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1264}
1265
1266/*
1267 * Enable queued invalidation.
1268 */
1269static void __dmar_enable_qi(struct intel_iommu *iommu)
1270{
1271 u32 sts;
1272 unsigned long flags;
1273 struct q_inval *qi = iommu->qi;
1274
1275 qi->free_head = qi->free_tail = 0;
1276 qi->free_cnt = QI_LENGTH;
1277
1278 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1279
1280 /* write zero to the tail reg */
1281 writel(0, iommu->reg + DMAR_IQT_REG);
1282
1283 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1284
1285 iommu->gcmd |= DMA_GCMD_QIE;
1286 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1287
1288 /* Make sure hardware complete it */
1289 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1290
1291 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1292}
1293
1294/*
1295 * Enable Queued Invalidation interface. This is a must to support
1296 * interrupt-remapping. Also used by DMA-remapping, which replaces
1297 * register based IOTLB invalidation.
1298 */
1299int dmar_enable_qi(struct intel_iommu *iommu)
1300{
1301 struct q_inval *qi;
1302 struct page *desc_page;
1303
1304 if (!ecap_qis(iommu->ecap))
1305 return -ENOENT;
1306
1307 /*
1308 * queued invalidation is already setup and enabled.
1309 */
1310 if (iommu->qi)
1311 return 0;
1312
1313 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1314 if (!iommu->qi)
1315 return -ENOMEM;
1316
1317 qi = iommu->qi;
1318
1319
1320 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1321 if (!desc_page) {
1322 kfree(qi);
1323 iommu->qi = NULL;
1324 return -ENOMEM;
1325 }
1326
1327 qi->desc = page_address(desc_page);
1328
1329 qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1330 if (!qi->desc_status) {
1331 free_page((unsigned long) qi->desc);
1332 kfree(qi);
1333 iommu->qi = NULL;
1334 return -ENOMEM;
1335 }
1336
1337 qi->free_head = qi->free_tail = 0;
1338 qi->free_cnt = QI_LENGTH;
1339
1340 raw_spin_lock_init(&qi->q_lock);
1341
1342 __dmar_enable_qi(iommu);
1343
1344 return 0;
1345}
1346
1347/* iommu interrupt handling. Most stuff are MSI-like. */
1348
1349enum faulttype {
1350 DMA_REMAP,
1351 INTR_REMAP,
1352 UNKNOWN,
1353};
1354
1355static const char *dma_remap_fault_reasons[] =
1356{
1357 "Software",
1358 "Present bit in root entry is clear",
1359 "Present bit in context entry is clear",
1360 "Invalid context entry",
1361 "Access beyond MGAW",
1362 "PTE Write access is not set",
1363 "PTE Read access is not set",
1364 "Next page table ptr is invalid",
1365 "Root table address invalid",
1366 "Context table ptr is invalid",
1367 "non-zero reserved fields in RTP",
1368 "non-zero reserved fields in CTP",
1369 "non-zero reserved fields in PTE",
1370 "PCE for translation request specifies blocking",
1371};
1372
1373static const char *irq_remap_fault_reasons[] =
1374{
1375 "Detected reserved fields in the decoded interrupt-remapped request",
1376 "Interrupt index exceeded the interrupt-remapping table size",
1377 "Present field in the IRTE entry is clear",
1378 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1379 "Detected reserved fields in the IRTE entry",
1380 "Blocked a compatibility format interrupt request",
1381 "Blocked an interrupt request due to source-id verification failure",
1382};
1383
1384static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1385{
1386 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1387 ARRAY_SIZE(irq_remap_fault_reasons))) {
1388 *fault_type = INTR_REMAP;
1389 return irq_remap_fault_reasons[fault_reason - 0x20];
1390 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1391 *fault_type = DMA_REMAP;
1392 return dma_remap_fault_reasons[fault_reason];
1393 } else {
1394 *fault_type = UNKNOWN;
1395 return "Unknown";
1396 }
1397}
1398
1399void dmar_msi_unmask(struct irq_data *data)
1400{
1401 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1402 unsigned long flag;
1403
1404 /* unmask it */
1405 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1406 writel(0, iommu->reg + DMAR_FECTL_REG);
1407 /* Read a reg to force flush the post write */
1408 readl(iommu->reg + DMAR_FECTL_REG);
1409 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1410}
1411
1412void dmar_msi_mask(struct irq_data *data)
1413{
1414 unsigned long flag;
1415 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1416
1417 /* mask it */
1418 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1419 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1420 /* Read a reg to force flush the post write */
1421 readl(iommu->reg + DMAR_FECTL_REG);
1422 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1423}
1424
1425void dmar_msi_write(int irq, struct msi_msg *msg)
1426{
1427 struct intel_iommu *iommu = irq_get_handler_data(irq);
1428 unsigned long flag;
1429
1430 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1431 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1432 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1433 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1434 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1435}
1436
1437void dmar_msi_read(int irq, struct msi_msg *msg)
1438{
1439 struct intel_iommu *iommu = irq_get_handler_data(irq);
1440 unsigned long flag;
1441
1442 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1443 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1444 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1445 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1446 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1447}
1448
1449static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1450 u8 fault_reason, u16 source_id, unsigned long long addr)
1451{
1452 const char *reason;
1453 int fault_type;
1454
1455 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1456
1457 if (fault_type == INTR_REMAP)
1458 pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1459 "fault index %llx\n"
1460 "INTR-REMAP:[fault reason %02d] %s\n",
1461 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1462 PCI_FUNC(source_id & 0xFF), addr >> 48,
1463 fault_reason, reason);
1464 else
1465 pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1466 "fault addr %llx \n"
1467 "DMAR:[fault reason %02d] %s\n",
1468 (type ? "DMA Read" : "DMA Write"),
1469 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1470 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1471 return 0;
1472}
1473
1474#define PRIMARY_FAULT_REG_LEN (16)
1475irqreturn_t dmar_fault(int irq, void *dev_id)
1476{
1477 struct intel_iommu *iommu = dev_id;
1478 int reg, fault_index;
1479 u32 fault_status;
1480 unsigned long flag;
1481
1482 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1483 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1484 if (fault_status)
1485 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1486
1487 /* TBD: ignore advanced fault log currently */
1488 if (!(fault_status & DMA_FSTS_PPF))
1489 goto unlock_exit;
1490
1491 fault_index = dma_fsts_fault_record_index(fault_status);
1492 reg = cap_fault_reg_offset(iommu->cap);
1493 while (1) {
1494 u8 fault_reason;
1495 u16 source_id;
1496 u64 guest_addr;
1497 int type;
1498 u32 data;
1499
1500 /* highest 32 bits */
1501 data = readl(iommu->reg + reg +
1502 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1503 if (!(data & DMA_FRCD_F))
1504 break;
1505
1506 fault_reason = dma_frcd_fault_reason(data);
1507 type = dma_frcd_type(data);
1508
1509 data = readl(iommu->reg + reg +
1510 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1511 source_id = dma_frcd_source_id(data);
1512
1513 guest_addr = dmar_readq(iommu->reg + reg +
1514 fault_index * PRIMARY_FAULT_REG_LEN);
1515 guest_addr = dma_frcd_page_addr(guest_addr);
1516 /* clear the fault */
1517 writel(DMA_FRCD_F, iommu->reg + reg +
1518 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1519
1520 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1521
1522 dmar_fault_do_one(iommu, type, fault_reason,
1523 source_id, guest_addr);
1524
1525 fault_index++;
1526 if (fault_index >= cap_num_fault_regs(iommu->cap))
1527 fault_index = 0;
1528 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1529 }
1530
1531 writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1532
1533unlock_exit:
1534 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1535 return IRQ_HANDLED;
1536}
1537
1538int dmar_set_interrupt(struct intel_iommu *iommu)
1539{
1540 int irq, ret;
1541
1542 /*
1543 * Check if the fault interrupt is already initialized.
1544 */
1545 if (iommu->irq)
1546 return 0;
1547
1548 irq = create_irq();
1549 if (!irq) {
1550 pr_err("IOMMU: no free vectors\n");
1551 return -EINVAL;
1552 }
1553
1554 irq_set_handler_data(irq, iommu);
1555 iommu->irq = irq;
1556
1557 ret = arch_setup_dmar_msi(irq);
1558 if (ret) {
1559 irq_set_handler_data(irq, NULL);
1560 iommu->irq = 0;
1561 destroy_irq(irq);
1562 return ret;
1563 }
1564
1565 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1566 if (ret)
1567 pr_err("IOMMU: can't request irq\n");
1568 return ret;
1569}
1570
1571int __init enable_drhd_fault_handling(void)
1572{
1573 struct dmar_drhd_unit *drhd;
1574 struct intel_iommu *iommu;
1575
1576 /*
1577 * Enable fault control interrupt.
1578 */
1579 for_each_iommu(iommu, drhd) {
1580 u32 fault_status;
1581 int ret = dmar_set_interrupt(iommu);
1582
1583 if (ret) {
1584 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1585 (unsigned long long)drhd->reg_base_addr, ret);
1586 return -1;
1587 }
1588
1589 /*
1590 * Clear any previous faults.
1591 */
1592 dmar_fault(iommu->irq, iommu);
1593 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1594 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1595 }
1596
1597 return 0;
1598}
1599
1600/*
1601 * Re-enable Queued Invalidation interface.
1602 */
1603int dmar_reenable_qi(struct intel_iommu *iommu)
1604{
1605 if (!ecap_qis(iommu->ecap))
1606 return -ENOENT;
1607
1608 if (!iommu->qi)
1609 return -ENOENT;
1610
1611 /*
1612 * First disable queued invalidation.
1613 */
1614 dmar_disable_qi(iommu);
1615 /*
1616 * Then enable queued invalidation again. Since there is no pending
1617 * invalidation requests now, it's safe to re-enable queued
1618 * invalidation.
1619 */
1620 __dmar_enable_qi(iommu);
1621
1622 return 0;
1623}
1624
1625/*
1626 * Check interrupt remapping support in DMAR table description.
1627 */
1628int __init dmar_ir_support(void)
1629{
1630 struct acpi_table_dmar *dmar;
1631 dmar = (struct acpi_table_dmar *)dmar_tbl;
1632 if (!dmar)
1633 return 0;
1634 return dmar->flags & 0x1;
1635}
1636
1637static int __init dmar_free_unused_resources(void)
1638{
1639 struct dmar_drhd_unit *dmaru, *dmaru_n;
1640
1641 /* DMAR units are in use */
1642 if (irq_remapping_enabled || intel_iommu_enabled)
1643 return 0;
1644
1645 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1646 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1647
1648 down_write(&dmar_global_lock);
1649 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1650 list_del(&dmaru->list);
1651 dmar_free_drhd(dmaru);
1652 }
1653 up_write(&dmar_global_lock);
1654
1655 return 0;
1656}
1657
1658late_initcall(dmar_free_unused_resources);
1659IOMMU_INIT_POST(detect_intel_iommu);
This page took 0.029497 seconds and 5 git commands to generate.