lguest: make hypercalls use the vcpu struct
[deliverable/linux.git] / drivers / lguest / lguest_user.c
... / ...
CommitLineData
1/*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
2 * controls and communicates with the Guest. For example, the first write will
3 * tell us the Guest's memory layout, pagetable, entry point and kernel address
4 * offset. A read will run the Guest until something happens, such as a signal
5 * or the Guest doing a NOTIFY out to the Launcher. :*/
6#include <linux/uaccess.h>
7#include <linux/miscdevice.h>
8#include <linux/fs.h>
9#include "lg.h"
10
11/*L:055 When something happens, the Waker process needs a way to stop the
12 * kernel running the Guest and return to the Launcher. So the Waker writes
13 * LHREQ_BREAK and the value "1" to /dev/lguest to do this. Once the Launcher
14 * has done whatever needs attention, it writes LHREQ_BREAK and "0" to release
15 * the Waker. */
16static int break_guest_out(struct lguest *lg, const unsigned long __user *input)
17{
18 unsigned long on;
19
20 /* Fetch whether they're turning break on or off. */
21 if (get_user(on, input) != 0)
22 return -EFAULT;
23
24 if (on) {
25 lg->break_out = 1;
26 /* Pop it out of the Guest (may be running on different CPU) */
27 wake_up_process(lg->tsk);
28 /* Wait for them to reset it */
29 return wait_event_interruptible(lg->break_wq, !lg->break_out);
30 } else {
31 lg->break_out = 0;
32 wake_up(&lg->break_wq);
33 return 0;
34 }
35}
36
37/*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
38 * number to /dev/lguest. */
39static int user_send_irq(struct lguest *lg, const unsigned long __user *input)
40{
41 unsigned long irq;
42
43 if (get_user(irq, input) != 0)
44 return -EFAULT;
45 if (irq >= LGUEST_IRQS)
46 return -EINVAL;
47 /* Next time the Guest runs, the core code will see if it can deliver
48 * this interrupt. */
49 set_bit(irq, lg->irqs_pending);
50 return 0;
51}
52
53/*L:040 Once our Guest is initialized, the Launcher makes it run by reading
54 * from /dev/lguest. */
55static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
56{
57 struct lguest *lg = file->private_data;
58 struct lg_cpu *cpu;
59 unsigned int cpu_id = *o;
60
61 /* You must write LHREQ_INITIALIZE first! */
62 if (!lg)
63 return -EINVAL;
64
65 /* Watch out for arbitrary vcpu indexes! */
66 if (cpu_id >= lg->nr_cpus)
67 return -EINVAL;
68
69 cpu = &lg->cpus[cpu_id];
70
71 /* If you're not the task which owns the Guest, go away. */
72 if (current != lg->tsk)
73 return -EPERM;
74
75 /* If the guest is already dead, we indicate why */
76 if (lg->dead) {
77 size_t len;
78
79 /* lg->dead either contains an error code, or a string. */
80 if (IS_ERR(lg->dead))
81 return PTR_ERR(lg->dead);
82
83 /* We can only return as much as the buffer they read with. */
84 len = min(size, strlen(lg->dead)+1);
85 if (copy_to_user(user, lg->dead, len) != 0)
86 return -EFAULT;
87 return len;
88 }
89
90 /* If we returned from read() last time because the Guest notified,
91 * clear the flag. */
92 if (lg->pending_notify)
93 lg->pending_notify = 0;
94
95 /* Run the Guest until something interesting happens. */
96 return run_guest(cpu, (unsigned long __user *)user);
97}
98
99static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
100{
101 if (id >= NR_CPUS)
102 return -EINVAL;
103
104 cpu->id = id;
105 cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
106 cpu->lg->nr_cpus++;
107
108 return 0;
109}
110
111/*L:020 The initialization write supplies 4 pointer sized (32 or 64 bit)
112 * values (in addition to the LHREQ_INITIALIZE value). These are:
113 *
114 * base: The start of the Guest-physical memory inside the Launcher memory.
115 *
116 * pfnlimit: The highest (Guest-physical) page number the Guest should be
117 * allowed to access. The Guest memory lives inside the Launcher, so it sets
118 * this to ensure the Guest can only reach its own memory.
119 *
120 * pgdir: The (Guest-physical) address of the top of the initial Guest
121 * pagetables (which are set up by the Launcher).
122 *
123 * start: The first instruction to execute ("eip" in x86-speak).
124 */
125static int initialize(struct file *file, const unsigned long __user *input)
126{
127 /* "struct lguest" contains everything we (the Host) know about a
128 * Guest. */
129 struct lguest *lg;
130 int err;
131 unsigned long args[4];
132
133 /* We grab the Big Lguest lock, which protects against multiple
134 * simultaneous initializations. */
135 mutex_lock(&lguest_lock);
136 /* You can't initialize twice! Close the device and start again... */
137 if (file->private_data) {
138 err = -EBUSY;
139 goto unlock;
140 }
141
142 if (copy_from_user(args, input, sizeof(args)) != 0) {
143 err = -EFAULT;
144 goto unlock;
145 }
146
147 lg = kzalloc(sizeof(*lg), GFP_KERNEL);
148 if (!lg) {
149 err = -ENOMEM;
150 goto unlock;
151 }
152
153 /* Populate the easy fields of our "struct lguest" */
154 lg->mem_base = (void __user *)(long)args[0];
155 lg->pfn_limit = args[1];
156
157 /* This is the first cpu */
158 err = lg_cpu_start(&lg->cpus[0], 0, args[3]);
159 if (err)
160 goto release_guest;
161
162 /* We need a complete page for the Guest registers: they are accessible
163 * to the Guest and we can only grant it access to whole pages. */
164 lg->regs_page = get_zeroed_page(GFP_KERNEL);
165 if (!lg->regs_page) {
166 err = -ENOMEM;
167 goto release_guest;
168 }
169 /* We actually put the registers at the bottom of the page. */
170 lg->regs = (void *)lg->regs_page + PAGE_SIZE - sizeof(*lg->regs);
171
172 /* Initialize the Guest's shadow page tables, using the toplevel
173 * address the Launcher gave us. This allocates memory, so can
174 * fail. */
175 err = init_guest_pagetable(lg, args[2]);
176 if (err)
177 goto free_regs;
178
179 /* Now we initialize the Guest's registers, handing it the start
180 * address. */
181 lguest_arch_setup_regs(lg, args[3]);
182
183 /* The timer for lguest's clock needs initialization. */
184 init_clockdev(lg);
185
186 /* We keep a pointer to the Launcher task (ie. current task) for when
187 * other Guests want to wake this one (inter-Guest I/O). */
188 lg->tsk = current;
189 /* We need to keep a pointer to the Launcher's memory map, because if
190 * the Launcher dies we need to clean it up. If we don't keep a
191 * reference, it is destroyed before close() is called. */
192 lg->mm = get_task_mm(lg->tsk);
193
194 /* Initialize the queue for the waker to wait on */
195 init_waitqueue_head(&lg->break_wq);
196
197 /* We remember which CPU's pages this Guest used last, for optimization
198 * when the same Guest runs on the same CPU twice. */
199 lg->last_pages = NULL;
200
201 /* We keep our "struct lguest" in the file's private_data. */
202 file->private_data = lg;
203
204 mutex_unlock(&lguest_lock);
205
206 /* And because this is a write() call, we return the length used. */
207 return sizeof(args);
208
209free_regs:
210 free_page(lg->regs_page);
211release_guest:
212 kfree(lg);
213unlock:
214 mutex_unlock(&lguest_lock);
215 return err;
216}
217
218/*L:010 The first operation the Launcher does must be a write. All writes
219 * start with an unsigned long number: for the first write this must be
220 * LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
221 * writes of other values to send interrupts. */
222static ssize_t write(struct file *file, const char __user *in,
223 size_t size, loff_t *off)
224{
225 /* Once the guest is initialized, we hold the "struct lguest" in the
226 * file private data. */
227 struct lguest *lg = file->private_data;
228 const unsigned long __user *input = (const unsigned long __user *)in;
229 unsigned long req;
230 struct lg_cpu *cpu;
231 unsigned int cpu_id = *off;
232
233 if (get_user(req, input) != 0)
234 return -EFAULT;
235 input++;
236
237 /* If you haven't initialized, you must do that first. */
238 if (req != LHREQ_INITIALIZE) {
239 if (!lg || (cpu_id >= lg->nr_cpus))
240 return -EINVAL;
241 cpu = &lg->cpus[cpu_id];
242 if (!cpu)
243 return -EINVAL;
244 }
245
246 /* Once the Guest is dead, all you can do is read() why it died. */
247 if (lg && lg->dead)
248 return -ENOENT;
249
250 /* If you're not the task which owns the Guest, you can only break */
251 if (lg && current != lg->tsk && req != LHREQ_BREAK)
252 return -EPERM;
253
254 switch (req) {
255 case LHREQ_INITIALIZE:
256 return initialize(file, input);
257 case LHREQ_IRQ:
258 return user_send_irq(lg, input);
259 case LHREQ_BREAK:
260 return break_guest_out(lg, input);
261 default:
262 return -EINVAL;
263 }
264}
265
266/*L:060 The final piece of interface code is the close() routine. It reverses
267 * everything done in initialize(). This is usually called because the
268 * Launcher exited.
269 *
270 * Note that the close routine returns 0 or a negative error number: it can't
271 * really fail, but it can whine. I blame Sun for this wart, and K&R C for
272 * letting them do it. :*/
273static int close(struct inode *inode, struct file *file)
274{
275 struct lguest *lg = file->private_data;
276
277 /* If we never successfully initialized, there's nothing to clean up */
278 if (!lg)
279 return 0;
280
281 /* We need the big lock, to protect from inter-guest I/O and other
282 * Launchers initializing guests. */
283 mutex_lock(&lguest_lock);
284 /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
285 hrtimer_cancel(&lg->hrt);
286 /* Free up the shadow page tables for the Guest. */
287 free_guest_pagetable(lg);
288 /* Now all the memory cleanups are done, it's safe to release the
289 * Launcher's memory management structure. */
290 mmput(lg->mm);
291 /* If lg->dead doesn't contain an error code it will be NULL or a
292 * kmalloc()ed string, either of which is ok to hand to kfree(). */
293 if (!IS_ERR(lg->dead))
294 kfree(lg->dead);
295 /* We can free up the register page we allocated. */
296 free_page(lg->regs_page);
297 /* We clear the entire structure, which also marks it as free for the
298 * next user. */
299 memset(lg, 0, sizeof(*lg));
300 /* Release lock and exit. */
301 mutex_unlock(&lguest_lock);
302
303 return 0;
304}
305
306/*L:000
307 * Welcome to our journey through the Launcher!
308 *
309 * The Launcher is the Host userspace program which sets up, runs and services
310 * the Guest. In fact, many comments in the Drivers which refer to "the Host"
311 * doing things are inaccurate: the Launcher does all the device handling for
312 * the Guest, but the Guest can't know that.
313 *
314 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
315 * shall see more of that later.
316 *
317 * We begin our understanding with the Host kernel interface which the Launcher
318 * uses: reading and writing a character device called /dev/lguest. All the
319 * work happens in the read(), write() and close() routines: */
320static struct file_operations lguest_fops = {
321 .owner = THIS_MODULE,
322 .release = close,
323 .write = write,
324 .read = read,
325};
326
327/* This is a textbook example of a "misc" character device. Populate a "struct
328 * miscdevice" and register it with misc_register(). */
329static struct miscdevice lguest_dev = {
330 .minor = MISC_DYNAMIC_MINOR,
331 .name = "lguest",
332 .fops = &lguest_fops,
333};
334
335int __init lguest_device_init(void)
336{
337 return misc_register(&lguest_dev);
338}
339
340void __exit lguest_device_remove(void)
341{
342 misc_deregister(&lguest_dev);
343}
This page took 0.024167 seconds and 5 git commands to generate.