dm crypt: move private iv fields to structs
[deliverable/linux.git] / drivers / md / dm-crypt.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include <linux/completion.h>
10#include <linux/err.h>
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/bio.h>
15#include <linux/blkdev.h>
16#include <linux/mempool.h>
17#include <linux/slab.h>
18#include <linux/crypto.h>
19#include <linux/workqueue.h>
20#include <linux/backing-dev.h>
21#include <asm/atomic.h>
22#include <linux/scatterlist.h>
23#include <asm/page.h>
24#include <asm/unaligned.h>
25
26#include <linux/device-mapper.h>
27
28#define DM_MSG_PREFIX "crypt"
29#define MESG_STR(x) x, sizeof(x)
30
31/*
32 * context holding the current state of a multi-part conversion
33 */
34struct convert_context {
35 struct completion restart;
36 struct bio *bio_in;
37 struct bio *bio_out;
38 unsigned int offset_in;
39 unsigned int offset_out;
40 unsigned int idx_in;
41 unsigned int idx_out;
42 sector_t sector;
43 atomic_t pending;
44};
45
46/*
47 * per bio private data
48 */
49struct dm_crypt_io {
50 struct dm_target *target;
51 struct bio *base_bio;
52 struct work_struct work;
53
54 struct convert_context ctx;
55
56 atomic_t pending;
57 int error;
58 sector_t sector;
59 struct dm_crypt_io *base_io;
60};
61
62struct dm_crypt_request {
63 struct convert_context *ctx;
64 struct scatterlist sg_in;
65 struct scatterlist sg_out;
66};
67
68struct crypt_config;
69
70struct crypt_iv_operations {
71 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
72 const char *opts);
73 void (*dtr)(struct crypt_config *cc);
74 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
75};
76
77struct iv_essiv_private {
78 struct crypto_cipher *tfm;
79};
80
81struct iv_benbi_private {
82 int shift;
83};
84
85/*
86 * Crypt: maps a linear range of a block device
87 * and encrypts / decrypts at the same time.
88 */
89enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
90struct crypt_config {
91 struct dm_dev *dev;
92 sector_t start;
93
94 /*
95 * pool for per bio private data, crypto requests and
96 * encryption requeusts/buffer pages
97 */
98 mempool_t *io_pool;
99 mempool_t *req_pool;
100 mempool_t *page_pool;
101 struct bio_set *bs;
102
103 struct workqueue_struct *io_queue;
104 struct workqueue_struct *crypt_queue;
105
106 /*
107 * crypto related data
108 */
109 struct crypt_iv_operations *iv_gen_ops;
110 char *iv_mode;
111 union {
112 struct iv_essiv_private essiv;
113 struct iv_benbi_private benbi;
114 } iv_gen_private;
115 sector_t iv_offset;
116 unsigned int iv_size;
117
118 /*
119 * Layout of each crypto request:
120 *
121 * struct ablkcipher_request
122 * context
123 * padding
124 * struct dm_crypt_request
125 * padding
126 * IV
127 *
128 * The padding is added so that dm_crypt_request and the IV are
129 * correctly aligned.
130 */
131 unsigned int dmreq_start;
132 struct ablkcipher_request *req;
133
134 char cipher[CRYPTO_MAX_ALG_NAME];
135 char chainmode[CRYPTO_MAX_ALG_NAME];
136 struct crypto_ablkcipher *tfm;
137 unsigned long flags;
138 unsigned int key_size;
139 u8 key[0];
140};
141
142#define MIN_IOS 16
143#define MIN_POOL_PAGES 32
144#define MIN_BIO_PAGES 8
145
146static struct kmem_cache *_crypt_io_pool;
147
148static void clone_init(struct dm_crypt_io *, struct bio *);
149static void kcryptd_queue_crypt(struct dm_crypt_io *io);
150
151/*
152 * Different IV generation algorithms:
153 *
154 * plain: the initial vector is the 32-bit little-endian version of the sector
155 * number, padded with zeros if necessary.
156 *
157 * essiv: "encrypted sector|salt initial vector", the sector number is
158 * encrypted with the bulk cipher using a salt as key. The salt
159 * should be derived from the bulk cipher's key via hashing.
160 *
161 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
162 * (needed for LRW-32-AES and possible other narrow block modes)
163 *
164 * null: the initial vector is always zero. Provides compatibility with
165 * obsolete loop_fish2 devices. Do not use for new devices.
166 *
167 * plumb: unimplemented, see:
168 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
169 */
170
171static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
172{
173 memset(iv, 0, cc->iv_size);
174 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
175
176 return 0;
177}
178
179static void crypt_iv_essiv_dtr(struct crypt_config *cc)
180{
181 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
182
183 crypto_free_cipher(essiv->tfm);
184 essiv->tfm = NULL;
185}
186
187static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
188 const char *opts)
189{
190 struct crypto_cipher *essiv_tfm;
191 struct crypto_hash *hash_tfm;
192 struct hash_desc desc;
193 struct scatterlist sg;
194 unsigned int saltsize;
195 u8 *salt;
196 int err;
197
198 if (opts == NULL) {
199 ti->error = "Digest algorithm missing for ESSIV mode";
200 return -EINVAL;
201 }
202
203 /* Hash the cipher key with the given hash algorithm */
204 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
205 if (IS_ERR(hash_tfm)) {
206 ti->error = "Error initializing ESSIV hash";
207 return PTR_ERR(hash_tfm);
208 }
209
210 saltsize = crypto_hash_digestsize(hash_tfm);
211 salt = kmalloc(saltsize, GFP_KERNEL);
212 if (salt == NULL) {
213 ti->error = "Error kmallocing salt storage in ESSIV";
214 crypto_free_hash(hash_tfm);
215 return -ENOMEM;
216 }
217
218 sg_init_one(&sg, cc->key, cc->key_size);
219 desc.tfm = hash_tfm;
220 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
221 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
222 crypto_free_hash(hash_tfm);
223
224 if (err) {
225 ti->error = "Error calculating hash in ESSIV";
226 kfree(salt);
227 return err;
228 }
229
230 /* Setup the essiv_tfm with the given salt */
231 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
232 if (IS_ERR(essiv_tfm)) {
233 ti->error = "Error allocating crypto tfm for ESSIV";
234 kfree(salt);
235 return PTR_ERR(essiv_tfm);
236 }
237 if (crypto_cipher_blocksize(essiv_tfm) !=
238 crypto_ablkcipher_ivsize(cc->tfm)) {
239 ti->error = "Block size of ESSIV cipher does "
240 "not match IV size of block cipher";
241 crypto_free_cipher(essiv_tfm);
242 kfree(salt);
243 return -EINVAL;
244 }
245 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
246 if (err) {
247 ti->error = "Failed to set key for ESSIV cipher";
248 crypto_free_cipher(essiv_tfm);
249 kfree(salt);
250 return err;
251 }
252 kfree(salt);
253
254 cc->iv_gen_private.essiv.tfm = essiv_tfm;
255 return 0;
256}
257
258static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
259{
260 memset(iv, 0, cc->iv_size);
261 *(u64 *)iv = cpu_to_le64(sector);
262 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv.tfm, iv, iv);
263 return 0;
264}
265
266static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
267 const char *opts)
268{
269 unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
270 int log = ilog2(bs);
271
272 /* we need to calculate how far we must shift the sector count
273 * to get the cipher block count, we use this shift in _gen */
274
275 if (1 << log != bs) {
276 ti->error = "cypher blocksize is not a power of 2";
277 return -EINVAL;
278 }
279
280 if (log > 9) {
281 ti->error = "cypher blocksize is > 512";
282 return -EINVAL;
283 }
284
285 cc->iv_gen_private.benbi.shift = 9 - log;
286
287 return 0;
288}
289
290static void crypt_iv_benbi_dtr(struct crypt_config *cc)
291{
292}
293
294static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
295{
296 __be64 val;
297
298 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
299
300 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi.shift) + 1);
301 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
302
303 return 0;
304}
305
306static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
307{
308 memset(iv, 0, cc->iv_size);
309
310 return 0;
311}
312
313static struct crypt_iv_operations crypt_iv_plain_ops = {
314 .generator = crypt_iv_plain_gen
315};
316
317static struct crypt_iv_operations crypt_iv_essiv_ops = {
318 .ctr = crypt_iv_essiv_ctr,
319 .dtr = crypt_iv_essiv_dtr,
320 .generator = crypt_iv_essiv_gen
321};
322
323static struct crypt_iv_operations crypt_iv_benbi_ops = {
324 .ctr = crypt_iv_benbi_ctr,
325 .dtr = crypt_iv_benbi_dtr,
326 .generator = crypt_iv_benbi_gen
327};
328
329static struct crypt_iv_operations crypt_iv_null_ops = {
330 .generator = crypt_iv_null_gen
331};
332
333static void crypt_convert_init(struct crypt_config *cc,
334 struct convert_context *ctx,
335 struct bio *bio_out, struct bio *bio_in,
336 sector_t sector)
337{
338 ctx->bio_in = bio_in;
339 ctx->bio_out = bio_out;
340 ctx->offset_in = 0;
341 ctx->offset_out = 0;
342 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
343 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
344 ctx->sector = sector + cc->iv_offset;
345 init_completion(&ctx->restart);
346}
347
348static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
349 struct ablkcipher_request *req)
350{
351 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
352}
353
354static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
355 struct dm_crypt_request *dmreq)
356{
357 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
358}
359
360static int crypt_convert_block(struct crypt_config *cc,
361 struct convert_context *ctx,
362 struct ablkcipher_request *req)
363{
364 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
365 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
366 struct dm_crypt_request *dmreq;
367 u8 *iv;
368 int r = 0;
369
370 dmreq = dmreq_of_req(cc, req);
371 iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
372 crypto_ablkcipher_alignmask(cc->tfm) + 1);
373
374 dmreq->ctx = ctx;
375 sg_init_table(&dmreq->sg_in, 1);
376 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
377 bv_in->bv_offset + ctx->offset_in);
378
379 sg_init_table(&dmreq->sg_out, 1);
380 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
381 bv_out->bv_offset + ctx->offset_out);
382
383 ctx->offset_in += 1 << SECTOR_SHIFT;
384 if (ctx->offset_in >= bv_in->bv_len) {
385 ctx->offset_in = 0;
386 ctx->idx_in++;
387 }
388
389 ctx->offset_out += 1 << SECTOR_SHIFT;
390 if (ctx->offset_out >= bv_out->bv_len) {
391 ctx->offset_out = 0;
392 ctx->idx_out++;
393 }
394
395 if (cc->iv_gen_ops) {
396 r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
397 if (r < 0)
398 return r;
399 }
400
401 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
402 1 << SECTOR_SHIFT, iv);
403
404 if (bio_data_dir(ctx->bio_in) == WRITE)
405 r = crypto_ablkcipher_encrypt(req);
406 else
407 r = crypto_ablkcipher_decrypt(req);
408
409 return r;
410}
411
412static void kcryptd_async_done(struct crypto_async_request *async_req,
413 int error);
414static void crypt_alloc_req(struct crypt_config *cc,
415 struct convert_context *ctx)
416{
417 if (!cc->req)
418 cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
419 ablkcipher_request_set_tfm(cc->req, cc->tfm);
420 ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
421 CRYPTO_TFM_REQ_MAY_SLEEP,
422 kcryptd_async_done,
423 dmreq_of_req(cc, cc->req));
424}
425
426/*
427 * Encrypt / decrypt data from one bio to another one (can be the same one)
428 */
429static int crypt_convert(struct crypt_config *cc,
430 struct convert_context *ctx)
431{
432 int r;
433
434 atomic_set(&ctx->pending, 1);
435
436 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
437 ctx->idx_out < ctx->bio_out->bi_vcnt) {
438
439 crypt_alloc_req(cc, ctx);
440
441 atomic_inc(&ctx->pending);
442
443 r = crypt_convert_block(cc, ctx, cc->req);
444
445 switch (r) {
446 /* async */
447 case -EBUSY:
448 wait_for_completion(&ctx->restart);
449 INIT_COMPLETION(ctx->restart);
450 /* fall through*/
451 case -EINPROGRESS:
452 cc->req = NULL;
453 ctx->sector++;
454 continue;
455
456 /* sync */
457 case 0:
458 atomic_dec(&ctx->pending);
459 ctx->sector++;
460 cond_resched();
461 continue;
462
463 /* error */
464 default:
465 atomic_dec(&ctx->pending);
466 return r;
467 }
468 }
469
470 return 0;
471}
472
473static void dm_crypt_bio_destructor(struct bio *bio)
474{
475 struct dm_crypt_io *io = bio->bi_private;
476 struct crypt_config *cc = io->target->private;
477
478 bio_free(bio, cc->bs);
479}
480
481/*
482 * Generate a new unfragmented bio with the given size
483 * This should never violate the device limitations
484 * May return a smaller bio when running out of pages, indicated by
485 * *out_of_pages set to 1.
486 */
487static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
488 unsigned *out_of_pages)
489{
490 struct crypt_config *cc = io->target->private;
491 struct bio *clone;
492 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
493 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
494 unsigned i, len;
495 struct page *page;
496
497 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
498 if (!clone)
499 return NULL;
500
501 clone_init(io, clone);
502 *out_of_pages = 0;
503
504 for (i = 0; i < nr_iovecs; i++) {
505 page = mempool_alloc(cc->page_pool, gfp_mask);
506 if (!page) {
507 *out_of_pages = 1;
508 break;
509 }
510
511 /*
512 * if additional pages cannot be allocated without waiting,
513 * return a partially allocated bio, the caller will then try
514 * to allocate additional bios while submitting this partial bio
515 */
516 if (i == (MIN_BIO_PAGES - 1))
517 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
518
519 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
520
521 if (!bio_add_page(clone, page, len, 0)) {
522 mempool_free(page, cc->page_pool);
523 break;
524 }
525
526 size -= len;
527 }
528
529 if (!clone->bi_size) {
530 bio_put(clone);
531 return NULL;
532 }
533
534 return clone;
535}
536
537static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
538{
539 unsigned int i;
540 struct bio_vec *bv;
541
542 for (i = 0; i < clone->bi_vcnt; i++) {
543 bv = bio_iovec_idx(clone, i);
544 BUG_ON(!bv->bv_page);
545 mempool_free(bv->bv_page, cc->page_pool);
546 bv->bv_page = NULL;
547 }
548}
549
550static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
551 struct bio *bio, sector_t sector)
552{
553 struct crypt_config *cc = ti->private;
554 struct dm_crypt_io *io;
555
556 io = mempool_alloc(cc->io_pool, GFP_NOIO);
557 io->target = ti;
558 io->base_bio = bio;
559 io->sector = sector;
560 io->error = 0;
561 io->base_io = NULL;
562 atomic_set(&io->pending, 0);
563
564 return io;
565}
566
567static void crypt_inc_pending(struct dm_crypt_io *io)
568{
569 atomic_inc(&io->pending);
570}
571
572/*
573 * One of the bios was finished. Check for completion of
574 * the whole request and correctly clean up the buffer.
575 * If base_io is set, wait for the last fragment to complete.
576 */
577static void crypt_dec_pending(struct dm_crypt_io *io)
578{
579 struct crypt_config *cc = io->target->private;
580 struct bio *base_bio = io->base_bio;
581 struct dm_crypt_io *base_io = io->base_io;
582 int error = io->error;
583
584 if (!atomic_dec_and_test(&io->pending))
585 return;
586
587 mempool_free(io, cc->io_pool);
588
589 if (likely(!base_io))
590 bio_endio(base_bio, error);
591 else {
592 if (error && !base_io->error)
593 base_io->error = error;
594 crypt_dec_pending(base_io);
595 }
596}
597
598/*
599 * kcryptd/kcryptd_io:
600 *
601 * Needed because it would be very unwise to do decryption in an
602 * interrupt context.
603 *
604 * kcryptd performs the actual encryption or decryption.
605 *
606 * kcryptd_io performs the IO submission.
607 *
608 * They must be separated as otherwise the final stages could be
609 * starved by new requests which can block in the first stages due
610 * to memory allocation.
611 */
612static void crypt_endio(struct bio *clone, int error)
613{
614 struct dm_crypt_io *io = clone->bi_private;
615 struct crypt_config *cc = io->target->private;
616 unsigned rw = bio_data_dir(clone);
617
618 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
619 error = -EIO;
620
621 /*
622 * free the processed pages
623 */
624 if (rw == WRITE)
625 crypt_free_buffer_pages(cc, clone);
626
627 bio_put(clone);
628
629 if (rw == READ && !error) {
630 kcryptd_queue_crypt(io);
631 return;
632 }
633
634 if (unlikely(error))
635 io->error = error;
636
637 crypt_dec_pending(io);
638}
639
640static void clone_init(struct dm_crypt_io *io, struct bio *clone)
641{
642 struct crypt_config *cc = io->target->private;
643
644 clone->bi_private = io;
645 clone->bi_end_io = crypt_endio;
646 clone->bi_bdev = cc->dev->bdev;
647 clone->bi_rw = io->base_bio->bi_rw;
648 clone->bi_destructor = dm_crypt_bio_destructor;
649}
650
651static void kcryptd_io_read(struct dm_crypt_io *io)
652{
653 struct crypt_config *cc = io->target->private;
654 struct bio *base_bio = io->base_bio;
655 struct bio *clone;
656
657 crypt_inc_pending(io);
658
659 /*
660 * The block layer might modify the bvec array, so always
661 * copy the required bvecs because we need the original
662 * one in order to decrypt the whole bio data *afterwards*.
663 */
664 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
665 if (unlikely(!clone)) {
666 io->error = -ENOMEM;
667 crypt_dec_pending(io);
668 return;
669 }
670
671 clone_init(io, clone);
672 clone->bi_idx = 0;
673 clone->bi_vcnt = bio_segments(base_bio);
674 clone->bi_size = base_bio->bi_size;
675 clone->bi_sector = cc->start + io->sector;
676 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
677 sizeof(struct bio_vec) * clone->bi_vcnt);
678
679 generic_make_request(clone);
680}
681
682static void kcryptd_io_write(struct dm_crypt_io *io)
683{
684 struct bio *clone = io->ctx.bio_out;
685 generic_make_request(clone);
686}
687
688static void kcryptd_io(struct work_struct *work)
689{
690 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
691
692 if (bio_data_dir(io->base_bio) == READ)
693 kcryptd_io_read(io);
694 else
695 kcryptd_io_write(io);
696}
697
698static void kcryptd_queue_io(struct dm_crypt_io *io)
699{
700 struct crypt_config *cc = io->target->private;
701
702 INIT_WORK(&io->work, kcryptd_io);
703 queue_work(cc->io_queue, &io->work);
704}
705
706static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
707 int error, int async)
708{
709 struct bio *clone = io->ctx.bio_out;
710 struct crypt_config *cc = io->target->private;
711
712 if (unlikely(error < 0)) {
713 crypt_free_buffer_pages(cc, clone);
714 bio_put(clone);
715 io->error = -EIO;
716 crypt_dec_pending(io);
717 return;
718 }
719
720 /* crypt_convert should have filled the clone bio */
721 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
722
723 clone->bi_sector = cc->start + io->sector;
724
725 if (async)
726 kcryptd_queue_io(io);
727 else
728 generic_make_request(clone);
729}
730
731static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
732{
733 struct crypt_config *cc = io->target->private;
734 struct bio *clone;
735 struct dm_crypt_io *new_io;
736 int crypt_finished;
737 unsigned out_of_pages = 0;
738 unsigned remaining = io->base_bio->bi_size;
739 sector_t sector = io->sector;
740 int r;
741
742 /*
743 * Prevent io from disappearing until this function completes.
744 */
745 crypt_inc_pending(io);
746 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
747
748 /*
749 * The allocated buffers can be smaller than the whole bio,
750 * so repeat the whole process until all the data can be handled.
751 */
752 while (remaining) {
753 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
754 if (unlikely(!clone)) {
755 io->error = -ENOMEM;
756 break;
757 }
758
759 io->ctx.bio_out = clone;
760 io->ctx.idx_out = 0;
761
762 remaining -= clone->bi_size;
763 sector += bio_sectors(clone);
764
765 crypt_inc_pending(io);
766 r = crypt_convert(cc, &io->ctx);
767 crypt_finished = atomic_dec_and_test(&io->ctx.pending);
768
769 /* Encryption was already finished, submit io now */
770 if (crypt_finished) {
771 kcryptd_crypt_write_io_submit(io, r, 0);
772
773 /*
774 * If there was an error, do not try next fragments.
775 * For async, error is processed in async handler.
776 */
777 if (unlikely(r < 0))
778 break;
779
780 io->sector = sector;
781 }
782
783 /*
784 * Out of memory -> run queues
785 * But don't wait if split was due to the io size restriction
786 */
787 if (unlikely(out_of_pages))
788 congestion_wait(BLK_RW_ASYNC, HZ/100);
789
790 /*
791 * With async crypto it is unsafe to share the crypto context
792 * between fragments, so switch to a new dm_crypt_io structure.
793 */
794 if (unlikely(!crypt_finished && remaining)) {
795 new_io = crypt_io_alloc(io->target, io->base_bio,
796 sector);
797 crypt_inc_pending(new_io);
798 crypt_convert_init(cc, &new_io->ctx, NULL,
799 io->base_bio, sector);
800 new_io->ctx.idx_in = io->ctx.idx_in;
801 new_io->ctx.offset_in = io->ctx.offset_in;
802
803 /*
804 * Fragments after the first use the base_io
805 * pending count.
806 */
807 if (!io->base_io)
808 new_io->base_io = io;
809 else {
810 new_io->base_io = io->base_io;
811 crypt_inc_pending(io->base_io);
812 crypt_dec_pending(io);
813 }
814
815 io = new_io;
816 }
817 }
818
819 crypt_dec_pending(io);
820}
821
822static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
823{
824 if (unlikely(error < 0))
825 io->error = -EIO;
826
827 crypt_dec_pending(io);
828}
829
830static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
831{
832 struct crypt_config *cc = io->target->private;
833 int r = 0;
834
835 crypt_inc_pending(io);
836
837 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
838 io->sector);
839
840 r = crypt_convert(cc, &io->ctx);
841
842 if (atomic_dec_and_test(&io->ctx.pending))
843 kcryptd_crypt_read_done(io, r);
844
845 crypt_dec_pending(io);
846}
847
848static void kcryptd_async_done(struct crypto_async_request *async_req,
849 int error)
850{
851 struct dm_crypt_request *dmreq = async_req->data;
852 struct convert_context *ctx = dmreq->ctx;
853 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
854 struct crypt_config *cc = io->target->private;
855
856 if (error == -EINPROGRESS) {
857 complete(&ctx->restart);
858 return;
859 }
860
861 mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
862
863 if (!atomic_dec_and_test(&ctx->pending))
864 return;
865
866 if (bio_data_dir(io->base_bio) == READ)
867 kcryptd_crypt_read_done(io, error);
868 else
869 kcryptd_crypt_write_io_submit(io, error, 1);
870}
871
872static void kcryptd_crypt(struct work_struct *work)
873{
874 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
875
876 if (bio_data_dir(io->base_bio) == READ)
877 kcryptd_crypt_read_convert(io);
878 else
879 kcryptd_crypt_write_convert(io);
880}
881
882static void kcryptd_queue_crypt(struct dm_crypt_io *io)
883{
884 struct crypt_config *cc = io->target->private;
885
886 INIT_WORK(&io->work, kcryptd_crypt);
887 queue_work(cc->crypt_queue, &io->work);
888}
889
890/*
891 * Decode key from its hex representation
892 */
893static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
894{
895 char buffer[3];
896 char *endp;
897 unsigned int i;
898
899 buffer[2] = '\0';
900
901 for (i = 0; i < size; i++) {
902 buffer[0] = *hex++;
903 buffer[1] = *hex++;
904
905 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
906
907 if (endp != &buffer[2])
908 return -EINVAL;
909 }
910
911 if (*hex != '\0')
912 return -EINVAL;
913
914 return 0;
915}
916
917/*
918 * Encode key into its hex representation
919 */
920static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
921{
922 unsigned int i;
923
924 for (i = 0; i < size; i++) {
925 sprintf(hex, "%02x", *key);
926 hex += 2;
927 key++;
928 }
929}
930
931static int crypt_set_key(struct crypt_config *cc, char *key)
932{
933 unsigned key_size = strlen(key) >> 1;
934
935 if (cc->key_size && cc->key_size != key_size)
936 return -EINVAL;
937
938 cc->key_size = key_size; /* initial settings */
939
940 if ((!key_size && strcmp(key, "-")) ||
941 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
942 return -EINVAL;
943
944 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
945
946 return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
947}
948
949static int crypt_wipe_key(struct crypt_config *cc)
950{
951 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
952 memset(&cc->key, 0, cc->key_size * sizeof(u8));
953 return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
954}
955
956/*
957 * Construct an encryption mapping:
958 * <cipher> <key> <iv_offset> <dev_path> <start>
959 */
960static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
961{
962 struct crypt_config *cc;
963 struct crypto_ablkcipher *tfm;
964 char *tmp;
965 char *cipher;
966 char *chainmode;
967 char *ivmode;
968 char *ivopts;
969 unsigned int key_size;
970 unsigned long long tmpll;
971
972 if (argc != 5) {
973 ti->error = "Not enough arguments";
974 return -EINVAL;
975 }
976
977 tmp = argv[0];
978 cipher = strsep(&tmp, "-");
979 chainmode = strsep(&tmp, "-");
980 ivopts = strsep(&tmp, "-");
981 ivmode = strsep(&ivopts, ":");
982
983 if (tmp)
984 DMWARN("Unexpected additional cipher options");
985
986 key_size = strlen(argv[1]) >> 1;
987
988 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
989 if (cc == NULL) {
990 ti->error =
991 "Cannot allocate transparent encryption context";
992 return -ENOMEM;
993 }
994
995 /* Compatibility mode for old dm-crypt cipher strings */
996 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
997 chainmode = "cbc";
998 ivmode = "plain";
999 }
1000
1001 if (strcmp(chainmode, "ecb") && !ivmode) {
1002 ti->error = "This chaining mode requires an IV mechanism";
1003 goto bad_cipher;
1004 }
1005
1006 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
1007 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
1008 ti->error = "Chain mode + cipher name is too long";
1009 goto bad_cipher;
1010 }
1011
1012 tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
1013 if (IS_ERR(tfm)) {
1014 ti->error = "Error allocating crypto tfm";
1015 goto bad_cipher;
1016 }
1017
1018 strcpy(cc->cipher, cipher);
1019 strcpy(cc->chainmode, chainmode);
1020 cc->tfm = tfm;
1021
1022 if (crypt_set_key(cc, argv[1]) < 0) {
1023 ti->error = "Error decoding and setting key";
1024 goto bad_ivmode;
1025 }
1026
1027 /*
1028 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
1029 * See comments at iv code
1030 */
1031
1032 if (ivmode == NULL)
1033 cc->iv_gen_ops = NULL;
1034 else if (strcmp(ivmode, "plain") == 0)
1035 cc->iv_gen_ops = &crypt_iv_plain_ops;
1036 else if (strcmp(ivmode, "essiv") == 0)
1037 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1038 else if (strcmp(ivmode, "benbi") == 0)
1039 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1040 else if (strcmp(ivmode, "null") == 0)
1041 cc->iv_gen_ops = &crypt_iv_null_ops;
1042 else {
1043 ti->error = "Invalid IV mode";
1044 goto bad_ivmode;
1045 }
1046
1047 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
1048 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
1049 goto bad_ivmode;
1050
1051 cc->iv_size = crypto_ablkcipher_ivsize(tfm);
1052 if (cc->iv_size)
1053 /* at least a 64 bit sector number should fit in our buffer */
1054 cc->iv_size = max(cc->iv_size,
1055 (unsigned int)(sizeof(u64) / sizeof(u8)));
1056 else {
1057 if (cc->iv_gen_ops) {
1058 DMWARN("Selected cipher does not support IVs");
1059 if (cc->iv_gen_ops->dtr)
1060 cc->iv_gen_ops->dtr(cc);
1061 cc->iv_gen_ops = NULL;
1062 }
1063 }
1064
1065 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1066 if (!cc->io_pool) {
1067 ti->error = "Cannot allocate crypt io mempool";
1068 goto bad_slab_pool;
1069 }
1070
1071 cc->dmreq_start = sizeof(struct ablkcipher_request);
1072 cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
1073 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1074 cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
1075 ~(crypto_tfm_ctx_alignment() - 1);
1076
1077 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1078 sizeof(struct dm_crypt_request) + cc->iv_size);
1079 if (!cc->req_pool) {
1080 ti->error = "Cannot allocate crypt request mempool";
1081 goto bad_req_pool;
1082 }
1083 cc->req = NULL;
1084
1085 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1086 if (!cc->page_pool) {
1087 ti->error = "Cannot allocate page mempool";
1088 goto bad_page_pool;
1089 }
1090
1091 cc->bs = bioset_create(MIN_IOS, 0);
1092 if (!cc->bs) {
1093 ti->error = "Cannot allocate crypt bioset";
1094 goto bad_bs;
1095 }
1096
1097 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1098 ti->error = "Invalid iv_offset sector";
1099 goto bad_device;
1100 }
1101 cc->iv_offset = tmpll;
1102
1103 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1104 ti->error = "Invalid device sector";
1105 goto bad_device;
1106 }
1107 cc->start = tmpll;
1108
1109 if (dm_get_device(ti, argv[3], cc->start, ti->len,
1110 dm_table_get_mode(ti->table), &cc->dev)) {
1111 ti->error = "Device lookup failed";
1112 goto bad_device;
1113 }
1114
1115 if (ivmode && cc->iv_gen_ops) {
1116 if (ivopts)
1117 *(ivopts - 1) = ':';
1118 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
1119 if (!cc->iv_mode) {
1120 ti->error = "Error kmallocing iv_mode string";
1121 goto bad_ivmode_string;
1122 }
1123 strcpy(cc->iv_mode, ivmode);
1124 } else
1125 cc->iv_mode = NULL;
1126
1127 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1128 if (!cc->io_queue) {
1129 ti->error = "Couldn't create kcryptd io queue";
1130 goto bad_io_queue;
1131 }
1132
1133 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1134 if (!cc->crypt_queue) {
1135 ti->error = "Couldn't create kcryptd queue";
1136 goto bad_crypt_queue;
1137 }
1138
1139 ti->num_flush_requests = 1;
1140 ti->private = cc;
1141 return 0;
1142
1143bad_crypt_queue:
1144 destroy_workqueue(cc->io_queue);
1145bad_io_queue:
1146 kfree(cc->iv_mode);
1147bad_ivmode_string:
1148 dm_put_device(ti, cc->dev);
1149bad_device:
1150 bioset_free(cc->bs);
1151bad_bs:
1152 mempool_destroy(cc->page_pool);
1153bad_page_pool:
1154 mempool_destroy(cc->req_pool);
1155bad_req_pool:
1156 mempool_destroy(cc->io_pool);
1157bad_slab_pool:
1158 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1159 cc->iv_gen_ops->dtr(cc);
1160bad_ivmode:
1161 crypto_free_ablkcipher(tfm);
1162bad_cipher:
1163 /* Must zero key material before freeing */
1164 kzfree(cc);
1165 return -EINVAL;
1166}
1167
1168static void crypt_dtr(struct dm_target *ti)
1169{
1170 struct crypt_config *cc = (struct crypt_config *) ti->private;
1171
1172 destroy_workqueue(cc->io_queue);
1173 destroy_workqueue(cc->crypt_queue);
1174
1175 if (cc->req)
1176 mempool_free(cc->req, cc->req_pool);
1177
1178 bioset_free(cc->bs);
1179 mempool_destroy(cc->page_pool);
1180 mempool_destroy(cc->req_pool);
1181 mempool_destroy(cc->io_pool);
1182
1183 kfree(cc->iv_mode);
1184 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1185 cc->iv_gen_ops->dtr(cc);
1186 crypto_free_ablkcipher(cc->tfm);
1187 dm_put_device(ti, cc->dev);
1188
1189 /* Must zero key material before freeing */
1190 kzfree(cc);
1191}
1192
1193static int crypt_map(struct dm_target *ti, struct bio *bio,
1194 union map_info *map_context)
1195{
1196 struct dm_crypt_io *io;
1197 struct crypt_config *cc;
1198
1199 if (unlikely(bio_empty_barrier(bio))) {
1200 cc = ti->private;
1201 bio->bi_bdev = cc->dev->bdev;
1202 return DM_MAPIO_REMAPPED;
1203 }
1204
1205 io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin);
1206
1207 if (bio_data_dir(io->base_bio) == READ)
1208 kcryptd_queue_io(io);
1209 else
1210 kcryptd_queue_crypt(io);
1211
1212 return DM_MAPIO_SUBMITTED;
1213}
1214
1215static int crypt_status(struct dm_target *ti, status_type_t type,
1216 char *result, unsigned int maxlen)
1217{
1218 struct crypt_config *cc = (struct crypt_config *) ti->private;
1219 unsigned int sz = 0;
1220
1221 switch (type) {
1222 case STATUSTYPE_INFO:
1223 result[0] = '\0';
1224 break;
1225
1226 case STATUSTYPE_TABLE:
1227 if (cc->iv_mode)
1228 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1229 cc->iv_mode);
1230 else
1231 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1232
1233 if (cc->key_size > 0) {
1234 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1235 return -ENOMEM;
1236
1237 crypt_encode_key(result + sz, cc->key, cc->key_size);
1238 sz += cc->key_size << 1;
1239 } else {
1240 if (sz >= maxlen)
1241 return -ENOMEM;
1242 result[sz++] = '-';
1243 }
1244
1245 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1246 cc->dev->name, (unsigned long long)cc->start);
1247 break;
1248 }
1249 return 0;
1250}
1251
1252static void crypt_postsuspend(struct dm_target *ti)
1253{
1254 struct crypt_config *cc = ti->private;
1255
1256 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1257}
1258
1259static int crypt_preresume(struct dm_target *ti)
1260{
1261 struct crypt_config *cc = ti->private;
1262
1263 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1264 DMERR("aborting resume - crypt key is not set.");
1265 return -EAGAIN;
1266 }
1267
1268 return 0;
1269}
1270
1271static void crypt_resume(struct dm_target *ti)
1272{
1273 struct crypt_config *cc = ti->private;
1274
1275 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1276}
1277
1278/* Message interface
1279 * key set <key>
1280 * key wipe
1281 */
1282static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1283{
1284 struct crypt_config *cc = ti->private;
1285
1286 if (argc < 2)
1287 goto error;
1288
1289 if (!strnicmp(argv[0], MESG_STR("key"))) {
1290 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1291 DMWARN("not suspended during key manipulation.");
1292 return -EINVAL;
1293 }
1294 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1295 return crypt_set_key(cc, argv[2]);
1296 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1297 return crypt_wipe_key(cc);
1298 }
1299
1300error:
1301 DMWARN("unrecognised message received.");
1302 return -EINVAL;
1303}
1304
1305static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1306 struct bio_vec *biovec, int max_size)
1307{
1308 struct crypt_config *cc = ti->private;
1309 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1310
1311 if (!q->merge_bvec_fn)
1312 return max_size;
1313
1314 bvm->bi_bdev = cc->dev->bdev;
1315 bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin;
1316
1317 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1318}
1319
1320static int crypt_iterate_devices(struct dm_target *ti,
1321 iterate_devices_callout_fn fn, void *data)
1322{
1323 struct crypt_config *cc = ti->private;
1324
1325 return fn(ti, cc->dev, cc->start, ti->len, data);
1326}
1327
1328static struct target_type crypt_target = {
1329 .name = "crypt",
1330 .version = {1, 7, 0},
1331 .module = THIS_MODULE,
1332 .ctr = crypt_ctr,
1333 .dtr = crypt_dtr,
1334 .map = crypt_map,
1335 .status = crypt_status,
1336 .postsuspend = crypt_postsuspend,
1337 .preresume = crypt_preresume,
1338 .resume = crypt_resume,
1339 .message = crypt_message,
1340 .merge = crypt_merge,
1341 .iterate_devices = crypt_iterate_devices,
1342};
1343
1344static int __init dm_crypt_init(void)
1345{
1346 int r;
1347
1348 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1349 if (!_crypt_io_pool)
1350 return -ENOMEM;
1351
1352 r = dm_register_target(&crypt_target);
1353 if (r < 0) {
1354 DMERR("register failed %d", r);
1355 kmem_cache_destroy(_crypt_io_pool);
1356 }
1357
1358 return r;
1359}
1360
1361static void __exit dm_crypt_exit(void)
1362{
1363 dm_unregister_target(&crypt_target);
1364 kmem_cache_destroy(_crypt_io_pool);
1365}
1366
1367module_init(dm_crypt_init);
1368module_exit(dm_crypt_exit);
1369
1370MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1371MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1372MODULE_LICENSE("GPL");
This page took 0.028208 seconds and 5 git commands to generate.