dm raid1: fix immutable biovec related BUG when retrying read bio
[deliverable/linux.git] / drivers / md / dm-thin.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8#include "dm-bio-prison.h"
9#include "dm.h"
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/list.h>
15#include <linux/init.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18
19#define DM_MSG_PREFIX "thin"
20
21/*
22 * Tunable constants
23 */
24#define ENDIO_HOOK_POOL_SIZE 1024
25#define MAPPING_POOL_SIZE 1024
26#define PRISON_CELLS 1024
27#define COMMIT_PERIOD HZ
28
29DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32/*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39/*
40 * Device id is restricted to 24 bits.
41 */
42#define MAX_DEV_ID ((1 << 24) - 1)
43
44/*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102/*----------------------------------------------------------------*/
103
104/*
105 * Key building.
106 */
107static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109{
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113}
114
115static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117{
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121}
122
123/*----------------------------------------------------------------*/
124
125/*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130struct dm_thin_new_mapping;
131
132/*
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
134 */
135enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
139};
140
141struct pool_features {
142 enum pool_mode mode;
143
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
147 bool error_if_no_space:1;
148};
149
150struct thin_c;
151typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
152typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
153
154struct pool {
155 struct list_head list;
156 struct dm_target *ti; /* Only set if a pool target is bound */
157
158 struct mapped_device *pool_md;
159 struct block_device *md_dev;
160 struct dm_pool_metadata *pmd;
161
162 dm_block_t low_water_blocks;
163 uint32_t sectors_per_block;
164 int sectors_per_block_shift;
165
166 struct pool_features pf;
167 bool low_water_triggered:1; /* A dm event has been sent */
168
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
171
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
175
176 unsigned long last_commit_jiffies;
177 unsigned ref_count;
178
179 spinlock_t lock;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
184
185 struct bio_list retry_on_resume_list;
186
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
189
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
192
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
195
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
198};
199
200static enum pool_mode get_pool_mode(struct pool *pool);
201static void out_of_data_space(struct pool *pool);
202static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204/*
205 * Target context for a pool.
206 */
207struct pool_c {
208 struct dm_target *ti;
209 struct pool *pool;
210 struct dm_dev *data_dev;
211 struct dm_dev *metadata_dev;
212 struct dm_target_callbacks callbacks;
213
214 dm_block_t low_water_blocks;
215 struct pool_features requested_pf; /* Features requested during table load */
216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
217};
218
219/*
220 * Target context for a thin.
221 */
222struct thin_c {
223 struct dm_dev *pool_dev;
224 struct dm_dev *origin_dev;
225 dm_thin_id dev_id;
226
227 struct pool *pool;
228 struct dm_thin_device *td;
229};
230
231/*----------------------------------------------------------------*/
232
233/*
234 * wake_worker() is used when new work is queued and when pool_resume is
235 * ready to continue deferred IO processing.
236 */
237static void wake_worker(struct pool *pool)
238{
239 queue_work(pool->wq, &pool->worker);
240}
241
242/*----------------------------------------------------------------*/
243
244static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245 struct dm_bio_prison_cell **cell_result)
246{
247 int r;
248 struct dm_bio_prison_cell *cell_prealloc;
249
250 /*
251 * Allocate a cell from the prison's mempool.
252 * This might block but it can't fail.
253 */
254 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
255
256 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
257 if (r)
258 /*
259 * We reused an old cell; we can get rid of
260 * the new one.
261 */
262 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
263
264 return r;
265}
266
267static void cell_release(struct pool *pool,
268 struct dm_bio_prison_cell *cell,
269 struct bio_list *bios)
270{
271 dm_cell_release(pool->prison, cell, bios);
272 dm_bio_prison_free_cell(pool->prison, cell);
273}
274
275static void cell_release_no_holder(struct pool *pool,
276 struct dm_bio_prison_cell *cell,
277 struct bio_list *bios)
278{
279 dm_cell_release_no_holder(pool->prison, cell, bios);
280 dm_bio_prison_free_cell(pool->prison, cell);
281}
282
283static void cell_defer_no_holder_no_free(struct thin_c *tc,
284 struct dm_bio_prison_cell *cell)
285{
286 struct pool *pool = tc->pool;
287 unsigned long flags;
288
289 spin_lock_irqsave(&pool->lock, flags);
290 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291 spin_unlock_irqrestore(&pool->lock, flags);
292
293 wake_worker(pool);
294}
295
296static void cell_error(struct pool *pool,
297 struct dm_bio_prison_cell *cell)
298{
299 dm_cell_error(pool->prison, cell);
300 dm_bio_prison_free_cell(pool->prison, cell);
301}
302
303/*----------------------------------------------------------------*/
304
305/*
306 * A global list of pools that uses a struct mapped_device as a key.
307 */
308static struct dm_thin_pool_table {
309 struct mutex mutex;
310 struct list_head pools;
311} dm_thin_pool_table;
312
313static void pool_table_init(void)
314{
315 mutex_init(&dm_thin_pool_table.mutex);
316 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
317}
318
319static void __pool_table_insert(struct pool *pool)
320{
321 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322 list_add(&pool->list, &dm_thin_pool_table.pools);
323}
324
325static void __pool_table_remove(struct pool *pool)
326{
327 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328 list_del(&pool->list);
329}
330
331static struct pool *__pool_table_lookup(struct mapped_device *md)
332{
333 struct pool *pool = NULL, *tmp;
334
335 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
336
337 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338 if (tmp->pool_md == md) {
339 pool = tmp;
340 break;
341 }
342 }
343
344 return pool;
345}
346
347static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
348{
349 struct pool *pool = NULL, *tmp;
350
351 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
352
353 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354 if (tmp->md_dev == md_dev) {
355 pool = tmp;
356 break;
357 }
358 }
359
360 return pool;
361}
362
363/*----------------------------------------------------------------*/
364
365struct dm_thin_endio_hook {
366 struct thin_c *tc;
367 struct dm_deferred_entry *shared_read_entry;
368 struct dm_deferred_entry *all_io_entry;
369 struct dm_thin_new_mapping *overwrite_mapping;
370};
371
372static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
373{
374 struct bio *bio;
375 struct bio_list bios;
376
377 bio_list_init(&bios);
378 bio_list_merge(&bios, master);
379 bio_list_init(master);
380
381 while ((bio = bio_list_pop(&bios))) {
382 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
383
384 if (h->tc == tc)
385 bio_endio(bio, DM_ENDIO_REQUEUE);
386 else
387 bio_list_add(master, bio);
388 }
389}
390
391static void requeue_io(struct thin_c *tc)
392{
393 struct pool *pool = tc->pool;
394 unsigned long flags;
395
396 spin_lock_irqsave(&pool->lock, flags);
397 __requeue_bio_list(tc, &pool->deferred_bios);
398 __requeue_bio_list(tc, &pool->retry_on_resume_list);
399 spin_unlock_irqrestore(&pool->lock, flags);
400}
401
402/*
403 * This section of code contains the logic for processing a thin device's IO.
404 * Much of the code depends on pool object resources (lists, workqueues, etc)
405 * but most is exclusively called from the thin target rather than the thin-pool
406 * target.
407 */
408
409static bool block_size_is_power_of_two(struct pool *pool)
410{
411 return pool->sectors_per_block_shift >= 0;
412}
413
414static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
415{
416 struct pool *pool = tc->pool;
417 sector_t block_nr = bio->bi_iter.bi_sector;
418
419 if (block_size_is_power_of_two(pool))
420 block_nr >>= pool->sectors_per_block_shift;
421 else
422 (void) sector_div(block_nr, pool->sectors_per_block);
423
424 return block_nr;
425}
426
427static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
428{
429 struct pool *pool = tc->pool;
430 sector_t bi_sector = bio->bi_iter.bi_sector;
431
432 bio->bi_bdev = tc->pool_dev->bdev;
433 if (block_size_is_power_of_two(pool))
434 bio->bi_iter.bi_sector =
435 (block << pool->sectors_per_block_shift) |
436 (bi_sector & (pool->sectors_per_block - 1));
437 else
438 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
439 sector_div(bi_sector, pool->sectors_per_block);
440}
441
442static void remap_to_origin(struct thin_c *tc, struct bio *bio)
443{
444 bio->bi_bdev = tc->origin_dev->bdev;
445}
446
447static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
448{
449 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
450 dm_thin_changed_this_transaction(tc->td);
451}
452
453static void inc_all_io_entry(struct pool *pool, struct bio *bio)
454{
455 struct dm_thin_endio_hook *h;
456
457 if (bio->bi_rw & REQ_DISCARD)
458 return;
459
460 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
461 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
462}
463
464static void issue(struct thin_c *tc, struct bio *bio)
465{
466 struct pool *pool = tc->pool;
467 unsigned long flags;
468
469 if (!bio_triggers_commit(tc, bio)) {
470 generic_make_request(bio);
471 return;
472 }
473
474 /*
475 * Complete bio with an error if earlier I/O caused changes to
476 * the metadata that can't be committed e.g, due to I/O errors
477 * on the metadata device.
478 */
479 if (dm_thin_aborted_changes(tc->td)) {
480 bio_io_error(bio);
481 return;
482 }
483
484 /*
485 * Batch together any bios that trigger commits and then issue a
486 * single commit for them in process_deferred_bios().
487 */
488 spin_lock_irqsave(&pool->lock, flags);
489 bio_list_add(&pool->deferred_flush_bios, bio);
490 spin_unlock_irqrestore(&pool->lock, flags);
491}
492
493static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
494{
495 remap_to_origin(tc, bio);
496 issue(tc, bio);
497}
498
499static void remap_and_issue(struct thin_c *tc, struct bio *bio,
500 dm_block_t block)
501{
502 remap(tc, bio, block);
503 issue(tc, bio);
504}
505
506/*----------------------------------------------------------------*/
507
508/*
509 * Bio endio functions.
510 */
511struct dm_thin_new_mapping {
512 struct list_head list;
513
514 bool quiesced:1;
515 bool prepared:1;
516 bool pass_discard:1;
517 bool definitely_not_shared:1;
518
519 int err;
520 struct thin_c *tc;
521 dm_block_t virt_block;
522 dm_block_t data_block;
523 struct dm_bio_prison_cell *cell, *cell2;
524
525 /*
526 * If the bio covers the whole area of a block then we can avoid
527 * zeroing or copying. Instead this bio is hooked. The bio will
528 * still be in the cell, so care has to be taken to avoid issuing
529 * the bio twice.
530 */
531 struct bio *bio;
532 bio_end_io_t *saved_bi_end_io;
533};
534
535static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
536{
537 struct pool *pool = m->tc->pool;
538
539 if (m->quiesced && m->prepared) {
540 list_add_tail(&m->list, &pool->prepared_mappings);
541 wake_worker(pool);
542 }
543}
544
545static void copy_complete(int read_err, unsigned long write_err, void *context)
546{
547 unsigned long flags;
548 struct dm_thin_new_mapping *m = context;
549 struct pool *pool = m->tc->pool;
550
551 m->err = read_err || write_err ? -EIO : 0;
552
553 spin_lock_irqsave(&pool->lock, flags);
554 m->prepared = true;
555 __maybe_add_mapping(m);
556 spin_unlock_irqrestore(&pool->lock, flags);
557}
558
559static void overwrite_endio(struct bio *bio, int err)
560{
561 unsigned long flags;
562 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
563 struct dm_thin_new_mapping *m = h->overwrite_mapping;
564 struct pool *pool = m->tc->pool;
565
566 m->err = err;
567
568 spin_lock_irqsave(&pool->lock, flags);
569 m->prepared = true;
570 __maybe_add_mapping(m);
571 spin_unlock_irqrestore(&pool->lock, flags);
572}
573
574/*----------------------------------------------------------------*/
575
576/*
577 * Workqueue.
578 */
579
580/*
581 * Prepared mapping jobs.
582 */
583
584/*
585 * This sends the bios in the cell back to the deferred_bios list.
586 */
587static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
588{
589 struct pool *pool = tc->pool;
590 unsigned long flags;
591
592 spin_lock_irqsave(&pool->lock, flags);
593 cell_release(pool, cell, &pool->deferred_bios);
594 spin_unlock_irqrestore(&tc->pool->lock, flags);
595
596 wake_worker(pool);
597}
598
599/*
600 * Same as cell_defer above, except it omits the original holder of the cell.
601 */
602static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
603{
604 struct pool *pool = tc->pool;
605 unsigned long flags;
606
607 spin_lock_irqsave(&pool->lock, flags);
608 cell_release_no_holder(pool, cell, &pool->deferred_bios);
609 spin_unlock_irqrestore(&pool->lock, flags);
610
611 wake_worker(pool);
612}
613
614static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
615{
616 if (m->bio) {
617 m->bio->bi_end_io = m->saved_bi_end_io;
618 atomic_inc(&m->bio->bi_remaining);
619 }
620 cell_error(m->tc->pool, m->cell);
621 list_del(&m->list);
622 mempool_free(m, m->tc->pool->mapping_pool);
623}
624
625static void process_prepared_mapping(struct dm_thin_new_mapping *m)
626{
627 struct thin_c *tc = m->tc;
628 struct pool *pool = tc->pool;
629 struct bio *bio;
630 int r;
631
632 bio = m->bio;
633 if (bio) {
634 bio->bi_end_io = m->saved_bi_end_io;
635 atomic_inc(&bio->bi_remaining);
636 }
637
638 if (m->err) {
639 cell_error(pool, m->cell);
640 goto out;
641 }
642
643 /*
644 * Commit the prepared block into the mapping btree.
645 * Any I/O for this block arriving after this point will get
646 * remapped to it directly.
647 */
648 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
649 if (r) {
650 metadata_operation_failed(pool, "dm_thin_insert_block", r);
651 cell_error(pool, m->cell);
652 goto out;
653 }
654
655 /*
656 * Release any bios held while the block was being provisioned.
657 * If we are processing a write bio that completely covers the block,
658 * we already processed it so can ignore it now when processing
659 * the bios in the cell.
660 */
661 if (bio) {
662 cell_defer_no_holder(tc, m->cell);
663 bio_endio(bio, 0);
664 } else
665 cell_defer(tc, m->cell);
666
667out:
668 list_del(&m->list);
669 mempool_free(m, pool->mapping_pool);
670}
671
672static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
673{
674 struct thin_c *tc = m->tc;
675
676 bio_io_error(m->bio);
677 cell_defer_no_holder(tc, m->cell);
678 cell_defer_no_holder(tc, m->cell2);
679 mempool_free(m, tc->pool->mapping_pool);
680}
681
682static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
683{
684 struct thin_c *tc = m->tc;
685
686 inc_all_io_entry(tc->pool, m->bio);
687 cell_defer_no_holder(tc, m->cell);
688 cell_defer_no_holder(tc, m->cell2);
689
690 if (m->pass_discard)
691 if (m->definitely_not_shared)
692 remap_and_issue(tc, m->bio, m->data_block);
693 else {
694 bool used = false;
695 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
696 bio_endio(m->bio, 0);
697 else
698 remap_and_issue(tc, m->bio, m->data_block);
699 }
700 else
701 bio_endio(m->bio, 0);
702
703 mempool_free(m, tc->pool->mapping_pool);
704}
705
706static void process_prepared_discard(struct dm_thin_new_mapping *m)
707{
708 int r;
709 struct thin_c *tc = m->tc;
710
711 r = dm_thin_remove_block(tc->td, m->virt_block);
712 if (r)
713 DMERR_LIMIT("dm_thin_remove_block() failed");
714
715 process_prepared_discard_passdown(m);
716}
717
718static void process_prepared(struct pool *pool, struct list_head *head,
719 process_mapping_fn *fn)
720{
721 unsigned long flags;
722 struct list_head maps;
723 struct dm_thin_new_mapping *m, *tmp;
724
725 INIT_LIST_HEAD(&maps);
726 spin_lock_irqsave(&pool->lock, flags);
727 list_splice_init(head, &maps);
728 spin_unlock_irqrestore(&pool->lock, flags);
729
730 list_for_each_entry_safe(m, tmp, &maps, list)
731 (*fn)(m);
732}
733
734/*
735 * Deferred bio jobs.
736 */
737static int io_overlaps_block(struct pool *pool, struct bio *bio)
738{
739 return bio->bi_iter.bi_size ==
740 (pool->sectors_per_block << SECTOR_SHIFT);
741}
742
743static int io_overwrites_block(struct pool *pool, struct bio *bio)
744{
745 return (bio_data_dir(bio) == WRITE) &&
746 io_overlaps_block(pool, bio);
747}
748
749static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
750 bio_end_io_t *fn)
751{
752 *save = bio->bi_end_io;
753 bio->bi_end_io = fn;
754}
755
756static int ensure_next_mapping(struct pool *pool)
757{
758 if (pool->next_mapping)
759 return 0;
760
761 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
762
763 return pool->next_mapping ? 0 : -ENOMEM;
764}
765
766static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
767{
768 struct dm_thin_new_mapping *m = pool->next_mapping;
769
770 BUG_ON(!pool->next_mapping);
771
772 memset(m, 0, sizeof(struct dm_thin_new_mapping));
773 INIT_LIST_HEAD(&m->list);
774 m->bio = NULL;
775
776 pool->next_mapping = NULL;
777
778 return m;
779}
780
781static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
782 struct dm_dev *origin, dm_block_t data_origin,
783 dm_block_t data_dest,
784 struct dm_bio_prison_cell *cell, struct bio *bio)
785{
786 int r;
787 struct pool *pool = tc->pool;
788 struct dm_thin_new_mapping *m = get_next_mapping(pool);
789
790 m->tc = tc;
791 m->virt_block = virt_block;
792 m->data_block = data_dest;
793 m->cell = cell;
794
795 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
796 m->quiesced = true;
797
798 /*
799 * IO to pool_dev remaps to the pool target's data_dev.
800 *
801 * If the whole block of data is being overwritten, we can issue the
802 * bio immediately. Otherwise we use kcopyd to clone the data first.
803 */
804 if (io_overwrites_block(pool, bio)) {
805 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
806
807 h->overwrite_mapping = m;
808 m->bio = bio;
809 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
810 inc_all_io_entry(pool, bio);
811 remap_and_issue(tc, bio, data_dest);
812 } else {
813 struct dm_io_region from, to;
814
815 from.bdev = origin->bdev;
816 from.sector = data_origin * pool->sectors_per_block;
817 from.count = pool->sectors_per_block;
818
819 to.bdev = tc->pool_dev->bdev;
820 to.sector = data_dest * pool->sectors_per_block;
821 to.count = pool->sectors_per_block;
822
823 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
824 0, copy_complete, m);
825 if (r < 0) {
826 mempool_free(m, pool->mapping_pool);
827 DMERR_LIMIT("dm_kcopyd_copy() failed");
828 cell_error(pool, cell);
829 }
830 }
831}
832
833static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
834 dm_block_t data_origin, dm_block_t data_dest,
835 struct dm_bio_prison_cell *cell, struct bio *bio)
836{
837 schedule_copy(tc, virt_block, tc->pool_dev,
838 data_origin, data_dest, cell, bio);
839}
840
841static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
842 dm_block_t data_dest,
843 struct dm_bio_prison_cell *cell, struct bio *bio)
844{
845 schedule_copy(tc, virt_block, tc->origin_dev,
846 virt_block, data_dest, cell, bio);
847}
848
849static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
850 dm_block_t data_block, struct dm_bio_prison_cell *cell,
851 struct bio *bio)
852{
853 struct pool *pool = tc->pool;
854 struct dm_thin_new_mapping *m = get_next_mapping(pool);
855
856 m->quiesced = true;
857 m->prepared = false;
858 m->tc = tc;
859 m->virt_block = virt_block;
860 m->data_block = data_block;
861 m->cell = cell;
862
863 /*
864 * If the whole block of data is being overwritten or we are not
865 * zeroing pre-existing data, we can issue the bio immediately.
866 * Otherwise we use kcopyd to zero the data first.
867 */
868 if (!pool->pf.zero_new_blocks)
869 process_prepared_mapping(m);
870
871 else if (io_overwrites_block(pool, bio)) {
872 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
873
874 h->overwrite_mapping = m;
875 m->bio = bio;
876 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
877 inc_all_io_entry(pool, bio);
878 remap_and_issue(tc, bio, data_block);
879 } else {
880 int r;
881 struct dm_io_region to;
882
883 to.bdev = tc->pool_dev->bdev;
884 to.sector = data_block * pool->sectors_per_block;
885 to.count = pool->sectors_per_block;
886
887 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
888 if (r < 0) {
889 mempool_free(m, pool->mapping_pool);
890 DMERR_LIMIT("dm_kcopyd_zero() failed");
891 cell_error(pool, cell);
892 }
893 }
894}
895
896/*
897 * A non-zero return indicates read_only or fail_io mode.
898 * Many callers don't care about the return value.
899 */
900static int commit(struct pool *pool)
901{
902 int r;
903
904 if (get_pool_mode(pool) != PM_WRITE)
905 return -EINVAL;
906
907 r = dm_pool_commit_metadata(pool->pmd);
908 if (r)
909 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
910
911 return r;
912}
913
914static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
915{
916 unsigned long flags;
917
918 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
919 DMWARN("%s: reached low water mark for data device: sending event.",
920 dm_device_name(pool->pool_md));
921 spin_lock_irqsave(&pool->lock, flags);
922 pool->low_water_triggered = true;
923 spin_unlock_irqrestore(&pool->lock, flags);
924 dm_table_event(pool->ti->table);
925 }
926}
927
928static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
929{
930 int r;
931 dm_block_t free_blocks;
932 struct pool *pool = tc->pool;
933
934 if (get_pool_mode(pool) != PM_WRITE)
935 return -EINVAL;
936
937 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
938 if (r) {
939 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
940 return r;
941 }
942
943 check_low_water_mark(pool, free_blocks);
944
945 if (!free_blocks) {
946 /*
947 * Try to commit to see if that will free up some
948 * more space.
949 */
950 r = commit(pool);
951 if (r)
952 return r;
953
954 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
955 if (r) {
956 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
957 return r;
958 }
959
960 if (!free_blocks) {
961 out_of_data_space(pool);
962 return -ENOSPC;
963 }
964 }
965
966 r = dm_pool_alloc_data_block(pool->pmd, result);
967 if (r) {
968 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
969 return r;
970 }
971
972 return 0;
973}
974
975/*
976 * If we have run out of space, queue bios until the device is
977 * resumed, presumably after having been reloaded with more space.
978 */
979static void retry_on_resume(struct bio *bio)
980{
981 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
982 struct thin_c *tc = h->tc;
983 struct pool *pool = tc->pool;
984 unsigned long flags;
985
986 spin_lock_irqsave(&pool->lock, flags);
987 bio_list_add(&pool->retry_on_resume_list, bio);
988 spin_unlock_irqrestore(&pool->lock, flags);
989}
990
991static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
992{
993 /*
994 * When pool is read-only, no cell locking is needed because
995 * nothing is changing.
996 */
997 WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
998
999 if (pool->pf.error_if_no_space)
1000 bio_io_error(bio);
1001 else
1002 retry_on_resume(bio);
1003}
1004
1005static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1006{
1007 struct bio *bio;
1008 struct bio_list bios;
1009
1010 bio_list_init(&bios);
1011 cell_release(pool, cell, &bios);
1012
1013 while ((bio = bio_list_pop(&bios)))
1014 handle_unserviceable_bio(pool, bio);
1015}
1016
1017static void process_discard(struct thin_c *tc, struct bio *bio)
1018{
1019 int r;
1020 unsigned long flags;
1021 struct pool *pool = tc->pool;
1022 struct dm_bio_prison_cell *cell, *cell2;
1023 struct dm_cell_key key, key2;
1024 dm_block_t block = get_bio_block(tc, bio);
1025 struct dm_thin_lookup_result lookup_result;
1026 struct dm_thin_new_mapping *m;
1027
1028 build_virtual_key(tc->td, block, &key);
1029 if (bio_detain(tc->pool, &key, bio, &cell))
1030 return;
1031
1032 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1033 switch (r) {
1034 case 0:
1035 /*
1036 * Check nobody is fiddling with this pool block. This can
1037 * happen if someone's in the process of breaking sharing
1038 * on this block.
1039 */
1040 build_data_key(tc->td, lookup_result.block, &key2);
1041 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1042 cell_defer_no_holder(tc, cell);
1043 break;
1044 }
1045
1046 if (io_overlaps_block(pool, bio)) {
1047 /*
1048 * IO may still be going to the destination block. We must
1049 * quiesce before we can do the removal.
1050 */
1051 m = get_next_mapping(pool);
1052 m->tc = tc;
1053 m->pass_discard = pool->pf.discard_passdown;
1054 m->definitely_not_shared = !lookup_result.shared;
1055 m->virt_block = block;
1056 m->data_block = lookup_result.block;
1057 m->cell = cell;
1058 m->cell2 = cell2;
1059 m->bio = bio;
1060
1061 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1062 spin_lock_irqsave(&pool->lock, flags);
1063 list_add_tail(&m->list, &pool->prepared_discards);
1064 spin_unlock_irqrestore(&pool->lock, flags);
1065 wake_worker(pool);
1066 }
1067 } else {
1068 inc_all_io_entry(pool, bio);
1069 cell_defer_no_holder(tc, cell);
1070 cell_defer_no_holder(tc, cell2);
1071
1072 /*
1073 * The DM core makes sure that the discard doesn't span
1074 * a block boundary. So we submit the discard of a
1075 * partial block appropriately.
1076 */
1077 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1078 remap_and_issue(tc, bio, lookup_result.block);
1079 else
1080 bio_endio(bio, 0);
1081 }
1082 break;
1083
1084 case -ENODATA:
1085 /*
1086 * It isn't provisioned, just forget it.
1087 */
1088 cell_defer_no_holder(tc, cell);
1089 bio_endio(bio, 0);
1090 break;
1091
1092 default:
1093 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1094 __func__, r);
1095 cell_defer_no_holder(tc, cell);
1096 bio_io_error(bio);
1097 break;
1098 }
1099}
1100
1101static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1102 struct dm_cell_key *key,
1103 struct dm_thin_lookup_result *lookup_result,
1104 struct dm_bio_prison_cell *cell)
1105{
1106 int r;
1107 dm_block_t data_block;
1108 struct pool *pool = tc->pool;
1109
1110 r = alloc_data_block(tc, &data_block);
1111 switch (r) {
1112 case 0:
1113 schedule_internal_copy(tc, block, lookup_result->block,
1114 data_block, cell, bio);
1115 break;
1116
1117 case -ENOSPC:
1118 retry_bios_on_resume(pool, cell);
1119 break;
1120
1121 default:
1122 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1123 __func__, r);
1124 cell_error(pool, cell);
1125 break;
1126 }
1127}
1128
1129static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1130 dm_block_t block,
1131 struct dm_thin_lookup_result *lookup_result)
1132{
1133 struct dm_bio_prison_cell *cell;
1134 struct pool *pool = tc->pool;
1135 struct dm_cell_key key;
1136
1137 /*
1138 * If cell is already occupied, then sharing is already in the process
1139 * of being broken so we have nothing further to do here.
1140 */
1141 build_data_key(tc->td, lookup_result->block, &key);
1142 if (bio_detain(pool, &key, bio, &cell))
1143 return;
1144
1145 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1146 break_sharing(tc, bio, block, &key, lookup_result, cell);
1147 else {
1148 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1149
1150 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1151 inc_all_io_entry(pool, bio);
1152 cell_defer_no_holder(tc, cell);
1153
1154 remap_and_issue(tc, bio, lookup_result->block);
1155 }
1156}
1157
1158static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1159 struct dm_bio_prison_cell *cell)
1160{
1161 int r;
1162 dm_block_t data_block;
1163 struct pool *pool = tc->pool;
1164
1165 /*
1166 * Remap empty bios (flushes) immediately, without provisioning.
1167 */
1168 if (!bio->bi_iter.bi_size) {
1169 inc_all_io_entry(pool, bio);
1170 cell_defer_no_holder(tc, cell);
1171
1172 remap_and_issue(tc, bio, 0);
1173 return;
1174 }
1175
1176 /*
1177 * Fill read bios with zeroes and complete them immediately.
1178 */
1179 if (bio_data_dir(bio) == READ) {
1180 zero_fill_bio(bio);
1181 cell_defer_no_holder(tc, cell);
1182 bio_endio(bio, 0);
1183 return;
1184 }
1185
1186 r = alloc_data_block(tc, &data_block);
1187 switch (r) {
1188 case 0:
1189 if (tc->origin_dev)
1190 schedule_external_copy(tc, block, data_block, cell, bio);
1191 else
1192 schedule_zero(tc, block, data_block, cell, bio);
1193 break;
1194
1195 case -ENOSPC:
1196 retry_bios_on_resume(pool, cell);
1197 break;
1198
1199 default:
1200 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1201 __func__, r);
1202 cell_error(pool, cell);
1203 break;
1204 }
1205}
1206
1207static void process_bio(struct thin_c *tc, struct bio *bio)
1208{
1209 int r;
1210 struct pool *pool = tc->pool;
1211 dm_block_t block = get_bio_block(tc, bio);
1212 struct dm_bio_prison_cell *cell;
1213 struct dm_cell_key key;
1214 struct dm_thin_lookup_result lookup_result;
1215
1216 /*
1217 * If cell is already occupied, then the block is already
1218 * being provisioned so we have nothing further to do here.
1219 */
1220 build_virtual_key(tc->td, block, &key);
1221 if (bio_detain(pool, &key, bio, &cell))
1222 return;
1223
1224 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1225 switch (r) {
1226 case 0:
1227 if (lookup_result.shared) {
1228 process_shared_bio(tc, bio, block, &lookup_result);
1229 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1230 } else {
1231 inc_all_io_entry(pool, bio);
1232 cell_defer_no_holder(tc, cell);
1233
1234 remap_and_issue(tc, bio, lookup_result.block);
1235 }
1236 break;
1237
1238 case -ENODATA:
1239 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1240 inc_all_io_entry(pool, bio);
1241 cell_defer_no_holder(tc, cell);
1242
1243 remap_to_origin_and_issue(tc, bio);
1244 } else
1245 provision_block(tc, bio, block, cell);
1246 break;
1247
1248 default:
1249 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1250 __func__, r);
1251 cell_defer_no_holder(tc, cell);
1252 bio_io_error(bio);
1253 break;
1254 }
1255}
1256
1257static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1258{
1259 int r;
1260 int rw = bio_data_dir(bio);
1261 dm_block_t block = get_bio_block(tc, bio);
1262 struct dm_thin_lookup_result lookup_result;
1263
1264 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1265 switch (r) {
1266 case 0:
1267 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1268 handle_unserviceable_bio(tc->pool, bio);
1269 else {
1270 inc_all_io_entry(tc->pool, bio);
1271 remap_and_issue(tc, bio, lookup_result.block);
1272 }
1273 break;
1274
1275 case -ENODATA:
1276 if (rw != READ) {
1277 handle_unserviceable_bio(tc->pool, bio);
1278 break;
1279 }
1280
1281 if (tc->origin_dev) {
1282 inc_all_io_entry(tc->pool, bio);
1283 remap_to_origin_and_issue(tc, bio);
1284 break;
1285 }
1286
1287 zero_fill_bio(bio);
1288 bio_endio(bio, 0);
1289 break;
1290
1291 default:
1292 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1293 __func__, r);
1294 bio_io_error(bio);
1295 break;
1296 }
1297}
1298
1299static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1300{
1301 bio_io_error(bio);
1302}
1303
1304/*
1305 * FIXME: should we also commit due to size of transaction, measured in
1306 * metadata blocks?
1307 */
1308static int need_commit_due_to_time(struct pool *pool)
1309{
1310 return jiffies < pool->last_commit_jiffies ||
1311 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1312}
1313
1314static void process_deferred_bios(struct pool *pool)
1315{
1316 unsigned long flags;
1317 struct bio *bio;
1318 struct bio_list bios;
1319
1320 bio_list_init(&bios);
1321
1322 spin_lock_irqsave(&pool->lock, flags);
1323 bio_list_merge(&bios, &pool->deferred_bios);
1324 bio_list_init(&pool->deferred_bios);
1325 spin_unlock_irqrestore(&pool->lock, flags);
1326
1327 while ((bio = bio_list_pop(&bios))) {
1328 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1329 struct thin_c *tc = h->tc;
1330
1331 /*
1332 * If we've got no free new_mapping structs, and processing
1333 * this bio might require one, we pause until there are some
1334 * prepared mappings to process.
1335 */
1336 if (ensure_next_mapping(pool)) {
1337 spin_lock_irqsave(&pool->lock, flags);
1338 bio_list_merge(&pool->deferred_bios, &bios);
1339 spin_unlock_irqrestore(&pool->lock, flags);
1340
1341 break;
1342 }
1343
1344 if (bio->bi_rw & REQ_DISCARD)
1345 pool->process_discard(tc, bio);
1346 else
1347 pool->process_bio(tc, bio);
1348 }
1349
1350 /*
1351 * If there are any deferred flush bios, we must commit
1352 * the metadata before issuing them.
1353 */
1354 bio_list_init(&bios);
1355 spin_lock_irqsave(&pool->lock, flags);
1356 bio_list_merge(&bios, &pool->deferred_flush_bios);
1357 bio_list_init(&pool->deferred_flush_bios);
1358 spin_unlock_irqrestore(&pool->lock, flags);
1359
1360 if (bio_list_empty(&bios) &&
1361 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1362 return;
1363
1364 if (commit(pool)) {
1365 while ((bio = bio_list_pop(&bios)))
1366 bio_io_error(bio);
1367 return;
1368 }
1369 pool->last_commit_jiffies = jiffies;
1370
1371 while ((bio = bio_list_pop(&bios)))
1372 generic_make_request(bio);
1373}
1374
1375static void do_worker(struct work_struct *ws)
1376{
1377 struct pool *pool = container_of(ws, struct pool, worker);
1378
1379 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1380 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1381 process_deferred_bios(pool);
1382}
1383
1384/*
1385 * We want to commit periodically so that not too much
1386 * unwritten data builds up.
1387 */
1388static void do_waker(struct work_struct *ws)
1389{
1390 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1391 wake_worker(pool);
1392 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1393}
1394
1395/*----------------------------------------------------------------*/
1396
1397static enum pool_mode get_pool_mode(struct pool *pool)
1398{
1399 return pool->pf.mode;
1400}
1401
1402static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1403{
1404 int r;
1405 enum pool_mode old_mode = pool->pf.mode;
1406
1407 switch (new_mode) {
1408 case PM_FAIL:
1409 if (old_mode != new_mode)
1410 DMERR("%s: switching pool to failure mode",
1411 dm_device_name(pool->pool_md));
1412 dm_pool_metadata_read_only(pool->pmd);
1413 pool->process_bio = process_bio_fail;
1414 pool->process_discard = process_bio_fail;
1415 pool->process_prepared_mapping = process_prepared_mapping_fail;
1416 pool->process_prepared_discard = process_prepared_discard_fail;
1417 break;
1418
1419 case PM_READ_ONLY:
1420 if (old_mode != new_mode)
1421 DMERR("%s: switching pool to read-only mode",
1422 dm_device_name(pool->pool_md));
1423 r = dm_pool_abort_metadata(pool->pmd);
1424 if (r) {
1425 DMERR("%s: aborting transaction failed",
1426 dm_device_name(pool->pool_md));
1427 new_mode = PM_FAIL;
1428 set_pool_mode(pool, new_mode);
1429 } else {
1430 dm_pool_metadata_read_only(pool->pmd);
1431 pool->process_bio = process_bio_read_only;
1432 pool->process_discard = process_discard;
1433 pool->process_prepared_mapping = process_prepared_mapping_fail;
1434 pool->process_prepared_discard = process_prepared_discard_passdown;
1435 }
1436 break;
1437
1438 case PM_WRITE:
1439 if (old_mode != new_mode)
1440 DMINFO("%s: switching pool to write mode",
1441 dm_device_name(pool->pool_md));
1442 dm_pool_metadata_read_write(pool->pmd);
1443 pool->process_bio = process_bio;
1444 pool->process_discard = process_discard;
1445 pool->process_prepared_mapping = process_prepared_mapping;
1446 pool->process_prepared_discard = process_prepared_discard;
1447 break;
1448 }
1449
1450 pool->pf.mode = new_mode;
1451}
1452
1453/*
1454 * Rather than calling set_pool_mode directly, use these which describe the
1455 * reason for mode degradation.
1456 */
1457static void out_of_data_space(struct pool *pool)
1458{
1459 DMERR_LIMIT("%s: no free data space available.",
1460 dm_device_name(pool->pool_md));
1461 set_pool_mode(pool, PM_READ_ONLY);
1462}
1463
1464static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1465{
1466 dm_block_t free_blocks;
1467
1468 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1469 dm_device_name(pool->pool_md), op, r);
1470
1471 if (r == -ENOSPC &&
1472 !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
1473 !free_blocks)
1474 DMERR_LIMIT("%s: no free metadata space available.",
1475 dm_device_name(pool->pool_md));
1476
1477 set_pool_mode(pool, PM_READ_ONLY);
1478}
1479
1480/*----------------------------------------------------------------*/
1481
1482/*
1483 * Mapping functions.
1484 */
1485
1486/*
1487 * Called only while mapping a thin bio to hand it over to the workqueue.
1488 */
1489static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1490{
1491 unsigned long flags;
1492 struct pool *pool = tc->pool;
1493
1494 spin_lock_irqsave(&pool->lock, flags);
1495 bio_list_add(&pool->deferred_bios, bio);
1496 spin_unlock_irqrestore(&pool->lock, flags);
1497
1498 wake_worker(pool);
1499}
1500
1501static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1502{
1503 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1504
1505 h->tc = tc;
1506 h->shared_read_entry = NULL;
1507 h->all_io_entry = NULL;
1508 h->overwrite_mapping = NULL;
1509}
1510
1511/*
1512 * Non-blocking function called from the thin target's map function.
1513 */
1514static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1515{
1516 int r;
1517 struct thin_c *tc = ti->private;
1518 dm_block_t block = get_bio_block(tc, bio);
1519 struct dm_thin_device *td = tc->td;
1520 struct dm_thin_lookup_result result;
1521 struct dm_bio_prison_cell cell1, cell2;
1522 struct dm_bio_prison_cell *cell_result;
1523 struct dm_cell_key key;
1524
1525 thin_hook_bio(tc, bio);
1526
1527 if (get_pool_mode(tc->pool) == PM_FAIL) {
1528 bio_io_error(bio);
1529 return DM_MAPIO_SUBMITTED;
1530 }
1531
1532 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1533 thin_defer_bio(tc, bio);
1534 return DM_MAPIO_SUBMITTED;
1535 }
1536
1537 r = dm_thin_find_block(td, block, 0, &result);
1538
1539 /*
1540 * Note that we defer readahead too.
1541 */
1542 switch (r) {
1543 case 0:
1544 if (unlikely(result.shared)) {
1545 /*
1546 * We have a race condition here between the
1547 * result.shared value returned by the lookup and
1548 * snapshot creation, which may cause new
1549 * sharing.
1550 *
1551 * To avoid this always quiesce the origin before
1552 * taking the snap. You want to do this anyway to
1553 * ensure a consistent application view
1554 * (i.e. lockfs).
1555 *
1556 * More distant ancestors are irrelevant. The
1557 * shared flag will be set in their case.
1558 */
1559 thin_defer_bio(tc, bio);
1560 return DM_MAPIO_SUBMITTED;
1561 }
1562
1563 build_virtual_key(tc->td, block, &key);
1564 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1565 return DM_MAPIO_SUBMITTED;
1566
1567 build_data_key(tc->td, result.block, &key);
1568 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1569 cell_defer_no_holder_no_free(tc, &cell1);
1570 return DM_MAPIO_SUBMITTED;
1571 }
1572
1573 inc_all_io_entry(tc->pool, bio);
1574 cell_defer_no_holder_no_free(tc, &cell2);
1575 cell_defer_no_holder_no_free(tc, &cell1);
1576
1577 remap(tc, bio, result.block);
1578 return DM_MAPIO_REMAPPED;
1579
1580 case -ENODATA:
1581 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1582 /*
1583 * This block isn't provisioned, and we have no way
1584 * of doing so.
1585 */
1586 handle_unserviceable_bio(tc->pool, bio);
1587 return DM_MAPIO_SUBMITTED;
1588 }
1589 /* fall through */
1590
1591 case -EWOULDBLOCK:
1592 /*
1593 * In future, the failed dm_thin_find_block above could
1594 * provide the hint to load the metadata into cache.
1595 */
1596 thin_defer_bio(tc, bio);
1597 return DM_MAPIO_SUBMITTED;
1598
1599 default:
1600 /*
1601 * Must always call bio_io_error on failure.
1602 * dm_thin_find_block can fail with -EINVAL if the
1603 * pool is switched to fail-io mode.
1604 */
1605 bio_io_error(bio);
1606 return DM_MAPIO_SUBMITTED;
1607 }
1608}
1609
1610static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1611{
1612 int r;
1613 unsigned long flags;
1614 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1615
1616 spin_lock_irqsave(&pt->pool->lock, flags);
1617 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1618 spin_unlock_irqrestore(&pt->pool->lock, flags);
1619
1620 if (!r) {
1621 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1622 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1623 }
1624
1625 return r;
1626}
1627
1628static void __requeue_bios(struct pool *pool)
1629{
1630 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1631 bio_list_init(&pool->retry_on_resume_list);
1632}
1633
1634/*----------------------------------------------------------------
1635 * Binding of control targets to a pool object
1636 *--------------------------------------------------------------*/
1637static bool data_dev_supports_discard(struct pool_c *pt)
1638{
1639 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1640
1641 return q && blk_queue_discard(q);
1642}
1643
1644static bool is_factor(sector_t block_size, uint32_t n)
1645{
1646 return !sector_div(block_size, n);
1647}
1648
1649/*
1650 * If discard_passdown was enabled verify that the data device
1651 * supports discards. Disable discard_passdown if not.
1652 */
1653static void disable_passdown_if_not_supported(struct pool_c *pt)
1654{
1655 struct pool *pool = pt->pool;
1656 struct block_device *data_bdev = pt->data_dev->bdev;
1657 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1658 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1659 const char *reason = NULL;
1660 char buf[BDEVNAME_SIZE];
1661
1662 if (!pt->adjusted_pf.discard_passdown)
1663 return;
1664
1665 if (!data_dev_supports_discard(pt))
1666 reason = "discard unsupported";
1667
1668 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1669 reason = "max discard sectors smaller than a block";
1670
1671 else if (data_limits->discard_granularity > block_size)
1672 reason = "discard granularity larger than a block";
1673
1674 else if (!is_factor(block_size, data_limits->discard_granularity))
1675 reason = "discard granularity not a factor of block size";
1676
1677 if (reason) {
1678 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1679 pt->adjusted_pf.discard_passdown = false;
1680 }
1681}
1682
1683static int bind_control_target(struct pool *pool, struct dm_target *ti)
1684{
1685 struct pool_c *pt = ti->private;
1686
1687 /*
1688 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1689 */
1690 enum pool_mode old_mode = pool->pf.mode;
1691 enum pool_mode new_mode = pt->adjusted_pf.mode;
1692
1693 /*
1694 * Don't change the pool's mode until set_pool_mode() below.
1695 * Otherwise the pool's process_* function pointers may
1696 * not match the desired pool mode.
1697 */
1698 pt->adjusted_pf.mode = old_mode;
1699
1700 pool->ti = ti;
1701 pool->pf = pt->adjusted_pf;
1702 pool->low_water_blocks = pt->low_water_blocks;
1703
1704 /*
1705 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1706 * not going to recover without a thin_repair. So we never let the
1707 * pool move out of the old mode. On the other hand a PM_READ_ONLY
1708 * may have been due to a lack of metadata or data space, and may
1709 * now work (ie. if the underlying devices have been resized).
1710 */
1711 if (old_mode == PM_FAIL)
1712 new_mode = old_mode;
1713
1714 set_pool_mode(pool, new_mode);
1715
1716 return 0;
1717}
1718
1719static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1720{
1721 if (pool->ti == ti)
1722 pool->ti = NULL;
1723}
1724
1725/*----------------------------------------------------------------
1726 * Pool creation
1727 *--------------------------------------------------------------*/
1728/* Initialize pool features. */
1729static void pool_features_init(struct pool_features *pf)
1730{
1731 pf->mode = PM_WRITE;
1732 pf->zero_new_blocks = true;
1733 pf->discard_enabled = true;
1734 pf->discard_passdown = true;
1735 pf->error_if_no_space = false;
1736}
1737
1738static void __pool_destroy(struct pool *pool)
1739{
1740 __pool_table_remove(pool);
1741
1742 if (dm_pool_metadata_close(pool->pmd) < 0)
1743 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1744
1745 dm_bio_prison_destroy(pool->prison);
1746 dm_kcopyd_client_destroy(pool->copier);
1747
1748 if (pool->wq)
1749 destroy_workqueue(pool->wq);
1750
1751 if (pool->next_mapping)
1752 mempool_free(pool->next_mapping, pool->mapping_pool);
1753 mempool_destroy(pool->mapping_pool);
1754 dm_deferred_set_destroy(pool->shared_read_ds);
1755 dm_deferred_set_destroy(pool->all_io_ds);
1756 kfree(pool);
1757}
1758
1759static struct kmem_cache *_new_mapping_cache;
1760
1761static struct pool *pool_create(struct mapped_device *pool_md,
1762 struct block_device *metadata_dev,
1763 unsigned long block_size,
1764 int read_only, char **error)
1765{
1766 int r;
1767 void *err_p;
1768 struct pool *pool;
1769 struct dm_pool_metadata *pmd;
1770 bool format_device = read_only ? false : true;
1771
1772 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1773 if (IS_ERR(pmd)) {
1774 *error = "Error creating metadata object";
1775 return (struct pool *)pmd;
1776 }
1777
1778 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1779 if (!pool) {
1780 *error = "Error allocating memory for pool";
1781 err_p = ERR_PTR(-ENOMEM);
1782 goto bad_pool;
1783 }
1784
1785 pool->pmd = pmd;
1786 pool->sectors_per_block = block_size;
1787 if (block_size & (block_size - 1))
1788 pool->sectors_per_block_shift = -1;
1789 else
1790 pool->sectors_per_block_shift = __ffs(block_size);
1791 pool->low_water_blocks = 0;
1792 pool_features_init(&pool->pf);
1793 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1794 if (!pool->prison) {
1795 *error = "Error creating pool's bio prison";
1796 err_p = ERR_PTR(-ENOMEM);
1797 goto bad_prison;
1798 }
1799
1800 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1801 if (IS_ERR(pool->copier)) {
1802 r = PTR_ERR(pool->copier);
1803 *error = "Error creating pool's kcopyd client";
1804 err_p = ERR_PTR(r);
1805 goto bad_kcopyd_client;
1806 }
1807
1808 /*
1809 * Create singlethreaded workqueue that will service all devices
1810 * that use this metadata.
1811 */
1812 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1813 if (!pool->wq) {
1814 *error = "Error creating pool's workqueue";
1815 err_p = ERR_PTR(-ENOMEM);
1816 goto bad_wq;
1817 }
1818
1819 INIT_WORK(&pool->worker, do_worker);
1820 INIT_DELAYED_WORK(&pool->waker, do_waker);
1821 spin_lock_init(&pool->lock);
1822 bio_list_init(&pool->deferred_bios);
1823 bio_list_init(&pool->deferred_flush_bios);
1824 INIT_LIST_HEAD(&pool->prepared_mappings);
1825 INIT_LIST_HEAD(&pool->prepared_discards);
1826 pool->low_water_triggered = false;
1827 bio_list_init(&pool->retry_on_resume_list);
1828
1829 pool->shared_read_ds = dm_deferred_set_create();
1830 if (!pool->shared_read_ds) {
1831 *error = "Error creating pool's shared read deferred set";
1832 err_p = ERR_PTR(-ENOMEM);
1833 goto bad_shared_read_ds;
1834 }
1835
1836 pool->all_io_ds = dm_deferred_set_create();
1837 if (!pool->all_io_ds) {
1838 *error = "Error creating pool's all io deferred set";
1839 err_p = ERR_PTR(-ENOMEM);
1840 goto bad_all_io_ds;
1841 }
1842
1843 pool->next_mapping = NULL;
1844 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1845 _new_mapping_cache);
1846 if (!pool->mapping_pool) {
1847 *error = "Error creating pool's mapping mempool";
1848 err_p = ERR_PTR(-ENOMEM);
1849 goto bad_mapping_pool;
1850 }
1851
1852 pool->ref_count = 1;
1853 pool->last_commit_jiffies = jiffies;
1854 pool->pool_md = pool_md;
1855 pool->md_dev = metadata_dev;
1856 __pool_table_insert(pool);
1857
1858 return pool;
1859
1860bad_mapping_pool:
1861 dm_deferred_set_destroy(pool->all_io_ds);
1862bad_all_io_ds:
1863 dm_deferred_set_destroy(pool->shared_read_ds);
1864bad_shared_read_ds:
1865 destroy_workqueue(pool->wq);
1866bad_wq:
1867 dm_kcopyd_client_destroy(pool->copier);
1868bad_kcopyd_client:
1869 dm_bio_prison_destroy(pool->prison);
1870bad_prison:
1871 kfree(pool);
1872bad_pool:
1873 if (dm_pool_metadata_close(pmd))
1874 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1875
1876 return err_p;
1877}
1878
1879static void __pool_inc(struct pool *pool)
1880{
1881 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1882 pool->ref_count++;
1883}
1884
1885static void __pool_dec(struct pool *pool)
1886{
1887 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1888 BUG_ON(!pool->ref_count);
1889 if (!--pool->ref_count)
1890 __pool_destroy(pool);
1891}
1892
1893static struct pool *__pool_find(struct mapped_device *pool_md,
1894 struct block_device *metadata_dev,
1895 unsigned long block_size, int read_only,
1896 char **error, int *created)
1897{
1898 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1899
1900 if (pool) {
1901 if (pool->pool_md != pool_md) {
1902 *error = "metadata device already in use by a pool";
1903 return ERR_PTR(-EBUSY);
1904 }
1905 __pool_inc(pool);
1906
1907 } else {
1908 pool = __pool_table_lookup(pool_md);
1909 if (pool) {
1910 if (pool->md_dev != metadata_dev) {
1911 *error = "different pool cannot replace a pool";
1912 return ERR_PTR(-EINVAL);
1913 }
1914 __pool_inc(pool);
1915
1916 } else {
1917 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1918 *created = 1;
1919 }
1920 }
1921
1922 return pool;
1923}
1924
1925/*----------------------------------------------------------------
1926 * Pool target methods
1927 *--------------------------------------------------------------*/
1928static void pool_dtr(struct dm_target *ti)
1929{
1930 struct pool_c *pt = ti->private;
1931
1932 mutex_lock(&dm_thin_pool_table.mutex);
1933
1934 unbind_control_target(pt->pool, ti);
1935 __pool_dec(pt->pool);
1936 dm_put_device(ti, pt->metadata_dev);
1937 dm_put_device(ti, pt->data_dev);
1938 kfree(pt);
1939
1940 mutex_unlock(&dm_thin_pool_table.mutex);
1941}
1942
1943static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1944 struct dm_target *ti)
1945{
1946 int r;
1947 unsigned argc;
1948 const char *arg_name;
1949
1950 static struct dm_arg _args[] = {
1951 {0, 4, "Invalid number of pool feature arguments"},
1952 };
1953
1954 /*
1955 * No feature arguments supplied.
1956 */
1957 if (!as->argc)
1958 return 0;
1959
1960 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1961 if (r)
1962 return -EINVAL;
1963
1964 while (argc && !r) {
1965 arg_name = dm_shift_arg(as);
1966 argc--;
1967
1968 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1969 pf->zero_new_blocks = false;
1970
1971 else if (!strcasecmp(arg_name, "ignore_discard"))
1972 pf->discard_enabled = false;
1973
1974 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1975 pf->discard_passdown = false;
1976
1977 else if (!strcasecmp(arg_name, "read_only"))
1978 pf->mode = PM_READ_ONLY;
1979
1980 else if (!strcasecmp(arg_name, "error_if_no_space"))
1981 pf->error_if_no_space = true;
1982
1983 else {
1984 ti->error = "Unrecognised pool feature requested";
1985 r = -EINVAL;
1986 break;
1987 }
1988 }
1989
1990 return r;
1991}
1992
1993static void metadata_low_callback(void *context)
1994{
1995 struct pool *pool = context;
1996
1997 DMWARN("%s: reached low water mark for metadata device: sending event.",
1998 dm_device_name(pool->pool_md));
1999
2000 dm_table_event(pool->ti->table);
2001}
2002
2003static sector_t get_metadata_dev_size(struct block_device *bdev)
2004{
2005 sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2006 char buffer[BDEVNAME_SIZE];
2007
2008 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
2009 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2010 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2011 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
2012 }
2013
2014 return metadata_dev_size;
2015}
2016
2017static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2018{
2019 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2020
2021 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
2022
2023 return metadata_dev_size;
2024}
2025
2026/*
2027 * When a metadata threshold is crossed a dm event is triggered, and
2028 * userland should respond by growing the metadata device. We could let
2029 * userland set the threshold, like we do with the data threshold, but I'm
2030 * not sure they know enough to do this well.
2031 */
2032static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2033{
2034 /*
2035 * 4M is ample for all ops with the possible exception of thin
2036 * device deletion which is harmless if it fails (just retry the
2037 * delete after you've grown the device).
2038 */
2039 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2040 return min((dm_block_t)1024ULL /* 4M */, quarter);
2041}
2042
2043/*
2044 * thin-pool <metadata dev> <data dev>
2045 * <data block size (sectors)>
2046 * <low water mark (blocks)>
2047 * [<#feature args> [<arg>]*]
2048 *
2049 * Optional feature arguments are:
2050 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2051 * ignore_discard: disable discard
2052 * no_discard_passdown: don't pass discards down to the data device
2053 * read_only: Don't allow any changes to be made to the pool metadata.
2054 * error_if_no_space: error IOs, instead of queueing, if no space.
2055 */
2056static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2057{
2058 int r, pool_created = 0;
2059 struct pool_c *pt;
2060 struct pool *pool;
2061 struct pool_features pf;
2062 struct dm_arg_set as;
2063 struct dm_dev *data_dev;
2064 unsigned long block_size;
2065 dm_block_t low_water_blocks;
2066 struct dm_dev *metadata_dev;
2067 fmode_t metadata_mode;
2068
2069 /*
2070 * FIXME Remove validation from scope of lock.
2071 */
2072 mutex_lock(&dm_thin_pool_table.mutex);
2073
2074 if (argc < 4) {
2075 ti->error = "Invalid argument count";
2076 r = -EINVAL;
2077 goto out_unlock;
2078 }
2079
2080 as.argc = argc;
2081 as.argv = argv;
2082
2083 /*
2084 * Set default pool features.
2085 */
2086 pool_features_init(&pf);
2087
2088 dm_consume_args(&as, 4);
2089 r = parse_pool_features(&as, &pf, ti);
2090 if (r)
2091 goto out_unlock;
2092
2093 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2094 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2095 if (r) {
2096 ti->error = "Error opening metadata block device";
2097 goto out_unlock;
2098 }
2099
2100 /*
2101 * Run for the side-effect of possibly issuing a warning if the
2102 * device is too big.
2103 */
2104 (void) get_metadata_dev_size(metadata_dev->bdev);
2105
2106 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2107 if (r) {
2108 ti->error = "Error getting data device";
2109 goto out_metadata;
2110 }
2111
2112 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2113 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2114 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2115 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2116 ti->error = "Invalid block size";
2117 r = -EINVAL;
2118 goto out;
2119 }
2120
2121 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2122 ti->error = "Invalid low water mark";
2123 r = -EINVAL;
2124 goto out;
2125 }
2126
2127 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2128 if (!pt) {
2129 r = -ENOMEM;
2130 goto out;
2131 }
2132
2133 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2134 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2135 if (IS_ERR(pool)) {
2136 r = PTR_ERR(pool);
2137 goto out_free_pt;
2138 }
2139
2140 /*
2141 * 'pool_created' reflects whether this is the first table load.
2142 * Top level discard support is not allowed to be changed after
2143 * initial load. This would require a pool reload to trigger thin
2144 * device changes.
2145 */
2146 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2147 ti->error = "Discard support cannot be disabled once enabled";
2148 r = -EINVAL;
2149 goto out_flags_changed;
2150 }
2151
2152 pt->pool = pool;
2153 pt->ti = ti;
2154 pt->metadata_dev = metadata_dev;
2155 pt->data_dev = data_dev;
2156 pt->low_water_blocks = low_water_blocks;
2157 pt->adjusted_pf = pt->requested_pf = pf;
2158 ti->num_flush_bios = 1;
2159
2160 /*
2161 * Only need to enable discards if the pool should pass
2162 * them down to the data device. The thin device's discard
2163 * processing will cause mappings to be removed from the btree.
2164 */
2165 ti->discard_zeroes_data_unsupported = true;
2166 if (pf.discard_enabled && pf.discard_passdown) {
2167 ti->num_discard_bios = 1;
2168
2169 /*
2170 * Setting 'discards_supported' circumvents the normal
2171 * stacking of discard limits (this keeps the pool and
2172 * thin devices' discard limits consistent).
2173 */
2174 ti->discards_supported = true;
2175 }
2176 ti->private = pt;
2177
2178 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2179 calc_metadata_threshold(pt),
2180 metadata_low_callback,
2181 pool);
2182 if (r)
2183 goto out_free_pt;
2184
2185 pt->callbacks.congested_fn = pool_is_congested;
2186 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2187
2188 mutex_unlock(&dm_thin_pool_table.mutex);
2189
2190 return 0;
2191
2192out_flags_changed:
2193 __pool_dec(pool);
2194out_free_pt:
2195 kfree(pt);
2196out:
2197 dm_put_device(ti, data_dev);
2198out_metadata:
2199 dm_put_device(ti, metadata_dev);
2200out_unlock:
2201 mutex_unlock(&dm_thin_pool_table.mutex);
2202
2203 return r;
2204}
2205
2206static int pool_map(struct dm_target *ti, struct bio *bio)
2207{
2208 int r;
2209 struct pool_c *pt = ti->private;
2210 struct pool *pool = pt->pool;
2211 unsigned long flags;
2212
2213 /*
2214 * As this is a singleton target, ti->begin is always zero.
2215 */
2216 spin_lock_irqsave(&pool->lock, flags);
2217 bio->bi_bdev = pt->data_dev->bdev;
2218 r = DM_MAPIO_REMAPPED;
2219 spin_unlock_irqrestore(&pool->lock, flags);
2220
2221 return r;
2222}
2223
2224static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2225{
2226 int r;
2227 struct pool_c *pt = ti->private;
2228 struct pool *pool = pt->pool;
2229 sector_t data_size = ti->len;
2230 dm_block_t sb_data_size;
2231
2232 *need_commit = false;
2233
2234 (void) sector_div(data_size, pool->sectors_per_block);
2235
2236 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2237 if (r) {
2238 DMERR("%s: failed to retrieve data device size",
2239 dm_device_name(pool->pool_md));
2240 return r;
2241 }
2242
2243 if (data_size < sb_data_size) {
2244 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2245 dm_device_name(pool->pool_md),
2246 (unsigned long long)data_size, sb_data_size);
2247 return -EINVAL;
2248
2249 } else if (data_size > sb_data_size) {
2250 if (sb_data_size)
2251 DMINFO("%s: growing the data device from %llu to %llu blocks",
2252 dm_device_name(pool->pool_md),
2253 sb_data_size, (unsigned long long)data_size);
2254 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2255 if (r) {
2256 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2257 return r;
2258 }
2259
2260 *need_commit = true;
2261 }
2262
2263 return 0;
2264}
2265
2266static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2267{
2268 int r;
2269 struct pool_c *pt = ti->private;
2270 struct pool *pool = pt->pool;
2271 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2272
2273 *need_commit = false;
2274
2275 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2276
2277 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2278 if (r) {
2279 DMERR("%s: failed to retrieve metadata device size",
2280 dm_device_name(pool->pool_md));
2281 return r;
2282 }
2283
2284 if (metadata_dev_size < sb_metadata_dev_size) {
2285 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2286 dm_device_name(pool->pool_md),
2287 metadata_dev_size, sb_metadata_dev_size);
2288 return -EINVAL;
2289
2290 } else if (metadata_dev_size > sb_metadata_dev_size) {
2291 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2292 dm_device_name(pool->pool_md),
2293 sb_metadata_dev_size, metadata_dev_size);
2294 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2295 if (r) {
2296 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2297 return r;
2298 }
2299
2300 *need_commit = true;
2301 }
2302
2303 return 0;
2304}
2305
2306/*
2307 * Retrieves the number of blocks of the data device from
2308 * the superblock and compares it to the actual device size,
2309 * thus resizing the data device in case it has grown.
2310 *
2311 * This both copes with opening preallocated data devices in the ctr
2312 * being followed by a resume
2313 * -and-
2314 * calling the resume method individually after userspace has
2315 * grown the data device in reaction to a table event.
2316 */
2317static int pool_preresume(struct dm_target *ti)
2318{
2319 int r;
2320 bool need_commit1, need_commit2;
2321 struct pool_c *pt = ti->private;
2322 struct pool *pool = pt->pool;
2323
2324 /*
2325 * Take control of the pool object.
2326 */
2327 r = bind_control_target(pool, ti);
2328 if (r)
2329 return r;
2330
2331 r = maybe_resize_data_dev(ti, &need_commit1);
2332 if (r)
2333 return r;
2334
2335 r = maybe_resize_metadata_dev(ti, &need_commit2);
2336 if (r)
2337 return r;
2338
2339 if (need_commit1 || need_commit2)
2340 (void) commit(pool);
2341
2342 return 0;
2343}
2344
2345static void pool_resume(struct dm_target *ti)
2346{
2347 struct pool_c *pt = ti->private;
2348 struct pool *pool = pt->pool;
2349 unsigned long flags;
2350
2351 spin_lock_irqsave(&pool->lock, flags);
2352 pool->low_water_triggered = false;
2353 __requeue_bios(pool);
2354 spin_unlock_irqrestore(&pool->lock, flags);
2355
2356 do_waker(&pool->waker.work);
2357}
2358
2359static void pool_postsuspend(struct dm_target *ti)
2360{
2361 struct pool_c *pt = ti->private;
2362 struct pool *pool = pt->pool;
2363
2364 cancel_delayed_work(&pool->waker);
2365 flush_workqueue(pool->wq);
2366 (void) commit(pool);
2367}
2368
2369static int check_arg_count(unsigned argc, unsigned args_required)
2370{
2371 if (argc != args_required) {
2372 DMWARN("Message received with %u arguments instead of %u.",
2373 argc, args_required);
2374 return -EINVAL;
2375 }
2376
2377 return 0;
2378}
2379
2380static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2381{
2382 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2383 *dev_id <= MAX_DEV_ID)
2384 return 0;
2385
2386 if (warning)
2387 DMWARN("Message received with invalid device id: %s", arg);
2388
2389 return -EINVAL;
2390}
2391
2392static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2393{
2394 dm_thin_id dev_id;
2395 int r;
2396
2397 r = check_arg_count(argc, 2);
2398 if (r)
2399 return r;
2400
2401 r = read_dev_id(argv[1], &dev_id, 1);
2402 if (r)
2403 return r;
2404
2405 r = dm_pool_create_thin(pool->pmd, dev_id);
2406 if (r) {
2407 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2408 argv[1]);
2409 return r;
2410 }
2411
2412 return 0;
2413}
2414
2415static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2416{
2417 dm_thin_id dev_id;
2418 dm_thin_id origin_dev_id;
2419 int r;
2420
2421 r = check_arg_count(argc, 3);
2422 if (r)
2423 return r;
2424
2425 r = read_dev_id(argv[1], &dev_id, 1);
2426 if (r)
2427 return r;
2428
2429 r = read_dev_id(argv[2], &origin_dev_id, 1);
2430 if (r)
2431 return r;
2432
2433 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2434 if (r) {
2435 DMWARN("Creation of new snapshot %s of device %s failed.",
2436 argv[1], argv[2]);
2437 return r;
2438 }
2439
2440 return 0;
2441}
2442
2443static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2444{
2445 dm_thin_id dev_id;
2446 int r;
2447
2448 r = check_arg_count(argc, 2);
2449 if (r)
2450 return r;
2451
2452 r = read_dev_id(argv[1], &dev_id, 1);
2453 if (r)
2454 return r;
2455
2456 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2457 if (r)
2458 DMWARN("Deletion of thin device %s failed.", argv[1]);
2459
2460 return r;
2461}
2462
2463static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2464{
2465 dm_thin_id old_id, new_id;
2466 int r;
2467
2468 r = check_arg_count(argc, 3);
2469 if (r)
2470 return r;
2471
2472 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2473 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2474 return -EINVAL;
2475 }
2476
2477 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2478 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2479 return -EINVAL;
2480 }
2481
2482 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2483 if (r) {
2484 DMWARN("Failed to change transaction id from %s to %s.",
2485 argv[1], argv[2]);
2486 return r;
2487 }
2488
2489 return 0;
2490}
2491
2492static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2493{
2494 int r;
2495
2496 r = check_arg_count(argc, 1);
2497 if (r)
2498 return r;
2499
2500 (void) commit(pool);
2501
2502 r = dm_pool_reserve_metadata_snap(pool->pmd);
2503 if (r)
2504 DMWARN("reserve_metadata_snap message failed.");
2505
2506 return r;
2507}
2508
2509static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2510{
2511 int r;
2512
2513 r = check_arg_count(argc, 1);
2514 if (r)
2515 return r;
2516
2517 r = dm_pool_release_metadata_snap(pool->pmd);
2518 if (r)
2519 DMWARN("release_metadata_snap message failed.");
2520
2521 return r;
2522}
2523
2524/*
2525 * Messages supported:
2526 * create_thin <dev_id>
2527 * create_snap <dev_id> <origin_id>
2528 * delete <dev_id>
2529 * trim <dev_id> <new_size_in_sectors>
2530 * set_transaction_id <current_trans_id> <new_trans_id>
2531 * reserve_metadata_snap
2532 * release_metadata_snap
2533 */
2534static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2535{
2536 int r = -EINVAL;
2537 struct pool_c *pt = ti->private;
2538 struct pool *pool = pt->pool;
2539
2540 if (!strcasecmp(argv[0], "create_thin"))
2541 r = process_create_thin_mesg(argc, argv, pool);
2542
2543 else if (!strcasecmp(argv[0], "create_snap"))
2544 r = process_create_snap_mesg(argc, argv, pool);
2545
2546 else if (!strcasecmp(argv[0], "delete"))
2547 r = process_delete_mesg(argc, argv, pool);
2548
2549 else if (!strcasecmp(argv[0], "set_transaction_id"))
2550 r = process_set_transaction_id_mesg(argc, argv, pool);
2551
2552 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2553 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2554
2555 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2556 r = process_release_metadata_snap_mesg(argc, argv, pool);
2557
2558 else
2559 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2560
2561 if (!r)
2562 (void) commit(pool);
2563
2564 return r;
2565}
2566
2567static void emit_flags(struct pool_features *pf, char *result,
2568 unsigned sz, unsigned maxlen)
2569{
2570 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2571 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2572 pf->error_if_no_space;
2573 DMEMIT("%u ", count);
2574
2575 if (!pf->zero_new_blocks)
2576 DMEMIT("skip_block_zeroing ");
2577
2578 if (!pf->discard_enabled)
2579 DMEMIT("ignore_discard ");
2580
2581 if (!pf->discard_passdown)
2582 DMEMIT("no_discard_passdown ");
2583
2584 if (pf->mode == PM_READ_ONLY)
2585 DMEMIT("read_only ");
2586
2587 if (pf->error_if_no_space)
2588 DMEMIT("error_if_no_space ");
2589}
2590
2591/*
2592 * Status line is:
2593 * <transaction id> <used metadata sectors>/<total metadata sectors>
2594 * <used data sectors>/<total data sectors> <held metadata root>
2595 */
2596static void pool_status(struct dm_target *ti, status_type_t type,
2597 unsigned status_flags, char *result, unsigned maxlen)
2598{
2599 int r;
2600 unsigned sz = 0;
2601 uint64_t transaction_id;
2602 dm_block_t nr_free_blocks_data;
2603 dm_block_t nr_free_blocks_metadata;
2604 dm_block_t nr_blocks_data;
2605 dm_block_t nr_blocks_metadata;
2606 dm_block_t held_root;
2607 char buf[BDEVNAME_SIZE];
2608 char buf2[BDEVNAME_SIZE];
2609 struct pool_c *pt = ti->private;
2610 struct pool *pool = pt->pool;
2611
2612 switch (type) {
2613 case STATUSTYPE_INFO:
2614 if (get_pool_mode(pool) == PM_FAIL) {
2615 DMEMIT("Fail");
2616 break;
2617 }
2618
2619 /* Commit to ensure statistics aren't out-of-date */
2620 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2621 (void) commit(pool);
2622
2623 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2624 if (r) {
2625 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2626 dm_device_name(pool->pool_md), r);
2627 goto err;
2628 }
2629
2630 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2631 if (r) {
2632 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2633 dm_device_name(pool->pool_md), r);
2634 goto err;
2635 }
2636
2637 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2638 if (r) {
2639 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2640 dm_device_name(pool->pool_md), r);
2641 goto err;
2642 }
2643
2644 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2645 if (r) {
2646 DMERR("%s: dm_pool_get_free_block_count returned %d",
2647 dm_device_name(pool->pool_md), r);
2648 goto err;
2649 }
2650
2651 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2652 if (r) {
2653 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2654 dm_device_name(pool->pool_md), r);
2655 goto err;
2656 }
2657
2658 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2659 if (r) {
2660 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2661 dm_device_name(pool->pool_md), r);
2662 goto err;
2663 }
2664
2665 DMEMIT("%llu %llu/%llu %llu/%llu ",
2666 (unsigned long long)transaction_id,
2667 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2668 (unsigned long long)nr_blocks_metadata,
2669 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2670 (unsigned long long)nr_blocks_data);
2671
2672 if (held_root)
2673 DMEMIT("%llu ", held_root);
2674 else
2675 DMEMIT("- ");
2676
2677 if (pool->pf.mode == PM_READ_ONLY)
2678 DMEMIT("ro ");
2679 else
2680 DMEMIT("rw ");
2681
2682 if (!pool->pf.discard_enabled)
2683 DMEMIT("ignore_discard ");
2684 else if (pool->pf.discard_passdown)
2685 DMEMIT("discard_passdown ");
2686 else
2687 DMEMIT("no_discard_passdown ");
2688
2689 if (pool->pf.error_if_no_space)
2690 DMEMIT("error_if_no_space ");
2691 else
2692 DMEMIT("queue_if_no_space ");
2693
2694 break;
2695
2696 case STATUSTYPE_TABLE:
2697 DMEMIT("%s %s %lu %llu ",
2698 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2699 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2700 (unsigned long)pool->sectors_per_block,
2701 (unsigned long long)pt->low_water_blocks);
2702 emit_flags(&pt->requested_pf, result, sz, maxlen);
2703 break;
2704 }
2705 return;
2706
2707err:
2708 DMEMIT("Error");
2709}
2710
2711static int pool_iterate_devices(struct dm_target *ti,
2712 iterate_devices_callout_fn fn, void *data)
2713{
2714 struct pool_c *pt = ti->private;
2715
2716 return fn(ti, pt->data_dev, 0, ti->len, data);
2717}
2718
2719static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2720 struct bio_vec *biovec, int max_size)
2721{
2722 struct pool_c *pt = ti->private;
2723 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2724
2725 if (!q->merge_bvec_fn)
2726 return max_size;
2727
2728 bvm->bi_bdev = pt->data_dev->bdev;
2729
2730 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2731}
2732
2733static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2734{
2735 struct pool *pool = pt->pool;
2736 struct queue_limits *data_limits;
2737
2738 limits->max_discard_sectors = pool->sectors_per_block;
2739
2740 /*
2741 * discard_granularity is just a hint, and not enforced.
2742 */
2743 if (pt->adjusted_pf.discard_passdown) {
2744 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2745 limits->discard_granularity = data_limits->discard_granularity;
2746 } else
2747 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2748}
2749
2750static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2751{
2752 struct pool_c *pt = ti->private;
2753 struct pool *pool = pt->pool;
2754 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2755
2756 /*
2757 * If the system-determined stacked limits are compatible with the
2758 * pool's blocksize (io_opt is a factor) do not override them.
2759 */
2760 if (io_opt_sectors < pool->sectors_per_block ||
2761 do_div(io_opt_sectors, pool->sectors_per_block)) {
2762 blk_limits_io_min(limits, 0);
2763 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2764 }
2765
2766 /*
2767 * pt->adjusted_pf is a staging area for the actual features to use.
2768 * They get transferred to the live pool in bind_control_target()
2769 * called from pool_preresume().
2770 */
2771 if (!pt->adjusted_pf.discard_enabled) {
2772 /*
2773 * Must explicitly disallow stacking discard limits otherwise the
2774 * block layer will stack them if pool's data device has support.
2775 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2776 * user to see that, so make sure to set all discard limits to 0.
2777 */
2778 limits->discard_granularity = 0;
2779 return;
2780 }
2781
2782 disable_passdown_if_not_supported(pt);
2783
2784 set_discard_limits(pt, limits);
2785}
2786
2787static struct target_type pool_target = {
2788 .name = "thin-pool",
2789 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2790 DM_TARGET_IMMUTABLE,
2791 .version = {1, 10, 0},
2792 .module = THIS_MODULE,
2793 .ctr = pool_ctr,
2794 .dtr = pool_dtr,
2795 .map = pool_map,
2796 .postsuspend = pool_postsuspend,
2797 .preresume = pool_preresume,
2798 .resume = pool_resume,
2799 .message = pool_message,
2800 .status = pool_status,
2801 .merge = pool_merge,
2802 .iterate_devices = pool_iterate_devices,
2803 .io_hints = pool_io_hints,
2804};
2805
2806/*----------------------------------------------------------------
2807 * Thin target methods
2808 *--------------------------------------------------------------*/
2809static void thin_dtr(struct dm_target *ti)
2810{
2811 struct thin_c *tc = ti->private;
2812
2813 mutex_lock(&dm_thin_pool_table.mutex);
2814
2815 __pool_dec(tc->pool);
2816 dm_pool_close_thin_device(tc->td);
2817 dm_put_device(ti, tc->pool_dev);
2818 if (tc->origin_dev)
2819 dm_put_device(ti, tc->origin_dev);
2820 kfree(tc);
2821
2822 mutex_unlock(&dm_thin_pool_table.mutex);
2823}
2824
2825/*
2826 * Thin target parameters:
2827 *
2828 * <pool_dev> <dev_id> [origin_dev]
2829 *
2830 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2831 * dev_id: the internal device identifier
2832 * origin_dev: a device external to the pool that should act as the origin
2833 *
2834 * If the pool device has discards disabled, they get disabled for the thin
2835 * device as well.
2836 */
2837static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2838{
2839 int r;
2840 struct thin_c *tc;
2841 struct dm_dev *pool_dev, *origin_dev;
2842 struct mapped_device *pool_md;
2843
2844 mutex_lock(&dm_thin_pool_table.mutex);
2845
2846 if (argc != 2 && argc != 3) {
2847 ti->error = "Invalid argument count";
2848 r = -EINVAL;
2849 goto out_unlock;
2850 }
2851
2852 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2853 if (!tc) {
2854 ti->error = "Out of memory";
2855 r = -ENOMEM;
2856 goto out_unlock;
2857 }
2858
2859 if (argc == 3) {
2860 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2861 if (r) {
2862 ti->error = "Error opening origin device";
2863 goto bad_origin_dev;
2864 }
2865 tc->origin_dev = origin_dev;
2866 }
2867
2868 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2869 if (r) {
2870 ti->error = "Error opening pool device";
2871 goto bad_pool_dev;
2872 }
2873 tc->pool_dev = pool_dev;
2874
2875 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2876 ti->error = "Invalid device id";
2877 r = -EINVAL;
2878 goto bad_common;
2879 }
2880
2881 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2882 if (!pool_md) {
2883 ti->error = "Couldn't get pool mapped device";
2884 r = -EINVAL;
2885 goto bad_common;
2886 }
2887
2888 tc->pool = __pool_table_lookup(pool_md);
2889 if (!tc->pool) {
2890 ti->error = "Couldn't find pool object";
2891 r = -EINVAL;
2892 goto bad_pool_lookup;
2893 }
2894 __pool_inc(tc->pool);
2895
2896 if (get_pool_mode(tc->pool) == PM_FAIL) {
2897 ti->error = "Couldn't open thin device, Pool is in fail mode";
2898 goto bad_thin_open;
2899 }
2900
2901 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2902 if (r) {
2903 ti->error = "Couldn't open thin internal device";
2904 goto bad_thin_open;
2905 }
2906
2907 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2908 if (r)
2909 goto bad_thin_open;
2910
2911 ti->num_flush_bios = 1;
2912 ti->flush_supported = true;
2913 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2914
2915 /* In case the pool supports discards, pass them on. */
2916 ti->discard_zeroes_data_unsupported = true;
2917 if (tc->pool->pf.discard_enabled) {
2918 ti->discards_supported = true;
2919 ti->num_discard_bios = 1;
2920 /* Discard bios must be split on a block boundary */
2921 ti->split_discard_bios = true;
2922 }
2923
2924 dm_put(pool_md);
2925
2926 mutex_unlock(&dm_thin_pool_table.mutex);
2927
2928 return 0;
2929
2930bad_thin_open:
2931 __pool_dec(tc->pool);
2932bad_pool_lookup:
2933 dm_put(pool_md);
2934bad_common:
2935 dm_put_device(ti, tc->pool_dev);
2936bad_pool_dev:
2937 if (tc->origin_dev)
2938 dm_put_device(ti, tc->origin_dev);
2939bad_origin_dev:
2940 kfree(tc);
2941out_unlock:
2942 mutex_unlock(&dm_thin_pool_table.mutex);
2943
2944 return r;
2945}
2946
2947static int thin_map(struct dm_target *ti, struct bio *bio)
2948{
2949 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
2950
2951 return thin_bio_map(ti, bio);
2952}
2953
2954static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2955{
2956 unsigned long flags;
2957 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2958 struct list_head work;
2959 struct dm_thin_new_mapping *m, *tmp;
2960 struct pool *pool = h->tc->pool;
2961
2962 if (h->shared_read_entry) {
2963 INIT_LIST_HEAD(&work);
2964 dm_deferred_entry_dec(h->shared_read_entry, &work);
2965
2966 spin_lock_irqsave(&pool->lock, flags);
2967 list_for_each_entry_safe(m, tmp, &work, list) {
2968 list_del(&m->list);
2969 m->quiesced = true;
2970 __maybe_add_mapping(m);
2971 }
2972 spin_unlock_irqrestore(&pool->lock, flags);
2973 }
2974
2975 if (h->all_io_entry) {
2976 INIT_LIST_HEAD(&work);
2977 dm_deferred_entry_dec(h->all_io_entry, &work);
2978 if (!list_empty(&work)) {
2979 spin_lock_irqsave(&pool->lock, flags);
2980 list_for_each_entry_safe(m, tmp, &work, list)
2981 list_add_tail(&m->list, &pool->prepared_discards);
2982 spin_unlock_irqrestore(&pool->lock, flags);
2983 wake_worker(pool);
2984 }
2985 }
2986
2987 return 0;
2988}
2989
2990static void thin_postsuspend(struct dm_target *ti)
2991{
2992 if (dm_noflush_suspending(ti))
2993 requeue_io((struct thin_c *)ti->private);
2994}
2995
2996/*
2997 * <nr mapped sectors> <highest mapped sector>
2998 */
2999static void thin_status(struct dm_target *ti, status_type_t type,
3000 unsigned status_flags, char *result, unsigned maxlen)
3001{
3002 int r;
3003 ssize_t sz = 0;
3004 dm_block_t mapped, highest;
3005 char buf[BDEVNAME_SIZE];
3006 struct thin_c *tc = ti->private;
3007
3008 if (get_pool_mode(tc->pool) == PM_FAIL) {
3009 DMEMIT("Fail");
3010 return;
3011 }
3012
3013 if (!tc->td)
3014 DMEMIT("-");
3015 else {
3016 switch (type) {
3017 case STATUSTYPE_INFO:
3018 r = dm_thin_get_mapped_count(tc->td, &mapped);
3019 if (r) {
3020 DMERR("dm_thin_get_mapped_count returned %d", r);
3021 goto err;
3022 }
3023
3024 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3025 if (r < 0) {
3026 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3027 goto err;
3028 }
3029
3030 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3031 if (r)
3032 DMEMIT("%llu", ((highest + 1) *
3033 tc->pool->sectors_per_block) - 1);
3034 else
3035 DMEMIT("-");
3036 break;
3037
3038 case STATUSTYPE_TABLE:
3039 DMEMIT("%s %lu",
3040 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3041 (unsigned long) tc->dev_id);
3042 if (tc->origin_dev)
3043 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3044 break;
3045 }
3046 }
3047
3048 return;
3049
3050err:
3051 DMEMIT("Error");
3052}
3053
3054static int thin_iterate_devices(struct dm_target *ti,
3055 iterate_devices_callout_fn fn, void *data)
3056{
3057 sector_t blocks;
3058 struct thin_c *tc = ti->private;
3059 struct pool *pool = tc->pool;
3060
3061 /*
3062 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3063 * we follow a more convoluted path through to the pool's target.
3064 */
3065 if (!pool->ti)
3066 return 0; /* nothing is bound */
3067
3068 blocks = pool->ti->len;
3069 (void) sector_div(blocks, pool->sectors_per_block);
3070 if (blocks)
3071 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3072
3073 return 0;
3074}
3075
3076static struct target_type thin_target = {
3077 .name = "thin",
3078 .version = {1, 10, 0},
3079 .module = THIS_MODULE,
3080 .ctr = thin_ctr,
3081 .dtr = thin_dtr,
3082 .map = thin_map,
3083 .end_io = thin_endio,
3084 .postsuspend = thin_postsuspend,
3085 .status = thin_status,
3086 .iterate_devices = thin_iterate_devices,
3087};
3088
3089/*----------------------------------------------------------------*/
3090
3091static int __init dm_thin_init(void)
3092{
3093 int r;
3094
3095 pool_table_init();
3096
3097 r = dm_register_target(&thin_target);
3098 if (r)
3099 return r;
3100
3101 r = dm_register_target(&pool_target);
3102 if (r)
3103 goto bad_pool_target;
3104
3105 r = -ENOMEM;
3106
3107 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3108 if (!_new_mapping_cache)
3109 goto bad_new_mapping_cache;
3110
3111 return 0;
3112
3113bad_new_mapping_cache:
3114 dm_unregister_target(&pool_target);
3115bad_pool_target:
3116 dm_unregister_target(&thin_target);
3117
3118 return r;
3119}
3120
3121static void dm_thin_exit(void)
3122{
3123 dm_unregister_target(&thin_target);
3124 dm_unregister_target(&pool_target);
3125
3126 kmem_cache_destroy(_new_mapping_cache);
3127}
3128
3129module_init(dm_thin_init);
3130module_exit(dm_thin_exit);
3131
3132MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3133MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3134MODULE_LICENSE("GPL");
This page took 0.053344 seconds and 5 git commands to generate.