Merge tag 'iwlwifi-next-for-kalle-2016-07-01' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / drivers / mmc / host / sh_mmcif.c
... / ...
CommitLineData
1/*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19/*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45#include <linux/bitops.h>
46#include <linux/clk.h>
47#include <linux/completion.h>
48#include <linux/delay.h>
49#include <linux/dma-mapping.h>
50#include <linux/dmaengine.h>
51#include <linux/mmc/card.h>
52#include <linux/mmc/core.h>
53#include <linux/mmc/host.h>
54#include <linux/mmc/mmc.h>
55#include <linux/mmc/sdio.h>
56#include <linux/mmc/sh_mmcif.h>
57#include <linux/mmc/slot-gpio.h>
58#include <linux/mod_devicetable.h>
59#include <linux/mutex.h>
60#include <linux/of_device.h>
61#include <linux/pagemap.h>
62#include <linux/platform_device.h>
63#include <linux/pm_qos.h>
64#include <linux/pm_runtime.h>
65#include <linux/sh_dma.h>
66#include <linux/spinlock.h>
67#include <linux/module.h>
68
69#define DRIVER_NAME "sh_mmcif"
70#define DRIVER_VERSION "2010-04-28"
71
72/* CE_CMD_SET */
73#define CMD_MASK 0x3f000000
74#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
75#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
76#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
77#define CMD_SET_RBSY (1 << 21) /* R1b */
78#define CMD_SET_CCSEN (1 << 20)
79#define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
80#define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
81#define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
82#define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
83#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
84#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
85#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
86#define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
87#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
88#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
89#define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
90#define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
91#define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
92#define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
93#define CMD_SET_CCSH (1 << 5)
94#define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
95#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
96#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
97#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
98
99/* CE_CMD_CTRL */
100#define CMD_CTRL_BREAK (1 << 0)
101
102/* CE_BLOCK_SET */
103#define BLOCK_SIZE_MASK 0x0000ffff
104
105/* CE_INT */
106#define INT_CCSDE (1 << 29)
107#define INT_CMD12DRE (1 << 26)
108#define INT_CMD12RBE (1 << 25)
109#define INT_CMD12CRE (1 << 24)
110#define INT_DTRANE (1 << 23)
111#define INT_BUFRE (1 << 22)
112#define INT_BUFWEN (1 << 21)
113#define INT_BUFREN (1 << 20)
114#define INT_CCSRCV (1 << 19)
115#define INT_RBSYE (1 << 17)
116#define INT_CRSPE (1 << 16)
117#define INT_CMDVIO (1 << 15)
118#define INT_BUFVIO (1 << 14)
119#define INT_WDATERR (1 << 11)
120#define INT_RDATERR (1 << 10)
121#define INT_RIDXERR (1 << 9)
122#define INT_RSPERR (1 << 8)
123#define INT_CCSTO (1 << 5)
124#define INT_CRCSTO (1 << 4)
125#define INT_WDATTO (1 << 3)
126#define INT_RDATTO (1 << 2)
127#define INT_RBSYTO (1 << 1)
128#define INT_RSPTO (1 << 0)
129#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
130 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
131 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
132 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
133
134#define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
135 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
136 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
137
138#define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
139
140/* CE_INT_MASK */
141#define MASK_ALL 0x00000000
142#define MASK_MCCSDE (1 << 29)
143#define MASK_MCMD12DRE (1 << 26)
144#define MASK_MCMD12RBE (1 << 25)
145#define MASK_MCMD12CRE (1 << 24)
146#define MASK_MDTRANE (1 << 23)
147#define MASK_MBUFRE (1 << 22)
148#define MASK_MBUFWEN (1 << 21)
149#define MASK_MBUFREN (1 << 20)
150#define MASK_MCCSRCV (1 << 19)
151#define MASK_MRBSYE (1 << 17)
152#define MASK_MCRSPE (1 << 16)
153#define MASK_MCMDVIO (1 << 15)
154#define MASK_MBUFVIO (1 << 14)
155#define MASK_MWDATERR (1 << 11)
156#define MASK_MRDATERR (1 << 10)
157#define MASK_MRIDXERR (1 << 9)
158#define MASK_MRSPERR (1 << 8)
159#define MASK_MCCSTO (1 << 5)
160#define MASK_MCRCSTO (1 << 4)
161#define MASK_MWDATTO (1 << 3)
162#define MASK_MRDATTO (1 << 2)
163#define MASK_MRBSYTO (1 << 1)
164#define MASK_MRSPTO (1 << 0)
165
166#define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
167 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
168 MASK_MCRCSTO | MASK_MWDATTO | \
169 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
170
171#define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
172 MASK_MBUFREN | MASK_MBUFWEN | \
173 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
174 MASK_MCMD12RBE | MASK_MCMD12CRE)
175
176/* CE_HOST_STS1 */
177#define STS1_CMDSEQ (1 << 31)
178
179/* CE_HOST_STS2 */
180#define STS2_CRCSTE (1 << 31)
181#define STS2_CRC16E (1 << 30)
182#define STS2_AC12CRCE (1 << 29)
183#define STS2_RSPCRC7E (1 << 28)
184#define STS2_CRCSTEBE (1 << 27)
185#define STS2_RDATEBE (1 << 26)
186#define STS2_AC12REBE (1 << 25)
187#define STS2_RSPEBE (1 << 24)
188#define STS2_AC12IDXE (1 << 23)
189#define STS2_RSPIDXE (1 << 22)
190#define STS2_CCSTO (1 << 15)
191#define STS2_RDATTO (1 << 14)
192#define STS2_DATBSYTO (1 << 13)
193#define STS2_CRCSTTO (1 << 12)
194#define STS2_AC12BSYTO (1 << 11)
195#define STS2_RSPBSYTO (1 << 10)
196#define STS2_AC12RSPTO (1 << 9)
197#define STS2_RSPTO (1 << 8)
198#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
199 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
200#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
201 STS2_DATBSYTO | STS2_CRCSTTO | \
202 STS2_AC12BSYTO | STS2_RSPBSYTO | \
203 STS2_AC12RSPTO | STS2_RSPTO)
204
205#define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
206#define CLKDEV_MMC_DATA 20000000 /* 20MHz */
207#define CLKDEV_INIT 400000 /* 400 KHz */
208
209enum sh_mmcif_state {
210 STATE_IDLE,
211 STATE_REQUEST,
212 STATE_IOS,
213 STATE_TIMEOUT,
214};
215
216enum sh_mmcif_wait_for {
217 MMCIF_WAIT_FOR_REQUEST,
218 MMCIF_WAIT_FOR_CMD,
219 MMCIF_WAIT_FOR_MREAD,
220 MMCIF_WAIT_FOR_MWRITE,
221 MMCIF_WAIT_FOR_READ,
222 MMCIF_WAIT_FOR_WRITE,
223 MMCIF_WAIT_FOR_READ_END,
224 MMCIF_WAIT_FOR_WRITE_END,
225 MMCIF_WAIT_FOR_STOP,
226};
227
228/*
229 * difference for each SoC
230 */
231struct sh_mmcif_host {
232 struct mmc_host *mmc;
233 struct mmc_request *mrq;
234 struct platform_device *pd;
235 struct clk *clk;
236 int bus_width;
237 unsigned char timing;
238 bool sd_error;
239 bool dying;
240 long timeout;
241 void __iomem *addr;
242 u32 *pio_ptr;
243 spinlock_t lock; /* protect sh_mmcif_host::state */
244 enum sh_mmcif_state state;
245 enum sh_mmcif_wait_for wait_for;
246 struct delayed_work timeout_work;
247 size_t blocksize;
248 int sg_idx;
249 int sg_blkidx;
250 bool power;
251 bool ccs_enable; /* Command Completion Signal support */
252 bool clk_ctrl2_enable;
253 struct mutex thread_lock;
254 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
255
256 /* DMA support */
257 struct dma_chan *chan_rx;
258 struct dma_chan *chan_tx;
259 struct completion dma_complete;
260 bool dma_active;
261};
262
263static const struct of_device_id sh_mmcif_of_match[] = {
264 { .compatible = "renesas,sh-mmcif" },
265 { }
266};
267MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
268
269#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
270
271static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
272 unsigned int reg, u32 val)
273{
274 writel(val | readl(host->addr + reg), host->addr + reg);
275}
276
277static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
278 unsigned int reg, u32 val)
279{
280 writel(~val & readl(host->addr + reg), host->addr + reg);
281}
282
283static void sh_mmcif_dma_complete(void *arg)
284{
285 struct sh_mmcif_host *host = arg;
286 struct mmc_request *mrq = host->mrq;
287 struct device *dev = sh_mmcif_host_to_dev(host);
288
289 dev_dbg(dev, "Command completed\n");
290
291 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
292 dev_name(dev)))
293 return;
294
295 complete(&host->dma_complete);
296}
297
298static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
299{
300 struct mmc_data *data = host->mrq->data;
301 struct scatterlist *sg = data->sg;
302 struct dma_async_tx_descriptor *desc = NULL;
303 struct dma_chan *chan = host->chan_rx;
304 struct device *dev = sh_mmcif_host_to_dev(host);
305 dma_cookie_t cookie = -EINVAL;
306 int ret;
307
308 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
309 DMA_FROM_DEVICE);
310 if (ret > 0) {
311 host->dma_active = true;
312 desc = dmaengine_prep_slave_sg(chan, sg, ret,
313 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
314 }
315
316 if (desc) {
317 desc->callback = sh_mmcif_dma_complete;
318 desc->callback_param = host;
319 cookie = dmaengine_submit(desc);
320 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
321 dma_async_issue_pending(chan);
322 }
323 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
324 __func__, data->sg_len, ret, cookie);
325
326 if (!desc) {
327 /* DMA failed, fall back to PIO */
328 if (ret >= 0)
329 ret = -EIO;
330 host->chan_rx = NULL;
331 host->dma_active = false;
332 dma_release_channel(chan);
333 /* Free the Tx channel too */
334 chan = host->chan_tx;
335 if (chan) {
336 host->chan_tx = NULL;
337 dma_release_channel(chan);
338 }
339 dev_warn(dev,
340 "DMA failed: %d, falling back to PIO\n", ret);
341 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
342 }
343
344 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
345 desc, cookie, data->sg_len);
346}
347
348static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
349{
350 struct mmc_data *data = host->mrq->data;
351 struct scatterlist *sg = data->sg;
352 struct dma_async_tx_descriptor *desc = NULL;
353 struct dma_chan *chan = host->chan_tx;
354 struct device *dev = sh_mmcif_host_to_dev(host);
355 dma_cookie_t cookie = -EINVAL;
356 int ret;
357
358 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
359 DMA_TO_DEVICE);
360 if (ret > 0) {
361 host->dma_active = true;
362 desc = dmaengine_prep_slave_sg(chan, sg, ret,
363 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
364 }
365
366 if (desc) {
367 desc->callback = sh_mmcif_dma_complete;
368 desc->callback_param = host;
369 cookie = dmaengine_submit(desc);
370 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
371 dma_async_issue_pending(chan);
372 }
373 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
374 __func__, data->sg_len, ret, cookie);
375
376 if (!desc) {
377 /* DMA failed, fall back to PIO */
378 if (ret >= 0)
379 ret = -EIO;
380 host->chan_tx = NULL;
381 host->dma_active = false;
382 dma_release_channel(chan);
383 /* Free the Rx channel too */
384 chan = host->chan_rx;
385 if (chan) {
386 host->chan_rx = NULL;
387 dma_release_channel(chan);
388 }
389 dev_warn(dev,
390 "DMA failed: %d, falling back to PIO\n", ret);
391 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
392 }
393
394 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
395 desc, cookie);
396}
397
398static struct dma_chan *
399sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
400{
401 dma_cap_mask_t mask;
402
403 dma_cap_zero(mask);
404 dma_cap_set(DMA_SLAVE, mask);
405 if (slave_id <= 0)
406 return NULL;
407
408 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
409}
410
411static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
412 struct dma_chan *chan,
413 enum dma_transfer_direction direction)
414{
415 struct resource *res;
416 struct dma_slave_config cfg = { 0, };
417
418 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
419 cfg.direction = direction;
420
421 if (direction == DMA_DEV_TO_MEM) {
422 cfg.src_addr = res->start + MMCIF_CE_DATA;
423 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
424 } else {
425 cfg.dst_addr = res->start + MMCIF_CE_DATA;
426 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
427 }
428
429 return dmaengine_slave_config(chan, &cfg);
430}
431
432static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
433{
434 struct device *dev = sh_mmcif_host_to_dev(host);
435 host->dma_active = false;
436
437 /* We can only either use DMA for both Tx and Rx or not use it at all */
438 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
439 struct sh_mmcif_plat_data *pdata = dev->platform_data;
440
441 host->chan_tx = sh_mmcif_request_dma_pdata(host,
442 pdata->slave_id_tx);
443 host->chan_rx = sh_mmcif_request_dma_pdata(host,
444 pdata->slave_id_rx);
445 } else {
446 host->chan_tx = dma_request_slave_channel(dev, "tx");
447 host->chan_rx = dma_request_slave_channel(dev, "rx");
448 }
449 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
450 host->chan_rx);
451
452 if (!host->chan_tx || !host->chan_rx ||
453 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
454 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
455 goto error;
456
457 return;
458
459error:
460 if (host->chan_tx)
461 dma_release_channel(host->chan_tx);
462 if (host->chan_rx)
463 dma_release_channel(host->chan_rx);
464 host->chan_tx = host->chan_rx = NULL;
465}
466
467static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
468{
469 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
470 /* Descriptors are freed automatically */
471 if (host->chan_tx) {
472 struct dma_chan *chan = host->chan_tx;
473 host->chan_tx = NULL;
474 dma_release_channel(chan);
475 }
476 if (host->chan_rx) {
477 struct dma_chan *chan = host->chan_rx;
478 host->chan_rx = NULL;
479 dma_release_channel(chan);
480 }
481
482 host->dma_active = false;
483}
484
485static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
486{
487 struct device *dev = sh_mmcif_host_to_dev(host);
488 struct sh_mmcif_plat_data *p = dev->platform_data;
489 bool sup_pclk = p ? p->sup_pclk : false;
490 unsigned int current_clk = clk_get_rate(host->clk);
491 unsigned int clkdiv;
492
493 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
494 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
495
496 if (!clk)
497 return;
498
499 if (host->clkdiv_map) {
500 unsigned int freq, best_freq, myclk, div, diff_min, diff;
501 int i;
502
503 clkdiv = 0;
504 diff_min = ~0;
505 best_freq = 0;
506 for (i = 31; i >= 0; i--) {
507 if (!((1 << i) & host->clkdiv_map))
508 continue;
509
510 /*
511 * clk = parent_freq / div
512 * -> parent_freq = clk x div
513 */
514
515 div = 1 << (i + 1);
516 freq = clk_round_rate(host->clk, clk * div);
517 myclk = freq / div;
518 diff = (myclk > clk) ? myclk - clk : clk - myclk;
519
520 if (diff <= diff_min) {
521 best_freq = freq;
522 clkdiv = i;
523 diff_min = diff;
524 }
525 }
526
527 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
528 (best_freq / (1 << (clkdiv + 1))), clk,
529 best_freq, clkdiv);
530
531 clk_set_rate(host->clk, best_freq);
532 clkdiv = clkdiv << 16;
533 } else if (sup_pclk && clk == current_clk) {
534 clkdiv = CLK_SUP_PCLK;
535 } else {
536 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
537 }
538
539 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
540 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
541}
542
543static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
544{
545 u32 tmp;
546
547 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
548
549 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
550 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
551 if (host->ccs_enable)
552 tmp |= SCCSTO_29;
553 if (host->clk_ctrl2_enable)
554 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
555 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
556 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
557 /* byte swap on */
558 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
559}
560
561static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
562{
563 struct device *dev = sh_mmcif_host_to_dev(host);
564 u32 state1, state2;
565 int ret, timeout;
566
567 host->sd_error = false;
568
569 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
570 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
571 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
572 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
573
574 if (state1 & STS1_CMDSEQ) {
575 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
576 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
577 for (timeout = 10000000; timeout; timeout--) {
578 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
579 & STS1_CMDSEQ))
580 break;
581 mdelay(1);
582 }
583 if (!timeout) {
584 dev_err(dev,
585 "Forced end of command sequence timeout err\n");
586 return -EIO;
587 }
588 sh_mmcif_sync_reset(host);
589 dev_dbg(dev, "Forced end of command sequence\n");
590 return -EIO;
591 }
592
593 if (state2 & STS2_CRC_ERR) {
594 dev_err(dev, " CRC error: state %u, wait %u\n",
595 host->state, host->wait_for);
596 ret = -EIO;
597 } else if (state2 & STS2_TIMEOUT_ERR) {
598 dev_err(dev, " Timeout: state %u, wait %u\n",
599 host->state, host->wait_for);
600 ret = -ETIMEDOUT;
601 } else {
602 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
603 host->state, host->wait_for);
604 ret = -EIO;
605 }
606 return ret;
607}
608
609static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
610{
611 struct mmc_data *data = host->mrq->data;
612
613 host->sg_blkidx += host->blocksize;
614
615 /* data->sg->length must be a multiple of host->blocksize? */
616 BUG_ON(host->sg_blkidx > data->sg->length);
617
618 if (host->sg_blkidx == data->sg->length) {
619 host->sg_blkidx = 0;
620 if (++host->sg_idx < data->sg_len)
621 host->pio_ptr = sg_virt(++data->sg);
622 } else {
623 host->pio_ptr = p;
624 }
625
626 return host->sg_idx != data->sg_len;
627}
628
629static void sh_mmcif_single_read(struct sh_mmcif_host *host,
630 struct mmc_request *mrq)
631{
632 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
633 BLOCK_SIZE_MASK) + 3;
634
635 host->wait_for = MMCIF_WAIT_FOR_READ;
636
637 /* buf read enable */
638 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
639}
640
641static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
642{
643 struct device *dev = sh_mmcif_host_to_dev(host);
644 struct mmc_data *data = host->mrq->data;
645 u32 *p = sg_virt(data->sg);
646 int i;
647
648 if (host->sd_error) {
649 data->error = sh_mmcif_error_manage(host);
650 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
651 return false;
652 }
653
654 for (i = 0; i < host->blocksize / 4; i++)
655 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
656
657 /* buffer read end */
658 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
659 host->wait_for = MMCIF_WAIT_FOR_READ_END;
660
661 return true;
662}
663
664static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
665 struct mmc_request *mrq)
666{
667 struct mmc_data *data = mrq->data;
668
669 if (!data->sg_len || !data->sg->length)
670 return;
671
672 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
673 BLOCK_SIZE_MASK;
674
675 host->wait_for = MMCIF_WAIT_FOR_MREAD;
676 host->sg_idx = 0;
677 host->sg_blkidx = 0;
678 host->pio_ptr = sg_virt(data->sg);
679
680 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
681}
682
683static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
684{
685 struct device *dev = sh_mmcif_host_to_dev(host);
686 struct mmc_data *data = host->mrq->data;
687 u32 *p = host->pio_ptr;
688 int i;
689
690 if (host->sd_error) {
691 data->error = sh_mmcif_error_manage(host);
692 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
693 return false;
694 }
695
696 BUG_ON(!data->sg->length);
697
698 for (i = 0; i < host->blocksize / 4; i++)
699 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
700
701 if (!sh_mmcif_next_block(host, p))
702 return false;
703
704 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
705
706 return true;
707}
708
709static void sh_mmcif_single_write(struct sh_mmcif_host *host,
710 struct mmc_request *mrq)
711{
712 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
713 BLOCK_SIZE_MASK) + 3;
714
715 host->wait_for = MMCIF_WAIT_FOR_WRITE;
716
717 /* buf write enable */
718 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
719}
720
721static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
722{
723 struct device *dev = sh_mmcif_host_to_dev(host);
724 struct mmc_data *data = host->mrq->data;
725 u32 *p = sg_virt(data->sg);
726 int i;
727
728 if (host->sd_error) {
729 data->error = sh_mmcif_error_manage(host);
730 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
731 return false;
732 }
733
734 for (i = 0; i < host->blocksize / 4; i++)
735 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
736
737 /* buffer write end */
738 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
739 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
740
741 return true;
742}
743
744static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
745 struct mmc_request *mrq)
746{
747 struct mmc_data *data = mrq->data;
748
749 if (!data->sg_len || !data->sg->length)
750 return;
751
752 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
753 BLOCK_SIZE_MASK;
754
755 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
756 host->sg_idx = 0;
757 host->sg_blkidx = 0;
758 host->pio_ptr = sg_virt(data->sg);
759
760 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
761}
762
763static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
764{
765 struct device *dev = sh_mmcif_host_to_dev(host);
766 struct mmc_data *data = host->mrq->data;
767 u32 *p = host->pio_ptr;
768 int i;
769
770 if (host->sd_error) {
771 data->error = sh_mmcif_error_manage(host);
772 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
773 return false;
774 }
775
776 BUG_ON(!data->sg->length);
777
778 for (i = 0; i < host->blocksize / 4; i++)
779 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
780
781 if (!sh_mmcif_next_block(host, p))
782 return false;
783
784 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
785
786 return true;
787}
788
789static void sh_mmcif_get_response(struct sh_mmcif_host *host,
790 struct mmc_command *cmd)
791{
792 if (cmd->flags & MMC_RSP_136) {
793 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
794 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
795 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
796 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
797 } else
798 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
799}
800
801static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
802 struct mmc_command *cmd)
803{
804 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
805}
806
807static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
808 struct mmc_request *mrq)
809{
810 struct device *dev = sh_mmcif_host_to_dev(host);
811 struct mmc_data *data = mrq->data;
812 struct mmc_command *cmd = mrq->cmd;
813 u32 opc = cmd->opcode;
814 u32 tmp = 0;
815
816 /* Response Type check */
817 switch (mmc_resp_type(cmd)) {
818 case MMC_RSP_NONE:
819 tmp |= CMD_SET_RTYP_NO;
820 break;
821 case MMC_RSP_R1:
822 case MMC_RSP_R1B:
823 case MMC_RSP_R3:
824 tmp |= CMD_SET_RTYP_6B;
825 break;
826 case MMC_RSP_R2:
827 tmp |= CMD_SET_RTYP_17B;
828 break;
829 default:
830 dev_err(dev, "Unsupported response type.\n");
831 break;
832 }
833 switch (opc) {
834 /* RBSY */
835 case MMC_SLEEP_AWAKE:
836 case MMC_SWITCH:
837 case MMC_STOP_TRANSMISSION:
838 case MMC_SET_WRITE_PROT:
839 case MMC_CLR_WRITE_PROT:
840 case MMC_ERASE:
841 tmp |= CMD_SET_RBSY;
842 break;
843 }
844 /* WDAT / DATW */
845 if (data) {
846 tmp |= CMD_SET_WDAT;
847 switch (host->bus_width) {
848 case MMC_BUS_WIDTH_1:
849 tmp |= CMD_SET_DATW_1;
850 break;
851 case MMC_BUS_WIDTH_4:
852 tmp |= CMD_SET_DATW_4;
853 break;
854 case MMC_BUS_WIDTH_8:
855 tmp |= CMD_SET_DATW_8;
856 break;
857 default:
858 dev_err(dev, "Unsupported bus width.\n");
859 break;
860 }
861 switch (host->timing) {
862 case MMC_TIMING_MMC_DDR52:
863 /*
864 * MMC core will only set this timing, if the host
865 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
866 * capability. MMCIF implementations with this
867 * capability, e.g. sh73a0, will have to set it
868 * in their platform data.
869 */
870 tmp |= CMD_SET_DARS;
871 break;
872 }
873 }
874 /* DWEN */
875 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
876 tmp |= CMD_SET_DWEN;
877 /* CMLTE/CMD12EN */
878 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
879 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
880 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
881 data->blocks << 16);
882 }
883 /* RIDXC[1:0] check bits */
884 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
885 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
886 tmp |= CMD_SET_RIDXC_BITS;
887 /* RCRC7C[1:0] check bits */
888 if (opc == MMC_SEND_OP_COND)
889 tmp |= CMD_SET_CRC7C_BITS;
890 /* RCRC7C[1:0] internal CRC7 */
891 if (opc == MMC_ALL_SEND_CID ||
892 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
893 tmp |= CMD_SET_CRC7C_INTERNAL;
894
895 return (opc << 24) | tmp;
896}
897
898static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
899 struct mmc_request *mrq, u32 opc)
900{
901 struct device *dev = sh_mmcif_host_to_dev(host);
902
903 switch (opc) {
904 case MMC_READ_MULTIPLE_BLOCK:
905 sh_mmcif_multi_read(host, mrq);
906 return 0;
907 case MMC_WRITE_MULTIPLE_BLOCK:
908 sh_mmcif_multi_write(host, mrq);
909 return 0;
910 case MMC_WRITE_BLOCK:
911 sh_mmcif_single_write(host, mrq);
912 return 0;
913 case MMC_READ_SINGLE_BLOCK:
914 case MMC_SEND_EXT_CSD:
915 sh_mmcif_single_read(host, mrq);
916 return 0;
917 default:
918 dev_err(dev, "Unsupported CMD%d\n", opc);
919 return -EINVAL;
920 }
921}
922
923static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
924 struct mmc_request *mrq)
925{
926 struct mmc_command *cmd = mrq->cmd;
927 u32 opc = cmd->opcode;
928 u32 mask;
929 unsigned long flags;
930
931 switch (opc) {
932 /* response busy check */
933 case MMC_SLEEP_AWAKE:
934 case MMC_SWITCH:
935 case MMC_STOP_TRANSMISSION:
936 case MMC_SET_WRITE_PROT:
937 case MMC_CLR_WRITE_PROT:
938 case MMC_ERASE:
939 mask = MASK_START_CMD | MASK_MRBSYE;
940 break;
941 default:
942 mask = MASK_START_CMD | MASK_MCRSPE;
943 break;
944 }
945
946 if (host->ccs_enable)
947 mask |= MASK_MCCSTO;
948
949 if (mrq->data) {
950 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
951 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
952 mrq->data->blksz);
953 }
954 opc = sh_mmcif_set_cmd(host, mrq);
955
956 if (host->ccs_enable)
957 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
958 else
959 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
960 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
961 /* set arg */
962 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
963 /* set cmd */
964 spin_lock_irqsave(&host->lock, flags);
965 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
966
967 host->wait_for = MMCIF_WAIT_FOR_CMD;
968 schedule_delayed_work(&host->timeout_work, host->timeout);
969 spin_unlock_irqrestore(&host->lock, flags);
970}
971
972static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
973 struct mmc_request *mrq)
974{
975 struct device *dev = sh_mmcif_host_to_dev(host);
976
977 switch (mrq->cmd->opcode) {
978 case MMC_READ_MULTIPLE_BLOCK:
979 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
980 break;
981 case MMC_WRITE_MULTIPLE_BLOCK:
982 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
983 break;
984 default:
985 dev_err(dev, "unsupported stop cmd\n");
986 mrq->stop->error = sh_mmcif_error_manage(host);
987 return;
988 }
989
990 host->wait_for = MMCIF_WAIT_FOR_STOP;
991}
992
993static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
994{
995 struct sh_mmcif_host *host = mmc_priv(mmc);
996 struct device *dev = sh_mmcif_host_to_dev(host);
997 unsigned long flags;
998
999 spin_lock_irqsave(&host->lock, flags);
1000 if (host->state != STATE_IDLE) {
1001 dev_dbg(dev, "%s() rejected, state %u\n",
1002 __func__, host->state);
1003 spin_unlock_irqrestore(&host->lock, flags);
1004 mrq->cmd->error = -EAGAIN;
1005 mmc_request_done(mmc, mrq);
1006 return;
1007 }
1008
1009 host->state = STATE_REQUEST;
1010 spin_unlock_irqrestore(&host->lock, flags);
1011
1012 switch (mrq->cmd->opcode) {
1013 /* MMCIF does not support SD/SDIO command */
1014 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
1015 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
1016 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
1017 break;
1018 case MMC_APP_CMD:
1019 case SD_IO_RW_DIRECT:
1020 host->state = STATE_IDLE;
1021 mrq->cmd->error = -ETIMEDOUT;
1022 mmc_request_done(mmc, mrq);
1023 return;
1024 default:
1025 break;
1026 }
1027
1028 host->mrq = mrq;
1029
1030 sh_mmcif_start_cmd(host, mrq);
1031}
1032
1033static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1034{
1035 struct device *dev = sh_mmcif_host_to_dev(host);
1036
1037 if (host->mmc->f_max) {
1038 unsigned int f_max, f_min = 0, f_min_old;
1039
1040 f_max = host->mmc->f_max;
1041 for (f_min_old = f_max; f_min_old > 2;) {
1042 f_min = clk_round_rate(host->clk, f_min_old / 2);
1043 if (f_min == f_min_old)
1044 break;
1045 f_min_old = f_min;
1046 }
1047
1048 /*
1049 * This driver assumes this SoC is R-Car Gen2 or later
1050 */
1051 host->clkdiv_map = 0x3ff;
1052
1053 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1054 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1055 } else {
1056 unsigned int clk = clk_get_rate(host->clk);
1057
1058 host->mmc->f_max = clk / 2;
1059 host->mmc->f_min = clk / 512;
1060 }
1061
1062 dev_dbg(dev, "clk max/min = %d/%d\n",
1063 host->mmc->f_max, host->mmc->f_min);
1064}
1065
1066static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1067{
1068 struct sh_mmcif_host *host = mmc_priv(mmc);
1069 struct device *dev = sh_mmcif_host_to_dev(host);
1070 unsigned long flags;
1071
1072 spin_lock_irqsave(&host->lock, flags);
1073 if (host->state != STATE_IDLE) {
1074 dev_dbg(dev, "%s() rejected, state %u\n",
1075 __func__, host->state);
1076 spin_unlock_irqrestore(&host->lock, flags);
1077 return;
1078 }
1079
1080 host->state = STATE_IOS;
1081 spin_unlock_irqrestore(&host->lock, flags);
1082
1083 switch (ios->power_mode) {
1084 case MMC_POWER_UP:
1085 if (!IS_ERR(mmc->supply.vmmc))
1086 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1087 if (!host->power) {
1088 clk_prepare_enable(host->clk);
1089 pm_runtime_get_sync(dev);
1090 sh_mmcif_sync_reset(host);
1091 sh_mmcif_request_dma(host);
1092 host->power = true;
1093 }
1094 break;
1095 case MMC_POWER_OFF:
1096 if (!IS_ERR(mmc->supply.vmmc))
1097 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1098 if (host->power) {
1099 sh_mmcif_clock_control(host, 0);
1100 sh_mmcif_release_dma(host);
1101 pm_runtime_put(dev);
1102 clk_disable_unprepare(host->clk);
1103 host->power = false;
1104 }
1105 break;
1106 case MMC_POWER_ON:
1107 sh_mmcif_clock_control(host, ios->clock);
1108 break;
1109 }
1110
1111 host->timing = ios->timing;
1112 host->bus_width = ios->bus_width;
1113 host->state = STATE_IDLE;
1114}
1115
1116static int sh_mmcif_get_cd(struct mmc_host *mmc)
1117{
1118 struct sh_mmcif_host *host = mmc_priv(mmc);
1119 struct device *dev = sh_mmcif_host_to_dev(host);
1120 struct sh_mmcif_plat_data *p = dev->platform_data;
1121 int ret = mmc_gpio_get_cd(mmc);
1122
1123 if (ret >= 0)
1124 return ret;
1125
1126 if (!p || !p->get_cd)
1127 return -ENOSYS;
1128 else
1129 return p->get_cd(host->pd);
1130}
1131
1132static struct mmc_host_ops sh_mmcif_ops = {
1133 .request = sh_mmcif_request,
1134 .set_ios = sh_mmcif_set_ios,
1135 .get_cd = sh_mmcif_get_cd,
1136};
1137
1138static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1139{
1140 struct mmc_command *cmd = host->mrq->cmd;
1141 struct mmc_data *data = host->mrq->data;
1142 struct device *dev = sh_mmcif_host_to_dev(host);
1143 long time;
1144
1145 if (host->sd_error) {
1146 switch (cmd->opcode) {
1147 case MMC_ALL_SEND_CID:
1148 case MMC_SELECT_CARD:
1149 case MMC_APP_CMD:
1150 cmd->error = -ETIMEDOUT;
1151 break;
1152 default:
1153 cmd->error = sh_mmcif_error_manage(host);
1154 break;
1155 }
1156 dev_dbg(dev, "CMD%d error %d\n",
1157 cmd->opcode, cmd->error);
1158 host->sd_error = false;
1159 return false;
1160 }
1161 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1162 cmd->error = 0;
1163 return false;
1164 }
1165
1166 sh_mmcif_get_response(host, cmd);
1167
1168 if (!data)
1169 return false;
1170
1171 /*
1172 * Completion can be signalled from DMA callback and error, so, have to
1173 * reset here, before setting .dma_active
1174 */
1175 init_completion(&host->dma_complete);
1176
1177 if (data->flags & MMC_DATA_READ) {
1178 if (host->chan_rx)
1179 sh_mmcif_start_dma_rx(host);
1180 } else {
1181 if (host->chan_tx)
1182 sh_mmcif_start_dma_tx(host);
1183 }
1184
1185 if (!host->dma_active) {
1186 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1187 return !data->error;
1188 }
1189
1190 /* Running in the IRQ thread, can sleep */
1191 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1192 host->timeout);
1193
1194 if (data->flags & MMC_DATA_READ)
1195 dma_unmap_sg(host->chan_rx->device->dev,
1196 data->sg, data->sg_len,
1197 DMA_FROM_DEVICE);
1198 else
1199 dma_unmap_sg(host->chan_tx->device->dev,
1200 data->sg, data->sg_len,
1201 DMA_TO_DEVICE);
1202
1203 if (host->sd_error) {
1204 dev_err(host->mmc->parent,
1205 "Error IRQ while waiting for DMA completion!\n");
1206 /* Woken up by an error IRQ: abort DMA */
1207 data->error = sh_mmcif_error_manage(host);
1208 } else if (!time) {
1209 dev_err(host->mmc->parent, "DMA timeout!\n");
1210 data->error = -ETIMEDOUT;
1211 } else if (time < 0) {
1212 dev_err(host->mmc->parent,
1213 "wait_for_completion_...() error %ld!\n", time);
1214 data->error = time;
1215 }
1216 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1217 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1218 host->dma_active = false;
1219
1220 if (data->error) {
1221 data->bytes_xfered = 0;
1222 /* Abort DMA */
1223 if (data->flags & MMC_DATA_READ)
1224 dmaengine_terminate_all(host->chan_rx);
1225 else
1226 dmaengine_terminate_all(host->chan_tx);
1227 }
1228
1229 return false;
1230}
1231
1232static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1233{
1234 struct sh_mmcif_host *host = dev_id;
1235 struct mmc_request *mrq;
1236 struct device *dev = sh_mmcif_host_to_dev(host);
1237 bool wait = false;
1238 unsigned long flags;
1239 int wait_work;
1240
1241 spin_lock_irqsave(&host->lock, flags);
1242 wait_work = host->wait_for;
1243 spin_unlock_irqrestore(&host->lock, flags);
1244
1245 cancel_delayed_work_sync(&host->timeout_work);
1246
1247 mutex_lock(&host->thread_lock);
1248
1249 mrq = host->mrq;
1250 if (!mrq) {
1251 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1252 host->state, host->wait_for);
1253 mutex_unlock(&host->thread_lock);
1254 return IRQ_HANDLED;
1255 }
1256
1257 /*
1258 * All handlers return true, if processing continues, and false, if the
1259 * request has to be completed - successfully or not
1260 */
1261 switch (wait_work) {
1262 case MMCIF_WAIT_FOR_REQUEST:
1263 /* We're too late, the timeout has already kicked in */
1264 mutex_unlock(&host->thread_lock);
1265 return IRQ_HANDLED;
1266 case MMCIF_WAIT_FOR_CMD:
1267 /* Wait for data? */
1268 wait = sh_mmcif_end_cmd(host);
1269 break;
1270 case MMCIF_WAIT_FOR_MREAD:
1271 /* Wait for more data? */
1272 wait = sh_mmcif_mread_block(host);
1273 break;
1274 case MMCIF_WAIT_FOR_READ:
1275 /* Wait for data end? */
1276 wait = sh_mmcif_read_block(host);
1277 break;
1278 case MMCIF_WAIT_FOR_MWRITE:
1279 /* Wait data to write? */
1280 wait = sh_mmcif_mwrite_block(host);
1281 break;
1282 case MMCIF_WAIT_FOR_WRITE:
1283 /* Wait for data end? */
1284 wait = sh_mmcif_write_block(host);
1285 break;
1286 case MMCIF_WAIT_FOR_STOP:
1287 if (host->sd_error) {
1288 mrq->stop->error = sh_mmcif_error_manage(host);
1289 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1290 break;
1291 }
1292 sh_mmcif_get_cmd12response(host, mrq->stop);
1293 mrq->stop->error = 0;
1294 break;
1295 case MMCIF_WAIT_FOR_READ_END:
1296 case MMCIF_WAIT_FOR_WRITE_END:
1297 if (host->sd_error) {
1298 mrq->data->error = sh_mmcif_error_manage(host);
1299 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1300 }
1301 break;
1302 default:
1303 BUG();
1304 }
1305
1306 if (wait) {
1307 schedule_delayed_work(&host->timeout_work, host->timeout);
1308 /* Wait for more data */
1309 mutex_unlock(&host->thread_lock);
1310 return IRQ_HANDLED;
1311 }
1312
1313 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1314 struct mmc_data *data = mrq->data;
1315 if (!mrq->cmd->error && data && !data->error)
1316 data->bytes_xfered =
1317 data->blocks * data->blksz;
1318
1319 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1320 sh_mmcif_stop_cmd(host, mrq);
1321 if (!mrq->stop->error) {
1322 schedule_delayed_work(&host->timeout_work, host->timeout);
1323 mutex_unlock(&host->thread_lock);
1324 return IRQ_HANDLED;
1325 }
1326 }
1327 }
1328
1329 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1330 host->state = STATE_IDLE;
1331 host->mrq = NULL;
1332 mmc_request_done(host->mmc, mrq);
1333
1334 mutex_unlock(&host->thread_lock);
1335
1336 return IRQ_HANDLED;
1337}
1338
1339static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1340{
1341 struct sh_mmcif_host *host = dev_id;
1342 struct device *dev = sh_mmcif_host_to_dev(host);
1343 u32 state, mask;
1344
1345 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1346 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1347 if (host->ccs_enable)
1348 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1349 else
1350 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1351 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1352
1353 if (state & ~MASK_CLEAN)
1354 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1355 state);
1356
1357 if (state & INT_ERR_STS || state & ~INT_ALL) {
1358 host->sd_error = true;
1359 dev_dbg(dev, "int err state = 0x%08x\n", state);
1360 }
1361 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1362 if (!host->mrq)
1363 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1364 if (!host->dma_active)
1365 return IRQ_WAKE_THREAD;
1366 else if (host->sd_error)
1367 sh_mmcif_dma_complete(host);
1368 } else {
1369 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1370 }
1371
1372 return IRQ_HANDLED;
1373}
1374
1375static void sh_mmcif_timeout_work(struct work_struct *work)
1376{
1377 struct delayed_work *d = to_delayed_work(work);
1378 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1379 struct mmc_request *mrq = host->mrq;
1380 struct device *dev = sh_mmcif_host_to_dev(host);
1381 unsigned long flags;
1382
1383 if (host->dying)
1384 /* Don't run after mmc_remove_host() */
1385 return;
1386
1387 spin_lock_irqsave(&host->lock, flags);
1388 if (host->state == STATE_IDLE) {
1389 spin_unlock_irqrestore(&host->lock, flags);
1390 return;
1391 }
1392
1393 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1394 host->wait_for, mrq->cmd->opcode);
1395
1396 host->state = STATE_TIMEOUT;
1397 spin_unlock_irqrestore(&host->lock, flags);
1398
1399 /*
1400 * Handle races with cancel_delayed_work(), unless
1401 * cancel_delayed_work_sync() is used
1402 */
1403 switch (host->wait_for) {
1404 case MMCIF_WAIT_FOR_CMD:
1405 mrq->cmd->error = sh_mmcif_error_manage(host);
1406 break;
1407 case MMCIF_WAIT_FOR_STOP:
1408 mrq->stop->error = sh_mmcif_error_manage(host);
1409 break;
1410 case MMCIF_WAIT_FOR_MREAD:
1411 case MMCIF_WAIT_FOR_MWRITE:
1412 case MMCIF_WAIT_FOR_READ:
1413 case MMCIF_WAIT_FOR_WRITE:
1414 case MMCIF_WAIT_FOR_READ_END:
1415 case MMCIF_WAIT_FOR_WRITE_END:
1416 mrq->data->error = sh_mmcif_error_manage(host);
1417 break;
1418 default:
1419 BUG();
1420 }
1421
1422 host->state = STATE_IDLE;
1423 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1424 host->mrq = NULL;
1425 mmc_request_done(host->mmc, mrq);
1426}
1427
1428static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1429{
1430 struct device *dev = sh_mmcif_host_to_dev(host);
1431 struct sh_mmcif_plat_data *pd = dev->platform_data;
1432 struct mmc_host *mmc = host->mmc;
1433
1434 mmc_regulator_get_supply(mmc);
1435
1436 if (!pd)
1437 return;
1438
1439 if (!mmc->ocr_avail)
1440 mmc->ocr_avail = pd->ocr;
1441 else if (pd->ocr)
1442 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1443}
1444
1445static int sh_mmcif_probe(struct platform_device *pdev)
1446{
1447 int ret = 0, irq[2];
1448 struct mmc_host *mmc;
1449 struct sh_mmcif_host *host;
1450 struct device *dev = &pdev->dev;
1451 struct sh_mmcif_plat_data *pd = dev->platform_data;
1452 struct resource *res;
1453 void __iomem *reg;
1454 const char *name;
1455
1456 irq[0] = platform_get_irq(pdev, 0);
1457 irq[1] = platform_get_irq(pdev, 1);
1458 if (irq[0] < 0) {
1459 dev_err(dev, "Get irq error\n");
1460 return -ENXIO;
1461 }
1462
1463 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1464 reg = devm_ioremap_resource(dev, res);
1465 if (IS_ERR(reg))
1466 return PTR_ERR(reg);
1467
1468 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1469 if (!mmc)
1470 return -ENOMEM;
1471
1472 ret = mmc_of_parse(mmc);
1473 if (ret < 0)
1474 goto err_host;
1475
1476 host = mmc_priv(mmc);
1477 host->mmc = mmc;
1478 host->addr = reg;
1479 host->timeout = msecs_to_jiffies(10000);
1480 host->ccs_enable = !pd || !pd->ccs_unsupported;
1481 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1482
1483 host->pd = pdev;
1484
1485 spin_lock_init(&host->lock);
1486
1487 mmc->ops = &sh_mmcif_ops;
1488 sh_mmcif_init_ocr(host);
1489
1490 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1491 if (pd && pd->caps)
1492 mmc->caps |= pd->caps;
1493 mmc->max_segs = 32;
1494 mmc->max_blk_size = 512;
1495 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1496 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1497 mmc->max_seg_size = mmc->max_req_size;
1498
1499 platform_set_drvdata(pdev, host);
1500
1501 host->clk = devm_clk_get(dev, NULL);
1502 if (IS_ERR(host->clk)) {
1503 ret = PTR_ERR(host->clk);
1504 dev_err(dev, "cannot get clock: %d\n", ret);
1505 goto err_host;
1506 }
1507
1508 ret = clk_prepare_enable(host->clk);
1509 if (ret < 0)
1510 goto err_host;
1511
1512 sh_mmcif_clk_setup(host);
1513
1514 pm_runtime_enable(dev);
1515 host->power = false;
1516
1517 ret = pm_runtime_get_sync(dev);
1518 if (ret < 0)
1519 goto err_clk;
1520
1521 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1522
1523 sh_mmcif_sync_reset(host);
1524 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1525
1526 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1527 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1528 sh_mmcif_irqt, 0, name, host);
1529 if (ret) {
1530 dev_err(dev, "request_irq error (%s)\n", name);
1531 goto err_clk;
1532 }
1533 if (irq[1] >= 0) {
1534 ret = devm_request_threaded_irq(dev, irq[1],
1535 sh_mmcif_intr, sh_mmcif_irqt,
1536 0, "sh_mmc:int", host);
1537 if (ret) {
1538 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1539 goto err_clk;
1540 }
1541 }
1542
1543 if (pd && pd->use_cd_gpio) {
1544 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1545 if (ret < 0)
1546 goto err_clk;
1547 }
1548
1549 mutex_init(&host->thread_lock);
1550
1551 ret = mmc_add_host(mmc);
1552 if (ret < 0)
1553 goto err_clk;
1554
1555 dev_pm_qos_expose_latency_limit(dev, 100);
1556
1557 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1558 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1559 clk_get_rate(host->clk) / 1000000UL);
1560
1561 pm_runtime_put(dev);
1562 clk_disable_unprepare(host->clk);
1563 return ret;
1564
1565err_clk:
1566 clk_disable_unprepare(host->clk);
1567 pm_runtime_put_sync(dev);
1568 pm_runtime_disable(dev);
1569err_host:
1570 mmc_free_host(mmc);
1571 return ret;
1572}
1573
1574static int sh_mmcif_remove(struct platform_device *pdev)
1575{
1576 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1577
1578 host->dying = true;
1579 clk_prepare_enable(host->clk);
1580 pm_runtime_get_sync(&pdev->dev);
1581
1582 dev_pm_qos_hide_latency_limit(&pdev->dev);
1583
1584 mmc_remove_host(host->mmc);
1585 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1586
1587 /*
1588 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1589 * mmc_remove_host() call above. But swapping order doesn't help either
1590 * (a query on the linux-mmc mailing list didn't bring any replies).
1591 */
1592 cancel_delayed_work_sync(&host->timeout_work);
1593
1594 clk_disable_unprepare(host->clk);
1595 mmc_free_host(host->mmc);
1596 pm_runtime_put_sync(&pdev->dev);
1597 pm_runtime_disable(&pdev->dev);
1598
1599 return 0;
1600}
1601
1602#ifdef CONFIG_PM_SLEEP
1603static int sh_mmcif_suspend(struct device *dev)
1604{
1605 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1606
1607 pm_runtime_get_sync(dev);
1608 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1609 pm_runtime_put(dev);
1610
1611 return 0;
1612}
1613
1614static int sh_mmcif_resume(struct device *dev)
1615{
1616 return 0;
1617}
1618#endif
1619
1620static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1621 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1622};
1623
1624static struct platform_driver sh_mmcif_driver = {
1625 .probe = sh_mmcif_probe,
1626 .remove = sh_mmcif_remove,
1627 .driver = {
1628 .name = DRIVER_NAME,
1629 .pm = &sh_mmcif_dev_pm_ops,
1630 .of_match_table = sh_mmcif_of_match,
1631 },
1632};
1633
1634module_platform_driver(sh_mmcif_driver);
1635
1636MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1637MODULE_LICENSE("GPL");
1638MODULE_ALIAS("platform:" DRIVER_NAME);
1639MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
This page took 0.031829 seconds and 5 git commands to generate.