igb: use ARRAY_SIZE to replace calculating sizeof(a)/sizeof(a[0])
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
... / ...
CommitLineData
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/module.h>
27#include <linux/types.h>
28#include <linux/init.h>
29#include <linux/bitops.h>
30#include <linux/vmalloc.h>
31#include <linux/pagemap.h>
32#include <linux/netdevice.h>
33#include <linux/ipv6.h>
34#include <linux/slab.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/net_tstamp.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
43#include <linux/pci-aspm.h>
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/ip.h>
47#include <linux/tcp.h>
48#include <linux/sctp.h>
49#include <linux/if_ether.h>
50#include <linux/aer.h>
51#include <linux/prefetch.h>
52#include <linux/pm_runtime.h>
53#ifdef CONFIG_IGB_DCA
54#include <linux/dca.h>
55#endif
56#include <linux/i2c.h>
57#include "igb.h"
58
59#define MAJ 5
60#define MIN 2
61#define BUILD 18
62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63__stringify(BUILD) "-k"
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
68static const char igb_copyright[] =
69 "Copyright (c) 2007-2014 Intel Corporation.";
70
71static const struct e1000_info *igb_info_tbl[] = {
72 [board_82575] = &e1000_82575_info,
73};
74
75static const struct pci_device_id igb_pci_tbl[] = {
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 /* required last entry */
112 {0, }
113};
114
115MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
121static void igb_setup_mrqc(struct igb_adapter *);
122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123static void igb_remove(struct pci_dev *pdev);
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
127static void igb_configure(struct igb_adapter *);
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
134static void igb_set_rx_mode(struct net_device *);
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 struct rtnl_link_stats64 *stats);
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
143static void igb_set_uta(struct igb_adapter *adapter);
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
147static irqreturn_t igb_msix_ring(int irq, void *);
148#ifdef CONFIG_IGB_DCA
149static void igb_update_dca(struct igb_q_vector *);
150static void igb_setup_dca(struct igb_adapter *);
151#endif /* CONFIG_IGB_DCA */
152static int igb_poll(struct napi_struct *, int);
153static bool igb_clean_tx_irq(struct igb_q_vector *);
154static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
158static void igb_vlan_mode(struct net_device *netdev,
159 netdev_features_t features);
160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162static void igb_restore_vlan(struct igb_adapter *);
163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164static void igb_ping_all_vfs(struct igb_adapter *);
165static void igb_msg_task(struct igb_adapter *);
166static void igb_vmm_control(struct igb_adapter *);
167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 int vf, u16 vlan, u8 qos);
172static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 bool setting);
175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179#ifdef CONFIG_PCI_IOV
180static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182#endif
183
184#ifdef CONFIG_PM
185#ifdef CONFIG_PM_SLEEP
186static int igb_suspend(struct device *);
187#endif
188static int igb_resume(struct device *);
189static int igb_runtime_suspend(struct device *dev);
190static int igb_runtime_resume(struct device *dev);
191static int igb_runtime_idle(struct device *dev);
192static const struct dev_pm_ops igb_pm_ops = {
193 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
194 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
195 igb_runtime_idle)
196};
197#endif
198static void igb_shutdown(struct pci_dev *);
199static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200#ifdef CONFIG_IGB_DCA
201static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202static struct notifier_block dca_notifier = {
203 .notifier_call = igb_notify_dca,
204 .next = NULL,
205 .priority = 0
206};
207#endif
208#ifdef CONFIG_NET_POLL_CONTROLLER
209/* for netdump / net console */
210static void igb_netpoll(struct net_device *);
211#endif
212#ifdef CONFIG_PCI_IOV
213static unsigned int max_vfs;
214module_param(max_vfs, uint, 0);
215MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
216#endif /* CONFIG_PCI_IOV */
217
218static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219 pci_channel_state_t);
220static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221static void igb_io_resume(struct pci_dev *);
222
223static const struct pci_error_handlers igb_err_handler = {
224 .error_detected = igb_io_error_detected,
225 .slot_reset = igb_io_slot_reset,
226 .resume = igb_io_resume,
227};
228
229static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230
231static struct pci_driver igb_driver = {
232 .name = igb_driver_name,
233 .id_table = igb_pci_tbl,
234 .probe = igb_probe,
235 .remove = igb_remove,
236#ifdef CONFIG_PM
237 .driver.pm = &igb_pm_ops,
238#endif
239 .shutdown = igb_shutdown,
240 .sriov_configure = igb_pci_sriov_configure,
241 .err_handler = &igb_err_handler
242};
243
244MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246MODULE_LICENSE("GPL");
247MODULE_VERSION(DRV_VERSION);
248
249#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250static int debug = -1;
251module_param(debug, int, 0);
252MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254struct igb_reg_info {
255 u32 ofs;
256 char *name;
257};
258
259static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261 /* General Registers */
262 {E1000_CTRL, "CTRL"},
263 {E1000_STATUS, "STATUS"},
264 {E1000_CTRL_EXT, "CTRL_EXT"},
265
266 /* Interrupt Registers */
267 {E1000_ICR, "ICR"},
268
269 /* RX Registers */
270 {E1000_RCTL, "RCTL"},
271 {E1000_RDLEN(0), "RDLEN"},
272 {E1000_RDH(0), "RDH"},
273 {E1000_RDT(0), "RDT"},
274 {E1000_RXDCTL(0), "RXDCTL"},
275 {E1000_RDBAL(0), "RDBAL"},
276 {E1000_RDBAH(0), "RDBAH"},
277
278 /* TX Registers */
279 {E1000_TCTL, "TCTL"},
280 {E1000_TDBAL(0), "TDBAL"},
281 {E1000_TDBAH(0), "TDBAH"},
282 {E1000_TDLEN(0), "TDLEN"},
283 {E1000_TDH(0), "TDH"},
284 {E1000_TDT(0), "TDT"},
285 {E1000_TXDCTL(0), "TXDCTL"},
286 {E1000_TDFH, "TDFH"},
287 {E1000_TDFT, "TDFT"},
288 {E1000_TDFHS, "TDFHS"},
289 {E1000_TDFPC, "TDFPC"},
290
291 /* List Terminator */
292 {}
293};
294
295/* igb_regdump - register printout routine */
296static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
297{
298 int n = 0;
299 char rname[16];
300 u32 regs[8];
301
302 switch (reginfo->ofs) {
303 case E1000_RDLEN(0):
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_RDLEN(n));
306 break;
307 case E1000_RDH(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDH(n));
310 break;
311 case E1000_RDT(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RDT(n));
314 break;
315 case E1000_RXDCTL(0):
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RXDCTL(n));
318 break;
319 case E1000_RDBAL(0):
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RDBAL(n));
322 break;
323 case E1000_RDBAH(0):
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAH(n));
326 break;
327 case E1000_TDBAL(0):
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_RDBAL(n));
330 break;
331 case E1000_TDBAH(0):
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_TDBAH(n));
334 break;
335 case E1000_TDLEN(0):
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDLEN(n));
338 break;
339 case E1000_TDH(0):
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDH(n));
342 break;
343 case E1000_TDT(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TDT(n));
346 break;
347 case E1000_TXDCTL(0):
348 for (n = 0; n < 4; n++)
349 regs[n] = rd32(E1000_TXDCTL(n));
350 break;
351 default:
352 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
353 return;
354 }
355
356 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
357 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
358 regs[2], regs[3]);
359}
360
361/* igb_dump - Print registers, Tx-rings and Rx-rings */
362static void igb_dump(struct igb_adapter *adapter)
363{
364 struct net_device *netdev = adapter->netdev;
365 struct e1000_hw *hw = &adapter->hw;
366 struct igb_reg_info *reginfo;
367 struct igb_ring *tx_ring;
368 union e1000_adv_tx_desc *tx_desc;
369 struct my_u0 { u64 a; u64 b; } *u0;
370 struct igb_ring *rx_ring;
371 union e1000_adv_rx_desc *rx_desc;
372 u32 staterr;
373 u16 i, n;
374
375 if (!netif_msg_hw(adapter))
376 return;
377
378 /* Print netdevice Info */
379 if (netdev) {
380 dev_info(&adapter->pdev->dev, "Net device Info\n");
381 pr_info("Device Name state trans_start last_rx\n");
382 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383 netdev->state, netdev->trans_start, netdev->last_rx);
384 }
385
386 /* Print Registers */
387 dev_info(&adapter->pdev->dev, "Register Dump\n");
388 pr_info(" Register Name Value\n");
389 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390 reginfo->name; reginfo++) {
391 igb_regdump(hw, reginfo);
392 }
393
394 /* Print TX Ring Summary */
395 if (!netdev || !netif_running(netdev))
396 goto exit;
397
398 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
400 for (n = 0; n < adapter->num_tx_queues; n++) {
401 struct igb_tx_buffer *buffer_info;
402 tx_ring = adapter->tx_ring[n];
403 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405 n, tx_ring->next_to_use, tx_ring->next_to_clean,
406 (u64)dma_unmap_addr(buffer_info, dma),
407 dma_unmap_len(buffer_info, len),
408 buffer_info->next_to_watch,
409 (u64)buffer_info->time_stamp);
410 }
411
412 /* Print TX Rings */
413 if (!netif_msg_tx_done(adapter))
414 goto rx_ring_summary;
415
416 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418 /* Transmit Descriptor Formats
419 *
420 * Advanced Transmit Descriptor
421 * +--------------------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +--------------------------------------------------------------+
424 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
425 * +--------------------------------------------------------------+
426 * 63 46 45 40 39 38 36 35 32 31 24 15 0
427 */
428
429 for (n = 0; n < adapter->num_tx_queues; n++) {
430 tx_ring = adapter->tx_ring[n];
431 pr_info("------------------------------------\n");
432 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433 pr_info("------------------------------------\n");
434 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
435
436 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
437 const char *next_desc;
438 struct igb_tx_buffer *buffer_info;
439 tx_desc = IGB_TX_DESC(tx_ring, i);
440 buffer_info = &tx_ring->tx_buffer_info[i];
441 u0 = (struct my_u0 *)tx_desc;
442 if (i == tx_ring->next_to_use &&
443 i == tx_ring->next_to_clean)
444 next_desc = " NTC/U";
445 else if (i == tx_ring->next_to_use)
446 next_desc = " NTU";
447 else if (i == tx_ring->next_to_clean)
448 next_desc = " NTC";
449 else
450 next_desc = "";
451
452 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
453 i, le64_to_cpu(u0->a),
454 le64_to_cpu(u0->b),
455 (u64)dma_unmap_addr(buffer_info, dma),
456 dma_unmap_len(buffer_info, len),
457 buffer_info->next_to_watch,
458 (u64)buffer_info->time_stamp,
459 buffer_info->skb, next_desc);
460
461 if (netif_msg_pktdata(adapter) && buffer_info->skb)
462 print_hex_dump(KERN_INFO, "",
463 DUMP_PREFIX_ADDRESS,
464 16, 1, buffer_info->skb->data,
465 dma_unmap_len(buffer_info, len),
466 true);
467 }
468 }
469
470 /* Print RX Rings Summary */
471rx_ring_summary:
472 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
473 pr_info("Queue [NTU] [NTC]\n");
474 for (n = 0; n < adapter->num_rx_queues; n++) {
475 rx_ring = adapter->rx_ring[n];
476 pr_info(" %5d %5X %5X\n",
477 n, rx_ring->next_to_use, rx_ring->next_to_clean);
478 }
479
480 /* Print RX Rings */
481 if (!netif_msg_rx_status(adapter))
482 goto exit;
483
484 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
485
486 /* Advanced Receive Descriptor (Read) Format
487 * 63 1 0
488 * +-----------------------------------------------------+
489 * 0 | Packet Buffer Address [63:1] |A0/NSE|
490 * +----------------------------------------------+------+
491 * 8 | Header Buffer Address [63:1] | DD |
492 * +-----------------------------------------------------+
493 *
494 *
495 * Advanced Receive Descriptor (Write-Back) Format
496 *
497 * 63 48 47 32 31 30 21 20 17 16 4 3 0
498 * +------------------------------------------------------+
499 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
500 * | Checksum Ident | | | | Type | Type |
501 * +------------------------------------------------------+
502 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
503 * +------------------------------------------------------+
504 * 63 48 47 32 31 20 19 0
505 */
506
507 for (n = 0; n < adapter->num_rx_queues; n++) {
508 rx_ring = adapter->rx_ring[n];
509 pr_info("------------------------------------\n");
510 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
511 pr_info("------------------------------------\n");
512 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
513 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
514
515 for (i = 0; i < rx_ring->count; i++) {
516 const char *next_desc;
517 struct igb_rx_buffer *buffer_info;
518 buffer_info = &rx_ring->rx_buffer_info[i];
519 rx_desc = IGB_RX_DESC(rx_ring, i);
520 u0 = (struct my_u0 *)rx_desc;
521 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
522
523 if (i == rx_ring->next_to_use)
524 next_desc = " NTU";
525 else if (i == rx_ring->next_to_clean)
526 next_desc = " NTC";
527 else
528 next_desc = "";
529
530 if (staterr & E1000_RXD_STAT_DD) {
531 /* Descriptor Done */
532 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
533 "RWB", i,
534 le64_to_cpu(u0->a),
535 le64_to_cpu(u0->b),
536 next_desc);
537 } else {
538 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
539 "R ", i,
540 le64_to_cpu(u0->a),
541 le64_to_cpu(u0->b),
542 (u64)buffer_info->dma,
543 next_desc);
544
545 if (netif_msg_pktdata(adapter) &&
546 buffer_info->dma && buffer_info->page) {
547 print_hex_dump(KERN_INFO, "",
548 DUMP_PREFIX_ADDRESS,
549 16, 1,
550 page_address(buffer_info->page) +
551 buffer_info->page_offset,
552 IGB_RX_BUFSZ, true);
553 }
554 }
555 }
556 }
557
558exit:
559 return;
560}
561
562/**
563 * igb_get_i2c_data - Reads the I2C SDA data bit
564 * @hw: pointer to hardware structure
565 * @i2cctl: Current value of I2CCTL register
566 *
567 * Returns the I2C data bit value
568 **/
569static int igb_get_i2c_data(void *data)
570{
571 struct igb_adapter *adapter = (struct igb_adapter *)data;
572 struct e1000_hw *hw = &adapter->hw;
573 s32 i2cctl = rd32(E1000_I2CPARAMS);
574
575 return !!(i2cctl & E1000_I2C_DATA_IN);
576}
577
578/**
579 * igb_set_i2c_data - Sets the I2C data bit
580 * @data: pointer to hardware structure
581 * @state: I2C data value (0 or 1) to set
582 *
583 * Sets the I2C data bit
584 **/
585static void igb_set_i2c_data(void *data, int state)
586{
587 struct igb_adapter *adapter = (struct igb_adapter *)data;
588 struct e1000_hw *hw = &adapter->hw;
589 s32 i2cctl = rd32(E1000_I2CPARAMS);
590
591 if (state)
592 i2cctl |= E1000_I2C_DATA_OUT;
593 else
594 i2cctl &= ~E1000_I2C_DATA_OUT;
595
596 i2cctl &= ~E1000_I2C_DATA_OE_N;
597 i2cctl |= E1000_I2C_CLK_OE_N;
598 wr32(E1000_I2CPARAMS, i2cctl);
599 wrfl();
600
601}
602
603/**
604 * igb_set_i2c_clk - Sets the I2C SCL clock
605 * @data: pointer to hardware structure
606 * @state: state to set clock
607 *
608 * Sets the I2C clock line to state
609 **/
610static void igb_set_i2c_clk(void *data, int state)
611{
612 struct igb_adapter *adapter = (struct igb_adapter *)data;
613 struct e1000_hw *hw = &adapter->hw;
614 s32 i2cctl = rd32(E1000_I2CPARAMS);
615
616 if (state) {
617 i2cctl |= E1000_I2C_CLK_OUT;
618 i2cctl &= ~E1000_I2C_CLK_OE_N;
619 } else {
620 i2cctl &= ~E1000_I2C_CLK_OUT;
621 i2cctl &= ~E1000_I2C_CLK_OE_N;
622 }
623 wr32(E1000_I2CPARAMS, i2cctl);
624 wrfl();
625}
626
627/**
628 * igb_get_i2c_clk - Gets the I2C SCL clock state
629 * @data: pointer to hardware structure
630 *
631 * Gets the I2C clock state
632 **/
633static int igb_get_i2c_clk(void *data)
634{
635 struct igb_adapter *adapter = (struct igb_adapter *)data;
636 struct e1000_hw *hw = &adapter->hw;
637 s32 i2cctl = rd32(E1000_I2CPARAMS);
638
639 return !!(i2cctl & E1000_I2C_CLK_IN);
640}
641
642static const struct i2c_algo_bit_data igb_i2c_algo = {
643 .setsda = igb_set_i2c_data,
644 .setscl = igb_set_i2c_clk,
645 .getsda = igb_get_i2c_data,
646 .getscl = igb_get_i2c_clk,
647 .udelay = 5,
648 .timeout = 20,
649};
650
651/**
652 * igb_get_hw_dev - return device
653 * @hw: pointer to hardware structure
654 *
655 * used by hardware layer to print debugging information
656 **/
657struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
658{
659 struct igb_adapter *adapter = hw->back;
660 return adapter->netdev;
661}
662
663/**
664 * igb_init_module - Driver Registration Routine
665 *
666 * igb_init_module is the first routine called when the driver is
667 * loaded. All it does is register with the PCI subsystem.
668 **/
669static int __init igb_init_module(void)
670{
671 int ret;
672
673 pr_info("%s - version %s\n",
674 igb_driver_string, igb_driver_version);
675 pr_info("%s\n", igb_copyright);
676
677#ifdef CONFIG_IGB_DCA
678 dca_register_notify(&dca_notifier);
679#endif
680 ret = pci_register_driver(&igb_driver);
681 return ret;
682}
683
684module_init(igb_init_module);
685
686/**
687 * igb_exit_module - Driver Exit Cleanup Routine
688 *
689 * igb_exit_module is called just before the driver is removed
690 * from memory.
691 **/
692static void __exit igb_exit_module(void)
693{
694#ifdef CONFIG_IGB_DCA
695 dca_unregister_notify(&dca_notifier);
696#endif
697 pci_unregister_driver(&igb_driver);
698}
699
700module_exit(igb_exit_module);
701
702#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
703/**
704 * igb_cache_ring_register - Descriptor ring to register mapping
705 * @adapter: board private structure to initialize
706 *
707 * Once we know the feature-set enabled for the device, we'll cache
708 * the register offset the descriptor ring is assigned to.
709 **/
710static void igb_cache_ring_register(struct igb_adapter *adapter)
711{
712 int i = 0, j = 0;
713 u32 rbase_offset = adapter->vfs_allocated_count;
714
715 switch (adapter->hw.mac.type) {
716 case e1000_82576:
717 /* The queues are allocated for virtualization such that VF 0
718 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
719 * In order to avoid collision we start at the first free queue
720 * and continue consuming queues in the same sequence
721 */
722 if (adapter->vfs_allocated_count) {
723 for (; i < adapter->rss_queues; i++)
724 adapter->rx_ring[i]->reg_idx = rbase_offset +
725 Q_IDX_82576(i);
726 }
727 /* Fall through */
728 case e1000_82575:
729 case e1000_82580:
730 case e1000_i350:
731 case e1000_i354:
732 case e1000_i210:
733 case e1000_i211:
734 /* Fall through */
735 default:
736 for (; i < adapter->num_rx_queues; i++)
737 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738 for (; j < adapter->num_tx_queues; j++)
739 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740 break;
741 }
742}
743
744u32 igb_rd32(struct e1000_hw *hw, u32 reg)
745{
746 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
747 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
748 u32 value = 0;
749
750 if (E1000_REMOVED(hw_addr))
751 return ~value;
752
753 value = readl(&hw_addr[reg]);
754
755 /* reads should not return all F's */
756 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
757 struct net_device *netdev = igb->netdev;
758 hw->hw_addr = NULL;
759 netif_device_detach(netdev);
760 netdev_err(netdev, "PCIe link lost, device now detached\n");
761 }
762
763 return value;
764}
765
766/**
767 * igb_write_ivar - configure ivar for given MSI-X vector
768 * @hw: pointer to the HW structure
769 * @msix_vector: vector number we are allocating to a given ring
770 * @index: row index of IVAR register to write within IVAR table
771 * @offset: column offset of in IVAR, should be multiple of 8
772 *
773 * This function is intended to handle the writing of the IVAR register
774 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
775 * each containing an cause allocation for an Rx and Tx ring, and a
776 * variable number of rows depending on the number of queues supported.
777 **/
778static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
779 int index, int offset)
780{
781 u32 ivar = array_rd32(E1000_IVAR0, index);
782
783 /* clear any bits that are currently set */
784 ivar &= ~((u32)0xFF << offset);
785
786 /* write vector and valid bit */
787 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
788
789 array_wr32(E1000_IVAR0, index, ivar);
790}
791
792#define IGB_N0_QUEUE -1
793static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
794{
795 struct igb_adapter *adapter = q_vector->adapter;
796 struct e1000_hw *hw = &adapter->hw;
797 int rx_queue = IGB_N0_QUEUE;
798 int tx_queue = IGB_N0_QUEUE;
799 u32 msixbm = 0;
800
801 if (q_vector->rx.ring)
802 rx_queue = q_vector->rx.ring->reg_idx;
803 if (q_vector->tx.ring)
804 tx_queue = q_vector->tx.ring->reg_idx;
805
806 switch (hw->mac.type) {
807 case e1000_82575:
808 /* The 82575 assigns vectors using a bitmask, which matches the
809 * bitmask for the EICR/EIMS/EIMC registers. To assign one
810 * or more queues to a vector, we write the appropriate bits
811 * into the MSIXBM register for that vector.
812 */
813 if (rx_queue > IGB_N0_QUEUE)
814 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
815 if (tx_queue > IGB_N0_QUEUE)
816 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
817 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
818 msixbm |= E1000_EIMS_OTHER;
819 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
820 q_vector->eims_value = msixbm;
821 break;
822 case e1000_82576:
823 /* 82576 uses a table that essentially consists of 2 columns
824 * with 8 rows. The ordering is column-major so we use the
825 * lower 3 bits as the row index, and the 4th bit as the
826 * column offset.
827 */
828 if (rx_queue > IGB_N0_QUEUE)
829 igb_write_ivar(hw, msix_vector,
830 rx_queue & 0x7,
831 (rx_queue & 0x8) << 1);
832 if (tx_queue > IGB_N0_QUEUE)
833 igb_write_ivar(hw, msix_vector,
834 tx_queue & 0x7,
835 ((tx_queue & 0x8) << 1) + 8);
836 q_vector->eims_value = 1 << msix_vector;
837 break;
838 case e1000_82580:
839 case e1000_i350:
840 case e1000_i354:
841 case e1000_i210:
842 case e1000_i211:
843 /* On 82580 and newer adapters the scheme is similar to 82576
844 * however instead of ordering column-major we have things
845 * ordered row-major. So we traverse the table by using
846 * bit 0 as the column offset, and the remaining bits as the
847 * row index.
848 */
849 if (rx_queue > IGB_N0_QUEUE)
850 igb_write_ivar(hw, msix_vector,
851 rx_queue >> 1,
852 (rx_queue & 0x1) << 4);
853 if (tx_queue > IGB_N0_QUEUE)
854 igb_write_ivar(hw, msix_vector,
855 tx_queue >> 1,
856 ((tx_queue & 0x1) << 4) + 8);
857 q_vector->eims_value = 1 << msix_vector;
858 break;
859 default:
860 BUG();
861 break;
862 }
863
864 /* add q_vector eims value to global eims_enable_mask */
865 adapter->eims_enable_mask |= q_vector->eims_value;
866
867 /* configure q_vector to set itr on first interrupt */
868 q_vector->set_itr = 1;
869}
870
871/**
872 * igb_configure_msix - Configure MSI-X hardware
873 * @adapter: board private structure to initialize
874 *
875 * igb_configure_msix sets up the hardware to properly
876 * generate MSI-X interrupts.
877 **/
878static void igb_configure_msix(struct igb_adapter *adapter)
879{
880 u32 tmp;
881 int i, vector = 0;
882 struct e1000_hw *hw = &adapter->hw;
883
884 adapter->eims_enable_mask = 0;
885
886 /* set vector for other causes, i.e. link changes */
887 switch (hw->mac.type) {
888 case e1000_82575:
889 tmp = rd32(E1000_CTRL_EXT);
890 /* enable MSI-X PBA support*/
891 tmp |= E1000_CTRL_EXT_PBA_CLR;
892
893 /* Auto-Mask interrupts upon ICR read. */
894 tmp |= E1000_CTRL_EXT_EIAME;
895 tmp |= E1000_CTRL_EXT_IRCA;
896
897 wr32(E1000_CTRL_EXT, tmp);
898
899 /* enable msix_other interrupt */
900 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
901 adapter->eims_other = E1000_EIMS_OTHER;
902
903 break;
904
905 case e1000_82576:
906 case e1000_82580:
907 case e1000_i350:
908 case e1000_i354:
909 case e1000_i210:
910 case e1000_i211:
911 /* Turn on MSI-X capability first, or our settings
912 * won't stick. And it will take days to debug.
913 */
914 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
915 E1000_GPIE_PBA | E1000_GPIE_EIAME |
916 E1000_GPIE_NSICR);
917
918 /* enable msix_other interrupt */
919 adapter->eims_other = 1 << vector;
920 tmp = (vector++ | E1000_IVAR_VALID) << 8;
921
922 wr32(E1000_IVAR_MISC, tmp);
923 break;
924 default:
925 /* do nothing, since nothing else supports MSI-X */
926 break;
927 } /* switch (hw->mac.type) */
928
929 adapter->eims_enable_mask |= adapter->eims_other;
930
931 for (i = 0; i < adapter->num_q_vectors; i++)
932 igb_assign_vector(adapter->q_vector[i], vector++);
933
934 wrfl();
935}
936
937/**
938 * igb_request_msix - Initialize MSI-X interrupts
939 * @adapter: board private structure to initialize
940 *
941 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
942 * kernel.
943 **/
944static int igb_request_msix(struct igb_adapter *adapter)
945{
946 struct net_device *netdev = adapter->netdev;
947 struct e1000_hw *hw = &adapter->hw;
948 int i, err = 0, vector = 0, free_vector = 0;
949
950 err = request_irq(adapter->msix_entries[vector].vector,
951 igb_msix_other, 0, netdev->name, adapter);
952 if (err)
953 goto err_out;
954
955 for (i = 0; i < adapter->num_q_vectors; i++) {
956 struct igb_q_vector *q_vector = adapter->q_vector[i];
957
958 vector++;
959
960 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
961
962 if (q_vector->rx.ring && q_vector->tx.ring)
963 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
964 q_vector->rx.ring->queue_index);
965 else if (q_vector->tx.ring)
966 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
967 q_vector->tx.ring->queue_index);
968 else if (q_vector->rx.ring)
969 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
970 q_vector->rx.ring->queue_index);
971 else
972 sprintf(q_vector->name, "%s-unused", netdev->name);
973
974 err = request_irq(adapter->msix_entries[vector].vector,
975 igb_msix_ring, 0, q_vector->name,
976 q_vector);
977 if (err)
978 goto err_free;
979 }
980
981 igb_configure_msix(adapter);
982 return 0;
983
984err_free:
985 /* free already assigned IRQs */
986 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
987
988 vector--;
989 for (i = 0; i < vector; i++) {
990 free_irq(adapter->msix_entries[free_vector++].vector,
991 adapter->q_vector[i]);
992 }
993err_out:
994 return err;
995}
996
997/**
998 * igb_free_q_vector - Free memory allocated for specific interrupt vector
999 * @adapter: board private structure to initialize
1000 * @v_idx: Index of vector to be freed
1001 *
1002 * This function frees the memory allocated to the q_vector.
1003 **/
1004static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005{
1006 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008 adapter->q_vector[v_idx] = NULL;
1009
1010 /* igb_get_stats64() might access the rings on this vector,
1011 * we must wait a grace period before freeing it.
1012 */
1013 if (q_vector)
1014 kfree_rcu(q_vector, rcu);
1015}
1016
1017/**
1018 * igb_reset_q_vector - Reset config for interrupt vector
1019 * @adapter: board private structure to initialize
1020 * @v_idx: Index of vector to be reset
1021 *
1022 * If NAPI is enabled it will delete any references to the
1023 * NAPI struct. This is preparation for igb_free_q_vector.
1024 **/
1025static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1026{
1027 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1028
1029 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1030 * allocated. So, q_vector is NULL so we should stop here.
1031 */
1032 if (!q_vector)
1033 return;
1034
1035 if (q_vector->tx.ring)
1036 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1037
1038 if (q_vector->rx.ring)
1039 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1040
1041 netif_napi_del(&q_vector->napi);
1042
1043}
1044
1045static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1046{
1047 int v_idx = adapter->num_q_vectors;
1048
1049 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1050 pci_disable_msix(adapter->pdev);
1051 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1052 pci_disable_msi(adapter->pdev);
1053
1054 while (v_idx--)
1055 igb_reset_q_vector(adapter, v_idx);
1056}
1057
1058/**
1059 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1060 * @adapter: board private structure to initialize
1061 *
1062 * This function frees the memory allocated to the q_vectors. In addition if
1063 * NAPI is enabled it will delete any references to the NAPI struct prior
1064 * to freeing the q_vector.
1065 **/
1066static void igb_free_q_vectors(struct igb_adapter *adapter)
1067{
1068 int v_idx = adapter->num_q_vectors;
1069
1070 adapter->num_tx_queues = 0;
1071 adapter->num_rx_queues = 0;
1072 adapter->num_q_vectors = 0;
1073
1074 while (v_idx--) {
1075 igb_reset_q_vector(adapter, v_idx);
1076 igb_free_q_vector(adapter, v_idx);
1077 }
1078}
1079
1080/**
1081 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1082 * @adapter: board private structure to initialize
1083 *
1084 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1085 * MSI-X interrupts allocated.
1086 */
1087static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1088{
1089 igb_free_q_vectors(adapter);
1090 igb_reset_interrupt_capability(adapter);
1091}
1092
1093/**
1094 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1095 * @adapter: board private structure to initialize
1096 * @msix: boolean value of MSIX capability
1097 *
1098 * Attempt to configure interrupts using the best available
1099 * capabilities of the hardware and kernel.
1100 **/
1101static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1102{
1103 int err;
1104 int numvecs, i;
1105
1106 if (!msix)
1107 goto msi_only;
1108 adapter->flags |= IGB_FLAG_HAS_MSIX;
1109
1110 /* Number of supported queues. */
1111 adapter->num_rx_queues = adapter->rss_queues;
1112 if (adapter->vfs_allocated_count)
1113 adapter->num_tx_queues = 1;
1114 else
1115 adapter->num_tx_queues = adapter->rss_queues;
1116
1117 /* start with one vector for every Rx queue */
1118 numvecs = adapter->num_rx_queues;
1119
1120 /* if Tx handler is separate add 1 for every Tx queue */
1121 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1122 numvecs += adapter->num_tx_queues;
1123
1124 /* store the number of vectors reserved for queues */
1125 adapter->num_q_vectors = numvecs;
1126
1127 /* add 1 vector for link status interrupts */
1128 numvecs++;
1129 for (i = 0; i < numvecs; i++)
1130 adapter->msix_entries[i].entry = i;
1131
1132 err = pci_enable_msix_range(adapter->pdev,
1133 adapter->msix_entries,
1134 numvecs,
1135 numvecs);
1136 if (err > 0)
1137 return;
1138
1139 igb_reset_interrupt_capability(adapter);
1140
1141 /* If we can't do MSI-X, try MSI */
1142msi_only:
1143 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1144#ifdef CONFIG_PCI_IOV
1145 /* disable SR-IOV for non MSI-X configurations */
1146 if (adapter->vf_data) {
1147 struct e1000_hw *hw = &adapter->hw;
1148 /* disable iov and allow time for transactions to clear */
1149 pci_disable_sriov(adapter->pdev);
1150 msleep(500);
1151
1152 kfree(adapter->vf_data);
1153 adapter->vf_data = NULL;
1154 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1155 wrfl();
1156 msleep(100);
1157 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1158 }
1159#endif
1160 adapter->vfs_allocated_count = 0;
1161 adapter->rss_queues = 1;
1162 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1163 adapter->num_rx_queues = 1;
1164 adapter->num_tx_queues = 1;
1165 adapter->num_q_vectors = 1;
1166 if (!pci_enable_msi(adapter->pdev))
1167 adapter->flags |= IGB_FLAG_HAS_MSI;
1168}
1169
1170static void igb_add_ring(struct igb_ring *ring,
1171 struct igb_ring_container *head)
1172{
1173 head->ring = ring;
1174 head->count++;
1175}
1176
1177/**
1178 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1179 * @adapter: board private structure to initialize
1180 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1181 * @v_idx: index of vector in adapter struct
1182 * @txr_count: total number of Tx rings to allocate
1183 * @txr_idx: index of first Tx ring to allocate
1184 * @rxr_count: total number of Rx rings to allocate
1185 * @rxr_idx: index of first Rx ring to allocate
1186 *
1187 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1188 **/
1189static int igb_alloc_q_vector(struct igb_adapter *adapter,
1190 int v_count, int v_idx,
1191 int txr_count, int txr_idx,
1192 int rxr_count, int rxr_idx)
1193{
1194 struct igb_q_vector *q_vector;
1195 struct igb_ring *ring;
1196 int ring_count, size;
1197
1198 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1199 if (txr_count > 1 || rxr_count > 1)
1200 return -ENOMEM;
1201
1202 ring_count = txr_count + rxr_count;
1203 size = sizeof(struct igb_q_vector) +
1204 (sizeof(struct igb_ring) * ring_count);
1205
1206 /* allocate q_vector and rings */
1207 q_vector = adapter->q_vector[v_idx];
1208 if (!q_vector)
1209 q_vector = kzalloc(size, GFP_KERNEL);
1210 else
1211 memset(q_vector, 0, size);
1212 if (!q_vector)
1213 return -ENOMEM;
1214
1215 /* initialize NAPI */
1216 netif_napi_add(adapter->netdev, &q_vector->napi,
1217 igb_poll, 64);
1218
1219 /* tie q_vector and adapter together */
1220 adapter->q_vector[v_idx] = q_vector;
1221 q_vector->adapter = adapter;
1222
1223 /* initialize work limits */
1224 q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226 /* initialize ITR configuration */
1227 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228 q_vector->itr_val = IGB_START_ITR;
1229
1230 /* initialize pointer to rings */
1231 ring = q_vector->ring;
1232
1233 /* intialize ITR */
1234 if (rxr_count) {
1235 /* rx or rx/tx vector */
1236 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 q_vector->itr_val = adapter->rx_itr_setting;
1238 } else {
1239 /* tx only vector */
1240 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 q_vector->itr_val = adapter->tx_itr_setting;
1242 }
1243
1244 if (txr_count) {
1245 /* assign generic ring traits */
1246 ring->dev = &adapter->pdev->dev;
1247 ring->netdev = adapter->netdev;
1248
1249 /* configure backlink on ring */
1250 ring->q_vector = q_vector;
1251
1252 /* update q_vector Tx values */
1253 igb_add_ring(ring, &q_vector->tx);
1254
1255 /* For 82575, context index must be unique per ring. */
1256 if (adapter->hw.mac.type == e1000_82575)
1257 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259 /* apply Tx specific ring traits */
1260 ring->count = adapter->tx_ring_count;
1261 ring->queue_index = txr_idx;
1262
1263 u64_stats_init(&ring->tx_syncp);
1264 u64_stats_init(&ring->tx_syncp2);
1265
1266 /* assign ring to adapter */
1267 adapter->tx_ring[txr_idx] = ring;
1268
1269 /* push pointer to next ring */
1270 ring++;
1271 }
1272
1273 if (rxr_count) {
1274 /* assign generic ring traits */
1275 ring->dev = &adapter->pdev->dev;
1276 ring->netdev = adapter->netdev;
1277
1278 /* configure backlink on ring */
1279 ring->q_vector = q_vector;
1280
1281 /* update q_vector Rx values */
1282 igb_add_ring(ring, &q_vector->rx);
1283
1284 /* set flag indicating ring supports SCTP checksum offload */
1285 if (adapter->hw.mac.type >= e1000_82576)
1286 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1287
1288 /* On i350, i354, i210, and i211, loopback VLAN packets
1289 * have the tag byte-swapped.
1290 */
1291 if (adapter->hw.mac.type >= e1000_i350)
1292 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1293
1294 /* apply Rx specific ring traits */
1295 ring->count = adapter->rx_ring_count;
1296 ring->queue_index = rxr_idx;
1297
1298 u64_stats_init(&ring->rx_syncp);
1299
1300 /* assign ring to adapter */
1301 adapter->rx_ring[rxr_idx] = ring;
1302 }
1303
1304 return 0;
1305}
1306
1307
1308/**
1309 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1310 * @adapter: board private structure to initialize
1311 *
1312 * We allocate one q_vector per queue interrupt. If allocation fails we
1313 * return -ENOMEM.
1314 **/
1315static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1316{
1317 int q_vectors = adapter->num_q_vectors;
1318 int rxr_remaining = adapter->num_rx_queues;
1319 int txr_remaining = adapter->num_tx_queues;
1320 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1321 int err;
1322
1323 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1324 for (; rxr_remaining; v_idx++) {
1325 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1326 0, 0, 1, rxr_idx);
1327
1328 if (err)
1329 goto err_out;
1330
1331 /* update counts and index */
1332 rxr_remaining--;
1333 rxr_idx++;
1334 }
1335 }
1336
1337 for (; v_idx < q_vectors; v_idx++) {
1338 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1339 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1340
1341 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1342 tqpv, txr_idx, rqpv, rxr_idx);
1343
1344 if (err)
1345 goto err_out;
1346
1347 /* update counts and index */
1348 rxr_remaining -= rqpv;
1349 txr_remaining -= tqpv;
1350 rxr_idx++;
1351 txr_idx++;
1352 }
1353
1354 return 0;
1355
1356err_out:
1357 adapter->num_tx_queues = 0;
1358 adapter->num_rx_queues = 0;
1359 adapter->num_q_vectors = 0;
1360
1361 while (v_idx--)
1362 igb_free_q_vector(adapter, v_idx);
1363
1364 return -ENOMEM;
1365}
1366
1367/**
1368 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1369 * @adapter: board private structure to initialize
1370 * @msix: boolean value of MSIX capability
1371 *
1372 * This function initializes the interrupts and allocates all of the queues.
1373 **/
1374static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1375{
1376 struct pci_dev *pdev = adapter->pdev;
1377 int err;
1378
1379 igb_set_interrupt_capability(adapter, msix);
1380
1381 err = igb_alloc_q_vectors(adapter);
1382 if (err) {
1383 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1384 goto err_alloc_q_vectors;
1385 }
1386
1387 igb_cache_ring_register(adapter);
1388
1389 return 0;
1390
1391err_alloc_q_vectors:
1392 igb_reset_interrupt_capability(adapter);
1393 return err;
1394}
1395
1396/**
1397 * igb_request_irq - initialize interrupts
1398 * @adapter: board private structure to initialize
1399 *
1400 * Attempts to configure interrupts using the best available
1401 * capabilities of the hardware and kernel.
1402 **/
1403static int igb_request_irq(struct igb_adapter *adapter)
1404{
1405 struct net_device *netdev = adapter->netdev;
1406 struct pci_dev *pdev = adapter->pdev;
1407 int err = 0;
1408
1409 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1410 err = igb_request_msix(adapter);
1411 if (!err)
1412 goto request_done;
1413 /* fall back to MSI */
1414 igb_free_all_tx_resources(adapter);
1415 igb_free_all_rx_resources(adapter);
1416
1417 igb_clear_interrupt_scheme(adapter);
1418 err = igb_init_interrupt_scheme(adapter, false);
1419 if (err)
1420 goto request_done;
1421
1422 igb_setup_all_tx_resources(adapter);
1423 igb_setup_all_rx_resources(adapter);
1424 igb_configure(adapter);
1425 }
1426
1427 igb_assign_vector(adapter->q_vector[0], 0);
1428
1429 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1430 err = request_irq(pdev->irq, igb_intr_msi, 0,
1431 netdev->name, adapter);
1432 if (!err)
1433 goto request_done;
1434
1435 /* fall back to legacy interrupts */
1436 igb_reset_interrupt_capability(adapter);
1437 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1438 }
1439
1440 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1441 netdev->name, adapter);
1442
1443 if (err)
1444 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1445 err);
1446
1447request_done:
1448 return err;
1449}
1450
1451static void igb_free_irq(struct igb_adapter *adapter)
1452{
1453 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1454 int vector = 0, i;
1455
1456 free_irq(adapter->msix_entries[vector++].vector, adapter);
1457
1458 for (i = 0; i < adapter->num_q_vectors; i++)
1459 free_irq(adapter->msix_entries[vector++].vector,
1460 adapter->q_vector[i]);
1461 } else {
1462 free_irq(adapter->pdev->irq, adapter);
1463 }
1464}
1465
1466/**
1467 * igb_irq_disable - Mask off interrupt generation on the NIC
1468 * @adapter: board private structure
1469 **/
1470static void igb_irq_disable(struct igb_adapter *adapter)
1471{
1472 struct e1000_hw *hw = &adapter->hw;
1473
1474 /* we need to be careful when disabling interrupts. The VFs are also
1475 * mapped into these registers and so clearing the bits can cause
1476 * issues on the VF drivers so we only need to clear what we set
1477 */
1478 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1479 u32 regval = rd32(E1000_EIAM);
1480
1481 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1482 wr32(E1000_EIMC, adapter->eims_enable_mask);
1483 regval = rd32(E1000_EIAC);
1484 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1485 }
1486
1487 wr32(E1000_IAM, 0);
1488 wr32(E1000_IMC, ~0);
1489 wrfl();
1490 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1491 int i;
1492
1493 for (i = 0; i < adapter->num_q_vectors; i++)
1494 synchronize_irq(adapter->msix_entries[i].vector);
1495 } else {
1496 synchronize_irq(adapter->pdev->irq);
1497 }
1498}
1499
1500/**
1501 * igb_irq_enable - Enable default interrupt generation settings
1502 * @adapter: board private structure
1503 **/
1504static void igb_irq_enable(struct igb_adapter *adapter)
1505{
1506 struct e1000_hw *hw = &adapter->hw;
1507
1508 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1509 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1510 u32 regval = rd32(E1000_EIAC);
1511
1512 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1513 regval = rd32(E1000_EIAM);
1514 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1515 wr32(E1000_EIMS, adapter->eims_enable_mask);
1516 if (adapter->vfs_allocated_count) {
1517 wr32(E1000_MBVFIMR, 0xFF);
1518 ims |= E1000_IMS_VMMB;
1519 }
1520 wr32(E1000_IMS, ims);
1521 } else {
1522 wr32(E1000_IMS, IMS_ENABLE_MASK |
1523 E1000_IMS_DRSTA);
1524 wr32(E1000_IAM, IMS_ENABLE_MASK |
1525 E1000_IMS_DRSTA);
1526 }
1527}
1528
1529static void igb_update_mng_vlan(struct igb_adapter *adapter)
1530{
1531 struct e1000_hw *hw = &adapter->hw;
1532 u16 vid = adapter->hw.mng_cookie.vlan_id;
1533 u16 old_vid = adapter->mng_vlan_id;
1534
1535 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536 /* add VID to filter table */
1537 igb_vfta_set(hw, vid, true);
1538 adapter->mng_vlan_id = vid;
1539 } else {
1540 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541 }
1542
1543 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544 (vid != old_vid) &&
1545 !test_bit(old_vid, adapter->active_vlans)) {
1546 /* remove VID from filter table */
1547 igb_vfta_set(hw, old_vid, false);
1548 }
1549}
1550
1551/**
1552 * igb_release_hw_control - release control of the h/w to f/w
1553 * @adapter: address of board private structure
1554 *
1555 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556 * For ASF and Pass Through versions of f/w this means that the
1557 * driver is no longer loaded.
1558 **/
1559static void igb_release_hw_control(struct igb_adapter *adapter)
1560{
1561 struct e1000_hw *hw = &adapter->hw;
1562 u32 ctrl_ext;
1563
1564 /* Let firmware take over control of h/w */
1565 ctrl_ext = rd32(E1000_CTRL_EXT);
1566 wr32(E1000_CTRL_EXT,
1567 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568}
1569
1570/**
1571 * igb_get_hw_control - get control of the h/w from f/w
1572 * @adapter: address of board private structure
1573 *
1574 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575 * For ASF and Pass Through versions of f/w this means that
1576 * the driver is loaded.
1577 **/
1578static void igb_get_hw_control(struct igb_adapter *adapter)
1579{
1580 struct e1000_hw *hw = &adapter->hw;
1581 u32 ctrl_ext;
1582
1583 /* Let firmware know the driver has taken over */
1584 ctrl_ext = rd32(E1000_CTRL_EXT);
1585 wr32(E1000_CTRL_EXT,
1586 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587}
1588
1589/**
1590 * igb_configure - configure the hardware for RX and TX
1591 * @adapter: private board structure
1592 **/
1593static void igb_configure(struct igb_adapter *adapter)
1594{
1595 struct net_device *netdev = adapter->netdev;
1596 int i;
1597
1598 igb_get_hw_control(adapter);
1599 igb_set_rx_mode(netdev);
1600
1601 igb_restore_vlan(adapter);
1602
1603 igb_setup_tctl(adapter);
1604 igb_setup_mrqc(adapter);
1605 igb_setup_rctl(adapter);
1606
1607 igb_configure_tx(adapter);
1608 igb_configure_rx(adapter);
1609
1610 igb_rx_fifo_flush_82575(&adapter->hw);
1611
1612 /* call igb_desc_unused which always leaves
1613 * at least 1 descriptor unused to make sure
1614 * next_to_use != next_to_clean
1615 */
1616 for (i = 0; i < adapter->num_rx_queues; i++) {
1617 struct igb_ring *ring = adapter->rx_ring[i];
1618 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1619 }
1620}
1621
1622/**
1623 * igb_power_up_link - Power up the phy/serdes link
1624 * @adapter: address of board private structure
1625 **/
1626void igb_power_up_link(struct igb_adapter *adapter)
1627{
1628 igb_reset_phy(&adapter->hw);
1629
1630 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1631 igb_power_up_phy_copper(&adapter->hw);
1632 else
1633 igb_power_up_serdes_link_82575(&adapter->hw);
1634
1635 igb_setup_link(&adapter->hw);
1636}
1637
1638/**
1639 * igb_power_down_link - Power down the phy/serdes link
1640 * @adapter: address of board private structure
1641 */
1642static void igb_power_down_link(struct igb_adapter *adapter)
1643{
1644 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1645 igb_power_down_phy_copper_82575(&adapter->hw);
1646 else
1647 igb_shutdown_serdes_link_82575(&adapter->hw);
1648}
1649
1650/**
1651 * Detect and switch function for Media Auto Sense
1652 * @adapter: address of the board private structure
1653 **/
1654static void igb_check_swap_media(struct igb_adapter *adapter)
1655{
1656 struct e1000_hw *hw = &adapter->hw;
1657 u32 ctrl_ext, connsw;
1658 bool swap_now = false;
1659
1660 ctrl_ext = rd32(E1000_CTRL_EXT);
1661 connsw = rd32(E1000_CONNSW);
1662
1663 /* need to live swap if current media is copper and we have fiber/serdes
1664 * to go to.
1665 */
1666
1667 if ((hw->phy.media_type == e1000_media_type_copper) &&
1668 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1669 swap_now = true;
1670 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1671 /* copper signal takes time to appear */
1672 if (adapter->copper_tries < 4) {
1673 adapter->copper_tries++;
1674 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1675 wr32(E1000_CONNSW, connsw);
1676 return;
1677 } else {
1678 adapter->copper_tries = 0;
1679 if ((connsw & E1000_CONNSW_PHYSD) &&
1680 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1681 swap_now = true;
1682 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1683 wr32(E1000_CONNSW, connsw);
1684 }
1685 }
1686 }
1687
1688 if (!swap_now)
1689 return;
1690
1691 switch (hw->phy.media_type) {
1692 case e1000_media_type_copper:
1693 netdev_info(adapter->netdev,
1694 "MAS: changing media to fiber/serdes\n");
1695 ctrl_ext |=
1696 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1697 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1698 adapter->copper_tries = 0;
1699 break;
1700 case e1000_media_type_internal_serdes:
1701 case e1000_media_type_fiber:
1702 netdev_info(adapter->netdev,
1703 "MAS: changing media to copper\n");
1704 ctrl_ext &=
1705 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1706 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1707 break;
1708 default:
1709 /* shouldn't get here during regular operation */
1710 netdev_err(adapter->netdev,
1711 "AMS: Invalid media type found, returning\n");
1712 break;
1713 }
1714 wr32(E1000_CTRL_EXT, ctrl_ext);
1715}
1716
1717/**
1718 * igb_up - Open the interface and prepare it to handle traffic
1719 * @adapter: board private structure
1720 **/
1721int igb_up(struct igb_adapter *adapter)
1722{
1723 struct e1000_hw *hw = &adapter->hw;
1724 int i;
1725
1726 /* hardware has been reset, we need to reload some things */
1727 igb_configure(adapter);
1728
1729 clear_bit(__IGB_DOWN, &adapter->state);
1730
1731 for (i = 0; i < adapter->num_q_vectors; i++)
1732 napi_enable(&(adapter->q_vector[i]->napi));
1733
1734 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1735 igb_configure_msix(adapter);
1736 else
1737 igb_assign_vector(adapter->q_vector[0], 0);
1738
1739 /* Clear any pending interrupts. */
1740 rd32(E1000_ICR);
1741 igb_irq_enable(adapter);
1742
1743 /* notify VFs that reset has been completed */
1744 if (adapter->vfs_allocated_count) {
1745 u32 reg_data = rd32(E1000_CTRL_EXT);
1746
1747 reg_data |= E1000_CTRL_EXT_PFRSTD;
1748 wr32(E1000_CTRL_EXT, reg_data);
1749 }
1750
1751 netif_tx_start_all_queues(adapter->netdev);
1752
1753 /* start the watchdog. */
1754 hw->mac.get_link_status = 1;
1755 schedule_work(&adapter->watchdog_task);
1756
1757 if ((adapter->flags & IGB_FLAG_EEE) &&
1758 (!hw->dev_spec._82575.eee_disable))
1759 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1760
1761 return 0;
1762}
1763
1764void igb_down(struct igb_adapter *adapter)
1765{
1766 struct net_device *netdev = adapter->netdev;
1767 struct e1000_hw *hw = &adapter->hw;
1768 u32 tctl, rctl;
1769 int i;
1770
1771 /* signal that we're down so the interrupt handler does not
1772 * reschedule our watchdog timer
1773 */
1774 set_bit(__IGB_DOWN, &adapter->state);
1775
1776 /* disable receives in the hardware */
1777 rctl = rd32(E1000_RCTL);
1778 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1779 /* flush and sleep below */
1780
1781 netif_carrier_off(netdev);
1782 netif_tx_stop_all_queues(netdev);
1783
1784 /* disable transmits in the hardware */
1785 tctl = rd32(E1000_TCTL);
1786 tctl &= ~E1000_TCTL_EN;
1787 wr32(E1000_TCTL, tctl);
1788 /* flush both disables and wait for them to finish */
1789 wrfl();
1790 usleep_range(10000, 11000);
1791
1792 igb_irq_disable(adapter);
1793
1794 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1795
1796 for (i = 0; i < adapter->num_q_vectors; i++) {
1797 if (adapter->q_vector[i]) {
1798 napi_synchronize(&adapter->q_vector[i]->napi);
1799 napi_disable(&adapter->q_vector[i]->napi);
1800 }
1801 }
1802
1803 del_timer_sync(&adapter->watchdog_timer);
1804 del_timer_sync(&adapter->phy_info_timer);
1805
1806 /* record the stats before reset*/
1807 spin_lock(&adapter->stats64_lock);
1808 igb_update_stats(adapter, &adapter->stats64);
1809 spin_unlock(&adapter->stats64_lock);
1810
1811 adapter->link_speed = 0;
1812 adapter->link_duplex = 0;
1813
1814 if (!pci_channel_offline(adapter->pdev))
1815 igb_reset(adapter);
1816 igb_clean_all_tx_rings(adapter);
1817 igb_clean_all_rx_rings(adapter);
1818#ifdef CONFIG_IGB_DCA
1819
1820 /* since we reset the hardware DCA settings were cleared */
1821 igb_setup_dca(adapter);
1822#endif
1823}
1824
1825void igb_reinit_locked(struct igb_adapter *adapter)
1826{
1827 WARN_ON(in_interrupt());
1828 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1829 usleep_range(1000, 2000);
1830 igb_down(adapter);
1831 igb_up(adapter);
1832 clear_bit(__IGB_RESETTING, &adapter->state);
1833}
1834
1835/** igb_enable_mas - Media Autosense re-enable after swap
1836 *
1837 * @adapter: adapter struct
1838 **/
1839static void igb_enable_mas(struct igb_adapter *adapter)
1840{
1841 struct e1000_hw *hw = &adapter->hw;
1842 u32 connsw = rd32(E1000_CONNSW);
1843
1844 /* configure for SerDes media detect */
1845 if ((hw->phy.media_type == e1000_media_type_copper) &&
1846 (!(connsw & E1000_CONNSW_SERDESD))) {
1847 connsw |= E1000_CONNSW_ENRGSRC;
1848 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1849 wr32(E1000_CONNSW, connsw);
1850 wrfl();
1851 }
1852}
1853
1854void igb_reset(struct igb_adapter *adapter)
1855{
1856 struct pci_dev *pdev = adapter->pdev;
1857 struct e1000_hw *hw = &adapter->hw;
1858 struct e1000_mac_info *mac = &hw->mac;
1859 struct e1000_fc_info *fc = &hw->fc;
1860 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1861
1862 /* Repartition Pba for greater than 9k mtu
1863 * To take effect CTRL.RST is required.
1864 */
1865 switch (mac->type) {
1866 case e1000_i350:
1867 case e1000_i354:
1868 case e1000_82580:
1869 pba = rd32(E1000_RXPBS);
1870 pba = igb_rxpbs_adjust_82580(pba);
1871 break;
1872 case e1000_82576:
1873 pba = rd32(E1000_RXPBS);
1874 pba &= E1000_RXPBS_SIZE_MASK_82576;
1875 break;
1876 case e1000_82575:
1877 case e1000_i210:
1878 case e1000_i211:
1879 default:
1880 pba = E1000_PBA_34K;
1881 break;
1882 }
1883
1884 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1885 (mac->type < e1000_82576)) {
1886 /* adjust PBA for jumbo frames */
1887 wr32(E1000_PBA, pba);
1888
1889 /* To maintain wire speed transmits, the Tx FIFO should be
1890 * large enough to accommodate two full transmit packets,
1891 * rounded up to the next 1KB and expressed in KB. Likewise,
1892 * the Rx FIFO should be large enough to accommodate at least
1893 * one full receive packet and is similarly rounded up and
1894 * expressed in KB.
1895 */
1896 pba = rd32(E1000_PBA);
1897 /* upper 16 bits has Tx packet buffer allocation size in KB */
1898 tx_space = pba >> 16;
1899 /* lower 16 bits has Rx packet buffer allocation size in KB */
1900 pba &= 0xffff;
1901 /* the Tx fifo also stores 16 bytes of information about the Tx
1902 * but don't include ethernet FCS because hardware appends it
1903 */
1904 min_tx_space = (adapter->max_frame_size +
1905 sizeof(union e1000_adv_tx_desc) -
1906 ETH_FCS_LEN) * 2;
1907 min_tx_space = ALIGN(min_tx_space, 1024);
1908 min_tx_space >>= 10;
1909 /* software strips receive CRC, so leave room for it */
1910 min_rx_space = adapter->max_frame_size;
1911 min_rx_space = ALIGN(min_rx_space, 1024);
1912 min_rx_space >>= 10;
1913
1914 /* If current Tx allocation is less than the min Tx FIFO size,
1915 * and the min Tx FIFO size is less than the current Rx FIFO
1916 * allocation, take space away from current Rx allocation
1917 */
1918 if (tx_space < min_tx_space &&
1919 ((min_tx_space - tx_space) < pba)) {
1920 pba = pba - (min_tx_space - tx_space);
1921
1922 /* if short on Rx space, Rx wins and must trump Tx
1923 * adjustment
1924 */
1925 if (pba < min_rx_space)
1926 pba = min_rx_space;
1927 }
1928 wr32(E1000_PBA, pba);
1929 }
1930
1931 /* flow control settings */
1932 /* The high water mark must be low enough to fit one full frame
1933 * (or the size used for early receive) above it in the Rx FIFO.
1934 * Set it to the lower of:
1935 * - 90% of the Rx FIFO size, or
1936 * - the full Rx FIFO size minus one full frame
1937 */
1938 hwm = min(((pba << 10) * 9 / 10),
1939 ((pba << 10) - 2 * adapter->max_frame_size));
1940
1941 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1942 fc->low_water = fc->high_water - 16;
1943 fc->pause_time = 0xFFFF;
1944 fc->send_xon = 1;
1945 fc->current_mode = fc->requested_mode;
1946
1947 /* disable receive for all VFs and wait one second */
1948 if (adapter->vfs_allocated_count) {
1949 int i;
1950
1951 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1952 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1953
1954 /* ping all the active vfs to let them know we are going down */
1955 igb_ping_all_vfs(adapter);
1956
1957 /* disable transmits and receives */
1958 wr32(E1000_VFRE, 0);
1959 wr32(E1000_VFTE, 0);
1960 }
1961
1962 /* Allow time for pending master requests to run */
1963 hw->mac.ops.reset_hw(hw);
1964 wr32(E1000_WUC, 0);
1965
1966 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1967 /* need to resetup here after media swap */
1968 adapter->ei.get_invariants(hw);
1969 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1970 }
1971 if ((mac->type == e1000_82575) &&
1972 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1973 igb_enable_mas(adapter);
1974 }
1975 if (hw->mac.ops.init_hw(hw))
1976 dev_err(&pdev->dev, "Hardware Error\n");
1977
1978 /* Flow control settings reset on hardware reset, so guarantee flow
1979 * control is off when forcing speed.
1980 */
1981 if (!hw->mac.autoneg)
1982 igb_force_mac_fc(hw);
1983
1984 igb_init_dmac(adapter, pba);
1985#ifdef CONFIG_IGB_HWMON
1986 /* Re-initialize the thermal sensor on i350 devices. */
1987 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1988 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1989 /* If present, re-initialize the external thermal sensor
1990 * interface.
1991 */
1992 if (adapter->ets)
1993 mac->ops.init_thermal_sensor_thresh(hw);
1994 }
1995 }
1996#endif
1997 /* Re-establish EEE setting */
1998 if (hw->phy.media_type == e1000_media_type_copper) {
1999 switch (mac->type) {
2000 case e1000_i350:
2001 case e1000_i210:
2002 case e1000_i211:
2003 igb_set_eee_i350(hw, true, true);
2004 break;
2005 case e1000_i354:
2006 igb_set_eee_i354(hw, true, true);
2007 break;
2008 default:
2009 break;
2010 }
2011 }
2012 if (!netif_running(adapter->netdev))
2013 igb_power_down_link(adapter);
2014
2015 igb_update_mng_vlan(adapter);
2016
2017 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2018 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2019
2020 /* Re-enable PTP, where applicable. */
2021 igb_ptp_reset(adapter);
2022
2023 igb_get_phy_info(hw);
2024}
2025
2026static netdev_features_t igb_fix_features(struct net_device *netdev,
2027 netdev_features_t features)
2028{
2029 /* Since there is no support for separate Rx/Tx vlan accel
2030 * enable/disable make sure Tx flag is always in same state as Rx.
2031 */
2032 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2033 features |= NETIF_F_HW_VLAN_CTAG_TX;
2034 else
2035 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2036
2037 return features;
2038}
2039
2040static int igb_set_features(struct net_device *netdev,
2041 netdev_features_t features)
2042{
2043 netdev_features_t changed = netdev->features ^ features;
2044 struct igb_adapter *adapter = netdev_priv(netdev);
2045
2046 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2047 igb_vlan_mode(netdev, features);
2048
2049 if (!(changed & NETIF_F_RXALL))
2050 return 0;
2051
2052 netdev->features = features;
2053
2054 if (netif_running(netdev))
2055 igb_reinit_locked(adapter);
2056 else
2057 igb_reset(adapter);
2058
2059 return 0;
2060}
2061
2062static const struct net_device_ops igb_netdev_ops = {
2063 .ndo_open = igb_open,
2064 .ndo_stop = igb_close,
2065 .ndo_start_xmit = igb_xmit_frame,
2066 .ndo_get_stats64 = igb_get_stats64,
2067 .ndo_set_rx_mode = igb_set_rx_mode,
2068 .ndo_set_mac_address = igb_set_mac,
2069 .ndo_change_mtu = igb_change_mtu,
2070 .ndo_do_ioctl = igb_ioctl,
2071 .ndo_tx_timeout = igb_tx_timeout,
2072 .ndo_validate_addr = eth_validate_addr,
2073 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2074 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2075 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2076 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2077 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2078 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2079 .ndo_get_vf_config = igb_ndo_get_vf_config,
2080#ifdef CONFIG_NET_POLL_CONTROLLER
2081 .ndo_poll_controller = igb_netpoll,
2082#endif
2083 .ndo_fix_features = igb_fix_features,
2084 .ndo_set_features = igb_set_features,
2085 .ndo_features_check = passthru_features_check,
2086};
2087
2088/**
2089 * igb_set_fw_version - Configure version string for ethtool
2090 * @adapter: adapter struct
2091 **/
2092void igb_set_fw_version(struct igb_adapter *adapter)
2093{
2094 struct e1000_hw *hw = &adapter->hw;
2095 struct e1000_fw_version fw;
2096
2097 igb_get_fw_version(hw, &fw);
2098
2099 switch (hw->mac.type) {
2100 case e1000_i210:
2101 case e1000_i211:
2102 if (!(igb_get_flash_presence_i210(hw))) {
2103 snprintf(adapter->fw_version,
2104 sizeof(adapter->fw_version),
2105 "%2d.%2d-%d",
2106 fw.invm_major, fw.invm_minor,
2107 fw.invm_img_type);
2108 break;
2109 }
2110 /* fall through */
2111 default:
2112 /* if option is rom valid, display its version too */
2113 if (fw.or_valid) {
2114 snprintf(adapter->fw_version,
2115 sizeof(adapter->fw_version),
2116 "%d.%d, 0x%08x, %d.%d.%d",
2117 fw.eep_major, fw.eep_minor, fw.etrack_id,
2118 fw.or_major, fw.or_build, fw.or_patch);
2119 /* no option rom */
2120 } else if (fw.etrack_id != 0X0000) {
2121 snprintf(adapter->fw_version,
2122 sizeof(adapter->fw_version),
2123 "%d.%d, 0x%08x",
2124 fw.eep_major, fw.eep_minor, fw.etrack_id);
2125 } else {
2126 snprintf(adapter->fw_version,
2127 sizeof(adapter->fw_version),
2128 "%d.%d.%d",
2129 fw.eep_major, fw.eep_minor, fw.eep_build);
2130 }
2131 break;
2132 }
2133}
2134
2135/**
2136 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2137 *
2138 * @adapter: adapter struct
2139 **/
2140static void igb_init_mas(struct igb_adapter *adapter)
2141{
2142 struct e1000_hw *hw = &adapter->hw;
2143 u16 eeprom_data;
2144
2145 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2146 switch (hw->bus.func) {
2147 case E1000_FUNC_0:
2148 if (eeprom_data & IGB_MAS_ENABLE_0) {
2149 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2150 netdev_info(adapter->netdev,
2151 "MAS: Enabling Media Autosense for port %d\n",
2152 hw->bus.func);
2153 }
2154 break;
2155 case E1000_FUNC_1:
2156 if (eeprom_data & IGB_MAS_ENABLE_1) {
2157 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2158 netdev_info(adapter->netdev,
2159 "MAS: Enabling Media Autosense for port %d\n",
2160 hw->bus.func);
2161 }
2162 break;
2163 case E1000_FUNC_2:
2164 if (eeprom_data & IGB_MAS_ENABLE_2) {
2165 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2166 netdev_info(adapter->netdev,
2167 "MAS: Enabling Media Autosense for port %d\n",
2168 hw->bus.func);
2169 }
2170 break;
2171 case E1000_FUNC_3:
2172 if (eeprom_data & IGB_MAS_ENABLE_3) {
2173 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2174 netdev_info(adapter->netdev,
2175 "MAS: Enabling Media Autosense for port %d\n",
2176 hw->bus.func);
2177 }
2178 break;
2179 default:
2180 /* Shouldn't get here */
2181 netdev_err(adapter->netdev,
2182 "MAS: Invalid port configuration, returning\n");
2183 break;
2184 }
2185}
2186
2187/**
2188 * igb_init_i2c - Init I2C interface
2189 * @adapter: pointer to adapter structure
2190 **/
2191static s32 igb_init_i2c(struct igb_adapter *adapter)
2192{
2193 s32 status = 0;
2194
2195 /* I2C interface supported on i350 devices */
2196 if (adapter->hw.mac.type != e1000_i350)
2197 return 0;
2198
2199 /* Initialize the i2c bus which is controlled by the registers.
2200 * This bus will use the i2c_algo_bit structue that implements
2201 * the protocol through toggling of the 4 bits in the register.
2202 */
2203 adapter->i2c_adap.owner = THIS_MODULE;
2204 adapter->i2c_algo = igb_i2c_algo;
2205 adapter->i2c_algo.data = adapter;
2206 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2207 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2208 strlcpy(adapter->i2c_adap.name, "igb BB",
2209 sizeof(adapter->i2c_adap.name));
2210 status = i2c_bit_add_bus(&adapter->i2c_adap);
2211 return status;
2212}
2213
2214/**
2215 * igb_probe - Device Initialization Routine
2216 * @pdev: PCI device information struct
2217 * @ent: entry in igb_pci_tbl
2218 *
2219 * Returns 0 on success, negative on failure
2220 *
2221 * igb_probe initializes an adapter identified by a pci_dev structure.
2222 * The OS initialization, configuring of the adapter private structure,
2223 * and a hardware reset occur.
2224 **/
2225static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2226{
2227 struct net_device *netdev;
2228 struct igb_adapter *adapter;
2229 struct e1000_hw *hw;
2230 u16 eeprom_data = 0;
2231 s32 ret_val;
2232 static int global_quad_port_a; /* global quad port a indication */
2233 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2234 int err, pci_using_dac;
2235 u8 part_str[E1000_PBANUM_LENGTH];
2236
2237 /* Catch broken hardware that put the wrong VF device ID in
2238 * the PCIe SR-IOV capability.
2239 */
2240 if (pdev->is_virtfn) {
2241 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2242 pci_name(pdev), pdev->vendor, pdev->device);
2243 return -EINVAL;
2244 }
2245
2246 err = pci_enable_device_mem(pdev);
2247 if (err)
2248 return err;
2249
2250 pci_using_dac = 0;
2251 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2252 if (!err) {
2253 pci_using_dac = 1;
2254 } else {
2255 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2256 if (err) {
2257 dev_err(&pdev->dev,
2258 "No usable DMA configuration, aborting\n");
2259 goto err_dma;
2260 }
2261 }
2262
2263 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2264 IORESOURCE_MEM),
2265 igb_driver_name);
2266 if (err)
2267 goto err_pci_reg;
2268
2269 pci_enable_pcie_error_reporting(pdev);
2270
2271 pci_set_master(pdev);
2272 pci_save_state(pdev);
2273
2274 err = -ENOMEM;
2275 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2276 IGB_MAX_TX_QUEUES);
2277 if (!netdev)
2278 goto err_alloc_etherdev;
2279
2280 SET_NETDEV_DEV(netdev, &pdev->dev);
2281
2282 pci_set_drvdata(pdev, netdev);
2283 adapter = netdev_priv(netdev);
2284 adapter->netdev = netdev;
2285 adapter->pdev = pdev;
2286 hw = &adapter->hw;
2287 hw->back = adapter;
2288 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2289
2290 err = -EIO;
2291 hw->hw_addr = pci_iomap(pdev, 0, 0);
2292 if (!hw->hw_addr)
2293 goto err_ioremap;
2294
2295 netdev->netdev_ops = &igb_netdev_ops;
2296 igb_set_ethtool_ops(netdev);
2297 netdev->watchdog_timeo = 5 * HZ;
2298
2299 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2300
2301 netdev->mem_start = pci_resource_start(pdev, 0);
2302 netdev->mem_end = pci_resource_end(pdev, 0);
2303
2304 /* PCI config space info */
2305 hw->vendor_id = pdev->vendor;
2306 hw->device_id = pdev->device;
2307 hw->revision_id = pdev->revision;
2308 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2309 hw->subsystem_device_id = pdev->subsystem_device;
2310
2311 /* Copy the default MAC, PHY and NVM function pointers */
2312 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2313 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2314 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2315 /* Initialize skew-specific constants */
2316 err = ei->get_invariants(hw);
2317 if (err)
2318 goto err_sw_init;
2319
2320 /* setup the private structure */
2321 err = igb_sw_init(adapter);
2322 if (err)
2323 goto err_sw_init;
2324
2325 igb_get_bus_info_pcie(hw);
2326
2327 hw->phy.autoneg_wait_to_complete = false;
2328
2329 /* Copper options */
2330 if (hw->phy.media_type == e1000_media_type_copper) {
2331 hw->phy.mdix = AUTO_ALL_MODES;
2332 hw->phy.disable_polarity_correction = false;
2333 hw->phy.ms_type = e1000_ms_hw_default;
2334 }
2335
2336 if (igb_check_reset_block(hw))
2337 dev_info(&pdev->dev,
2338 "PHY reset is blocked due to SOL/IDER session.\n");
2339
2340 /* features is initialized to 0 in allocation, it might have bits
2341 * set by igb_sw_init so we should use an or instead of an
2342 * assignment.
2343 */
2344 netdev->features |= NETIF_F_SG |
2345 NETIF_F_IP_CSUM |
2346 NETIF_F_IPV6_CSUM |
2347 NETIF_F_TSO |
2348 NETIF_F_TSO6 |
2349 NETIF_F_RXHASH |
2350 NETIF_F_RXCSUM |
2351 NETIF_F_HW_VLAN_CTAG_RX |
2352 NETIF_F_HW_VLAN_CTAG_TX;
2353
2354 /* copy netdev features into list of user selectable features */
2355 netdev->hw_features |= netdev->features;
2356 netdev->hw_features |= NETIF_F_RXALL;
2357
2358 /* set this bit last since it cannot be part of hw_features */
2359 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2360
2361 netdev->vlan_features |= NETIF_F_TSO |
2362 NETIF_F_TSO6 |
2363 NETIF_F_IP_CSUM |
2364 NETIF_F_IPV6_CSUM |
2365 NETIF_F_SG;
2366
2367 netdev->priv_flags |= IFF_SUPP_NOFCS;
2368
2369 if (pci_using_dac) {
2370 netdev->features |= NETIF_F_HIGHDMA;
2371 netdev->vlan_features |= NETIF_F_HIGHDMA;
2372 }
2373
2374 if (hw->mac.type >= e1000_82576) {
2375 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2376 netdev->features |= NETIF_F_SCTP_CSUM;
2377 }
2378
2379 netdev->priv_flags |= IFF_UNICAST_FLT;
2380
2381 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2382
2383 /* before reading the NVM, reset the controller to put the device in a
2384 * known good starting state
2385 */
2386 hw->mac.ops.reset_hw(hw);
2387
2388 /* make sure the NVM is good , i211/i210 parts can have special NVM
2389 * that doesn't contain a checksum
2390 */
2391 switch (hw->mac.type) {
2392 case e1000_i210:
2393 case e1000_i211:
2394 if (igb_get_flash_presence_i210(hw)) {
2395 if (hw->nvm.ops.validate(hw) < 0) {
2396 dev_err(&pdev->dev,
2397 "The NVM Checksum Is Not Valid\n");
2398 err = -EIO;
2399 goto err_eeprom;
2400 }
2401 }
2402 break;
2403 default:
2404 if (hw->nvm.ops.validate(hw) < 0) {
2405 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2406 err = -EIO;
2407 goto err_eeprom;
2408 }
2409 break;
2410 }
2411
2412 /* copy the MAC address out of the NVM */
2413 if (hw->mac.ops.read_mac_addr(hw))
2414 dev_err(&pdev->dev, "NVM Read Error\n");
2415
2416 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2417
2418 if (!is_valid_ether_addr(netdev->dev_addr)) {
2419 dev_err(&pdev->dev, "Invalid MAC Address\n");
2420 err = -EIO;
2421 goto err_eeprom;
2422 }
2423
2424 /* get firmware version for ethtool -i */
2425 igb_set_fw_version(adapter);
2426
2427 /* configure RXPBSIZE and TXPBSIZE */
2428 if (hw->mac.type == e1000_i210) {
2429 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2430 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2431 }
2432
2433 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2434 (unsigned long) adapter);
2435 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2436 (unsigned long) adapter);
2437
2438 INIT_WORK(&adapter->reset_task, igb_reset_task);
2439 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2440
2441 /* Initialize link properties that are user-changeable */
2442 adapter->fc_autoneg = true;
2443 hw->mac.autoneg = true;
2444 hw->phy.autoneg_advertised = 0x2f;
2445
2446 hw->fc.requested_mode = e1000_fc_default;
2447 hw->fc.current_mode = e1000_fc_default;
2448
2449 igb_validate_mdi_setting(hw);
2450
2451 /* By default, support wake on port A */
2452 if (hw->bus.func == 0)
2453 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2454
2455 /* Check the NVM for wake support on non-port A ports */
2456 if (hw->mac.type >= e1000_82580)
2457 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2458 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2459 &eeprom_data);
2460 else if (hw->bus.func == 1)
2461 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2462
2463 if (eeprom_data & IGB_EEPROM_APME)
2464 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2465
2466 /* now that we have the eeprom settings, apply the special cases where
2467 * the eeprom may be wrong or the board simply won't support wake on
2468 * lan on a particular port
2469 */
2470 switch (pdev->device) {
2471 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2472 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2473 break;
2474 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2475 case E1000_DEV_ID_82576_FIBER:
2476 case E1000_DEV_ID_82576_SERDES:
2477 /* Wake events only supported on port A for dual fiber
2478 * regardless of eeprom setting
2479 */
2480 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2481 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2482 break;
2483 case E1000_DEV_ID_82576_QUAD_COPPER:
2484 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2485 /* if quad port adapter, disable WoL on all but port A */
2486 if (global_quad_port_a != 0)
2487 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2488 else
2489 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2490 /* Reset for multiple quad port adapters */
2491 if (++global_quad_port_a == 4)
2492 global_quad_port_a = 0;
2493 break;
2494 default:
2495 /* If the device can't wake, don't set software support */
2496 if (!device_can_wakeup(&adapter->pdev->dev))
2497 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2498 }
2499
2500 /* initialize the wol settings based on the eeprom settings */
2501 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2502 adapter->wol |= E1000_WUFC_MAG;
2503
2504 /* Some vendors want WoL disabled by default, but still supported */
2505 if ((hw->mac.type == e1000_i350) &&
2506 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2507 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2508 adapter->wol = 0;
2509 }
2510
2511 device_set_wakeup_enable(&adapter->pdev->dev,
2512 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2513
2514 /* reset the hardware with the new settings */
2515 igb_reset(adapter);
2516
2517 /* Init the I2C interface */
2518 err = igb_init_i2c(adapter);
2519 if (err) {
2520 dev_err(&pdev->dev, "failed to init i2c interface\n");
2521 goto err_eeprom;
2522 }
2523
2524 /* let the f/w know that the h/w is now under the control of the
2525 * driver.
2526 */
2527 igb_get_hw_control(adapter);
2528
2529 strcpy(netdev->name, "eth%d");
2530 err = register_netdev(netdev);
2531 if (err)
2532 goto err_register;
2533
2534 /* carrier off reporting is important to ethtool even BEFORE open */
2535 netif_carrier_off(netdev);
2536
2537#ifdef CONFIG_IGB_DCA
2538 if (dca_add_requester(&pdev->dev) == 0) {
2539 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2540 dev_info(&pdev->dev, "DCA enabled\n");
2541 igb_setup_dca(adapter);
2542 }
2543
2544#endif
2545#ifdef CONFIG_IGB_HWMON
2546 /* Initialize the thermal sensor on i350 devices. */
2547 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2548 u16 ets_word;
2549
2550 /* Read the NVM to determine if this i350 device supports an
2551 * external thermal sensor.
2552 */
2553 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2554 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2555 adapter->ets = true;
2556 else
2557 adapter->ets = false;
2558 if (igb_sysfs_init(adapter))
2559 dev_err(&pdev->dev,
2560 "failed to allocate sysfs resources\n");
2561 } else {
2562 adapter->ets = false;
2563 }
2564#endif
2565 /* Check if Media Autosense is enabled */
2566 adapter->ei = *ei;
2567 if (hw->dev_spec._82575.mas_capable)
2568 igb_init_mas(adapter);
2569
2570 /* do hw tstamp init after resetting */
2571 igb_ptp_init(adapter);
2572
2573 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2574 /* print bus type/speed/width info, not applicable to i354 */
2575 if (hw->mac.type != e1000_i354) {
2576 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2577 netdev->name,
2578 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2579 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2580 "unknown"),
2581 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2582 "Width x4" :
2583 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2584 "Width x2" :
2585 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2586 "Width x1" : "unknown"), netdev->dev_addr);
2587 }
2588
2589 if ((hw->mac.type >= e1000_i210 ||
2590 igb_get_flash_presence_i210(hw))) {
2591 ret_val = igb_read_part_string(hw, part_str,
2592 E1000_PBANUM_LENGTH);
2593 } else {
2594 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2595 }
2596
2597 if (ret_val)
2598 strcpy(part_str, "Unknown");
2599 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2600 dev_info(&pdev->dev,
2601 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2602 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2603 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2604 adapter->num_rx_queues, adapter->num_tx_queues);
2605 if (hw->phy.media_type == e1000_media_type_copper) {
2606 switch (hw->mac.type) {
2607 case e1000_i350:
2608 case e1000_i210:
2609 case e1000_i211:
2610 /* Enable EEE for internal copper PHY devices */
2611 err = igb_set_eee_i350(hw, true, true);
2612 if ((!err) &&
2613 (!hw->dev_spec._82575.eee_disable)) {
2614 adapter->eee_advert =
2615 MDIO_EEE_100TX | MDIO_EEE_1000T;
2616 adapter->flags |= IGB_FLAG_EEE;
2617 }
2618 break;
2619 case e1000_i354:
2620 if ((rd32(E1000_CTRL_EXT) &
2621 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2622 err = igb_set_eee_i354(hw, true, true);
2623 if ((!err) &&
2624 (!hw->dev_spec._82575.eee_disable)) {
2625 adapter->eee_advert =
2626 MDIO_EEE_100TX | MDIO_EEE_1000T;
2627 adapter->flags |= IGB_FLAG_EEE;
2628 }
2629 }
2630 break;
2631 default:
2632 break;
2633 }
2634 }
2635 pm_runtime_put_noidle(&pdev->dev);
2636 return 0;
2637
2638err_register:
2639 igb_release_hw_control(adapter);
2640 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2641err_eeprom:
2642 if (!igb_check_reset_block(hw))
2643 igb_reset_phy(hw);
2644
2645 if (hw->flash_address)
2646 iounmap(hw->flash_address);
2647err_sw_init:
2648 igb_clear_interrupt_scheme(adapter);
2649 pci_iounmap(pdev, hw->hw_addr);
2650err_ioremap:
2651 free_netdev(netdev);
2652err_alloc_etherdev:
2653 pci_release_selected_regions(pdev,
2654 pci_select_bars(pdev, IORESOURCE_MEM));
2655err_pci_reg:
2656err_dma:
2657 pci_disable_device(pdev);
2658 return err;
2659}
2660
2661#ifdef CONFIG_PCI_IOV
2662static int igb_disable_sriov(struct pci_dev *pdev)
2663{
2664 struct net_device *netdev = pci_get_drvdata(pdev);
2665 struct igb_adapter *adapter = netdev_priv(netdev);
2666 struct e1000_hw *hw = &adapter->hw;
2667
2668 /* reclaim resources allocated to VFs */
2669 if (adapter->vf_data) {
2670 /* disable iov and allow time for transactions to clear */
2671 if (pci_vfs_assigned(pdev)) {
2672 dev_warn(&pdev->dev,
2673 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2674 return -EPERM;
2675 } else {
2676 pci_disable_sriov(pdev);
2677 msleep(500);
2678 }
2679
2680 kfree(adapter->vf_data);
2681 adapter->vf_data = NULL;
2682 adapter->vfs_allocated_count = 0;
2683 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2684 wrfl();
2685 msleep(100);
2686 dev_info(&pdev->dev, "IOV Disabled\n");
2687
2688 /* Re-enable DMA Coalescing flag since IOV is turned off */
2689 adapter->flags |= IGB_FLAG_DMAC;
2690 }
2691
2692 return 0;
2693}
2694
2695static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2696{
2697 struct net_device *netdev = pci_get_drvdata(pdev);
2698 struct igb_adapter *adapter = netdev_priv(netdev);
2699 int old_vfs = pci_num_vf(pdev);
2700 int err = 0;
2701 int i;
2702
2703 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2704 err = -EPERM;
2705 goto out;
2706 }
2707 if (!num_vfs)
2708 goto out;
2709
2710 if (old_vfs) {
2711 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2712 old_vfs, max_vfs);
2713 adapter->vfs_allocated_count = old_vfs;
2714 } else
2715 adapter->vfs_allocated_count = num_vfs;
2716
2717 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2718 sizeof(struct vf_data_storage), GFP_KERNEL);
2719
2720 /* if allocation failed then we do not support SR-IOV */
2721 if (!adapter->vf_data) {
2722 adapter->vfs_allocated_count = 0;
2723 dev_err(&pdev->dev,
2724 "Unable to allocate memory for VF Data Storage\n");
2725 err = -ENOMEM;
2726 goto out;
2727 }
2728
2729 /* only call pci_enable_sriov() if no VFs are allocated already */
2730 if (!old_vfs) {
2731 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2732 if (err)
2733 goto err_out;
2734 }
2735 dev_info(&pdev->dev, "%d VFs allocated\n",
2736 adapter->vfs_allocated_count);
2737 for (i = 0; i < adapter->vfs_allocated_count; i++)
2738 igb_vf_configure(adapter, i);
2739
2740 /* DMA Coalescing is not supported in IOV mode. */
2741 adapter->flags &= ~IGB_FLAG_DMAC;
2742 goto out;
2743
2744err_out:
2745 kfree(adapter->vf_data);
2746 adapter->vf_data = NULL;
2747 adapter->vfs_allocated_count = 0;
2748out:
2749 return err;
2750}
2751
2752#endif
2753/**
2754 * igb_remove_i2c - Cleanup I2C interface
2755 * @adapter: pointer to adapter structure
2756 **/
2757static void igb_remove_i2c(struct igb_adapter *adapter)
2758{
2759 /* free the adapter bus structure */
2760 i2c_del_adapter(&adapter->i2c_adap);
2761}
2762
2763/**
2764 * igb_remove - Device Removal Routine
2765 * @pdev: PCI device information struct
2766 *
2767 * igb_remove is called by the PCI subsystem to alert the driver
2768 * that it should release a PCI device. The could be caused by a
2769 * Hot-Plug event, or because the driver is going to be removed from
2770 * memory.
2771 **/
2772static void igb_remove(struct pci_dev *pdev)
2773{
2774 struct net_device *netdev = pci_get_drvdata(pdev);
2775 struct igb_adapter *adapter = netdev_priv(netdev);
2776 struct e1000_hw *hw = &adapter->hw;
2777
2778 pm_runtime_get_noresume(&pdev->dev);
2779#ifdef CONFIG_IGB_HWMON
2780 igb_sysfs_exit(adapter);
2781#endif
2782 igb_remove_i2c(adapter);
2783 igb_ptp_stop(adapter);
2784 /* The watchdog timer may be rescheduled, so explicitly
2785 * disable watchdog from being rescheduled.
2786 */
2787 set_bit(__IGB_DOWN, &adapter->state);
2788 del_timer_sync(&adapter->watchdog_timer);
2789 del_timer_sync(&adapter->phy_info_timer);
2790
2791 cancel_work_sync(&adapter->reset_task);
2792 cancel_work_sync(&adapter->watchdog_task);
2793
2794#ifdef CONFIG_IGB_DCA
2795 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2796 dev_info(&pdev->dev, "DCA disabled\n");
2797 dca_remove_requester(&pdev->dev);
2798 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2799 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2800 }
2801#endif
2802
2803 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2804 * would have already happened in close and is redundant.
2805 */
2806 igb_release_hw_control(adapter);
2807
2808 unregister_netdev(netdev);
2809
2810 igb_clear_interrupt_scheme(adapter);
2811
2812#ifdef CONFIG_PCI_IOV
2813 igb_disable_sriov(pdev);
2814#endif
2815
2816 pci_iounmap(pdev, hw->hw_addr);
2817 if (hw->flash_address)
2818 iounmap(hw->flash_address);
2819 pci_release_selected_regions(pdev,
2820 pci_select_bars(pdev, IORESOURCE_MEM));
2821
2822 kfree(adapter->shadow_vfta);
2823 free_netdev(netdev);
2824
2825 pci_disable_pcie_error_reporting(pdev);
2826
2827 pci_disable_device(pdev);
2828}
2829
2830/**
2831 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2832 * @adapter: board private structure to initialize
2833 *
2834 * This function initializes the vf specific data storage and then attempts to
2835 * allocate the VFs. The reason for ordering it this way is because it is much
2836 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2837 * the memory for the VFs.
2838 **/
2839static void igb_probe_vfs(struct igb_adapter *adapter)
2840{
2841#ifdef CONFIG_PCI_IOV
2842 struct pci_dev *pdev = adapter->pdev;
2843 struct e1000_hw *hw = &adapter->hw;
2844
2845 /* Virtualization features not supported on i210 family. */
2846 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2847 return;
2848
2849 pci_sriov_set_totalvfs(pdev, 7);
2850 igb_pci_enable_sriov(pdev, max_vfs);
2851
2852#endif /* CONFIG_PCI_IOV */
2853}
2854
2855static void igb_init_queue_configuration(struct igb_adapter *adapter)
2856{
2857 struct e1000_hw *hw = &adapter->hw;
2858 u32 max_rss_queues;
2859
2860 /* Determine the maximum number of RSS queues supported. */
2861 switch (hw->mac.type) {
2862 case e1000_i211:
2863 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2864 break;
2865 case e1000_82575:
2866 case e1000_i210:
2867 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2868 break;
2869 case e1000_i350:
2870 /* I350 cannot do RSS and SR-IOV at the same time */
2871 if (!!adapter->vfs_allocated_count) {
2872 max_rss_queues = 1;
2873 break;
2874 }
2875 /* fall through */
2876 case e1000_82576:
2877 if (!!adapter->vfs_allocated_count) {
2878 max_rss_queues = 2;
2879 break;
2880 }
2881 /* fall through */
2882 case e1000_82580:
2883 case e1000_i354:
2884 default:
2885 max_rss_queues = IGB_MAX_RX_QUEUES;
2886 break;
2887 }
2888
2889 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2890
2891 /* Determine if we need to pair queues. */
2892 switch (hw->mac.type) {
2893 case e1000_82575:
2894 case e1000_i211:
2895 /* Device supports enough interrupts without queue pairing. */
2896 break;
2897 case e1000_82576:
2898 /* If VFs are going to be allocated with RSS queues then we
2899 * should pair the queues in order to conserve interrupts due
2900 * to limited supply.
2901 */
2902 if ((adapter->rss_queues > 1) &&
2903 (adapter->vfs_allocated_count > 6))
2904 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2905 /* fall through */
2906 case e1000_82580:
2907 case e1000_i350:
2908 case e1000_i354:
2909 case e1000_i210:
2910 default:
2911 /* If rss_queues > half of max_rss_queues, pair the queues in
2912 * order to conserve interrupts due to limited supply.
2913 */
2914 if (adapter->rss_queues > (max_rss_queues / 2))
2915 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2916 break;
2917 }
2918}
2919
2920/**
2921 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2922 * @adapter: board private structure to initialize
2923 *
2924 * igb_sw_init initializes the Adapter private data structure.
2925 * Fields are initialized based on PCI device information and
2926 * OS network device settings (MTU size).
2927 **/
2928static int igb_sw_init(struct igb_adapter *adapter)
2929{
2930 struct e1000_hw *hw = &adapter->hw;
2931 struct net_device *netdev = adapter->netdev;
2932 struct pci_dev *pdev = adapter->pdev;
2933
2934 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2935
2936 /* set default ring sizes */
2937 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2938 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2939
2940 /* set default ITR values */
2941 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2942 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2943
2944 /* set default work limits */
2945 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2946
2947 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2948 VLAN_HLEN;
2949 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2950
2951 spin_lock_init(&adapter->stats64_lock);
2952#ifdef CONFIG_PCI_IOV
2953 switch (hw->mac.type) {
2954 case e1000_82576:
2955 case e1000_i350:
2956 if (max_vfs > 7) {
2957 dev_warn(&pdev->dev,
2958 "Maximum of 7 VFs per PF, using max\n");
2959 max_vfs = adapter->vfs_allocated_count = 7;
2960 } else
2961 adapter->vfs_allocated_count = max_vfs;
2962 if (adapter->vfs_allocated_count)
2963 dev_warn(&pdev->dev,
2964 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2965 break;
2966 default:
2967 break;
2968 }
2969#endif /* CONFIG_PCI_IOV */
2970
2971 igb_init_queue_configuration(adapter);
2972
2973 /* Setup and initialize a copy of the hw vlan table array */
2974 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2975 GFP_ATOMIC);
2976
2977 /* This call may decrease the number of queues */
2978 if (igb_init_interrupt_scheme(adapter, true)) {
2979 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2980 return -ENOMEM;
2981 }
2982
2983 igb_probe_vfs(adapter);
2984
2985 /* Explicitly disable IRQ since the NIC can be in any state. */
2986 igb_irq_disable(adapter);
2987
2988 if (hw->mac.type >= e1000_i350)
2989 adapter->flags &= ~IGB_FLAG_DMAC;
2990
2991 set_bit(__IGB_DOWN, &adapter->state);
2992 return 0;
2993}
2994
2995/**
2996 * igb_open - Called when a network interface is made active
2997 * @netdev: network interface device structure
2998 *
2999 * Returns 0 on success, negative value on failure
3000 *
3001 * The open entry point is called when a network interface is made
3002 * active by the system (IFF_UP). At this point all resources needed
3003 * for transmit and receive operations are allocated, the interrupt
3004 * handler is registered with the OS, the watchdog timer is started,
3005 * and the stack is notified that the interface is ready.
3006 **/
3007static int __igb_open(struct net_device *netdev, bool resuming)
3008{
3009 struct igb_adapter *adapter = netdev_priv(netdev);
3010 struct e1000_hw *hw = &adapter->hw;
3011 struct pci_dev *pdev = adapter->pdev;
3012 int err;
3013 int i;
3014
3015 /* disallow open during test */
3016 if (test_bit(__IGB_TESTING, &adapter->state)) {
3017 WARN_ON(resuming);
3018 return -EBUSY;
3019 }
3020
3021 if (!resuming)
3022 pm_runtime_get_sync(&pdev->dev);
3023
3024 netif_carrier_off(netdev);
3025
3026 /* allocate transmit descriptors */
3027 err = igb_setup_all_tx_resources(adapter);
3028 if (err)
3029 goto err_setup_tx;
3030
3031 /* allocate receive descriptors */
3032 err = igb_setup_all_rx_resources(adapter);
3033 if (err)
3034 goto err_setup_rx;
3035
3036 igb_power_up_link(adapter);
3037
3038 /* before we allocate an interrupt, we must be ready to handle it.
3039 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3040 * as soon as we call pci_request_irq, so we have to setup our
3041 * clean_rx handler before we do so.
3042 */
3043 igb_configure(adapter);
3044
3045 err = igb_request_irq(adapter);
3046 if (err)
3047 goto err_req_irq;
3048
3049 /* Notify the stack of the actual queue counts. */
3050 err = netif_set_real_num_tx_queues(adapter->netdev,
3051 adapter->num_tx_queues);
3052 if (err)
3053 goto err_set_queues;
3054
3055 err = netif_set_real_num_rx_queues(adapter->netdev,
3056 adapter->num_rx_queues);
3057 if (err)
3058 goto err_set_queues;
3059
3060 /* From here on the code is the same as igb_up() */
3061 clear_bit(__IGB_DOWN, &adapter->state);
3062
3063 for (i = 0; i < adapter->num_q_vectors; i++)
3064 napi_enable(&(adapter->q_vector[i]->napi));
3065
3066 /* Clear any pending interrupts. */
3067 rd32(E1000_ICR);
3068
3069 igb_irq_enable(adapter);
3070
3071 /* notify VFs that reset has been completed */
3072 if (adapter->vfs_allocated_count) {
3073 u32 reg_data = rd32(E1000_CTRL_EXT);
3074
3075 reg_data |= E1000_CTRL_EXT_PFRSTD;
3076 wr32(E1000_CTRL_EXT, reg_data);
3077 }
3078
3079 netif_tx_start_all_queues(netdev);
3080
3081 if (!resuming)
3082 pm_runtime_put(&pdev->dev);
3083
3084 /* start the watchdog. */
3085 hw->mac.get_link_status = 1;
3086 schedule_work(&adapter->watchdog_task);
3087
3088 return 0;
3089
3090err_set_queues:
3091 igb_free_irq(adapter);
3092err_req_irq:
3093 igb_release_hw_control(adapter);
3094 igb_power_down_link(adapter);
3095 igb_free_all_rx_resources(adapter);
3096err_setup_rx:
3097 igb_free_all_tx_resources(adapter);
3098err_setup_tx:
3099 igb_reset(adapter);
3100 if (!resuming)
3101 pm_runtime_put(&pdev->dev);
3102
3103 return err;
3104}
3105
3106static int igb_open(struct net_device *netdev)
3107{
3108 return __igb_open(netdev, false);
3109}
3110
3111/**
3112 * igb_close - Disables a network interface
3113 * @netdev: network interface device structure
3114 *
3115 * Returns 0, this is not allowed to fail
3116 *
3117 * The close entry point is called when an interface is de-activated
3118 * by the OS. The hardware is still under the driver's control, but
3119 * needs to be disabled. A global MAC reset is issued to stop the
3120 * hardware, and all transmit and receive resources are freed.
3121 **/
3122static int __igb_close(struct net_device *netdev, bool suspending)
3123{
3124 struct igb_adapter *adapter = netdev_priv(netdev);
3125 struct pci_dev *pdev = adapter->pdev;
3126
3127 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3128
3129 if (!suspending)
3130 pm_runtime_get_sync(&pdev->dev);
3131
3132 igb_down(adapter);
3133 igb_free_irq(adapter);
3134
3135 igb_free_all_tx_resources(adapter);
3136 igb_free_all_rx_resources(adapter);
3137
3138 if (!suspending)
3139 pm_runtime_put_sync(&pdev->dev);
3140 return 0;
3141}
3142
3143static int igb_close(struct net_device *netdev)
3144{
3145 return __igb_close(netdev, false);
3146}
3147
3148/**
3149 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3150 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3151 *
3152 * Return 0 on success, negative on failure
3153 **/
3154int igb_setup_tx_resources(struct igb_ring *tx_ring)
3155{
3156 struct device *dev = tx_ring->dev;
3157 int size;
3158
3159 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3160
3161 tx_ring->tx_buffer_info = vzalloc(size);
3162 if (!tx_ring->tx_buffer_info)
3163 goto err;
3164
3165 /* round up to nearest 4K */
3166 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3167 tx_ring->size = ALIGN(tx_ring->size, 4096);
3168
3169 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3170 &tx_ring->dma, GFP_KERNEL);
3171 if (!tx_ring->desc)
3172 goto err;
3173
3174 tx_ring->next_to_use = 0;
3175 tx_ring->next_to_clean = 0;
3176
3177 return 0;
3178
3179err:
3180 vfree(tx_ring->tx_buffer_info);
3181 tx_ring->tx_buffer_info = NULL;
3182 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3183 return -ENOMEM;
3184}
3185
3186/**
3187 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3188 * (Descriptors) for all queues
3189 * @adapter: board private structure
3190 *
3191 * Return 0 on success, negative on failure
3192 **/
3193static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3194{
3195 struct pci_dev *pdev = adapter->pdev;
3196 int i, err = 0;
3197
3198 for (i = 0; i < adapter->num_tx_queues; i++) {
3199 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3200 if (err) {
3201 dev_err(&pdev->dev,
3202 "Allocation for Tx Queue %u failed\n", i);
3203 for (i--; i >= 0; i--)
3204 igb_free_tx_resources(adapter->tx_ring[i]);
3205 break;
3206 }
3207 }
3208
3209 return err;
3210}
3211
3212/**
3213 * igb_setup_tctl - configure the transmit control registers
3214 * @adapter: Board private structure
3215 **/
3216void igb_setup_tctl(struct igb_adapter *adapter)
3217{
3218 struct e1000_hw *hw = &adapter->hw;
3219 u32 tctl;
3220
3221 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3222 wr32(E1000_TXDCTL(0), 0);
3223
3224 /* Program the Transmit Control Register */
3225 tctl = rd32(E1000_TCTL);
3226 tctl &= ~E1000_TCTL_CT;
3227 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3228 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3229
3230 igb_config_collision_dist(hw);
3231
3232 /* Enable transmits */
3233 tctl |= E1000_TCTL_EN;
3234
3235 wr32(E1000_TCTL, tctl);
3236}
3237
3238/**
3239 * igb_configure_tx_ring - Configure transmit ring after Reset
3240 * @adapter: board private structure
3241 * @ring: tx ring to configure
3242 *
3243 * Configure a transmit ring after a reset.
3244 **/
3245void igb_configure_tx_ring(struct igb_adapter *adapter,
3246 struct igb_ring *ring)
3247{
3248 struct e1000_hw *hw = &adapter->hw;
3249 u32 txdctl = 0;
3250 u64 tdba = ring->dma;
3251 int reg_idx = ring->reg_idx;
3252
3253 /* disable the queue */
3254 wr32(E1000_TXDCTL(reg_idx), 0);
3255 wrfl();
3256 mdelay(10);
3257
3258 wr32(E1000_TDLEN(reg_idx),
3259 ring->count * sizeof(union e1000_adv_tx_desc));
3260 wr32(E1000_TDBAL(reg_idx),
3261 tdba & 0x00000000ffffffffULL);
3262 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3263
3264 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3265 wr32(E1000_TDH(reg_idx), 0);
3266 writel(0, ring->tail);
3267
3268 txdctl |= IGB_TX_PTHRESH;
3269 txdctl |= IGB_TX_HTHRESH << 8;
3270 txdctl |= IGB_TX_WTHRESH << 16;
3271
3272 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3273 wr32(E1000_TXDCTL(reg_idx), txdctl);
3274}
3275
3276/**
3277 * igb_configure_tx - Configure transmit Unit after Reset
3278 * @adapter: board private structure
3279 *
3280 * Configure the Tx unit of the MAC after a reset.
3281 **/
3282static void igb_configure_tx(struct igb_adapter *adapter)
3283{
3284 int i;
3285
3286 for (i = 0; i < adapter->num_tx_queues; i++)
3287 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3288}
3289
3290/**
3291 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3292 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3293 *
3294 * Returns 0 on success, negative on failure
3295 **/
3296int igb_setup_rx_resources(struct igb_ring *rx_ring)
3297{
3298 struct device *dev = rx_ring->dev;
3299 int size;
3300
3301 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3302
3303 rx_ring->rx_buffer_info = vzalloc(size);
3304 if (!rx_ring->rx_buffer_info)
3305 goto err;
3306
3307 /* Round up to nearest 4K */
3308 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3309 rx_ring->size = ALIGN(rx_ring->size, 4096);
3310
3311 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3312 &rx_ring->dma, GFP_KERNEL);
3313 if (!rx_ring->desc)
3314 goto err;
3315
3316 rx_ring->next_to_alloc = 0;
3317 rx_ring->next_to_clean = 0;
3318 rx_ring->next_to_use = 0;
3319
3320 return 0;
3321
3322err:
3323 vfree(rx_ring->rx_buffer_info);
3324 rx_ring->rx_buffer_info = NULL;
3325 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3326 return -ENOMEM;
3327}
3328
3329/**
3330 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3331 * (Descriptors) for all queues
3332 * @adapter: board private structure
3333 *
3334 * Return 0 on success, negative on failure
3335 **/
3336static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3337{
3338 struct pci_dev *pdev = adapter->pdev;
3339 int i, err = 0;
3340
3341 for (i = 0; i < adapter->num_rx_queues; i++) {
3342 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3343 if (err) {
3344 dev_err(&pdev->dev,
3345 "Allocation for Rx Queue %u failed\n", i);
3346 for (i--; i >= 0; i--)
3347 igb_free_rx_resources(adapter->rx_ring[i]);
3348 break;
3349 }
3350 }
3351
3352 return err;
3353}
3354
3355/**
3356 * igb_setup_mrqc - configure the multiple receive queue control registers
3357 * @adapter: Board private structure
3358 **/
3359static void igb_setup_mrqc(struct igb_adapter *adapter)
3360{
3361 struct e1000_hw *hw = &adapter->hw;
3362 u32 mrqc, rxcsum;
3363 u32 j, num_rx_queues;
3364 u32 rss_key[10];
3365
3366 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3367 for (j = 0; j < 10; j++)
3368 wr32(E1000_RSSRK(j), rss_key[j]);
3369
3370 num_rx_queues = adapter->rss_queues;
3371
3372 switch (hw->mac.type) {
3373 case e1000_82576:
3374 /* 82576 supports 2 RSS queues for SR-IOV */
3375 if (adapter->vfs_allocated_count)
3376 num_rx_queues = 2;
3377 break;
3378 default:
3379 break;
3380 }
3381
3382 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3383 for (j = 0; j < IGB_RETA_SIZE; j++)
3384 adapter->rss_indir_tbl[j] =
3385 (j * num_rx_queues) / IGB_RETA_SIZE;
3386 adapter->rss_indir_tbl_init = num_rx_queues;
3387 }
3388 igb_write_rss_indir_tbl(adapter);
3389
3390 /* Disable raw packet checksumming so that RSS hash is placed in
3391 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3392 * offloads as they are enabled by default
3393 */
3394 rxcsum = rd32(E1000_RXCSUM);
3395 rxcsum |= E1000_RXCSUM_PCSD;
3396
3397 if (adapter->hw.mac.type >= e1000_82576)
3398 /* Enable Receive Checksum Offload for SCTP */
3399 rxcsum |= E1000_RXCSUM_CRCOFL;
3400
3401 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3402 wr32(E1000_RXCSUM, rxcsum);
3403
3404 /* Generate RSS hash based on packet types, TCP/UDP
3405 * port numbers and/or IPv4/v6 src and dst addresses
3406 */
3407 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3408 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3409 E1000_MRQC_RSS_FIELD_IPV6 |
3410 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3411 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3412
3413 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3414 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3415 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3416 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3417
3418 /* If VMDq is enabled then we set the appropriate mode for that, else
3419 * we default to RSS so that an RSS hash is calculated per packet even
3420 * if we are only using one queue
3421 */
3422 if (adapter->vfs_allocated_count) {
3423 if (hw->mac.type > e1000_82575) {
3424 /* Set the default pool for the PF's first queue */
3425 u32 vtctl = rd32(E1000_VT_CTL);
3426
3427 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3428 E1000_VT_CTL_DISABLE_DEF_POOL);
3429 vtctl |= adapter->vfs_allocated_count <<
3430 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3431 wr32(E1000_VT_CTL, vtctl);
3432 }
3433 if (adapter->rss_queues > 1)
3434 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3435 else
3436 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3437 } else {
3438 if (hw->mac.type != e1000_i211)
3439 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3440 }
3441 igb_vmm_control(adapter);
3442
3443 wr32(E1000_MRQC, mrqc);
3444}
3445
3446/**
3447 * igb_setup_rctl - configure the receive control registers
3448 * @adapter: Board private structure
3449 **/
3450void igb_setup_rctl(struct igb_adapter *adapter)
3451{
3452 struct e1000_hw *hw = &adapter->hw;
3453 u32 rctl;
3454
3455 rctl = rd32(E1000_RCTL);
3456
3457 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3458 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3459
3460 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3461 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3462
3463 /* enable stripping of CRC. It's unlikely this will break BMC
3464 * redirection as it did with e1000. Newer features require
3465 * that the HW strips the CRC.
3466 */
3467 rctl |= E1000_RCTL_SECRC;
3468
3469 /* disable store bad packets and clear size bits. */
3470 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3471
3472 /* enable LPE to prevent packets larger than max_frame_size */
3473 rctl |= E1000_RCTL_LPE;
3474
3475 /* disable queue 0 to prevent tail write w/o re-config */
3476 wr32(E1000_RXDCTL(0), 0);
3477
3478 /* Attention!!! For SR-IOV PF driver operations you must enable
3479 * queue drop for all VF and PF queues to prevent head of line blocking
3480 * if an un-trusted VF does not provide descriptors to hardware.
3481 */
3482 if (adapter->vfs_allocated_count) {
3483 /* set all queue drop enable bits */
3484 wr32(E1000_QDE, ALL_QUEUES);
3485 }
3486
3487 /* This is useful for sniffing bad packets. */
3488 if (adapter->netdev->features & NETIF_F_RXALL) {
3489 /* UPE and MPE will be handled by normal PROMISC logic
3490 * in e1000e_set_rx_mode
3491 */
3492 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3493 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3494 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3495
3496 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3497 E1000_RCTL_DPF | /* Allow filtered pause */
3498 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3499 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3500 * and that breaks VLANs.
3501 */
3502 }
3503
3504 wr32(E1000_RCTL, rctl);
3505}
3506
3507static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3508 int vfn)
3509{
3510 struct e1000_hw *hw = &adapter->hw;
3511 u32 vmolr;
3512
3513 /* if it isn't the PF check to see if VFs are enabled and
3514 * increase the size to support vlan tags
3515 */
3516 if (vfn < adapter->vfs_allocated_count &&
3517 adapter->vf_data[vfn].vlans_enabled)
3518 size += VLAN_TAG_SIZE;
3519
3520 vmolr = rd32(E1000_VMOLR(vfn));
3521 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3522 vmolr |= size | E1000_VMOLR_LPE;
3523 wr32(E1000_VMOLR(vfn), vmolr);
3524
3525 return 0;
3526}
3527
3528/**
3529 * igb_rlpml_set - set maximum receive packet size
3530 * @adapter: board private structure
3531 *
3532 * Configure maximum receivable packet size.
3533 **/
3534static void igb_rlpml_set(struct igb_adapter *adapter)
3535{
3536 u32 max_frame_size = adapter->max_frame_size;
3537 struct e1000_hw *hw = &adapter->hw;
3538 u16 pf_id = adapter->vfs_allocated_count;
3539
3540 if (pf_id) {
3541 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3542 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3543 * to our max jumbo frame size, in case we need to enable
3544 * jumbo frames on one of the rings later.
3545 * This will not pass over-length frames into the default
3546 * queue because it's gated by the VMOLR.RLPML.
3547 */
3548 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3549 }
3550
3551 wr32(E1000_RLPML, max_frame_size);
3552}
3553
3554static inline void igb_set_vmolr(struct igb_adapter *adapter,
3555 int vfn, bool aupe)
3556{
3557 struct e1000_hw *hw = &adapter->hw;
3558 u32 vmolr;
3559
3560 /* This register exists only on 82576 and newer so if we are older then
3561 * we should exit and do nothing
3562 */
3563 if (hw->mac.type < e1000_82576)
3564 return;
3565
3566 vmolr = rd32(E1000_VMOLR(vfn));
3567 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3568 if (hw->mac.type == e1000_i350) {
3569 u32 dvmolr;
3570
3571 dvmolr = rd32(E1000_DVMOLR(vfn));
3572 dvmolr |= E1000_DVMOLR_STRVLAN;
3573 wr32(E1000_DVMOLR(vfn), dvmolr);
3574 }
3575 if (aupe)
3576 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3577 else
3578 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3579
3580 /* clear all bits that might not be set */
3581 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3582
3583 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3584 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3585 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3586 * multicast packets
3587 */
3588 if (vfn <= adapter->vfs_allocated_count)
3589 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3590
3591 wr32(E1000_VMOLR(vfn), vmolr);
3592}
3593
3594/**
3595 * igb_configure_rx_ring - Configure a receive ring after Reset
3596 * @adapter: board private structure
3597 * @ring: receive ring to be configured
3598 *
3599 * Configure the Rx unit of the MAC after a reset.
3600 **/
3601void igb_configure_rx_ring(struct igb_adapter *adapter,
3602 struct igb_ring *ring)
3603{
3604 struct e1000_hw *hw = &adapter->hw;
3605 u64 rdba = ring->dma;
3606 int reg_idx = ring->reg_idx;
3607 u32 srrctl = 0, rxdctl = 0;
3608
3609 /* disable the queue */
3610 wr32(E1000_RXDCTL(reg_idx), 0);
3611
3612 /* Set DMA base address registers */
3613 wr32(E1000_RDBAL(reg_idx),
3614 rdba & 0x00000000ffffffffULL);
3615 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3616 wr32(E1000_RDLEN(reg_idx),
3617 ring->count * sizeof(union e1000_adv_rx_desc));
3618
3619 /* initialize head and tail */
3620 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3621 wr32(E1000_RDH(reg_idx), 0);
3622 writel(0, ring->tail);
3623
3624 /* set descriptor configuration */
3625 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3626 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3627 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3628 if (hw->mac.type >= e1000_82580)
3629 srrctl |= E1000_SRRCTL_TIMESTAMP;
3630 /* Only set Drop Enable if we are supporting multiple queues */
3631 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3632 srrctl |= E1000_SRRCTL_DROP_EN;
3633
3634 wr32(E1000_SRRCTL(reg_idx), srrctl);
3635
3636 /* set filtering for VMDQ pools */
3637 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3638
3639 rxdctl |= IGB_RX_PTHRESH;
3640 rxdctl |= IGB_RX_HTHRESH << 8;
3641 rxdctl |= IGB_RX_WTHRESH << 16;
3642
3643 /* enable receive descriptor fetching */
3644 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3645 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3646}
3647
3648/**
3649 * igb_configure_rx - Configure receive Unit after Reset
3650 * @adapter: board private structure
3651 *
3652 * Configure the Rx unit of the MAC after a reset.
3653 **/
3654static void igb_configure_rx(struct igb_adapter *adapter)
3655{
3656 int i;
3657
3658 /* set UTA to appropriate mode */
3659 igb_set_uta(adapter);
3660
3661 /* set the correct pool for the PF default MAC address in entry 0 */
3662 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3663 adapter->vfs_allocated_count);
3664
3665 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3666 * the Base and Length of the Rx Descriptor Ring
3667 */
3668 for (i = 0; i < adapter->num_rx_queues; i++)
3669 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3670}
3671
3672/**
3673 * igb_free_tx_resources - Free Tx Resources per Queue
3674 * @tx_ring: Tx descriptor ring for a specific queue
3675 *
3676 * Free all transmit software resources
3677 **/
3678void igb_free_tx_resources(struct igb_ring *tx_ring)
3679{
3680 igb_clean_tx_ring(tx_ring);
3681
3682 vfree(tx_ring->tx_buffer_info);
3683 tx_ring->tx_buffer_info = NULL;
3684
3685 /* if not set, then don't free */
3686 if (!tx_ring->desc)
3687 return;
3688
3689 dma_free_coherent(tx_ring->dev, tx_ring->size,
3690 tx_ring->desc, tx_ring->dma);
3691
3692 tx_ring->desc = NULL;
3693}
3694
3695/**
3696 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3697 * @adapter: board private structure
3698 *
3699 * Free all transmit software resources
3700 **/
3701static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3702{
3703 int i;
3704
3705 for (i = 0; i < adapter->num_tx_queues; i++)
3706 if (adapter->tx_ring[i])
3707 igb_free_tx_resources(adapter->tx_ring[i]);
3708}
3709
3710void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3711 struct igb_tx_buffer *tx_buffer)
3712{
3713 if (tx_buffer->skb) {
3714 dev_kfree_skb_any(tx_buffer->skb);
3715 if (dma_unmap_len(tx_buffer, len))
3716 dma_unmap_single(ring->dev,
3717 dma_unmap_addr(tx_buffer, dma),
3718 dma_unmap_len(tx_buffer, len),
3719 DMA_TO_DEVICE);
3720 } else if (dma_unmap_len(tx_buffer, len)) {
3721 dma_unmap_page(ring->dev,
3722 dma_unmap_addr(tx_buffer, dma),
3723 dma_unmap_len(tx_buffer, len),
3724 DMA_TO_DEVICE);
3725 }
3726 tx_buffer->next_to_watch = NULL;
3727 tx_buffer->skb = NULL;
3728 dma_unmap_len_set(tx_buffer, len, 0);
3729 /* buffer_info must be completely set up in the transmit path */
3730}
3731
3732/**
3733 * igb_clean_tx_ring - Free Tx Buffers
3734 * @tx_ring: ring to be cleaned
3735 **/
3736static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3737{
3738 struct igb_tx_buffer *buffer_info;
3739 unsigned long size;
3740 u16 i;
3741
3742 if (!tx_ring->tx_buffer_info)
3743 return;
3744 /* Free all the Tx ring sk_buffs */
3745
3746 for (i = 0; i < tx_ring->count; i++) {
3747 buffer_info = &tx_ring->tx_buffer_info[i];
3748 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3749 }
3750
3751 netdev_tx_reset_queue(txring_txq(tx_ring));
3752
3753 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3754 memset(tx_ring->tx_buffer_info, 0, size);
3755
3756 /* Zero out the descriptor ring */
3757 memset(tx_ring->desc, 0, tx_ring->size);
3758
3759 tx_ring->next_to_use = 0;
3760 tx_ring->next_to_clean = 0;
3761}
3762
3763/**
3764 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3765 * @adapter: board private structure
3766 **/
3767static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3768{
3769 int i;
3770
3771 for (i = 0; i < adapter->num_tx_queues; i++)
3772 if (adapter->tx_ring[i])
3773 igb_clean_tx_ring(adapter->tx_ring[i]);
3774}
3775
3776/**
3777 * igb_free_rx_resources - Free Rx Resources
3778 * @rx_ring: ring to clean the resources from
3779 *
3780 * Free all receive software resources
3781 **/
3782void igb_free_rx_resources(struct igb_ring *rx_ring)
3783{
3784 igb_clean_rx_ring(rx_ring);
3785
3786 vfree(rx_ring->rx_buffer_info);
3787 rx_ring->rx_buffer_info = NULL;
3788
3789 /* if not set, then don't free */
3790 if (!rx_ring->desc)
3791 return;
3792
3793 dma_free_coherent(rx_ring->dev, rx_ring->size,
3794 rx_ring->desc, rx_ring->dma);
3795
3796 rx_ring->desc = NULL;
3797}
3798
3799/**
3800 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3801 * @adapter: board private structure
3802 *
3803 * Free all receive software resources
3804 **/
3805static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3806{
3807 int i;
3808
3809 for (i = 0; i < adapter->num_rx_queues; i++)
3810 if (adapter->rx_ring[i])
3811 igb_free_rx_resources(adapter->rx_ring[i]);
3812}
3813
3814/**
3815 * igb_clean_rx_ring - Free Rx Buffers per Queue
3816 * @rx_ring: ring to free buffers from
3817 **/
3818static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3819{
3820 unsigned long size;
3821 u16 i;
3822
3823 if (rx_ring->skb)
3824 dev_kfree_skb(rx_ring->skb);
3825 rx_ring->skb = NULL;
3826
3827 if (!rx_ring->rx_buffer_info)
3828 return;
3829
3830 /* Free all the Rx ring sk_buffs */
3831 for (i = 0; i < rx_ring->count; i++) {
3832 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3833
3834 if (!buffer_info->page)
3835 continue;
3836
3837 dma_unmap_page(rx_ring->dev,
3838 buffer_info->dma,
3839 PAGE_SIZE,
3840 DMA_FROM_DEVICE);
3841 __free_page(buffer_info->page);
3842
3843 buffer_info->page = NULL;
3844 }
3845
3846 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3847 memset(rx_ring->rx_buffer_info, 0, size);
3848
3849 /* Zero out the descriptor ring */
3850 memset(rx_ring->desc, 0, rx_ring->size);
3851
3852 rx_ring->next_to_alloc = 0;
3853 rx_ring->next_to_clean = 0;
3854 rx_ring->next_to_use = 0;
3855}
3856
3857/**
3858 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3859 * @adapter: board private structure
3860 **/
3861static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3862{
3863 int i;
3864
3865 for (i = 0; i < adapter->num_rx_queues; i++)
3866 if (adapter->rx_ring[i])
3867 igb_clean_rx_ring(adapter->rx_ring[i]);
3868}
3869
3870/**
3871 * igb_set_mac - Change the Ethernet Address of the NIC
3872 * @netdev: network interface device structure
3873 * @p: pointer to an address structure
3874 *
3875 * Returns 0 on success, negative on failure
3876 **/
3877static int igb_set_mac(struct net_device *netdev, void *p)
3878{
3879 struct igb_adapter *adapter = netdev_priv(netdev);
3880 struct e1000_hw *hw = &adapter->hw;
3881 struct sockaddr *addr = p;
3882
3883 if (!is_valid_ether_addr(addr->sa_data))
3884 return -EADDRNOTAVAIL;
3885
3886 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3887 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3888
3889 /* set the correct pool for the new PF MAC address in entry 0 */
3890 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3891 adapter->vfs_allocated_count);
3892
3893 return 0;
3894}
3895
3896/**
3897 * igb_write_mc_addr_list - write multicast addresses to MTA
3898 * @netdev: network interface device structure
3899 *
3900 * Writes multicast address list to the MTA hash table.
3901 * Returns: -ENOMEM on failure
3902 * 0 on no addresses written
3903 * X on writing X addresses to MTA
3904 **/
3905static int igb_write_mc_addr_list(struct net_device *netdev)
3906{
3907 struct igb_adapter *adapter = netdev_priv(netdev);
3908 struct e1000_hw *hw = &adapter->hw;
3909 struct netdev_hw_addr *ha;
3910 u8 *mta_list;
3911 int i;
3912
3913 if (netdev_mc_empty(netdev)) {
3914 /* nothing to program, so clear mc list */
3915 igb_update_mc_addr_list(hw, NULL, 0);
3916 igb_restore_vf_multicasts(adapter);
3917 return 0;
3918 }
3919
3920 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3921 if (!mta_list)
3922 return -ENOMEM;
3923
3924 /* The shared function expects a packed array of only addresses. */
3925 i = 0;
3926 netdev_for_each_mc_addr(ha, netdev)
3927 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3928
3929 igb_update_mc_addr_list(hw, mta_list, i);
3930 kfree(mta_list);
3931
3932 return netdev_mc_count(netdev);
3933}
3934
3935/**
3936 * igb_write_uc_addr_list - write unicast addresses to RAR table
3937 * @netdev: network interface device structure
3938 *
3939 * Writes unicast address list to the RAR table.
3940 * Returns: -ENOMEM on failure/insufficient address space
3941 * 0 on no addresses written
3942 * X on writing X addresses to the RAR table
3943 **/
3944static int igb_write_uc_addr_list(struct net_device *netdev)
3945{
3946 struct igb_adapter *adapter = netdev_priv(netdev);
3947 struct e1000_hw *hw = &adapter->hw;
3948 unsigned int vfn = adapter->vfs_allocated_count;
3949 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3950 int count = 0;
3951
3952 /* return ENOMEM indicating insufficient memory for addresses */
3953 if (netdev_uc_count(netdev) > rar_entries)
3954 return -ENOMEM;
3955
3956 if (!netdev_uc_empty(netdev) && rar_entries) {
3957 struct netdev_hw_addr *ha;
3958
3959 netdev_for_each_uc_addr(ha, netdev) {
3960 if (!rar_entries)
3961 break;
3962 igb_rar_set_qsel(adapter, ha->addr,
3963 rar_entries--,
3964 vfn);
3965 count++;
3966 }
3967 }
3968 /* write the addresses in reverse order to avoid write combining */
3969 for (; rar_entries > 0 ; rar_entries--) {
3970 wr32(E1000_RAH(rar_entries), 0);
3971 wr32(E1000_RAL(rar_entries), 0);
3972 }
3973 wrfl();
3974
3975 return count;
3976}
3977
3978/**
3979 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3980 * @netdev: network interface device structure
3981 *
3982 * The set_rx_mode entry point is called whenever the unicast or multicast
3983 * address lists or the network interface flags are updated. This routine is
3984 * responsible for configuring the hardware for proper unicast, multicast,
3985 * promiscuous mode, and all-multi behavior.
3986 **/
3987static void igb_set_rx_mode(struct net_device *netdev)
3988{
3989 struct igb_adapter *adapter = netdev_priv(netdev);
3990 struct e1000_hw *hw = &adapter->hw;
3991 unsigned int vfn = adapter->vfs_allocated_count;
3992 u32 rctl, vmolr = 0;
3993 int count;
3994
3995 /* Check for Promiscuous and All Multicast modes */
3996 rctl = rd32(E1000_RCTL);
3997
3998 /* clear the effected bits */
3999 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4000
4001 if (netdev->flags & IFF_PROMISC) {
4002 /* retain VLAN HW filtering if in VT mode */
4003 if (adapter->vfs_allocated_count)
4004 rctl |= E1000_RCTL_VFE;
4005 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4006 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4007 } else {
4008 if (netdev->flags & IFF_ALLMULTI) {
4009 rctl |= E1000_RCTL_MPE;
4010 vmolr |= E1000_VMOLR_MPME;
4011 } else {
4012 /* Write addresses to the MTA, if the attempt fails
4013 * then we should just turn on promiscuous mode so
4014 * that we can at least receive multicast traffic
4015 */
4016 count = igb_write_mc_addr_list(netdev);
4017 if (count < 0) {
4018 rctl |= E1000_RCTL_MPE;
4019 vmolr |= E1000_VMOLR_MPME;
4020 } else if (count) {
4021 vmolr |= E1000_VMOLR_ROMPE;
4022 }
4023 }
4024 /* Write addresses to available RAR registers, if there is not
4025 * sufficient space to store all the addresses then enable
4026 * unicast promiscuous mode
4027 */
4028 count = igb_write_uc_addr_list(netdev);
4029 if (count < 0) {
4030 rctl |= E1000_RCTL_UPE;
4031 vmolr |= E1000_VMOLR_ROPE;
4032 }
4033 rctl |= E1000_RCTL_VFE;
4034 }
4035 wr32(E1000_RCTL, rctl);
4036
4037 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4038 * the VMOLR to enable the appropriate modes. Without this workaround
4039 * we will have issues with VLAN tag stripping not being done for frames
4040 * that are only arriving because we are the default pool
4041 */
4042 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4043 return;
4044
4045 vmolr |= rd32(E1000_VMOLR(vfn)) &
4046 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4047 wr32(E1000_VMOLR(vfn), vmolr);
4048 igb_restore_vf_multicasts(adapter);
4049}
4050
4051static void igb_check_wvbr(struct igb_adapter *adapter)
4052{
4053 struct e1000_hw *hw = &adapter->hw;
4054 u32 wvbr = 0;
4055
4056 switch (hw->mac.type) {
4057 case e1000_82576:
4058 case e1000_i350:
4059 wvbr = rd32(E1000_WVBR);
4060 if (!wvbr)
4061 return;
4062 break;
4063 default:
4064 break;
4065 }
4066
4067 adapter->wvbr |= wvbr;
4068}
4069
4070#define IGB_STAGGERED_QUEUE_OFFSET 8
4071
4072static void igb_spoof_check(struct igb_adapter *adapter)
4073{
4074 int j;
4075
4076 if (!adapter->wvbr)
4077 return;
4078
4079 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4080 if (adapter->wvbr & (1 << j) ||
4081 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4082 dev_warn(&adapter->pdev->dev,
4083 "Spoof event(s) detected on VF %d\n", j);
4084 adapter->wvbr &=
4085 ~((1 << j) |
4086 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4087 }
4088 }
4089}
4090
4091/* Need to wait a few seconds after link up to get diagnostic information from
4092 * the phy
4093 */
4094static void igb_update_phy_info(unsigned long data)
4095{
4096 struct igb_adapter *adapter = (struct igb_adapter *) data;
4097 igb_get_phy_info(&adapter->hw);
4098}
4099
4100/**
4101 * igb_has_link - check shared code for link and determine up/down
4102 * @adapter: pointer to driver private info
4103 **/
4104bool igb_has_link(struct igb_adapter *adapter)
4105{
4106 struct e1000_hw *hw = &adapter->hw;
4107 bool link_active = false;
4108
4109 /* get_link_status is set on LSC (link status) interrupt or
4110 * rx sequence error interrupt. get_link_status will stay
4111 * false until the e1000_check_for_link establishes link
4112 * for copper adapters ONLY
4113 */
4114 switch (hw->phy.media_type) {
4115 case e1000_media_type_copper:
4116 if (!hw->mac.get_link_status)
4117 return true;
4118 case e1000_media_type_internal_serdes:
4119 hw->mac.ops.check_for_link(hw);
4120 link_active = !hw->mac.get_link_status;
4121 break;
4122 default:
4123 case e1000_media_type_unknown:
4124 break;
4125 }
4126
4127 if (((hw->mac.type == e1000_i210) ||
4128 (hw->mac.type == e1000_i211)) &&
4129 (hw->phy.id == I210_I_PHY_ID)) {
4130 if (!netif_carrier_ok(adapter->netdev)) {
4131 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4132 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4133 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4134 adapter->link_check_timeout = jiffies;
4135 }
4136 }
4137
4138 return link_active;
4139}
4140
4141static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4142{
4143 bool ret = false;
4144 u32 ctrl_ext, thstat;
4145
4146 /* check for thermal sensor event on i350 copper only */
4147 if (hw->mac.type == e1000_i350) {
4148 thstat = rd32(E1000_THSTAT);
4149 ctrl_ext = rd32(E1000_CTRL_EXT);
4150
4151 if ((hw->phy.media_type == e1000_media_type_copper) &&
4152 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4153 ret = !!(thstat & event);
4154 }
4155
4156 return ret;
4157}
4158
4159/**
4160 * igb_check_lvmmc - check for malformed packets received
4161 * and indicated in LVMMC register
4162 * @adapter: pointer to adapter
4163 **/
4164static void igb_check_lvmmc(struct igb_adapter *adapter)
4165{
4166 struct e1000_hw *hw = &adapter->hw;
4167 u32 lvmmc;
4168
4169 lvmmc = rd32(E1000_LVMMC);
4170 if (lvmmc) {
4171 if (unlikely(net_ratelimit())) {
4172 netdev_warn(adapter->netdev,
4173 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4174 lvmmc);
4175 }
4176 }
4177}
4178
4179/**
4180 * igb_watchdog - Timer Call-back
4181 * @data: pointer to adapter cast into an unsigned long
4182 **/
4183static void igb_watchdog(unsigned long data)
4184{
4185 struct igb_adapter *adapter = (struct igb_adapter *)data;
4186 /* Do the rest outside of interrupt context */
4187 schedule_work(&adapter->watchdog_task);
4188}
4189
4190static void igb_watchdog_task(struct work_struct *work)
4191{
4192 struct igb_adapter *adapter = container_of(work,
4193 struct igb_adapter,
4194 watchdog_task);
4195 struct e1000_hw *hw = &adapter->hw;
4196 struct e1000_phy_info *phy = &hw->phy;
4197 struct net_device *netdev = adapter->netdev;
4198 u32 link;
4199 int i;
4200 u32 connsw;
4201
4202 link = igb_has_link(adapter);
4203
4204 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4205 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4206 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4207 else
4208 link = false;
4209 }
4210
4211 /* Force link down if we have fiber to swap to */
4212 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4213 if (hw->phy.media_type == e1000_media_type_copper) {
4214 connsw = rd32(E1000_CONNSW);
4215 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4216 link = 0;
4217 }
4218 }
4219 if (link) {
4220 /* Perform a reset if the media type changed. */
4221 if (hw->dev_spec._82575.media_changed) {
4222 hw->dev_spec._82575.media_changed = false;
4223 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4224 igb_reset(adapter);
4225 }
4226 /* Cancel scheduled suspend requests. */
4227 pm_runtime_resume(netdev->dev.parent);
4228
4229 if (!netif_carrier_ok(netdev)) {
4230 u32 ctrl;
4231
4232 hw->mac.ops.get_speed_and_duplex(hw,
4233 &adapter->link_speed,
4234 &adapter->link_duplex);
4235
4236 ctrl = rd32(E1000_CTRL);
4237 /* Links status message must follow this format */
4238 netdev_info(netdev,
4239 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4240 netdev->name,
4241 adapter->link_speed,
4242 adapter->link_duplex == FULL_DUPLEX ?
4243 "Full" : "Half",
4244 (ctrl & E1000_CTRL_TFCE) &&
4245 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4246 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4247 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4248
4249 /* disable EEE if enabled */
4250 if ((adapter->flags & IGB_FLAG_EEE) &&
4251 (adapter->link_duplex == HALF_DUPLEX)) {
4252 dev_info(&adapter->pdev->dev,
4253 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4254 adapter->hw.dev_spec._82575.eee_disable = true;
4255 adapter->flags &= ~IGB_FLAG_EEE;
4256 }
4257
4258 /* check if SmartSpeed worked */
4259 igb_check_downshift(hw);
4260 if (phy->speed_downgraded)
4261 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4262
4263 /* check for thermal sensor event */
4264 if (igb_thermal_sensor_event(hw,
4265 E1000_THSTAT_LINK_THROTTLE))
4266 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4267
4268 /* adjust timeout factor according to speed/duplex */
4269 adapter->tx_timeout_factor = 1;
4270 switch (adapter->link_speed) {
4271 case SPEED_10:
4272 adapter->tx_timeout_factor = 14;
4273 break;
4274 case SPEED_100:
4275 /* maybe add some timeout factor ? */
4276 break;
4277 }
4278
4279 netif_carrier_on(netdev);
4280
4281 igb_ping_all_vfs(adapter);
4282 igb_check_vf_rate_limit(adapter);
4283
4284 /* link state has changed, schedule phy info update */
4285 if (!test_bit(__IGB_DOWN, &adapter->state))
4286 mod_timer(&adapter->phy_info_timer,
4287 round_jiffies(jiffies + 2 * HZ));
4288 }
4289 } else {
4290 if (netif_carrier_ok(netdev)) {
4291 adapter->link_speed = 0;
4292 adapter->link_duplex = 0;
4293
4294 /* check for thermal sensor event */
4295 if (igb_thermal_sensor_event(hw,
4296 E1000_THSTAT_PWR_DOWN)) {
4297 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4298 }
4299
4300 /* Links status message must follow this format */
4301 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4302 netdev->name);
4303 netif_carrier_off(netdev);
4304
4305 igb_ping_all_vfs(adapter);
4306
4307 /* link state has changed, schedule phy info update */
4308 if (!test_bit(__IGB_DOWN, &adapter->state))
4309 mod_timer(&adapter->phy_info_timer,
4310 round_jiffies(jiffies + 2 * HZ));
4311
4312 /* link is down, time to check for alternate media */
4313 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4314 igb_check_swap_media(adapter);
4315 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4316 schedule_work(&adapter->reset_task);
4317 /* return immediately */
4318 return;
4319 }
4320 }
4321 pm_schedule_suspend(netdev->dev.parent,
4322 MSEC_PER_SEC * 5);
4323
4324 /* also check for alternate media here */
4325 } else if (!netif_carrier_ok(netdev) &&
4326 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4327 igb_check_swap_media(adapter);
4328 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4329 schedule_work(&adapter->reset_task);
4330 /* return immediately */
4331 return;
4332 }
4333 }
4334 }
4335
4336 spin_lock(&adapter->stats64_lock);
4337 igb_update_stats(adapter, &adapter->stats64);
4338 spin_unlock(&adapter->stats64_lock);
4339
4340 for (i = 0; i < adapter->num_tx_queues; i++) {
4341 struct igb_ring *tx_ring = adapter->tx_ring[i];
4342 if (!netif_carrier_ok(netdev)) {
4343 /* We've lost link, so the controller stops DMA,
4344 * but we've got queued Tx work that's never going
4345 * to get done, so reset controller to flush Tx.
4346 * (Do the reset outside of interrupt context).
4347 */
4348 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4349 adapter->tx_timeout_count++;
4350 schedule_work(&adapter->reset_task);
4351 /* return immediately since reset is imminent */
4352 return;
4353 }
4354 }
4355
4356 /* Force detection of hung controller every watchdog period */
4357 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4358 }
4359
4360 /* Cause software interrupt to ensure Rx ring is cleaned */
4361 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4362 u32 eics = 0;
4363
4364 for (i = 0; i < adapter->num_q_vectors; i++)
4365 eics |= adapter->q_vector[i]->eims_value;
4366 wr32(E1000_EICS, eics);
4367 } else {
4368 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4369 }
4370
4371 igb_spoof_check(adapter);
4372 igb_ptp_rx_hang(adapter);
4373
4374 /* Check LVMMC register on i350/i354 only */
4375 if ((adapter->hw.mac.type == e1000_i350) ||
4376 (adapter->hw.mac.type == e1000_i354))
4377 igb_check_lvmmc(adapter);
4378
4379 /* Reset the timer */
4380 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4381 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4382 mod_timer(&adapter->watchdog_timer,
4383 round_jiffies(jiffies + HZ));
4384 else
4385 mod_timer(&adapter->watchdog_timer,
4386 round_jiffies(jiffies + 2 * HZ));
4387 }
4388}
4389
4390enum latency_range {
4391 lowest_latency = 0,
4392 low_latency = 1,
4393 bulk_latency = 2,
4394 latency_invalid = 255
4395};
4396
4397/**
4398 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4399 * @q_vector: pointer to q_vector
4400 *
4401 * Stores a new ITR value based on strictly on packet size. This
4402 * algorithm is less sophisticated than that used in igb_update_itr,
4403 * due to the difficulty of synchronizing statistics across multiple
4404 * receive rings. The divisors and thresholds used by this function
4405 * were determined based on theoretical maximum wire speed and testing
4406 * data, in order to minimize response time while increasing bulk
4407 * throughput.
4408 * This functionality is controlled by ethtool's coalescing settings.
4409 * NOTE: This function is called only when operating in a multiqueue
4410 * receive environment.
4411 **/
4412static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4413{
4414 int new_val = q_vector->itr_val;
4415 int avg_wire_size = 0;
4416 struct igb_adapter *adapter = q_vector->adapter;
4417 unsigned int packets;
4418
4419 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4420 * ints/sec - ITR timer value of 120 ticks.
4421 */
4422 if (adapter->link_speed != SPEED_1000) {
4423 new_val = IGB_4K_ITR;
4424 goto set_itr_val;
4425 }
4426
4427 packets = q_vector->rx.total_packets;
4428 if (packets)
4429 avg_wire_size = q_vector->rx.total_bytes / packets;
4430
4431 packets = q_vector->tx.total_packets;
4432 if (packets)
4433 avg_wire_size = max_t(u32, avg_wire_size,
4434 q_vector->tx.total_bytes / packets);
4435
4436 /* if avg_wire_size isn't set no work was done */
4437 if (!avg_wire_size)
4438 goto clear_counts;
4439
4440 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4441 avg_wire_size += 24;
4442
4443 /* Don't starve jumbo frames */
4444 avg_wire_size = min(avg_wire_size, 3000);
4445
4446 /* Give a little boost to mid-size frames */
4447 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4448 new_val = avg_wire_size / 3;
4449 else
4450 new_val = avg_wire_size / 2;
4451
4452 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4453 if (new_val < IGB_20K_ITR &&
4454 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4455 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4456 new_val = IGB_20K_ITR;
4457
4458set_itr_val:
4459 if (new_val != q_vector->itr_val) {
4460 q_vector->itr_val = new_val;
4461 q_vector->set_itr = 1;
4462 }
4463clear_counts:
4464 q_vector->rx.total_bytes = 0;
4465 q_vector->rx.total_packets = 0;
4466 q_vector->tx.total_bytes = 0;
4467 q_vector->tx.total_packets = 0;
4468}
4469
4470/**
4471 * igb_update_itr - update the dynamic ITR value based on statistics
4472 * @q_vector: pointer to q_vector
4473 * @ring_container: ring info to update the itr for
4474 *
4475 * Stores a new ITR value based on packets and byte
4476 * counts during the last interrupt. The advantage of per interrupt
4477 * computation is faster updates and more accurate ITR for the current
4478 * traffic pattern. Constants in this function were computed
4479 * based on theoretical maximum wire speed and thresholds were set based
4480 * on testing data as well as attempting to minimize response time
4481 * while increasing bulk throughput.
4482 * This functionality is controlled by ethtool's coalescing settings.
4483 * NOTE: These calculations are only valid when operating in a single-
4484 * queue environment.
4485 **/
4486static void igb_update_itr(struct igb_q_vector *q_vector,
4487 struct igb_ring_container *ring_container)
4488{
4489 unsigned int packets = ring_container->total_packets;
4490 unsigned int bytes = ring_container->total_bytes;
4491 u8 itrval = ring_container->itr;
4492
4493 /* no packets, exit with status unchanged */
4494 if (packets == 0)
4495 return;
4496
4497 switch (itrval) {
4498 case lowest_latency:
4499 /* handle TSO and jumbo frames */
4500 if (bytes/packets > 8000)
4501 itrval = bulk_latency;
4502 else if ((packets < 5) && (bytes > 512))
4503 itrval = low_latency;
4504 break;
4505 case low_latency: /* 50 usec aka 20000 ints/s */
4506 if (bytes > 10000) {
4507 /* this if handles the TSO accounting */
4508 if (bytes/packets > 8000)
4509 itrval = bulk_latency;
4510 else if ((packets < 10) || ((bytes/packets) > 1200))
4511 itrval = bulk_latency;
4512 else if ((packets > 35))
4513 itrval = lowest_latency;
4514 } else if (bytes/packets > 2000) {
4515 itrval = bulk_latency;
4516 } else if (packets <= 2 && bytes < 512) {
4517 itrval = lowest_latency;
4518 }
4519 break;
4520 case bulk_latency: /* 250 usec aka 4000 ints/s */
4521 if (bytes > 25000) {
4522 if (packets > 35)
4523 itrval = low_latency;
4524 } else if (bytes < 1500) {
4525 itrval = low_latency;
4526 }
4527 break;
4528 }
4529
4530 /* clear work counters since we have the values we need */
4531 ring_container->total_bytes = 0;
4532 ring_container->total_packets = 0;
4533
4534 /* write updated itr to ring container */
4535 ring_container->itr = itrval;
4536}
4537
4538static void igb_set_itr(struct igb_q_vector *q_vector)
4539{
4540 struct igb_adapter *adapter = q_vector->adapter;
4541 u32 new_itr = q_vector->itr_val;
4542 u8 current_itr = 0;
4543
4544 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4545 if (adapter->link_speed != SPEED_1000) {
4546 current_itr = 0;
4547 new_itr = IGB_4K_ITR;
4548 goto set_itr_now;
4549 }
4550
4551 igb_update_itr(q_vector, &q_vector->tx);
4552 igb_update_itr(q_vector, &q_vector->rx);
4553
4554 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4555
4556 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4557 if (current_itr == lowest_latency &&
4558 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4559 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4560 current_itr = low_latency;
4561
4562 switch (current_itr) {
4563 /* counts and packets in update_itr are dependent on these numbers */
4564 case lowest_latency:
4565 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4566 break;
4567 case low_latency:
4568 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4569 break;
4570 case bulk_latency:
4571 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4572 break;
4573 default:
4574 break;
4575 }
4576
4577set_itr_now:
4578 if (new_itr != q_vector->itr_val) {
4579 /* this attempts to bias the interrupt rate towards Bulk
4580 * by adding intermediate steps when interrupt rate is
4581 * increasing
4582 */
4583 new_itr = new_itr > q_vector->itr_val ?
4584 max((new_itr * q_vector->itr_val) /
4585 (new_itr + (q_vector->itr_val >> 2)),
4586 new_itr) : new_itr;
4587 /* Don't write the value here; it resets the adapter's
4588 * internal timer, and causes us to delay far longer than
4589 * we should between interrupts. Instead, we write the ITR
4590 * value at the beginning of the next interrupt so the timing
4591 * ends up being correct.
4592 */
4593 q_vector->itr_val = new_itr;
4594 q_vector->set_itr = 1;
4595 }
4596}
4597
4598static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4599 u32 type_tucmd, u32 mss_l4len_idx)
4600{
4601 struct e1000_adv_tx_context_desc *context_desc;
4602 u16 i = tx_ring->next_to_use;
4603
4604 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4605
4606 i++;
4607 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4608
4609 /* set bits to identify this as an advanced context descriptor */
4610 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4611
4612 /* For 82575, context index must be unique per ring. */
4613 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4614 mss_l4len_idx |= tx_ring->reg_idx << 4;
4615
4616 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4617 context_desc->seqnum_seed = 0;
4618 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4619 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4620}
4621
4622static int igb_tso(struct igb_ring *tx_ring,
4623 struct igb_tx_buffer *first,
4624 u8 *hdr_len)
4625{
4626 struct sk_buff *skb = first->skb;
4627 u32 vlan_macip_lens, type_tucmd;
4628 u32 mss_l4len_idx, l4len;
4629 int err;
4630
4631 if (skb->ip_summed != CHECKSUM_PARTIAL)
4632 return 0;
4633
4634 if (!skb_is_gso(skb))
4635 return 0;
4636
4637 err = skb_cow_head(skb, 0);
4638 if (err < 0)
4639 return err;
4640
4641 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4642 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4643
4644 if (first->protocol == htons(ETH_P_IP)) {
4645 struct iphdr *iph = ip_hdr(skb);
4646 iph->tot_len = 0;
4647 iph->check = 0;
4648 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4649 iph->daddr, 0,
4650 IPPROTO_TCP,
4651 0);
4652 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4653 first->tx_flags |= IGB_TX_FLAGS_TSO |
4654 IGB_TX_FLAGS_CSUM |
4655 IGB_TX_FLAGS_IPV4;
4656 } else if (skb_is_gso_v6(skb)) {
4657 ipv6_hdr(skb)->payload_len = 0;
4658 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4659 &ipv6_hdr(skb)->daddr,
4660 0, IPPROTO_TCP, 0);
4661 first->tx_flags |= IGB_TX_FLAGS_TSO |
4662 IGB_TX_FLAGS_CSUM;
4663 }
4664
4665 /* compute header lengths */
4666 l4len = tcp_hdrlen(skb);
4667 *hdr_len = skb_transport_offset(skb) + l4len;
4668
4669 /* update gso size and bytecount with header size */
4670 first->gso_segs = skb_shinfo(skb)->gso_segs;
4671 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4672
4673 /* MSS L4LEN IDX */
4674 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4675 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4676
4677 /* VLAN MACLEN IPLEN */
4678 vlan_macip_lens = skb_network_header_len(skb);
4679 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4680 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4681
4682 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4683
4684 return 1;
4685}
4686
4687static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4688{
4689 struct sk_buff *skb = first->skb;
4690 u32 vlan_macip_lens = 0;
4691 u32 mss_l4len_idx = 0;
4692 u32 type_tucmd = 0;
4693
4694 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4695 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4696 return;
4697 } else {
4698 u8 l4_hdr = 0;
4699
4700 switch (first->protocol) {
4701 case htons(ETH_P_IP):
4702 vlan_macip_lens |= skb_network_header_len(skb);
4703 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4704 l4_hdr = ip_hdr(skb)->protocol;
4705 break;
4706 case htons(ETH_P_IPV6):
4707 vlan_macip_lens |= skb_network_header_len(skb);
4708 l4_hdr = ipv6_hdr(skb)->nexthdr;
4709 break;
4710 default:
4711 if (unlikely(net_ratelimit())) {
4712 dev_warn(tx_ring->dev,
4713 "partial checksum but proto=%x!\n",
4714 first->protocol);
4715 }
4716 break;
4717 }
4718
4719 switch (l4_hdr) {
4720 case IPPROTO_TCP:
4721 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4722 mss_l4len_idx = tcp_hdrlen(skb) <<
4723 E1000_ADVTXD_L4LEN_SHIFT;
4724 break;
4725 case IPPROTO_SCTP:
4726 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4727 mss_l4len_idx = sizeof(struct sctphdr) <<
4728 E1000_ADVTXD_L4LEN_SHIFT;
4729 break;
4730 case IPPROTO_UDP:
4731 mss_l4len_idx = sizeof(struct udphdr) <<
4732 E1000_ADVTXD_L4LEN_SHIFT;
4733 break;
4734 default:
4735 if (unlikely(net_ratelimit())) {
4736 dev_warn(tx_ring->dev,
4737 "partial checksum but l4 proto=%x!\n",
4738 l4_hdr);
4739 }
4740 break;
4741 }
4742
4743 /* update TX checksum flag */
4744 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4745 }
4746
4747 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4748 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4749
4750 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4751}
4752
4753#define IGB_SET_FLAG(_input, _flag, _result) \
4754 ((_flag <= _result) ? \
4755 ((u32)(_input & _flag) * (_result / _flag)) : \
4756 ((u32)(_input & _flag) / (_flag / _result)))
4757
4758static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4759{
4760 /* set type for advanced descriptor with frame checksum insertion */
4761 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4762 E1000_ADVTXD_DCMD_DEXT |
4763 E1000_ADVTXD_DCMD_IFCS;
4764
4765 /* set HW vlan bit if vlan is present */
4766 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4767 (E1000_ADVTXD_DCMD_VLE));
4768
4769 /* set segmentation bits for TSO */
4770 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4771 (E1000_ADVTXD_DCMD_TSE));
4772
4773 /* set timestamp bit if present */
4774 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4775 (E1000_ADVTXD_MAC_TSTAMP));
4776
4777 /* insert frame checksum */
4778 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4779
4780 return cmd_type;
4781}
4782
4783static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4784 union e1000_adv_tx_desc *tx_desc,
4785 u32 tx_flags, unsigned int paylen)
4786{
4787 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4788
4789 /* 82575 requires a unique index per ring */
4790 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4791 olinfo_status |= tx_ring->reg_idx << 4;
4792
4793 /* insert L4 checksum */
4794 olinfo_status |= IGB_SET_FLAG(tx_flags,
4795 IGB_TX_FLAGS_CSUM,
4796 (E1000_TXD_POPTS_TXSM << 8));
4797
4798 /* insert IPv4 checksum */
4799 olinfo_status |= IGB_SET_FLAG(tx_flags,
4800 IGB_TX_FLAGS_IPV4,
4801 (E1000_TXD_POPTS_IXSM << 8));
4802
4803 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4804}
4805
4806static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4807{
4808 struct net_device *netdev = tx_ring->netdev;
4809
4810 netif_stop_subqueue(netdev, tx_ring->queue_index);
4811
4812 /* Herbert's original patch had:
4813 * smp_mb__after_netif_stop_queue();
4814 * but since that doesn't exist yet, just open code it.
4815 */
4816 smp_mb();
4817
4818 /* We need to check again in a case another CPU has just
4819 * made room available.
4820 */
4821 if (igb_desc_unused(tx_ring) < size)
4822 return -EBUSY;
4823
4824 /* A reprieve! */
4825 netif_wake_subqueue(netdev, tx_ring->queue_index);
4826
4827 u64_stats_update_begin(&tx_ring->tx_syncp2);
4828 tx_ring->tx_stats.restart_queue2++;
4829 u64_stats_update_end(&tx_ring->tx_syncp2);
4830
4831 return 0;
4832}
4833
4834static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4835{
4836 if (igb_desc_unused(tx_ring) >= size)
4837 return 0;
4838 return __igb_maybe_stop_tx(tx_ring, size);
4839}
4840
4841static void igb_tx_map(struct igb_ring *tx_ring,
4842 struct igb_tx_buffer *first,
4843 const u8 hdr_len)
4844{
4845 struct sk_buff *skb = first->skb;
4846 struct igb_tx_buffer *tx_buffer;
4847 union e1000_adv_tx_desc *tx_desc;
4848 struct skb_frag_struct *frag;
4849 dma_addr_t dma;
4850 unsigned int data_len, size;
4851 u32 tx_flags = first->tx_flags;
4852 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4853 u16 i = tx_ring->next_to_use;
4854
4855 tx_desc = IGB_TX_DESC(tx_ring, i);
4856
4857 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4858
4859 size = skb_headlen(skb);
4860 data_len = skb->data_len;
4861
4862 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4863
4864 tx_buffer = first;
4865
4866 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4867 if (dma_mapping_error(tx_ring->dev, dma))
4868 goto dma_error;
4869
4870 /* record length, and DMA address */
4871 dma_unmap_len_set(tx_buffer, len, size);
4872 dma_unmap_addr_set(tx_buffer, dma, dma);
4873
4874 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4875
4876 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4877 tx_desc->read.cmd_type_len =
4878 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4879
4880 i++;
4881 tx_desc++;
4882 if (i == tx_ring->count) {
4883 tx_desc = IGB_TX_DESC(tx_ring, 0);
4884 i = 0;
4885 }
4886 tx_desc->read.olinfo_status = 0;
4887
4888 dma += IGB_MAX_DATA_PER_TXD;
4889 size -= IGB_MAX_DATA_PER_TXD;
4890
4891 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4892 }
4893
4894 if (likely(!data_len))
4895 break;
4896
4897 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4898
4899 i++;
4900 tx_desc++;
4901 if (i == tx_ring->count) {
4902 tx_desc = IGB_TX_DESC(tx_ring, 0);
4903 i = 0;
4904 }
4905 tx_desc->read.olinfo_status = 0;
4906
4907 size = skb_frag_size(frag);
4908 data_len -= size;
4909
4910 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4911 size, DMA_TO_DEVICE);
4912
4913 tx_buffer = &tx_ring->tx_buffer_info[i];
4914 }
4915
4916 /* write last descriptor with RS and EOP bits */
4917 cmd_type |= size | IGB_TXD_DCMD;
4918 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4919
4920 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4921
4922 /* set the timestamp */
4923 first->time_stamp = jiffies;
4924
4925 /* Force memory writes to complete before letting h/w know there
4926 * are new descriptors to fetch. (Only applicable for weak-ordered
4927 * memory model archs, such as IA-64).
4928 *
4929 * We also need this memory barrier to make certain all of the
4930 * status bits have been updated before next_to_watch is written.
4931 */
4932 wmb();
4933
4934 /* set next_to_watch value indicating a packet is present */
4935 first->next_to_watch = tx_desc;
4936
4937 i++;
4938 if (i == tx_ring->count)
4939 i = 0;
4940
4941 tx_ring->next_to_use = i;
4942
4943 /* Make sure there is space in the ring for the next send. */
4944 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4945
4946 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4947 writel(i, tx_ring->tail);
4948
4949 /* we need this if more than one processor can write to our tail
4950 * at a time, it synchronizes IO on IA64/Altix systems
4951 */
4952 mmiowb();
4953 }
4954 return;
4955
4956dma_error:
4957 dev_err(tx_ring->dev, "TX DMA map failed\n");
4958
4959 /* clear dma mappings for failed tx_buffer_info map */
4960 for (;;) {
4961 tx_buffer = &tx_ring->tx_buffer_info[i];
4962 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4963 if (tx_buffer == first)
4964 break;
4965 if (i == 0)
4966 i = tx_ring->count;
4967 i--;
4968 }
4969
4970 tx_ring->next_to_use = i;
4971}
4972
4973netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4974 struct igb_ring *tx_ring)
4975{
4976 struct igb_tx_buffer *first;
4977 int tso;
4978 u32 tx_flags = 0;
4979 unsigned short f;
4980 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4981 __be16 protocol = vlan_get_protocol(skb);
4982 u8 hdr_len = 0;
4983
4984 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4985 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4986 * + 2 desc gap to keep tail from touching head,
4987 * + 1 desc for context descriptor,
4988 * otherwise try next time
4989 */
4990 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4991 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4992
4993 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4994 /* this is a hard error */
4995 return NETDEV_TX_BUSY;
4996 }
4997
4998 /* record the location of the first descriptor for this packet */
4999 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5000 first->skb = skb;
5001 first->bytecount = skb->len;
5002 first->gso_segs = 1;
5003
5004 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5005 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5006
5007 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5008 &adapter->state)) {
5009 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5010 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5011
5012 adapter->ptp_tx_skb = skb_get(skb);
5013 adapter->ptp_tx_start = jiffies;
5014 if (adapter->hw.mac.type == e1000_82576)
5015 schedule_work(&adapter->ptp_tx_work);
5016 }
5017 }
5018
5019 skb_tx_timestamp(skb);
5020
5021 if (skb_vlan_tag_present(skb)) {
5022 tx_flags |= IGB_TX_FLAGS_VLAN;
5023 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5024 }
5025
5026 /* record initial flags and protocol */
5027 first->tx_flags = tx_flags;
5028 first->protocol = protocol;
5029
5030 tso = igb_tso(tx_ring, first, &hdr_len);
5031 if (tso < 0)
5032 goto out_drop;
5033 else if (!tso)
5034 igb_tx_csum(tx_ring, first);
5035
5036 igb_tx_map(tx_ring, first, hdr_len);
5037
5038 return NETDEV_TX_OK;
5039
5040out_drop:
5041 igb_unmap_and_free_tx_resource(tx_ring, first);
5042
5043 return NETDEV_TX_OK;
5044}
5045
5046static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5047 struct sk_buff *skb)
5048{
5049 unsigned int r_idx = skb->queue_mapping;
5050
5051 if (r_idx >= adapter->num_tx_queues)
5052 r_idx = r_idx % adapter->num_tx_queues;
5053
5054 return adapter->tx_ring[r_idx];
5055}
5056
5057static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5058 struct net_device *netdev)
5059{
5060 struct igb_adapter *adapter = netdev_priv(netdev);
5061
5062 if (test_bit(__IGB_DOWN, &adapter->state)) {
5063 dev_kfree_skb_any(skb);
5064 return NETDEV_TX_OK;
5065 }
5066
5067 if (skb->len <= 0) {
5068 dev_kfree_skb_any(skb);
5069 return NETDEV_TX_OK;
5070 }
5071
5072 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5073 * in order to meet this minimum size requirement.
5074 */
5075 if (skb_put_padto(skb, 17))
5076 return NETDEV_TX_OK;
5077
5078 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5079}
5080
5081/**
5082 * igb_tx_timeout - Respond to a Tx Hang
5083 * @netdev: network interface device structure
5084 **/
5085static void igb_tx_timeout(struct net_device *netdev)
5086{
5087 struct igb_adapter *adapter = netdev_priv(netdev);
5088 struct e1000_hw *hw = &adapter->hw;
5089
5090 /* Do the reset outside of interrupt context */
5091 adapter->tx_timeout_count++;
5092
5093 if (hw->mac.type >= e1000_82580)
5094 hw->dev_spec._82575.global_device_reset = true;
5095
5096 schedule_work(&adapter->reset_task);
5097 wr32(E1000_EICS,
5098 (adapter->eims_enable_mask & ~adapter->eims_other));
5099}
5100
5101static void igb_reset_task(struct work_struct *work)
5102{
5103 struct igb_adapter *adapter;
5104 adapter = container_of(work, struct igb_adapter, reset_task);
5105
5106 igb_dump(adapter);
5107 netdev_err(adapter->netdev, "Reset adapter\n");
5108 igb_reinit_locked(adapter);
5109}
5110
5111/**
5112 * igb_get_stats64 - Get System Network Statistics
5113 * @netdev: network interface device structure
5114 * @stats: rtnl_link_stats64 pointer
5115 **/
5116static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5117 struct rtnl_link_stats64 *stats)
5118{
5119 struct igb_adapter *adapter = netdev_priv(netdev);
5120
5121 spin_lock(&adapter->stats64_lock);
5122 igb_update_stats(adapter, &adapter->stats64);
5123 memcpy(stats, &adapter->stats64, sizeof(*stats));
5124 spin_unlock(&adapter->stats64_lock);
5125
5126 return stats;
5127}
5128
5129/**
5130 * igb_change_mtu - Change the Maximum Transfer Unit
5131 * @netdev: network interface device structure
5132 * @new_mtu: new value for maximum frame size
5133 *
5134 * Returns 0 on success, negative on failure
5135 **/
5136static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5137{
5138 struct igb_adapter *adapter = netdev_priv(netdev);
5139 struct pci_dev *pdev = adapter->pdev;
5140 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5141
5142 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5143 dev_err(&pdev->dev, "Invalid MTU setting\n");
5144 return -EINVAL;
5145 }
5146
5147#define MAX_STD_JUMBO_FRAME_SIZE 9238
5148 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5149 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5150 return -EINVAL;
5151 }
5152
5153 /* adjust max frame to be at least the size of a standard frame */
5154 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5155 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5156
5157 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5158 usleep_range(1000, 2000);
5159
5160 /* igb_down has a dependency on max_frame_size */
5161 adapter->max_frame_size = max_frame;
5162
5163 if (netif_running(netdev))
5164 igb_down(adapter);
5165
5166 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5167 netdev->mtu, new_mtu);
5168 netdev->mtu = new_mtu;
5169
5170 if (netif_running(netdev))
5171 igb_up(adapter);
5172 else
5173 igb_reset(adapter);
5174
5175 clear_bit(__IGB_RESETTING, &adapter->state);
5176
5177 return 0;
5178}
5179
5180/**
5181 * igb_update_stats - Update the board statistics counters
5182 * @adapter: board private structure
5183 **/
5184void igb_update_stats(struct igb_adapter *adapter,
5185 struct rtnl_link_stats64 *net_stats)
5186{
5187 struct e1000_hw *hw = &adapter->hw;
5188 struct pci_dev *pdev = adapter->pdev;
5189 u32 reg, mpc;
5190 int i;
5191 u64 bytes, packets;
5192 unsigned int start;
5193 u64 _bytes, _packets;
5194
5195 /* Prevent stats update while adapter is being reset, or if the pci
5196 * connection is down.
5197 */
5198 if (adapter->link_speed == 0)
5199 return;
5200 if (pci_channel_offline(pdev))
5201 return;
5202
5203 bytes = 0;
5204 packets = 0;
5205
5206 rcu_read_lock();
5207 for (i = 0; i < adapter->num_rx_queues; i++) {
5208 struct igb_ring *ring = adapter->rx_ring[i];
5209 u32 rqdpc = rd32(E1000_RQDPC(i));
5210 if (hw->mac.type >= e1000_i210)
5211 wr32(E1000_RQDPC(i), 0);
5212
5213 if (rqdpc) {
5214 ring->rx_stats.drops += rqdpc;
5215 net_stats->rx_fifo_errors += rqdpc;
5216 }
5217
5218 do {
5219 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5220 _bytes = ring->rx_stats.bytes;
5221 _packets = ring->rx_stats.packets;
5222 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5223 bytes += _bytes;
5224 packets += _packets;
5225 }
5226
5227 net_stats->rx_bytes = bytes;
5228 net_stats->rx_packets = packets;
5229
5230 bytes = 0;
5231 packets = 0;
5232 for (i = 0; i < adapter->num_tx_queues; i++) {
5233 struct igb_ring *ring = adapter->tx_ring[i];
5234 do {
5235 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5236 _bytes = ring->tx_stats.bytes;
5237 _packets = ring->tx_stats.packets;
5238 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5239 bytes += _bytes;
5240 packets += _packets;
5241 }
5242 net_stats->tx_bytes = bytes;
5243 net_stats->tx_packets = packets;
5244 rcu_read_unlock();
5245
5246 /* read stats registers */
5247 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5248 adapter->stats.gprc += rd32(E1000_GPRC);
5249 adapter->stats.gorc += rd32(E1000_GORCL);
5250 rd32(E1000_GORCH); /* clear GORCL */
5251 adapter->stats.bprc += rd32(E1000_BPRC);
5252 adapter->stats.mprc += rd32(E1000_MPRC);
5253 adapter->stats.roc += rd32(E1000_ROC);
5254
5255 adapter->stats.prc64 += rd32(E1000_PRC64);
5256 adapter->stats.prc127 += rd32(E1000_PRC127);
5257 adapter->stats.prc255 += rd32(E1000_PRC255);
5258 adapter->stats.prc511 += rd32(E1000_PRC511);
5259 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5260 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5261 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5262 adapter->stats.sec += rd32(E1000_SEC);
5263
5264 mpc = rd32(E1000_MPC);
5265 adapter->stats.mpc += mpc;
5266 net_stats->rx_fifo_errors += mpc;
5267 adapter->stats.scc += rd32(E1000_SCC);
5268 adapter->stats.ecol += rd32(E1000_ECOL);
5269 adapter->stats.mcc += rd32(E1000_MCC);
5270 adapter->stats.latecol += rd32(E1000_LATECOL);
5271 adapter->stats.dc += rd32(E1000_DC);
5272 adapter->stats.rlec += rd32(E1000_RLEC);
5273 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5274 adapter->stats.xontxc += rd32(E1000_XONTXC);
5275 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5276 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5277 adapter->stats.fcruc += rd32(E1000_FCRUC);
5278 adapter->stats.gptc += rd32(E1000_GPTC);
5279 adapter->stats.gotc += rd32(E1000_GOTCL);
5280 rd32(E1000_GOTCH); /* clear GOTCL */
5281 adapter->stats.rnbc += rd32(E1000_RNBC);
5282 adapter->stats.ruc += rd32(E1000_RUC);
5283 adapter->stats.rfc += rd32(E1000_RFC);
5284 adapter->stats.rjc += rd32(E1000_RJC);
5285 adapter->stats.tor += rd32(E1000_TORH);
5286 adapter->stats.tot += rd32(E1000_TOTH);
5287 adapter->stats.tpr += rd32(E1000_TPR);
5288
5289 adapter->stats.ptc64 += rd32(E1000_PTC64);
5290 adapter->stats.ptc127 += rd32(E1000_PTC127);
5291 adapter->stats.ptc255 += rd32(E1000_PTC255);
5292 adapter->stats.ptc511 += rd32(E1000_PTC511);
5293 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5294 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5295
5296 adapter->stats.mptc += rd32(E1000_MPTC);
5297 adapter->stats.bptc += rd32(E1000_BPTC);
5298
5299 adapter->stats.tpt += rd32(E1000_TPT);
5300 adapter->stats.colc += rd32(E1000_COLC);
5301
5302 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5303 /* read internal phy specific stats */
5304 reg = rd32(E1000_CTRL_EXT);
5305 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5306 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5307
5308 /* this stat has invalid values on i210/i211 */
5309 if ((hw->mac.type != e1000_i210) &&
5310 (hw->mac.type != e1000_i211))
5311 adapter->stats.tncrs += rd32(E1000_TNCRS);
5312 }
5313
5314 adapter->stats.tsctc += rd32(E1000_TSCTC);
5315 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5316
5317 adapter->stats.iac += rd32(E1000_IAC);
5318 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5319 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5320 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5321 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5322 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5323 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5324 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5325 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5326
5327 /* Fill out the OS statistics structure */
5328 net_stats->multicast = adapter->stats.mprc;
5329 net_stats->collisions = adapter->stats.colc;
5330
5331 /* Rx Errors */
5332
5333 /* RLEC on some newer hardware can be incorrect so build
5334 * our own version based on RUC and ROC
5335 */
5336 net_stats->rx_errors = adapter->stats.rxerrc +
5337 adapter->stats.crcerrs + adapter->stats.algnerrc +
5338 adapter->stats.ruc + adapter->stats.roc +
5339 adapter->stats.cexterr;
5340 net_stats->rx_length_errors = adapter->stats.ruc +
5341 adapter->stats.roc;
5342 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5343 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5344 net_stats->rx_missed_errors = adapter->stats.mpc;
5345
5346 /* Tx Errors */
5347 net_stats->tx_errors = adapter->stats.ecol +
5348 adapter->stats.latecol;
5349 net_stats->tx_aborted_errors = adapter->stats.ecol;
5350 net_stats->tx_window_errors = adapter->stats.latecol;
5351 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5352
5353 /* Tx Dropped needs to be maintained elsewhere */
5354
5355 /* Management Stats */
5356 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5357 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5358 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5359
5360 /* OS2BMC Stats */
5361 reg = rd32(E1000_MANC);
5362 if (reg & E1000_MANC_EN_BMC2OS) {
5363 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5364 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5365 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5366 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5367 }
5368}
5369
5370static void igb_tsync_interrupt(struct igb_adapter *adapter)
5371{
5372 struct e1000_hw *hw = &adapter->hw;
5373 struct ptp_clock_event event;
5374 struct timespec ts;
5375 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5376
5377 if (tsicr & TSINTR_SYS_WRAP) {
5378 event.type = PTP_CLOCK_PPS;
5379 if (adapter->ptp_caps.pps)
5380 ptp_clock_event(adapter->ptp_clock, &event);
5381 else
5382 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5383 ack |= TSINTR_SYS_WRAP;
5384 }
5385
5386 if (tsicr & E1000_TSICR_TXTS) {
5387 /* retrieve hardware timestamp */
5388 schedule_work(&adapter->ptp_tx_work);
5389 ack |= E1000_TSICR_TXTS;
5390 }
5391
5392 if (tsicr & TSINTR_TT0) {
5393 spin_lock(&adapter->tmreg_lock);
5394 ts = timespec_add(adapter->perout[0].start,
5395 adapter->perout[0].period);
5396 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5397 wr32(E1000_TRGTTIMH0, ts.tv_sec);
5398 tsauxc = rd32(E1000_TSAUXC);
5399 tsauxc |= TSAUXC_EN_TT0;
5400 wr32(E1000_TSAUXC, tsauxc);
5401 adapter->perout[0].start = ts;
5402 spin_unlock(&adapter->tmreg_lock);
5403 ack |= TSINTR_TT0;
5404 }
5405
5406 if (tsicr & TSINTR_TT1) {
5407 spin_lock(&adapter->tmreg_lock);
5408 ts = timespec_add(adapter->perout[1].start,
5409 adapter->perout[1].period);
5410 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5411 wr32(E1000_TRGTTIMH1, ts.tv_sec);
5412 tsauxc = rd32(E1000_TSAUXC);
5413 tsauxc |= TSAUXC_EN_TT1;
5414 wr32(E1000_TSAUXC, tsauxc);
5415 adapter->perout[1].start = ts;
5416 spin_unlock(&adapter->tmreg_lock);
5417 ack |= TSINTR_TT1;
5418 }
5419
5420 if (tsicr & TSINTR_AUTT0) {
5421 nsec = rd32(E1000_AUXSTMPL0);
5422 sec = rd32(E1000_AUXSTMPH0);
5423 event.type = PTP_CLOCK_EXTTS;
5424 event.index = 0;
5425 event.timestamp = sec * 1000000000ULL + nsec;
5426 ptp_clock_event(adapter->ptp_clock, &event);
5427 ack |= TSINTR_AUTT0;
5428 }
5429
5430 if (tsicr & TSINTR_AUTT1) {
5431 nsec = rd32(E1000_AUXSTMPL1);
5432 sec = rd32(E1000_AUXSTMPH1);
5433 event.type = PTP_CLOCK_EXTTS;
5434 event.index = 1;
5435 event.timestamp = sec * 1000000000ULL + nsec;
5436 ptp_clock_event(adapter->ptp_clock, &event);
5437 ack |= TSINTR_AUTT1;
5438 }
5439
5440 /* acknowledge the interrupts */
5441 wr32(E1000_TSICR, ack);
5442}
5443
5444static irqreturn_t igb_msix_other(int irq, void *data)
5445{
5446 struct igb_adapter *adapter = data;
5447 struct e1000_hw *hw = &adapter->hw;
5448 u32 icr = rd32(E1000_ICR);
5449 /* reading ICR causes bit 31 of EICR to be cleared */
5450
5451 if (icr & E1000_ICR_DRSTA)
5452 schedule_work(&adapter->reset_task);
5453
5454 if (icr & E1000_ICR_DOUTSYNC) {
5455 /* HW is reporting DMA is out of sync */
5456 adapter->stats.doosync++;
5457 /* The DMA Out of Sync is also indication of a spoof event
5458 * in IOV mode. Check the Wrong VM Behavior register to
5459 * see if it is really a spoof event.
5460 */
5461 igb_check_wvbr(adapter);
5462 }
5463
5464 /* Check for a mailbox event */
5465 if (icr & E1000_ICR_VMMB)
5466 igb_msg_task(adapter);
5467
5468 if (icr & E1000_ICR_LSC) {
5469 hw->mac.get_link_status = 1;
5470 /* guard against interrupt when we're going down */
5471 if (!test_bit(__IGB_DOWN, &adapter->state))
5472 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5473 }
5474
5475 if (icr & E1000_ICR_TS)
5476 igb_tsync_interrupt(adapter);
5477
5478 wr32(E1000_EIMS, adapter->eims_other);
5479
5480 return IRQ_HANDLED;
5481}
5482
5483static void igb_write_itr(struct igb_q_vector *q_vector)
5484{
5485 struct igb_adapter *adapter = q_vector->adapter;
5486 u32 itr_val = q_vector->itr_val & 0x7FFC;
5487
5488 if (!q_vector->set_itr)
5489 return;
5490
5491 if (!itr_val)
5492 itr_val = 0x4;
5493
5494 if (adapter->hw.mac.type == e1000_82575)
5495 itr_val |= itr_val << 16;
5496 else
5497 itr_val |= E1000_EITR_CNT_IGNR;
5498
5499 writel(itr_val, q_vector->itr_register);
5500 q_vector->set_itr = 0;
5501}
5502
5503static irqreturn_t igb_msix_ring(int irq, void *data)
5504{
5505 struct igb_q_vector *q_vector = data;
5506
5507 /* Write the ITR value calculated from the previous interrupt. */
5508 igb_write_itr(q_vector);
5509
5510 napi_schedule(&q_vector->napi);
5511
5512 return IRQ_HANDLED;
5513}
5514
5515#ifdef CONFIG_IGB_DCA
5516static void igb_update_tx_dca(struct igb_adapter *adapter,
5517 struct igb_ring *tx_ring,
5518 int cpu)
5519{
5520 struct e1000_hw *hw = &adapter->hw;
5521 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5522
5523 if (hw->mac.type != e1000_82575)
5524 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5525
5526 /* We can enable relaxed ordering for reads, but not writes when
5527 * DCA is enabled. This is due to a known issue in some chipsets
5528 * which will cause the DCA tag to be cleared.
5529 */
5530 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5531 E1000_DCA_TXCTRL_DATA_RRO_EN |
5532 E1000_DCA_TXCTRL_DESC_DCA_EN;
5533
5534 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5535}
5536
5537static void igb_update_rx_dca(struct igb_adapter *adapter,
5538 struct igb_ring *rx_ring,
5539 int cpu)
5540{
5541 struct e1000_hw *hw = &adapter->hw;
5542 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5543
5544 if (hw->mac.type != e1000_82575)
5545 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5546
5547 /* We can enable relaxed ordering for reads, but not writes when
5548 * DCA is enabled. This is due to a known issue in some chipsets
5549 * which will cause the DCA tag to be cleared.
5550 */
5551 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5552 E1000_DCA_RXCTRL_DESC_DCA_EN;
5553
5554 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5555}
5556
5557static void igb_update_dca(struct igb_q_vector *q_vector)
5558{
5559 struct igb_adapter *adapter = q_vector->adapter;
5560 int cpu = get_cpu();
5561
5562 if (q_vector->cpu == cpu)
5563 goto out_no_update;
5564
5565 if (q_vector->tx.ring)
5566 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5567
5568 if (q_vector->rx.ring)
5569 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5570
5571 q_vector->cpu = cpu;
5572out_no_update:
5573 put_cpu();
5574}
5575
5576static void igb_setup_dca(struct igb_adapter *adapter)
5577{
5578 struct e1000_hw *hw = &adapter->hw;
5579 int i;
5580
5581 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5582 return;
5583
5584 /* Always use CB2 mode, difference is masked in the CB driver. */
5585 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5586
5587 for (i = 0; i < adapter->num_q_vectors; i++) {
5588 adapter->q_vector[i]->cpu = -1;
5589 igb_update_dca(adapter->q_vector[i]);
5590 }
5591}
5592
5593static int __igb_notify_dca(struct device *dev, void *data)
5594{
5595 struct net_device *netdev = dev_get_drvdata(dev);
5596 struct igb_adapter *adapter = netdev_priv(netdev);
5597 struct pci_dev *pdev = adapter->pdev;
5598 struct e1000_hw *hw = &adapter->hw;
5599 unsigned long event = *(unsigned long *)data;
5600
5601 switch (event) {
5602 case DCA_PROVIDER_ADD:
5603 /* if already enabled, don't do it again */
5604 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5605 break;
5606 if (dca_add_requester(dev) == 0) {
5607 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5608 dev_info(&pdev->dev, "DCA enabled\n");
5609 igb_setup_dca(adapter);
5610 break;
5611 }
5612 /* Fall Through since DCA is disabled. */
5613 case DCA_PROVIDER_REMOVE:
5614 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5615 /* without this a class_device is left
5616 * hanging around in the sysfs model
5617 */
5618 dca_remove_requester(dev);
5619 dev_info(&pdev->dev, "DCA disabled\n");
5620 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5621 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5622 }
5623 break;
5624 }
5625
5626 return 0;
5627}
5628
5629static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5630 void *p)
5631{
5632 int ret_val;
5633
5634 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5635 __igb_notify_dca);
5636
5637 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5638}
5639#endif /* CONFIG_IGB_DCA */
5640
5641#ifdef CONFIG_PCI_IOV
5642static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5643{
5644 unsigned char mac_addr[ETH_ALEN];
5645
5646 eth_zero_addr(mac_addr);
5647 igb_set_vf_mac(adapter, vf, mac_addr);
5648
5649 /* By default spoof check is enabled for all VFs */
5650 adapter->vf_data[vf].spoofchk_enabled = true;
5651
5652 return 0;
5653}
5654
5655#endif
5656static void igb_ping_all_vfs(struct igb_adapter *adapter)
5657{
5658 struct e1000_hw *hw = &adapter->hw;
5659 u32 ping;
5660 int i;
5661
5662 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5663 ping = E1000_PF_CONTROL_MSG;
5664 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5665 ping |= E1000_VT_MSGTYPE_CTS;
5666 igb_write_mbx(hw, &ping, 1, i);
5667 }
5668}
5669
5670static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5671{
5672 struct e1000_hw *hw = &adapter->hw;
5673 u32 vmolr = rd32(E1000_VMOLR(vf));
5674 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5675
5676 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5677 IGB_VF_FLAG_MULTI_PROMISC);
5678 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5679
5680 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5681 vmolr |= E1000_VMOLR_MPME;
5682 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5683 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5684 } else {
5685 /* if we have hashes and we are clearing a multicast promisc
5686 * flag we need to write the hashes to the MTA as this step
5687 * was previously skipped
5688 */
5689 if (vf_data->num_vf_mc_hashes > 30) {
5690 vmolr |= E1000_VMOLR_MPME;
5691 } else if (vf_data->num_vf_mc_hashes) {
5692 int j;
5693
5694 vmolr |= E1000_VMOLR_ROMPE;
5695 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5696 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5697 }
5698 }
5699
5700 wr32(E1000_VMOLR(vf), vmolr);
5701
5702 /* there are flags left unprocessed, likely not supported */
5703 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5704 return -EINVAL;
5705
5706 return 0;
5707}
5708
5709static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5710 u32 *msgbuf, u32 vf)
5711{
5712 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5713 u16 *hash_list = (u16 *)&msgbuf[1];
5714 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5715 int i;
5716
5717 /* salt away the number of multicast addresses assigned
5718 * to this VF for later use to restore when the PF multi cast
5719 * list changes
5720 */
5721 vf_data->num_vf_mc_hashes = n;
5722
5723 /* only up to 30 hash values supported */
5724 if (n > 30)
5725 n = 30;
5726
5727 /* store the hashes for later use */
5728 for (i = 0; i < n; i++)
5729 vf_data->vf_mc_hashes[i] = hash_list[i];
5730
5731 /* Flush and reset the mta with the new values */
5732 igb_set_rx_mode(adapter->netdev);
5733
5734 return 0;
5735}
5736
5737static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5738{
5739 struct e1000_hw *hw = &adapter->hw;
5740 struct vf_data_storage *vf_data;
5741 int i, j;
5742
5743 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5744 u32 vmolr = rd32(E1000_VMOLR(i));
5745
5746 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5747
5748 vf_data = &adapter->vf_data[i];
5749
5750 if ((vf_data->num_vf_mc_hashes > 30) ||
5751 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5752 vmolr |= E1000_VMOLR_MPME;
5753 } else if (vf_data->num_vf_mc_hashes) {
5754 vmolr |= E1000_VMOLR_ROMPE;
5755 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5756 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5757 }
5758 wr32(E1000_VMOLR(i), vmolr);
5759 }
5760}
5761
5762static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5763{
5764 struct e1000_hw *hw = &adapter->hw;
5765 u32 pool_mask, reg, vid;
5766 int i;
5767
5768 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5769
5770 /* Find the vlan filter for this id */
5771 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5772 reg = rd32(E1000_VLVF(i));
5773
5774 /* remove the vf from the pool */
5775 reg &= ~pool_mask;
5776
5777 /* if pool is empty then remove entry from vfta */
5778 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5779 (reg & E1000_VLVF_VLANID_ENABLE)) {
5780 reg = 0;
5781 vid = reg & E1000_VLVF_VLANID_MASK;
5782 igb_vfta_set(hw, vid, false);
5783 }
5784
5785 wr32(E1000_VLVF(i), reg);
5786 }
5787
5788 adapter->vf_data[vf].vlans_enabled = 0;
5789}
5790
5791static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5792{
5793 struct e1000_hw *hw = &adapter->hw;
5794 u32 reg, i;
5795
5796 /* The vlvf table only exists on 82576 hardware and newer */
5797 if (hw->mac.type < e1000_82576)
5798 return -1;
5799
5800 /* we only need to do this if VMDq is enabled */
5801 if (!adapter->vfs_allocated_count)
5802 return -1;
5803
5804 /* Find the vlan filter for this id */
5805 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5806 reg = rd32(E1000_VLVF(i));
5807 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5808 vid == (reg & E1000_VLVF_VLANID_MASK))
5809 break;
5810 }
5811
5812 if (add) {
5813 if (i == E1000_VLVF_ARRAY_SIZE) {
5814 /* Did not find a matching VLAN ID entry that was
5815 * enabled. Search for a free filter entry, i.e.
5816 * one without the enable bit set
5817 */
5818 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5819 reg = rd32(E1000_VLVF(i));
5820 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5821 break;
5822 }
5823 }
5824 if (i < E1000_VLVF_ARRAY_SIZE) {
5825 /* Found an enabled/available entry */
5826 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5827
5828 /* if !enabled we need to set this up in vfta */
5829 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5830 /* add VID to filter table */
5831 igb_vfta_set(hw, vid, true);
5832 reg |= E1000_VLVF_VLANID_ENABLE;
5833 }
5834 reg &= ~E1000_VLVF_VLANID_MASK;
5835 reg |= vid;
5836 wr32(E1000_VLVF(i), reg);
5837
5838 /* do not modify RLPML for PF devices */
5839 if (vf >= adapter->vfs_allocated_count)
5840 return 0;
5841
5842 if (!adapter->vf_data[vf].vlans_enabled) {
5843 u32 size;
5844
5845 reg = rd32(E1000_VMOLR(vf));
5846 size = reg & E1000_VMOLR_RLPML_MASK;
5847 size += 4;
5848 reg &= ~E1000_VMOLR_RLPML_MASK;
5849 reg |= size;
5850 wr32(E1000_VMOLR(vf), reg);
5851 }
5852
5853 adapter->vf_data[vf].vlans_enabled++;
5854 }
5855 } else {
5856 if (i < E1000_VLVF_ARRAY_SIZE) {
5857 /* remove vf from the pool */
5858 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5859 /* if pool is empty then remove entry from vfta */
5860 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5861 reg = 0;
5862 igb_vfta_set(hw, vid, false);
5863 }
5864 wr32(E1000_VLVF(i), reg);
5865
5866 /* do not modify RLPML for PF devices */
5867 if (vf >= adapter->vfs_allocated_count)
5868 return 0;
5869
5870 adapter->vf_data[vf].vlans_enabled--;
5871 if (!adapter->vf_data[vf].vlans_enabled) {
5872 u32 size;
5873
5874 reg = rd32(E1000_VMOLR(vf));
5875 size = reg & E1000_VMOLR_RLPML_MASK;
5876 size -= 4;
5877 reg &= ~E1000_VMOLR_RLPML_MASK;
5878 reg |= size;
5879 wr32(E1000_VMOLR(vf), reg);
5880 }
5881 }
5882 }
5883 return 0;
5884}
5885
5886static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5887{
5888 struct e1000_hw *hw = &adapter->hw;
5889
5890 if (vid)
5891 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5892 else
5893 wr32(E1000_VMVIR(vf), 0);
5894}
5895
5896static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5897 int vf, u16 vlan, u8 qos)
5898{
5899 int err = 0;
5900 struct igb_adapter *adapter = netdev_priv(netdev);
5901
5902 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5903 return -EINVAL;
5904 if (vlan || qos) {
5905 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5906 if (err)
5907 goto out;
5908 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5909 igb_set_vmolr(adapter, vf, !vlan);
5910 adapter->vf_data[vf].pf_vlan = vlan;
5911 adapter->vf_data[vf].pf_qos = qos;
5912 dev_info(&adapter->pdev->dev,
5913 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5914 if (test_bit(__IGB_DOWN, &adapter->state)) {
5915 dev_warn(&adapter->pdev->dev,
5916 "The VF VLAN has been set, but the PF device is not up.\n");
5917 dev_warn(&adapter->pdev->dev,
5918 "Bring the PF device up before attempting to use the VF device.\n");
5919 }
5920 } else {
5921 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5922 false, vf);
5923 igb_set_vmvir(adapter, vlan, vf);
5924 igb_set_vmolr(adapter, vf, true);
5925 adapter->vf_data[vf].pf_vlan = 0;
5926 adapter->vf_data[vf].pf_qos = 0;
5927 }
5928out:
5929 return err;
5930}
5931
5932static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5933{
5934 struct e1000_hw *hw = &adapter->hw;
5935 int i;
5936 u32 reg;
5937
5938 /* Find the vlan filter for this id */
5939 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5940 reg = rd32(E1000_VLVF(i));
5941 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5942 vid == (reg & E1000_VLVF_VLANID_MASK))
5943 break;
5944 }
5945
5946 if (i >= E1000_VLVF_ARRAY_SIZE)
5947 i = -1;
5948
5949 return i;
5950}
5951
5952static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5953{
5954 struct e1000_hw *hw = &adapter->hw;
5955 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5956 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5957 int err = 0;
5958
5959 /* If in promiscuous mode we need to make sure the PF also has
5960 * the VLAN filter set.
5961 */
5962 if (add && (adapter->netdev->flags & IFF_PROMISC))
5963 err = igb_vlvf_set(adapter, vid, add,
5964 adapter->vfs_allocated_count);
5965 if (err)
5966 goto out;
5967
5968 err = igb_vlvf_set(adapter, vid, add, vf);
5969
5970 if (err)
5971 goto out;
5972
5973 /* Go through all the checks to see if the VLAN filter should
5974 * be wiped completely.
5975 */
5976 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5977 u32 vlvf, bits;
5978 int regndx = igb_find_vlvf_entry(adapter, vid);
5979
5980 if (regndx < 0)
5981 goto out;
5982 /* See if any other pools are set for this VLAN filter
5983 * entry other than the PF.
5984 */
5985 vlvf = bits = rd32(E1000_VLVF(regndx));
5986 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5987 adapter->vfs_allocated_count);
5988 /* If the filter was removed then ensure PF pool bit
5989 * is cleared if the PF only added itself to the pool
5990 * because the PF is in promiscuous mode.
5991 */
5992 if ((vlvf & VLAN_VID_MASK) == vid &&
5993 !test_bit(vid, adapter->active_vlans) &&
5994 !bits)
5995 igb_vlvf_set(adapter, vid, add,
5996 adapter->vfs_allocated_count);
5997 }
5998
5999out:
6000 return err;
6001}
6002
6003static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6004{
6005 /* clear flags - except flag that indicates PF has set the MAC */
6006 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6007 adapter->vf_data[vf].last_nack = jiffies;
6008
6009 /* reset offloads to defaults */
6010 igb_set_vmolr(adapter, vf, true);
6011
6012 /* reset vlans for device */
6013 igb_clear_vf_vfta(adapter, vf);
6014 if (adapter->vf_data[vf].pf_vlan)
6015 igb_ndo_set_vf_vlan(adapter->netdev, vf,
6016 adapter->vf_data[vf].pf_vlan,
6017 adapter->vf_data[vf].pf_qos);
6018 else
6019 igb_clear_vf_vfta(adapter, vf);
6020
6021 /* reset multicast table array for vf */
6022 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6023
6024 /* Flush and reset the mta with the new values */
6025 igb_set_rx_mode(adapter->netdev);
6026}
6027
6028static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6029{
6030 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6031
6032 /* clear mac address as we were hotplug removed/added */
6033 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6034 eth_zero_addr(vf_mac);
6035
6036 /* process remaining reset events */
6037 igb_vf_reset(adapter, vf);
6038}
6039
6040static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6041{
6042 struct e1000_hw *hw = &adapter->hw;
6043 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6044 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6045 u32 reg, msgbuf[3];
6046 u8 *addr = (u8 *)(&msgbuf[1]);
6047
6048 /* process all the same items cleared in a function level reset */
6049 igb_vf_reset(adapter, vf);
6050
6051 /* set vf mac address */
6052 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6053
6054 /* enable transmit and receive for vf */
6055 reg = rd32(E1000_VFTE);
6056 wr32(E1000_VFTE, reg | (1 << vf));
6057 reg = rd32(E1000_VFRE);
6058 wr32(E1000_VFRE, reg | (1 << vf));
6059
6060 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6061
6062 /* reply to reset with ack and vf mac address */
6063 if (!is_zero_ether_addr(vf_mac)) {
6064 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6065 memcpy(addr, vf_mac, ETH_ALEN);
6066 } else {
6067 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6068 }
6069 igb_write_mbx(hw, msgbuf, 3, vf);
6070}
6071
6072static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6073{
6074 /* The VF MAC Address is stored in a packed array of bytes
6075 * starting at the second 32 bit word of the msg array
6076 */
6077 unsigned char *addr = (char *)&msg[1];
6078 int err = -1;
6079
6080 if (is_valid_ether_addr(addr))
6081 err = igb_set_vf_mac(adapter, vf, addr);
6082
6083 return err;
6084}
6085
6086static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6087{
6088 struct e1000_hw *hw = &adapter->hw;
6089 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6090 u32 msg = E1000_VT_MSGTYPE_NACK;
6091
6092 /* if device isn't clear to send it shouldn't be reading either */
6093 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6094 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6095 igb_write_mbx(hw, &msg, 1, vf);
6096 vf_data->last_nack = jiffies;
6097 }
6098}
6099
6100static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6101{
6102 struct pci_dev *pdev = adapter->pdev;
6103 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6104 struct e1000_hw *hw = &adapter->hw;
6105 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6106 s32 retval;
6107
6108 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6109
6110 if (retval) {
6111 /* if receive failed revoke VF CTS stats and restart init */
6112 dev_err(&pdev->dev, "Error receiving message from VF\n");
6113 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6114 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6115 return;
6116 goto out;
6117 }
6118
6119 /* this is a message we already processed, do nothing */
6120 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6121 return;
6122
6123 /* until the vf completes a reset it should not be
6124 * allowed to start any configuration.
6125 */
6126 if (msgbuf[0] == E1000_VF_RESET) {
6127 igb_vf_reset_msg(adapter, vf);
6128 return;
6129 }
6130
6131 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6132 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6133 return;
6134 retval = -1;
6135 goto out;
6136 }
6137
6138 switch ((msgbuf[0] & 0xFFFF)) {
6139 case E1000_VF_SET_MAC_ADDR:
6140 retval = -EINVAL;
6141 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6142 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6143 else
6144 dev_warn(&pdev->dev,
6145 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6146 vf);
6147 break;
6148 case E1000_VF_SET_PROMISC:
6149 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6150 break;
6151 case E1000_VF_SET_MULTICAST:
6152 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6153 break;
6154 case E1000_VF_SET_LPE:
6155 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6156 break;
6157 case E1000_VF_SET_VLAN:
6158 retval = -1;
6159 if (vf_data->pf_vlan)
6160 dev_warn(&pdev->dev,
6161 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6162 vf);
6163 else
6164 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6165 break;
6166 default:
6167 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6168 retval = -1;
6169 break;
6170 }
6171
6172 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6173out:
6174 /* notify the VF of the results of what it sent us */
6175 if (retval)
6176 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6177 else
6178 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6179
6180 igb_write_mbx(hw, msgbuf, 1, vf);
6181}
6182
6183static void igb_msg_task(struct igb_adapter *adapter)
6184{
6185 struct e1000_hw *hw = &adapter->hw;
6186 u32 vf;
6187
6188 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6189 /* process any reset requests */
6190 if (!igb_check_for_rst(hw, vf))
6191 igb_vf_reset_event(adapter, vf);
6192
6193 /* process any messages pending */
6194 if (!igb_check_for_msg(hw, vf))
6195 igb_rcv_msg_from_vf(adapter, vf);
6196
6197 /* process any acks */
6198 if (!igb_check_for_ack(hw, vf))
6199 igb_rcv_ack_from_vf(adapter, vf);
6200 }
6201}
6202
6203/**
6204 * igb_set_uta - Set unicast filter table address
6205 * @adapter: board private structure
6206 *
6207 * The unicast table address is a register array of 32-bit registers.
6208 * The table is meant to be used in a way similar to how the MTA is used
6209 * however due to certain limitations in the hardware it is necessary to
6210 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6211 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6212 **/
6213static void igb_set_uta(struct igb_adapter *adapter)
6214{
6215 struct e1000_hw *hw = &adapter->hw;
6216 int i;
6217
6218 /* The UTA table only exists on 82576 hardware and newer */
6219 if (hw->mac.type < e1000_82576)
6220 return;
6221
6222 /* we only need to do this if VMDq is enabled */
6223 if (!adapter->vfs_allocated_count)
6224 return;
6225
6226 for (i = 0; i < hw->mac.uta_reg_count; i++)
6227 array_wr32(E1000_UTA, i, ~0);
6228}
6229
6230/**
6231 * igb_intr_msi - Interrupt Handler
6232 * @irq: interrupt number
6233 * @data: pointer to a network interface device structure
6234 **/
6235static irqreturn_t igb_intr_msi(int irq, void *data)
6236{
6237 struct igb_adapter *adapter = data;
6238 struct igb_q_vector *q_vector = adapter->q_vector[0];
6239 struct e1000_hw *hw = &adapter->hw;
6240 /* read ICR disables interrupts using IAM */
6241 u32 icr = rd32(E1000_ICR);
6242
6243 igb_write_itr(q_vector);
6244
6245 if (icr & E1000_ICR_DRSTA)
6246 schedule_work(&adapter->reset_task);
6247
6248 if (icr & E1000_ICR_DOUTSYNC) {
6249 /* HW is reporting DMA is out of sync */
6250 adapter->stats.doosync++;
6251 }
6252
6253 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6254 hw->mac.get_link_status = 1;
6255 if (!test_bit(__IGB_DOWN, &adapter->state))
6256 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6257 }
6258
6259 if (icr & E1000_ICR_TS)
6260 igb_tsync_interrupt(adapter);
6261
6262 napi_schedule(&q_vector->napi);
6263
6264 return IRQ_HANDLED;
6265}
6266
6267/**
6268 * igb_intr - Legacy Interrupt Handler
6269 * @irq: interrupt number
6270 * @data: pointer to a network interface device structure
6271 **/
6272static irqreturn_t igb_intr(int irq, void *data)
6273{
6274 struct igb_adapter *adapter = data;
6275 struct igb_q_vector *q_vector = adapter->q_vector[0];
6276 struct e1000_hw *hw = &adapter->hw;
6277 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6278 * need for the IMC write
6279 */
6280 u32 icr = rd32(E1000_ICR);
6281
6282 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6283 * not set, then the adapter didn't send an interrupt
6284 */
6285 if (!(icr & E1000_ICR_INT_ASSERTED))
6286 return IRQ_NONE;
6287
6288 igb_write_itr(q_vector);
6289
6290 if (icr & E1000_ICR_DRSTA)
6291 schedule_work(&adapter->reset_task);
6292
6293 if (icr & E1000_ICR_DOUTSYNC) {
6294 /* HW is reporting DMA is out of sync */
6295 adapter->stats.doosync++;
6296 }
6297
6298 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6299 hw->mac.get_link_status = 1;
6300 /* guard against interrupt when we're going down */
6301 if (!test_bit(__IGB_DOWN, &adapter->state))
6302 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6303 }
6304
6305 if (icr & E1000_ICR_TS)
6306 igb_tsync_interrupt(adapter);
6307
6308 napi_schedule(&q_vector->napi);
6309
6310 return IRQ_HANDLED;
6311}
6312
6313static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6314{
6315 struct igb_adapter *adapter = q_vector->adapter;
6316 struct e1000_hw *hw = &adapter->hw;
6317
6318 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6319 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6320 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6321 igb_set_itr(q_vector);
6322 else
6323 igb_update_ring_itr(q_vector);
6324 }
6325
6326 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6327 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6328 wr32(E1000_EIMS, q_vector->eims_value);
6329 else
6330 igb_irq_enable(adapter);
6331 }
6332}
6333
6334/**
6335 * igb_poll - NAPI Rx polling callback
6336 * @napi: napi polling structure
6337 * @budget: count of how many packets we should handle
6338 **/
6339static int igb_poll(struct napi_struct *napi, int budget)
6340{
6341 struct igb_q_vector *q_vector = container_of(napi,
6342 struct igb_q_vector,
6343 napi);
6344 bool clean_complete = true;
6345
6346#ifdef CONFIG_IGB_DCA
6347 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6348 igb_update_dca(q_vector);
6349#endif
6350 if (q_vector->tx.ring)
6351 clean_complete = igb_clean_tx_irq(q_vector);
6352
6353 if (q_vector->rx.ring)
6354 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6355
6356 /* If all work not completed, return budget and keep polling */
6357 if (!clean_complete)
6358 return budget;
6359
6360 /* If not enough Rx work done, exit the polling mode */
6361 napi_complete(napi);
6362 igb_ring_irq_enable(q_vector);
6363
6364 return 0;
6365}
6366
6367/**
6368 * igb_clean_tx_irq - Reclaim resources after transmit completes
6369 * @q_vector: pointer to q_vector containing needed info
6370 *
6371 * returns true if ring is completely cleaned
6372 **/
6373static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6374{
6375 struct igb_adapter *adapter = q_vector->adapter;
6376 struct igb_ring *tx_ring = q_vector->tx.ring;
6377 struct igb_tx_buffer *tx_buffer;
6378 union e1000_adv_tx_desc *tx_desc;
6379 unsigned int total_bytes = 0, total_packets = 0;
6380 unsigned int budget = q_vector->tx.work_limit;
6381 unsigned int i = tx_ring->next_to_clean;
6382
6383 if (test_bit(__IGB_DOWN, &adapter->state))
6384 return true;
6385
6386 tx_buffer = &tx_ring->tx_buffer_info[i];
6387 tx_desc = IGB_TX_DESC(tx_ring, i);
6388 i -= tx_ring->count;
6389
6390 do {
6391 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6392
6393 /* if next_to_watch is not set then there is no work pending */
6394 if (!eop_desc)
6395 break;
6396
6397 /* prevent any other reads prior to eop_desc */
6398 read_barrier_depends();
6399
6400 /* if DD is not set pending work has not been completed */
6401 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6402 break;
6403
6404 /* clear next_to_watch to prevent false hangs */
6405 tx_buffer->next_to_watch = NULL;
6406
6407 /* update the statistics for this packet */
6408 total_bytes += tx_buffer->bytecount;
6409 total_packets += tx_buffer->gso_segs;
6410
6411 /* free the skb */
6412 dev_consume_skb_any(tx_buffer->skb);
6413
6414 /* unmap skb header data */
6415 dma_unmap_single(tx_ring->dev,
6416 dma_unmap_addr(tx_buffer, dma),
6417 dma_unmap_len(tx_buffer, len),
6418 DMA_TO_DEVICE);
6419
6420 /* clear tx_buffer data */
6421 tx_buffer->skb = NULL;
6422 dma_unmap_len_set(tx_buffer, len, 0);
6423
6424 /* clear last DMA location and unmap remaining buffers */
6425 while (tx_desc != eop_desc) {
6426 tx_buffer++;
6427 tx_desc++;
6428 i++;
6429 if (unlikely(!i)) {
6430 i -= tx_ring->count;
6431 tx_buffer = tx_ring->tx_buffer_info;
6432 tx_desc = IGB_TX_DESC(tx_ring, 0);
6433 }
6434
6435 /* unmap any remaining paged data */
6436 if (dma_unmap_len(tx_buffer, len)) {
6437 dma_unmap_page(tx_ring->dev,
6438 dma_unmap_addr(tx_buffer, dma),
6439 dma_unmap_len(tx_buffer, len),
6440 DMA_TO_DEVICE);
6441 dma_unmap_len_set(tx_buffer, len, 0);
6442 }
6443 }
6444
6445 /* move us one more past the eop_desc for start of next pkt */
6446 tx_buffer++;
6447 tx_desc++;
6448 i++;
6449 if (unlikely(!i)) {
6450 i -= tx_ring->count;
6451 tx_buffer = tx_ring->tx_buffer_info;
6452 tx_desc = IGB_TX_DESC(tx_ring, 0);
6453 }
6454
6455 /* issue prefetch for next Tx descriptor */
6456 prefetch(tx_desc);
6457
6458 /* update budget accounting */
6459 budget--;
6460 } while (likely(budget));
6461
6462 netdev_tx_completed_queue(txring_txq(tx_ring),
6463 total_packets, total_bytes);
6464 i += tx_ring->count;
6465 tx_ring->next_to_clean = i;
6466 u64_stats_update_begin(&tx_ring->tx_syncp);
6467 tx_ring->tx_stats.bytes += total_bytes;
6468 tx_ring->tx_stats.packets += total_packets;
6469 u64_stats_update_end(&tx_ring->tx_syncp);
6470 q_vector->tx.total_bytes += total_bytes;
6471 q_vector->tx.total_packets += total_packets;
6472
6473 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6474 struct e1000_hw *hw = &adapter->hw;
6475
6476 /* Detect a transmit hang in hardware, this serializes the
6477 * check with the clearing of time_stamp and movement of i
6478 */
6479 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6480 if (tx_buffer->next_to_watch &&
6481 time_after(jiffies, tx_buffer->time_stamp +
6482 (adapter->tx_timeout_factor * HZ)) &&
6483 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6484
6485 /* detected Tx unit hang */
6486 dev_err(tx_ring->dev,
6487 "Detected Tx Unit Hang\n"
6488 " Tx Queue <%d>\n"
6489 " TDH <%x>\n"
6490 " TDT <%x>\n"
6491 " next_to_use <%x>\n"
6492 " next_to_clean <%x>\n"
6493 "buffer_info[next_to_clean]\n"
6494 " time_stamp <%lx>\n"
6495 " next_to_watch <%p>\n"
6496 " jiffies <%lx>\n"
6497 " desc.status <%x>\n",
6498 tx_ring->queue_index,
6499 rd32(E1000_TDH(tx_ring->reg_idx)),
6500 readl(tx_ring->tail),
6501 tx_ring->next_to_use,
6502 tx_ring->next_to_clean,
6503 tx_buffer->time_stamp,
6504 tx_buffer->next_to_watch,
6505 jiffies,
6506 tx_buffer->next_to_watch->wb.status);
6507 netif_stop_subqueue(tx_ring->netdev,
6508 tx_ring->queue_index);
6509
6510 /* we are about to reset, no point in enabling stuff */
6511 return true;
6512 }
6513 }
6514
6515#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6516 if (unlikely(total_packets &&
6517 netif_carrier_ok(tx_ring->netdev) &&
6518 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6519 /* Make sure that anybody stopping the queue after this
6520 * sees the new next_to_clean.
6521 */
6522 smp_mb();
6523 if (__netif_subqueue_stopped(tx_ring->netdev,
6524 tx_ring->queue_index) &&
6525 !(test_bit(__IGB_DOWN, &adapter->state))) {
6526 netif_wake_subqueue(tx_ring->netdev,
6527 tx_ring->queue_index);
6528
6529 u64_stats_update_begin(&tx_ring->tx_syncp);
6530 tx_ring->tx_stats.restart_queue++;
6531 u64_stats_update_end(&tx_ring->tx_syncp);
6532 }
6533 }
6534
6535 return !!budget;
6536}
6537
6538/**
6539 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6540 * @rx_ring: rx descriptor ring to store buffers on
6541 * @old_buff: donor buffer to have page reused
6542 *
6543 * Synchronizes page for reuse by the adapter
6544 **/
6545static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6546 struct igb_rx_buffer *old_buff)
6547{
6548 struct igb_rx_buffer *new_buff;
6549 u16 nta = rx_ring->next_to_alloc;
6550
6551 new_buff = &rx_ring->rx_buffer_info[nta];
6552
6553 /* update, and store next to alloc */
6554 nta++;
6555 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6556
6557 /* transfer page from old buffer to new buffer */
6558 *new_buff = *old_buff;
6559
6560 /* sync the buffer for use by the device */
6561 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6562 old_buff->page_offset,
6563 IGB_RX_BUFSZ,
6564 DMA_FROM_DEVICE);
6565}
6566
6567static inline bool igb_page_is_reserved(struct page *page)
6568{
6569 return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
6570}
6571
6572static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6573 struct page *page,
6574 unsigned int truesize)
6575{
6576 /* avoid re-using remote pages */
6577 if (unlikely(igb_page_is_reserved(page)))
6578 return false;
6579
6580#if (PAGE_SIZE < 8192)
6581 /* if we are only owner of page we can reuse it */
6582 if (unlikely(page_count(page) != 1))
6583 return false;
6584
6585 /* flip page offset to other buffer */
6586 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6587#else
6588 /* move offset up to the next cache line */
6589 rx_buffer->page_offset += truesize;
6590
6591 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6592 return false;
6593#endif
6594
6595 /* Even if we own the page, we are not allowed to use atomic_set()
6596 * This would break get_page_unless_zero() users.
6597 */
6598 atomic_inc(&page->_count);
6599
6600 return true;
6601}
6602
6603/**
6604 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6605 * @rx_ring: rx descriptor ring to transact packets on
6606 * @rx_buffer: buffer containing page to add
6607 * @rx_desc: descriptor containing length of buffer written by hardware
6608 * @skb: sk_buff to place the data into
6609 *
6610 * This function will add the data contained in rx_buffer->page to the skb.
6611 * This is done either through a direct copy if the data in the buffer is
6612 * less than the skb header size, otherwise it will just attach the page as
6613 * a frag to the skb.
6614 *
6615 * The function will then update the page offset if necessary and return
6616 * true if the buffer can be reused by the adapter.
6617 **/
6618static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6619 struct igb_rx_buffer *rx_buffer,
6620 union e1000_adv_rx_desc *rx_desc,
6621 struct sk_buff *skb)
6622{
6623 struct page *page = rx_buffer->page;
6624 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6625 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6626#if (PAGE_SIZE < 8192)
6627 unsigned int truesize = IGB_RX_BUFSZ;
6628#else
6629 unsigned int truesize = SKB_DATA_ALIGN(size);
6630#endif
6631 unsigned int pull_len;
6632
6633 if (unlikely(skb_is_nonlinear(skb)))
6634 goto add_tail_frag;
6635
6636 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6637 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6638 va += IGB_TS_HDR_LEN;
6639 size -= IGB_TS_HDR_LEN;
6640 }
6641
6642 if (likely(size <= IGB_RX_HDR_LEN)) {
6643 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6644
6645 /* page is not reserved, we can reuse buffer as-is */
6646 if (likely(!igb_page_is_reserved(page)))
6647 return true;
6648
6649 /* this page cannot be reused so discard it */
6650 __free_page(page);
6651 return false;
6652 }
6653
6654 /* we need the header to contain the greater of either ETH_HLEN or
6655 * 60 bytes if the skb->len is less than 60 for skb_pad.
6656 */
6657 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6658
6659 /* align pull length to size of long to optimize memcpy performance */
6660 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6661
6662 /* update all of the pointers */
6663 va += pull_len;
6664 size -= pull_len;
6665
6666add_tail_frag:
6667 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6668 (unsigned long)va & ~PAGE_MASK, size, truesize);
6669
6670 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6671}
6672
6673static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6674 union e1000_adv_rx_desc *rx_desc,
6675 struct sk_buff *skb)
6676{
6677 struct igb_rx_buffer *rx_buffer;
6678 struct page *page;
6679
6680 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6681 page = rx_buffer->page;
6682 prefetchw(page);
6683
6684 if (likely(!skb)) {
6685 void *page_addr = page_address(page) +
6686 rx_buffer->page_offset;
6687
6688 /* prefetch first cache line of first page */
6689 prefetch(page_addr);
6690#if L1_CACHE_BYTES < 128
6691 prefetch(page_addr + L1_CACHE_BYTES);
6692#endif
6693
6694 /* allocate a skb to store the frags */
6695 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6696 if (unlikely(!skb)) {
6697 rx_ring->rx_stats.alloc_failed++;
6698 return NULL;
6699 }
6700
6701 /* we will be copying header into skb->data in
6702 * pskb_may_pull so it is in our interest to prefetch
6703 * it now to avoid a possible cache miss
6704 */
6705 prefetchw(skb->data);
6706 }
6707
6708 /* we are reusing so sync this buffer for CPU use */
6709 dma_sync_single_range_for_cpu(rx_ring->dev,
6710 rx_buffer->dma,
6711 rx_buffer->page_offset,
6712 IGB_RX_BUFSZ,
6713 DMA_FROM_DEVICE);
6714
6715 /* pull page into skb */
6716 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6717 /* hand second half of page back to the ring */
6718 igb_reuse_rx_page(rx_ring, rx_buffer);
6719 } else {
6720 /* we are not reusing the buffer so unmap it */
6721 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6722 PAGE_SIZE, DMA_FROM_DEVICE);
6723 }
6724
6725 /* clear contents of rx_buffer */
6726 rx_buffer->page = NULL;
6727
6728 return skb;
6729}
6730
6731static inline void igb_rx_checksum(struct igb_ring *ring,
6732 union e1000_adv_rx_desc *rx_desc,
6733 struct sk_buff *skb)
6734{
6735 skb_checksum_none_assert(skb);
6736
6737 /* Ignore Checksum bit is set */
6738 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6739 return;
6740
6741 /* Rx checksum disabled via ethtool */
6742 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6743 return;
6744
6745 /* TCP/UDP checksum error bit is set */
6746 if (igb_test_staterr(rx_desc,
6747 E1000_RXDEXT_STATERR_TCPE |
6748 E1000_RXDEXT_STATERR_IPE)) {
6749 /* work around errata with sctp packets where the TCPE aka
6750 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6751 * packets, (aka let the stack check the crc32c)
6752 */
6753 if (!((skb->len == 60) &&
6754 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6755 u64_stats_update_begin(&ring->rx_syncp);
6756 ring->rx_stats.csum_err++;
6757 u64_stats_update_end(&ring->rx_syncp);
6758 }
6759 /* let the stack verify checksum errors */
6760 return;
6761 }
6762 /* It must be a TCP or UDP packet with a valid checksum */
6763 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6764 E1000_RXD_STAT_UDPCS))
6765 skb->ip_summed = CHECKSUM_UNNECESSARY;
6766
6767 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6768 le32_to_cpu(rx_desc->wb.upper.status_error));
6769}
6770
6771static inline void igb_rx_hash(struct igb_ring *ring,
6772 union e1000_adv_rx_desc *rx_desc,
6773 struct sk_buff *skb)
6774{
6775 if (ring->netdev->features & NETIF_F_RXHASH)
6776 skb_set_hash(skb,
6777 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6778 PKT_HASH_TYPE_L3);
6779}
6780
6781/**
6782 * igb_is_non_eop - process handling of non-EOP buffers
6783 * @rx_ring: Rx ring being processed
6784 * @rx_desc: Rx descriptor for current buffer
6785 * @skb: current socket buffer containing buffer in progress
6786 *
6787 * This function updates next to clean. If the buffer is an EOP buffer
6788 * this function exits returning false, otherwise it will place the
6789 * sk_buff in the next buffer to be chained and return true indicating
6790 * that this is in fact a non-EOP buffer.
6791 **/
6792static bool igb_is_non_eop(struct igb_ring *rx_ring,
6793 union e1000_adv_rx_desc *rx_desc)
6794{
6795 u32 ntc = rx_ring->next_to_clean + 1;
6796
6797 /* fetch, update, and store next to clean */
6798 ntc = (ntc < rx_ring->count) ? ntc : 0;
6799 rx_ring->next_to_clean = ntc;
6800
6801 prefetch(IGB_RX_DESC(rx_ring, ntc));
6802
6803 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6804 return false;
6805
6806 return true;
6807}
6808
6809/**
6810 * igb_cleanup_headers - Correct corrupted or empty headers
6811 * @rx_ring: rx descriptor ring packet is being transacted on
6812 * @rx_desc: pointer to the EOP Rx descriptor
6813 * @skb: pointer to current skb being fixed
6814 *
6815 * Address the case where we are pulling data in on pages only
6816 * and as such no data is present in the skb header.
6817 *
6818 * In addition if skb is not at least 60 bytes we need to pad it so that
6819 * it is large enough to qualify as a valid Ethernet frame.
6820 *
6821 * Returns true if an error was encountered and skb was freed.
6822 **/
6823static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6824 union e1000_adv_rx_desc *rx_desc,
6825 struct sk_buff *skb)
6826{
6827 if (unlikely((igb_test_staterr(rx_desc,
6828 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6829 struct net_device *netdev = rx_ring->netdev;
6830 if (!(netdev->features & NETIF_F_RXALL)) {
6831 dev_kfree_skb_any(skb);
6832 return true;
6833 }
6834 }
6835
6836 /* if eth_skb_pad returns an error the skb was freed */
6837 if (eth_skb_pad(skb))
6838 return true;
6839
6840 return false;
6841}
6842
6843/**
6844 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6845 * @rx_ring: rx descriptor ring packet is being transacted on
6846 * @rx_desc: pointer to the EOP Rx descriptor
6847 * @skb: pointer to current skb being populated
6848 *
6849 * This function checks the ring, descriptor, and packet information in
6850 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6851 * other fields within the skb.
6852 **/
6853static void igb_process_skb_fields(struct igb_ring *rx_ring,
6854 union e1000_adv_rx_desc *rx_desc,
6855 struct sk_buff *skb)
6856{
6857 struct net_device *dev = rx_ring->netdev;
6858
6859 igb_rx_hash(rx_ring, rx_desc, skb);
6860
6861 igb_rx_checksum(rx_ring, rx_desc, skb);
6862
6863 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6864 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6865 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6866
6867 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6868 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6869 u16 vid;
6870
6871 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6872 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6873 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6874 else
6875 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6876
6877 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6878 }
6879
6880 skb_record_rx_queue(skb, rx_ring->queue_index);
6881
6882 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6883}
6884
6885static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6886{
6887 struct igb_ring *rx_ring = q_vector->rx.ring;
6888 struct sk_buff *skb = rx_ring->skb;
6889 unsigned int total_bytes = 0, total_packets = 0;
6890 u16 cleaned_count = igb_desc_unused(rx_ring);
6891
6892 while (likely(total_packets < budget)) {
6893 union e1000_adv_rx_desc *rx_desc;
6894
6895 /* return some buffers to hardware, one at a time is too slow */
6896 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6897 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6898 cleaned_count = 0;
6899 }
6900
6901 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6902
6903 if (!rx_desc->wb.upper.status_error)
6904 break;
6905
6906 /* This memory barrier is needed to keep us from reading
6907 * any other fields out of the rx_desc until we know the
6908 * descriptor has been written back
6909 */
6910 dma_rmb();
6911
6912 /* retrieve a buffer from the ring */
6913 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6914
6915 /* exit if we failed to retrieve a buffer */
6916 if (!skb)
6917 break;
6918
6919 cleaned_count++;
6920
6921 /* fetch next buffer in frame if non-eop */
6922 if (igb_is_non_eop(rx_ring, rx_desc))
6923 continue;
6924
6925 /* verify the packet layout is correct */
6926 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6927 skb = NULL;
6928 continue;
6929 }
6930
6931 /* probably a little skewed due to removing CRC */
6932 total_bytes += skb->len;
6933
6934 /* populate checksum, timestamp, VLAN, and protocol */
6935 igb_process_skb_fields(rx_ring, rx_desc, skb);
6936
6937 napi_gro_receive(&q_vector->napi, skb);
6938
6939 /* reset skb pointer */
6940 skb = NULL;
6941
6942 /* update budget accounting */
6943 total_packets++;
6944 }
6945
6946 /* place incomplete frames back on ring for completion */
6947 rx_ring->skb = skb;
6948
6949 u64_stats_update_begin(&rx_ring->rx_syncp);
6950 rx_ring->rx_stats.packets += total_packets;
6951 rx_ring->rx_stats.bytes += total_bytes;
6952 u64_stats_update_end(&rx_ring->rx_syncp);
6953 q_vector->rx.total_packets += total_packets;
6954 q_vector->rx.total_bytes += total_bytes;
6955
6956 if (cleaned_count)
6957 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6958
6959 return total_packets < budget;
6960}
6961
6962static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6963 struct igb_rx_buffer *bi)
6964{
6965 struct page *page = bi->page;
6966 dma_addr_t dma;
6967
6968 /* since we are recycling buffers we should seldom need to alloc */
6969 if (likely(page))
6970 return true;
6971
6972 /* alloc new page for storage */
6973 page = dev_alloc_page();
6974 if (unlikely(!page)) {
6975 rx_ring->rx_stats.alloc_failed++;
6976 return false;
6977 }
6978
6979 /* map page for use */
6980 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6981
6982 /* if mapping failed free memory back to system since
6983 * there isn't much point in holding memory we can't use
6984 */
6985 if (dma_mapping_error(rx_ring->dev, dma)) {
6986 __free_page(page);
6987
6988 rx_ring->rx_stats.alloc_failed++;
6989 return false;
6990 }
6991
6992 bi->dma = dma;
6993 bi->page = page;
6994 bi->page_offset = 0;
6995
6996 return true;
6997}
6998
6999/**
7000 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7001 * @adapter: address of board private structure
7002 **/
7003void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7004{
7005 union e1000_adv_rx_desc *rx_desc;
7006 struct igb_rx_buffer *bi;
7007 u16 i = rx_ring->next_to_use;
7008
7009 /* nothing to do */
7010 if (!cleaned_count)
7011 return;
7012
7013 rx_desc = IGB_RX_DESC(rx_ring, i);
7014 bi = &rx_ring->rx_buffer_info[i];
7015 i -= rx_ring->count;
7016
7017 do {
7018 if (!igb_alloc_mapped_page(rx_ring, bi))
7019 break;
7020
7021 /* Refresh the desc even if buffer_addrs didn't change
7022 * because each write-back erases this info.
7023 */
7024 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7025
7026 rx_desc++;
7027 bi++;
7028 i++;
7029 if (unlikely(!i)) {
7030 rx_desc = IGB_RX_DESC(rx_ring, 0);
7031 bi = rx_ring->rx_buffer_info;
7032 i -= rx_ring->count;
7033 }
7034
7035 /* clear the status bits for the next_to_use descriptor */
7036 rx_desc->wb.upper.status_error = 0;
7037
7038 cleaned_count--;
7039 } while (cleaned_count);
7040
7041 i += rx_ring->count;
7042
7043 if (rx_ring->next_to_use != i) {
7044 /* record the next descriptor to use */
7045 rx_ring->next_to_use = i;
7046
7047 /* update next to alloc since we have filled the ring */
7048 rx_ring->next_to_alloc = i;
7049
7050 /* Force memory writes to complete before letting h/w
7051 * know there are new descriptors to fetch. (Only
7052 * applicable for weak-ordered memory model archs,
7053 * such as IA-64).
7054 */
7055 wmb();
7056 writel(i, rx_ring->tail);
7057 }
7058}
7059
7060/**
7061 * igb_mii_ioctl -
7062 * @netdev:
7063 * @ifreq:
7064 * @cmd:
7065 **/
7066static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7067{
7068 struct igb_adapter *adapter = netdev_priv(netdev);
7069 struct mii_ioctl_data *data = if_mii(ifr);
7070
7071 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7072 return -EOPNOTSUPP;
7073
7074 switch (cmd) {
7075 case SIOCGMIIPHY:
7076 data->phy_id = adapter->hw.phy.addr;
7077 break;
7078 case SIOCGMIIREG:
7079 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7080 &data->val_out))
7081 return -EIO;
7082 break;
7083 case SIOCSMIIREG:
7084 default:
7085 return -EOPNOTSUPP;
7086 }
7087 return 0;
7088}
7089
7090/**
7091 * igb_ioctl -
7092 * @netdev:
7093 * @ifreq:
7094 * @cmd:
7095 **/
7096static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7097{
7098 switch (cmd) {
7099 case SIOCGMIIPHY:
7100 case SIOCGMIIREG:
7101 case SIOCSMIIREG:
7102 return igb_mii_ioctl(netdev, ifr, cmd);
7103 case SIOCGHWTSTAMP:
7104 return igb_ptp_get_ts_config(netdev, ifr);
7105 case SIOCSHWTSTAMP:
7106 return igb_ptp_set_ts_config(netdev, ifr);
7107 default:
7108 return -EOPNOTSUPP;
7109 }
7110}
7111
7112void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7113{
7114 struct igb_adapter *adapter = hw->back;
7115
7116 pci_read_config_word(adapter->pdev, reg, value);
7117}
7118
7119void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7120{
7121 struct igb_adapter *adapter = hw->back;
7122
7123 pci_write_config_word(adapter->pdev, reg, *value);
7124}
7125
7126s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7127{
7128 struct igb_adapter *adapter = hw->back;
7129
7130 if (pcie_capability_read_word(adapter->pdev, reg, value))
7131 return -E1000_ERR_CONFIG;
7132
7133 return 0;
7134}
7135
7136s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7137{
7138 struct igb_adapter *adapter = hw->back;
7139
7140 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7141 return -E1000_ERR_CONFIG;
7142
7143 return 0;
7144}
7145
7146static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7147{
7148 struct igb_adapter *adapter = netdev_priv(netdev);
7149 struct e1000_hw *hw = &adapter->hw;
7150 u32 ctrl, rctl;
7151 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7152
7153 if (enable) {
7154 /* enable VLAN tag insert/strip */
7155 ctrl = rd32(E1000_CTRL);
7156 ctrl |= E1000_CTRL_VME;
7157 wr32(E1000_CTRL, ctrl);
7158
7159 /* Disable CFI check */
7160 rctl = rd32(E1000_RCTL);
7161 rctl &= ~E1000_RCTL_CFIEN;
7162 wr32(E1000_RCTL, rctl);
7163 } else {
7164 /* disable VLAN tag insert/strip */
7165 ctrl = rd32(E1000_CTRL);
7166 ctrl &= ~E1000_CTRL_VME;
7167 wr32(E1000_CTRL, ctrl);
7168 }
7169
7170 igb_rlpml_set(adapter);
7171}
7172
7173static int igb_vlan_rx_add_vid(struct net_device *netdev,
7174 __be16 proto, u16 vid)
7175{
7176 struct igb_adapter *adapter = netdev_priv(netdev);
7177 struct e1000_hw *hw = &adapter->hw;
7178 int pf_id = adapter->vfs_allocated_count;
7179
7180 /* attempt to add filter to vlvf array */
7181 igb_vlvf_set(adapter, vid, true, pf_id);
7182
7183 /* add the filter since PF can receive vlans w/o entry in vlvf */
7184 igb_vfta_set(hw, vid, true);
7185
7186 set_bit(vid, adapter->active_vlans);
7187
7188 return 0;
7189}
7190
7191static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7192 __be16 proto, u16 vid)
7193{
7194 struct igb_adapter *adapter = netdev_priv(netdev);
7195 struct e1000_hw *hw = &adapter->hw;
7196 int pf_id = adapter->vfs_allocated_count;
7197 s32 err;
7198
7199 /* remove vlan from VLVF table array */
7200 err = igb_vlvf_set(adapter, vid, false, pf_id);
7201
7202 /* if vid was not present in VLVF just remove it from table */
7203 if (err)
7204 igb_vfta_set(hw, vid, false);
7205
7206 clear_bit(vid, adapter->active_vlans);
7207
7208 return 0;
7209}
7210
7211static void igb_restore_vlan(struct igb_adapter *adapter)
7212{
7213 u16 vid;
7214
7215 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7216
7217 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7218 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7219}
7220
7221int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7222{
7223 struct pci_dev *pdev = adapter->pdev;
7224 struct e1000_mac_info *mac = &adapter->hw.mac;
7225
7226 mac->autoneg = 0;
7227
7228 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7229 * for the switch() below to work
7230 */
7231 if ((spd & 1) || (dplx & ~1))
7232 goto err_inval;
7233
7234 /* Fiber NIC's only allow 1000 gbps Full duplex
7235 * and 100Mbps Full duplex for 100baseFx sfp
7236 */
7237 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7238 switch (spd + dplx) {
7239 case SPEED_10 + DUPLEX_HALF:
7240 case SPEED_10 + DUPLEX_FULL:
7241 case SPEED_100 + DUPLEX_HALF:
7242 goto err_inval;
7243 default:
7244 break;
7245 }
7246 }
7247
7248 switch (spd + dplx) {
7249 case SPEED_10 + DUPLEX_HALF:
7250 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7251 break;
7252 case SPEED_10 + DUPLEX_FULL:
7253 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7254 break;
7255 case SPEED_100 + DUPLEX_HALF:
7256 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7257 break;
7258 case SPEED_100 + DUPLEX_FULL:
7259 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7260 break;
7261 case SPEED_1000 + DUPLEX_FULL:
7262 mac->autoneg = 1;
7263 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7264 break;
7265 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7266 default:
7267 goto err_inval;
7268 }
7269
7270 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7271 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7272
7273 return 0;
7274
7275err_inval:
7276 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7277 return -EINVAL;
7278}
7279
7280static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7281 bool runtime)
7282{
7283 struct net_device *netdev = pci_get_drvdata(pdev);
7284 struct igb_adapter *adapter = netdev_priv(netdev);
7285 struct e1000_hw *hw = &adapter->hw;
7286 u32 ctrl, rctl, status;
7287 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7288#ifdef CONFIG_PM
7289 int retval = 0;
7290#endif
7291
7292 netif_device_detach(netdev);
7293
7294 if (netif_running(netdev))
7295 __igb_close(netdev, true);
7296
7297 igb_clear_interrupt_scheme(adapter);
7298
7299#ifdef CONFIG_PM
7300 retval = pci_save_state(pdev);
7301 if (retval)
7302 return retval;
7303#endif
7304
7305 status = rd32(E1000_STATUS);
7306 if (status & E1000_STATUS_LU)
7307 wufc &= ~E1000_WUFC_LNKC;
7308
7309 if (wufc) {
7310 igb_setup_rctl(adapter);
7311 igb_set_rx_mode(netdev);
7312
7313 /* turn on all-multi mode if wake on multicast is enabled */
7314 if (wufc & E1000_WUFC_MC) {
7315 rctl = rd32(E1000_RCTL);
7316 rctl |= E1000_RCTL_MPE;
7317 wr32(E1000_RCTL, rctl);
7318 }
7319
7320 ctrl = rd32(E1000_CTRL);
7321 /* advertise wake from D3Cold */
7322 #define E1000_CTRL_ADVD3WUC 0x00100000
7323 /* phy power management enable */
7324 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7325 ctrl |= E1000_CTRL_ADVD3WUC;
7326 wr32(E1000_CTRL, ctrl);
7327
7328 /* Allow time for pending master requests to run */
7329 igb_disable_pcie_master(hw);
7330
7331 wr32(E1000_WUC, E1000_WUC_PME_EN);
7332 wr32(E1000_WUFC, wufc);
7333 } else {
7334 wr32(E1000_WUC, 0);
7335 wr32(E1000_WUFC, 0);
7336 }
7337
7338 *enable_wake = wufc || adapter->en_mng_pt;
7339 if (!*enable_wake)
7340 igb_power_down_link(adapter);
7341 else
7342 igb_power_up_link(adapter);
7343
7344 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7345 * would have already happened in close and is redundant.
7346 */
7347 igb_release_hw_control(adapter);
7348
7349 pci_disable_device(pdev);
7350
7351 return 0;
7352}
7353
7354#ifdef CONFIG_PM
7355#ifdef CONFIG_PM_SLEEP
7356static int igb_suspend(struct device *dev)
7357{
7358 int retval;
7359 bool wake;
7360 struct pci_dev *pdev = to_pci_dev(dev);
7361
7362 retval = __igb_shutdown(pdev, &wake, 0);
7363 if (retval)
7364 return retval;
7365
7366 if (wake) {
7367 pci_prepare_to_sleep(pdev);
7368 } else {
7369 pci_wake_from_d3(pdev, false);
7370 pci_set_power_state(pdev, PCI_D3hot);
7371 }
7372
7373 return 0;
7374}
7375#endif /* CONFIG_PM_SLEEP */
7376
7377static int igb_resume(struct device *dev)
7378{
7379 struct pci_dev *pdev = to_pci_dev(dev);
7380 struct net_device *netdev = pci_get_drvdata(pdev);
7381 struct igb_adapter *adapter = netdev_priv(netdev);
7382 struct e1000_hw *hw = &adapter->hw;
7383 u32 err;
7384
7385 pci_set_power_state(pdev, PCI_D0);
7386 pci_restore_state(pdev);
7387 pci_save_state(pdev);
7388
7389 if (!pci_device_is_present(pdev))
7390 return -ENODEV;
7391 err = pci_enable_device_mem(pdev);
7392 if (err) {
7393 dev_err(&pdev->dev,
7394 "igb: Cannot enable PCI device from suspend\n");
7395 return err;
7396 }
7397 pci_set_master(pdev);
7398
7399 pci_enable_wake(pdev, PCI_D3hot, 0);
7400 pci_enable_wake(pdev, PCI_D3cold, 0);
7401
7402 if (igb_init_interrupt_scheme(adapter, true)) {
7403 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7404 return -ENOMEM;
7405 }
7406
7407 igb_reset(adapter);
7408
7409 /* let the f/w know that the h/w is now under the control of the
7410 * driver.
7411 */
7412 igb_get_hw_control(adapter);
7413
7414 wr32(E1000_WUS, ~0);
7415
7416 if (netdev->flags & IFF_UP) {
7417 rtnl_lock();
7418 err = __igb_open(netdev, true);
7419 rtnl_unlock();
7420 if (err)
7421 return err;
7422 }
7423
7424 netif_device_attach(netdev);
7425 return 0;
7426}
7427
7428static int igb_runtime_idle(struct device *dev)
7429{
7430 struct pci_dev *pdev = to_pci_dev(dev);
7431 struct net_device *netdev = pci_get_drvdata(pdev);
7432 struct igb_adapter *adapter = netdev_priv(netdev);
7433
7434 if (!igb_has_link(adapter))
7435 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7436
7437 return -EBUSY;
7438}
7439
7440static int igb_runtime_suspend(struct device *dev)
7441{
7442 struct pci_dev *pdev = to_pci_dev(dev);
7443 int retval;
7444 bool wake;
7445
7446 retval = __igb_shutdown(pdev, &wake, 1);
7447 if (retval)
7448 return retval;
7449
7450 if (wake) {
7451 pci_prepare_to_sleep(pdev);
7452 } else {
7453 pci_wake_from_d3(pdev, false);
7454 pci_set_power_state(pdev, PCI_D3hot);
7455 }
7456
7457 return 0;
7458}
7459
7460static int igb_runtime_resume(struct device *dev)
7461{
7462 return igb_resume(dev);
7463}
7464#endif /* CONFIG_PM */
7465
7466static void igb_shutdown(struct pci_dev *pdev)
7467{
7468 bool wake;
7469
7470 __igb_shutdown(pdev, &wake, 0);
7471
7472 if (system_state == SYSTEM_POWER_OFF) {
7473 pci_wake_from_d3(pdev, wake);
7474 pci_set_power_state(pdev, PCI_D3hot);
7475 }
7476}
7477
7478#ifdef CONFIG_PCI_IOV
7479static int igb_sriov_reinit(struct pci_dev *dev)
7480{
7481 struct net_device *netdev = pci_get_drvdata(dev);
7482 struct igb_adapter *adapter = netdev_priv(netdev);
7483 struct pci_dev *pdev = adapter->pdev;
7484
7485 rtnl_lock();
7486
7487 if (netif_running(netdev))
7488 igb_close(netdev);
7489 else
7490 igb_reset(adapter);
7491
7492 igb_clear_interrupt_scheme(adapter);
7493
7494 igb_init_queue_configuration(adapter);
7495
7496 if (igb_init_interrupt_scheme(adapter, true)) {
7497 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7498 return -ENOMEM;
7499 }
7500
7501 if (netif_running(netdev))
7502 igb_open(netdev);
7503
7504 rtnl_unlock();
7505
7506 return 0;
7507}
7508
7509static int igb_pci_disable_sriov(struct pci_dev *dev)
7510{
7511 int err = igb_disable_sriov(dev);
7512
7513 if (!err)
7514 err = igb_sriov_reinit(dev);
7515
7516 return err;
7517}
7518
7519static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7520{
7521 int err = igb_enable_sriov(dev, num_vfs);
7522
7523 if (err)
7524 goto out;
7525
7526 err = igb_sriov_reinit(dev);
7527 if (!err)
7528 return num_vfs;
7529
7530out:
7531 return err;
7532}
7533
7534#endif
7535static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7536{
7537#ifdef CONFIG_PCI_IOV
7538 if (num_vfs == 0)
7539 return igb_pci_disable_sriov(dev);
7540 else
7541 return igb_pci_enable_sriov(dev, num_vfs);
7542#endif
7543 return 0;
7544}
7545
7546#ifdef CONFIG_NET_POLL_CONTROLLER
7547/* Polling 'interrupt' - used by things like netconsole to send skbs
7548 * without having to re-enable interrupts. It's not called while
7549 * the interrupt routine is executing.
7550 */
7551static void igb_netpoll(struct net_device *netdev)
7552{
7553 struct igb_adapter *adapter = netdev_priv(netdev);
7554 struct e1000_hw *hw = &adapter->hw;
7555 struct igb_q_vector *q_vector;
7556 int i;
7557
7558 for (i = 0; i < adapter->num_q_vectors; i++) {
7559 q_vector = adapter->q_vector[i];
7560 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7561 wr32(E1000_EIMC, q_vector->eims_value);
7562 else
7563 igb_irq_disable(adapter);
7564 napi_schedule(&q_vector->napi);
7565 }
7566}
7567#endif /* CONFIG_NET_POLL_CONTROLLER */
7568
7569/**
7570 * igb_io_error_detected - called when PCI error is detected
7571 * @pdev: Pointer to PCI device
7572 * @state: The current pci connection state
7573 *
7574 * This function is called after a PCI bus error affecting
7575 * this device has been detected.
7576 **/
7577static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7578 pci_channel_state_t state)
7579{
7580 struct net_device *netdev = pci_get_drvdata(pdev);
7581 struct igb_adapter *adapter = netdev_priv(netdev);
7582
7583 netif_device_detach(netdev);
7584
7585 if (state == pci_channel_io_perm_failure)
7586 return PCI_ERS_RESULT_DISCONNECT;
7587
7588 if (netif_running(netdev))
7589 igb_down(adapter);
7590 pci_disable_device(pdev);
7591
7592 /* Request a slot slot reset. */
7593 return PCI_ERS_RESULT_NEED_RESET;
7594}
7595
7596/**
7597 * igb_io_slot_reset - called after the pci bus has been reset.
7598 * @pdev: Pointer to PCI device
7599 *
7600 * Restart the card from scratch, as if from a cold-boot. Implementation
7601 * resembles the first-half of the igb_resume routine.
7602 **/
7603static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7604{
7605 struct net_device *netdev = pci_get_drvdata(pdev);
7606 struct igb_adapter *adapter = netdev_priv(netdev);
7607 struct e1000_hw *hw = &adapter->hw;
7608 pci_ers_result_t result;
7609 int err;
7610
7611 if (pci_enable_device_mem(pdev)) {
7612 dev_err(&pdev->dev,
7613 "Cannot re-enable PCI device after reset.\n");
7614 result = PCI_ERS_RESULT_DISCONNECT;
7615 } else {
7616 pci_set_master(pdev);
7617 pci_restore_state(pdev);
7618 pci_save_state(pdev);
7619
7620 pci_enable_wake(pdev, PCI_D3hot, 0);
7621 pci_enable_wake(pdev, PCI_D3cold, 0);
7622
7623 igb_reset(adapter);
7624 wr32(E1000_WUS, ~0);
7625 result = PCI_ERS_RESULT_RECOVERED;
7626 }
7627
7628 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7629 if (err) {
7630 dev_err(&pdev->dev,
7631 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7632 err);
7633 /* non-fatal, continue */
7634 }
7635
7636 return result;
7637}
7638
7639/**
7640 * igb_io_resume - called when traffic can start flowing again.
7641 * @pdev: Pointer to PCI device
7642 *
7643 * This callback is called when the error recovery driver tells us that
7644 * its OK to resume normal operation. Implementation resembles the
7645 * second-half of the igb_resume routine.
7646 */
7647static void igb_io_resume(struct pci_dev *pdev)
7648{
7649 struct net_device *netdev = pci_get_drvdata(pdev);
7650 struct igb_adapter *adapter = netdev_priv(netdev);
7651
7652 if (netif_running(netdev)) {
7653 if (igb_up(adapter)) {
7654 dev_err(&pdev->dev, "igb_up failed after reset\n");
7655 return;
7656 }
7657 }
7658
7659 netif_device_attach(netdev);
7660
7661 /* let the f/w know that the h/w is now under the control of the
7662 * driver.
7663 */
7664 igb_get_hw_control(adapter);
7665}
7666
7667static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7668 u8 qsel)
7669{
7670 u32 rar_low, rar_high;
7671 struct e1000_hw *hw = &adapter->hw;
7672
7673 /* HW expects these in little endian so we reverse the byte order
7674 * from network order (big endian) to little endian
7675 */
7676 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7677 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7678 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7679
7680 /* Indicate to hardware the Address is Valid. */
7681 rar_high |= E1000_RAH_AV;
7682
7683 if (hw->mac.type == e1000_82575)
7684 rar_high |= E1000_RAH_POOL_1 * qsel;
7685 else
7686 rar_high |= E1000_RAH_POOL_1 << qsel;
7687
7688 wr32(E1000_RAL(index), rar_low);
7689 wrfl();
7690 wr32(E1000_RAH(index), rar_high);
7691 wrfl();
7692}
7693
7694static int igb_set_vf_mac(struct igb_adapter *adapter,
7695 int vf, unsigned char *mac_addr)
7696{
7697 struct e1000_hw *hw = &adapter->hw;
7698 /* VF MAC addresses start at end of receive addresses and moves
7699 * towards the first, as a result a collision should not be possible
7700 */
7701 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7702
7703 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7704
7705 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7706
7707 return 0;
7708}
7709
7710static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7711{
7712 struct igb_adapter *adapter = netdev_priv(netdev);
7713 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7714 return -EINVAL;
7715 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7716 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7717 dev_info(&adapter->pdev->dev,
7718 "Reload the VF driver to make this change effective.");
7719 if (test_bit(__IGB_DOWN, &adapter->state)) {
7720 dev_warn(&adapter->pdev->dev,
7721 "The VF MAC address has been set, but the PF device is not up.\n");
7722 dev_warn(&adapter->pdev->dev,
7723 "Bring the PF device up before attempting to use the VF device.\n");
7724 }
7725 return igb_set_vf_mac(adapter, vf, mac);
7726}
7727
7728static int igb_link_mbps(int internal_link_speed)
7729{
7730 switch (internal_link_speed) {
7731 case SPEED_100:
7732 return 100;
7733 case SPEED_1000:
7734 return 1000;
7735 default:
7736 return 0;
7737 }
7738}
7739
7740static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7741 int link_speed)
7742{
7743 int rf_dec, rf_int;
7744 u32 bcnrc_val;
7745
7746 if (tx_rate != 0) {
7747 /* Calculate the rate factor values to set */
7748 rf_int = link_speed / tx_rate;
7749 rf_dec = (link_speed - (rf_int * tx_rate));
7750 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7751 tx_rate;
7752
7753 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7754 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7755 E1000_RTTBCNRC_RF_INT_MASK);
7756 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7757 } else {
7758 bcnrc_val = 0;
7759 }
7760
7761 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7762 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7763 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7764 */
7765 wr32(E1000_RTTBCNRM, 0x14);
7766 wr32(E1000_RTTBCNRC, bcnrc_val);
7767}
7768
7769static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7770{
7771 int actual_link_speed, i;
7772 bool reset_rate = false;
7773
7774 /* VF TX rate limit was not set or not supported */
7775 if ((adapter->vf_rate_link_speed == 0) ||
7776 (adapter->hw.mac.type != e1000_82576))
7777 return;
7778
7779 actual_link_speed = igb_link_mbps(adapter->link_speed);
7780 if (actual_link_speed != adapter->vf_rate_link_speed) {
7781 reset_rate = true;
7782 adapter->vf_rate_link_speed = 0;
7783 dev_info(&adapter->pdev->dev,
7784 "Link speed has been changed. VF Transmit rate is disabled\n");
7785 }
7786
7787 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7788 if (reset_rate)
7789 adapter->vf_data[i].tx_rate = 0;
7790
7791 igb_set_vf_rate_limit(&adapter->hw, i,
7792 adapter->vf_data[i].tx_rate,
7793 actual_link_speed);
7794 }
7795}
7796
7797static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7798 int min_tx_rate, int max_tx_rate)
7799{
7800 struct igb_adapter *adapter = netdev_priv(netdev);
7801 struct e1000_hw *hw = &adapter->hw;
7802 int actual_link_speed;
7803
7804 if (hw->mac.type != e1000_82576)
7805 return -EOPNOTSUPP;
7806
7807 if (min_tx_rate)
7808 return -EINVAL;
7809
7810 actual_link_speed = igb_link_mbps(adapter->link_speed);
7811 if ((vf >= adapter->vfs_allocated_count) ||
7812 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7813 (max_tx_rate < 0) ||
7814 (max_tx_rate > actual_link_speed))
7815 return -EINVAL;
7816
7817 adapter->vf_rate_link_speed = actual_link_speed;
7818 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7819 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7820
7821 return 0;
7822}
7823
7824static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7825 bool setting)
7826{
7827 struct igb_adapter *adapter = netdev_priv(netdev);
7828 struct e1000_hw *hw = &adapter->hw;
7829 u32 reg_val, reg_offset;
7830
7831 if (!adapter->vfs_allocated_count)
7832 return -EOPNOTSUPP;
7833
7834 if (vf >= adapter->vfs_allocated_count)
7835 return -EINVAL;
7836
7837 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7838 reg_val = rd32(reg_offset);
7839 if (setting)
7840 reg_val |= ((1 << vf) |
7841 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7842 else
7843 reg_val &= ~((1 << vf) |
7844 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7845 wr32(reg_offset, reg_val);
7846
7847 adapter->vf_data[vf].spoofchk_enabled = setting;
7848 return 0;
7849}
7850
7851static int igb_ndo_get_vf_config(struct net_device *netdev,
7852 int vf, struct ifla_vf_info *ivi)
7853{
7854 struct igb_adapter *adapter = netdev_priv(netdev);
7855 if (vf >= adapter->vfs_allocated_count)
7856 return -EINVAL;
7857 ivi->vf = vf;
7858 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7859 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7860 ivi->min_tx_rate = 0;
7861 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7862 ivi->qos = adapter->vf_data[vf].pf_qos;
7863 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7864 return 0;
7865}
7866
7867static void igb_vmm_control(struct igb_adapter *adapter)
7868{
7869 struct e1000_hw *hw = &adapter->hw;
7870 u32 reg;
7871
7872 switch (hw->mac.type) {
7873 case e1000_82575:
7874 case e1000_i210:
7875 case e1000_i211:
7876 case e1000_i354:
7877 default:
7878 /* replication is not supported for 82575 */
7879 return;
7880 case e1000_82576:
7881 /* notify HW that the MAC is adding vlan tags */
7882 reg = rd32(E1000_DTXCTL);
7883 reg |= E1000_DTXCTL_VLAN_ADDED;
7884 wr32(E1000_DTXCTL, reg);
7885 /* Fall through */
7886 case e1000_82580:
7887 /* enable replication vlan tag stripping */
7888 reg = rd32(E1000_RPLOLR);
7889 reg |= E1000_RPLOLR_STRVLAN;
7890 wr32(E1000_RPLOLR, reg);
7891 /* Fall through */
7892 case e1000_i350:
7893 /* none of the above registers are supported by i350 */
7894 break;
7895 }
7896
7897 if (adapter->vfs_allocated_count) {
7898 igb_vmdq_set_loopback_pf(hw, true);
7899 igb_vmdq_set_replication_pf(hw, true);
7900 igb_vmdq_set_anti_spoofing_pf(hw, true,
7901 adapter->vfs_allocated_count);
7902 } else {
7903 igb_vmdq_set_loopback_pf(hw, false);
7904 igb_vmdq_set_replication_pf(hw, false);
7905 }
7906}
7907
7908static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7909{
7910 struct e1000_hw *hw = &adapter->hw;
7911 u32 dmac_thr;
7912 u16 hwm;
7913
7914 if (hw->mac.type > e1000_82580) {
7915 if (adapter->flags & IGB_FLAG_DMAC) {
7916 u32 reg;
7917
7918 /* force threshold to 0. */
7919 wr32(E1000_DMCTXTH, 0);
7920
7921 /* DMA Coalescing high water mark needs to be greater
7922 * than the Rx threshold. Set hwm to PBA - max frame
7923 * size in 16B units, capping it at PBA - 6KB.
7924 */
7925 hwm = 64 * pba - adapter->max_frame_size / 16;
7926 if (hwm < 64 * (pba - 6))
7927 hwm = 64 * (pba - 6);
7928 reg = rd32(E1000_FCRTC);
7929 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7930 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7931 & E1000_FCRTC_RTH_COAL_MASK);
7932 wr32(E1000_FCRTC, reg);
7933
7934 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7935 * frame size, capping it at PBA - 10KB.
7936 */
7937 dmac_thr = pba - adapter->max_frame_size / 512;
7938 if (dmac_thr < pba - 10)
7939 dmac_thr = pba - 10;
7940 reg = rd32(E1000_DMACR);
7941 reg &= ~E1000_DMACR_DMACTHR_MASK;
7942 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7943 & E1000_DMACR_DMACTHR_MASK);
7944
7945 /* transition to L0x or L1 if available..*/
7946 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7947
7948 /* watchdog timer= +-1000 usec in 32usec intervals */
7949 reg |= (1000 >> 5);
7950
7951 /* Disable BMC-to-OS Watchdog Enable */
7952 if (hw->mac.type != e1000_i354)
7953 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7954
7955 wr32(E1000_DMACR, reg);
7956
7957 /* no lower threshold to disable
7958 * coalescing(smart fifb)-UTRESH=0
7959 */
7960 wr32(E1000_DMCRTRH, 0);
7961
7962 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7963
7964 wr32(E1000_DMCTLX, reg);
7965
7966 /* free space in tx packet buffer to wake from
7967 * DMA coal
7968 */
7969 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7970 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7971
7972 /* make low power state decision controlled
7973 * by DMA coal
7974 */
7975 reg = rd32(E1000_PCIEMISC);
7976 reg &= ~E1000_PCIEMISC_LX_DECISION;
7977 wr32(E1000_PCIEMISC, reg);
7978 } /* endif adapter->dmac is not disabled */
7979 } else if (hw->mac.type == e1000_82580) {
7980 u32 reg = rd32(E1000_PCIEMISC);
7981
7982 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7983 wr32(E1000_DMACR, 0);
7984 }
7985}
7986
7987/**
7988 * igb_read_i2c_byte - Reads 8 bit word over I2C
7989 * @hw: pointer to hardware structure
7990 * @byte_offset: byte offset to read
7991 * @dev_addr: device address
7992 * @data: value read
7993 *
7994 * Performs byte read operation over I2C interface at
7995 * a specified device address.
7996 **/
7997s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7998 u8 dev_addr, u8 *data)
7999{
8000 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8001 struct i2c_client *this_client = adapter->i2c_client;
8002 s32 status;
8003 u16 swfw_mask = 0;
8004
8005 if (!this_client)
8006 return E1000_ERR_I2C;
8007
8008 swfw_mask = E1000_SWFW_PHY0_SM;
8009
8010 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8011 return E1000_ERR_SWFW_SYNC;
8012
8013 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8014 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8015
8016 if (status < 0)
8017 return E1000_ERR_I2C;
8018 else {
8019 *data = status;
8020 return 0;
8021 }
8022}
8023
8024/**
8025 * igb_write_i2c_byte - Writes 8 bit word over I2C
8026 * @hw: pointer to hardware structure
8027 * @byte_offset: byte offset to write
8028 * @dev_addr: device address
8029 * @data: value to write
8030 *
8031 * Performs byte write operation over I2C interface at
8032 * a specified device address.
8033 **/
8034s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8035 u8 dev_addr, u8 data)
8036{
8037 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8038 struct i2c_client *this_client = adapter->i2c_client;
8039 s32 status;
8040 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8041
8042 if (!this_client)
8043 return E1000_ERR_I2C;
8044
8045 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8046 return E1000_ERR_SWFW_SYNC;
8047 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8048 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8049
8050 if (status)
8051 return E1000_ERR_I2C;
8052 else
8053 return 0;
8054
8055}
8056
8057int igb_reinit_queues(struct igb_adapter *adapter)
8058{
8059 struct net_device *netdev = adapter->netdev;
8060 struct pci_dev *pdev = adapter->pdev;
8061 int err = 0;
8062
8063 if (netif_running(netdev))
8064 igb_close(netdev);
8065
8066 igb_reset_interrupt_capability(adapter);
8067
8068 if (igb_init_interrupt_scheme(adapter, true)) {
8069 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8070 return -ENOMEM;
8071 }
8072
8073 if (netif_running(netdev))
8074 err = igb_open(netdev);
8075
8076 return err;
8077}
8078/* igb_main.c */
This page took 0.052714 seconds and 5 git commands to generate.