intel: Add support for IPv6 IP-in-IP offload
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
... / ...
CommitLineData
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/module.h>
27#include <linux/types.h>
28#include <linux/init.h>
29#include <linux/bitops.h>
30#include <linux/vmalloc.h>
31#include <linux/pagemap.h>
32#include <linux/netdevice.h>
33#include <linux/ipv6.h>
34#include <linux/slab.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/net_tstamp.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
43#include <linux/pci-aspm.h>
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/ip.h>
47#include <linux/tcp.h>
48#include <linux/sctp.h>
49#include <linux/if_ether.h>
50#include <linux/aer.h>
51#include <linux/prefetch.h>
52#include <linux/pm_runtime.h>
53#include <linux/etherdevice.h>
54#ifdef CONFIG_IGB_DCA
55#include <linux/dca.h>
56#endif
57#include <linux/i2c.h>
58#include "igb.h"
59
60#define MAJ 5
61#define MIN 3
62#define BUILD 0
63#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64__stringify(BUILD) "-k"
65char igb_driver_name[] = "igb";
66char igb_driver_version[] = DRV_VERSION;
67static const char igb_driver_string[] =
68 "Intel(R) Gigabit Ethernet Network Driver";
69static const char igb_copyright[] =
70 "Copyright (c) 2007-2014 Intel Corporation.";
71
72static const struct e1000_info *igb_info_tbl[] = {
73 [board_82575] = &e1000_82575_info,
74};
75
76static const struct pci_device_id igb_pci_tbl[] = {
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 /* required last entry */
113 {0, }
114};
115
116MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118static int igb_setup_all_tx_resources(struct igb_adapter *);
119static int igb_setup_all_rx_resources(struct igb_adapter *);
120static void igb_free_all_tx_resources(struct igb_adapter *);
121static void igb_free_all_rx_resources(struct igb_adapter *);
122static void igb_setup_mrqc(struct igb_adapter *);
123static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124static void igb_remove(struct pci_dev *pdev);
125static int igb_sw_init(struct igb_adapter *);
126int igb_open(struct net_device *);
127int igb_close(struct net_device *);
128static void igb_configure(struct igb_adapter *);
129static void igb_configure_tx(struct igb_adapter *);
130static void igb_configure_rx(struct igb_adapter *);
131static void igb_clean_all_tx_rings(struct igb_adapter *);
132static void igb_clean_all_rx_rings(struct igb_adapter *);
133static void igb_clean_tx_ring(struct igb_ring *);
134static void igb_clean_rx_ring(struct igb_ring *);
135static void igb_set_rx_mode(struct net_device *);
136static void igb_update_phy_info(unsigned long);
137static void igb_watchdog(unsigned long);
138static void igb_watchdog_task(struct work_struct *);
139static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141 struct rtnl_link_stats64 *stats);
142static int igb_change_mtu(struct net_device *, int);
143static int igb_set_mac(struct net_device *, void *);
144static void igb_set_uta(struct igb_adapter *adapter, bool set);
145static irqreturn_t igb_intr(int irq, void *);
146static irqreturn_t igb_intr_msi(int irq, void *);
147static irqreturn_t igb_msix_other(int irq, void *);
148static irqreturn_t igb_msix_ring(int irq, void *);
149#ifdef CONFIG_IGB_DCA
150static void igb_update_dca(struct igb_q_vector *);
151static void igb_setup_dca(struct igb_adapter *);
152#endif /* CONFIG_IGB_DCA */
153static int igb_poll(struct napi_struct *, int);
154static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155static int igb_clean_rx_irq(struct igb_q_vector *, int);
156static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157static void igb_tx_timeout(struct net_device *);
158static void igb_reset_task(struct work_struct *);
159static void igb_vlan_mode(struct net_device *netdev,
160 netdev_features_t features);
161static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163static void igb_restore_vlan(struct igb_adapter *);
164static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165static void igb_ping_all_vfs(struct igb_adapter *);
166static void igb_msg_task(struct igb_adapter *);
167static void igb_vmm_control(struct igb_adapter *);
168static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172 int vf, u16 vlan, u8 qos);
173static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 bool setting);
176static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 struct ifla_vf_info *ivi);
178static void igb_check_vf_rate_limit(struct igb_adapter *);
179
180#ifdef CONFIG_PCI_IOV
181static int igb_vf_configure(struct igb_adapter *adapter, int vf);
182static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
183static int igb_disable_sriov(struct pci_dev *dev);
184static int igb_pci_disable_sriov(struct pci_dev *dev);
185#endif
186
187#ifdef CONFIG_PM
188#ifdef CONFIG_PM_SLEEP
189static int igb_suspend(struct device *);
190#endif
191static int igb_resume(struct device *);
192static int igb_runtime_suspend(struct device *dev);
193static int igb_runtime_resume(struct device *dev);
194static int igb_runtime_idle(struct device *dev);
195static const struct dev_pm_ops igb_pm_ops = {
196 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 igb_runtime_idle)
199};
200#endif
201static void igb_shutdown(struct pci_dev *);
202static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203#ifdef CONFIG_IGB_DCA
204static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205static struct notifier_block dca_notifier = {
206 .notifier_call = igb_notify_dca,
207 .next = NULL,
208 .priority = 0
209};
210#endif
211#ifdef CONFIG_NET_POLL_CONTROLLER
212/* for netdump / net console */
213static void igb_netpoll(struct net_device *);
214#endif
215#ifdef CONFIG_PCI_IOV
216static unsigned int max_vfs;
217module_param(max_vfs, uint, 0);
218MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
219#endif /* CONFIG_PCI_IOV */
220
221static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
222 pci_channel_state_t);
223static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
224static void igb_io_resume(struct pci_dev *);
225
226static const struct pci_error_handlers igb_err_handler = {
227 .error_detected = igb_io_error_detected,
228 .slot_reset = igb_io_slot_reset,
229 .resume = igb_io_resume,
230};
231
232static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
233
234static struct pci_driver igb_driver = {
235 .name = igb_driver_name,
236 .id_table = igb_pci_tbl,
237 .probe = igb_probe,
238 .remove = igb_remove,
239#ifdef CONFIG_PM
240 .driver.pm = &igb_pm_ops,
241#endif
242 .shutdown = igb_shutdown,
243 .sriov_configure = igb_pci_sriov_configure,
244 .err_handler = &igb_err_handler
245};
246
247MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
248MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
249MODULE_LICENSE("GPL");
250MODULE_VERSION(DRV_VERSION);
251
252#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
253static int debug = -1;
254module_param(debug, int, 0);
255MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
256
257struct igb_reg_info {
258 u32 ofs;
259 char *name;
260};
261
262static const struct igb_reg_info igb_reg_info_tbl[] = {
263
264 /* General Registers */
265 {E1000_CTRL, "CTRL"},
266 {E1000_STATUS, "STATUS"},
267 {E1000_CTRL_EXT, "CTRL_EXT"},
268
269 /* Interrupt Registers */
270 {E1000_ICR, "ICR"},
271
272 /* RX Registers */
273 {E1000_RCTL, "RCTL"},
274 {E1000_RDLEN(0), "RDLEN"},
275 {E1000_RDH(0), "RDH"},
276 {E1000_RDT(0), "RDT"},
277 {E1000_RXDCTL(0), "RXDCTL"},
278 {E1000_RDBAL(0), "RDBAL"},
279 {E1000_RDBAH(0), "RDBAH"},
280
281 /* TX Registers */
282 {E1000_TCTL, "TCTL"},
283 {E1000_TDBAL(0), "TDBAL"},
284 {E1000_TDBAH(0), "TDBAH"},
285 {E1000_TDLEN(0), "TDLEN"},
286 {E1000_TDH(0), "TDH"},
287 {E1000_TDT(0), "TDT"},
288 {E1000_TXDCTL(0), "TXDCTL"},
289 {E1000_TDFH, "TDFH"},
290 {E1000_TDFT, "TDFT"},
291 {E1000_TDFHS, "TDFHS"},
292 {E1000_TDFPC, "TDFPC"},
293
294 /* List Terminator */
295 {}
296};
297
298/* igb_regdump - register printout routine */
299static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
300{
301 int n = 0;
302 char rname[16];
303 u32 regs[8];
304
305 switch (reginfo->ofs) {
306 case E1000_RDLEN(0):
307 for (n = 0; n < 4; n++)
308 regs[n] = rd32(E1000_RDLEN(n));
309 break;
310 case E1000_RDH(0):
311 for (n = 0; n < 4; n++)
312 regs[n] = rd32(E1000_RDH(n));
313 break;
314 case E1000_RDT(0):
315 for (n = 0; n < 4; n++)
316 regs[n] = rd32(E1000_RDT(n));
317 break;
318 case E1000_RXDCTL(0):
319 for (n = 0; n < 4; n++)
320 regs[n] = rd32(E1000_RXDCTL(n));
321 break;
322 case E1000_RDBAL(0):
323 for (n = 0; n < 4; n++)
324 regs[n] = rd32(E1000_RDBAL(n));
325 break;
326 case E1000_RDBAH(0):
327 for (n = 0; n < 4; n++)
328 regs[n] = rd32(E1000_RDBAH(n));
329 break;
330 case E1000_TDBAL(0):
331 for (n = 0; n < 4; n++)
332 regs[n] = rd32(E1000_RDBAL(n));
333 break;
334 case E1000_TDBAH(0):
335 for (n = 0; n < 4; n++)
336 regs[n] = rd32(E1000_TDBAH(n));
337 break;
338 case E1000_TDLEN(0):
339 for (n = 0; n < 4; n++)
340 regs[n] = rd32(E1000_TDLEN(n));
341 break;
342 case E1000_TDH(0):
343 for (n = 0; n < 4; n++)
344 regs[n] = rd32(E1000_TDH(n));
345 break;
346 case E1000_TDT(0):
347 for (n = 0; n < 4; n++)
348 regs[n] = rd32(E1000_TDT(n));
349 break;
350 case E1000_TXDCTL(0):
351 for (n = 0; n < 4; n++)
352 regs[n] = rd32(E1000_TXDCTL(n));
353 break;
354 default:
355 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
356 return;
357 }
358
359 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
360 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
361 regs[2], regs[3]);
362}
363
364/* igb_dump - Print registers, Tx-rings and Rx-rings */
365static void igb_dump(struct igb_adapter *adapter)
366{
367 struct net_device *netdev = adapter->netdev;
368 struct e1000_hw *hw = &adapter->hw;
369 struct igb_reg_info *reginfo;
370 struct igb_ring *tx_ring;
371 union e1000_adv_tx_desc *tx_desc;
372 struct my_u0 { u64 a; u64 b; } *u0;
373 struct igb_ring *rx_ring;
374 union e1000_adv_rx_desc *rx_desc;
375 u32 staterr;
376 u16 i, n;
377
378 if (!netif_msg_hw(adapter))
379 return;
380
381 /* Print netdevice Info */
382 if (netdev) {
383 dev_info(&adapter->pdev->dev, "Net device Info\n");
384 pr_info("Device Name state trans_start last_rx\n");
385 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
386 netdev->state, dev_trans_start(netdev), netdev->last_rx);
387 }
388
389 /* Print Registers */
390 dev_info(&adapter->pdev->dev, "Register Dump\n");
391 pr_info(" Register Name Value\n");
392 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
393 reginfo->name; reginfo++) {
394 igb_regdump(hw, reginfo);
395 }
396
397 /* Print TX Ring Summary */
398 if (!netdev || !netif_running(netdev))
399 goto exit;
400
401 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
402 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
403 for (n = 0; n < adapter->num_tx_queues; n++) {
404 struct igb_tx_buffer *buffer_info;
405 tx_ring = adapter->tx_ring[n];
406 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
407 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
408 n, tx_ring->next_to_use, tx_ring->next_to_clean,
409 (u64)dma_unmap_addr(buffer_info, dma),
410 dma_unmap_len(buffer_info, len),
411 buffer_info->next_to_watch,
412 (u64)buffer_info->time_stamp);
413 }
414
415 /* Print TX Rings */
416 if (!netif_msg_tx_done(adapter))
417 goto rx_ring_summary;
418
419 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
420
421 /* Transmit Descriptor Formats
422 *
423 * Advanced Transmit Descriptor
424 * +--------------------------------------------------------------+
425 * 0 | Buffer Address [63:0] |
426 * +--------------------------------------------------------------+
427 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
428 * +--------------------------------------------------------------+
429 * 63 46 45 40 39 38 36 35 32 31 24 15 0
430 */
431
432 for (n = 0; n < adapter->num_tx_queues; n++) {
433 tx_ring = adapter->tx_ring[n];
434 pr_info("------------------------------------\n");
435 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
436 pr_info("------------------------------------\n");
437 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
438
439 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
440 const char *next_desc;
441 struct igb_tx_buffer *buffer_info;
442 tx_desc = IGB_TX_DESC(tx_ring, i);
443 buffer_info = &tx_ring->tx_buffer_info[i];
444 u0 = (struct my_u0 *)tx_desc;
445 if (i == tx_ring->next_to_use &&
446 i == tx_ring->next_to_clean)
447 next_desc = " NTC/U";
448 else if (i == tx_ring->next_to_use)
449 next_desc = " NTU";
450 else if (i == tx_ring->next_to_clean)
451 next_desc = " NTC";
452 else
453 next_desc = "";
454
455 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
456 i, le64_to_cpu(u0->a),
457 le64_to_cpu(u0->b),
458 (u64)dma_unmap_addr(buffer_info, dma),
459 dma_unmap_len(buffer_info, len),
460 buffer_info->next_to_watch,
461 (u64)buffer_info->time_stamp,
462 buffer_info->skb, next_desc);
463
464 if (netif_msg_pktdata(adapter) && buffer_info->skb)
465 print_hex_dump(KERN_INFO, "",
466 DUMP_PREFIX_ADDRESS,
467 16, 1, buffer_info->skb->data,
468 dma_unmap_len(buffer_info, len),
469 true);
470 }
471 }
472
473 /* Print RX Rings Summary */
474rx_ring_summary:
475 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476 pr_info("Queue [NTU] [NTC]\n");
477 for (n = 0; n < adapter->num_rx_queues; n++) {
478 rx_ring = adapter->rx_ring[n];
479 pr_info(" %5d %5X %5X\n",
480 n, rx_ring->next_to_use, rx_ring->next_to_clean);
481 }
482
483 /* Print RX Rings */
484 if (!netif_msg_rx_status(adapter))
485 goto exit;
486
487 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489 /* Advanced Receive Descriptor (Read) Format
490 * 63 1 0
491 * +-----------------------------------------------------+
492 * 0 | Packet Buffer Address [63:1] |A0/NSE|
493 * +----------------------------------------------+------+
494 * 8 | Header Buffer Address [63:1] | DD |
495 * +-----------------------------------------------------+
496 *
497 *
498 * Advanced Receive Descriptor (Write-Back) Format
499 *
500 * 63 48 47 32 31 30 21 20 17 16 4 3 0
501 * +------------------------------------------------------+
502 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
503 * | Checksum Ident | | | | Type | Type |
504 * +------------------------------------------------------+
505 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506 * +------------------------------------------------------+
507 * 63 48 47 32 31 20 19 0
508 */
509
510 for (n = 0; n < adapter->num_rx_queues; n++) {
511 rx_ring = adapter->rx_ring[n];
512 pr_info("------------------------------------\n");
513 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514 pr_info("------------------------------------\n");
515 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
516 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
517
518 for (i = 0; i < rx_ring->count; i++) {
519 const char *next_desc;
520 struct igb_rx_buffer *buffer_info;
521 buffer_info = &rx_ring->rx_buffer_info[i];
522 rx_desc = IGB_RX_DESC(rx_ring, i);
523 u0 = (struct my_u0 *)rx_desc;
524 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
525
526 if (i == rx_ring->next_to_use)
527 next_desc = " NTU";
528 else if (i == rx_ring->next_to_clean)
529 next_desc = " NTC";
530 else
531 next_desc = "";
532
533 if (staterr & E1000_RXD_STAT_DD) {
534 /* Descriptor Done */
535 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
536 "RWB", i,
537 le64_to_cpu(u0->a),
538 le64_to_cpu(u0->b),
539 next_desc);
540 } else {
541 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
542 "R ", i,
543 le64_to_cpu(u0->a),
544 le64_to_cpu(u0->b),
545 (u64)buffer_info->dma,
546 next_desc);
547
548 if (netif_msg_pktdata(adapter) &&
549 buffer_info->dma && buffer_info->page) {
550 print_hex_dump(KERN_INFO, "",
551 DUMP_PREFIX_ADDRESS,
552 16, 1,
553 page_address(buffer_info->page) +
554 buffer_info->page_offset,
555 IGB_RX_BUFSZ, true);
556 }
557 }
558 }
559 }
560
561exit:
562 return;
563}
564
565/**
566 * igb_get_i2c_data - Reads the I2C SDA data bit
567 * @hw: pointer to hardware structure
568 * @i2cctl: Current value of I2CCTL register
569 *
570 * Returns the I2C data bit value
571 **/
572static int igb_get_i2c_data(void *data)
573{
574 struct igb_adapter *adapter = (struct igb_adapter *)data;
575 struct e1000_hw *hw = &adapter->hw;
576 s32 i2cctl = rd32(E1000_I2CPARAMS);
577
578 return !!(i2cctl & E1000_I2C_DATA_IN);
579}
580
581/**
582 * igb_set_i2c_data - Sets the I2C data bit
583 * @data: pointer to hardware structure
584 * @state: I2C data value (0 or 1) to set
585 *
586 * Sets the I2C data bit
587 **/
588static void igb_set_i2c_data(void *data, int state)
589{
590 struct igb_adapter *adapter = (struct igb_adapter *)data;
591 struct e1000_hw *hw = &adapter->hw;
592 s32 i2cctl = rd32(E1000_I2CPARAMS);
593
594 if (state)
595 i2cctl |= E1000_I2C_DATA_OUT;
596 else
597 i2cctl &= ~E1000_I2C_DATA_OUT;
598
599 i2cctl &= ~E1000_I2C_DATA_OE_N;
600 i2cctl |= E1000_I2C_CLK_OE_N;
601 wr32(E1000_I2CPARAMS, i2cctl);
602 wrfl();
603
604}
605
606/**
607 * igb_set_i2c_clk - Sets the I2C SCL clock
608 * @data: pointer to hardware structure
609 * @state: state to set clock
610 *
611 * Sets the I2C clock line to state
612 **/
613static void igb_set_i2c_clk(void *data, int state)
614{
615 struct igb_adapter *adapter = (struct igb_adapter *)data;
616 struct e1000_hw *hw = &adapter->hw;
617 s32 i2cctl = rd32(E1000_I2CPARAMS);
618
619 if (state) {
620 i2cctl |= E1000_I2C_CLK_OUT;
621 i2cctl &= ~E1000_I2C_CLK_OE_N;
622 } else {
623 i2cctl &= ~E1000_I2C_CLK_OUT;
624 i2cctl &= ~E1000_I2C_CLK_OE_N;
625 }
626 wr32(E1000_I2CPARAMS, i2cctl);
627 wrfl();
628}
629
630/**
631 * igb_get_i2c_clk - Gets the I2C SCL clock state
632 * @data: pointer to hardware structure
633 *
634 * Gets the I2C clock state
635 **/
636static int igb_get_i2c_clk(void *data)
637{
638 struct igb_adapter *adapter = (struct igb_adapter *)data;
639 struct e1000_hw *hw = &adapter->hw;
640 s32 i2cctl = rd32(E1000_I2CPARAMS);
641
642 return !!(i2cctl & E1000_I2C_CLK_IN);
643}
644
645static const struct i2c_algo_bit_data igb_i2c_algo = {
646 .setsda = igb_set_i2c_data,
647 .setscl = igb_set_i2c_clk,
648 .getsda = igb_get_i2c_data,
649 .getscl = igb_get_i2c_clk,
650 .udelay = 5,
651 .timeout = 20,
652};
653
654/**
655 * igb_get_hw_dev - return device
656 * @hw: pointer to hardware structure
657 *
658 * used by hardware layer to print debugging information
659 **/
660struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661{
662 struct igb_adapter *adapter = hw->back;
663 return adapter->netdev;
664}
665
666/**
667 * igb_init_module - Driver Registration Routine
668 *
669 * igb_init_module is the first routine called when the driver is
670 * loaded. All it does is register with the PCI subsystem.
671 **/
672static int __init igb_init_module(void)
673{
674 int ret;
675
676 pr_info("%s - version %s\n",
677 igb_driver_string, igb_driver_version);
678 pr_info("%s\n", igb_copyright);
679
680#ifdef CONFIG_IGB_DCA
681 dca_register_notify(&dca_notifier);
682#endif
683 ret = pci_register_driver(&igb_driver);
684 return ret;
685}
686
687module_init(igb_init_module);
688
689/**
690 * igb_exit_module - Driver Exit Cleanup Routine
691 *
692 * igb_exit_module is called just before the driver is removed
693 * from memory.
694 **/
695static void __exit igb_exit_module(void)
696{
697#ifdef CONFIG_IGB_DCA
698 dca_unregister_notify(&dca_notifier);
699#endif
700 pci_unregister_driver(&igb_driver);
701}
702
703module_exit(igb_exit_module);
704
705#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706/**
707 * igb_cache_ring_register - Descriptor ring to register mapping
708 * @adapter: board private structure to initialize
709 *
710 * Once we know the feature-set enabled for the device, we'll cache
711 * the register offset the descriptor ring is assigned to.
712 **/
713static void igb_cache_ring_register(struct igb_adapter *adapter)
714{
715 int i = 0, j = 0;
716 u32 rbase_offset = adapter->vfs_allocated_count;
717
718 switch (adapter->hw.mac.type) {
719 case e1000_82576:
720 /* The queues are allocated for virtualization such that VF 0
721 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
722 * In order to avoid collision we start at the first free queue
723 * and continue consuming queues in the same sequence
724 */
725 if (adapter->vfs_allocated_count) {
726 for (; i < adapter->rss_queues; i++)
727 adapter->rx_ring[i]->reg_idx = rbase_offset +
728 Q_IDX_82576(i);
729 }
730 /* Fall through */
731 case e1000_82575:
732 case e1000_82580:
733 case e1000_i350:
734 case e1000_i354:
735 case e1000_i210:
736 case e1000_i211:
737 /* Fall through */
738 default:
739 for (; i < adapter->num_rx_queues; i++)
740 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741 for (; j < adapter->num_tx_queues; j++)
742 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743 break;
744 }
745}
746
747u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748{
749 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751 u32 value = 0;
752
753 if (E1000_REMOVED(hw_addr))
754 return ~value;
755
756 value = readl(&hw_addr[reg]);
757
758 /* reads should not return all F's */
759 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760 struct net_device *netdev = igb->netdev;
761 hw->hw_addr = NULL;
762 netif_device_detach(netdev);
763 netdev_err(netdev, "PCIe link lost, device now detached\n");
764 }
765
766 return value;
767}
768
769/**
770 * igb_write_ivar - configure ivar for given MSI-X vector
771 * @hw: pointer to the HW structure
772 * @msix_vector: vector number we are allocating to a given ring
773 * @index: row index of IVAR register to write within IVAR table
774 * @offset: column offset of in IVAR, should be multiple of 8
775 *
776 * This function is intended to handle the writing of the IVAR register
777 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
778 * each containing an cause allocation for an Rx and Tx ring, and a
779 * variable number of rows depending on the number of queues supported.
780 **/
781static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782 int index, int offset)
783{
784 u32 ivar = array_rd32(E1000_IVAR0, index);
785
786 /* clear any bits that are currently set */
787 ivar &= ~((u32)0xFF << offset);
788
789 /* write vector and valid bit */
790 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792 array_wr32(E1000_IVAR0, index, ivar);
793}
794
795#define IGB_N0_QUEUE -1
796static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797{
798 struct igb_adapter *adapter = q_vector->adapter;
799 struct e1000_hw *hw = &adapter->hw;
800 int rx_queue = IGB_N0_QUEUE;
801 int tx_queue = IGB_N0_QUEUE;
802 u32 msixbm = 0;
803
804 if (q_vector->rx.ring)
805 rx_queue = q_vector->rx.ring->reg_idx;
806 if (q_vector->tx.ring)
807 tx_queue = q_vector->tx.ring->reg_idx;
808
809 switch (hw->mac.type) {
810 case e1000_82575:
811 /* The 82575 assigns vectors using a bitmask, which matches the
812 * bitmask for the EICR/EIMS/EIMC registers. To assign one
813 * or more queues to a vector, we write the appropriate bits
814 * into the MSIXBM register for that vector.
815 */
816 if (rx_queue > IGB_N0_QUEUE)
817 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818 if (tx_queue > IGB_N0_QUEUE)
819 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821 msixbm |= E1000_EIMS_OTHER;
822 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823 q_vector->eims_value = msixbm;
824 break;
825 case e1000_82576:
826 /* 82576 uses a table that essentially consists of 2 columns
827 * with 8 rows. The ordering is column-major so we use the
828 * lower 3 bits as the row index, and the 4th bit as the
829 * column offset.
830 */
831 if (rx_queue > IGB_N0_QUEUE)
832 igb_write_ivar(hw, msix_vector,
833 rx_queue & 0x7,
834 (rx_queue & 0x8) << 1);
835 if (tx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 tx_queue & 0x7,
838 ((tx_queue & 0x8) << 1) + 8);
839 q_vector->eims_value = BIT(msix_vector);
840 break;
841 case e1000_82580:
842 case e1000_i350:
843 case e1000_i354:
844 case e1000_i210:
845 case e1000_i211:
846 /* On 82580 and newer adapters the scheme is similar to 82576
847 * however instead of ordering column-major we have things
848 * ordered row-major. So we traverse the table by using
849 * bit 0 as the column offset, and the remaining bits as the
850 * row index.
851 */
852 if (rx_queue > IGB_N0_QUEUE)
853 igb_write_ivar(hw, msix_vector,
854 rx_queue >> 1,
855 (rx_queue & 0x1) << 4);
856 if (tx_queue > IGB_N0_QUEUE)
857 igb_write_ivar(hw, msix_vector,
858 tx_queue >> 1,
859 ((tx_queue & 0x1) << 4) + 8);
860 q_vector->eims_value = BIT(msix_vector);
861 break;
862 default:
863 BUG();
864 break;
865 }
866
867 /* add q_vector eims value to global eims_enable_mask */
868 adapter->eims_enable_mask |= q_vector->eims_value;
869
870 /* configure q_vector to set itr on first interrupt */
871 q_vector->set_itr = 1;
872}
873
874/**
875 * igb_configure_msix - Configure MSI-X hardware
876 * @adapter: board private structure to initialize
877 *
878 * igb_configure_msix sets up the hardware to properly
879 * generate MSI-X interrupts.
880 **/
881static void igb_configure_msix(struct igb_adapter *adapter)
882{
883 u32 tmp;
884 int i, vector = 0;
885 struct e1000_hw *hw = &adapter->hw;
886
887 adapter->eims_enable_mask = 0;
888
889 /* set vector for other causes, i.e. link changes */
890 switch (hw->mac.type) {
891 case e1000_82575:
892 tmp = rd32(E1000_CTRL_EXT);
893 /* enable MSI-X PBA support*/
894 tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896 /* Auto-Mask interrupts upon ICR read. */
897 tmp |= E1000_CTRL_EXT_EIAME;
898 tmp |= E1000_CTRL_EXT_IRCA;
899
900 wr32(E1000_CTRL_EXT, tmp);
901
902 /* enable msix_other interrupt */
903 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904 adapter->eims_other = E1000_EIMS_OTHER;
905
906 break;
907
908 case e1000_82576:
909 case e1000_82580:
910 case e1000_i350:
911 case e1000_i354:
912 case e1000_i210:
913 case e1000_i211:
914 /* Turn on MSI-X capability first, or our settings
915 * won't stick. And it will take days to debug.
916 */
917 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918 E1000_GPIE_PBA | E1000_GPIE_EIAME |
919 E1000_GPIE_NSICR);
920
921 /* enable msix_other interrupt */
922 adapter->eims_other = BIT(vector);
923 tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925 wr32(E1000_IVAR_MISC, tmp);
926 break;
927 default:
928 /* do nothing, since nothing else supports MSI-X */
929 break;
930 } /* switch (hw->mac.type) */
931
932 adapter->eims_enable_mask |= adapter->eims_other;
933
934 for (i = 0; i < adapter->num_q_vectors; i++)
935 igb_assign_vector(adapter->q_vector[i], vector++);
936
937 wrfl();
938}
939
940/**
941 * igb_request_msix - Initialize MSI-X interrupts
942 * @adapter: board private structure to initialize
943 *
944 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
945 * kernel.
946 **/
947static int igb_request_msix(struct igb_adapter *adapter)
948{
949 struct net_device *netdev = adapter->netdev;
950 int i, err = 0, vector = 0, free_vector = 0;
951
952 err = request_irq(adapter->msix_entries[vector].vector,
953 igb_msix_other, 0, netdev->name, adapter);
954 if (err)
955 goto err_out;
956
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960 vector++;
961
962 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
963
964 if (q_vector->rx.ring && q_vector->tx.ring)
965 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 q_vector->rx.ring->queue_index);
967 else if (q_vector->tx.ring)
968 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 q_vector->tx.ring->queue_index);
970 else if (q_vector->rx.ring)
971 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972 q_vector->rx.ring->queue_index);
973 else
974 sprintf(q_vector->name, "%s-unused", netdev->name);
975
976 err = request_irq(adapter->msix_entries[vector].vector,
977 igb_msix_ring, 0, q_vector->name,
978 q_vector);
979 if (err)
980 goto err_free;
981 }
982
983 igb_configure_msix(adapter);
984 return 0;
985
986err_free:
987 /* free already assigned IRQs */
988 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990 vector--;
991 for (i = 0; i < vector; i++) {
992 free_irq(adapter->msix_entries[free_vector++].vector,
993 adapter->q_vector[i]);
994 }
995err_out:
996 return err;
997}
998
999/**
1000 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 * @adapter: board private structure to initialize
1002 * @v_idx: Index of vector to be freed
1003 *
1004 * This function frees the memory allocated to the q_vector.
1005 **/
1006static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007{
1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010 adapter->q_vector[v_idx] = NULL;
1011
1012 /* igb_get_stats64() might access the rings on this vector,
1013 * we must wait a grace period before freeing it.
1014 */
1015 if (q_vector)
1016 kfree_rcu(q_vector, rcu);
1017}
1018
1019/**
1020 * igb_reset_q_vector - Reset config for interrupt vector
1021 * @adapter: board private structure to initialize
1022 * @v_idx: Index of vector to be reset
1023 *
1024 * If NAPI is enabled it will delete any references to the
1025 * NAPI struct. This is preparation for igb_free_q_vector.
1026 **/
1027static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028{
1029 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032 * allocated. So, q_vector is NULL so we should stop here.
1033 */
1034 if (!q_vector)
1035 return;
1036
1037 if (q_vector->tx.ring)
1038 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040 if (q_vector->rx.ring)
1041 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043 netif_napi_del(&q_vector->napi);
1044
1045}
1046
1047static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048{
1049 int v_idx = adapter->num_q_vectors;
1050
1051 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052 pci_disable_msix(adapter->pdev);
1053 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054 pci_disable_msi(adapter->pdev);
1055
1056 while (v_idx--)
1057 igb_reset_q_vector(adapter, v_idx);
1058}
1059
1060/**
1061 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1062 * @adapter: board private structure to initialize
1063 *
1064 * This function frees the memory allocated to the q_vectors. In addition if
1065 * NAPI is enabled it will delete any references to the NAPI struct prior
1066 * to freeing the q_vector.
1067 **/
1068static void igb_free_q_vectors(struct igb_adapter *adapter)
1069{
1070 int v_idx = adapter->num_q_vectors;
1071
1072 adapter->num_tx_queues = 0;
1073 adapter->num_rx_queues = 0;
1074 adapter->num_q_vectors = 0;
1075
1076 while (v_idx--) {
1077 igb_reset_q_vector(adapter, v_idx);
1078 igb_free_q_vector(adapter, v_idx);
1079 }
1080}
1081
1082/**
1083 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084 * @adapter: board private structure to initialize
1085 *
1086 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1087 * MSI-X interrupts allocated.
1088 */
1089static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090{
1091 igb_free_q_vectors(adapter);
1092 igb_reset_interrupt_capability(adapter);
1093}
1094
1095/**
1096 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1097 * @adapter: board private structure to initialize
1098 * @msix: boolean value of MSIX capability
1099 *
1100 * Attempt to configure interrupts using the best available
1101 * capabilities of the hardware and kernel.
1102 **/
1103static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104{
1105 int err;
1106 int numvecs, i;
1107
1108 if (!msix)
1109 goto msi_only;
1110 adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112 /* Number of supported queues. */
1113 adapter->num_rx_queues = adapter->rss_queues;
1114 if (adapter->vfs_allocated_count)
1115 adapter->num_tx_queues = 1;
1116 else
1117 adapter->num_tx_queues = adapter->rss_queues;
1118
1119 /* start with one vector for every Rx queue */
1120 numvecs = adapter->num_rx_queues;
1121
1122 /* if Tx handler is separate add 1 for every Tx queue */
1123 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124 numvecs += adapter->num_tx_queues;
1125
1126 /* store the number of vectors reserved for queues */
1127 adapter->num_q_vectors = numvecs;
1128
1129 /* add 1 vector for link status interrupts */
1130 numvecs++;
1131 for (i = 0; i < numvecs; i++)
1132 adapter->msix_entries[i].entry = i;
1133
1134 err = pci_enable_msix_range(adapter->pdev,
1135 adapter->msix_entries,
1136 numvecs,
1137 numvecs);
1138 if (err > 0)
1139 return;
1140
1141 igb_reset_interrupt_capability(adapter);
1142
1143 /* If we can't do MSI-X, try MSI */
1144msi_only:
1145 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146#ifdef CONFIG_PCI_IOV
1147 /* disable SR-IOV for non MSI-X configurations */
1148 if (adapter->vf_data) {
1149 struct e1000_hw *hw = &adapter->hw;
1150 /* disable iov and allow time for transactions to clear */
1151 pci_disable_sriov(adapter->pdev);
1152 msleep(500);
1153
1154 kfree(adapter->vf_data);
1155 adapter->vf_data = NULL;
1156 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157 wrfl();
1158 msleep(100);
1159 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160 }
1161#endif
1162 adapter->vfs_allocated_count = 0;
1163 adapter->rss_queues = 1;
1164 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165 adapter->num_rx_queues = 1;
1166 adapter->num_tx_queues = 1;
1167 adapter->num_q_vectors = 1;
1168 if (!pci_enable_msi(adapter->pdev))
1169 adapter->flags |= IGB_FLAG_HAS_MSI;
1170}
1171
1172static void igb_add_ring(struct igb_ring *ring,
1173 struct igb_ring_container *head)
1174{
1175 head->ring = ring;
1176 head->count++;
1177}
1178
1179/**
1180 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 * @adapter: board private structure to initialize
1182 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 * @v_idx: index of vector in adapter struct
1184 * @txr_count: total number of Tx rings to allocate
1185 * @txr_idx: index of first Tx ring to allocate
1186 * @rxr_count: total number of Rx rings to allocate
1187 * @rxr_idx: index of first Rx ring to allocate
1188 *
1189 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1190 **/
1191static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192 int v_count, int v_idx,
1193 int txr_count, int txr_idx,
1194 int rxr_count, int rxr_idx)
1195{
1196 struct igb_q_vector *q_vector;
1197 struct igb_ring *ring;
1198 int ring_count, size;
1199
1200 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201 if (txr_count > 1 || rxr_count > 1)
1202 return -ENOMEM;
1203
1204 ring_count = txr_count + rxr_count;
1205 size = sizeof(struct igb_q_vector) +
1206 (sizeof(struct igb_ring) * ring_count);
1207
1208 /* allocate q_vector and rings */
1209 q_vector = adapter->q_vector[v_idx];
1210 if (!q_vector) {
1211 q_vector = kzalloc(size, GFP_KERNEL);
1212 } else if (size > ksize(q_vector)) {
1213 kfree_rcu(q_vector, rcu);
1214 q_vector = kzalloc(size, GFP_KERNEL);
1215 } else {
1216 memset(q_vector, 0, size);
1217 }
1218 if (!q_vector)
1219 return -ENOMEM;
1220
1221 /* initialize NAPI */
1222 netif_napi_add(adapter->netdev, &q_vector->napi,
1223 igb_poll, 64);
1224
1225 /* tie q_vector and adapter together */
1226 adapter->q_vector[v_idx] = q_vector;
1227 q_vector->adapter = adapter;
1228
1229 /* initialize work limits */
1230 q_vector->tx.work_limit = adapter->tx_work_limit;
1231
1232 /* initialize ITR configuration */
1233 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1234 q_vector->itr_val = IGB_START_ITR;
1235
1236 /* initialize pointer to rings */
1237 ring = q_vector->ring;
1238
1239 /* intialize ITR */
1240 if (rxr_count) {
1241 /* rx or rx/tx vector */
1242 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243 q_vector->itr_val = adapter->rx_itr_setting;
1244 } else {
1245 /* tx only vector */
1246 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247 q_vector->itr_val = adapter->tx_itr_setting;
1248 }
1249
1250 if (txr_count) {
1251 /* assign generic ring traits */
1252 ring->dev = &adapter->pdev->dev;
1253 ring->netdev = adapter->netdev;
1254
1255 /* configure backlink on ring */
1256 ring->q_vector = q_vector;
1257
1258 /* update q_vector Tx values */
1259 igb_add_ring(ring, &q_vector->tx);
1260
1261 /* For 82575, context index must be unique per ring. */
1262 if (adapter->hw.mac.type == e1000_82575)
1263 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264
1265 /* apply Tx specific ring traits */
1266 ring->count = adapter->tx_ring_count;
1267 ring->queue_index = txr_idx;
1268
1269 u64_stats_init(&ring->tx_syncp);
1270 u64_stats_init(&ring->tx_syncp2);
1271
1272 /* assign ring to adapter */
1273 adapter->tx_ring[txr_idx] = ring;
1274
1275 /* push pointer to next ring */
1276 ring++;
1277 }
1278
1279 if (rxr_count) {
1280 /* assign generic ring traits */
1281 ring->dev = &adapter->pdev->dev;
1282 ring->netdev = adapter->netdev;
1283
1284 /* configure backlink on ring */
1285 ring->q_vector = q_vector;
1286
1287 /* update q_vector Rx values */
1288 igb_add_ring(ring, &q_vector->rx);
1289
1290 /* set flag indicating ring supports SCTP checksum offload */
1291 if (adapter->hw.mac.type >= e1000_82576)
1292 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294 /* On i350, i354, i210, and i211, loopback VLAN packets
1295 * have the tag byte-swapped.
1296 */
1297 if (adapter->hw.mac.type >= e1000_i350)
1298 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300 /* apply Rx specific ring traits */
1301 ring->count = adapter->rx_ring_count;
1302 ring->queue_index = rxr_idx;
1303
1304 u64_stats_init(&ring->rx_syncp);
1305
1306 /* assign ring to adapter */
1307 adapter->rx_ring[rxr_idx] = ring;
1308 }
1309
1310 return 0;
1311}
1312
1313
1314/**
1315 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 * @adapter: board private structure to initialize
1317 *
1318 * We allocate one q_vector per queue interrupt. If allocation fails we
1319 * return -ENOMEM.
1320 **/
1321static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322{
1323 int q_vectors = adapter->num_q_vectors;
1324 int rxr_remaining = adapter->num_rx_queues;
1325 int txr_remaining = adapter->num_tx_queues;
1326 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 int err;
1328
1329 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 for (; rxr_remaining; v_idx++) {
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 0, 0, 1, rxr_idx);
1333
1334 if (err)
1335 goto err_out;
1336
1337 /* update counts and index */
1338 rxr_remaining--;
1339 rxr_idx++;
1340 }
1341 }
1342
1343 for (; v_idx < q_vectors; v_idx++) {
1344 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 tqpv, txr_idx, rqpv, rxr_idx);
1349
1350 if (err)
1351 goto err_out;
1352
1353 /* update counts and index */
1354 rxr_remaining -= rqpv;
1355 txr_remaining -= tqpv;
1356 rxr_idx++;
1357 txr_idx++;
1358 }
1359
1360 return 0;
1361
1362err_out:
1363 adapter->num_tx_queues = 0;
1364 adapter->num_rx_queues = 0;
1365 adapter->num_q_vectors = 0;
1366
1367 while (v_idx--)
1368 igb_free_q_vector(adapter, v_idx);
1369
1370 return -ENOMEM;
1371}
1372
1373/**
1374 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 * @adapter: board private structure to initialize
1376 * @msix: boolean value of MSIX capability
1377 *
1378 * This function initializes the interrupts and allocates all of the queues.
1379 **/
1380static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381{
1382 struct pci_dev *pdev = adapter->pdev;
1383 int err;
1384
1385 igb_set_interrupt_capability(adapter, msix);
1386
1387 err = igb_alloc_q_vectors(adapter);
1388 if (err) {
1389 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 goto err_alloc_q_vectors;
1391 }
1392
1393 igb_cache_ring_register(adapter);
1394
1395 return 0;
1396
1397err_alloc_q_vectors:
1398 igb_reset_interrupt_capability(adapter);
1399 return err;
1400}
1401
1402/**
1403 * igb_request_irq - initialize interrupts
1404 * @adapter: board private structure to initialize
1405 *
1406 * Attempts to configure interrupts using the best available
1407 * capabilities of the hardware and kernel.
1408 **/
1409static int igb_request_irq(struct igb_adapter *adapter)
1410{
1411 struct net_device *netdev = adapter->netdev;
1412 struct pci_dev *pdev = adapter->pdev;
1413 int err = 0;
1414
1415 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 err = igb_request_msix(adapter);
1417 if (!err)
1418 goto request_done;
1419 /* fall back to MSI */
1420 igb_free_all_tx_resources(adapter);
1421 igb_free_all_rx_resources(adapter);
1422
1423 igb_clear_interrupt_scheme(adapter);
1424 err = igb_init_interrupt_scheme(adapter, false);
1425 if (err)
1426 goto request_done;
1427
1428 igb_setup_all_tx_resources(adapter);
1429 igb_setup_all_rx_resources(adapter);
1430 igb_configure(adapter);
1431 }
1432
1433 igb_assign_vector(adapter->q_vector[0], 0);
1434
1435 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 netdev->name, adapter);
1438 if (!err)
1439 goto request_done;
1440
1441 /* fall back to legacy interrupts */
1442 igb_reset_interrupt_capability(adapter);
1443 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 }
1445
1446 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 netdev->name, adapter);
1448
1449 if (err)
1450 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 err);
1452
1453request_done:
1454 return err;
1455}
1456
1457static void igb_free_irq(struct igb_adapter *adapter)
1458{
1459 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 int vector = 0, i;
1461
1462 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464 for (i = 0; i < adapter->num_q_vectors; i++)
1465 free_irq(adapter->msix_entries[vector++].vector,
1466 adapter->q_vector[i]);
1467 } else {
1468 free_irq(adapter->pdev->irq, adapter);
1469 }
1470}
1471
1472/**
1473 * igb_irq_disable - Mask off interrupt generation on the NIC
1474 * @adapter: board private structure
1475 **/
1476static void igb_irq_disable(struct igb_adapter *adapter)
1477{
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* we need to be careful when disabling interrupts. The VFs are also
1481 * mapped into these registers and so clearing the bits can cause
1482 * issues on the VF drivers so we only need to clear what we set
1483 */
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 u32 regval = rd32(E1000_EIAM);
1486
1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 regval = rd32(E1000_EIAC);
1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 }
1492
1493 wr32(E1000_IAM, 0);
1494 wr32(E1000_IMC, ~0);
1495 wrfl();
1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 int i;
1498
1499 for (i = 0; i < adapter->num_q_vectors; i++)
1500 synchronize_irq(adapter->msix_entries[i].vector);
1501 } else {
1502 synchronize_irq(adapter->pdev->irq);
1503 }
1504}
1505
1506/**
1507 * igb_irq_enable - Enable default interrupt generation settings
1508 * @adapter: board private structure
1509 **/
1510static void igb_irq_enable(struct igb_adapter *adapter)
1511{
1512 struct e1000_hw *hw = &adapter->hw;
1513
1514 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 u32 regval = rd32(E1000_EIAC);
1517
1518 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 regval = rd32(E1000_EIAM);
1520 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 if (adapter->vfs_allocated_count) {
1523 wr32(E1000_MBVFIMR, 0xFF);
1524 ims |= E1000_IMS_VMMB;
1525 }
1526 wr32(E1000_IMS, ims);
1527 } else {
1528 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
1530 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 }
1533}
1534
1535static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536{
1537 struct e1000_hw *hw = &adapter->hw;
1538 u16 pf_id = adapter->vfs_allocated_count;
1539 u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 u16 old_vid = adapter->mng_vlan_id;
1541
1542 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 /* add VID to filter table */
1544 igb_vfta_set(hw, vid, pf_id, true, true);
1545 adapter->mng_vlan_id = vid;
1546 } else {
1547 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 }
1549
1550 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 (vid != old_vid) &&
1552 !test_bit(old_vid, adapter->active_vlans)) {
1553 /* remove VID from filter table */
1554 igb_vfta_set(hw, vid, pf_id, false, true);
1555 }
1556}
1557
1558/**
1559 * igb_release_hw_control - release control of the h/w to f/w
1560 * @adapter: address of board private structure
1561 *
1562 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563 * For ASF and Pass Through versions of f/w this means that the
1564 * driver is no longer loaded.
1565 **/
1566static void igb_release_hw_control(struct igb_adapter *adapter)
1567{
1568 struct e1000_hw *hw = &adapter->hw;
1569 u32 ctrl_ext;
1570
1571 /* Let firmware take over control of h/w */
1572 ctrl_ext = rd32(E1000_CTRL_EXT);
1573 wr32(E1000_CTRL_EXT,
1574 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575}
1576
1577/**
1578 * igb_get_hw_control - get control of the h/w from f/w
1579 * @adapter: address of board private structure
1580 *
1581 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582 * For ASF and Pass Through versions of f/w this means that
1583 * the driver is loaded.
1584 **/
1585static void igb_get_hw_control(struct igb_adapter *adapter)
1586{
1587 struct e1000_hw *hw = &adapter->hw;
1588 u32 ctrl_ext;
1589
1590 /* Let firmware know the driver has taken over */
1591 ctrl_ext = rd32(E1000_CTRL_EXT);
1592 wr32(E1000_CTRL_EXT,
1593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594}
1595
1596/**
1597 * igb_configure - configure the hardware for RX and TX
1598 * @adapter: private board structure
1599 **/
1600static void igb_configure(struct igb_adapter *adapter)
1601{
1602 struct net_device *netdev = adapter->netdev;
1603 int i;
1604
1605 igb_get_hw_control(adapter);
1606 igb_set_rx_mode(netdev);
1607
1608 igb_restore_vlan(adapter);
1609
1610 igb_setup_tctl(adapter);
1611 igb_setup_mrqc(adapter);
1612 igb_setup_rctl(adapter);
1613
1614 igb_configure_tx(adapter);
1615 igb_configure_rx(adapter);
1616
1617 igb_rx_fifo_flush_82575(&adapter->hw);
1618
1619 /* call igb_desc_unused which always leaves
1620 * at least 1 descriptor unused to make sure
1621 * next_to_use != next_to_clean
1622 */
1623 for (i = 0; i < adapter->num_rx_queues; i++) {
1624 struct igb_ring *ring = adapter->rx_ring[i];
1625 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1626 }
1627}
1628
1629/**
1630 * igb_power_up_link - Power up the phy/serdes link
1631 * @adapter: address of board private structure
1632 **/
1633void igb_power_up_link(struct igb_adapter *adapter)
1634{
1635 igb_reset_phy(&adapter->hw);
1636
1637 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1638 igb_power_up_phy_copper(&adapter->hw);
1639 else
1640 igb_power_up_serdes_link_82575(&adapter->hw);
1641
1642 igb_setup_link(&adapter->hw);
1643}
1644
1645/**
1646 * igb_power_down_link - Power down the phy/serdes link
1647 * @adapter: address of board private structure
1648 */
1649static void igb_power_down_link(struct igb_adapter *adapter)
1650{
1651 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1652 igb_power_down_phy_copper_82575(&adapter->hw);
1653 else
1654 igb_shutdown_serdes_link_82575(&adapter->hw);
1655}
1656
1657/**
1658 * Detect and switch function for Media Auto Sense
1659 * @adapter: address of the board private structure
1660 **/
1661static void igb_check_swap_media(struct igb_adapter *adapter)
1662{
1663 struct e1000_hw *hw = &adapter->hw;
1664 u32 ctrl_ext, connsw;
1665 bool swap_now = false;
1666
1667 ctrl_ext = rd32(E1000_CTRL_EXT);
1668 connsw = rd32(E1000_CONNSW);
1669
1670 /* need to live swap if current media is copper and we have fiber/serdes
1671 * to go to.
1672 */
1673
1674 if ((hw->phy.media_type == e1000_media_type_copper) &&
1675 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1676 swap_now = true;
1677 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1678 /* copper signal takes time to appear */
1679 if (adapter->copper_tries < 4) {
1680 adapter->copper_tries++;
1681 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1682 wr32(E1000_CONNSW, connsw);
1683 return;
1684 } else {
1685 adapter->copper_tries = 0;
1686 if ((connsw & E1000_CONNSW_PHYSD) &&
1687 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1688 swap_now = true;
1689 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1690 wr32(E1000_CONNSW, connsw);
1691 }
1692 }
1693 }
1694
1695 if (!swap_now)
1696 return;
1697
1698 switch (hw->phy.media_type) {
1699 case e1000_media_type_copper:
1700 netdev_info(adapter->netdev,
1701 "MAS: changing media to fiber/serdes\n");
1702 ctrl_ext |=
1703 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705 adapter->copper_tries = 0;
1706 break;
1707 case e1000_media_type_internal_serdes:
1708 case e1000_media_type_fiber:
1709 netdev_info(adapter->netdev,
1710 "MAS: changing media to copper\n");
1711 ctrl_ext &=
1712 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1713 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1714 break;
1715 default:
1716 /* shouldn't get here during regular operation */
1717 netdev_err(adapter->netdev,
1718 "AMS: Invalid media type found, returning\n");
1719 break;
1720 }
1721 wr32(E1000_CTRL_EXT, ctrl_ext);
1722}
1723
1724/**
1725 * igb_up - Open the interface and prepare it to handle traffic
1726 * @adapter: board private structure
1727 **/
1728int igb_up(struct igb_adapter *adapter)
1729{
1730 struct e1000_hw *hw = &adapter->hw;
1731 int i;
1732
1733 /* hardware has been reset, we need to reload some things */
1734 igb_configure(adapter);
1735
1736 clear_bit(__IGB_DOWN, &adapter->state);
1737
1738 for (i = 0; i < adapter->num_q_vectors; i++)
1739 napi_enable(&(adapter->q_vector[i]->napi));
1740
1741 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1742 igb_configure_msix(adapter);
1743 else
1744 igb_assign_vector(adapter->q_vector[0], 0);
1745
1746 /* Clear any pending interrupts. */
1747 rd32(E1000_ICR);
1748 igb_irq_enable(adapter);
1749
1750 /* notify VFs that reset has been completed */
1751 if (adapter->vfs_allocated_count) {
1752 u32 reg_data = rd32(E1000_CTRL_EXT);
1753
1754 reg_data |= E1000_CTRL_EXT_PFRSTD;
1755 wr32(E1000_CTRL_EXT, reg_data);
1756 }
1757
1758 netif_tx_start_all_queues(adapter->netdev);
1759
1760 /* start the watchdog. */
1761 hw->mac.get_link_status = 1;
1762 schedule_work(&adapter->watchdog_task);
1763
1764 if ((adapter->flags & IGB_FLAG_EEE) &&
1765 (!hw->dev_spec._82575.eee_disable))
1766 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1767
1768 return 0;
1769}
1770
1771void igb_down(struct igb_adapter *adapter)
1772{
1773 struct net_device *netdev = adapter->netdev;
1774 struct e1000_hw *hw = &adapter->hw;
1775 u32 tctl, rctl;
1776 int i;
1777
1778 /* signal that we're down so the interrupt handler does not
1779 * reschedule our watchdog timer
1780 */
1781 set_bit(__IGB_DOWN, &adapter->state);
1782
1783 /* disable receives in the hardware */
1784 rctl = rd32(E1000_RCTL);
1785 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1786 /* flush and sleep below */
1787
1788 netif_carrier_off(netdev);
1789 netif_tx_stop_all_queues(netdev);
1790
1791 /* disable transmits in the hardware */
1792 tctl = rd32(E1000_TCTL);
1793 tctl &= ~E1000_TCTL_EN;
1794 wr32(E1000_TCTL, tctl);
1795 /* flush both disables and wait for them to finish */
1796 wrfl();
1797 usleep_range(10000, 11000);
1798
1799 igb_irq_disable(adapter);
1800
1801 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1802
1803 for (i = 0; i < adapter->num_q_vectors; i++) {
1804 if (adapter->q_vector[i]) {
1805 napi_synchronize(&adapter->q_vector[i]->napi);
1806 napi_disable(&adapter->q_vector[i]->napi);
1807 }
1808 }
1809
1810 del_timer_sync(&adapter->watchdog_timer);
1811 del_timer_sync(&adapter->phy_info_timer);
1812
1813 /* record the stats before reset*/
1814 spin_lock(&adapter->stats64_lock);
1815 igb_update_stats(adapter, &adapter->stats64);
1816 spin_unlock(&adapter->stats64_lock);
1817
1818 adapter->link_speed = 0;
1819 adapter->link_duplex = 0;
1820
1821 if (!pci_channel_offline(adapter->pdev))
1822 igb_reset(adapter);
1823
1824 /* clear VLAN promisc flag so VFTA will be updated if necessary */
1825 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1826
1827 igb_clean_all_tx_rings(adapter);
1828 igb_clean_all_rx_rings(adapter);
1829#ifdef CONFIG_IGB_DCA
1830
1831 /* since we reset the hardware DCA settings were cleared */
1832 igb_setup_dca(adapter);
1833#endif
1834}
1835
1836void igb_reinit_locked(struct igb_adapter *adapter)
1837{
1838 WARN_ON(in_interrupt());
1839 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1840 usleep_range(1000, 2000);
1841 igb_down(adapter);
1842 igb_up(adapter);
1843 clear_bit(__IGB_RESETTING, &adapter->state);
1844}
1845
1846/** igb_enable_mas - Media Autosense re-enable after swap
1847 *
1848 * @adapter: adapter struct
1849 **/
1850static void igb_enable_mas(struct igb_adapter *adapter)
1851{
1852 struct e1000_hw *hw = &adapter->hw;
1853 u32 connsw = rd32(E1000_CONNSW);
1854
1855 /* configure for SerDes media detect */
1856 if ((hw->phy.media_type == e1000_media_type_copper) &&
1857 (!(connsw & E1000_CONNSW_SERDESD))) {
1858 connsw |= E1000_CONNSW_ENRGSRC;
1859 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1860 wr32(E1000_CONNSW, connsw);
1861 wrfl();
1862 }
1863}
1864
1865void igb_reset(struct igb_adapter *adapter)
1866{
1867 struct pci_dev *pdev = adapter->pdev;
1868 struct e1000_hw *hw = &adapter->hw;
1869 struct e1000_mac_info *mac = &hw->mac;
1870 struct e1000_fc_info *fc = &hw->fc;
1871 u32 pba, hwm;
1872
1873 /* Repartition Pba for greater than 9k mtu
1874 * To take effect CTRL.RST is required.
1875 */
1876 switch (mac->type) {
1877 case e1000_i350:
1878 case e1000_i354:
1879 case e1000_82580:
1880 pba = rd32(E1000_RXPBS);
1881 pba = igb_rxpbs_adjust_82580(pba);
1882 break;
1883 case e1000_82576:
1884 pba = rd32(E1000_RXPBS);
1885 pba &= E1000_RXPBS_SIZE_MASK_82576;
1886 break;
1887 case e1000_82575:
1888 case e1000_i210:
1889 case e1000_i211:
1890 default:
1891 pba = E1000_PBA_34K;
1892 break;
1893 }
1894
1895 if (mac->type == e1000_82575) {
1896 u32 min_rx_space, min_tx_space, needed_tx_space;
1897
1898 /* write Rx PBA so that hardware can report correct Tx PBA */
1899 wr32(E1000_PBA, pba);
1900
1901 /* To maintain wire speed transmits, the Tx FIFO should be
1902 * large enough to accommodate two full transmit packets,
1903 * rounded up to the next 1KB and expressed in KB. Likewise,
1904 * the Rx FIFO should be large enough to accommodate at least
1905 * one full receive packet and is similarly rounded up and
1906 * expressed in KB.
1907 */
1908 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1909
1910 /* The Tx FIFO also stores 16 bytes of information about the Tx
1911 * but don't include Ethernet FCS because hardware appends it.
1912 * We only need to round down to the nearest 512 byte block
1913 * count since the value we care about is 2 frames, not 1.
1914 */
1915 min_tx_space = adapter->max_frame_size;
1916 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1917 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1918
1919 /* upper 16 bits has Tx packet buffer allocation size in KB */
1920 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1921
1922 /* If current Tx allocation is less than the min Tx FIFO size,
1923 * and the min Tx FIFO size is less than the current Rx FIFO
1924 * allocation, take space away from current Rx allocation.
1925 */
1926 if (needed_tx_space < pba) {
1927 pba -= needed_tx_space;
1928
1929 /* if short on Rx space, Rx wins and must trump Tx
1930 * adjustment
1931 */
1932 if (pba < min_rx_space)
1933 pba = min_rx_space;
1934 }
1935
1936 /* adjust PBA for jumbo frames */
1937 wr32(E1000_PBA, pba);
1938 }
1939
1940 /* flow control settings
1941 * The high water mark must be low enough to fit one full frame
1942 * after transmitting the pause frame. As such we must have enough
1943 * space to allow for us to complete our current transmit and then
1944 * receive the frame that is in progress from the link partner.
1945 * Set it to:
1946 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1947 */
1948 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1949
1950 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1951 fc->low_water = fc->high_water - 16;
1952 fc->pause_time = 0xFFFF;
1953 fc->send_xon = 1;
1954 fc->current_mode = fc->requested_mode;
1955
1956 /* disable receive for all VFs and wait one second */
1957 if (adapter->vfs_allocated_count) {
1958 int i;
1959
1960 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963 /* ping all the active vfs to let them know we are going down */
1964 igb_ping_all_vfs(adapter);
1965
1966 /* disable transmits and receives */
1967 wr32(E1000_VFRE, 0);
1968 wr32(E1000_VFTE, 0);
1969 }
1970
1971 /* Allow time for pending master requests to run */
1972 hw->mac.ops.reset_hw(hw);
1973 wr32(E1000_WUC, 0);
1974
1975 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976 /* need to resetup here after media swap */
1977 adapter->ei.get_invariants(hw);
1978 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979 }
1980 if ((mac->type == e1000_82575) &&
1981 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1982 igb_enable_mas(adapter);
1983 }
1984 if (hw->mac.ops.init_hw(hw))
1985 dev_err(&pdev->dev, "Hardware Error\n");
1986
1987 /* Flow control settings reset on hardware reset, so guarantee flow
1988 * control is off when forcing speed.
1989 */
1990 if (!hw->mac.autoneg)
1991 igb_force_mac_fc(hw);
1992
1993 igb_init_dmac(adapter, pba);
1994#ifdef CONFIG_IGB_HWMON
1995 /* Re-initialize the thermal sensor on i350 devices. */
1996 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1997 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1998 /* If present, re-initialize the external thermal sensor
1999 * interface.
2000 */
2001 if (adapter->ets)
2002 mac->ops.init_thermal_sensor_thresh(hw);
2003 }
2004 }
2005#endif
2006 /* Re-establish EEE setting */
2007 if (hw->phy.media_type == e1000_media_type_copper) {
2008 switch (mac->type) {
2009 case e1000_i350:
2010 case e1000_i210:
2011 case e1000_i211:
2012 igb_set_eee_i350(hw, true, true);
2013 break;
2014 case e1000_i354:
2015 igb_set_eee_i354(hw, true, true);
2016 break;
2017 default:
2018 break;
2019 }
2020 }
2021 if (!netif_running(adapter->netdev))
2022 igb_power_down_link(adapter);
2023
2024 igb_update_mng_vlan(adapter);
2025
2026 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2027 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2028
2029 /* Re-enable PTP, where applicable. */
2030 igb_ptp_reset(adapter);
2031
2032 igb_get_phy_info(hw);
2033}
2034
2035static netdev_features_t igb_fix_features(struct net_device *netdev,
2036 netdev_features_t features)
2037{
2038 /* Since there is no support for separate Rx/Tx vlan accel
2039 * enable/disable make sure Tx flag is always in same state as Rx.
2040 */
2041 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2042 features |= NETIF_F_HW_VLAN_CTAG_TX;
2043 else
2044 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2045
2046 return features;
2047}
2048
2049static int igb_set_features(struct net_device *netdev,
2050 netdev_features_t features)
2051{
2052 netdev_features_t changed = netdev->features ^ features;
2053 struct igb_adapter *adapter = netdev_priv(netdev);
2054
2055 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2056 igb_vlan_mode(netdev, features);
2057
2058 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2059 return 0;
2060
2061 netdev->features = features;
2062
2063 if (netif_running(netdev))
2064 igb_reinit_locked(adapter);
2065 else
2066 igb_reset(adapter);
2067
2068 return 0;
2069}
2070
2071static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2072 struct net_device *dev,
2073 const unsigned char *addr, u16 vid,
2074 u16 flags)
2075{
2076 /* guarantee we can provide a unique filter for the unicast address */
2077 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2078 struct igb_adapter *adapter = netdev_priv(dev);
2079 struct e1000_hw *hw = &adapter->hw;
2080 int vfn = adapter->vfs_allocated_count;
2081 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2082
2083 if (netdev_uc_count(dev) >= rar_entries)
2084 return -ENOMEM;
2085 }
2086
2087 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2088}
2089
2090#define IGB_MAX_MAC_HDR_LEN 127
2091#define IGB_MAX_NETWORK_HDR_LEN 511
2092
2093static netdev_features_t
2094igb_features_check(struct sk_buff *skb, struct net_device *dev,
2095 netdev_features_t features)
2096{
2097 unsigned int network_hdr_len, mac_hdr_len;
2098
2099 /* Make certain the headers can be described by a context descriptor */
2100 mac_hdr_len = skb_network_header(skb) - skb->data;
2101 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2102 return features & ~(NETIF_F_HW_CSUM |
2103 NETIF_F_SCTP_CRC |
2104 NETIF_F_HW_VLAN_CTAG_TX |
2105 NETIF_F_TSO |
2106 NETIF_F_TSO6);
2107
2108 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2109 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2110 return features & ~(NETIF_F_HW_CSUM |
2111 NETIF_F_SCTP_CRC |
2112 NETIF_F_TSO |
2113 NETIF_F_TSO6);
2114
2115 /* We can only support IPV4 TSO in tunnels if we can mangle the
2116 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2117 */
2118 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2119 features &= ~NETIF_F_TSO;
2120
2121 return features;
2122}
2123
2124static const struct net_device_ops igb_netdev_ops = {
2125 .ndo_open = igb_open,
2126 .ndo_stop = igb_close,
2127 .ndo_start_xmit = igb_xmit_frame,
2128 .ndo_get_stats64 = igb_get_stats64,
2129 .ndo_set_rx_mode = igb_set_rx_mode,
2130 .ndo_set_mac_address = igb_set_mac,
2131 .ndo_change_mtu = igb_change_mtu,
2132 .ndo_do_ioctl = igb_ioctl,
2133 .ndo_tx_timeout = igb_tx_timeout,
2134 .ndo_validate_addr = eth_validate_addr,
2135 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2136 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2137 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2138 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2139 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2140 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2141 .ndo_get_vf_config = igb_ndo_get_vf_config,
2142#ifdef CONFIG_NET_POLL_CONTROLLER
2143 .ndo_poll_controller = igb_netpoll,
2144#endif
2145 .ndo_fix_features = igb_fix_features,
2146 .ndo_set_features = igb_set_features,
2147 .ndo_fdb_add = igb_ndo_fdb_add,
2148 .ndo_features_check = igb_features_check,
2149};
2150
2151/**
2152 * igb_set_fw_version - Configure version string for ethtool
2153 * @adapter: adapter struct
2154 **/
2155void igb_set_fw_version(struct igb_adapter *adapter)
2156{
2157 struct e1000_hw *hw = &adapter->hw;
2158 struct e1000_fw_version fw;
2159
2160 igb_get_fw_version(hw, &fw);
2161
2162 switch (hw->mac.type) {
2163 case e1000_i210:
2164 case e1000_i211:
2165 if (!(igb_get_flash_presence_i210(hw))) {
2166 snprintf(adapter->fw_version,
2167 sizeof(adapter->fw_version),
2168 "%2d.%2d-%d",
2169 fw.invm_major, fw.invm_minor,
2170 fw.invm_img_type);
2171 break;
2172 }
2173 /* fall through */
2174 default:
2175 /* if option is rom valid, display its version too */
2176 if (fw.or_valid) {
2177 snprintf(adapter->fw_version,
2178 sizeof(adapter->fw_version),
2179 "%d.%d, 0x%08x, %d.%d.%d",
2180 fw.eep_major, fw.eep_minor, fw.etrack_id,
2181 fw.or_major, fw.or_build, fw.or_patch);
2182 /* no option rom */
2183 } else if (fw.etrack_id != 0X0000) {
2184 snprintf(adapter->fw_version,
2185 sizeof(adapter->fw_version),
2186 "%d.%d, 0x%08x",
2187 fw.eep_major, fw.eep_minor, fw.etrack_id);
2188 } else {
2189 snprintf(adapter->fw_version,
2190 sizeof(adapter->fw_version),
2191 "%d.%d.%d",
2192 fw.eep_major, fw.eep_minor, fw.eep_build);
2193 }
2194 break;
2195 }
2196}
2197
2198/**
2199 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2200 *
2201 * @adapter: adapter struct
2202 **/
2203static void igb_init_mas(struct igb_adapter *adapter)
2204{
2205 struct e1000_hw *hw = &adapter->hw;
2206 u16 eeprom_data;
2207
2208 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2209 switch (hw->bus.func) {
2210 case E1000_FUNC_0:
2211 if (eeprom_data & IGB_MAS_ENABLE_0) {
2212 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2213 netdev_info(adapter->netdev,
2214 "MAS: Enabling Media Autosense for port %d\n",
2215 hw->bus.func);
2216 }
2217 break;
2218 case E1000_FUNC_1:
2219 if (eeprom_data & IGB_MAS_ENABLE_1) {
2220 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2221 netdev_info(adapter->netdev,
2222 "MAS: Enabling Media Autosense for port %d\n",
2223 hw->bus.func);
2224 }
2225 break;
2226 case E1000_FUNC_2:
2227 if (eeprom_data & IGB_MAS_ENABLE_2) {
2228 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2229 netdev_info(adapter->netdev,
2230 "MAS: Enabling Media Autosense for port %d\n",
2231 hw->bus.func);
2232 }
2233 break;
2234 case E1000_FUNC_3:
2235 if (eeprom_data & IGB_MAS_ENABLE_3) {
2236 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2237 netdev_info(adapter->netdev,
2238 "MAS: Enabling Media Autosense for port %d\n",
2239 hw->bus.func);
2240 }
2241 break;
2242 default:
2243 /* Shouldn't get here */
2244 netdev_err(adapter->netdev,
2245 "MAS: Invalid port configuration, returning\n");
2246 break;
2247 }
2248}
2249
2250/**
2251 * igb_init_i2c - Init I2C interface
2252 * @adapter: pointer to adapter structure
2253 **/
2254static s32 igb_init_i2c(struct igb_adapter *adapter)
2255{
2256 s32 status = 0;
2257
2258 /* I2C interface supported on i350 devices */
2259 if (adapter->hw.mac.type != e1000_i350)
2260 return 0;
2261
2262 /* Initialize the i2c bus which is controlled by the registers.
2263 * This bus will use the i2c_algo_bit structue that implements
2264 * the protocol through toggling of the 4 bits in the register.
2265 */
2266 adapter->i2c_adap.owner = THIS_MODULE;
2267 adapter->i2c_algo = igb_i2c_algo;
2268 adapter->i2c_algo.data = adapter;
2269 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2270 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2271 strlcpy(adapter->i2c_adap.name, "igb BB",
2272 sizeof(adapter->i2c_adap.name));
2273 status = i2c_bit_add_bus(&adapter->i2c_adap);
2274 return status;
2275}
2276
2277/**
2278 * igb_probe - Device Initialization Routine
2279 * @pdev: PCI device information struct
2280 * @ent: entry in igb_pci_tbl
2281 *
2282 * Returns 0 on success, negative on failure
2283 *
2284 * igb_probe initializes an adapter identified by a pci_dev structure.
2285 * The OS initialization, configuring of the adapter private structure,
2286 * and a hardware reset occur.
2287 **/
2288static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2289{
2290 struct net_device *netdev;
2291 struct igb_adapter *adapter;
2292 struct e1000_hw *hw;
2293 u16 eeprom_data = 0;
2294 s32 ret_val;
2295 static int global_quad_port_a; /* global quad port a indication */
2296 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2297 int err, pci_using_dac;
2298 u8 part_str[E1000_PBANUM_LENGTH];
2299
2300 /* Catch broken hardware that put the wrong VF device ID in
2301 * the PCIe SR-IOV capability.
2302 */
2303 if (pdev->is_virtfn) {
2304 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2305 pci_name(pdev), pdev->vendor, pdev->device);
2306 return -EINVAL;
2307 }
2308
2309 err = pci_enable_device_mem(pdev);
2310 if (err)
2311 return err;
2312
2313 pci_using_dac = 0;
2314 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2315 if (!err) {
2316 pci_using_dac = 1;
2317 } else {
2318 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2319 if (err) {
2320 dev_err(&pdev->dev,
2321 "No usable DMA configuration, aborting\n");
2322 goto err_dma;
2323 }
2324 }
2325
2326 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2327 IORESOURCE_MEM),
2328 igb_driver_name);
2329 if (err)
2330 goto err_pci_reg;
2331
2332 pci_enable_pcie_error_reporting(pdev);
2333
2334 pci_set_master(pdev);
2335 pci_save_state(pdev);
2336
2337 err = -ENOMEM;
2338 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2339 IGB_MAX_TX_QUEUES);
2340 if (!netdev)
2341 goto err_alloc_etherdev;
2342
2343 SET_NETDEV_DEV(netdev, &pdev->dev);
2344
2345 pci_set_drvdata(pdev, netdev);
2346 adapter = netdev_priv(netdev);
2347 adapter->netdev = netdev;
2348 adapter->pdev = pdev;
2349 hw = &adapter->hw;
2350 hw->back = adapter;
2351 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2352
2353 err = -EIO;
2354 adapter->io_addr = pci_iomap(pdev, 0, 0);
2355 if (!adapter->io_addr)
2356 goto err_ioremap;
2357 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2358 hw->hw_addr = adapter->io_addr;
2359
2360 netdev->netdev_ops = &igb_netdev_ops;
2361 igb_set_ethtool_ops(netdev);
2362 netdev->watchdog_timeo = 5 * HZ;
2363
2364 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2365
2366 netdev->mem_start = pci_resource_start(pdev, 0);
2367 netdev->mem_end = pci_resource_end(pdev, 0);
2368
2369 /* PCI config space info */
2370 hw->vendor_id = pdev->vendor;
2371 hw->device_id = pdev->device;
2372 hw->revision_id = pdev->revision;
2373 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2374 hw->subsystem_device_id = pdev->subsystem_device;
2375
2376 /* Copy the default MAC, PHY and NVM function pointers */
2377 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2378 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2379 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2380 /* Initialize skew-specific constants */
2381 err = ei->get_invariants(hw);
2382 if (err)
2383 goto err_sw_init;
2384
2385 /* setup the private structure */
2386 err = igb_sw_init(adapter);
2387 if (err)
2388 goto err_sw_init;
2389
2390 igb_get_bus_info_pcie(hw);
2391
2392 hw->phy.autoneg_wait_to_complete = false;
2393
2394 /* Copper options */
2395 if (hw->phy.media_type == e1000_media_type_copper) {
2396 hw->phy.mdix = AUTO_ALL_MODES;
2397 hw->phy.disable_polarity_correction = false;
2398 hw->phy.ms_type = e1000_ms_hw_default;
2399 }
2400
2401 if (igb_check_reset_block(hw))
2402 dev_info(&pdev->dev,
2403 "PHY reset is blocked due to SOL/IDER session.\n");
2404
2405 /* features is initialized to 0 in allocation, it might have bits
2406 * set by igb_sw_init so we should use an or instead of an
2407 * assignment.
2408 */
2409 netdev->features |= NETIF_F_SG |
2410 NETIF_F_TSO |
2411 NETIF_F_TSO6 |
2412 NETIF_F_RXHASH |
2413 NETIF_F_RXCSUM |
2414 NETIF_F_HW_CSUM;
2415
2416 if (hw->mac.type >= e1000_82576)
2417 netdev->features |= NETIF_F_SCTP_CRC;
2418
2419#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2420 NETIF_F_GSO_GRE_CSUM | \
2421 NETIF_F_GSO_IPXIP4 | \
2422 NETIF_F_GSO_IPXIP6 | \
2423 NETIF_F_GSO_UDP_TUNNEL | \
2424 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2425
2426 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2427 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2428
2429 /* copy netdev features into list of user selectable features */
2430 netdev->hw_features |= netdev->features |
2431 NETIF_F_HW_VLAN_CTAG_RX |
2432 NETIF_F_HW_VLAN_CTAG_TX |
2433 NETIF_F_RXALL;
2434
2435 if (hw->mac.type >= e1000_i350)
2436 netdev->hw_features |= NETIF_F_NTUPLE;
2437
2438 if (pci_using_dac)
2439 netdev->features |= NETIF_F_HIGHDMA;
2440
2441 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2442 netdev->mpls_features |= NETIF_F_HW_CSUM;
2443 netdev->hw_enc_features |= netdev->vlan_features;
2444
2445 /* set this bit last since it cannot be part of vlan_features */
2446 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2447 NETIF_F_HW_VLAN_CTAG_RX |
2448 NETIF_F_HW_VLAN_CTAG_TX;
2449
2450 netdev->priv_flags |= IFF_SUPP_NOFCS;
2451
2452 netdev->priv_flags |= IFF_UNICAST_FLT;
2453
2454 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2455
2456 /* before reading the NVM, reset the controller to put the device in a
2457 * known good starting state
2458 */
2459 hw->mac.ops.reset_hw(hw);
2460
2461 /* make sure the NVM is good , i211/i210 parts can have special NVM
2462 * that doesn't contain a checksum
2463 */
2464 switch (hw->mac.type) {
2465 case e1000_i210:
2466 case e1000_i211:
2467 if (igb_get_flash_presence_i210(hw)) {
2468 if (hw->nvm.ops.validate(hw) < 0) {
2469 dev_err(&pdev->dev,
2470 "The NVM Checksum Is Not Valid\n");
2471 err = -EIO;
2472 goto err_eeprom;
2473 }
2474 }
2475 break;
2476 default:
2477 if (hw->nvm.ops.validate(hw) < 0) {
2478 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2479 err = -EIO;
2480 goto err_eeprom;
2481 }
2482 break;
2483 }
2484
2485 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2486 /* copy the MAC address out of the NVM */
2487 if (hw->mac.ops.read_mac_addr(hw))
2488 dev_err(&pdev->dev, "NVM Read Error\n");
2489 }
2490
2491 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2492
2493 if (!is_valid_ether_addr(netdev->dev_addr)) {
2494 dev_err(&pdev->dev, "Invalid MAC Address\n");
2495 err = -EIO;
2496 goto err_eeprom;
2497 }
2498
2499 /* get firmware version for ethtool -i */
2500 igb_set_fw_version(adapter);
2501
2502 /* configure RXPBSIZE and TXPBSIZE */
2503 if (hw->mac.type == e1000_i210) {
2504 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2505 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2506 }
2507
2508 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2509 (unsigned long) adapter);
2510 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2511 (unsigned long) adapter);
2512
2513 INIT_WORK(&adapter->reset_task, igb_reset_task);
2514 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2515
2516 /* Initialize link properties that are user-changeable */
2517 adapter->fc_autoneg = true;
2518 hw->mac.autoneg = true;
2519 hw->phy.autoneg_advertised = 0x2f;
2520
2521 hw->fc.requested_mode = e1000_fc_default;
2522 hw->fc.current_mode = e1000_fc_default;
2523
2524 igb_validate_mdi_setting(hw);
2525
2526 /* By default, support wake on port A */
2527 if (hw->bus.func == 0)
2528 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2529
2530 /* Check the NVM for wake support on non-port A ports */
2531 if (hw->mac.type >= e1000_82580)
2532 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2533 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2534 &eeprom_data);
2535 else if (hw->bus.func == 1)
2536 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2537
2538 if (eeprom_data & IGB_EEPROM_APME)
2539 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2540
2541 /* now that we have the eeprom settings, apply the special cases where
2542 * the eeprom may be wrong or the board simply won't support wake on
2543 * lan on a particular port
2544 */
2545 switch (pdev->device) {
2546 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2547 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2548 break;
2549 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2550 case E1000_DEV_ID_82576_FIBER:
2551 case E1000_DEV_ID_82576_SERDES:
2552 /* Wake events only supported on port A for dual fiber
2553 * regardless of eeprom setting
2554 */
2555 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2556 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2557 break;
2558 case E1000_DEV_ID_82576_QUAD_COPPER:
2559 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2560 /* if quad port adapter, disable WoL on all but port A */
2561 if (global_quad_port_a != 0)
2562 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2563 else
2564 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2565 /* Reset for multiple quad port adapters */
2566 if (++global_quad_port_a == 4)
2567 global_quad_port_a = 0;
2568 break;
2569 default:
2570 /* If the device can't wake, don't set software support */
2571 if (!device_can_wakeup(&adapter->pdev->dev))
2572 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2573 }
2574
2575 /* initialize the wol settings based on the eeprom settings */
2576 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2577 adapter->wol |= E1000_WUFC_MAG;
2578
2579 /* Some vendors want WoL disabled by default, but still supported */
2580 if ((hw->mac.type == e1000_i350) &&
2581 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2582 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2583 adapter->wol = 0;
2584 }
2585
2586 /* Some vendors want the ability to Use the EEPROM setting as
2587 * enable/disable only, and not for capability
2588 */
2589 if (((hw->mac.type == e1000_i350) ||
2590 (hw->mac.type == e1000_i354)) &&
2591 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2592 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2593 adapter->wol = 0;
2594 }
2595 if (hw->mac.type == e1000_i350) {
2596 if (((pdev->subsystem_device == 0x5001) ||
2597 (pdev->subsystem_device == 0x5002)) &&
2598 (hw->bus.func == 0)) {
2599 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2600 adapter->wol = 0;
2601 }
2602 if (pdev->subsystem_device == 0x1F52)
2603 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2604 }
2605
2606 device_set_wakeup_enable(&adapter->pdev->dev,
2607 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2608
2609 /* reset the hardware with the new settings */
2610 igb_reset(adapter);
2611
2612 /* Init the I2C interface */
2613 err = igb_init_i2c(adapter);
2614 if (err) {
2615 dev_err(&pdev->dev, "failed to init i2c interface\n");
2616 goto err_eeprom;
2617 }
2618
2619 /* let the f/w know that the h/w is now under the control of the
2620 * driver.
2621 */
2622 igb_get_hw_control(adapter);
2623
2624 strcpy(netdev->name, "eth%d");
2625 err = register_netdev(netdev);
2626 if (err)
2627 goto err_register;
2628
2629 /* carrier off reporting is important to ethtool even BEFORE open */
2630 netif_carrier_off(netdev);
2631
2632#ifdef CONFIG_IGB_DCA
2633 if (dca_add_requester(&pdev->dev) == 0) {
2634 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2635 dev_info(&pdev->dev, "DCA enabled\n");
2636 igb_setup_dca(adapter);
2637 }
2638
2639#endif
2640#ifdef CONFIG_IGB_HWMON
2641 /* Initialize the thermal sensor on i350 devices. */
2642 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2643 u16 ets_word;
2644
2645 /* Read the NVM to determine if this i350 device supports an
2646 * external thermal sensor.
2647 */
2648 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2649 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2650 adapter->ets = true;
2651 else
2652 adapter->ets = false;
2653 if (igb_sysfs_init(adapter))
2654 dev_err(&pdev->dev,
2655 "failed to allocate sysfs resources\n");
2656 } else {
2657 adapter->ets = false;
2658 }
2659#endif
2660 /* Check if Media Autosense is enabled */
2661 adapter->ei = *ei;
2662 if (hw->dev_spec._82575.mas_capable)
2663 igb_init_mas(adapter);
2664
2665 /* do hw tstamp init after resetting */
2666 igb_ptp_init(adapter);
2667
2668 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2669 /* print bus type/speed/width info, not applicable to i354 */
2670 if (hw->mac.type != e1000_i354) {
2671 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2672 netdev->name,
2673 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2674 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2675 "unknown"),
2676 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2677 "Width x4" :
2678 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2679 "Width x2" :
2680 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2681 "Width x1" : "unknown"), netdev->dev_addr);
2682 }
2683
2684 if ((hw->mac.type >= e1000_i210 ||
2685 igb_get_flash_presence_i210(hw))) {
2686 ret_val = igb_read_part_string(hw, part_str,
2687 E1000_PBANUM_LENGTH);
2688 } else {
2689 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2690 }
2691
2692 if (ret_val)
2693 strcpy(part_str, "Unknown");
2694 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2695 dev_info(&pdev->dev,
2696 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2697 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2698 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2699 adapter->num_rx_queues, adapter->num_tx_queues);
2700 if (hw->phy.media_type == e1000_media_type_copper) {
2701 switch (hw->mac.type) {
2702 case e1000_i350:
2703 case e1000_i210:
2704 case e1000_i211:
2705 /* Enable EEE for internal copper PHY devices */
2706 err = igb_set_eee_i350(hw, true, true);
2707 if ((!err) &&
2708 (!hw->dev_spec._82575.eee_disable)) {
2709 adapter->eee_advert =
2710 MDIO_EEE_100TX | MDIO_EEE_1000T;
2711 adapter->flags |= IGB_FLAG_EEE;
2712 }
2713 break;
2714 case e1000_i354:
2715 if ((rd32(E1000_CTRL_EXT) &
2716 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2717 err = igb_set_eee_i354(hw, true, true);
2718 if ((!err) &&
2719 (!hw->dev_spec._82575.eee_disable)) {
2720 adapter->eee_advert =
2721 MDIO_EEE_100TX | MDIO_EEE_1000T;
2722 adapter->flags |= IGB_FLAG_EEE;
2723 }
2724 }
2725 break;
2726 default:
2727 break;
2728 }
2729 }
2730 pm_runtime_put_noidle(&pdev->dev);
2731 return 0;
2732
2733err_register:
2734 igb_release_hw_control(adapter);
2735 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2736err_eeprom:
2737 if (!igb_check_reset_block(hw))
2738 igb_reset_phy(hw);
2739
2740 if (hw->flash_address)
2741 iounmap(hw->flash_address);
2742err_sw_init:
2743 kfree(adapter->shadow_vfta);
2744 igb_clear_interrupt_scheme(adapter);
2745#ifdef CONFIG_PCI_IOV
2746 igb_disable_sriov(pdev);
2747#endif
2748 pci_iounmap(pdev, adapter->io_addr);
2749err_ioremap:
2750 free_netdev(netdev);
2751err_alloc_etherdev:
2752 pci_release_selected_regions(pdev,
2753 pci_select_bars(pdev, IORESOURCE_MEM));
2754err_pci_reg:
2755err_dma:
2756 pci_disable_device(pdev);
2757 return err;
2758}
2759
2760#ifdef CONFIG_PCI_IOV
2761static int igb_disable_sriov(struct pci_dev *pdev)
2762{
2763 struct net_device *netdev = pci_get_drvdata(pdev);
2764 struct igb_adapter *adapter = netdev_priv(netdev);
2765 struct e1000_hw *hw = &adapter->hw;
2766
2767 /* reclaim resources allocated to VFs */
2768 if (adapter->vf_data) {
2769 /* disable iov and allow time for transactions to clear */
2770 if (pci_vfs_assigned(pdev)) {
2771 dev_warn(&pdev->dev,
2772 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2773 return -EPERM;
2774 } else {
2775 pci_disable_sriov(pdev);
2776 msleep(500);
2777 }
2778
2779 kfree(adapter->vf_data);
2780 adapter->vf_data = NULL;
2781 adapter->vfs_allocated_count = 0;
2782 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2783 wrfl();
2784 msleep(100);
2785 dev_info(&pdev->dev, "IOV Disabled\n");
2786
2787 /* Re-enable DMA Coalescing flag since IOV is turned off */
2788 adapter->flags |= IGB_FLAG_DMAC;
2789 }
2790
2791 return 0;
2792}
2793
2794static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2795{
2796 struct net_device *netdev = pci_get_drvdata(pdev);
2797 struct igb_adapter *adapter = netdev_priv(netdev);
2798 int old_vfs = pci_num_vf(pdev);
2799 int err = 0;
2800 int i;
2801
2802 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2803 err = -EPERM;
2804 goto out;
2805 }
2806 if (!num_vfs)
2807 goto out;
2808
2809 if (old_vfs) {
2810 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2811 old_vfs, max_vfs);
2812 adapter->vfs_allocated_count = old_vfs;
2813 } else
2814 adapter->vfs_allocated_count = num_vfs;
2815
2816 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2817 sizeof(struct vf_data_storage), GFP_KERNEL);
2818
2819 /* if allocation failed then we do not support SR-IOV */
2820 if (!adapter->vf_data) {
2821 adapter->vfs_allocated_count = 0;
2822 dev_err(&pdev->dev,
2823 "Unable to allocate memory for VF Data Storage\n");
2824 err = -ENOMEM;
2825 goto out;
2826 }
2827
2828 /* only call pci_enable_sriov() if no VFs are allocated already */
2829 if (!old_vfs) {
2830 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2831 if (err)
2832 goto err_out;
2833 }
2834 dev_info(&pdev->dev, "%d VFs allocated\n",
2835 adapter->vfs_allocated_count);
2836 for (i = 0; i < adapter->vfs_allocated_count; i++)
2837 igb_vf_configure(adapter, i);
2838
2839 /* DMA Coalescing is not supported in IOV mode. */
2840 adapter->flags &= ~IGB_FLAG_DMAC;
2841 goto out;
2842
2843err_out:
2844 kfree(adapter->vf_data);
2845 adapter->vf_data = NULL;
2846 adapter->vfs_allocated_count = 0;
2847out:
2848 return err;
2849}
2850
2851#endif
2852/**
2853 * igb_remove_i2c - Cleanup I2C interface
2854 * @adapter: pointer to adapter structure
2855 **/
2856static void igb_remove_i2c(struct igb_adapter *adapter)
2857{
2858 /* free the adapter bus structure */
2859 i2c_del_adapter(&adapter->i2c_adap);
2860}
2861
2862/**
2863 * igb_remove - Device Removal Routine
2864 * @pdev: PCI device information struct
2865 *
2866 * igb_remove is called by the PCI subsystem to alert the driver
2867 * that it should release a PCI device. The could be caused by a
2868 * Hot-Plug event, or because the driver is going to be removed from
2869 * memory.
2870 **/
2871static void igb_remove(struct pci_dev *pdev)
2872{
2873 struct net_device *netdev = pci_get_drvdata(pdev);
2874 struct igb_adapter *adapter = netdev_priv(netdev);
2875 struct e1000_hw *hw = &adapter->hw;
2876
2877 pm_runtime_get_noresume(&pdev->dev);
2878#ifdef CONFIG_IGB_HWMON
2879 igb_sysfs_exit(adapter);
2880#endif
2881 igb_remove_i2c(adapter);
2882 igb_ptp_stop(adapter);
2883 /* The watchdog timer may be rescheduled, so explicitly
2884 * disable watchdog from being rescheduled.
2885 */
2886 set_bit(__IGB_DOWN, &adapter->state);
2887 del_timer_sync(&adapter->watchdog_timer);
2888 del_timer_sync(&adapter->phy_info_timer);
2889
2890 cancel_work_sync(&adapter->reset_task);
2891 cancel_work_sync(&adapter->watchdog_task);
2892
2893#ifdef CONFIG_IGB_DCA
2894 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2895 dev_info(&pdev->dev, "DCA disabled\n");
2896 dca_remove_requester(&pdev->dev);
2897 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2898 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2899 }
2900#endif
2901
2902 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2903 * would have already happened in close and is redundant.
2904 */
2905 igb_release_hw_control(adapter);
2906
2907#ifdef CONFIG_PCI_IOV
2908 igb_disable_sriov(pdev);
2909#endif
2910
2911 unregister_netdev(netdev);
2912
2913 igb_clear_interrupt_scheme(adapter);
2914
2915 pci_iounmap(pdev, adapter->io_addr);
2916 if (hw->flash_address)
2917 iounmap(hw->flash_address);
2918 pci_release_selected_regions(pdev,
2919 pci_select_bars(pdev, IORESOURCE_MEM));
2920
2921 kfree(adapter->shadow_vfta);
2922 free_netdev(netdev);
2923
2924 pci_disable_pcie_error_reporting(pdev);
2925
2926 pci_disable_device(pdev);
2927}
2928
2929/**
2930 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2931 * @adapter: board private structure to initialize
2932 *
2933 * This function initializes the vf specific data storage and then attempts to
2934 * allocate the VFs. The reason for ordering it this way is because it is much
2935 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2936 * the memory for the VFs.
2937 **/
2938static void igb_probe_vfs(struct igb_adapter *adapter)
2939{
2940#ifdef CONFIG_PCI_IOV
2941 struct pci_dev *pdev = adapter->pdev;
2942 struct e1000_hw *hw = &adapter->hw;
2943
2944 /* Virtualization features not supported on i210 family. */
2945 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2946 return;
2947
2948 /* Of the below we really only want the effect of getting
2949 * IGB_FLAG_HAS_MSIX set (if available), without which
2950 * igb_enable_sriov() has no effect.
2951 */
2952 igb_set_interrupt_capability(adapter, true);
2953 igb_reset_interrupt_capability(adapter);
2954
2955 pci_sriov_set_totalvfs(pdev, 7);
2956 igb_enable_sriov(pdev, max_vfs);
2957
2958#endif /* CONFIG_PCI_IOV */
2959}
2960
2961static void igb_init_queue_configuration(struct igb_adapter *adapter)
2962{
2963 struct e1000_hw *hw = &adapter->hw;
2964 u32 max_rss_queues;
2965
2966 /* Determine the maximum number of RSS queues supported. */
2967 switch (hw->mac.type) {
2968 case e1000_i211:
2969 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2970 break;
2971 case e1000_82575:
2972 case e1000_i210:
2973 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2974 break;
2975 case e1000_i350:
2976 /* I350 cannot do RSS and SR-IOV at the same time */
2977 if (!!adapter->vfs_allocated_count) {
2978 max_rss_queues = 1;
2979 break;
2980 }
2981 /* fall through */
2982 case e1000_82576:
2983 if (!!adapter->vfs_allocated_count) {
2984 max_rss_queues = 2;
2985 break;
2986 }
2987 /* fall through */
2988 case e1000_82580:
2989 case e1000_i354:
2990 default:
2991 max_rss_queues = IGB_MAX_RX_QUEUES;
2992 break;
2993 }
2994
2995 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2996
2997 igb_set_flag_queue_pairs(adapter, max_rss_queues);
2998}
2999
3000void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3001 const u32 max_rss_queues)
3002{
3003 struct e1000_hw *hw = &adapter->hw;
3004
3005 /* Determine if we need to pair queues. */
3006 switch (hw->mac.type) {
3007 case e1000_82575:
3008 case e1000_i211:
3009 /* Device supports enough interrupts without queue pairing. */
3010 break;
3011 case e1000_82576:
3012 case e1000_82580:
3013 case e1000_i350:
3014 case e1000_i354:
3015 case e1000_i210:
3016 default:
3017 /* If rss_queues > half of max_rss_queues, pair the queues in
3018 * order to conserve interrupts due to limited supply.
3019 */
3020 if (adapter->rss_queues > (max_rss_queues / 2))
3021 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3022 else
3023 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3024 break;
3025 }
3026}
3027
3028/**
3029 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3030 * @adapter: board private structure to initialize
3031 *
3032 * igb_sw_init initializes the Adapter private data structure.
3033 * Fields are initialized based on PCI device information and
3034 * OS network device settings (MTU size).
3035 **/
3036static int igb_sw_init(struct igb_adapter *adapter)
3037{
3038 struct e1000_hw *hw = &adapter->hw;
3039 struct net_device *netdev = adapter->netdev;
3040 struct pci_dev *pdev = adapter->pdev;
3041
3042 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3043
3044 /* set default ring sizes */
3045 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3046 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3047
3048 /* set default ITR values */
3049 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3050 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3051
3052 /* set default work limits */
3053 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3054
3055 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3056 VLAN_HLEN;
3057 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3058
3059 spin_lock_init(&adapter->stats64_lock);
3060#ifdef CONFIG_PCI_IOV
3061 switch (hw->mac.type) {
3062 case e1000_82576:
3063 case e1000_i350:
3064 if (max_vfs > 7) {
3065 dev_warn(&pdev->dev,
3066 "Maximum of 7 VFs per PF, using max\n");
3067 max_vfs = adapter->vfs_allocated_count = 7;
3068 } else
3069 adapter->vfs_allocated_count = max_vfs;
3070 if (adapter->vfs_allocated_count)
3071 dev_warn(&pdev->dev,
3072 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3073 break;
3074 default:
3075 break;
3076 }
3077#endif /* CONFIG_PCI_IOV */
3078
3079 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3080 adapter->flags |= IGB_FLAG_HAS_MSIX;
3081
3082 igb_probe_vfs(adapter);
3083
3084 igb_init_queue_configuration(adapter);
3085
3086 /* Setup and initialize a copy of the hw vlan table array */
3087 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3088 GFP_ATOMIC);
3089
3090 /* This call may decrease the number of queues */
3091 if (igb_init_interrupt_scheme(adapter, true)) {
3092 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3093 return -ENOMEM;
3094 }
3095
3096 /* Explicitly disable IRQ since the NIC can be in any state. */
3097 igb_irq_disable(adapter);
3098
3099 if (hw->mac.type >= e1000_i350)
3100 adapter->flags &= ~IGB_FLAG_DMAC;
3101
3102 set_bit(__IGB_DOWN, &adapter->state);
3103 return 0;
3104}
3105
3106/**
3107 * igb_open - Called when a network interface is made active
3108 * @netdev: network interface device structure
3109 *
3110 * Returns 0 on success, negative value on failure
3111 *
3112 * The open entry point is called when a network interface is made
3113 * active by the system (IFF_UP). At this point all resources needed
3114 * for transmit and receive operations are allocated, the interrupt
3115 * handler is registered with the OS, the watchdog timer is started,
3116 * and the stack is notified that the interface is ready.
3117 **/
3118static int __igb_open(struct net_device *netdev, bool resuming)
3119{
3120 struct igb_adapter *adapter = netdev_priv(netdev);
3121 struct e1000_hw *hw = &adapter->hw;
3122 struct pci_dev *pdev = adapter->pdev;
3123 int err;
3124 int i;
3125
3126 /* disallow open during test */
3127 if (test_bit(__IGB_TESTING, &adapter->state)) {
3128 WARN_ON(resuming);
3129 return -EBUSY;
3130 }
3131
3132 if (!resuming)
3133 pm_runtime_get_sync(&pdev->dev);
3134
3135 netif_carrier_off(netdev);
3136
3137 /* allocate transmit descriptors */
3138 err = igb_setup_all_tx_resources(adapter);
3139 if (err)
3140 goto err_setup_tx;
3141
3142 /* allocate receive descriptors */
3143 err = igb_setup_all_rx_resources(adapter);
3144 if (err)
3145 goto err_setup_rx;
3146
3147 igb_power_up_link(adapter);
3148
3149 /* before we allocate an interrupt, we must be ready to handle it.
3150 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3151 * as soon as we call pci_request_irq, so we have to setup our
3152 * clean_rx handler before we do so.
3153 */
3154 igb_configure(adapter);
3155
3156 err = igb_request_irq(adapter);
3157 if (err)
3158 goto err_req_irq;
3159
3160 /* Notify the stack of the actual queue counts. */
3161 err = netif_set_real_num_tx_queues(adapter->netdev,
3162 adapter->num_tx_queues);
3163 if (err)
3164 goto err_set_queues;
3165
3166 err = netif_set_real_num_rx_queues(adapter->netdev,
3167 adapter->num_rx_queues);
3168 if (err)
3169 goto err_set_queues;
3170
3171 /* From here on the code is the same as igb_up() */
3172 clear_bit(__IGB_DOWN, &adapter->state);
3173
3174 for (i = 0; i < adapter->num_q_vectors; i++)
3175 napi_enable(&(adapter->q_vector[i]->napi));
3176
3177 /* Clear any pending interrupts. */
3178 rd32(E1000_ICR);
3179
3180 igb_irq_enable(adapter);
3181
3182 /* notify VFs that reset has been completed */
3183 if (adapter->vfs_allocated_count) {
3184 u32 reg_data = rd32(E1000_CTRL_EXT);
3185
3186 reg_data |= E1000_CTRL_EXT_PFRSTD;
3187 wr32(E1000_CTRL_EXT, reg_data);
3188 }
3189
3190 netif_tx_start_all_queues(netdev);
3191
3192 if (!resuming)
3193 pm_runtime_put(&pdev->dev);
3194
3195 /* start the watchdog. */
3196 hw->mac.get_link_status = 1;
3197 schedule_work(&adapter->watchdog_task);
3198
3199 return 0;
3200
3201err_set_queues:
3202 igb_free_irq(adapter);
3203err_req_irq:
3204 igb_release_hw_control(adapter);
3205 igb_power_down_link(adapter);
3206 igb_free_all_rx_resources(adapter);
3207err_setup_rx:
3208 igb_free_all_tx_resources(adapter);
3209err_setup_tx:
3210 igb_reset(adapter);
3211 if (!resuming)
3212 pm_runtime_put(&pdev->dev);
3213
3214 return err;
3215}
3216
3217int igb_open(struct net_device *netdev)
3218{
3219 return __igb_open(netdev, false);
3220}
3221
3222/**
3223 * igb_close - Disables a network interface
3224 * @netdev: network interface device structure
3225 *
3226 * Returns 0, this is not allowed to fail
3227 *
3228 * The close entry point is called when an interface is de-activated
3229 * by the OS. The hardware is still under the driver's control, but
3230 * needs to be disabled. A global MAC reset is issued to stop the
3231 * hardware, and all transmit and receive resources are freed.
3232 **/
3233static int __igb_close(struct net_device *netdev, bool suspending)
3234{
3235 struct igb_adapter *adapter = netdev_priv(netdev);
3236 struct pci_dev *pdev = adapter->pdev;
3237
3238 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3239
3240 if (!suspending)
3241 pm_runtime_get_sync(&pdev->dev);
3242
3243 igb_down(adapter);
3244 igb_free_irq(adapter);
3245
3246 igb_free_all_tx_resources(adapter);
3247 igb_free_all_rx_resources(adapter);
3248
3249 if (!suspending)
3250 pm_runtime_put_sync(&pdev->dev);
3251 return 0;
3252}
3253
3254int igb_close(struct net_device *netdev)
3255{
3256 return __igb_close(netdev, false);
3257}
3258
3259/**
3260 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3261 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3262 *
3263 * Return 0 on success, negative on failure
3264 **/
3265int igb_setup_tx_resources(struct igb_ring *tx_ring)
3266{
3267 struct device *dev = tx_ring->dev;
3268 int size;
3269
3270 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3271
3272 tx_ring->tx_buffer_info = vzalloc(size);
3273 if (!tx_ring->tx_buffer_info)
3274 goto err;
3275
3276 /* round up to nearest 4K */
3277 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3278 tx_ring->size = ALIGN(tx_ring->size, 4096);
3279
3280 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3281 &tx_ring->dma, GFP_KERNEL);
3282 if (!tx_ring->desc)
3283 goto err;
3284
3285 tx_ring->next_to_use = 0;
3286 tx_ring->next_to_clean = 0;
3287
3288 return 0;
3289
3290err:
3291 vfree(tx_ring->tx_buffer_info);
3292 tx_ring->tx_buffer_info = NULL;
3293 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3294 return -ENOMEM;
3295}
3296
3297/**
3298 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3299 * (Descriptors) for all queues
3300 * @adapter: board private structure
3301 *
3302 * Return 0 on success, negative on failure
3303 **/
3304static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3305{
3306 struct pci_dev *pdev = adapter->pdev;
3307 int i, err = 0;
3308
3309 for (i = 0; i < adapter->num_tx_queues; i++) {
3310 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3311 if (err) {
3312 dev_err(&pdev->dev,
3313 "Allocation for Tx Queue %u failed\n", i);
3314 for (i--; i >= 0; i--)
3315 igb_free_tx_resources(adapter->tx_ring[i]);
3316 break;
3317 }
3318 }
3319
3320 return err;
3321}
3322
3323/**
3324 * igb_setup_tctl - configure the transmit control registers
3325 * @adapter: Board private structure
3326 **/
3327void igb_setup_tctl(struct igb_adapter *adapter)
3328{
3329 struct e1000_hw *hw = &adapter->hw;
3330 u32 tctl;
3331
3332 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3333 wr32(E1000_TXDCTL(0), 0);
3334
3335 /* Program the Transmit Control Register */
3336 tctl = rd32(E1000_TCTL);
3337 tctl &= ~E1000_TCTL_CT;
3338 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3339 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3340
3341 igb_config_collision_dist(hw);
3342
3343 /* Enable transmits */
3344 tctl |= E1000_TCTL_EN;
3345
3346 wr32(E1000_TCTL, tctl);
3347}
3348
3349/**
3350 * igb_configure_tx_ring - Configure transmit ring after Reset
3351 * @adapter: board private structure
3352 * @ring: tx ring to configure
3353 *
3354 * Configure a transmit ring after a reset.
3355 **/
3356void igb_configure_tx_ring(struct igb_adapter *adapter,
3357 struct igb_ring *ring)
3358{
3359 struct e1000_hw *hw = &adapter->hw;
3360 u32 txdctl = 0;
3361 u64 tdba = ring->dma;
3362 int reg_idx = ring->reg_idx;
3363
3364 /* disable the queue */
3365 wr32(E1000_TXDCTL(reg_idx), 0);
3366 wrfl();
3367 mdelay(10);
3368
3369 wr32(E1000_TDLEN(reg_idx),
3370 ring->count * sizeof(union e1000_adv_tx_desc));
3371 wr32(E1000_TDBAL(reg_idx),
3372 tdba & 0x00000000ffffffffULL);
3373 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3374
3375 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3376 wr32(E1000_TDH(reg_idx), 0);
3377 writel(0, ring->tail);
3378
3379 txdctl |= IGB_TX_PTHRESH;
3380 txdctl |= IGB_TX_HTHRESH << 8;
3381 txdctl |= IGB_TX_WTHRESH << 16;
3382
3383 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3384 wr32(E1000_TXDCTL(reg_idx), txdctl);
3385}
3386
3387/**
3388 * igb_configure_tx - Configure transmit Unit after Reset
3389 * @adapter: board private structure
3390 *
3391 * Configure the Tx unit of the MAC after a reset.
3392 **/
3393static void igb_configure_tx(struct igb_adapter *adapter)
3394{
3395 int i;
3396
3397 for (i = 0; i < adapter->num_tx_queues; i++)
3398 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3399}
3400
3401/**
3402 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3403 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3404 *
3405 * Returns 0 on success, negative on failure
3406 **/
3407int igb_setup_rx_resources(struct igb_ring *rx_ring)
3408{
3409 struct device *dev = rx_ring->dev;
3410 int size;
3411
3412 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3413
3414 rx_ring->rx_buffer_info = vzalloc(size);
3415 if (!rx_ring->rx_buffer_info)
3416 goto err;
3417
3418 /* Round up to nearest 4K */
3419 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3420 rx_ring->size = ALIGN(rx_ring->size, 4096);
3421
3422 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3423 &rx_ring->dma, GFP_KERNEL);
3424 if (!rx_ring->desc)
3425 goto err;
3426
3427 rx_ring->next_to_alloc = 0;
3428 rx_ring->next_to_clean = 0;
3429 rx_ring->next_to_use = 0;
3430
3431 return 0;
3432
3433err:
3434 vfree(rx_ring->rx_buffer_info);
3435 rx_ring->rx_buffer_info = NULL;
3436 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3437 return -ENOMEM;
3438}
3439
3440/**
3441 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3442 * (Descriptors) for all queues
3443 * @adapter: board private structure
3444 *
3445 * Return 0 on success, negative on failure
3446 **/
3447static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3448{
3449 struct pci_dev *pdev = adapter->pdev;
3450 int i, err = 0;
3451
3452 for (i = 0; i < adapter->num_rx_queues; i++) {
3453 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3454 if (err) {
3455 dev_err(&pdev->dev,
3456 "Allocation for Rx Queue %u failed\n", i);
3457 for (i--; i >= 0; i--)
3458 igb_free_rx_resources(adapter->rx_ring[i]);
3459 break;
3460 }
3461 }
3462
3463 return err;
3464}
3465
3466/**
3467 * igb_setup_mrqc - configure the multiple receive queue control registers
3468 * @adapter: Board private structure
3469 **/
3470static void igb_setup_mrqc(struct igb_adapter *adapter)
3471{
3472 struct e1000_hw *hw = &adapter->hw;
3473 u32 mrqc, rxcsum;
3474 u32 j, num_rx_queues;
3475 u32 rss_key[10];
3476
3477 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3478 for (j = 0; j < 10; j++)
3479 wr32(E1000_RSSRK(j), rss_key[j]);
3480
3481 num_rx_queues = adapter->rss_queues;
3482
3483 switch (hw->mac.type) {
3484 case e1000_82576:
3485 /* 82576 supports 2 RSS queues for SR-IOV */
3486 if (adapter->vfs_allocated_count)
3487 num_rx_queues = 2;
3488 break;
3489 default:
3490 break;
3491 }
3492
3493 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3494 for (j = 0; j < IGB_RETA_SIZE; j++)
3495 adapter->rss_indir_tbl[j] =
3496 (j * num_rx_queues) / IGB_RETA_SIZE;
3497 adapter->rss_indir_tbl_init = num_rx_queues;
3498 }
3499 igb_write_rss_indir_tbl(adapter);
3500
3501 /* Disable raw packet checksumming so that RSS hash is placed in
3502 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3503 * offloads as they are enabled by default
3504 */
3505 rxcsum = rd32(E1000_RXCSUM);
3506 rxcsum |= E1000_RXCSUM_PCSD;
3507
3508 if (adapter->hw.mac.type >= e1000_82576)
3509 /* Enable Receive Checksum Offload for SCTP */
3510 rxcsum |= E1000_RXCSUM_CRCOFL;
3511
3512 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3513 wr32(E1000_RXCSUM, rxcsum);
3514
3515 /* Generate RSS hash based on packet types, TCP/UDP
3516 * port numbers and/or IPv4/v6 src and dst addresses
3517 */
3518 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3519 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3520 E1000_MRQC_RSS_FIELD_IPV6 |
3521 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3522 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3523
3524 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3525 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3526 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3527 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3528
3529 /* If VMDq is enabled then we set the appropriate mode for that, else
3530 * we default to RSS so that an RSS hash is calculated per packet even
3531 * if we are only using one queue
3532 */
3533 if (adapter->vfs_allocated_count) {
3534 if (hw->mac.type > e1000_82575) {
3535 /* Set the default pool for the PF's first queue */
3536 u32 vtctl = rd32(E1000_VT_CTL);
3537
3538 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3539 E1000_VT_CTL_DISABLE_DEF_POOL);
3540 vtctl |= adapter->vfs_allocated_count <<
3541 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3542 wr32(E1000_VT_CTL, vtctl);
3543 }
3544 if (adapter->rss_queues > 1)
3545 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3546 else
3547 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3548 } else {
3549 if (hw->mac.type != e1000_i211)
3550 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3551 }
3552 igb_vmm_control(adapter);
3553
3554 wr32(E1000_MRQC, mrqc);
3555}
3556
3557/**
3558 * igb_setup_rctl - configure the receive control registers
3559 * @adapter: Board private structure
3560 **/
3561void igb_setup_rctl(struct igb_adapter *adapter)
3562{
3563 struct e1000_hw *hw = &adapter->hw;
3564 u32 rctl;
3565
3566 rctl = rd32(E1000_RCTL);
3567
3568 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3569 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3570
3571 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3572 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3573
3574 /* enable stripping of CRC. It's unlikely this will break BMC
3575 * redirection as it did with e1000. Newer features require
3576 * that the HW strips the CRC.
3577 */
3578 rctl |= E1000_RCTL_SECRC;
3579
3580 /* disable store bad packets and clear size bits. */
3581 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3582
3583 /* enable LPE to allow for reception of jumbo frames */
3584 rctl |= E1000_RCTL_LPE;
3585
3586 /* disable queue 0 to prevent tail write w/o re-config */
3587 wr32(E1000_RXDCTL(0), 0);
3588
3589 /* Attention!!! For SR-IOV PF driver operations you must enable
3590 * queue drop for all VF and PF queues to prevent head of line blocking
3591 * if an un-trusted VF does not provide descriptors to hardware.
3592 */
3593 if (adapter->vfs_allocated_count) {
3594 /* set all queue drop enable bits */
3595 wr32(E1000_QDE, ALL_QUEUES);
3596 }
3597
3598 /* This is useful for sniffing bad packets. */
3599 if (adapter->netdev->features & NETIF_F_RXALL) {
3600 /* UPE and MPE will be handled by normal PROMISC logic
3601 * in e1000e_set_rx_mode
3602 */
3603 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3604 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3605 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3606
3607 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3608 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3609 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3610 * and that breaks VLANs.
3611 */
3612 }
3613
3614 wr32(E1000_RCTL, rctl);
3615}
3616
3617static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3618 int vfn)
3619{
3620 struct e1000_hw *hw = &adapter->hw;
3621 u32 vmolr;
3622
3623 if (size > MAX_JUMBO_FRAME_SIZE)
3624 size = MAX_JUMBO_FRAME_SIZE;
3625
3626 vmolr = rd32(E1000_VMOLR(vfn));
3627 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3628 vmolr |= size | E1000_VMOLR_LPE;
3629 wr32(E1000_VMOLR(vfn), vmolr);
3630
3631 return 0;
3632}
3633
3634static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3635 int vfn, bool enable)
3636{
3637 struct e1000_hw *hw = &adapter->hw;
3638 u32 val, reg;
3639
3640 if (hw->mac.type < e1000_82576)
3641 return;
3642
3643 if (hw->mac.type == e1000_i350)
3644 reg = E1000_DVMOLR(vfn);
3645 else
3646 reg = E1000_VMOLR(vfn);
3647
3648 val = rd32(reg);
3649 if (enable)
3650 val |= E1000_VMOLR_STRVLAN;
3651 else
3652 val &= ~(E1000_VMOLR_STRVLAN);
3653 wr32(reg, val);
3654}
3655
3656static inline void igb_set_vmolr(struct igb_adapter *adapter,
3657 int vfn, bool aupe)
3658{
3659 struct e1000_hw *hw = &adapter->hw;
3660 u32 vmolr;
3661
3662 /* This register exists only on 82576 and newer so if we are older then
3663 * we should exit and do nothing
3664 */
3665 if (hw->mac.type < e1000_82576)
3666 return;
3667
3668 vmolr = rd32(E1000_VMOLR(vfn));
3669 if (aupe)
3670 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3671 else
3672 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3673
3674 /* clear all bits that might not be set */
3675 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3676
3677 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3678 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3679 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3680 * multicast packets
3681 */
3682 if (vfn <= adapter->vfs_allocated_count)
3683 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3684
3685 wr32(E1000_VMOLR(vfn), vmolr);
3686}
3687
3688/**
3689 * igb_configure_rx_ring - Configure a receive ring after Reset
3690 * @adapter: board private structure
3691 * @ring: receive ring to be configured
3692 *
3693 * Configure the Rx unit of the MAC after a reset.
3694 **/
3695void igb_configure_rx_ring(struct igb_adapter *adapter,
3696 struct igb_ring *ring)
3697{
3698 struct e1000_hw *hw = &adapter->hw;
3699 u64 rdba = ring->dma;
3700 int reg_idx = ring->reg_idx;
3701 u32 srrctl = 0, rxdctl = 0;
3702
3703 /* disable the queue */
3704 wr32(E1000_RXDCTL(reg_idx), 0);
3705
3706 /* Set DMA base address registers */
3707 wr32(E1000_RDBAL(reg_idx),
3708 rdba & 0x00000000ffffffffULL);
3709 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3710 wr32(E1000_RDLEN(reg_idx),
3711 ring->count * sizeof(union e1000_adv_rx_desc));
3712
3713 /* initialize head and tail */
3714 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3715 wr32(E1000_RDH(reg_idx), 0);
3716 writel(0, ring->tail);
3717
3718 /* set descriptor configuration */
3719 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3720 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3721 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3722 if (hw->mac.type >= e1000_82580)
3723 srrctl |= E1000_SRRCTL_TIMESTAMP;
3724 /* Only set Drop Enable if we are supporting multiple queues */
3725 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3726 srrctl |= E1000_SRRCTL_DROP_EN;
3727
3728 wr32(E1000_SRRCTL(reg_idx), srrctl);
3729
3730 /* set filtering for VMDQ pools */
3731 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3732
3733 rxdctl |= IGB_RX_PTHRESH;
3734 rxdctl |= IGB_RX_HTHRESH << 8;
3735 rxdctl |= IGB_RX_WTHRESH << 16;
3736
3737 /* enable receive descriptor fetching */
3738 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3739 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3740}
3741
3742/**
3743 * igb_configure_rx - Configure receive Unit after Reset
3744 * @adapter: board private structure
3745 *
3746 * Configure the Rx unit of the MAC after a reset.
3747 **/
3748static void igb_configure_rx(struct igb_adapter *adapter)
3749{
3750 int i;
3751
3752 /* set the correct pool for the PF default MAC address in entry 0 */
3753 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3754 adapter->vfs_allocated_count);
3755
3756 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3757 * the Base and Length of the Rx Descriptor Ring
3758 */
3759 for (i = 0; i < adapter->num_rx_queues; i++)
3760 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3761}
3762
3763/**
3764 * igb_free_tx_resources - Free Tx Resources per Queue
3765 * @tx_ring: Tx descriptor ring for a specific queue
3766 *
3767 * Free all transmit software resources
3768 **/
3769void igb_free_tx_resources(struct igb_ring *tx_ring)
3770{
3771 igb_clean_tx_ring(tx_ring);
3772
3773 vfree(tx_ring->tx_buffer_info);
3774 tx_ring->tx_buffer_info = NULL;
3775
3776 /* if not set, then don't free */
3777 if (!tx_ring->desc)
3778 return;
3779
3780 dma_free_coherent(tx_ring->dev, tx_ring->size,
3781 tx_ring->desc, tx_ring->dma);
3782
3783 tx_ring->desc = NULL;
3784}
3785
3786/**
3787 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3788 * @adapter: board private structure
3789 *
3790 * Free all transmit software resources
3791 **/
3792static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3793{
3794 int i;
3795
3796 for (i = 0; i < adapter->num_tx_queues; i++)
3797 if (adapter->tx_ring[i])
3798 igb_free_tx_resources(adapter->tx_ring[i]);
3799}
3800
3801void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3802 struct igb_tx_buffer *tx_buffer)
3803{
3804 if (tx_buffer->skb) {
3805 dev_kfree_skb_any(tx_buffer->skb);
3806 if (dma_unmap_len(tx_buffer, len))
3807 dma_unmap_single(ring->dev,
3808 dma_unmap_addr(tx_buffer, dma),
3809 dma_unmap_len(tx_buffer, len),
3810 DMA_TO_DEVICE);
3811 } else if (dma_unmap_len(tx_buffer, len)) {
3812 dma_unmap_page(ring->dev,
3813 dma_unmap_addr(tx_buffer, dma),
3814 dma_unmap_len(tx_buffer, len),
3815 DMA_TO_DEVICE);
3816 }
3817 tx_buffer->next_to_watch = NULL;
3818 tx_buffer->skb = NULL;
3819 dma_unmap_len_set(tx_buffer, len, 0);
3820 /* buffer_info must be completely set up in the transmit path */
3821}
3822
3823/**
3824 * igb_clean_tx_ring - Free Tx Buffers
3825 * @tx_ring: ring to be cleaned
3826 **/
3827static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3828{
3829 struct igb_tx_buffer *buffer_info;
3830 unsigned long size;
3831 u16 i;
3832
3833 if (!tx_ring->tx_buffer_info)
3834 return;
3835 /* Free all the Tx ring sk_buffs */
3836
3837 for (i = 0; i < tx_ring->count; i++) {
3838 buffer_info = &tx_ring->tx_buffer_info[i];
3839 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3840 }
3841
3842 netdev_tx_reset_queue(txring_txq(tx_ring));
3843
3844 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3845 memset(tx_ring->tx_buffer_info, 0, size);
3846
3847 /* Zero out the descriptor ring */
3848 memset(tx_ring->desc, 0, tx_ring->size);
3849
3850 tx_ring->next_to_use = 0;
3851 tx_ring->next_to_clean = 0;
3852}
3853
3854/**
3855 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3856 * @adapter: board private structure
3857 **/
3858static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3859{
3860 int i;
3861
3862 for (i = 0; i < adapter->num_tx_queues; i++)
3863 if (adapter->tx_ring[i])
3864 igb_clean_tx_ring(adapter->tx_ring[i]);
3865}
3866
3867/**
3868 * igb_free_rx_resources - Free Rx Resources
3869 * @rx_ring: ring to clean the resources from
3870 *
3871 * Free all receive software resources
3872 **/
3873void igb_free_rx_resources(struct igb_ring *rx_ring)
3874{
3875 igb_clean_rx_ring(rx_ring);
3876
3877 vfree(rx_ring->rx_buffer_info);
3878 rx_ring->rx_buffer_info = NULL;
3879
3880 /* if not set, then don't free */
3881 if (!rx_ring->desc)
3882 return;
3883
3884 dma_free_coherent(rx_ring->dev, rx_ring->size,
3885 rx_ring->desc, rx_ring->dma);
3886
3887 rx_ring->desc = NULL;
3888}
3889
3890/**
3891 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3892 * @adapter: board private structure
3893 *
3894 * Free all receive software resources
3895 **/
3896static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3897{
3898 int i;
3899
3900 for (i = 0; i < adapter->num_rx_queues; i++)
3901 if (adapter->rx_ring[i])
3902 igb_free_rx_resources(adapter->rx_ring[i]);
3903}
3904
3905/**
3906 * igb_clean_rx_ring - Free Rx Buffers per Queue
3907 * @rx_ring: ring to free buffers from
3908 **/
3909static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3910{
3911 unsigned long size;
3912 u16 i;
3913
3914 if (rx_ring->skb)
3915 dev_kfree_skb(rx_ring->skb);
3916 rx_ring->skb = NULL;
3917
3918 if (!rx_ring->rx_buffer_info)
3919 return;
3920
3921 /* Free all the Rx ring sk_buffs */
3922 for (i = 0; i < rx_ring->count; i++) {
3923 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3924
3925 if (!buffer_info->page)
3926 continue;
3927
3928 dma_unmap_page(rx_ring->dev,
3929 buffer_info->dma,
3930 PAGE_SIZE,
3931 DMA_FROM_DEVICE);
3932 __free_page(buffer_info->page);
3933
3934 buffer_info->page = NULL;
3935 }
3936
3937 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3938 memset(rx_ring->rx_buffer_info, 0, size);
3939
3940 /* Zero out the descriptor ring */
3941 memset(rx_ring->desc, 0, rx_ring->size);
3942
3943 rx_ring->next_to_alloc = 0;
3944 rx_ring->next_to_clean = 0;
3945 rx_ring->next_to_use = 0;
3946}
3947
3948/**
3949 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3950 * @adapter: board private structure
3951 **/
3952static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3953{
3954 int i;
3955
3956 for (i = 0; i < adapter->num_rx_queues; i++)
3957 if (adapter->rx_ring[i])
3958 igb_clean_rx_ring(adapter->rx_ring[i]);
3959}
3960
3961/**
3962 * igb_set_mac - Change the Ethernet Address of the NIC
3963 * @netdev: network interface device structure
3964 * @p: pointer to an address structure
3965 *
3966 * Returns 0 on success, negative on failure
3967 **/
3968static int igb_set_mac(struct net_device *netdev, void *p)
3969{
3970 struct igb_adapter *adapter = netdev_priv(netdev);
3971 struct e1000_hw *hw = &adapter->hw;
3972 struct sockaddr *addr = p;
3973
3974 if (!is_valid_ether_addr(addr->sa_data))
3975 return -EADDRNOTAVAIL;
3976
3977 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3978 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3979
3980 /* set the correct pool for the new PF MAC address in entry 0 */
3981 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3982 adapter->vfs_allocated_count);
3983
3984 return 0;
3985}
3986
3987/**
3988 * igb_write_mc_addr_list - write multicast addresses to MTA
3989 * @netdev: network interface device structure
3990 *
3991 * Writes multicast address list to the MTA hash table.
3992 * Returns: -ENOMEM on failure
3993 * 0 on no addresses written
3994 * X on writing X addresses to MTA
3995 **/
3996static int igb_write_mc_addr_list(struct net_device *netdev)
3997{
3998 struct igb_adapter *adapter = netdev_priv(netdev);
3999 struct e1000_hw *hw = &adapter->hw;
4000 struct netdev_hw_addr *ha;
4001 u8 *mta_list;
4002 int i;
4003
4004 if (netdev_mc_empty(netdev)) {
4005 /* nothing to program, so clear mc list */
4006 igb_update_mc_addr_list(hw, NULL, 0);
4007 igb_restore_vf_multicasts(adapter);
4008 return 0;
4009 }
4010
4011 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4012 if (!mta_list)
4013 return -ENOMEM;
4014
4015 /* The shared function expects a packed array of only addresses. */
4016 i = 0;
4017 netdev_for_each_mc_addr(ha, netdev)
4018 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4019
4020 igb_update_mc_addr_list(hw, mta_list, i);
4021 kfree(mta_list);
4022
4023 return netdev_mc_count(netdev);
4024}
4025
4026/**
4027 * igb_write_uc_addr_list - write unicast addresses to RAR table
4028 * @netdev: network interface device structure
4029 *
4030 * Writes unicast address list to the RAR table.
4031 * Returns: -ENOMEM on failure/insufficient address space
4032 * 0 on no addresses written
4033 * X on writing X addresses to the RAR table
4034 **/
4035static int igb_write_uc_addr_list(struct net_device *netdev)
4036{
4037 struct igb_adapter *adapter = netdev_priv(netdev);
4038 struct e1000_hw *hw = &adapter->hw;
4039 unsigned int vfn = adapter->vfs_allocated_count;
4040 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4041 int count = 0;
4042
4043 /* return ENOMEM indicating insufficient memory for addresses */
4044 if (netdev_uc_count(netdev) > rar_entries)
4045 return -ENOMEM;
4046
4047 if (!netdev_uc_empty(netdev) && rar_entries) {
4048 struct netdev_hw_addr *ha;
4049
4050 netdev_for_each_uc_addr(ha, netdev) {
4051 if (!rar_entries)
4052 break;
4053 igb_rar_set_qsel(adapter, ha->addr,
4054 rar_entries--,
4055 vfn);
4056 count++;
4057 }
4058 }
4059 /* write the addresses in reverse order to avoid write combining */
4060 for (; rar_entries > 0 ; rar_entries--) {
4061 wr32(E1000_RAH(rar_entries), 0);
4062 wr32(E1000_RAL(rar_entries), 0);
4063 }
4064 wrfl();
4065
4066 return count;
4067}
4068
4069static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4070{
4071 struct e1000_hw *hw = &adapter->hw;
4072 u32 i, pf_id;
4073
4074 switch (hw->mac.type) {
4075 case e1000_i210:
4076 case e1000_i211:
4077 case e1000_i350:
4078 /* VLAN filtering needed for VLAN prio filter */
4079 if (adapter->netdev->features & NETIF_F_NTUPLE)
4080 break;
4081 /* fall through */
4082 case e1000_82576:
4083 case e1000_82580:
4084 case e1000_i354:
4085 /* VLAN filtering needed for pool filtering */
4086 if (adapter->vfs_allocated_count)
4087 break;
4088 /* fall through */
4089 default:
4090 return 1;
4091 }
4092
4093 /* We are already in VLAN promisc, nothing to do */
4094 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4095 return 0;
4096
4097 if (!adapter->vfs_allocated_count)
4098 goto set_vfta;
4099
4100 /* Add PF to all active pools */
4101 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4102
4103 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4104 u32 vlvf = rd32(E1000_VLVF(i));
4105
4106 vlvf |= BIT(pf_id);
4107 wr32(E1000_VLVF(i), vlvf);
4108 }
4109
4110set_vfta:
4111 /* Set all bits in the VLAN filter table array */
4112 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4113 hw->mac.ops.write_vfta(hw, i, ~0U);
4114
4115 /* Set flag so we don't redo unnecessary work */
4116 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4117
4118 return 0;
4119}
4120
4121#define VFTA_BLOCK_SIZE 8
4122static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4123{
4124 struct e1000_hw *hw = &adapter->hw;
4125 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4126 u32 vid_start = vfta_offset * 32;
4127 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4128 u32 i, vid, word, bits, pf_id;
4129
4130 /* guarantee that we don't scrub out management VLAN */
4131 vid = adapter->mng_vlan_id;
4132 if (vid >= vid_start && vid < vid_end)
4133 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4134
4135 if (!adapter->vfs_allocated_count)
4136 goto set_vfta;
4137
4138 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4139
4140 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4141 u32 vlvf = rd32(E1000_VLVF(i));
4142
4143 /* pull VLAN ID from VLVF */
4144 vid = vlvf & VLAN_VID_MASK;
4145
4146 /* only concern ourselves with a certain range */
4147 if (vid < vid_start || vid >= vid_end)
4148 continue;
4149
4150 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4151 /* record VLAN ID in VFTA */
4152 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4153
4154 /* if PF is part of this then continue */
4155 if (test_bit(vid, adapter->active_vlans))
4156 continue;
4157 }
4158
4159 /* remove PF from the pool */
4160 bits = ~BIT(pf_id);
4161 bits &= rd32(E1000_VLVF(i));
4162 wr32(E1000_VLVF(i), bits);
4163 }
4164
4165set_vfta:
4166 /* extract values from active_vlans and write back to VFTA */
4167 for (i = VFTA_BLOCK_SIZE; i--;) {
4168 vid = (vfta_offset + i) * 32;
4169 word = vid / BITS_PER_LONG;
4170 bits = vid % BITS_PER_LONG;
4171
4172 vfta[i] |= adapter->active_vlans[word] >> bits;
4173
4174 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4175 }
4176}
4177
4178static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4179{
4180 u32 i;
4181
4182 /* We are not in VLAN promisc, nothing to do */
4183 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4184 return;
4185
4186 /* Set flag so we don't redo unnecessary work */
4187 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4188
4189 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4190 igb_scrub_vfta(adapter, i);
4191}
4192
4193/**
4194 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4195 * @netdev: network interface device structure
4196 *
4197 * The set_rx_mode entry point is called whenever the unicast or multicast
4198 * address lists or the network interface flags are updated. This routine is
4199 * responsible for configuring the hardware for proper unicast, multicast,
4200 * promiscuous mode, and all-multi behavior.
4201 **/
4202static void igb_set_rx_mode(struct net_device *netdev)
4203{
4204 struct igb_adapter *adapter = netdev_priv(netdev);
4205 struct e1000_hw *hw = &adapter->hw;
4206 unsigned int vfn = adapter->vfs_allocated_count;
4207 u32 rctl = 0, vmolr = 0;
4208 int count;
4209
4210 /* Check for Promiscuous and All Multicast modes */
4211 if (netdev->flags & IFF_PROMISC) {
4212 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4213 vmolr |= E1000_VMOLR_MPME;
4214
4215 /* enable use of UTA filter to force packets to default pool */
4216 if (hw->mac.type == e1000_82576)
4217 vmolr |= E1000_VMOLR_ROPE;
4218 } else {
4219 if (netdev->flags & IFF_ALLMULTI) {
4220 rctl |= E1000_RCTL_MPE;
4221 vmolr |= E1000_VMOLR_MPME;
4222 } else {
4223 /* Write addresses to the MTA, if the attempt fails
4224 * then we should just turn on promiscuous mode so
4225 * that we can at least receive multicast traffic
4226 */
4227 count = igb_write_mc_addr_list(netdev);
4228 if (count < 0) {
4229 rctl |= E1000_RCTL_MPE;
4230 vmolr |= E1000_VMOLR_MPME;
4231 } else if (count) {
4232 vmolr |= E1000_VMOLR_ROMPE;
4233 }
4234 }
4235 }
4236
4237 /* Write addresses to available RAR registers, if there is not
4238 * sufficient space to store all the addresses then enable
4239 * unicast promiscuous mode
4240 */
4241 count = igb_write_uc_addr_list(netdev);
4242 if (count < 0) {
4243 rctl |= E1000_RCTL_UPE;
4244 vmolr |= E1000_VMOLR_ROPE;
4245 }
4246
4247 /* enable VLAN filtering by default */
4248 rctl |= E1000_RCTL_VFE;
4249
4250 /* disable VLAN filtering for modes that require it */
4251 if ((netdev->flags & IFF_PROMISC) ||
4252 (netdev->features & NETIF_F_RXALL)) {
4253 /* if we fail to set all rules then just clear VFE */
4254 if (igb_vlan_promisc_enable(adapter))
4255 rctl &= ~E1000_RCTL_VFE;
4256 } else {
4257 igb_vlan_promisc_disable(adapter);
4258 }
4259
4260 /* update state of unicast, multicast, and VLAN filtering modes */
4261 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4262 E1000_RCTL_VFE);
4263 wr32(E1000_RCTL, rctl);
4264
4265 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4266 * the VMOLR to enable the appropriate modes. Without this workaround
4267 * we will have issues with VLAN tag stripping not being done for frames
4268 * that are only arriving because we are the default pool
4269 */
4270 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4271 return;
4272
4273 /* set UTA to appropriate mode */
4274 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4275
4276 vmolr |= rd32(E1000_VMOLR(vfn)) &
4277 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4278
4279 /* enable Rx jumbo frames, no need for restriction */
4280 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4281 vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4282
4283 wr32(E1000_VMOLR(vfn), vmolr);
4284 wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4285
4286 igb_restore_vf_multicasts(adapter);
4287}
4288
4289static void igb_check_wvbr(struct igb_adapter *adapter)
4290{
4291 struct e1000_hw *hw = &adapter->hw;
4292 u32 wvbr = 0;
4293
4294 switch (hw->mac.type) {
4295 case e1000_82576:
4296 case e1000_i350:
4297 wvbr = rd32(E1000_WVBR);
4298 if (!wvbr)
4299 return;
4300 break;
4301 default:
4302 break;
4303 }
4304
4305 adapter->wvbr |= wvbr;
4306}
4307
4308#define IGB_STAGGERED_QUEUE_OFFSET 8
4309
4310static void igb_spoof_check(struct igb_adapter *adapter)
4311{
4312 int j;
4313
4314 if (!adapter->wvbr)
4315 return;
4316
4317 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4318 if (adapter->wvbr & BIT(j) ||
4319 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4320 dev_warn(&adapter->pdev->dev,
4321 "Spoof event(s) detected on VF %d\n", j);
4322 adapter->wvbr &=
4323 ~(BIT(j) |
4324 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4325 }
4326 }
4327}
4328
4329/* Need to wait a few seconds after link up to get diagnostic information from
4330 * the phy
4331 */
4332static void igb_update_phy_info(unsigned long data)
4333{
4334 struct igb_adapter *adapter = (struct igb_adapter *) data;
4335 igb_get_phy_info(&adapter->hw);
4336}
4337
4338/**
4339 * igb_has_link - check shared code for link and determine up/down
4340 * @adapter: pointer to driver private info
4341 **/
4342bool igb_has_link(struct igb_adapter *adapter)
4343{
4344 struct e1000_hw *hw = &adapter->hw;
4345 bool link_active = false;
4346
4347 /* get_link_status is set on LSC (link status) interrupt or
4348 * rx sequence error interrupt. get_link_status will stay
4349 * false until the e1000_check_for_link establishes link
4350 * for copper adapters ONLY
4351 */
4352 switch (hw->phy.media_type) {
4353 case e1000_media_type_copper:
4354 if (!hw->mac.get_link_status)
4355 return true;
4356 case e1000_media_type_internal_serdes:
4357 hw->mac.ops.check_for_link(hw);
4358 link_active = !hw->mac.get_link_status;
4359 break;
4360 default:
4361 case e1000_media_type_unknown:
4362 break;
4363 }
4364
4365 if (((hw->mac.type == e1000_i210) ||
4366 (hw->mac.type == e1000_i211)) &&
4367 (hw->phy.id == I210_I_PHY_ID)) {
4368 if (!netif_carrier_ok(adapter->netdev)) {
4369 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4370 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4371 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4372 adapter->link_check_timeout = jiffies;
4373 }
4374 }
4375
4376 return link_active;
4377}
4378
4379static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4380{
4381 bool ret = false;
4382 u32 ctrl_ext, thstat;
4383
4384 /* check for thermal sensor event on i350 copper only */
4385 if (hw->mac.type == e1000_i350) {
4386 thstat = rd32(E1000_THSTAT);
4387 ctrl_ext = rd32(E1000_CTRL_EXT);
4388
4389 if ((hw->phy.media_type == e1000_media_type_copper) &&
4390 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4391 ret = !!(thstat & event);
4392 }
4393
4394 return ret;
4395}
4396
4397/**
4398 * igb_check_lvmmc - check for malformed packets received
4399 * and indicated in LVMMC register
4400 * @adapter: pointer to adapter
4401 **/
4402static void igb_check_lvmmc(struct igb_adapter *adapter)
4403{
4404 struct e1000_hw *hw = &adapter->hw;
4405 u32 lvmmc;
4406
4407 lvmmc = rd32(E1000_LVMMC);
4408 if (lvmmc) {
4409 if (unlikely(net_ratelimit())) {
4410 netdev_warn(adapter->netdev,
4411 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4412 lvmmc);
4413 }
4414 }
4415}
4416
4417/**
4418 * igb_watchdog - Timer Call-back
4419 * @data: pointer to adapter cast into an unsigned long
4420 **/
4421static void igb_watchdog(unsigned long data)
4422{
4423 struct igb_adapter *adapter = (struct igb_adapter *)data;
4424 /* Do the rest outside of interrupt context */
4425 schedule_work(&adapter->watchdog_task);
4426}
4427
4428static void igb_watchdog_task(struct work_struct *work)
4429{
4430 struct igb_adapter *adapter = container_of(work,
4431 struct igb_adapter,
4432 watchdog_task);
4433 struct e1000_hw *hw = &adapter->hw;
4434 struct e1000_phy_info *phy = &hw->phy;
4435 struct net_device *netdev = adapter->netdev;
4436 u32 link;
4437 int i;
4438 u32 connsw;
4439 u16 phy_data, retry_count = 20;
4440
4441 link = igb_has_link(adapter);
4442
4443 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4444 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4445 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4446 else
4447 link = false;
4448 }
4449
4450 /* Force link down if we have fiber to swap to */
4451 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4452 if (hw->phy.media_type == e1000_media_type_copper) {
4453 connsw = rd32(E1000_CONNSW);
4454 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4455 link = 0;
4456 }
4457 }
4458 if (link) {
4459 /* Perform a reset if the media type changed. */
4460 if (hw->dev_spec._82575.media_changed) {
4461 hw->dev_spec._82575.media_changed = false;
4462 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4463 igb_reset(adapter);
4464 }
4465 /* Cancel scheduled suspend requests. */
4466 pm_runtime_resume(netdev->dev.parent);
4467
4468 if (!netif_carrier_ok(netdev)) {
4469 u32 ctrl;
4470
4471 hw->mac.ops.get_speed_and_duplex(hw,
4472 &adapter->link_speed,
4473 &adapter->link_duplex);
4474
4475 ctrl = rd32(E1000_CTRL);
4476 /* Links status message must follow this format */
4477 netdev_info(netdev,
4478 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4479 netdev->name,
4480 adapter->link_speed,
4481 adapter->link_duplex == FULL_DUPLEX ?
4482 "Full" : "Half",
4483 (ctrl & E1000_CTRL_TFCE) &&
4484 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4485 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4486 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4487
4488 /* disable EEE if enabled */
4489 if ((adapter->flags & IGB_FLAG_EEE) &&
4490 (adapter->link_duplex == HALF_DUPLEX)) {
4491 dev_info(&adapter->pdev->dev,
4492 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4493 adapter->hw.dev_spec._82575.eee_disable = true;
4494 adapter->flags &= ~IGB_FLAG_EEE;
4495 }
4496
4497 /* check if SmartSpeed worked */
4498 igb_check_downshift(hw);
4499 if (phy->speed_downgraded)
4500 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4501
4502 /* check for thermal sensor event */
4503 if (igb_thermal_sensor_event(hw,
4504 E1000_THSTAT_LINK_THROTTLE))
4505 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4506
4507 /* adjust timeout factor according to speed/duplex */
4508 adapter->tx_timeout_factor = 1;
4509 switch (adapter->link_speed) {
4510 case SPEED_10:
4511 adapter->tx_timeout_factor = 14;
4512 break;
4513 case SPEED_100:
4514 /* maybe add some timeout factor ? */
4515 break;
4516 }
4517
4518 if (adapter->link_speed != SPEED_1000)
4519 goto no_wait;
4520
4521 /* wait for Remote receiver status OK */
4522retry_read_status:
4523 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4524 &phy_data)) {
4525 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4526 retry_count) {
4527 msleep(100);
4528 retry_count--;
4529 goto retry_read_status;
4530 } else if (!retry_count) {
4531 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4532 }
4533 } else {
4534 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4535 }
4536no_wait:
4537 netif_carrier_on(netdev);
4538
4539 igb_ping_all_vfs(adapter);
4540 igb_check_vf_rate_limit(adapter);
4541
4542 /* link state has changed, schedule phy info update */
4543 if (!test_bit(__IGB_DOWN, &adapter->state))
4544 mod_timer(&adapter->phy_info_timer,
4545 round_jiffies(jiffies + 2 * HZ));
4546 }
4547 } else {
4548 if (netif_carrier_ok(netdev)) {
4549 adapter->link_speed = 0;
4550 adapter->link_duplex = 0;
4551
4552 /* check for thermal sensor event */
4553 if (igb_thermal_sensor_event(hw,
4554 E1000_THSTAT_PWR_DOWN)) {
4555 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4556 }
4557
4558 /* Links status message must follow this format */
4559 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4560 netdev->name);
4561 netif_carrier_off(netdev);
4562
4563 igb_ping_all_vfs(adapter);
4564
4565 /* link state has changed, schedule phy info update */
4566 if (!test_bit(__IGB_DOWN, &adapter->state))
4567 mod_timer(&adapter->phy_info_timer,
4568 round_jiffies(jiffies + 2 * HZ));
4569
4570 /* link is down, time to check for alternate media */
4571 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4572 igb_check_swap_media(adapter);
4573 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4574 schedule_work(&adapter->reset_task);
4575 /* return immediately */
4576 return;
4577 }
4578 }
4579 pm_schedule_suspend(netdev->dev.parent,
4580 MSEC_PER_SEC * 5);
4581
4582 /* also check for alternate media here */
4583 } else if (!netif_carrier_ok(netdev) &&
4584 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4585 igb_check_swap_media(adapter);
4586 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4587 schedule_work(&adapter->reset_task);
4588 /* return immediately */
4589 return;
4590 }
4591 }
4592 }
4593
4594 spin_lock(&adapter->stats64_lock);
4595 igb_update_stats(adapter, &adapter->stats64);
4596 spin_unlock(&adapter->stats64_lock);
4597
4598 for (i = 0; i < adapter->num_tx_queues; i++) {
4599 struct igb_ring *tx_ring = adapter->tx_ring[i];
4600 if (!netif_carrier_ok(netdev)) {
4601 /* We've lost link, so the controller stops DMA,
4602 * but we've got queued Tx work that's never going
4603 * to get done, so reset controller to flush Tx.
4604 * (Do the reset outside of interrupt context).
4605 */
4606 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4607 adapter->tx_timeout_count++;
4608 schedule_work(&adapter->reset_task);
4609 /* return immediately since reset is imminent */
4610 return;
4611 }
4612 }
4613
4614 /* Force detection of hung controller every watchdog period */
4615 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4616 }
4617
4618 /* Cause software interrupt to ensure Rx ring is cleaned */
4619 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4620 u32 eics = 0;
4621
4622 for (i = 0; i < adapter->num_q_vectors; i++)
4623 eics |= adapter->q_vector[i]->eims_value;
4624 wr32(E1000_EICS, eics);
4625 } else {
4626 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4627 }
4628
4629 igb_spoof_check(adapter);
4630 igb_ptp_rx_hang(adapter);
4631
4632 /* Check LVMMC register on i350/i354 only */
4633 if ((adapter->hw.mac.type == e1000_i350) ||
4634 (adapter->hw.mac.type == e1000_i354))
4635 igb_check_lvmmc(adapter);
4636
4637 /* Reset the timer */
4638 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4639 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4640 mod_timer(&adapter->watchdog_timer,
4641 round_jiffies(jiffies + HZ));
4642 else
4643 mod_timer(&adapter->watchdog_timer,
4644 round_jiffies(jiffies + 2 * HZ));
4645 }
4646}
4647
4648enum latency_range {
4649 lowest_latency = 0,
4650 low_latency = 1,
4651 bulk_latency = 2,
4652 latency_invalid = 255
4653};
4654
4655/**
4656 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4657 * @q_vector: pointer to q_vector
4658 *
4659 * Stores a new ITR value based on strictly on packet size. This
4660 * algorithm is less sophisticated than that used in igb_update_itr,
4661 * due to the difficulty of synchronizing statistics across multiple
4662 * receive rings. The divisors and thresholds used by this function
4663 * were determined based on theoretical maximum wire speed and testing
4664 * data, in order to minimize response time while increasing bulk
4665 * throughput.
4666 * This functionality is controlled by ethtool's coalescing settings.
4667 * NOTE: This function is called only when operating in a multiqueue
4668 * receive environment.
4669 **/
4670static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4671{
4672 int new_val = q_vector->itr_val;
4673 int avg_wire_size = 0;
4674 struct igb_adapter *adapter = q_vector->adapter;
4675 unsigned int packets;
4676
4677 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4678 * ints/sec - ITR timer value of 120 ticks.
4679 */
4680 if (adapter->link_speed != SPEED_1000) {
4681 new_val = IGB_4K_ITR;
4682 goto set_itr_val;
4683 }
4684
4685 packets = q_vector->rx.total_packets;
4686 if (packets)
4687 avg_wire_size = q_vector->rx.total_bytes / packets;
4688
4689 packets = q_vector->tx.total_packets;
4690 if (packets)
4691 avg_wire_size = max_t(u32, avg_wire_size,
4692 q_vector->tx.total_bytes / packets);
4693
4694 /* if avg_wire_size isn't set no work was done */
4695 if (!avg_wire_size)
4696 goto clear_counts;
4697
4698 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4699 avg_wire_size += 24;
4700
4701 /* Don't starve jumbo frames */
4702 avg_wire_size = min(avg_wire_size, 3000);
4703
4704 /* Give a little boost to mid-size frames */
4705 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4706 new_val = avg_wire_size / 3;
4707 else
4708 new_val = avg_wire_size / 2;
4709
4710 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4711 if (new_val < IGB_20K_ITR &&
4712 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4713 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4714 new_val = IGB_20K_ITR;
4715
4716set_itr_val:
4717 if (new_val != q_vector->itr_val) {
4718 q_vector->itr_val = new_val;
4719 q_vector->set_itr = 1;
4720 }
4721clear_counts:
4722 q_vector->rx.total_bytes = 0;
4723 q_vector->rx.total_packets = 0;
4724 q_vector->tx.total_bytes = 0;
4725 q_vector->tx.total_packets = 0;
4726}
4727
4728/**
4729 * igb_update_itr - update the dynamic ITR value based on statistics
4730 * @q_vector: pointer to q_vector
4731 * @ring_container: ring info to update the itr for
4732 *
4733 * Stores a new ITR value based on packets and byte
4734 * counts during the last interrupt. The advantage of per interrupt
4735 * computation is faster updates and more accurate ITR for the current
4736 * traffic pattern. Constants in this function were computed
4737 * based on theoretical maximum wire speed and thresholds were set based
4738 * on testing data as well as attempting to minimize response time
4739 * while increasing bulk throughput.
4740 * This functionality is controlled by ethtool's coalescing settings.
4741 * NOTE: These calculations are only valid when operating in a single-
4742 * queue environment.
4743 **/
4744static void igb_update_itr(struct igb_q_vector *q_vector,
4745 struct igb_ring_container *ring_container)
4746{
4747 unsigned int packets = ring_container->total_packets;
4748 unsigned int bytes = ring_container->total_bytes;
4749 u8 itrval = ring_container->itr;
4750
4751 /* no packets, exit with status unchanged */
4752 if (packets == 0)
4753 return;
4754
4755 switch (itrval) {
4756 case lowest_latency:
4757 /* handle TSO and jumbo frames */
4758 if (bytes/packets > 8000)
4759 itrval = bulk_latency;
4760 else if ((packets < 5) && (bytes > 512))
4761 itrval = low_latency;
4762 break;
4763 case low_latency: /* 50 usec aka 20000 ints/s */
4764 if (bytes > 10000) {
4765 /* this if handles the TSO accounting */
4766 if (bytes/packets > 8000)
4767 itrval = bulk_latency;
4768 else if ((packets < 10) || ((bytes/packets) > 1200))
4769 itrval = bulk_latency;
4770 else if ((packets > 35))
4771 itrval = lowest_latency;
4772 } else if (bytes/packets > 2000) {
4773 itrval = bulk_latency;
4774 } else if (packets <= 2 && bytes < 512) {
4775 itrval = lowest_latency;
4776 }
4777 break;
4778 case bulk_latency: /* 250 usec aka 4000 ints/s */
4779 if (bytes > 25000) {
4780 if (packets > 35)
4781 itrval = low_latency;
4782 } else if (bytes < 1500) {
4783 itrval = low_latency;
4784 }
4785 break;
4786 }
4787
4788 /* clear work counters since we have the values we need */
4789 ring_container->total_bytes = 0;
4790 ring_container->total_packets = 0;
4791
4792 /* write updated itr to ring container */
4793 ring_container->itr = itrval;
4794}
4795
4796static void igb_set_itr(struct igb_q_vector *q_vector)
4797{
4798 struct igb_adapter *adapter = q_vector->adapter;
4799 u32 new_itr = q_vector->itr_val;
4800 u8 current_itr = 0;
4801
4802 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4803 if (adapter->link_speed != SPEED_1000) {
4804 current_itr = 0;
4805 new_itr = IGB_4K_ITR;
4806 goto set_itr_now;
4807 }
4808
4809 igb_update_itr(q_vector, &q_vector->tx);
4810 igb_update_itr(q_vector, &q_vector->rx);
4811
4812 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4813
4814 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4815 if (current_itr == lowest_latency &&
4816 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4817 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4818 current_itr = low_latency;
4819
4820 switch (current_itr) {
4821 /* counts and packets in update_itr are dependent on these numbers */
4822 case lowest_latency:
4823 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4824 break;
4825 case low_latency:
4826 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4827 break;
4828 case bulk_latency:
4829 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4830 break;
4831 default:
4832 break;
4833 }
4834
4835set_itr_now:
4836 if (new_itr != q_vector->itr_val) {
4837 /* this attempts to bias the interrupt rate towards Bulk
4838 * by adding intermediate steps when interrupt rate is
4839 * increasing
4840 */
4841 new_itr = new_itr > q_vector->itr_val ?
4842 max((new_itr * q_vector->itr_val) /
4843 (new_itr + (q_vector->itr_val >> 2)),
4844 new_itr) : new_itr;
4845 /* Don't write the value here; it resets the adapter's
4846 * internal timer, and causes us to delay far longer than
4847 * we should between interrupts. Instead, we write the ITR
4848 * value at the beginning of the next interrupt so the timing
4849 * ends up being correct.
4850 */
4851 q_vector->itr_val = new_itr;
4852 q_vector->set_itr = 1;
4853 }
4854}
4855
4856static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4857 u32 type_tucmd, u32 mss_l4len_idx)
4858{
4859 struct e1000_adv_tx_context_desc *context_desc;
4860 u16 i = tx_ring->next_to_use;
4861
4862 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4863
4864 i++;
4865 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4866
4867 /* set bits to identify this as an advanced context descriptor */
4868 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4869
4870 /* For 82575, context index must be unique per ring. */
4871 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4872 mss_l4len_idx |= tx_ring->reg_idx << 4;
4873
4874 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4875 context_desc->seqnum_seed = 0;
4876 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4877 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4878}
4879
4880static int igb_tso(struct igb_ring *tx_ring,
4881 struct igb_tx_buffer *first,
4882 u8 *hdr_len)
4883{
4884 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4885 struct sk_buff *skb = first->skb;
4886 union {
4887 struct iphdr *v4;
4888 struct ipv6hdr *v6;
4889 unsigned char *hdr;
4890 } ip;
4891 union {
4892 struct tcphdr *tcp;
4893 unsigned char *hdr;
4894 } l4;
4895 u32 paylen, l4_offset;
4896 int err;
4897
4898 if (skb->ip_summed != CHECKSUM_PARTIAL)
4899 return 0;
4900
4901 if (!skb_is_gso(skb))
4902 return 0;
4903
4904 err = skb_cow_head(skb, 0);
4905 if (err < 0)
4906 return err;
4907
4908 ip.hdr = skb_network_header(skb);
4909 l4.hdr = skb_checksum_start(skb);
4910
4911 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4912 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4913
4914 /* initialize outer IP header fields */
4915 if (ip.v4->version == 4) {
4916 /* IP header will have to cancel out any data that
4917 * is not a part of the outer IP header
4918 */
4919 ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4920 csum_unfold(l4.tcp->check)));
4921 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4922
4923 ip.v4->tot_len = 0;
4924 first->tx_flags |= IGB_TX_FLAGS_TSO |
4925 IGB_TX_FLAGS_CSUM |
4926 IGB_TX_FLAGS_IPV4;
4927 } else {
4928 ip.v6->payload_len = 0;
4929 first->tx_flags |= IGB_TX_FLAGS_TSO |
4930 IGB_TX_FLAGS_CSUM;
4931 }
4932
4933 /* determine offset of inner transport header */
4934 l4_offset = l4.hdr - skb->data;
4935
4936 /* compute length of segmentation header */
4937 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
4938
4939 /* remove payload length from inner checksum */
4940 paylen = skb->len - l4_offset;
4941 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4942
4943 /* update gso size and bytecount with header size */
4944 first->gso_segs = skb_shinfo(skb)->gso_segs;
4945 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4946
4947 /* MSS L4LEN IDX */
4948 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4949 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4950
4951 /* VLAN MACLEN IPLEN */
4952 vlan_macip_lens = l4.hdr - ip.hdr;
4953 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4954 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4955
4956 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4957
4958 return 1;
4959}
4960
4961static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4962{
4963 unsigned int offset = 0;
4964
4965 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4966
4967 return offset == skb_checksum_start_offset(skb);
4968}
4969
4970static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4971{
4972 struct sk_buff *skb = first->skb;
4973 u32 vlan_macip_lens = 0;
4974 u32 type_tucmd = 0;
4975
4976 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4977csum_failed:
4978 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4979 return;
4980 goto no_csum;
4981 }
4982
4983 switch (skb->csum_offset) {
4984 case offsetof(struct tcphdr, check):
4985 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4986 /* fall through */
4987 case offsetof(struct udphdr, check):
4988 break;
4989 case offsetof(struct sctphdr, checksum):
4990 /* validate that this is actually an SCTP request */
4991 if (((first->protocol == htons(ETH_P_IP)) &&
4992 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4993 ((first->protocol == htons(ETH_P_IPV6)) &&
4994 igb_ipv6_csum_is_sctp(skb))) {
4995 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4996 break;
4997 }
4998 default:
4999 skb_checksum_help(skb);
5000 goto csum_failed;
5001 }
5002
5003 /* update TX checksum flag */
5004 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5005 vlan_macip_lens = skb_checksum_start_offset(skb) -
5006 skb_network_offset(skb);
5007no_csum:
5008 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5009 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5010
5011 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5012}
5013
5014#define IGB_SET_FLAG(_input, _flag, _result) \
5015 ((_flag <= _result) ? \
5016 ((u32)(_input & _flag) * (_result / _flag)) : \
5017 ((u32)(_input & _flag) / (_flag / _result)))
5018
5019static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5020{
5021 /* set type for advanced descriptor with frame checksum insertion */
5022 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5023 E1000_ADVTXD_DCMD_DEXT |
5024 E1000_ADVTXD_DCMD_IFCS;
5025
5026 /* set HW vlan bit if vlan is present */
5027 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5028 (E1000_ADVTXD_DCMD_VLE));
5029
5030 /* set segmentation bits for TSO */
5031 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5032 (E1000_ADVTXD_DCMD_TSE));
5033
5034 /* set timestamp bit if present */
5035 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5036 (E1000_ADVTXD_MAC_TSTAMP));
5037
5038 /* insert frame checksum */
5039 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5040
5041 return cmd_type;
5042}
5043
5044static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5045 union e1000_adv_tx_desc *tx_desc,
5046 u32 tx_flags, unsigned int paylen)
5047{
5048 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5049
5050 /* 82575 requires a unique index per ring */
5051 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5052 olinfo_status |= tx_ring->reg_idx << 4;
5053
5054 /* insert L4 checksum */
5055 olinfo_status |= IGB_SET_FLAG(tx_flags,
5056 IGB_TX_FLAGS_CSUM,
5057 (E1000_TXD_POPTS_TXSM << 8));
5058
5059 /* insert IPv4 checksum */
5060 olinfo_status |= IGB_SET_FLAG(tx_flags,
5061 IGB_TX_FLAGS_IPV4,
5062 (E1000_TXD_POPTS_IXSM << 8));
5063
5064 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5065}
5066
5067static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5068{
5069 struct net_device *netdev = tx_ring->netdev;
5070
5071 netif_stop_subqueue(netdev, tx_ring->queue_index);
5072
5073 /* Herbert's original patch had:
5074 * smp_mb__after_netif_stop_queue();
5075 * but since that doesn't exist yet, just open code it.
5076 */
5077 smp_mb();
5078
5079 /* We need to check again in a case another CPU has just
5080 * made room available.
5081 */
5082 if (igb_desc_unused(tx_ring) < size)
5083 return -EBUSY;
5084
5085 /* A reprieve! */
5086 netif_wake_subqueue(netdev, tx_ring->queue_index);
5087
5088 u64_stats_update_begin(&tx_ring->tx_syncp2);
5089 tx_ring->tx_stats.restart_queue2++;
5090 u64_stats_update_end(&tx_ring->tx_syncp2);
5091
5092 return 0;
5093}
5094
5095static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5096{
5097 if (igb_desc_unused(tx_ring) >= size)
5098 return 0;
5099 return __igb_maybe_stop_tx(tx_ring, size);
5100}
5101
5102static void igb_tx_map(struct igb_ring *tx_ring,
5103 struct igb_tx_buffer *first,
5104 const u8 hdr_len)
5105{
5106 struct sk_buff *skb = first->skb;
5107 struct igb_tx_buffer *tx_buffer;
5108 union e1000_adv_tx_desc *tx_desc;
5109 struct skb_frag_struct *frag;
5110 dma_addr_t dma;
5111 unsigned int data_len, size;
5112 u32 tx_flags = first->tx_flags;
5113 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5114 u16 i = tx_ring->next_to_use;
5115
5116 tx_desc = IGB_TX_DESC(tx_ring, i);
5117
5118 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5119
5120 size = skb_headlen(skb);
5121 data_len = skb->data_len;
5122
5123 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5124
5125 tx_buffer = first;
5126
5127 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5128 if (dma_mapping_error(tx_ring->dev, dma))
5129 goto dma_error;
5130
5131 /* record length, and DMA address */
5132 dma_unmap_len_set(tx_buffer, len, size);
5133 dma_unmap_addr_set(tx_buffer, dma, dma);
5134
5135 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5136
5137 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5138 tx_desc->read.cmd_type_len =
5139 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5140
5141 i++;
5142 tx_desc++;
5143 if (i == tx_ring->count) {
5144 tx_desc = IGB_TX_DESC(tx_ring, 0);
5145 i = 0;
5146 }
5147 tx_desc->read.olinfo_status = 0;
5148
5149 dma += IGB_MAX_DATA_PER_TXD;
5150 size -= IGB_MAX_DATA_PER_TXD;
5151
5152 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5153 }
5154
5155 if (likely(!data_len))
5156 break;
5157
5158 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5159
5160 i++;
5161 tx_desc++;
5162 if (i == tx_ring->count) {
5163 tx_desc = IGB_TX_DESC(tx_ring, 0);
5164 i = 0;
5165 }
5166 tx_desc->read.olinfo_status = 0;
5167
5168 size = skb_frag_size(frag);
5169 data_len -= size;
5170
5171 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5172 size, DMA_TO_DEVICE);
5173
5174 tx_buffer = &tx_ring->tx_buffer_info[i];
5175 }
5176
5177 /* write last descriptor with RS and EOP bits */
5178 cmd_type |= size | IGB_TXD_DCMD;
5179 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5180
5181 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5182
5183 /* set the timestamp */
5184 first->time_stamp = jiffies;
5185
5186 /* Force memory writes to complete before letting h/w know there
5187 * are new descriptors to fetch. (Only applicable for weak-ordered
5188 * memory model archs, such as IA-64).
5189 *
5190 * We also need this memory barrier to make certain all of the
5191 * status bits have been updated before next_to_watch is written.
5192 */
5193 wmb();
5194
5195 /* set next_to_watch value indicating a packet is present */
5196 first->next_to_watch = tx_desc;
5197
5198 i++;
5199 if (i == tx_ring->count)
5200 i = 0;
5201
5202 tx_ring->next_to_use = i;
5203
5204 /* Make sure there is space in the ring for the next send. */
5205 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5206
5207 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5208 writel(i, tx_ring->tail);
5209
5210 /* we need this if more than one processor can write to our tail
5211 * at a time, it synchronizes IO on IA64/Altix systems
5212 */
5213 mmiowb();
5214 }
5215 return;
5216
5217dma_error:
5218 dev_err(tx_ring->dev, "TX DMA map failed\n");
5219
5220 /* clear dma mappings for failed tx_buffer_info map */
5221 for (;;) {
5222 tx_buffer = &tx_ring->tx_buffer_info[i];
5223 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5224 if (tx_buffer == first)
5225 break;
5226 if (i == 0)
5227 i = tx_ring->count;
5228 i--;
5229 }
5230
5231 tx_ring->next_to_use = i;
5232}
5233
5234netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5235 struct igb_ring *tx_ring)
5236{
5237 struct igb_tx_buffer *first;
5238 int tso;
5239 u32 tx_flags = 0;
5240 unsigned short f;
5241 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5242 __be16 protocol = vlan_get_protocol(skb);
5243 u8 hdr_len = 0;
5244
5245 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5246 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5247 * + 2 desc gap to keep tail from touching head,
5248 * + 1 desc for context descriptor,
5249 * otherwise try next time
5250 */
5251 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5252 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5253
5254 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5255 /* this is a hard error */
5256 return NETDEV_TX_BUSY;
5257 }
5258
5259 /* record the location of the first descriptor for this packet */
5260 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5261 first->skb = skb;
5262 first->bytecount = skb->len;
5263 first->gso_segs = 1;
5264
5265 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5266 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5267
5268 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5269 &adapter->state)) {
5270 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5271 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5272
5273 adapter->ptp_tx_skb = skb_get(skb);
5274 adapter->ptp_tx_start = jiffies;
5275 if (adapter->hw.mac.type == e1000_82576)
5276 schedule_work(&adapter->ptp_tx_work);
5277 }
5278 }
5279
5280 skb_tx_timestamp(skb);
5281
5282 if (skb_vlan_tag_present(skb)) {
5283 tx_flags |= IGB_TX_FLAGS_VLAN;
5284 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5285 }
5286
5287 /* record initial flags and protocol */
5288 first->tx_flags = tx_flags;
5289 first->protocol = protocol;
5290
5291 tso = igb_tso(tx_ring, first, &hdr_len);
5292 if (tso < 0)
5293 goto out_drop;
5294 else if (!tso)
5295 igb_tx_csum(tx_ring, first);
5296
5297 igb_tx_map(tx_ring, first, hdr_len);
5298
5299 return NETDEV_TX_OK;
5300
5301out_drop:
5302 igb_unmap_and_free_tx_resource(tx_ring, first);
5303
5304 return NETDEV_TX_OK;
5305}
5306
5307static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5308 struct sk_buff *skb)
5309{
5310 unsigned int r_idx = skb->queue_mapping;
5311
5312 if (r_idx >= adapter->num_tx_queues)
5313 r_idx = r_idx % adapter->num_tx_queues;
5314
5315 return adapter->tx_ring[r_idx];
5316}
5317
5318static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5319 struct net_device *netdev)
5320{
5321 struct igb_adapter *adapter = netdev_priv(netdev);
5322
5323 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5324 * in order to meet this minimum size requirement.
5325 */
5326 if (skb_put_padto(skb, 17))
5327 return NETDEV_TX_OK;
5328
5329 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5330}
5331
5332/**
5333 * igb_tx_timeout - Respond to a Tx Hang
5334 * @netdev: network interface device structure
5335 **/
5336static void igb_tx_timeout(struct net_device *netdev)
5337{
5338 struct igb_adapter *adapter = netdev_priv(netdev);
5339 struct e1000_hw *hw = &adapter->hw;
5340
5341 /* Do the reset outside of interrupt context */
5342 adapter->tx_timeout_count++;
5343
5344 if (hw->mac.type >= e1000_82580)
5345 hw->dev_spec._82575.global_device_reset = true;
5346
5347 schedule_work(&adapter->reset_task);
5348 wr32(E1000_EICS,
5349 (adapter->eims_enable_mask & ~adapter->eims_other));
5350}
5351
5352static void igb_reset_task(struct work_struct *work)
5353{
5354 struct igb_adapter *adapter;
5355 adapter = container_of(work, struct igb_adapter, reset_task);
5356
5357 igb_dump(adapter);
5358 netdev_err(adapter->netdev, "Reset adapter\n");
5359 igb_reinit_locked(adapter);
5360}
5361
5362/**
5363 * igb_get_stats64 - Get System Network Statistics
5364 * @netdev: network interface device structure
5365 * @stats: rtnl_link_stats64 pointer
5366 **/
5367static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5368 struct rtnl_link_stats64 *stats)
5369{
5370 struct igb_adapter *adapter = netdev_priv(netdev);
5371
5372 spin_lock(&adapter->stats64_lock);
5373 igb_update_stats(adapter, &adapter->stats64);
5374 memcpy(stats, &adapter->stats64, sizeof(*stats));
5375 spin_unlock(&adapter->stats64_lock);
5376
5377 return stats;
5378}
5379
5380/**
5381 * igb_change_mtu - Change the Maximum Transfer Unit
5382 * @netdev: network interface device structure
5383 * @new_mtu: new value for maximum frame size
5384 *
5385 * Returns 0 on success, negative on failure
5386 **/
5387static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5388{
5389 struct igb_adapter *adapter = netdev_priv(netdev);
5390 struct pci_dev *pdev = adapter->pdev;
5391 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5392
5393 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5394 dev_err(&pdev->dev, "Invalid MTU setting\n");
5395 return -EINVAL;
5396 }
5397
5398#define MAX_STD_JUMBO_FRAME_SIZE 9238
5399 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5400 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5401 return -EINVAL;
5402 }
5403
5404 /* adjust max frame to be at least the size of a standard frame */
5405 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5406 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5407
5408 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5409 usleep_range(1000, 2000);
5410
5411 /* igb_down has a dependency on max_frame_size */
5412 adapter->max_frame_size = max_frame;
5413
5414 if (netif_running(netdev))
5415 igb_down(adapter);
5416
5417 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5418 netdev->mtu, new_mtu);
5419 netdev->mtu = new_mtu;
5420
5421 if (netif_running(netdev))
5422 igb_up(adapter);
5423 else
5424 igb_reset(adapter);
5425
5426 clear_bit(__IGB_RESETTING, &adapter->state);
5427
5428 return 0;
5429}
5430
5431/**
5432 * igb_update_stats - Update the board statistics counters
5433 * @adapter: board private structure
5434 **/
5435void igb_update_stats(struct igb_adapter *adapter,
5436 struct rtnl_link_stats64 *net_stats)
5437{
5438 struct e1000_hw *hw = &adapter->hw;
5439 struct pci_dev *pdev = adapter->pdev;
5440 u32 reg, mpc;
5441 int i;
5442 u64 bytes, packets;
5443 unsigned int start;
5444 u64 _bytes, _packets;
5445
5446 /* Prevent stats update while adapter is being reset, or if the pci
5447 * connection is down.
5448 */
5449 if (adapter->link_speed == 0)
5450 return;
5451 if (pci_channel_offline(pdev))
5452 return;
5453
5454 bytes = 0;
5455 packets = 0;
5456
5457 rcu_read_lock();
5458 for (i = 0; i < adapter->num_rx_queues; i++) {
5459 struct igb_ring *ring = adapter->rx_ring[i];
5460 u32 rqdpc = rd32(E1000_RQDPC(i));
5461 if (hw->mac.type >= e1000_i210)
5462 wr32(E1000_RQDPC(i), 0);
5463
5464 if (rqdpc) {
5465 ring->rx_stats.drops += rqdpc;
5466 net_stats->rx_fifo_errors += rqdpc;
5467 }
5468
5469 do {
5470 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5471 _bytes = ring->rx_stats.bytes;
5472 _packets = ring->rx_stats.packets;
5473 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5474 bytes += _bytes;
5475 packets += _packets;
5476 }
5477
5478 net_stats->rx_bytes = bytes;
5479 net_stats->rx_packets = packets;
5480
5481 bytes = 0;
5482 packets = 0;
5483 for (i = 0; i < adapter->num_tx_queues; i++) {
5484 struct igb_ring *ring = adapter->tx_ring[i];
5485 do {
5486 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5487 _bytes = ring->tx_stats.bytes;
5488 _packets = ring->tx_stats.packets;
5489 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5490 bytes += _bytes;
5491 packets += _packets;
5492 }
5493 net_stats->tx_bytes = bytes;
5494 net_stats->tx_packets = packets;
5495 rcu_read_unlock();
5496
5497 /* read stats registers */
5498 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5499 adapter->stats.gprc += rd32(E1000_GPRC);
5500 adapter->stats.gorc += rd32(E1000_GORCL);
5501 rd32(E1000_GORCH); /* clear GORCL */
5502 adapter->stats.bprc += rd32(E1000_BPRC);
5503 adapter->stats.mprc += rd32(E1000_MPRC);
5504 adapter->stats.roc += rd32(E1000_ROC);
5505
5506 adapter->stats.prc64 += rd32(E1000_PRC64);
5507 adapter->stats.prc127 += rd32(E1000_PRC127);
5508 adapter->stats.prc255 += rd32(E1000_PRC255);
5509 adapter->stats.prc511 += rd32(E1000_PRC511);
5510 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5511 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5512 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5513 adapter->stats.sec += rd32(E1000_SEC);
5514
5515 mpc = rd32(E1000_MPC);
5516 adapter->stats.mpc += mpc;
5517 net_stats->rx_fifo_errors += mpc;
5518 adapter->stats.scc += rd32(E1000_SCC);
5519 adapter->stats.ecol += rd32(E1000_ECOL);
5520 adapter->stats.mcc += rd32(E1000_MCC);
5521 adapter->stats.latecol += rd32(E1000_LATECOL);
5522 adapter->stats.dc += rd32(E1000_DC);
5523 adapter->stats.rlec += rd32(E1000_RLEC);
5524 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5525 adapter->stats.xontxc += rd32(E1000_XONTXC);
5526 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5527 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5528 adapter->stats.fcruc += rd32(E1000_FCRUC);
5529 adapter->stats.gptc += rd32(E1000_GPTC);
5530 adapter->stats.gotc += rd32(E1000_GOTCL);
5531 rd32(E1000_GOTCH); /* clear GOTCL */
5532 adapter->stats.rnbc += rd32(E1000_RNBC);
5533 adapter->stats.ruc += rd32(E1000_RUC);
5534 adapter->stats.rfc += rd32(E1000_RFC);
5535 adapter->stats.rjc += rd32(E1000_RJC);
5536 adapter->stats.tor += rd32(E1000_TORH);
5537 adapter->stats.tot += rd32(E1000_TOTH);
5538 adapter->stats.tpr += rd32(E1000_TPR);
5539
5540 adapter->stats.ptc64 += rd32(E1000_PTC64);
5541 adapter->stats.ptc127 += rd32(E1000_PTC127);
5542 adapter->stats.ptc255 += rd32(E1000_PTC255);
5543 adapter->stats.ptc511 += rd32(E1000_PTC511);
5544 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5545 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5546
5547 adapter->stats.mptc += rd32(E1000_MPTC);
5548 adapter->stats.bptc += rd32(E1000_BPTC);
5549
5550 adapter->stats.tpt += rd32(E1000_TPT);
5551 adapter->stats.colc += rd32(E1000_COLC);
5552
5553 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5554 /* read internal phy specific stats */
5555 reg = rd32(E1000_CTRL_EXT);
5556 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5557 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5558
5559 /* this stat has invalid values on i210/i211 */
5560 if ((hw->mac.type != e1000_i210) &&
5561 (hw->mac.type != e1000_i211))
5562 adapter->stats.tncrs += rd32(E1000_TNCRS);
5563 }
5564
5565 adapter->stats.tsctc += rd32(E1000_TSCTC);
5566 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5567
5568 adapter->stats.iac += rd32(E1000_IAC);
5569 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5570 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5571 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5572 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5573 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5574 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5575 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5576 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5577
5578 /* Fill out the OS statistics structure */
5579 net_stats->multicast = adapter->stats.mprc;
5580 net_stats->collisions = adapter->stats.colc;
5581
5582 /* Rx Errors */
5583
5584 /* RLEC on some newer hardware can be incorrect so build
5585 * our own version based on RUC and ROC
5586 */
5587 net_stats->rx_errors = adapter->stats.rxerrc +
5588 adapter->stats.crcerrs + adapter->stats.algnerrc +
5589 adapter->stats.ruc + adapter->stats.roc +
5590 adapter->stats.cexterr;
5591 net_stats->rx_length_errors = adapter->stats.ruc +
5592 adapter->stats.roc;
5593 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5594 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5595 net_stats->rx_missed_errors = adapter->stats.mpc;
5596
5597 /* Tx Errors */
5598 net_stats->tx_errors = adapter->stats.ecol +
5599 adapter->stats.latecol;
5600 net_stats->tx_aborted_errors = adapter->stats.ecol;
5601 net_stats->tx_window_errors = adapter->stats.latecol;
5602 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5603
5604 /* Tx Dropped needs to be maintained elsewhere */
5605
5606 /* Management Stats */
5607 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5608 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5609 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5610
5611 /* OS2BMC Stats */
5612 reg = rd32(E1000_MANC);
5613 if (reg & E1000_MANC_EN_BMC2OS) {
5614 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5615 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5616 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5617 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5618 }
5619}
5620
5621static void igb_tsync_interrupt(struct igb_adapter *adapter)
5622{
5623 struct e1000_hw *hw = &adapter->hw;
5624 struct ptp_clock_event event;
5625 struct timespec64 ts;
5626 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5627
5628 if (tsicr & TSINTR_SYS_WRAP) {
5629 event.type = PTP_CLOCK_PPS;
5630 if (adapter->ptp_caps.pps)
5631 ptp_clock_event(adapter->ptp_clock, &event);
5632 else
5633 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5634 ack |= TSINTR_SYS_WRAP;
5635 }
5636
5637 if (tsicr & E1000_TSICR_TXTS) {
5638 /* retrieve hardware timestamp */
5639 schedule_work(&adapter->ptp_tx_work);
5640 ack |= E1000_TSICR_TXTS;
5641 }
5642
5643 if (tsicr & TSINTR_TT0) {
5644 spin_lock(&adapter->tmreg_lock);
5645 ts = timespec64_add(adapter->perout[0].start,
5646 adapter->perout[0].period);
5647 /* u32 conversion of tv_sec is safe until y2106 */
5648 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5649 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5650 tsauxc = rd32(E1000_TSAUXC);
5651 tsauxc |= TSAUXC_EN_TT0;
5652 wr32(E1000_TSAUXC, tsauxc);
5653 adapter->perout[0].start = ts;
5654 spin_unlock(&adapter->tmreg_lock);
5655 ack |= TSINTR_TT0;
5656 }
5657
5658 if (tsicr & TSINTR_TT1) {
5659 spin_lock(&adapter->tmreg_lock);
5660 ts = timespec64_add(adapter->perout[1].start,
5661 adapter->perout[1].period);
5662 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5663 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5664 tsauxc = rd32(E1000_TSAUXC);
5665 tsauxc |= TSAUXC_EN_TT1;
5666 wr32(E1000_TSAUXC, tsauxc);
5667 adapter->perout[1].start = ts;
5668 spin_unlock(&adapter->tmreg_lock);
5669 ack |= TSINTR_TT1;
5670 }
5671
5672 if (tsicr & TSINTR_AUTT0) {
5673 nsec = rd32(E1000_AUXSTMPL0);
5674 sec = rd32(E1000_AUXSTMPH0);
5675 event.type = PTP_CLOCK_EXTTS;
5676 event.index = 0;
5677 event.timestamp = sec * 1000000000ULL + nsec;
5678 ptp_clock_event(adapter->ptp_clock, &event);
5679 ack |= TSINTR_AUTT0;
5680 }
5681
5682 if (tsicr & TSINTR_AUTT1) {
5683 nsec = rd32(E1000_AUXSTMPL1);
5684 sec = rd32(E1000_AUXSTMPH1);
5685 event.type = PTP_CLOCK_EXTTS;
5686 event.index = 1;
5687 event.timestamp = sec * 1000000000ULL + nsec;
5688 ptp_clock_event(adapter->ptp_clock, &event);
5689 ack |= TSINTR_AUTT1;
5690 }
5691
5692 /* acknowledge the interrupts */
5693 wr32(E1000_TSICR, ack);
5694}
5695
5696static irqreturn_t igb_msix_other(int irq, void *data)
5697{
5698 struct igb_adapter *adapter = data;
5699 struct e1000_hw *hw = &adapter->hw;
5700 u32 icr = rd32(E1000_ICR);
5701 /* reading ICR causes bit 31 of EICR to be cleared */
5702
5703 if (icr & E1000_ICR_DRSTA)
5704 schedule_work(&adapter->reset_task);
5705
5706 if (icr & E1000_ICR_DOUTSYNC) {
5707 /* HW is reporting DMA is out of sync */
5708 adapter->stats.doosync++;
5709 /* The DMA Out of Sync is also indication of a spoof event
5710 * in IOV mode. Check the Wrong VM Behavior register to
5711 * see if it is really a spoof event.
5712 */
5713 igb_check_wvbr(adapter);
5714 }
5715
5716 /* Check for a mailbox event */
5717 if (icr & E1000_ICR_VMMB)
5718 igb_msg_task(adapter);
5719
5720 if (icr & E1000_ICR_LSC) {
5721 hw->mac.get_link_status = 1;
5722 /* guard against interrupt when we're going down */
5723 if (!test_bit(__IGB_DOWN, &adapter->state))
5724 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5725 }
5726
5727 if (icr & E1000_ICR_TS)
5728 igb_tsync_interrupt(adapter);
5729
5730 wr32(E1000_EIMS, adapter->eims_other);
5731
5732 return IRQ_HANDLED;
5733}
5734
5735static void igb_write_itr(struct igb_q_vector *q_vector)
5736{
5737 struct igb_adapter *adapter = q_vector->adapter;
5738 u32 itr_val = q_vector->itr_val & 0x7FFC;
5739
5740 if (!q_vector->set_itr)
5741 return;
5742
5743 if (!itr_val)
5744 itr_val = 0x4;
5745
5746 if (adapter->hw.mac.type == e1000_82575)
5747 itr_val |= itr_val << 16;
5748 else
5749 itr_val |= E1000_EITR_CNT_IGNR;
5750
5751 writel(itr_val, q_vector->itr_register);
5752 q_vector->set_itr = 0;
5753}
5754
5755static irqreturn_t igb_msix_ring(int irq, void *data)
5756{
5757 struct igb_q_vector *q_vector = data;
5758
5759 /* Write the ITR value calculated from the previous interrupt. */
5760 igb_write_itr(q_vector);
5761
5762 napi_schedule(&q_vector->napi);
5763
5764 return IRQ_HANDLED;
5765}
5766
5767#ifdef CONFIG_IGB_DCA
5768static void igb_update_tx_dca(struct igb_adapter *adapter,
5769 struct igb_ring *tx_ring,
5770 int cpu)
5771{
5772 struct e1000_hw *hw = &adapter->hw;
5773 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5774
5775 if (hw->mac.type != e1000_82575)
5776 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5777
5778 /* We can enable relaxed ordering for reads, but not writes when
5779 * DCA is enabled. This is due to a known issue in some chipsets
5780 * which will cause the DCA tag to be cleared.
5781 */
5782 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5783 E1000_DCA_TXCTRL_DATA_RRO_EN |
5784 E1000_DCA_TXCTRL_DESC_DCA_EN;
5785
5786 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5787}
5788
5789static void igb_update_rx_dca(struct igb_adapter *adapter,
5790 struct igb_ring *rx_ring,
5791 int cpu)
5792{
5793 struct e1000_hw *hw = &adapter->hw;
5794 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5795
5796 if (hw->mac.type != e1000_82575)
5797 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5798
5799 /* We can enable relaxed ordering for reads, but not writes when
5800 * DCA is enabled. This is due to a known issue in some chipsets
5801 * which will cause the DCA tag to be cleared.
5802 */
5803 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5804 E1000_DCA_RXCTRL_DESC_DCA_EN;
5805
5806 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5807}
5808
5809static void igb_update_dca(struct igb_q_vector *q_vector)
5810{
5811 struct igb_adapter *adapter = q_vector->adapter;
5812 int cpu = get_cpu();
5813
5814 if (q_vector->cpu == cpu)
5815 goto out_no_update;
5816
5817 if (q_vector->tx.ring)
5818 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5819
5820 if (q_vector->rx.ring)
5821 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5822
5823 q_vector->cpu = cpu;
5824out_no_update:
5825 put_cpu();
5826}
5827
5828static void igb_setup_dca(struct igb_adapter *adapter)
5829{
5830 struct e1000_hw *hw = &adapter->hw;
5831 int i;
5832
5833 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5834 return;
5835
5836 /* Always use CB2 mode, difference is masked in the CB driver. */
5837 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5838
5839 for (i = 0; i < adapter->num_q_vectors; i++) {
5840 adapter->q_vector[i]->cpu = -1;
5841 igb_update_dca(adapter->q_vector[i]);
5842 }
5843}
5844
5845static int __igb_notify_dca(struct device *dev, void *data)
5846{
5847 struct net_device *netdev = dev_get_drvdata(dev);
5848 struct igb_adapter *adapter = netdev_priv(netdev);
5849 struct pci_dev *pdev = adapter->pdev;
5850 struct e1000_hw *hw = &adapter->hw;
5851 unsigned long event = *(unsigned long *)data;
5852
5853 switch (event) {
5854 case DCA_PROVIDER_ADD:
5855 /* if already enabled, don't do it again */
5856 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5857 break;
5858 if (dca_add_requester(dev) == 0) {
5859 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5860 dev_info(&pdev->dev, "DCA enabled\n");
5861 igb_setup_dca(adapter);
5862 break;
5863 }
5864 /* Fall Through since DCA is disabled. */
5865 case DCA_PROVIDER_REMOVE:
5866 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5867 /* without this a class_device is left
5868 * hanging around in the sysfs model
5869 */
5870 dca_remove_requester(dev);
5871 dev_info(&pdev->dev, "DCA disabled\n");
5872 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5873 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5874 }
5875 break;
5876 }
5877
5878 return 0;
5879}
5880
5881static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5882 void *p)
5883{
5884 int ret_val;
5885
5886 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5887 __igb_notify_dca);
5888
5889 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5890}
5891#endif /* CONFIG_IGB_DCA */
5892
5893#ifdef CONFIG_PCI_IOV
5894static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5895{
5896 unsigned char mac_addr[ETH_ALEN];
5897
5898 eth_zero_addr(mac_addr);
5899 igb_set_vf_mac(adapter, vf, mac_addr);
5900
5901 /* By default spoof check is enabled for all VFs */
5902 adapter->vf_data[vf].spoofchk_enabled = true;
5903
5904 return 0;
5905}
5906
5907#endif
5908static void igb_ping_all_vfs(struct igb_adapter *adapter)
5909{
5910 struct e1000_hw *hw = &adapter->hw;
5911 u32 ping;
5912 int i;
5913
5914 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5915 ping = E1000_PF_CONTROL_MSG;
5916 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5917 ping |= E1000_VT_MSGTYPE_CTS;
5918 igb_write_mbx(hw, &ping, 1, i);
5919 }
5920}
5921
5922static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5923{
5924 struct e1000_hw *hw = &adapter->hw;
5925 u32 vmolr = rd32(E1000_VMOLR(vf));
5926 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5927
5928 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5929 IGB_VF_FLAG_MULTI_PROMISC);
5930 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5931
5932 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5933 vmolr |= E1000_VMOLR_MPME;
5934 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5935 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5936 } else {
5937 /* if we have hashes and we are clearing a multicast promisc
5938 * flag we need to write the hashes to the MTA as this step
5939 * was previously skipped
5940 */
5941 if (vf_data->num_vf_mc_hashes > 30) {
5942 vmolr |= E1000_VMOLR_MPME;
5943 } else if (vf_data->num_vf_mc_hashes) {
5944 int j;
5945
5946 vmolr |= E1000_VMOLR_ROMPE;
5947 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5948 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5949 }
5950 }
5951
5952 wr32(E1000_VMOLR(vf), vmolr);
5953
5954 /* there are flags left unprocessed, likely not supported */
5955 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5956 return -EINVAL;
5957
5958 return 0;
5959}
5960
5961static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5962 u32 *msgbuf, u32 vf)
5963{
5964 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5965 u16 *hash_list = (u16 *)&msgbuf[1];
5966 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5967 int i;
5968
5969 /* salt away the number of multicast addresses assigned
5970 * to this VF for later use to restore when the PF multi cast
5971 * list changes
5972 */
5973 vf_data->num_vf_mc_hashes = n;
5974
5975 /* only up to 30 hash values supported */
5976 if (n > 30)
5977 n = 30;
5978
5979 /* store the hashes for later use */
5980 for (i = 0; i < n; i++)
5981 vf_data->vf_mc_hashes[i] = hash_list[i];
5982
5983 /* Flush and reset the mta with the new values */
5984 igb_set_rx_mode(adapter->netdev);
5985
5986 return 0;
5987}
5988
5989static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5990{
5991 struct e1000_hw *hw = &adapter->hw;
5992 struct vf_data_storage *vf_data;
5993 int i, j;
5994
5995 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5996 u32 vmolr = rd32(E1000_VMOLR(i));
5997
5998 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5999
6000 vf_data = &adapter->vf_data[i];
6001
6002 if ((vf_data->num_vf_mc_hashes > 30) ||
6003 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6004 vmolr |= E1000_VMOLR_MPME;
6005 } else if (vf_data->num_vf_mc_hashes) {
6006 vmolr |= E1000_VMOLR_ROMPE;
6007 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6008 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6009 }
6010 wr32(E1000_VMOLR(i), vmolr);
6011 }
6012}
6013
6014static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6015{
6016 struct e1000_hw *hw = &adapter->hw;
6017 u32 pool_mask, vlvf_mask, i;
6018
6019 /* create mask for VF and other pools */
6020 pool_mask = E1000_VLVF_POOLSEL_MASK;
6021 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6022
6023 /* drop PF from pool bits */
6024 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6025 adapter->vfs_allocated_count);
6026
6027 /* Find the vlan filter for this id */
6028 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6029 u32 vlvf = rd32(E1000_VLVF(i));
6030 u32 vfta_mask, vid, vfta;
6031
6032 /* remove the vf from the pool */
6033 if (!(vlvf & vlvf_mask))
6034 continue;
6035
6036 /* clear out bit from VLVF */
6037 vlvf ^= vlvf_mask;
6038
6039 /* if other pools are present, just remove ourselves */
6040 if (vlvf & pool_mask)
6041 goto update_vlvfb;
6042
6043 /* if PF is present, leave VFTA */
6044 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6045 goto update_vlvf;
6046
6047 vid = vlvf & E1000_VLVF_VLANID_MASK;
6048 vfta_mask = BIT(vid % 32);
6049
6050 /* clear bit from VFTA */
6051 vfta = adapter->shadow_vfta[vid / 32];
6052 if (vfta & vfta_mask)
6053 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6054update_vlvf:
6055 /* clear pool selection enable */
6056 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6057 vlvf &= E1000_VLVF_POOLSEL_MASK;
6058 else
6059 vlvf = 0;
6060update_vlvfb:
6061 /* clear pool bits */
6062 wr32(E1000_VLVF(i), vlvf);
6063 }
6064}
6065
6066static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6067{
6068 u32 vlvf;
6069 int idx;
6070
6071 /* short cut the special case */
6072 if (vlan == 0)
6073 return 0;
6074
6075 /* Search for the VLAN id in the VLVF entries */
6076 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6077 vlvf = rd32(E1000_VLVF(idx));
6078 if ((vlvf & VLAN_VID_MASK) == vlan)
6079 break;
6080 }
6081
6082 return idx;
6083}
6084
6085static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6086{
6087 struct e1000_hw *hw = &adapter->hw;
6088 u32 bits, pf_id;
6089 int idx;
6090
6091 idx = igb_find_vlvf_entry(hw, vid);
6092 if (!idx)
6093 return;
6094
6095 /* See if any other pools are set for this VLAN filter
6096 * entry other than the PF.
6097 */
6098 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6099 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6100 bits &= rd32(E1000_VLVF(idx));
6101
6102 /* Disable the filter so this falls into the default pool. */
6103 if (!bits) {
6104 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6105 wr32(E1000_VLVF(idx), BIT(pf_id));
6106 else
6107 wr32(E1000_VLVF(idx), 0);
6108 }
6109}
6110
6111static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6112 bool add, u32 vf)
6113{
6114 int pf_id = adapter->vfs_allocated_count;
6115 struct e1000_hw *hw = &adapter->hw;
6116 int err;
6117
6118 /* If VLAN overlaps with one the PF is currently monitoring make
6119 * sure that we are able to allocate a VLVF entry. This may be
6120 * redundant but it guarantees PF will maintain visibility to
6121 * the VLAN.
6122 */
6123 if (add && test_bit(vid, adapter->active_vlans)) {
6124 err = igb_vfta_set(hw, vid, pf_id, true, false);
6125 if (err)
6126 return err;
6127 }
6128
6129 err = igb_vfta_set(hw, vid, vf, add, false);
6130
6131 if (add && !err)
6132 return err;
6133
6134 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6135 * we may need to drop the PF pool bit in order to allow us to free
6136 * up the VLVF resources.
6137 */
6138 if (test_bit(vid, adapter->active_vlans) ||
6139 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6140 igb_update_pf_vlvf(adapter, vid);
6141
6142 return err;
6143}
6144
6145static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6146{
6147 struct e1000_hw *hw = &adapter->hw;
6148
6149 if (vid)
6150 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6151 else
6152 wr32(E1000_VMVIR(vf), 0);
6153}
6154
6155static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6156 u16 vlan, u8 qos)
6157{
6158 int err;
6159
6160 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6161 if (err)
6162 return err;
6163
6164 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6165 igb_set_vmolr(adapter, vf, !vlan);
6166
6167 /* revoke access to previous VLAN */
6168 if (vlan != adapter->vf_data[vf].pf_vlan)
6169 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6170 false, vf);
6171
6172 adapter->vf_data[vf].pf_vlan = vlan;
6173 adapter->vf_data[vf].pf_qos = qos;
6174 igb_set_vf_vlan_strip(adapter, vf, true);
6175 dev_info(&adapter->pdev->dev,
6176 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6177 if (test_bit(__IGB_DOWN, &adapter->state)) {
6178 dev_warn(&adapter->pdev->dev,
6179 "The VF VLAN has been set, but the PF device is not up.\n");
6180 dev_warn(&adapter->pdev->dev,
6181 "Bring the PF device up before attempting to use the VF device.\n");
6182 }
6183
6184 return err;
6185}
6186
6187static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6188{
6189 /* Restore tagless access via VLAN 0 */
6190 igb_set_vf_vlan(adapter, 0, true, vf);
6191
6192 igb_set_vmvir(adapter, 0, vf);
6193 igb_set_vmolr(adapter, vf, true);
6194
6195 /* Remove any PF assigned VLAN */
6196 if (adapter->vf_data[vf].pf_vlan)
6197 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6198 false, vf);
6199
6200 adapter->vf_data[vf].pf_vlan = 0;
6201 adapter->vf_data[vf].pf_qos = 0;
6202 igb_set_vf_vlan_strip(adapter, vf, false);
6203
6204 return 0;
6205}
6206
6207static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6208 int vf, u16 vlan, u8 qos)
6209{
6210 struct igb_adapter *adapter = netdev_priv(netdev);
6211
6212 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6213 return -EINVAL;
6214
6215 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6216 igb_disable_port_vlan(adapter, vf);
6217}
6218
6219static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6220{
6221 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6222 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6223 int ret;
6224
6225 if (adapter->vf_data[vf].pf_vlan)
6226 return -1;
6227
6228 /* VLAN 0 is a special case, don't allow it to be removed */
6229 if (!vid && !add)
6230 return 0;
6231
6232 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6233 if (!ret)
6234 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6235 return ret;
6236}
6237
6238static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6239{
6240 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6241
6242 /* clear flags - except flag that indicates PF has set the MAC */
6243 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6244 vf_data->last_nack = jiffies;
6245
6246 /* reset vlans for device */
6247 igb_clear_vf_vfta(adapter, vf);
6248 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6249 igb_set_vmvir(adapter, vf_data->pf_vlan |
6250 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6251 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6252 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6253
6254 /* reset multicast table array for vf */
6255 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6256
6257 /* Flush and reset the mta with the new values */
6258 igb_set_rx_mode(adapter->netdev);
6259}
6260
6261static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6262{
6263 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6264
6265 /* clear mac address as we were hotplug removed/added */
6266 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6267 eth_zero_addr(vf_mac);
6268
6269 /* process remaining reset events */
6270 igb_vf_reset(adapter, vf);
6271}
6272
6273static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6274{
6275 struct e1000_hw *hw = &adapter->hw;
6276 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6277 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6278 u32 reg, msgbuf[3];
6279 u8 *addr = (u8 *)(&msgbuf[1]);
6280
6281 /* process all the same items cleared in a function level reset */
6282 igb_vf_reset(adapter, vf);
6283
6284 /* set vf mac address */
6285 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6286
6287 /* enable transmit and receive for vf */
6288 reg = rd32(E1000_VFTE);
6289 wr32(E1000_VFTE, reg | BIT(vf));
6290 reg = rd32(E1000_VFRE);
6291 wr32(E1000_VFRE, reg | BIT(vf));
6292
6293 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6294
6295 /* reply to reset with ack and vf mac address */
6296 if (!is_zero_ether_addr(vf_mac)) {
6297 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6298 memcpy(addr, vf_mac, ETH_ALEN);
6299 } else {
6300 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6301 }
6302 igb_write_mbx(hw, msgbuf, 3, vf);
6303}
6304
6305static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6306{
6307 /* The VF MAC Address is stored in a packed array of bytes
6308 * starting at the second 32 bit word of the msg array
6309 */
6310 unsigned char *addr = (char *)&msg[1];
6311 int err = -1;
6312
6313 if (is_valid_ether_addr(addr))
6314 err = igb_set_vf_mac(adapter, vf, addr);
6315
6316 return err;
6317}
6318
6319static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6320{
6321 struct e1000_hw *hw = &adapter->hw;
6322 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6323 u32 msg = E1000_VT_MSGTYPE_NACK;
6324
6325 /* if device isn't clear to send it shouldn't be reading either */
6326 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6327 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6328 igb_write_mbx(hw, &msg, 1, vf);
6329 vf_data->last_nack = jiffies;
6330 }
6331}
6332
6333static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6334{
6335 struct pci_dev *pdev = adapter->pdev;
6336 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6337 struct e1000_hw *hw = &adapter->hw;
6338 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6339 s32 retval;
6340
6341 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6342
6343 if (retval) {
6344 /* if receive failed revoke VF CTS stats and restart init */
6345 dev_err(&pdev->dev, "Error receiving message from VF\n");
6346 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6347 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6348 return;
6349 goto out;
6350 }
6351
6352 /* this is a message we already processed, do nothing */
6353 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6354 return;
6355
6356 /* until the vf completes a reset it should not be
6357 * allowed to start any configuration.
6358 */
6359 if (msgbuf[0] == E1000_VF_RESET) {
6360 igb_vf_reset_msg(adapter, vf);
6361 return;
6362 }
6363
6364 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6365 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6366 return;
6367 retval = -1;
6368 goto out;
6369 }
6370
6371 switch ((msgbuf[0] & 0xFFFF)) {
6372 case E1000_VF_SET_MAC_ADDR:
6373 retval = -EINVAL;
6374 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6375 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6376 else
6377 dev_warn(&pdev->dev,
6378 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6379 vf);
6380 break;
6381 case E1000_VF_SET_PROMISC:
6382 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6383 break;
6384 case E1000_VF_SET_MULTICAST:
6385 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6386 break;
6387 case E1000_VF_SET_LPE:
6388 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6389 break;
6390 case E1000_VF_SET_VLAN:
6391 retval = -1;
6392 if (vf_data->pf_vlan)
6393 dev_warn(&pdev->dev,
6394 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6395 vf);
6396 else
6397 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6398 break;
6399 default:
6400 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6401 retval = -1;
6402 break;
6403 }
6404
6405 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6406out:
6407 /* notify the VF of the results of what it sent us */
6408 if (retval)
6409 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6410 else
6411 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6412
6413 igb_write_mbx(hw, msgbuf, 1, vf);
6414}
6415
6416static void igb_msg_task(struct igb_adapter *adapter)
6417{
6418 struct e1000_hw *hw = &adapter->hw;
6419 u32 vf;
6420
6421 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6422 /* process any reset requests */
6423 if (!igb_check_for_rst(hw, vf))
6424 igb_vf_reset_event(adapter, vf);
6425
6426 /* process any messages pending */
6427 if (!igb_check_for_msg(hw, vf))
6428 igb_rcv_msg_from_vf(adapter, vf);
6429
6430 /* process any acks */
6431 if (!igb_check_for_ack(hw, vf))
6432 igb_rcv_ack_from_vf(adapter, vf);
6433 }
6434}
6435
6436/**
6437 * igb_set_uta - Set unicast filter table address
6438 * @adapter: board private structure
6439 * @set: boolean indicating if we are setting or clearing bits
6440 *
6441 * The unicast table address is a register array of 32-bit registers.
6442 * The table is meant to be used in a way similar to how the MTA is used
6443 * however due to certain limitations in the hardware it is necessary to
6444 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6445 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6446 **/
6447static void igb_set_uta(struct igb_adapter *adapter, bool set)
6448{
6449 struct e1000_hw *hw = &adapter->hw;
6450 u32 uta = set ? ~0 : 0;
6451 int i;
6452
6453 /* we only need to do this if VMDq is enabled */
6454 if (!adapter->vfs_allocated_count)
6455 return;
6456
6457 for (i = hw->mac.uta_reg_count; i--;)
6458 array_wr32(E1000_UTA, i, uta);
6459}
6460
6461/**
6462 * igb_intr_msi - Interrupt Handler
6463 * @irq: interrupt number
6464 * @data: pointer to a network interface device structure
6465 **/
6466static irqreturn_t igb_intr_msi(int irq, void *data)
6467{
6468 struct igb_adapter *adapter = data;
6469 struct igb_q_vector *q_vector = adapter->q_vector[0];
6470 struct e1000_hw *hw = &adapter->hw;
6471 /* read ICR disables interrupts using IAM */
6472 u32 icr = rd32(E1000_ICR);
6473
6474 igb_write_itr(q_vector);
6475
6476 if (icr & E1000_ICR_DRSTA)
6477 schedule_work(&adapter->reset_task);
6478
6479 if (icr & E1000_ICR_DOUTSYNC) {
6480 /* HW is reporting DMA is out of sync */
6481 adapter->stats.doosync++;
6482 }
6483
6484 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6485 hw->mac.get_link_status = 1;
6486 if (!test_bit(__IGB_DOWN, &adapter->state))
6487 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6488 }
6489
6490 if (icr & E1000_ICR_TS)
6491 igb_tsync_interrupt(adapter);
6492
6493 napi_schedule(&q_vector->napi);
6494
6495 return IRQ_HANDLED;
6496}
6497
6498/**
6499 * igb_intr - Legacy Interrupt Handler
6500 * @irq: interrupt number
6501 * @data: pointer to a network interface device structure
6502 **/
6503static irqreturn_t igb_intr(int irq, void *data)
6504{
6505 struct igb_adapter *adapter = data;
6506 struct igb_q_vector *q_vector = adapter->q_vector[0];
6507 struct e1000_hw *hw = &adapter->hw;
6508 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6509 * need for the IMC write
6510 */
6511 u32 icr = rd32(E1000_ICR);
6512
6513 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6514 * not set, then the adapter didn't send an interrupt
6515 */
6516 if (!(icr & E1000_ICR_INT_ASSERTED))
6517 return IRQ_NONE;
6518
6519 igb_write_itr(q_vector);
6520
6521 if (icr & E1000_ICR_DRSTA)
6522 schedule_work(&adapter->reset_task);
6523
6524 if (icr & E1000_ICR_DOUTSYNC) {
6525 /* HW is reporting DMA is out of sync */
6526 adapter->stats.doosync++;
6527 }
6528
6529 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6530 hw->mac.get_link_status = 1;
6531 /* guard against interrupt when we're going down */
6532 if (!test_bit(__IGB_DOWN, &adapter->state))
6533 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6534 }
6535
6536 if (icr & E1000_ICR_TS)
6537 igb_tsync_interrupt(adapter);
6538
6539 napi_schedule(&q_vector->napi);
6540
6541 return IRQ_HANDLED;
6542}
6543
6544static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6545{
6546 struct igb_adapter *adapter = q_vector->adapter;
6547 struct e1000_hw *hw = &adapter->hw;
6548
6549 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6550 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6551 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6552 igb_set_itr(q_vector);
6553 else
6554 igb_update_ring_itr(q_vector);
6555 }
6556
6557 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6558 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6559 wr32(E1000_EIMS, q_vector->eims_value);
6560 else
6561 igb_irq_enable(adapter);
6562 }
6563}
6564
6565/**
6566 * igb_poll - NAPI Rx polling callback
6567 * @napi: napi polling structure
6568 * @budget: count of how many packets we should handle
6569 **/
6570static int igb_poll(struct napi_struct *napi, int budget)
6571{
6572 struct igb_q_vector *q_vector = container_of(napi,
6573 struct igb_q_vector,
6574 napi);
6575 bool clean_complete = true;
6576 int work_done = 0;
6577
6578#ifdef CONFIG_IGB_DCA
6579 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6580 igb_update_dca(q_vector);
6581#endif
6582 if (q_vector->tx.ring)
6583 clean_complete = igb_clean_tx_irq(q_vector, budget);
6584
6585 if (q_vector->rx.ring) {
6586 int cleaned = igb_clean_rx_irq(q_vector, budget);
6587
6588 work_done += cleaned;
6589 if (cleaned >= budget)
6590 clean_complete = false;
6591 }
6592
6593 /* If all work not completed, return budget and keep polling */
6594 if (!clean_complete)
6595 return budget;
6596
6597 /* If not enough Rx work done, exit the polling mode */
6598 napi_complete_done(napi, work_done);
6599 igb_ring_irq_enable(q_vector);
6600
6601 return 0;
6602}
6603
6604/**
6605 * igb_clean_tx_irq - Reclaim resources after transmit completes
6606 * @q_vector: pointer to q_vector containing needed info
6607 * @napi_budget: Used to determine if we are in netpoll
6608 *
6609 * returns true if ring is completely cleaned
6610 **/
6611static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6612{
6613 struct igb_adapter *adapter = q_vector->adapter;
6614 struct igb_ring *tx_ring = q_vector->tx.ring;
6615 struct igb_tx_buffer *tx_buffer;
6616 union e1000_adv_tx_desc *tx_desc;
6617 unsigned int total_bytes = 0, total_packets = 0;
6618 unsigned int budget = q_vector->tx.work_limit;
6619 unsigned int i = tx_ring->next_to_clean;
6620
6621 if (test_bit(__IGB_DOWN, &adapter->state))
6622 return true;
6623
6624 tx_buffer = &tx_ring->tx_buffer_info[i];
6625 tx_desc = IGB_TX_DESC(tx_ring, i);
6626 i -= tx_ring->count;
6627
6628 do {
6629 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6630
6631 /* if next_to_watch is not set then there is no work pending */
6632 if (!eop_desc)
6633 break;
6634
6635 /* prevent any other reads prior to eop_desc */
6636 read_barrier_depends();
6637
6638 /* if DD is not set pending work has not been completed */
6639 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6640 break;
6641
6642 /* clear next_to_watch to prevent false hangs */
6643 tx_buffer->next_to_watch = NULL;
6644
6645 /* update the statistics for this packet */
6646 total_bytes += tx_buffer->bytecount;
6647 total_packets += tx_buffer->gso_segs;
6648
6649 /* free the skb */
6650 napi_consume_skb(tx_buffer->skb, napi_budget);
6651
6652 /* unmap skb header data */
6653 dma_unmap_single(tx_ring->dev,
6654 dma_unmap_addr(tx_buffer, dma),
6655 dma_unmap_len(tx_buffer, len),
6656 DMA_TO_DEVICE);
6657
6658 /* clear tx_buffer data */
6659 tx_buffer->skb = NULL;
6660 dma_unmap_len_set(tx_buffer, len, 0);
6661
6662 /* clear last DMA location and unmap remaining buffers */
6663 while (tx_desc != eop_desc) {
6664 tx_buffer++;
6665 tx_desc++;
6666 i++;
6667 if (unlikely(!i)) {
6668 i -= tx_ring->count;
6669 tx_buffer = tx_ring->tx_buffer_info;
6670 tx_desc = IGB_TX_DESC(tx_ring, 0);
6671 }
6672
6673 /* unmap any remaining paged data */
6674 if (dma_unmap_len(tx_buffer, len)) {
6675 dma_unmap_page(tx_ring->dev,
6676 dma_unmap_addr(tx_buffer, dma),
6677 dma_unmap_len(tx_buffer, len),
6678 DMA_TO_DEVICE);
6679 dma_unmap_len_set(tx_buffer, len, 0);
6680 }
6681 }
6682
6683 /* move us one more past the eop_desc for start of next pkt */
6684 tx_buffer++;
6685 tx_desc++;
6686 i++;
6687 if (unlikely(!i)) {
6688 i -= tx_ring->count;
6689 tx_buffer = tx_ring->tx_buffer_info;
6690 tx_desc = IGB_TX_DESC(tx_ring, 0);
6691 }
6692
6693 /* issue prefetch for next Tx descriptor */
6694 prefetch(tx_desc);
6695
6696 /* update budget accounting */
6697 budget--;
6698 } while (likely(budget));
6699
6700 netdev_tx_completed_queue(txring_txq(tx_ring),
6701 total_packets, total_bytes);
6702 i += tx_ring->count;
6703 tx_ring->next_to_clean = i;
6704 u64_stats_update_begin(&tx_ring->tx_syncp);
6705 tx_ring->tx_stats.bytes += total_bytes;
6706 tx_ring->tx_stats.packets += total_packets;
6707 u64_stats_update_end(&tx_ring->tx_syncp);
6708 q_vector->tx.total_bytes += total_bytes;
6709 q_vector->tx.total_packets += total_packets;
6710
6711 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6712 struct e1000_hw *hw = &adapter->hw;
6713
6714 /* Detect a transmit hang in hardware, this serializes the
6715 * check with the clearing of time_stamp and movement of i
6716 */
6717 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6718 if (tx_buffer->next_to_watch &&
6719 time_after(jiffies, tx_buffer->time_stamp +
6720 (adapter->tx_timeout_factor * HZ)) &&
6721 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6722
6723 /* detected Tx unit hang */
6724 dev_err(tx_ring->dev,
6725 "Detected Tx Unit Hang\n"
6726 " Tx Queue <%d>\n"
6727 " TDH <%x>\n"
6728 " TDT <%x>\n"
6729 " next_to_use <%x>\n"
6730 " next_to_clean <%x>\n"
6731 "buffer_info[next_to_clean]\n"
6732 " time_stamp <%lx>\n"
6733 " next_to_watch <%p>\n"
6734 " jiffies <%lx>\n"
6735 " desc.status <%x>\n",
6736 tx_ring->queue_index,
6737 rd32(E1000_TDH(tx_ring->reg_idx)),
6738 readl(tx_ring->tail),
6739 tx_ring->next_to_use,
6740 tx_ring->next_to_clean,
6741 tx_buffer->time_stamp,
6742 tx_buffer->next_to_watch,
6743 jiffies,
6744 tx_buffer->next_to_watch->wb.status);
6745 netif_stop_subqueue(tx_ring->netdev,
6746 tx_ring->queue_index);
6747
6748 /* we are about to reset, no point in enabling stuff */
6749 return true;
6750 }
6751 }
6752
6753#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6754 if (unlikely(total_packets &&
6755 netif_carrier_ok(tx_ring->netdev) &&
6756 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6757 /* Make sure that anybody stopping the queue after this
6758 * sees the new next_to_clean.
6759 */
6760 smp_mb();
6761 if (__netif_subqueue_stopped(tx_ring->netdev,
6762 tx_ring->queue_index) &&
6763 !(test_bit(__IGB_DOWN, &adapter->state))) {
6764 netif_wake_subqueue(tx_ring->netdev,
6765 tx_ring->queue_index);
6766
6767 u64_stats_update_begin(&tx_ring->tx_syncp);
6768 tx_ring->tx_stats.restart_queue++;
6769 u64_stats_update_end(&tx_ring->tx_syncp);
6770 }
6771 }
6772
6773 return !!budget;
6774}
6775
6776/**
6777 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6778 * @rx_ring: rx descriptor ring to store buffers on
6779 * @old_buff: donor buffer to have page reused
6780 *
6781 * Synchronizes page for reuse by the adapter
6782 **/
6783static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6784 struct igb_rx_buffer *old_buff)
6785{
6786 struct igb_rx_buffer *new_buff;
6787 u16 nta = rx_ring->next_to_alloc;
6788
6789 new_buff = &rx_ring->rx_buffer_info[nta];
6790
6791 /* update, and store next to alloc */
6792 nta++;
6793 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6794
6795 /* transfer page from old buffer to new buffer */
6796 *new_buff = *old_buff;
6797
6798 /* sync the buffer for use by the device */
6799 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6800 old_buff->page_offset,
6801 IGB_RX_BUFSZ,
6802 DMA_FROM_DEVICE);
6803}
6804
6805static inline bool igb_page_is_reserved(struct page *page)
6806{
6807 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6808}
6809
6810static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6811 struct page *page,
6812 unsigned int truesize)
6813{
6814 /* avoid re-using remote pages */
6815 if (unlikely(igb_page_is_reserved(page)))
6816 return false;
6817
6818#if (PAGE_SIZE < 8192)
6819 /* if we are only owner of page we can reuse it */
6820 if (unlikely(page_count(page) != 1))
6821 return false;
6822
6823 /* flip page offset to other buffer */
6824 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6825#else
6826 /* move offset up to the next cache line */
6827 rx_buffer->page_offset += truesize;
6828
6829 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6830 return false;
6831#endif
6832
6833 /* Even if we own the page, we are not allowed to use atomic_set()
6834 * This would break get_page_unless_zero() users.
6835 */
6836 page_ref_inc(page);
6837
6838 return true;
6839}
6840
6841/**
6842 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6843 * @rx_ring: rx descriptor ring to transact packets on
6844 * @rx_buffer: buffer containing page to add
6845 * @rx_desc: descriptor containing length of buffer written by hardware
6846 * @skb: sk_buff to place the data into
6847 *
6848 * This function will add the data contained in rx_buffer->page to the skb.
6849 * This is done either through a direct copy if the data in the buffer is
6850 * less than the skb header size, otherwise it will just attach the page as
6851 * a frag to the skb.
6852 *
6853 * The function will then update the page offset if necessary and return
6854 * true if the buffer can be reused by the adapter.
6855 **/
6856static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6857 struct igb_rx_buffer *rx_buffer,
6858 union e1000_adv_rx_desc *rx_desc,
6859 struct sk_buff *skb)
6860{
6861 struct page *page = rx_buffer->page;
6862 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6863 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6864#if (PAGE_SIZE < 8192)
6865 unsigned int truesize = IGB_RX_BUFSZ;
6866#else
6867 unsigned int truesize = SKB_DATA_ALIGN(size);
6868#endif
6869 unsigned int pull_len;
6870
6871 if (unlikely(skb_is_nonlinear(skb)))
6872 goto add_tail_frag;
6873
6874 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6875 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6876 va += IGB_TS_HDR_LEN;
6877 size -= IGB_TS_HDR_LEN;
6878 }
6879
6880 if (likely(size <= IGB_RX_HDR_LEN)) {
6881 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6882
6883 /* page is not reserved, we can reuse buffer as-is */
6884 if (likely(!igb_page_is_reserved(page)))
6885 return true;
6886
6887 /* this page cannot be reused so discard it */
6888 __free_page(page);
6889 return false;
6890 }
6891
6892 /* we need the header to contain the greater of either ETH_HLEN or
6893 * 60 bytes if the skb->len is less than 60 for skb_pad.
6894 */
6895 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6896
6897 /* align pull length to size of long to optimize memcpy performance */
6898 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6899
6900 /* update all of the pointers */
6901 va += pull_len;
6902 size -= pull_len;
6903
6904add_tail_frag:
6905 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6906 (unsigned long)va & ~PAGE_MASK, size, truesize);
6907
6908 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6909}
6910
6911static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6912 union e1000_adv_rx_desc *rx_desc,
6913 struct sk_buff *skb)
6914{
6915 struct igb_rx_buffer *rx_buffer;
6916 struct page *page;
6917
6918 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6919 page = rx_buffer->page;
6920 prefetchw(page);
6921
6922 if (likely(!skb)) {
6923 void *page_addr = page_address(page) +
6924 rx_buffer->page_offset;
6925
6926 /* prefetch first cache line of first page */
6927 prefetch(page_addr);
6928#if L1_CACHE_BYTES < 128
6929 prefetch(page_addr + L1_CACHE_BYTES);
6930#endif
6931
6932 /* allocate a skb to store the frags */
6933 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6934 if (unlikely(!skb)) {
6935 rx_ring->rx_stats.alloc_failed++;
6936 return NULL;
6937 }
6938
6939 /* we will be copying header into skb->data in
6940 * pskb_may_pull so it is in our interest to prefetch
6941 * it now to avoid a possible cache miss
6942 */
6943 prefetchw(skb->data);
6944 }
6945
6946 /* we are reusing so sync this buffer for CPU use */
6947 dma_sync_single_range_for_cpu(rx_ring->dev,
6948 rx_buffer->dma,
6949 rx_buffer->page_offset,
6950 IGB_RX_BUFSZ,
6951 DMA_FROM_DEVICE);
6952
6953 /* pull page into skb */
6954 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6955 /* hand second half of page back to the ring */
6956 igb_reuse_rx_page(rx_ring, rx_buffer);
6957 } else {
6958 /* we are not reusing the buffer so unmap it */
6959 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6960 PAGE_SIZE, DMA_FROM_DEVICE);
6961 }
6962
6963 /* clear contents of rx_buffer */
6964 rx_buffer->page = NULL;
6965
6966 return skb;
6967}
6968
6969static inline void igb_rx_checksum(struct igb_ring *ring,
6970 union e1000_adv_rx_desc *rx_desc,
6971 struct sk_buff *skb)
6972{
6973 skb_checksum_none_assert(skb);
6974
6975 /* Ignore Checksum bit is set */
6976 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6977 return;
6978
6979 /* Rx checksum disabled via ethtool */
6980 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6981 return;
6982
6983 /* TCP/UDP checksum error bit is set */
6984 if (igb_test_staterr(rx_desc,
6985 E1000_RXDEXT_STATERR_TCPE |
6986 E1000_RXDEXT_STATERR_IPE)) {
6987 /* work around errata with sctp packets where the TCPE aka
6988 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6989 * packets, (aka let the stack check the crc32c)
6990 */
6991 if (!((skb->len == 60) &&
6992 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6993 u64_stats_update_begin(&ring->rx_syncp);
6994 ring->rx_stats.csum_err++;
6995 u64_stats_update_end(&ring->rx_syncp);
6996 }
6997 /* let the stack verify checksum errors */
6998 return;
6999 }
7000 /* It must be a TCP or UDP packet with a valid checksum */
7001 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7002 E1000_RXD_STAT_UDPCS))
7003 skb->ip_summed = CHECKSUM_UNNECESSARY;
7004
7005 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7006 le32_to_cpu(rx_desc->wb.upper.status_error));
7007}
7008
7009static inline void igb_rx_hash(struct igb_ring *ring,
7010 union e1000_adv_rx_desc *rx_desc,
7011 struct sk_buff *skb)
7012{
7013 if (ring->netdev->features & NETIF_F_RXHASH)
7014 skb_set_hash(skb,
7015 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7016 PKT_HASH_TYPE_L3);
7017}
7018
7019/**
7020 * igb_is_non_eop - process handling of non-EOP buffers
7021 * @rx_ring: Rx ring being processed
7022 * @rx_desc: Rx descriptor for current buffer
7023 * @skb: current socket buffer containing buffer in progress
7024 *
7025 * This function updates next to clean. If the buffer is an EOP buffer
7026 * this function exits returning false, otherwise it will place the
7027 * sk_buff in the next buffer to be chained and return true indicating
7028 * that this is in fact a non-EOP buffer.
7029 **/
7030static bool igb_is_non_eop(struct igb_ring *rx_ring,
7031 union e1000_adv_rx_desc *rx_desc)
7032{
7033 u32 ntc = rx_ring->next_to_clean + 1;
7034
7035 /* fetch, update, and store next to clean */
7036 ntc = (ntc < rx_ring->count) ? ntc : 0;
7037 rx_ring->next_to_clean = ntc;
7038
7039 prefetch(IGB_RX_DESC(rx_ring, ntc));
7040
7041 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7042 return false;
7043
7044 return true;
7045}
7046
7047/**
7048 * igb_cleanup_headers - Correct corrupted or empty headers
7049 * @rx_ring: rx descriptor ring packet is being transacted on
7050 * @rx_desc: pointer to the EOP Rx descriptor
7051 * @skb: pointer to current skb being fixed
7052 *
7053 * Address the case where we are pulling data in on pages only
7054 * and as such no data is present in the skb header.
7055 *
7056 * In addition if skb is not at least 60 bytes we need to pad it so that
7057 * it is large enough to qualify as a valid Ethernet frame.
7058 *
7059 * Returns true if an error was encountered and skb was freed.
7060 **/
7061static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7062 union e1000_adv_rx_desc *rx_desc,
7063 struct sk_buff *skb)
7064{
7065 if (unlikely((igb_test_staterr(rx_desc,
7066 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7067 struct net_device *netdev = rx_ring->netdev;
7068 if (!(netdev->features & NETIF_F_RXALL)) {
7069 dev_kfree_skb_any(skb);
7070 return true;
7071 }
7072 }
7073
7074 /* if eth_skb_pad returns an error the skb was freed */
7075 if (eth_skb_pad(skb))
7076 return true;
7077
7078 return false;
7079}
7080
7081/**
7082 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7083 * @rx_ring: rx descriptor ring packet is being transacted on
7084 * @rx_desc: pointer to the EOP Rx descriptor
7085 * @skb: pointer to current skb being populated
7086 *
7087 * This function checks the ring, descriptor, and packet information in
7088 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7089 * other fields within the skb.
7090 **/
7091static void igb_process_skb_fields(struct igb_ring *rx_ring,
7092 union e1000_adv_rx_desc *rx_desc,
7093 struct sk_buff *skb)
7094{
7095 struct net_device *dev = rx_ring->netdev;
7096
7097 igb_rx_hash(rx_ring, rx_desc, skb);
7098
7099 igb_rx_checksum(rx_ring, rx_desc, skb);
7100
7101 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7102 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7103 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7104
7105 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7106 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7107 u16 vid;
7108
7109 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7110 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7111 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7112 else
7113 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7114
7115 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7116 }
7117
7118 skb_record_rx_queue(skb, rx_ring->queue_index);
7119
7120 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7121}
7122
7123static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7124{
7125 struct igb_ring *rx_ring = q_vector->rx.ring;
7126 struct sk_buff *skb = rx_ring->skb;
7127 unsigned int total_bytes = 0, total_packets = 0;
7128 u16 cleaned_count = igb_desc_unused(rx_ring);
7129
7130 while (likely(total_packets < budget)) {
7131 union e1000_adv_rx_desc *rx_desc;
7132
7133 /* return some buffers to hardware, one at a time is too slow */
7134 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7135 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7136 cleaned_count = 0;
7137 }
7138
7139 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7140
7141 if (!rx_desc->wb.upper.status_error)
7142 break;
7143
7144 /* This memory barrier is needed to keep us from reading
7145 * any other fields out of the rx_desc until we know the
7146 * descriptor has been written back
7147 */
7148 dma_rmb();
7149
7150 /* retrieve a buffer from the ring */
7151 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7152
7153 /* exit if we failed to retrieve a buffer */
7154 if (!skb)
7155 break;
7156
7157 cleaned_count++;
7158
7159 /* fetch next buffer in frame if non-eop */
7160 if (igb_is_non_eop(rx_ring, rx_desc))
7161 continue;
7162
7163 /* verify the packet layout is correct */
7164 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7165 skb = NULL;
7166 continue;
7167 }
7168
7169 /* probably a little skewed due to removing CRC */
7170 total_bytes += skb->len;
7171
7172 /* populate checksum, timestamp, VLAN, and protocol */
7173 igb_process_skb_fields(rx_ring, rx_desc, skb);
7174
7175 napi_gro_receive(&q_vector->napi, skb);
7176
7177 /* reset skb pointer */
7178 skb = NULL;
7179
7180 /* update budget accounting */
7181 total_packets++;
7182 }
7183
7184 /* place incomplete frames back on ring for completion */
7185 rx_ring->skb = skb;
7186
7187 u64_stats_update_begin(&rx_ring->rx_syncp);
7188 rx_ring->rx_stats.packets += total_packets;
7189 rx_ring->rx_stats.bytes += total_bytes;
7190 u64_stats_update_end(&rx_ring->rx_syncp);
7191 q_vector->rx.total_packets += total_packets;
7192 q_vector->rx.total_bytes += total_bytes;
7193
7194 if (cleaned_count)
7195 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7196
7197 return total_packets;
7198}
7199
7200static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7201 struct igb_rx_buffer *bi)
7202{
7203 struct page *page = bi->page;
7204 dma_addr_t dma;
7205
7206 /* since we are recycling buffers we should seldom need to alloc */
7207 if (likely(page))
7208 return true;
7209
7210 /* alloc new page for storage */
7211 page = dev_alloc_page();
7212 if (unlikely(!page)) {
7213 rx_ring->rx_stats.alloc_failed++;
7214 return false;
7215 }
7216
7217 /* map page for use */
7218 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7219
7220 /* if mapping failed free memory back to system since
7221 * there isn't much point in holding memory we can't use
7222 */
7223 if (dma_mapping_error(rx_ring->dev, dma)) {
7224 __free_page(page);
7225
7226 rx_ring->rx_stats.alloc_failed++;
7227 return false;
7228 }
7229
7230 bi->dma = dma;
7231 bi->page = page;
7232 bi->page_offset = 0;
7233
7234 return true;
7235}
7236
7237/**
7238 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7239 * @adapter: address of board private structure
7240 **/
7241void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7242{
7243 union e1000_adv_rx_desc *rx_desc;
7244 struct igb_rx_buffer *bi;
7245 u16 i = rx_ring->next_to_use;
7246
7247 /* nothing to do */
7248 if (!cleaned_count)
7249 return;
7250
7251 rx_desc = IGB_RX_DESC(rx_ring, i);
7252 bi = &rx_ring->rx_buffer_info[i];
7253 i -= rx_ring->count;
7254
7255 do {
7256 if (!igb_alloc_mapped_page(rx_ring, bi))
7257 break;
7258
7259 /* Refresh the desc even if buffer_addrs didn't change
7260 * because each write-back erases this info.
7261 */
7262 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7263
7264 rx_desc++;
7265 bi++;
7266 i++;
7267 if (unlikely(!i)) {
7268 rx_desc = IGB_RX_DESC(rx_ring, 0);
7269 bi = rx_ring->rx_buffer_info;
7270 i -= rx_ring->count;
7271 }
7272
7273 /* clear the status bits for the next_to_use descriptor */
7274 rx_desc->wb.upper.status_error = 0;
7275
7276 cleaned_count--;
7277 } while (cleaned_count);
7278
7279 i += rx_ring->count;
7280
7281 if (rx_ring->next_to_use != i) {
7282 /* record the next descriptor to use */
7283 rx_ring->next_to_use = i;
7284
7285 /* update next to alloc since we have filled the ring */
7286 rx_ring->next_to_alloc = i;
7287
7288 /* Force memory writes to complete before letting h/w
7289 * know there are new descriptors to fetch. (Only
7290 * applicable for weak-ordered memory model archs,
7291 * such as IA-64).
7292 */
7293 wmb();
7294 writel(i, rx_ring->tail);
7295 }
7296}
7297
7298/**
7299 * igb_mii_ioctl -
7300 * @netdev:
7301 * @ifreq:
7302 * @cmd:
7303 **/
7304static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7305{
7306 struct igb_adapter *adapter = netdev_priv(netdev);
7307 struct mii_ioctl_data *data = if_mii(ifr);
7308
7309 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7310 return -EOPNOTSUPP;
7311
7312 switch (cmd) {
7313 case SIOCGMIIPHY:
7314 data->phy_id = adapter->hw.phy.addr;
7315 break;
7316 case SIOCGMIIREG:
7317 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7318 &data->val_out))
7319 return -EIO;
7320 break;
7321 case SIOCSMIIREG:
7322 default:
7323 return -EOPNOTSUPP;
7324 }
7325 return 0;
7326}
7327
7328/**
7329 * igb_ioctl -
7330 * @netdev:
7331 * @ifreq:
7332 * @cmd:
7333 **/
7334static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7335{
7336 switch (cmd) {
7337 case SIOCGMIIPHY:
7338 case SIOCGMIIREG:
7339 case SIOCSMIIREG:
7340 return igb_mii_ioctl(netdev, ifr, cmd);
7341 case SIOCGHWTSTAMP:
7342 return igb_ptp_get_ts_config(netdev, ifr);
7343 case SIOCSHWTSTAMP:
7344 return igb_ptp_set_ts_config(netdev, ifr);
7345 default:
7346 return -EOPNOTSUPP;
7347 }
7348}
7349
7350void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7351{
7352 struct igb_adapter *adapter = hw->back;
7353
7354 pci_read_config_word(adapter->pdev, reg, value);
7355}
7356
7357void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7358{
7359 struct igb_adapter *adapter = hw->back;
7360
7361 pci_write_config_word(adapter->pdev, reg, *value);
7362}
7363
7364s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7365{
7366 struct igb_adapter *adapter = hw->back;
7367
7368 if (pcie_capability_read_word(adapter->pdev, reg, value))
7369 return -E1000_ERR_CONFIG;
7370
7371 return 0;
7372}
7373
7374s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7375{
7376 struct igb_adapter *adapter = hw->back;
7377
7378 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7379 return -E1000_ERR_CONFIG;
7380
7381 return 0;
7382}
7383
7384static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7385{
7386 struct igb_adapter *adapter = netdev_priv(netdev);
7387 struct e1000_hw *hw = &adapter->hw;
7388 u32 ctrl, rctl;
7389 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7390
7391 if (enable) {
7392 /* enable VLAN tag insert/strip */
7393 ctrl = rd32(E1000_CTRL);
7394 ctrl |= E1000_CTRL_VME;
7395 wr32(E1000_CTRL, ctrl);
7396
7397 /* Disable CFI check */
7398 rctl = rd32(E1000_RCTL);
7399 rctl &= ~E1000_RCTL_CFIEN;
7400 wr32(E1000_RCTL, rctl);
7401 } else {
7402 /* disable VLAN tag insert/strip */
7403 ctrl = rd32(E1000_CTRL);
7404 ctrl &= ~E1000_CTRL_VME;
7405 wr32(E1000_CTRL, ctrl);
7406 }
7407
7408 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7409}
7410
7411static int igb_vlan_rx_add_vid(struct net_device *netdev,
7412 __be16 proto, u16 vid)
7413{
7414 struct igb_adapter *adapter = netdev_priv(netdev);
7415 struct e1000_hw *hw = &adapter->hw;
7416 int pf_id = adapter->vfs_allocated_count;
7417
7418 /* add the filter since PF can receive vlans w/o entry in vlvf */
7419 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7420 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7421
7422 set_bit(vid, adapter->active_vlans);
7423
7424 return 0;
7425}
7426
7427static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7428 __be16 proto, u16 vid)
7429{
7430 struct igb_adapter *adapter = netdev_priv(netdev);
7431 int pf_id = adapter->vfs_allocated_count;
7432 struct e1000_hw *hw = &adapter->hw;
7433
7434 /* remove VID from filter table */
7435 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7436 igb_vfta_set(hw, vid, pf_id, false, true);
7437
7438 clear_bit(vid, adapter->active_vlans);
7439
7440 return 0;
7441}
7442
7443static void igb_restore_vlan(struct igb_adapter *adapter)
7444{
7445 u16 vid = 1;
7446
7447 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7448 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7449
7450 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7451 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7452}
7453
7454int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7455{
7456 struct pci_dev *pdev = adapter->pdev;
7457 struct e1000_mac_info *mac = &adapter->hw.mac;
7458
7459 mac->autoneg = 0;
7460
7461 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7462 * for the switch() below to work
7463 */
7464 if ((spd & 1) || (dplx & ~1))
7465 goto err_inval;
7466
7467 /* Fiber NIC's only allow 1000 gbps Full duplex
7468 * and 100Mbps Full duplex for 100baseFx sfp
7469 */
7470 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7471 switch (spd + dplx) {
7472 case SPEED_10 + DUPLEX_HALF:
7473 case SPEED_10 + DUPLEX_FULL:
7474 case SPEED_100 + DUPLEX_HALF:
7475 goto err_inval;
7476 default:
7477 break;
7478 }
7479 }
7480
7481 switch (spd + dplx) {
7482 case SPEED_10 + DUPLEX_HALF:
7483 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7484 break;
7485 case SPEED_10 + DUPLEX_FULL:
7486 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7487 break;
7488 case SPEED_100 + DUPLEX_HALF:
7489 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7490 break;
7491 case SPEED_100 + DUPLEX_FULL:
7492 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7493 break;
7494 case SPEED_1000 + DUPLEX_FULL:
7495 mac->autoneg = 1;
7496 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7497 break;
7498 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7499 default:
7500 goto err_inval;
7501 }
7502
7503 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7504 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7505
7506 return 0;
7507
7508err_inval:
7509 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7510 return -EINVAL;
7511}
7512
7513static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7514 bool runtime)
7515{
7516 struct net_device *netdev = pci_get_drvdata(pdev);
7517 struct igb_adapter *adapter = netdev_priv(netdev);
7518 struct e1000_hw *hw = &adapter->hw;
7519 u32 ctrl, rctl, status;
7520 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7521#ifdef CONFIG_PM
7522 int retval = 0;
7523#endif
7524
7525 netif_device_detach(netdev);
7526
7527 if (netif_running(netdev))
7528 __igb_close(netdev, true);
7529
7530 igb_clear_interrupt_scheme(adapter);
7531
7532#ifdef CONFIG_PM
7533 retval = pci_save_state(pdev);
7534 if (retval)
7535 return retval;
7536#endif
7537
7538 status = rd32(E1000_STATUS);
7539 if (status & E1000_STATUS_LU)
7540 wufc &= ~E1000_WUFC_LNKC;
7541
7542 if (wufc) {
7543 igb_setup_rctl(adapter);
7544 igb_set_rx_mode(netdev);
7545
7546 /* turn on all-multi mode if wake on multicast is enabled */
7547 if (wufc & E1000_WUFC_MC) {
7548 rctl = rd32(E1000_RCTL);
7549 rctl |= E1000_RCTL_MPE;
7550 wr32(E1000_RCTL, rctl);
7551 }
7552
7553 ctrl = rd32(E1000_CTRL);
7554 /* advertise wake from D3Cold */
7555 #define E1000_CTRL_ADVD3WUC 0x00100000
7556 /* phy power management enable */
7557 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7558 ctrl |= E1000_CTRL_ADVD3WUC;
7559 wr32(E1000_CTRL, ctrl);
7560
7561 /* Allow time for pending master requests to run */
7562 igb_disable_pcie_master(hw);
7563
7564 wr32(E1000_WUC, E1000_WUC_PME_EN);
7565 wr32(E1000_WUFC, wufc);
7566 } else {
7567 wr32(E1000_WUC, 0);
7568 wr32(E1000_WUFC, 0);
7569 }
7570
7571 *enable_wake = wufc || adapter->en_mng_pt;
7572 if (!*enable_wake)
7573 igb_power_down_link(adapter);
7574 else
7575 igb_power_up_link(adapter);
7576
7577 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7578 * would have already happened in close and is redundant.
7579 */
7580 igb_release_hw_control(adapter);
7581
7582 pci_disable_device(pdev);
7583
7584 return 0;
7585}
7586
7587#ifdef CONFIG_PM
7588#ifdef CONFIG_PM_SLEEP
7589static int igb_suspend(struct device *dev)
7590{
7591 int retval;
7592 bool wake;
7593 struct pci_dev *pdev = to_pci_dev(dev);
7594
7595 retval = __igb_shutdown(pdev, &wake, 0);
7596 if (retval)
7597 return retval;
7598
7599 if (wake) {
7600 pci_prepare_to_sleep(pdev);
7601 } else {
7602 pci_wake_from_d3(pdev, false);
7603 pci_set_power_state(pdev, PCI_D3hot);
7604 }
7605
7606 return 0;
7607}
7608#endif /* CONFIG_PM_SLEEP */
7609
7610static int igb_resume(struct device *dev)
7611{
7612 struct pci_dev *pdev = to_pci_dev(dev);
7613 struct net_device *netdev = pci_get_drvdata(pdev);
7614 struct igb_adapter *adapter = netdev_priv(netdev);
7615 struct e1000_hw *hw = &adapter->hw;
7616 u32 err;
7617
7618 pci_set_power_state(pdev, PCI_D0);
7619 pci_restore_state(pdev);
7620 pci_save_state(pdev);
7621
7622 if (!pci_device_is_present(pdev))
7623 return -ENODEV;
7624 err = pci_enable_device_mem(pdev);
7625 if (err) {
7626 dev_err(&pdev->dev,
7627 "igb: Cannot enable PCI device from suspend\n");
7628 return err;
7629 }
7630 pci_set_master(pdev);
7631
7632 pci_enable_wake(pdev, PCI_D3hot, 0);
7633 pci_enable_wake(pdev, PCI_D3cold, 0);
7634
7635 if (igb_init_interrupt_scheme(adapter, true)) {
7636 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7637 return -ENOMEM;
7638 }
7639
7640 igb_reset(adapter);
7641
7642 /* let the f/w know that the h/w is now under the control of the
7643 * driver.
7644 */
7645 igb_get_hw_control(adapter);
7646
7647 wr32(E1000_WUS, ~0);
7648
7649 if (netdev->flags & IFF_UP) {
7650 rtnl_lock();
7651 err = __igb_open(netdev, true);
7652 rtnl_unlock();
7653 if (err)
7654 return err;
7655 }
7656
7657 netif_device_attach(netdev);
7658 return 0;
7659}
7660
7661static int igb_runtime_idle(struct device *dev)
7662{
7663 struct pci_dev *pdev = to_pci_dev(dev);
7664 struct net_device *netdev = pci_get_drvdata(pdev);
7665 struct igb_adapter *adapter = netdev_priv(netdev);
7666
7667 if (!igb_has_link(adapter))
7668 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7669
7670 return -EBUSY;
7671}
7672
7673static int igb_runtime_suspend(struct device *dev)
7674{
7675 struct pci_dev *pdev = to_pci_dev(dev);
7676 int retval;
7677 bool wake;
7678
7679 retval = __igb_shutdown(pdev, &wake, 1);
7680 if (retval)
7681 return retval;
7682
7683 if (wake) {
7684 pci_prepare_to_sleep(pdev);
7685 } else {
7686 pci_wake_from_d3(pdev, false);
7687 pci_set_power_state(pdev, PCI_D3hot);
7688 }
7689
7690 return 0;
7691}
7692
7693static int igb_runtime_resume(struct device *dev)
7694{
7695 return igb_resume(dev);
7696}
7697#endif /* CONFIG_PM */
7698
7699static void igb_shutdown(struct pci_dev *pdev)
7700{
7701 bool wake;
7702
7703 __igb_shutdown(pdev, &wake, 0);
7704
7705 if (system_state == SYSTEM_POWER_OFF) {
7706 pci_wake_from_d3(pdev, wake);
7707 pci_set_power_state(pdev, PCI_D3hot);
7708 }
7709}
7710
7711#ifdef CONFIG_PCI_IOV
7712static int igb_sriov_reinit(struct pci_dev *dev)
7713{
7714 struct net_device *netdev = pci_get_drvdata(dev);
7715 struct igb_adapter *adapter = netdev_priv(netdev);
7716 struct pci_dev *pdev = adapter->pdev;
7717
7718 rtnl_lock();
7719
7720 if (netif_running(netdev))
7721 igb_close(netdev);
7722 else
7723 igb_reset(adapter);
7724
7725 igb_clear_interrupt_scheme(adapter);
7726
7727 igb_init_queue_configuration(adapter);
7728
7729 if (igb_init_interrupt_scheme(adapter, true)) {
7730 rtnl_unlock();
7731 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7732 return -ENOMEM;
7733 }
7734
7735 if (netif_running(netdev))
7736 igb_open(netdev);
7737
7738 rtnl_unlock();
7739
7740 return 0;
7741}
7742
7743static int igb_pci_disable_sriov(struct pci_dev *dev)
7744{
7745 int err = igb_disable_sriov(dev);
7746
7747 if (!err)
7748 err = igb_sriov_reinit(dev);
7749
7750 return err;
7751}
7752
7753static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7754{
7755 int err = igb_enable_sriov(dev, num_vfs);
7756
7757 if (err)
7758 goto out;
7759
7760 err = igb_sriov_reinit(dev);
7761 if (!err)
7762 return num_vfs;
7763
7764out:
7765 return err;
7766}
7767
7768#endif
7769static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7770{
7771#ifdef CONFIG_PCI_IOV
7772 if (num_vfs == 0)
7773 return igb_pci_disable_sriov(dev);
7774 else
7775 return igb_pci_enable_sriov(dev, num_vfs);
7776#endif
7777 return 0;
7778}
7779
7780#ifdef CONFIG_NET_POLL_CONTROLLER
7781/* Polling 'interrupt' - used by things like netconsole to send skbs
7782 * without having to re-enable interrupts. It's not called while
7783 * the interrupt routine is executing.
7784 */
7785static void igb_netpoll(struct net_device *netdev)
7786{
7787 struct igb_adapter *adapter = netdev_priv(netdev);
7788 struct e1000_hw *hw = &adapter->hw;
7789 struct igb_q_vector *q_vector;
7790 int i;
7791
7792 for (i = 0; i < adapter->num_q_vectors; i++) {
7793 q_vector = adapter->q_vector[i];
7794 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7795 wr32(E1000_EIMC, q_vector->eims_value);
7796 else
7797 igb_irq_disable(adapter);
7798 napi_schedule(&q_vector->napi);
7799 }
7800}
7801#endif /* CONFIG_NET_POLL_CONTROLLER */
7802
7803/**
7804 * igb_io_error_detected - called when PCI error is detected
7805 * @pdev: Pointer to PCI device
7806 * @state: The current pci connection state
7807 *
7808 * This function is called after a PCI bus error affecting
7809 * this device has been detected.
7810 **/
7811static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7812 pci_channel_state_t state)
7813{
7814 struct net_device *netdev = pci_get_drvdata(pdev);
7815 struct igb_adapter *adapter = netdev_priv(netdev);
7816
7817 netif_device_detach(netdev);
7818
7819 if (state == pci_channel_io_perm_failure)
7820 return PCI_ERS_RESULT_DISCONNECT;
7821
7822 if (netif_running(netdev))
7823 igb_down(adapter);
7824 pci_disable_device(pdev);
7825
7826 /* Request a slot slot reset. */
7827 return PCI_ERS_RESULT_NEED_RESET;
7828}
7829
7830/**
7831 * igb_io_slot_reset - called after the pci bus has been reset.
7832 * @pdev: Pointer to PCI device
7833 *
7834 * Restart the card from scratch, as if from a cold-boot. Implementation
7835 * resembles the first-half of the igb_resume routine.
7836 **/
7837static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7838{
7839 struct net_device *netdev = pci_get_drvdata(pdev);
7840 struct igb_adapter *adapter = netdev_priv(netdev);
7841 struct e1000_hw *hw = &adapter->hw;
7842 pci_ers_result_t result;
7843 int err;
7844
7845 if (pci_enable_device_mem(pdev)) {
7846 dev_err(&pdev->dev,
7847 "Cannot re-enable PCI device after reset.\n");
7848 result = PCI_ERS_RESULT_DISCONNECT;
7849 } else {
7850 pci_set_master(pdev);
7851 pci_restore_state(pdev);
7852 pci_save_state(pdev);
7853
7854 pci_enable_wake(pdev, PCI_D3hot, 0);
7855 pci_enable_wake(pdev, PCI_D3cold, 0);
7856
7857 igb_reset(adapter);
7858 wr32(E1000_WUS, ~0);
7859 result = PCI_ERS_RESULT_RECOVERED;
7860 }
7861
7862 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7863 if (err) {
7864 dev_err(&pdev->dev,
7865 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7866 err);
7867 /* non-fatal, continue */
7868 }
7869
7870 return result;
7871}
7872
7873/**
7874 * igb_io_resume - called when traffic can start flowing again.
7875 * @pdev: Pointer to PCI device
7876 *
7877 * This callback is called when the error recovery driver tells us that
7878 * its OK to resume normal operation. Implementation resembles the
7879 * second-half of the igb_resume routine.
7880 */
7881static void igb_io_resume(struct pci_dev *pdev)
7882{
7883 struct net_device *netdev = pci_get_drvdata(pdev);
7884 struct igb_adapter *adapter = netdev_priv(netdev);
7885
7886 if (netif_running(netdev)) {
7887 if (igb_up(adapter)) {
7888 dev_err(&pdev->dev, "igb_up failed after reset\n");
7889 return;
7890 }
7891 }
7892
7893 netif_device_attach(netdev);
7894
7895 /* let the f/w know that the h/w is now under the control of the
7896 * driver.
7897 */
7898 igb_get_hw_control(adapter);
7899}
7900
7901static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7902 u8 qsel)
7903{
7904 struct e1000_hw *hw = &adapter->hw;
7905 u32 rar_low, rar_high;
7906
7907 /* HW expects these to be in network order when they are plugged
7908 * into the registers which are little endian. In order to guarantee
7909 * that ordering we need to do an leXX_to_cpup here in order to be
7910 * ready for the byteswap that occurs with writel
7911 */
7912 rar_low = le32_to_cpup((__le32 *)(addr));
7913 rar_high = le16_to_cpup((__le16 *)(addr + 4));
7914
7915 /* Indicate to hardware the Address is Valid. */
7916 rar_high |= E1000_RAH_AV;
7917
7918 if (hw->mac.type == e1000_82575)
7919 rar_high |= E1000_RAH_POOL_1 * qsel;
7920 else
7921 rar_high |= E1000_RAH_POOL_1 << qsel;
7922
7923 wr32(E1000_RAL(index), rar_low);
7924 wrfl();
7925 wr32(E1000_RAH(index), rar_high);
7926 wrfl();
7927}
7928
7929static int igb_set_vf_mac(struct igb_adapter *adapter,
7930 int vf, unsigned char *mac_addr)
7931{
7932 struct e1000_hw *hw = &adapter->hw;
7933 /* VF MAC addresses start at end of receive addresses and moves
7934 * towards the first, as a result a collision should not be possible
7935 */
7936 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7937
7938 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7939
7940 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7941
7942 return 0;
7943}
7944
7945static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7946{
7947 struct igb_adapter *adapter = netdev_priv(netdev);
7948 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7949 return -EINVAL;
7950 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7951 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7952 dev_info(&adapter->pdev->dev,
7953 "Reload the VF driver to make this change effective.");
7954 if (test_bit(__IGB_DOWN, &adapter->state)) {
7955 dev_warn(&adapter->pdev->dev,
7956 "The VF MAC address has been set, but the PF device is not up.\n");
7957 dev_warn(&adapter->pdev->dev,
7958 "Bring the PF device up before attempting to use the VF device.\n");
7959 }
7960 return igb_set_vf_mac(adapter, vf, mac);
7961}
7962
7963static int igb_link_mbps(int internal_link_speed)
7964{
7965 switch (internal_link_speed) {
7966 case SPEED_100:
7967 return 100;
7968 case SPEED_1000:
7969 return 1000;
7970 default:
7971 return 0;
7972 }
7973}
7974
7975static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7976 int link_speed)
7977{
7978 int rf_dec, rf_int;
7979 u32 bcnrc_val;
7980
7981 if (tx_rate != 0) {
7982 /* Calculate the rate factor values to set */
7983 rf_int = link_speed / tx_rate;
7984 rf_dec = (link_speed - (rf_int * tx_rate));
7985 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
7986 tx_rate;
7987
7988 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7989 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7990 E1000_RTTBCNRC_RF_INT_MASK);
7991 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7992 } else {
7993 bcnrc_val = 0;
7994 }
7995
7996 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7997 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7998 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7999 */
8000 wr32(E1000_RTTBCNRM, 0x14);
8001 wr32(E1000_RTTBCNRC, bcnrc_val);
8002}
8003
8004static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8005{
8006 int actual_link_speed, i;
8007 bool reset_rate = false;
8008
8009 /* VF TX rate limit was not set or not supported */
8010 if ((adapter->vf_rate_link_speed == 0) ||
8011 (adapter->hw.mac.type != e1000_82576))
8012 return;
8013
8014 actual_link_speed = igb_link_mbps(adapter->link_speed);
8015 if (actual_link_speed != adapter->vf_rate_link_speed) {
8016 reset_rate = true;
8017 adapter->vf_rate_link_speed = 0;
8018 dev_info(&adapter->pdev->dev,
8019 "Link speed has been changed. VF Transmit rate is disabled\n");
8020 }
8021
8022 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8023 if (reset_rate)
8024 adapter->vf_data[i].tx_rate = 0;
8025
8026 igb_set_vf_rate_limit(&adapter->hw, i,
8027 adapter->vf_data[i].tx_rate,
8028 actual_link_speed);
8029 }
8030}
8031
8032static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8033 int min_tx_rate, int max_tx_rate)
8034{
8035 struct igb_adapter *adapter = netdev_priv(netdev);
8036 struct e1000_hw *hw = &adapter->hw;
8037 int actual_link_speed;
8038
8039 if (hw->mac.type != e1000_82576)
8040 return -EOPNOTSUPP;
8041
8042 if (min_tx_rate)
8043 return -EINVAL;
8044
8045 actual_link_speed = igb_link_mbps(adapter->link_speed);
8046 if ((vf >= adapter->vfs_allocated_count) ||
8047 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8048 (max_tx_rate < 0) ||
8049 (max_tx_rate > actual_link_speed))
8050 return -EINVAL;
8051
8052 adapter->vf_rate_link_speed = actual_link_speed;
8053 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8054 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8055
8056 return 0;
8057}
8058
8059static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8060 bool setting)
8061{
8062 struct igb_adapter *adapter = netdev_priv(netdev);
8063 struct e1000_hw *hw = &adapter->hw;
8064 u32 reg_val, reg_offset;
8065
8066 if (!adapter->vfs_allocated_count)
8067 return -EOPNOTSUPP;
8068
8069 if (vf >= adapter->vfs_allocated_count)
8070 return -EINVAL;
8071
8072 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8073 reg_val = rd32(reg_offset);
8074 if (setting)
8075 reg_val |= (BIT(vf) |
8076 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8077 else
8078 reg_val &= ~(BIT(vf) |
8079 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8080 wr32(reg_offset, reg_val);
8081
8082 adapter->vf_data[vf].spoofchk_enabled = setting;
8083 return 0;
8084}
8085
8086static int igb_ndo_get_vf_config(struct net_device *netdev,
8087 int vf, struct ifla_vf_info *ivi)
8088{
8089 struct igb_adapter *adapter = netdev_priv(netdev);
8090 if (vf >= adapter->vfs_allocated_count)
8091 return -EINVAL;
8092 ivi->vf = vf;
8093 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8094 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8095 ivi->min_tx_rate = 0;
8096 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8097 ivi->qos = adapter->vf_data[vf].pf_qos;
8098 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8099 return 0;
8100}
8101
8102static void igb_vmm_control(struct igb_adapter *adapter)
8103{
8104 struct e1000_hw *hw = &adapter->hw;
8105 u32 reg;
8106
8107 switch (hw->mac.type) {
8108 case e1000_82575:
8109 case e1000_i210:
8110 case e1000_i211:
8111 case e1000_i354:
8112 default:
8113 /* replication is not supported for 82575 */
8114 return;
8115 case e1000_82576:
8116 /* notify HW that the MAC is adding vlan tags */
8117 reg = rd32(E1000_DTXCTL);
8118 reg |= E1000_DTXCTL_VLAN_ADDED;
8119 wr32(E1000_DTXCTL, reg);
8120 /* Fall through */
8121 case e1000_82580:
8122 /* enable replication vlan tag stripping */
8123 reg = rd32(E1000_RPLOLR);
8124 reg |= E1000_RPLOLR_STRVLAN;
8125 wr32(E1000_RPLOLR, reg);
8126 /* Fall through */
8127 case e1000_i350:
8128 /* none of the above registers are supported by i350 */
8129 break;
8130 }
8131
8132 if (adapter->vfs_allocated_count) {
8133 igb_vmdq_set_loopback_pf(hw, true);
8134 igb_vmdq_set_replication_pf(hw, true);
8135 igb_vmdq_set_anti_spoofing_pf(hw, true,
8136 adapter->vfs_allocated_count);
8137 } else {
8138 igb_vmdq_set_loopback_pf(hw, false);
8139 igb_vmdq_set_replication_pf(hw, false);
8140 }
8141}
8142
8143static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8144{
8145 struct e1000_hw *hw = &adapter->hw;
8146 u32 dmac_thr;
8147 u16 hwm;
8148
8149 if (hw->mac.type > e1000_82580) {
8150 if (adapter->flags & IGB_FLAG_DMAC) {
8151 u32 reg;
8152
8153 /* force threshold to 0. */
8154 wr32(E1000_DMCTXTH, 0);
8155
8156 /* DMA Coalescing high water mark needs to be greater
8157 * than the Rx threshold. Set hwm to PBA - max frame
8158 * size in 16B units, capping it at PBA - 6KB.
8159 */
8160 hwm = 64 * (pba - 6);
8161 reg = rd32(E1000_FCRTC);
8162 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8163 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8164 & E1000_FCRTC_RTH_COAL_MASK);
8165 wr32(E1000_FCRTC, reg);
8166
8167 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8168 * frame size, capping it at PBA - 10KB.
8169 */
8170 dmac_thr = pba - 10;
8171 reg = rd32(E1000_DMACR);
8172 reg &= ~E1000_DMACR_DMACTHR_MASK;
8173 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8174 & E1000_DMACR_DMACTHR_MASK);
8175
8176 /* transition to L0x or L1 if available..*/
8177 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8178
8179 /* watchdog timer= +-1000 usec in 32usec intervals */
8180 reg |= (1000 >> 5);
8181
8182 /* Disable BMC-to-OS Watchdog Enable */
8183 if (hw->mac.type != e1000_i354)
8184 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8185
8186 wr32(E1000_DMACR, reg);
8187
8188 /* no lower threshold to disable
8189 * coalescing(smart fifb)-UTRESH=0
8190 */
8191 wr32(E1000_DMCRTRH, 0);
8192
8193 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8194
8195 wr32(E1000_DMCTLX, reg);
8196
8197 /* free space in tx packet buffer to wake from
8198 * DMA coal
8199 */
8200 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8201 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8202
8203 /* make low power state decision controlled
8204 * by DMA coal
8205 */
8206 reg = rd32(E1000_PCIEMISC);
8207 reg &= ~E1000_PCIEMISC_LX_DECISION;
8208 wr32(E1000_PCIEMISC, reg);
8209 } /* endif adapter->dmac is not disabled */
8210 } else if (hw->mac.type == e1000_82580) {
8211 u32 reg = rd32(E1000_PCIEMISC);
8212
8213 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8214 wr32(E1000_DMACR, 0);
8215 }
8216}
8217
8218/**
8219 * igb_read_i2c_byte - Reads 8 bit word over I2C
8220 * @hw: pointer to hardware structure
8221 * @byte_offset: byte offset to read
8222 * @dev_addr: device address
8223 * @data: value read
8224 *
8225 * Performs byte read operation over I2C interface at
8226 * a specified device address.
8227 **/
8228s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8229 u8 dev_addr, u8 *data)
8230{
8231 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8232 struct i2c_client *this_client = adapter->i2c_client;
8233 s32 status;
8234 u16 swfw_mask = 0;
8235
8236 if (!this_client)
8237 return E1000_ERR_I2C;
8238
8239 swfw_mask = E1000_SWFW_PHY0_SM;
8240
8241 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8242 return E1000_ERR_SWFW_SYNC;
8243
8244 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8245 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8246
8247 if (status < 0)
8248 return E1000_ERR_I2C;
8249 else {
8250 *data = status;
8251 return 0;
8252 }
8253}
8254
8255/**
8256 * igb_write_i2c_byte - Writes 8 bit word over I2C
8257 * @hw: pointer to hardware structure
8258 * @byte_offset: byte offset to write
8259 * @dev_addr: device address
8260 * @data: value to write
8261 *
8262 * Performs byte write operation over I2C interface at
8263 * a specified device address.
8264 **/
8265s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8266 u8 dev_addr, u8 data)
8267{
8268 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8269 struct i2c_client *this_client = adapter->i2c_client;
8270 s32 status;
8271 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8272
8273 if (!this_client)
8274 return E1000_ERR_I2C;
8275
8276 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8277 return E1000_ERR_SWFW_SYNC;
8278 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8279 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8280
8281 if (status)
8282 return E1000_ERR_I2C;
8283 else
8284 return 0;
8285
8286}
8287
8288int igb_reinit_queues(struct igb_adapter *adapter)
8289{
8290 struct net_device *netdev = adapter->netdev;
8291 struct pci_dev *pdev = adapter->pdev;
8292 int err = 0;
8293
8294 if (netif_running(netdev))
8295 igb_close(netdev);
8296
8297 igb_reset_interrupt_capability(adapter);
8298
8299 if (igb_init_interrupt_scheme(adapter, true)) {
8300 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8301 return -ENOMEM;
8302 }
8303
8304 if (netif_running(netdev))
8305 err = igb_open(netdev);
8306
8307 return err;
8308}
8309/* igb_main.c */
This page took 0.206432 seconds and 5 git commands to generate.