igb: Replace 1/0 return values with true/false
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
... / ...
CommitLineData
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/module.h>
27#include <linux/types.h>
28#include <linux/init.h>
29#include <linux/bitops.h>
30#include <linux/vmalloc.h>
31#include <linux/pagemap.h>
32#include <linux/netdevice.h>
33#include <linux/ipv6.h>
34#include <linux/slab.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/net_tstamp.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
43#include <linux/pci-aspm.h>
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/ip.h>
47#include <linux/tcp.h>
48#include <linux/sctp.h>
49#include <linux/if_ether.h>
50#include <linux/aer.h>
51#include <linux/prefetch.h>
52#include <linux/pm_runtime.h>
53#ifdef CONFIG_IGB_DCA
54#include <linux/dca.h>
55#endif
56#include <linux/i2c.h>
57#include "igb.h"
58
59#define MAJ 5
60#define MIN 0
61#define BUILD 5
62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63__stringify(BUILD) "-k"
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
68static const char igb_copyright[] =
69 "Copyright (c) 2007-2014 Intel Corporation.";
70
71static const struct e1000_info *igb_info_tbl[] = {
72 [board_82575] = &e1000_82575_info,
73};
74
75static const struct pci_device_id igb_pci_tbl[] = {
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 /* required last entry */
112 {0, }
113};
114
115MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
121static void igb_setup_mrqc(struct igb_adapter *);
122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123static void igb_remove(struct pci_dev *pdev);
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
127static void igb_configure(struct igb_adapter *);
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
134static void igb_set_rx_mode(struct net_device *);
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 struct rtnl_link_stats64 *stats);
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
143static void igb_set_uta(struct igb_adapter *adapter);
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
147static irqreturn_t igb_msix_ring(int irq, void *);
148#ifdef CONFIG_IGB_DCA
149static void igb_update_dca(struct igb_q_vector *);
150static void igb_setup_dca(struct igb_adapter *);
151#endif /* CONFIG_IGB_DCA */
152static int igb_poll(struct napi_struct *, int);
153static bool igb_clean_tx_irq(struct igb_q_vector *);
154static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
158static void igb_vlan_mode(struct net_device *netdev,
159 netdev_features_t features);
160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162static void igb_restore_vlan(struct igb_adapter *);
163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164static void igb_ping_all_vfs(struct igb_adapter *);
165static void igb_msg_task(struct igb_adapter *);
166static void igb_vmm_control(struct igb_adapter *);
167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 int vf, u16 vlan, u8 qos);
172static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 bool setting);
175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179#ifdef CONFIG_PCI_IOV
180static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182#endif
183
184#ifdef CONFIG_PM
185#ifdef CONFIG_PM_SLEEP
186static int igb_suspend(struct device *);
187#endif
188static int igb_resume(struct device *);
189#ifdef CONFIG_PM_RUNTIME
190static int igb_runtime_suspend(struct device *dev);
191static int igb_runtime_resume(struct device *dev);
192static int igb_runtime_idle(struct device *dev);
193#endif
194static const struct dev_pm_ops igb_pm_ops = {
195 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197 igb_runtime_idle)
198};
199#endif
200static void igb_shutdown(struct pci_dev *);
201static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202#ifdef CONFIG_IGB_DCA
203static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204static struct notifier_block dca_notifier = {
205 .notifier_call = igb_notify_dca,
206 .next = NULL,
207 .priority = 0
208};
209#endif
210#ifdef CONFIG_NET_POLL_CONTROLLER
211/* for netdump / net console */
212static void igb_netpoll(struct net_device *);
213#endif
214#ifdef CONFIG_PCI_IOV
215static unsigned int max_vfs;
216module_param(max_vfs, uint, 0);
217MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218#endif /* CONFIG_PCI_IOV */
219
220static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221 pci_channel_state_t);
222static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223static void igb_io_resume(struct pci_dev *);
224
225static const struct pci_error_handlers igb_err_handler = {
226 .error_detected = igb_io_error_detected,
227 .slot_reset = igb_io_slot_reset,
228 .resume = igb_io_resume,
229};
230
231static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233static struct pci_driver igb_driver = {
234 .name = igb_driver_name,
235 .id_table = igb_pci_tbl,
236 .probe = igb_probe,
237 .remove = igb_remove,
238#ifdef CONFIG_PM
239 .driver.pm = &igb_pm_ops,
240#endif
241 .shutdown = igb_shutdown,
242 .sriov_configure = igb_pci_sriov_configure,
243 .err_handler = &igb_err_handler
244};
245
246MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248MODULE_LICENSE("GPL");
249MODULE_VERSION(DRV_VERSION);
250
251#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252static int debug = -1;
253module_param(debug, int, 0);
254MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256struct igb_reg_info {
257 u32 ofs;
258 char *name;
259};
260
261static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263 /* General Registers */
264 {E1000_CTRL, "CTRL"},
265 {E1000_STATUS, "STATUS"},
266 {E1000_CTRL_EXT, "CTRL_EXT"},
267
268 /* Interrupt Registers */
269 {E1000_ICR, "ICR"},
270
271 /* RX Registers */
272 {E1000_RCTL, "RCTL"},
273 {E1000_RDLEN(0), "RDLEN"},
274 {E1000_RDH(0), "RDH"},
275 {E1000_RDT(0), "RDT"},
276 {E1000_RXDCTL(0), "RXDCTL"},
277 {E1000_RDBAL(0), "RDBAL"},
278 {E1000_RDBAH(0), "RDBAH"},
279
280 /* TX Registers */
281 {E1000_TCTL, "TCTL"},
282 {E1000_TDBAL(0), "TDBAL"},
283 {E1000_TDBAH(0), "TDBAH"},
284 {E1000_TDLEN(0), "TDLEN"},
285 {E1000_TDH(0), "TDH"},
286 {E1000_TDT(0), "TDT"},
287 {E1000_TXDCTL(0), "TXDCTL"},
288 {E1000_TDFH, "TDFH"},
289 {E1000_TDFT, "TDFT"},
290 {E1000_TDFHS, "TDFHS"},
291 {E1000_TDFPC, "TDFPC"},
292
293 /* List Terminator */
294 {}
295};
296
297/* igb_regdump - register printout routine */
298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299{
300 int n = 0;
301 char rname[16];
302 u32 regs[8];
303
304 switch (reginfo->ofs) {
305 case E1000_RDLEN(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDLEN(n));
308 break;
309 case E1000_RDH(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDH(n));
312 break;
313 case E1000_RDT(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDT(n));
316 break;
317 case E1000_RXDCTL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RXDCTL(n));
320 break;
321 case E1000_RDBAL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAL(n));
324 break;
325 case E1000_RDBAH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAH(n));
328 break;
329 case E1000_TDBAL(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAL(n));
332 break;
333 case E1000_TDBAH(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDBAH(n));
336 break;
337 case E1000_TDLEN(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDLEN(n));
340 break;
341 case E1000_TDH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDH(n));
344 break;
345 case E1000_TDT(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDT(n));
348 break;
349 case E1000_TXDCTL(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TXDCTL(n));
352 break;
353 default:
354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 return;
356 }
357
358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 regs[2], regs[3]);
361}
362
363/* igb_dump - Print registers, Tx-rings and Rx-rings */
364static void igb_dump(struct igb_adapter *adapter)
365{
366 struct net_device *netdev = adapter->netdev;
367 struct e1000_hw *hw = &adapter->hw;
368 struct igb_reg_info *reginfo;
369 struct igb_ring *tx_ring;
370 union e1000_adv_tx_desc *tx_desc;
371 struct my_u0 { u64 a; u64 b; } *u0;
372 struct igb_ring *rx_ring;
373 union e1000_adv_rx_desc *rx_desc;
374 u32 staterr;
375 u16 i, n;
376
377 if (!netif_msg_hw(adapter))
378 return;
379
380 /* Print netdevice Info */
381 if (netdev) {
382 dev_info(&adapter->pdev->dev, "Net device Info\n");
383 pr_info("Device Name state trans_start last_rx\n");
384 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385 netdev->state, netdev->trans_start, netdev->last_rx);
386 }
387
388 /* Print Registers */
389 dev_info(&adapter->pdev->dev, "Register Dump\n");
390 pr_info(" Register Name Value\n");
391 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392 reginfo->name; reginfo++) {
393 igb_regdump(hw, reginfo);
394 }
395
396 /* Print TX Ring Summary */
397 if (!netdev || !netif_running(netdev))
398 goto exit;
399
400 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
402 for (n = 0; n < adapter->num_tx_queues; n++) {
403 struct igb_tx_buffer *buffer_info;
404 tx_ring = adapter->tx_ring[n];
405 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407 n, tx_ring->next_to_use, tx_ring->next_to_clean,
408 (u64)dma_unmap_addr(buffer_info, dma),
409 dma_unmap_len(buffer_info, len),
410 buffer_info->next_to_watch,
411 (u64)buffer_info->time_stamp);
412 }
413
414 /* Print TX Rings */
415 if (!netif_msg_tx_done(adapter))
416 goto rx_ring_summary;
417
418 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420 /* Transmit Descriptor Formats
421 *
422 * Advanced Transmit Descriptor
423 * +--------------------------------------------------------------+
424 * 0 | Buffer Address [63:0] |
425 * +--------------------------------------------------------------+
426 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
427 * +--------------------------------------------------------------+
428 * 63 46 45 40 39 38 36 35 32 31 24 15 0
429 */
430
431 for (n = 0; n < adapter->num_tx_queues; n++) {
432 tx_ring = adapter->tx_ring[n];
433 pr_info("------------------------------------\n");
434 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435 pr_info("------------------------------------\n");
436 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
437
438 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439 const char *next_desc;
440 struct igb_tx_buffer *buffer_info;
441 tx_desc = IGB_TX_DESC(tx_ring, i);
442 buffer_info = &tx_ring->tx_buffer_info[i];
443 u0 = (struct my_u0 *)tx_desc;
444 if (i == tx_ring->next_to_use &&
445 i == tx_ring->next_to_clean)
446 next_desc = " NTC/U";
447 else if (i == tx_ring->next_to_use)
448 next_desc = " NTU";
449 else if (i == tx_ring->next_to_clean)
450 next_desc = " NTC";
451 else
452 next_desc = "";
453
454 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
455 i, le64_to_cpu(u0->a),
456 le64_to_cpu(u0->b),
457 (u64)dma_unmap_addr(buffer_info, dma),
458 dma_unmap_len(buffer_info, len),
459 buffer_info->next_to_watch,
460 (u64)buffer_info->time_stamp,
461 buffer_info->skb, next_desc);
462
463 if (netif_msg_pktdata(adapter) && buffer_info->skb)
464 print_hex_dump(KERN_INFO, "",
465 DUMP_PREFIX_ADDRESS,
466 16, 1, buffer_info->skb->data,
467 dma_unmap_len(buffer_info, len),
468 true);
469 }
470 }
471
472 /* Print RX Rings Summary */
473rx_ring_summary:
474 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475 pr_info("Queue [NTU] [NTC]\n");
476 for (n = 0; n < adapter->num_rx_queues; n++) {
477 rx_ring = adapter->rx_ring[n];
478 pr_info(" %5d %5X %5X\n",
479 n, rx_ring->next_to_use, rx_ring->next_to_clean);
480 }
481
482 /* Print RX Rings */
483 if (!netif_msg_rx_status(adapter))
484 goto exit;
485
486 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488 /* Advanced Receive Descriptor (Read) Format
489 * 63 1 0
490 * +-----------------------------------------------------+
491 * 0 | Packet Buffer Address [63:1] |A0/NSE|
492 * +----------------------------------------------+------+
493 * 8 | Header Buffer Address [63:1] | DD |
494 * +-----------------------------------------------------+
495 *
496 *
497 * Advanced Receive Descriptor (Write-Back) Format
498 *
499 * 63 48 47 32 31 30 21 20 17 16 4 3 0
500 * +------------------------------------------------------+
501 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
502 * | Checksum Ident | | | | Type | Type |
503 * +------------------------------------------------------+
504 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505 * +------------------------------------------------------+
506 * 63 48 47 32 31 20 19 0
507 */
508
509 for (n = 0; n < adapter->num_rx_queues; n++) {
510 rx_ring = adapter->rx_ring[n];
511 pr_info("------------------------------------\n");
512 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513 pr_info("------------------------------------\n");
514 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
515 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517 for (i = 0; i < rx_ring->count; i++) {
518 const char *next_desc;
519 struct igb_rx_buffer *buffer_info;
520 buffer_info = &rx_ring->rx_buffer_info[i];
521 rx_desc = IGB_RX_DESC(rx_ring, i);
522 u0 = (struct my_u0 *)rx_desc;
523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525 if (i == rx_ring->next_to_use)
526 next_desc = " NTU";
527 else if (i == rx_ring->next_to_clean)
528 next_desc = " NTC";
529 else
530 next_desc = "";
531
532 if (staterr & E1000_RXD_STAT_DD) {
533 /* Descriptor Done */
534 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
535 "RWB", i,
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
538 next_desc);
539 } else {
540 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
541 "R ", i,
542 le64_to_cpu(u0->a),
543 le64_to_cpu(u0->b),
544 (u64)buffer_info->dma,
545 next_desc);
546
547 if (netif_msg_pktdata(adapter) &&
548 buffer_info->dma && buffer_info->page) {
549 print_hex_dump(KERN_INFO, "",
550 DUMP_PREFIX_ADDRESS,
551 16, 1,
552 page_address(buffer_info->page) +
553 buffer_info->page_offset,
554 IGB_RX_BUFSZ, true);
555 }
556 }
557 }
558 }
559
560exit:
561 return;
562}
563
564/**
565 * igb_get_i2c_data - Reads the I2C SDA data bit
566 * @hw: pointer to hardware structure
567 * @i2cctl: Current value of I2CCTL register
568 *
569 * Returns the I2C data bit value
570 **/
571static int igb_get_i2c_data(void *data)
572{
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577 return !!(i2cctl & E1000_I2C_DATA_IN);
578}
579
580/**
581 * igb_set_i2c_data - Sets the I2C data bit
582 * @data: pointer to hardware structure
583 * @state: I2C data value (0 or 1) to set
584 *
585 * Sets the I2C data bit
586 **/
587static void igb_set_i2c_data(void *data, int state)
588{
589 struct igb_adapter *adapter = (struct igb_adapter *)data;
590 struct e1000_hw *hw = &adapter->hw;
591 s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593 if (state)
594 i2cctl |= E1000_I2C_DATA_OUT;
595 else
596 i2cctl &= ~E1000_I2C_DATA_OUT;
597
598 i2cctl &= ~E1000_I2C_DATA_OE_N;
599 i2cctl |= E1000_I2C_CLK_OE_N;
600 wr32(E1000_I2CPARAMS, i2cctl);
601 wrfl();
602
603}
604
605/**
606 * igb_set_i2c_clk - Sets the I2C SCL clock
607 * @data: pointer to hardware structure
608 * @state: state to set clock
609 *
610 * Sets the I2C clock line to state
611 **/
612static void igb_set_i2c_clk(void *data, int state)
613{
614 struct igb_adapter *adapter = (struct igb_adapter *)data;
615 struct e1000_hw *hw = &adapter->hw;
616 s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618 if (state) {
619 i2cctl |= E1000_I2C_CLK_OUT;
620 i2cctl &= ~E1000_I2C_CLK_OE_N;
621 } else {
622 i2cctl &= ~E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 }
625 wr32(E1000_I2CPARAMS, i2cctl);
626 wrfl();
627}
628
629/**
630 * igb_get_i2c_clk - Gets the I2C SCL clock state
631 * @data: pointer to hardware structure
632 *
633 * Gets the I2C clock state
634 **/
635static int igb_get_i2c_clk(void *data)
636{
637 struct igb_adapter *adapter = (struct igb_adapter *)data;
638 struct e1000_hw *hw = &adapter->hw;
639 s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641 return !!(i2cctl & E1000_I2C_CLK_IN);
642}
643
644static const struct i2c_algo_bit_data igb_i2c_algo = {
645 .setsda = igb_set_i2c_data,
646 .setscl = igb_set_i2c_clk,
647 .getsda = igb_get_i2c_data,
648 .getscl = igb_get_i2c_clk,
649 .udelay = 5,
650 .timeout = 20,
651};
652
653/**
654 * igb_get_hw_dev - return device
655 * @hw: pointer to hardware structure
656 *
657 * used by hardware layer to print debugging information
658 **/
659struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660{
661 struct igb_adapter *adapter = hw->back;
662 return adapter->netdev;
663}
664
665/**
666 * igb_init_module - Driver Registration Routine
667 *
668 * igb_init_module is the first routine called when the driver is
669 * loaded. All it does is register with the PCI subsystem.
670 **/
671static int __init igb_init_module(void)
672{
673 int ret;
674
675 pr_info("%s - version %s\n",
676 igb_driver_string, igb_driver_version);
677 pr_info("%s\n", igb_copyright);
678
679#ifdef CONFIG_IGB_DCA
680 dca_register_notify(&dca_notifier);
681#endif
682 ret = pci_register_driver(&igb_driver);
683 return ret;
684}
685
686module_init(igb_init_module);
687
688/**
689 * igb_exit_module - Driver Exit Cleanup Routine
690 *
691 * igb_exit_module is called just before the driver is removed
692 * from memory.
693 **/
694static void __exit igb_exit_module(void)
695{
696#ifdef CONFIG_IGB_DCA
697 dca_unregister_notify(&dca_notifier);
698#endif
699 pci_unregister_driver(&igb_driver);
700}
701
702module_exit(igb_exit_module);
703
704#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705/**
706 * igb_cache_ring_register - Descriptor ring to register mapping
707 * @adapter: board private structure to initialize
708 *
709 * Once we know the feature-set enabled for the device, we'll cache
710 * the register offset the descriptor ring is assigned to.
711 **/
712static void igb_cache_ring_register(struct igb_adapter *adapter)
713{
714 int i = 0, j = 0;
715 u32 rbase_offset = adapter->vfs_allocated_count;
716
717 switch (adapter->hw.mac.type) {
718 case e1000_82576:
719 /* The queues are allocated for virtualization such that VF 0
720 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721 * In order to avoid collision we start at the first free queue
722 * and continue consuming queues in the same sequence
723 */
724 if (adapter->vfs_allocated_count) {
725 for (; i < adapter->rss_queues; i++)
726 adapter->rx_ring[i]->reg_idx = rbase_offset +
727 Q_IDX_82576(i);
728 }
729 /* Fall through */
730 case e1000_82575:
731 case e1000_82580:
732 case e1000_i350:
733 case e1000_i354:
734 case e1000_i210:
735 case e1000_i211:
736 /* Fall through */
737 default:
738 for (; i < adapter->num_rx_queues; i++)
739 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740 for (; j < adapter->num_tx_queues; j++)
741 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742 break;
743 }
744}
745
746u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747{
748 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750 u32 value = 0;
751
752 if (E1000_REMOVED(hw_addr))
753 return ~value;
754
755 value = readl(&hw_addr[reg]);
756
757 /* reads should not return all F's */
758 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759 struct net_device *netdev = igb->netdev;
760 hw->hw_addr = NULL;
761 netif_device_detach(netdev);
762 netdev_err(netdev, "PCIe link lost, device now detached\n");
763 }
764
765 return value;
766}
767
768/**
769 * igb_write_ivar - configure ivar for given MSI-X vector
770 * @hw: pointer to the HW structure
771 * @msix_vector: vector number we are allocating to a given ring
772 * @index: row index of IVAR register to write within IVAR table
773 * @offset: column offset of in IVAR, should be multiple of 8
774 *
775 * This function is intended to handle the writing of the IVAR register
776 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
777 * each containing an cause allocation for an Rx and Tx ring, and a
778 * variable number of rows depending on the number of queues supported.
779 **/
780static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781 int index, int offset)
782{
783 u32 ivar = array_rd32(E1000_IVAR0, index);
784
785 /* clear any bits that are currently set */
786 ivar &= ~((u32)0xFF << offset);
787
788 /* write vector and valid bit */
789 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791 array_wr32(E1000_IVAR0, index, ivar);
792}
793
794#define IGB_N0_QUEUE -1
795static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796{
797 struct igb_adapter *adapter = q_vector->adapter;
798 struct e1000_hw *hw = &adapter->hw;
799 int rx_queue = IGB_N0_QUEUE;
800 int tx_queue = IGB_N0_QUEUE;
801 u32 msixbm = 0;
802
803 if (q_vector->rx.ring)
804 rx_queue = q_vector->rx.ring->reg_idx;
805 if (q_vector->tx.ring)
806 tx_queue = q_vector->tx.ring->reg_idx;
807
808 switch (hw->mac.type) {
809 case e1000_82575:
810 /* The 82575 assigns vectors using a bitmask, which matches the
811 * bitmask for the EICR/EIMS/EIMC registers. To assign one
812 * or more queues to a vector, we write the appropriate bits
813 * into the MSIXBM register for that vector.
814 */
815 if (rx_queue > IGB_N0_QUEUE)
816 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817 if (tx_queue > IGB_N0_QUEUE)
818 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820 msixbm |= E1000_EIMS_OTHER;
821 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822 q_vector->eims_value = msixbm;
823 break;
824 case e1000_82576:
825 /* 82576 uses a table that essentially consists of 2 columns
826 * with 8 rows. The ordering is column-major so we use the
827 * lower 3 bits as the row index, and the 4th bit as the
828 * column offset.
829 */
830 if (rx_queue > IGB_N0_QUEUE)
831 igb_write_ivar(hw, msix_vector,
832 rx_queue & 0x7,
833 (rx_queue & 0x8) << 1);
834 if (tx_queue > IGB_N0_QUEUE)
835 igb_write_ivar(hw, msix_vector,
836 tx_queue & 0x7,
837 ((tx_queue & 0x8) << 1) + 8);
838 q_vector->eims_value = 1 << msix_vector;
839 break;
840 case e1000_82580:
841 case e1000_i350:
842 case e1000_i354:
843 case e1000_i210:
844 case e1000_i211:
845 /* On 82580 and newer adapters the scheme is similar to 82576
846 * however instead of ordering column-major we have things
847 * ordered row-major. So we traverse the table by using
848 * bit 0 as the column offset, and the remaining bits as the
849 * row index.
850 */
851 if (rx_queue > IGB_N0_QUEUE)
852 igb_write_ivar(hw, msix_vector,
853 rx_queue >> 1,
854 (rx_queue & 0x1) << 4);
855 if (tx_queue > IGB_N0_QUEUE)
856 igb_write_ivar(hw, msix_vector,
857 tx_queue >> 1,
858 ((tx_queue & 0x1) << 4) + 8);
859 q_vector->eims_value = 1 << msix_vector;
860 break;
861 default:
862 BUG();
863 break;
864 }
865
866 /* add q_vector eims value to global eims_enable_mask */
867 adapter->eims_enable_mask |= q_vector->eims_value;
868
869 /* configure q_vector to set itr on first interrupt */
870 q_vector->set_itr = 1;
871}
872
873/**
874 * igb_configure_msix - Configure MSI-X hardware
875 * @adapter: board private structure to initialize
876 *
877 * igb_configure_msix sets up the hardware to properly
878 * generate MSI-X interrupts.
879 **/
880static void igb_configure_msix(struct igb_adapter *adapter)
881{
882 u32 tmp;
883 int i, vector = 0;
884 struct e1000_hw *hw = &adapter->hw;
885
886 adapter->eims_enable_mask = 0;
887
888 /* set vector for other causes, i.e. link changes */
889 switch (hw->mac.type) {
890 case e1000_82575:
891 tmp = rd32(E1000_CTRL_EXT);
892 /* enable MSI-X PBA support*/
893 tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895 /* Auto-Mask interrupts upon ICR read. */
896 tmp |= E1000_CTRL_EXT_EIAME;
897 tmp |= E1000_CTRL_EXT_IRCA;
898
899 wr32(E1000_CTRL_EXT, tmp);
900
901 /* enable msix_other interrupt */
902 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903 adapter->eims_other = E1000_EIMS_OTHER;
904
905 break;
906
907 case e1000_82576:
908 case e1000_82580:
909 case e1000_i350:
910 case e1000_i354:
911 case e1000_i210:
912 case e1000_i211:
913 /* Turn on MSI-X capability first, or our settings
914 * won't stick. And it will take days to debug.
915 */
916 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917 E1000_GPIE_PBA | E1000_GPIE_EIAME |
918 E1000_GPIE_NSICR);
919
920 /* enable msix_other interrupt */
921 adapter->eims_other = 1 << vector;
922 tmp = (vector++ | E1000_IVAR_VALID) << 8;
923
924 wr32(E1000_IVAR_MISC, tmp);
925 break;
926 default:
927 /* do nothing, since nothing else supports MSI-X */
928 break;
929 } /* switch (hw->mac.type) */
930
931 adapter->eims_enable_mask |= adapter->eims_other;
932
933 for (i = 0; i < adapter->num_q_vectors; i++)
934 igb_assign_vector(adapter->q_vector[i], vector++);
935
936 wrfl();
937}
938
939/**
940 * igb_request_msix - Initialize MSI-X interrupts
941 * @adapter: board private structure to initialize
942 *
943 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
944 * kernel.
945 **/
946static int igb_request_msix(struct igb_adapter *adapter)
947{
948 struct net_device *netdev = adapter->netdev;
949 struct e1000_hw *hw = &adapter->hw;
950 int i, err = 0, vector = 0, free_vector = 0;
951
952 err = request_irq(adapter->msix_entries[vector].vector,
953 igb_msix_other, 0, netdev->name, adapter);
954 if (err)
955 goto err_out;
956
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960 vector++;
961
962 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
963
964 if (q_vector->rx.ring && q_vector->tx.ring)
965 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 q_vector->rx.ring->queue_index);
967 else if (q_vector->tx.ring)
968 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 q_vector->tx.ring->queue_index);
970 else if (q_vector->rx.ring)
971 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972 q_vector->rx.ring->queue_index);
973 else
974 sprintf(q_vector->name, "%s-unused", netdev->name);
975
976 err = request_irq(adapter->msix_entries[vector].vector,
977 igb_msix_ring, 0, q_vector->name,
978 q_vector);
979 if (err)
980 goto err_free;
981 }
982
983 igb_configure_msix(adapter);
984 return 0;
985
986err_free:
987 /* free already assigned IRQs */
988 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990 vector--;
991 for (i = 0; i < vector; i++) {
992 free_irq(adapter->msix_entries[free_vector++].vector,
993 adapter->q_vector[i]);
994 }
995err_out:
996 return err;
997}
998
999/**
1000 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 * @adapter: board private structure to initialize
1002 * @v_idx: Index of vector to be freed
1003 *
1004 * This function frees the memory allocated to the q_vector.
1005 **/
1006static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007{
1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010 adapter->q_vector[v_idx] = NULL;
1011
1012 /* igb_get_stats64() might access the rings on this vector,
1013 * we must wait a grace period before freeing it.
1014 */
1015 kfree_rcu(q_vector, rcu);
1016}
1017
1018/**
1019 * igb_reset_q_vector - Reset config for interrupt vector
1020 * @adapter: board private structure to initialize
1021 * @v_idx: Index of vector to be reset
1022 *
1023 * If NAPI is enabled it will delete any references to the
1024 * NAPI struct. This is preparation for igb_free_q_vector.
1025 **/
1026static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027{
1028 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029
1030 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1031 * allocated. So, q_vector is NULL so we should stop here.
1032 */
1033 if (!q_vector)
1034 return;
1035
1036 if (q_vector->tx.ring)
1037 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038
1039 if (q_vector->rx.ring)
1040 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1041
1042 netif_napi_del(&q_vector->napi);
1043
1044}
1045
1046static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047{
1048 int v_idx = adapter->num_q_vectors;
1049
1050 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051 pci_disable_msix(adapter->pdev);
1052 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053 pci_disable_msi(adapter->pdev);
1054
1055 while (v_idx--)
1056 igb_reset_q_vector(adapter, v_idx);
1057}
1058
1059/**
1060 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1061 * @adapter: board private structure to initialize
1062 *
1063 * This function frees the memory allocated to the q_vectors. In addition if
1064 * NAPI is enabled it will delete any references to the NAPI struct prior
1065 * to freeing the q_vector.
1066 **/
1067static void igb_free_q_vectors(struct igb_adapter *adapter)
1068{
1069 int v_idx = adapter->num_q_vectors;
1070
1071 adapter->num_tx_queues = 0;
1072 adapter->num_rx_queues = 0;
1073 adapter->num_q_vectors = 0;
1074
1075 while (v_idx--) {
1076 igb_reset_q_vector(adapter, v_idx);
1077 igb_free_q_vector(adapter, v_idx);
1078 }
1079}
1080
1081/**
1082 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083 * @adapter: board private structure to initialize
1084 *
1085 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1086 * MSI-X interrupts allocated.
1087 */
1088static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089{
1090 igb_free_q_vectors(adapter);
1091 igb_reset_interrupt_capability(adapter);
1092}
1093
1094/**
1095 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1096 * @adapter: board private structure to initialize
1097 * @msix: boolean value of MSIX capability
1098 *
1099 * Attempt to configure interrupts using the best available
1100 * capabilities of the hardware and kernel.
1101 **/
1102static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103{
1104 int err;
1105 int numvecs, i;
1106
1107 if (!msix)
1108 goto msi_only;
1109 adapter->flags |= IGB_FLAG_HAS_MSIX;
1110
1111 /* Number of supported queues. */
1112 adapter->num_rx_queues = adapter->rss_queues;
1113 if (adapter->vfs_allocated_count)
1114 adapter->num_tx_queues = 1;
1115 else
1116 adapter->num_tx_queues = adapter->rss_queues;
1117
1118 /* start with one vector for every Rx queue */
1119 numvecs = adapter->num_rx_queues;
1120
1121 /* if Tx handler is separate add 1 for every Tx queue */
1122 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123 numvecs += adapter->num_tx_queues;
1124
1125 /* store the number of vectors reserved for queues */
1126 adapter->num_q_vectors = numvecs;
1127
1128 /* add 1 vector for link status interrupts */
1129 numvecs++;
1130 for (i = 0; i < numvecs; i++)
1131 adapter->msix_entries[i].entry = i;
1132
1133 err = pci_enable_msix_range(adapter->pdev,
1134 adapter->msix_entries,
1135 numvecs,
1136 numvecs);
1137 if (err > 0)
1138 return;
1139
1140 igb_reset_interrupt_capability(adapter);
1141
1142 /* If we can't do MSI-X, try MSI */
1143msi_only:
1144 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145#ifdef CONFIG_PCI_IOV
1146 /* disable SR-IOV for non MSI-X configurations */
1147 if (adapter->vf_data) {
1148 struct e1000_hw *hw = &adapter->hw;
1149 /* disable iov and allow time for transactions to clear */
1150 pci_disable_sriov(adapter->pdev);
1151 msleep(500);
1152
1153 kfree(adapter->vf_data);
1154 adapter->vf_data = NULL;
1155 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156 wrfl();
1157 msleep(100);
1158 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159 }
1160#endif
1161 adapter->vfs_allocated_count = 0;
1162 adapter->rss_queues = 1;
1163 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164 adapter->num_rx_queues = 1;
1165 adapter->num_tx_queues = 1;
1166 adapter->num_q_vectors = 1;
1167 if (!pci_enable_msi(adapter->pdev))
1168 adapter->flags |= IGB_FLAG_HAS_MSI;
1169}
1170
1171static void igb_add_ring(struct igb_ring *ring,
1172 struct igb_ring_container *head)
1173{
1174 head->ring = ring;
1175 head->count++;
1176}
1177
1178/**
1179 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180 * @adapter: board private structure to initialize
1181 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1182 * @v_idx: index of vector in adapter struct
1183 * @txr_count: total number of Tx rings to allocate
1184 * @txr_idx: index of first Tx ring to allocate
1185 * @rxr_count: total number of Rx rings to allocate
1186 * @rxr_idx: index of first Rx ring to allocate
1187 *
1188 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1189 **/
1190static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191 int v_count, int v_idx,
1192 int txr_count, int txr_idx,
1193 int rxr_count, int rxr_idx)
1194{
1195 struct igb_q_vector *q_vector;
1196 struct igb_ring *ring;
1197 int ring_count, size;
1198
1199 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200 if (txr_count > 1 || rxr_count > 1)
1201 return -ENOMEM;
1202
1203 ring_count = txr_count + rxr_count;
1204 size = sizeof(struct igb_q_vector) +
1205 (sizeof(struct igb_ring) * ring_count);
1206
1207 /* allocate q_vector and rings */
1208 q_vector = adapter->q_vector[v_idx];
1209 if (!q_vector)
1210 q_vector = kzalloc(size, GFP_KERNEL);
1211 if (!q_vector)
1212 return -ENOMEM;
1213
1214 /* initialize NAPI */
1215 netif_napi_add(adapter->netdev, &q_vector->napi,
1216 igb_poll, 64);
1217
1218 /* tie q_vector and adapter together */
1219 adapter->q_vector[v_idx] = q_vector;
1220 q_vector->adapter = adapter;
1221
1222 /* initialize work limits */
1223 q_vector->tx.work_limit = adapter->tx_work_limit;
1224
1225 /* initialize ITR configuration */
1226 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1227 q_vector->itr_val = IGB_START_ITR;
1228
1229 /* initialize pointer to rings */
1230 ring = q_vector->ring;
1231
1232 /* intialize ITR */
1233 if (rxr_count) {
1234 /* rx or rx/tx vector */
1235 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1236 q_vector->itr_val = adapter->rx_itr_setting;
1237 } else {
1238 /* tx only vector */
1239 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1240 q_vector->itr_val = adapter->tx_itr_setting;
1241 }
1242
1243 if (txr_count) {
1244 /* assign generic ring traits */
1245 ring->dev = &adapter->pdev->dev;
1246 ring->netdev = adapter->netdev;
1247
1248 /* configure backlink on ring */
1249 ring->q_vector = q_vector;
1250
1251 /* update q_vector Tx values */
1252 igb_add_ring(ring, &q_vector->tx);
1253
1254 /* For 82575, context index must be unique per ring. */
1255 if (adapter->hw.mac.type == e1000_82575)
1256 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1257
1258 /* apply Tx specific ring traits */
1259 ring->count = adapter->tx_ring_count;
1260 ring->queue_index = txr_idx;
1261
1262 u64_stats_init(&ring->tx_syncp);
1263 u64_stats_init(&ring->tx_syncp2);
1264
1265 /* assign ring to adapter */
1266 adapter->tx_ring[txr_idx] = ring;
1267
1268 /* push pointer to next ring */
1269 ring++;
1270 }
1271
1272 if (rxr_count) {
1273 /* assign generic ring traits */
1274 ring->dev = &adapter->pdev->dev;
1275 ring->netdev = adapter->netdev;
1276
1277 /* configure backlink on ring */
1278 ring->q_vector = q_vector;
1279
1280 /* update q_vector Rx values */
1281 igb_add_ring(ring, &q_vector->rx);
1282
1283 /* set flag indicating ring supports SCTP checksum offload */
1284 if (adapter->hw.mac.type >= e1000_82576)
1285 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286
1287 /* On i350, i354, i210, and i211, loopback VLAN packets
1288 * have the tag byte-swapped.
1289 */
1290 if (adapter->hw.mac.type >= e1000_i350)
1291 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292
1293 /* apply Rx specific ring traits */
1294 ring->count = adapter->rx_ring_count;
1295 ring->queue_index = rxr_idx;
1296
1297 u64_stats_init(&ring->rx_syncp);
1298
1299 /* assign ring to adapter */
1300 adapter->rx_ring[rxr_idx] = ring;
1301 }
1302
1303 return 0;
1304}
1305
1306
1307/**
1308 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309 * @adapter: board private structure to initialize
1310 *
1311 * We allocate one q_vector per queue interrupt. If allocation fails we
1312 * return -ENOMEM.
1313 **/
1314static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315{
1316 int q_vectors = adapter->num_q_vectors;
1317 int rxr_remaining = adapter->num_rx_queues;
1318 int txr_remaining = adapter->num_tx_queues;
1319 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320 int err;
1321
1322 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323 for (; rxr_remaining; v_idx++) {
1324 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325 0, 0, 1, rxr_idx);
1326
1327 if (err)
1328 goto err_out;
1329
1330 /* update counts and index */
1331 rxr_remaining--;
1332 rxr_idx++;
1333 }
1334 }
1335
1336 for (; v_idx < q_vectors; v_idx++) {
1337 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339
1340 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341 tqpv, txr_idx, rqpv, rxr_idx);
1342
1343 if (err)
1344 goto err_out;
1345
1346 /* update counts and index */
1347 rxr_remaining -= rqpv;
1348 txr_remaining -= tqpv;
1349 rxr_idx++;
1350 txr_idx++;
1351 }
1352
1353 return 0;
1354
1355err_out:
1356 adapter->num_tx_queues = 0;
1357 adapter->num_rx_queues = 0;
1358 adapter->num_q_vectors = 0;
1359
1360 while (v_idx--)
1361 igb_free_q_vector(adapter, v_idx);
1362
1363 return -ENOMEM;
1364}
1365
1366/**
1367 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368 * @adapter: board private structure to initialize
1369 * @msix: boolean value of MSIX capability
1370 *
1371 * This function initializes the interrupts and allocates all of the queues.
1372 **/
1373static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374{
1375 struct pci_dev *pdev = adapter->pdev;
1376 int err;
1377
1378 igb_set_interrupt_capability(adapter, msix);
1379
1380 err = igb_alloc_q_vectors(adapter);
1381 if (err) {
1382 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383 goto err_alloc_q_vectors;
1384 }
1385
1386 igb_cache_ring_register(adapter);
1387
1388 return 0;
1389
1390err_alloc_q_vectors:
1391 igb_reset_interrupt_capability(adapter);
1392 return err;
1393}
1394
1395/**
1396 * igb_request_irq - initialize interrupts
1397 * @adapter: board private structure to initialize
1398 *
1399 * Attempts to configure interrupts using the best available
1400 * capabilities of the hardware and kernel.
1401 **/
1402static int igb_request_irq(struct igb_adapter *adapter)
1403{
1404 struct net_device *netdev = adapter->netdev;
1405 struct pci_dev *pdev = adapter->pdev;
1406 int err = 0;
1407
1408 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409 err = igb_request_msix(adapter);
1410 if (!err)
1411 goto request_done;
1412 /* fall back to MSI */
1413 igb_free_all_tx_resources(adapter);
1414 igb_free_all_rx_resources(adapter);
1415
1416 igb_clear_interrupt_scheme(adapter);
1417 err = igb_init_interrupt_scheme(adapter, false);
1418 if (err)
1419 goto request_done;
1420
1421 igb_setup_all_tx_resources(adapter);
1422 igb_setup_all_rx_resources(adapter);
1423 igb_configure(adapter);
1424 }
1425
1426 igb_assign_vector(adapter->q_vector[0], 0);
1427
1428 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429 err = request_irq(pdev->irq, igb_intr_msi, 0,
1430 netdev->name, adapter);
1431 if (!err)
1432 goto request_done;
1433
1434 /* fall back to legacy interrupts */
1435 igb_reset_interrupt_capability(adapter);
1436 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437 }
1438
1439 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440 netdev->name, adapter);
1441
1442 if (err)
1443 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444 err);
1445
1446request_done:
1447 return err;
1448}
1449
1450static void igb_free_irq(struct igb_adapter *adapter)
1451{
1452 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453 int vector = 0, i;
1454
1455 free_irq(adapter->msix_entries[vector++].vector, adapter);
1456
1457 for (i = 0; i < adapter->num_q_vectors; i++)
1458 free_irq(adapter->msix_entries[vector++].vector,
1459 adapter->q_vector[i]);
1460 } else {
1461 free_irq(adapter->pdev->irq, adapter);
1462 }
1463}
1464
1465/**
1466 * igb_irq_disable - Mask off interrupt generation on the NIC
1467 * @adapter: board private structure
1468 **/
1469static void igb_irq_disable(struct igb_adapter *adapter)
1470{
1471 struct e1000_hw *hw = &adapter->hw;
1472
1473 /* we need to be careful when disabling interrupts. The VFs are also
1474 * mapped into these registers and so clearing the bits can cause
1475 * issues on the VF drivers so we only need to clear what we set
1476 */
1477 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478 u32 regval = rd32(E1000_EIAM);
1479
1480 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481 wr32(E1000_EIMC, adapter->eims_enable_mask);
1482 regval = rd32(E1000_EIAC);
1483 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484 }
1485
1486 wr32(E1000_IAM, 0);
1487 wr32(E1000_IMC, ~0);
1488 wrfl();
1489 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490 int i;
1491
1492 for (i = 0; i < adapter->num_q_vectors; i++)
1493 synchronize_irq(adapter->msix_entries[i].vector);
1494 } else {
1495 synchronize_irq(adapter->pdev->irq);
1496 }
1497}
1498
1499/**
1500 * igb_irq_enable - Enable default interrupt generation settings
1501 * @adapter: board private structure
1502 **/
1503static void igb_irq_enable(struct igb_adapter *adapter)
1504{
1505 struct e1000_hw *hw = &adapter->hw;
1506
1507 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509 u32 regval = rd32(E1000_EIAC);
1510
1511 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512 regval = rd32(E1000_EIAM);
1513 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514 wr32(E1000_EIMS, adapter->eims_enable_mask);
1515 if (adapter->vfs_allocated_count) {
1516 wr32(E1000_MBVFIMR, 0xFF);
1517 ims |= E1000_IMS_VMMB;
1518 }
1519 wr32(E1000_IMS, ims);
1520 } else {
1521 wr32(E1000_IMS, IMS_ENABLE_MASK |
1522 E1000_IMS_DRSTA);
1523 wr32(E1000_IAM, IMS_ENABLE_MASK |
1524 E1000_IMS_DRSTA);
1525 }
1526}
1527
1528static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529{
1530 struct e1000_hw *hw = &adapter->hw;
1531 u16 vid = adapter->hw.mng_cookie.vlan_id;
1532 u16 old_vid = adapter->mng_vlan_id;
1533
1534 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1535 /* add VID to filter table */
1536 igb_vfta_set(hw, vid, true);
1537 adapter->mng_vlan_id = vid;
1538 } else {
1539 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1540 }
1541
1542 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1543 (vid != old_vid) &&
1544 !test_bit(old_vid, adapter->active_vlans)) {
1545 /* remove VID from filter table */
1546 igb_vfta_set(hw, old_vid, false);
1547 }
1548}
1549
1550/**
1551 * igb_release_hw_control - release control of the h/w to f/w
1552 * @adapter: address of board private structure
1553 *
1554 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1555 * For ASF and Pass Through versions of f/w this means that the
1556 * driver is no longer loaded.
1557 **/
1558static void igb_release_hw_control(struct igb_adapter *adapter)
1559{
1560 struct e1000_hw *hw = &adapter->hw;
1561 u32 ctrl_ext;
1562
1563 /* Let firmware take over control of h/w */
1564 ctrl_ext = rd32(E1000_CTRL_EXT);
1565 wr32(E1000_CTRL_EXT,
1566 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1567}
1568
1569/**
1570 * igb_get_hw_control - get control of the h/w from f/w
1571 * @adapter: address of board private structure
1572 *
1573 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1574 * For ASF and Pass Through versions of f/w this means that
1575 * the driver is loaded.
1576 **/
1577static void igb_get_hw_control(struct igb_adapter *adapter)
1578{
1579 struct e1000_hw *hw = &adapter->hw;
1580 u32 ctrl_ext;
1581
1582 /* Let firmware know the driver has taken over */
1583 ctrl_ext = rd32(E1000_CTRL_EXT);
1584 wr32(E1000_CTRL_EXT,
1585 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1586}
1587
1588/**
1589 * igb_configure - configure the hardware for RX and TX
1590 * @adapter: private board structure
1591 **/
1592static void igb_configure(struct igb_adapter *adapter)
1593{
1594 struct net_device *netdev = adapter->netdev;
1595 int i;
1596
1597 igb_get_hw_control(adapter);
1598 igb_set_rx_mode(netdev);
1599
1600 igb_restore_vlan(adapter);
1601
1602 igb_setup_tctl(adapter);
1603 igb_setup_mrqc(adapter);
1604 igb_setup_rctl(adapter);
1605
1606 igb_configure_tx(adapter);
1607 igb_configure_rx(adapter);
1608
1609 igb_rx_fifo_flush_82575(&adapter->hw);
1610
1611 /* call igb_desc_unused which always leaves
1612 * at least 1 descriptor unused to make sure
1613 * next_to_use != next_to_clean
1614 */
1615 for (i = 0; i < adapter->num_rx_queues; i++) {
1616 struct igb_ring *ring = adapter->rx_ring[i];
1617 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1618 }
1619}
1620
1621/**
1622 * igb_power_up_link - Power up the phy/serdes link
1623 * @adapter: address of board private structure
1624 **/
1625void igb_power_up_link(struct igb_adapter *adapter)
1626{
1627 igb_reset_phy(&adapter->hw);
1628
1629 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1630 igb_power_up_phy_copper(&adapter->hw);
1631 else
1632 igb_power_up_serdes_link_82575(&adapter->hw);
1633}
1634
1635/**
1636 * igb_power_down_link - Power down the phy/serdes link
1637 * @adapter: address of board private structure
1638 */
1639static void igb_power_down_link(struct igb_adapter *adapter)
1640{
1641 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1642 igb_power_down_phy_copper_82575(&adapter->hw);
1643 else
1644 igb_shutdown_serdes_link_82575(&adapter->hw);
1645}
1646
1647/**
1648 * Detect and switch function for Media Auto Sense
1649 * @adapter: address of the board private structure
1650 **/
1651static void igb_check_swap_media(struct igb_adapter *adapter)
1652{
1653 struct e1000_hw *hw = &adapter->hw;
1654 u32 ctrl_ext, connsw;
1655 bool swap_now = false;
1656
1657 ctrl_ext = rd32(E1000_CTRL_EXT);
1658 connsw = rd32(E1000_CONNSW);
1659
1660 /* need to live swap if current media is copper and we have fiber/serdes
1661 * to go to.
1662 */
1663
1664 if ((hw->phy.media_type == e1000_media_type_copper) &&
1665 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1666 swap_now = true;
1667 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1668 /* copper signal takes time to appear */
1669 if (adapter->copper_tries < 4) {
1670 adapter->copper_tries++;
1671 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1672 wr32(E1000_CONNSW, connsw);
1673 return;
1674 } else {
1675 adapter->copper_tries = 0;
1676 if ((connsw & E1000_CONNSW_PHYSD) &&
1677 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1678 swap_now = true;
1679 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1680 wr32(E1000_CONNSW, connsw);
1681 }
1682 }
1683 }
1684
1685 if (!swap_now)
1686 return;
1687
1688 switch (hw->phy.media_type) {
1689 case e1000_media_type_copper:
1690 netdev_info(adapter->netdev,
1691 "MAS: changing media to fiber/serdes\n");
1692 ctrl_ext |=
1693 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1694 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1695 adapter->copper_tries = 0;
1696 break;
1697 case e1000_media_type_internal_serdes:
1698 case e1000_media_type_fiber:
1699 netdev_info(adapter->netdev,
1700 "MAS: changing media to copper\n");
1701 ctrl_ext &=
1702 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704 break;
1705 default:
1706 /* shouldn't get here during regular operation */
1707 netdev_err(adapter->netdev,
1708 "AMS: Invalid media type found, returning\n");
1709 break;
1710 }
1711 wr32(E1000_CTRL_EXT, ctrl_ext);
1712}
1713
1714/**
1715 * igb_up - Open the interface and prepare it to handle traffic
1716 * @adapter: board private structure
1717 **/
1718int igb_up(struct igb_adapter *adapter)
1719{
1720 struct e1000_hw *hw = &adapter->hw;
1721 int i;
1722
1723 /* hardware has been reset, we need to reload some things */
1724 igb_configure(adapter);
1725
1726 clear_bit(__IGB_DOWN, &adapter->state);
1727
1728 for (i = 0; i < adapter->num_q_vectors; i++)
1729 napi_enable(&(adapter->q_vector[i]->napi));
1730
1731 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1732 igb_configure_msix(adapter);
1733 else
1734 igb_assign_vector(adapter->q_vector[0], 0);
1735
1736 /* Clear any pending interrupts. */
1737 rd32(E1000_ICR);
1738 igb_irq_enable(adapter);
1739
1740 /* notify VFs that reset has been completed */
1741 if (adapter->vfs_allocated_count) {
1742 u32 reg_data = rd32(E1000_CTRL_EXT);
1743
1744 reg_data |= E1000_CTRL_EXT_PFRSTD;
1745 wr32(E1000_CTRL_EXT, reg_data);
1746 }
1747
1748 netif_tx_start_all_queues(adapter->netdev);
1749
1750 /* start the watchdog. */
1751 hw->mac.get_link_status = 1;
1752 schedule_work(&adapter->watchdog_task);
1753
1754 if ((adapter->flags & IGB_FLAG_EEE) &&
1755 (!hw->dev_spec._82575.eee_disable))
1756 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1757
1758 return 0;
1759}
1760
1761void igb_down(struct igb_adapter *adapter)
1762{
1763 struct net_device *netdev = adapter->netdev;
1764 struct e1000_hw *hw = &adapter->hw;
1765 u32 tctl, rctl;
1766 int i;
1767
1768 /* signal that we're down so the interrupt handler does not
1769 * reschedule our watchdog timer
1770 */
1771 set_bit(__IGB_DOWN, &adapter->state);
1772
1773 /* disable receives in the hardware */
1774 rctl = rd32(E1000_RCTL);
1775 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1776 /* flush and sleep below */
1777
1778 netif_tx_stop_all_queues(netdev);
1779
1780 /* disable transmits in the hardware */
1781 tctl = rd32(E1000_TCTL);
1782 tctl &= ~E1000_TCTL_EN;
1783 wr32(E1000_TCTL, tctl);
1784 /* flush both disables and wait for them to finish */
1785 wrfl();
1786 usleep_range(10000, 11000);
1787
1788 igb_irq_disable(adapter);
1789
1790 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1791
1792 for (i = 0; i < adapter->num_q_vectors; i++) {
1793 napi_synchronize(&(adapter->q_vector[i]->napi));
1794 napi_disable(&(adapter->q_vector[i]->napi));
1795 }
1796
1797
1798 del_timer_sync(&adapter->watchdog_timer);
1799 del_timer_sync(&adapter->phy_info_timer);
1800
1801 netif_carrier_off(netdev);
1802
1803 /* record the stats before reset*/
1804 spin_lock(&adapter->stats64_lock);
1805 igb_update_stats(adapter, &adapter->stats64);
1806 spin_unlock(&adapter->stats64_lock);
1807
1808 adapter->link_speed = 0;
1809 adapter->link_duplex = 0;
1810
1811 if (!pci_channel_offline(adapter->pdev))
1812 igb_reset(adapter);
1813 igb_clean_all_tx_rings(adapter);
1814 igb_clean_all_rx_rings(adapter);
1815#ifdef CONFIG_IGB_DCA
1816
1817 /* since we reset the hardware DCA settings were cleared */
1818 igb_setup_dca(adapter);
1819#endif
1820}
1821
1822void igb_reinit_locked(struct igb_adapter *adapter)
1823{
1824 WARN_ON(in_interrupt());
1825 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1826 usleep_range(1000, 2000);
1827 igb_down(adapter);
1828 igb_up(adapter);
1829 clear_bit(__IGB_RESETTING, &adapter->state);
1830}
1831
1832/** igb_enable_mas - Media Autosense re-enable after swap
1833 *
1834 * @adapter: adapter struct
1835 **/
1836static s32 igb_enable_mas(struct igb_adapter *adapter)
1837{
1838 struct e1000_hw *hw = &adapter->hw;
1839 u32 connsw;
1840 s32 ret_val = 0;
1841
1842 connsw = rd32(E1000_CONNSW);
1843 if (!(hw->phy.media_type == e1000_media_type_copper))
1844 return ret_val;
1845
1846 /* configure for SerDes media detect */
1847 if (!(connsw & E1000_CONNSW_SERDESD)) {
1848 connsw |= E1000_CONNSW_ENRGSRC;
1849 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1850 wr32(E1000_CONNSW, connsw);
1851 wrfl();
1852 } else if (connsw & E1000_CONNSW_SERDESD) {
1853 /* already SerDes, no need to enable anything */
1854 return ret_val;
1855 } else {
1856 netdev_info(adapter->netdev,
1857 "MAS: Unable to configure feature, disabling..\n");
1858 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1859 }
1860 return ret_val;
1861}
1862
1863void igb_reset(struct igb_adapter *adapter)
1864{
1865 struct pci_dev *pdev = adapter->pdev;
1866 struct e1000_hw *hw = &adapter->hw;
1867 struct e1000_mac_info *mac = &hw->mac;
1868 struct e1000_fc_info *fc = &hw->fc;
1869 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1870
1871 /* Repartition Pba for greater than 9k mtu
1872 * To take effect CTRL.RST is required.
1873 */
1874 switch (mac->type) {
1875 case e1000_i350:
1876 case e1000_i354:
1877 case e1000_82580:
1878 pba = rd32(E1000_RXPBS);
1879 pba = igb_rxpbs_adjust_82580(pba);
1880 break;
1881 case e1000_82576:
1882 pba = rd32(E1000_RXPBS);
1883 pba &= E1000_RXPBS_SIZE_MASK_82576;
1884 break;
1885 case e1000_82575:
1886 case e1000_i210:
1887 case e1000_i211:
1888 default:
1889 pba = E1000_PBA_34K;
1890 break;
1891 }
1892
1893 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1894 (mac->type < e1000_82576)) {
1895 /* adjust PBA for jumbo frames */
1896 wr32(E1000_PBA, pba);
1897
1898 /* To maintain wire speed transmits, the Tx FIFO should be
1899 * large enough to accommodate two full transmit packets,
1900 * rounded up to the next 1KB and expressed in KB. Likewise,
1901 * the Rx FIFO should be large enough to accommodate at least
1902 * one full receive packet and is similarly rounded up and
1903 * expressed in KB.
1904 */
1905 pba = rd32(E1000_PBA);
1906 /* upper 16 bits has Tx packet buffer allocation size in KB */
1907 tx_space = pba >> 16;
1908 /* lower 16 bits has Rx packet buffer allocation size in KB */
1909 pba &= 0xffff;
1910 /* the Tx fifo also stores 16 bytes of information about the Tx
1911 * but don't include ethernet FCS because hardware appends it
1912 */
1913 min_tx_space = (adapter->max_frame_size +
1914 sizeof(union e1000_adv_tx_desc) -
1915 ETH_FCS_LEN) * 2;
1916 min_tx_space = ALIGN(min_tx_space, 1024);
1917 min_tx_space >>= 10;
1918 /* software strips receive CRC, so leave room for it */
1919 min_rx_space = adapter->max_frame_size;
1920 min_rx_space = ALIGN(min_rx_space, 1024);
1921 min_rx_space >>= 10;
1922
1923 /* If current Tx allocation is less than the min Tx FIFO size,
1924 * and the min Tx FIFO size is less than the current Rx FIFO
1925 * allocation, take space away from current Rx allocation
1926 */
1927 if (tx_space < min_tx_space &&
1928 ((min_tx_space - tx_space) < pba)) {
1929 pba = pba - (min_tx_space - tx_space);
1930
1931 /* if short on Rx space, Rx wins and must trump Tx
1932 * adjustment
1933 */
1934 if (pba < min_rx_space)
1935 pba = min_rx_space;
1936 }
1937 wr32(E1000_PBA, pba);
1938 }
1939
1940 /* flow control settings */
1941 /* The high water mark must be low enough to fit one full frame
1942 * (or the size used for early receive) above it in the Rx FIFO.
1943 * Set it to the lower of:
1944 * - 90% of the Rx FIFO size, or
1945 * - the full Rx FIFO size minus one full frame
1946 */
1947 hwm = min(((pba << 10) * 9 / 10),
1948 ((pba << 10) - 2 * adapter->max_frame_size));
1949
1950 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1951 fc->low_water = fc->high_water - 16;
1952 fc->pause_time = 0xFFFF;
1953 fc->send_xon = 1;
1954 fc->current_mode = fc->requested_mode;
1955
1956 /* disable receive for all VFs and wait one second */
1957 if (adapter->vfs_allocated_count) {
1958 int i;
1959
1960 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963 /* ping all the active vfs to let them know we are going down */
1964 igb_ping_all_vfs(adapter);
1965
1966 /* disable transmits and receives */
1967 wr32(E1000_VFRE, 0);
1968 wr32(E1000_VFTE, 0);
1969 }
1970
1971 /* Allow time for pending master requests to run */
1972 hw->mac.ops.reset_hw(hw);
1973 wr32(E1000_WUC, 0);
1974
1975 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976 /* need to resetup here after media swap */
1977 adapter->ei.get_invariants(hw);
1978 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979 }
1980 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1981 if (igb_enable_mas(adapter))
1982 dev_err(&pdev->dev,
1983 "Error enabling Media Auto Sense\n");
1984 }
1985 if (hw->mac.ops.init_hw(hw))
1986 dev_err(&pdev->dev, "Hardware Error\n");
1987
1988 /* Flow control settings reset on hardware reset, so guarantee flow
1989 * control is off when forcing speed.
1990 */
1991 if (!hw->mac.autoneg)
1992 igb_force_mac_fc(hw);
1993
1994 igb_init_dmac(adapter, pba);
1995#ifdef CONFIG_IGB_HWMON
1996 /* Re-initialize the thermal sensor on i350 devices. */
1997 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1998 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1999 /* If present, re-initialize the external thermal sensor
2000 * interface.
2001 */
2002 if (adapter->ets)
2003 mac->ops.init_thermal_sensor_thresh(hw);
2004 }
2005 }
2006#endif
2007 /* Re-establish EEE setting */
2008 if (hw->phy.media_type == e1000_media_type_copper) {
2009 switch (mac->type) {
2010 case e1000_i350:
2011 case e1000_i210:
2012 case e1000_i211:
2013 igb_set_eee_i350(hw);
2014 break;
2015 case e1000_i354:
2016 igb_set_eee_i354(hw);
2017 break;
2018 default:
2019 break;
2020 }
2021 }
2022 if (!netif_running(adapter->netdev))
2023 igb_power_down_link(adapter);
2024
2025 igb_update_mng_vlan(adapter);
2026
2027 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2028 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2029
2030 /* Re-enable PTP, where applicable. */
2031 igb_ptp_reset(adapter);
2032
2033 igb_get_phy_info(hw);
2034}
2035
2036static netdev_features_t igb_fix_features(struct net_device *netdev,
2037 netdev_features_t features)
2038{
2039 /* Since there is no support for separate Rx/Tx vlan accel
2040 * enable/disable make sure Tx flag is always in same state as Rx.
2041 */
2042 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2043 features |= NETIF_F_HW_VLAN_CTAG_TX;
2044 else
2045 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2046
2047 return features;
2048}
2049
2050static int igb_set_features(struct net_device *netdev,
2051 netdev_features_t features)
2052{
2053 netdev_features_t changed = netdev->features ^ features;
2054 struct igb_adapter *adapter = netdev_priv(netdev);
2055
2056 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2057 igb_vlan_mode(netdev, features);
2058
2059 if (!(changed & NETIF_F_RXALL))
2060 return 0;
2061
2062 netdev->features = features;
2063
2064 if (netif_running(netdev))
2065 igb_reinit_locked(adapter);
2066 else
2067 igb_reset(adapter);
2068
2069 return 0;
2070}
2071
2072static const struct net_device_ops igb_netdev_ops = {
2073 .ndo_open = igb_open,
2074 .ndo_stop = igb_close,
2075 .ndo_start_xmit = igb_xmit_frame,
2076 .ndo_get_stats64 = igb_get_stats64,
2077 .ndo_set_rx_mode = igb_set_rx_mode,
2078 .ndo_set_mac_address = igb_set_mac,
2079 .ndo_change_mtu = igb_change_mtu,
2080 .ndo_do_ioctl = igb_ioctl,
2081 .ndo_tx_timeout = igb_tx_timeout,
2082 .ndo_validate_addr = eth_validate_addr,
2083 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2084 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2085 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2086 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2087 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
2088 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2089 .ndo_get_vf_config = igb_ndo_get_vf_config,
2090#ifdef CONFIG_NET_POLL_CONTROLLER
2091 .ndo_poll_controller = igb_netpoll,
2092#endif
2093 .ndo_fix_features = igb_fix_features,
2094 .ndo_set_features = igb_set_features,
2095};
2096
2097/**
2098 * igb_set_fw_version - Configure version string for ethtool
2099 * @adapter: adapter struct
2100 **/
2101void igb_set_fw_version(struct igb_adapter *adapter)
2102{
2103 struct e1000_hw *hw = &adapter->hw;
2104 struct e1000_fw_version fw;
2105
2106 igb_get_fw_version(hw, &fw);
2107
2108 switch (hw->mac.type) {
2109 case e1000_i210:
2110 case e1000_i211:
2111 if (!(igb_get_flash_presence_i210(hw))) {
2112 snprintf(adapter->fw_version,
2113 sizeof(adapter->fw_version),
2114 "%2d.%2d-%d",
2115 fw.invm_major, fw.invm_minor,
2116 fw.invm_img_type);
2117 break;
2118 }
2119 /* fall through */
2120 default:
2121 /* if option is rom valid, display its version too */
2122 if (fw.or_valid) {
2123 snprintf(adapter->fw_version,
2124 sizeof(adapter->fw_version),
2125 "%d.%d, 0x%08x, %d.%d.%d",
2126 fw.eep_major, fw.eep_minor, fw.etrack_id,
2127 fw.or_major, fw.or_build, fw.or_patch);
2128 /* no option rom */
2129 } else if (fw.etrack_id != 0X0000) {
2130 snprintf(adapter->fw_version,
2131 sizeof(adapter->fw_version),
2132 "%d.%d, 0x%08x",
2133 fw.eep_major, fw.eep_minor, fw.etrack_id);
2134 } else {
2135 snprintf(adapter->fw_version,
2136 sizeof(adapter->fw_version),
2137 "%d.%d.%d",
2138 fw.eep_major, fw.eep_minor, fw.eep_build);
2139 }
2140 break;
2141 }
2142 return;
2143}
2144
2145/**
2146 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2147 *
2148 * @adapter: adapter struct
2149 **/
2150static void igb_init_mas(struct igb_adapter *adapter)
2151{
2152 struct e1000_hw *hw = &adapter->hw;
2153 u16 eeprom_data;
2154
2155 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2156 switch (hw->bus.func) {
2157 case E1000_FUNC_0:
2158 if (eeprom_data & IGB_MAS_ENABLE_0) {
2159 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2160 netdev_info(adapter->netdev,
2161 "MAS: Enabling Media Autosense for port %d\n",
2162 hw->bus.func);
2163 }
2164 break;
2165 case E1000_FUNC_1:
2166 if (eeprom_data & IGB_MAS_ENABLE_1) {
2167 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2168 netdev_info(adapter->netdev,
2169 "MAS: Enabling Media Autosense for port %d\n",
2170 hw->bus.func);
2171 }
2172 break;
2173 case E1000_FUNC_2:
2174 if (eeprom_data & IGB_MAS_ENABLE_2) {
2175 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2176 netdev_info(adapter->netdev,
2177 "MAS: Enabling Media Autosense for port %d\n",
2178 hw->bus.func);
2179 }
2180 break;
2181 case E1000_FUNC_3:
2182 if (eeprom_data & IGB_MAS_ENABLE_3) {
2183 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2184 netdev_info(adapter->netdev,
2185 "MAS: Enabling Media Autosense for port %d\n",
2186 hw->bus.func);
2187 }
2188 break;
2189 default:
2190 /* Shouldn't get here */
2191 netdev_err(adapter->netdev,
2192 "MAS: Invalid port configuration, returning\n");
2193 break;
2194 }
2195}
2196
2197/**
2198 * igb_init_i2c - Init I2C interface
2199 * @adapter: pointer to adapter structure
2200 **/
2201static s32 igb_init_i2c(struct igb_adapter *adapter)
2202{
2203 s32 status = E1000_SUCCESS;
2204
2205 /* I2C interface supported on i350 devices */
2206 if (adapter->hw.mac.type != e1000_i350)
2207 return E1000_SUCCESS;
2208
2209 /* Initialize the i2c bus which is controlled by the registers.
2210 * This bus will use the i2c_algo_bit structue that implements
2211 * the protocol through toggling of the 4 bits in the register.
2212 */
2213 adapter->i2c_adap.owner = THIS_MODULE;
2214 adapter->i2c_algo = igb_i2c_algo;
2215 adapter->i2c_algo.data = adapter;
2216 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2217 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2218 strlcpy(adapter->i2c_adap.name, "igb BB",
2219 sizeof(adapter->i2c_adap.name));
2220 status = i2c_bit_add_bus(&adapter->i2c_adap);
2221 return status;
2222}
2223
2224/**
2225 * igb_probe - Device Initialization Routine
2226 * @pdev: PCI device information struct
2227 * @ent: entry in igb_pci_tbl
2228 *
2229 * Returns 0 on success, negative on failure
2230 *
2231 * igb_probe initializes an adapter identified by a pci_dev structure.
2232 * The OS initialization, configuring of the adapter private structure,
2233 * and a hardware reset occur.
2234 **/
2235static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2236{
2237 struct net_device *netdev;
2238 struct igb_adapter *adapter;
2239 struct e1000_hw *hw;
2240 u16 eeprom_data = 0;
2241 s32 ret_val;
2242 static int global_quad_port_a; /* global quad port a indication */
2243 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2244 int err, pci_using_dac;
2245 u8 part_str[E1000_PBANUM_LENGTH];
2246
2247 /* Catch broken hardware that put the wrong VF device ID in
2248 * the PCIe SR-IOV capability.
2249 */
2250 if (pdev->is_virtfn) {
2251 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2252 pci_name(pdev), pdev->vendor, pdev->device);
2253 return -EINVAL;
2254 }
2255
2256 err = pci_enable_device_mem(pdev);
2257 if (err)
2258 return err;
2259
2260 pci_using_dac = 0;
2261 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2262 if (!err) {
2263 pci_using_dac = 1;
2264 } else {
2265 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2266 if (err) {
2267 dev_err(&pdev->dev,
2268 "No usable DMA configuration, aborting\n");
2269 goto err_dma;
2270 }
2271 }
2272
2273 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2274 IORESOURCE_MEM),
2275 igb_driver_name);
2276 if (err)
2277 goto err_pci_reg;
2278
2279 pci_enable_pcie_error_reporting(pdev);
2280
2281 pci_set_master(pdev);
2282 pci_save_state(pdev);
2283
2284 err = -ENOMEM;
2285 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2286 IGB_MAX_TX_QUEUES);
2287 if (!netdev)
2288 goto err_alloc_etherdev;
2289
2290 SET_NETDEV_DEV(netdev, &pdev->dev);
2291
2292 pci_set_drvdata(pdev, netdev);
2293 adapter = netdev_priv(netdev);
2294 adapter->netdev = netdev;
2295 adapter->pdev = pdev;
2296 hw = &adapter->hw;
2297 hw->back = adapter;
2298 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2299
2300 err = -EIO;
2301 hw->hw_addr = pci_iomap(pdev, 0, 0);
2302 if (!hw->hw_addr)
2303 goto err_ioremap;
2304
2305 netdev->netdev_ops = &igb_netdev_ops;
2306 igb_set_ethtool_ops(netdev);
2307 netdev->watchdog_timeo = 5 * HZ;
2308
2309 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2310
2311 netdev->mem_start = pci_resource_start(pdev, 0);
2312 netdev->mem_end = pci_resource_end(pdev, 0);
2313
2314 /* PCI config space info */
2315 hw->vendor_id = pdev->vendor;
2316 hw->device_id = pdev->device;
2317 hw->revision_id = pdev->revision;
2318 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2319 hw->subsystem_device_id = pdev->subsystem_device;
2320
2321 /* Copy the default MAC, PHY and NVM function pointers */
2322 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2323 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2324 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2325 /* Initialize skew-specific constants */
2326 err = ei->get_invariants(hw);
2327 if (err)
2328 goto err_sw_init;
2329
2330 /* setup the private structure */
2331 err = igb_sw_init(adapter);
2332 if (err)
2333 goto err_sw_init;
2334
2335 igb_get_bus_info_pcie(hw);
2336
2337 hw->phy.autoneg_wait_to_complete = false;
2338
2339 /* Copper options */
2340 if (hw->phy.media_type == e1000_media_type_copper) {
2341 hw->phy.mdix = AUTO_ALL_MODES;
2342 hw->phy.disable_polarity_correction = false;
2343 hw->phy.ms_type = e1000_ms_hw_default;
2344 }
2345
2346 if (igb_check_reset_block(hw))
2347 dev_info(&pdev->dev,
2348 "PHY reset is blocked due to SOL/IDER session.\n");
2349
2350 /* features is initialized to 0 in allocation, it might have bits
2351 * set by igb_sw_init so we should use an or instead of an
2352 * assignment.
2353 */
2354 netdev->features |= NETIF_F_SG |
2355 NETIF_F_IP_CSUM |
2356 NETIF_F_IPV6_CSUM |
2357 NETIF_F_TSO |
2358 NETIF_F_TSO6 |
2359 NETIF_F_RXHASH |
2360 NETIF_F_RXCSUM |
2361 NETIF_F_HW_VLAN_CTAG_RX |
2362 NETIF_F_HW_VLAN_CTAG_TX;
2363
2364 /* copy netdev features into list of user selectable features */
2365 netdev->hw_features |= netdev->features;
2366 netdev->hw_features |= NETIF_F_RXALL;
2367
2368 /* set this bit last since it cannot be part of hw_features */
2369 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2370
2371 netdev->vlan_features |= NETIF_F_TSO |
2372 NETIF_F_TSO6 |
2373 NETIF_F_IP_CSUM |
2374 NETIF_F_IPV6_CSUM |
2375 NETIF_F_SG;
2376
2377 netdev->priv_flags |= IFF_SUPP_NOFCS;
2378
2379 if (pci_using_dac) {
2380 netdev->features |= NETIF_F_HIGHDMA;
2381 netdev->vlan_features |= NETIF_F_HIGHDMA;
2382 }
2383
2384 if (hw->mac.type >= e1000_82576) {
2385 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2386 netdev->features |= NETIF_F_SCTP_CSUM;
2387 }
2388
2389 netdev->priv_flags |= IFF_UNICAST_FLT;
2390
2391 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2392
2393 /* before reading the NVM, reset the controller to put the device in a
2394 * known good starting state
2395 */
2396 hw->mac.ops.reset_hw(hw);
2397
2398 /* make sure the NVM is good , i211/i210 parts can have special NVM
2399 * that doesn't contain a checksum
2400 */
2401 switch (hw->mac.type) {
2402 case e1000_i210:
2403 case e1000_i211:
2404 if (igb_get_flash_presence_i210(hw)) {
2405 if (hw->nvm.ops.validate(hw) < 0) {
2406 dev_err(&pdev->dev,
2407 "The NVM Checksum Is Not Valid\n");
2408 err = -EIO;
2409 goto err_eeprom;
2410 }
2411 }
2412 break;
2413 default:
2414 if (hw->nvm.ops.validate(hw) < 0) {
2415 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2416 err = -EIO;
2417 goto err_eeprom;
2418 }
2419 break;
2420 }
2421
2422 /* copy the MAC address out of the NVM */
2423 if (hw->mac.ops.read_mac_addr(hw))
2424 dev_err(&pdev->dev, "NVM Read Error\n");
2425
2426 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2427
2428 if (!is_valid_ether_addr(netdev->dev_addr)) {
2429 dev_err(&pdev->dev, "Invalid MAC Address\n");
2430 err = -EIO;
2431 goto err_eeprom;
2432 }
2433
2434 /* get firmware version for ethtool -i */
2435 igb_set_fw_version(adapter);
2436
2437 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2438 (unsigned long) adapter);
2439 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2440 (unsigned long) adapter);
2441
2442 INIT_WORK(&adapter->reset_task, igb_reset_task);
2443 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2444
2445 /* Initialize link properties that are user-changeable */
2446 adapter->fc_autoneg = true;
2447 hw->mac.autoneg = true;
2448 hw->phy.autoneg_advertised = 0x2f;
2449
2450 hw->fc.requested_mode = e1000_fc_default;
2451 hw->fc.current_mode = e1000_fc_default;
2452
2453 igb_validate_mdi_setting(hw);
2454
2455 /* By default, support wake on port A */
2456 if (hw->bus.func == 0)
2457 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2458
2459 /* Check the NVM for wake support on non-port A ports */
2460 if (hw->mac.type >= e1000_82580)
2461 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2462 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2463 &eeprom_data);
2464 else if (hw->bus.func == 1)
2465 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2466
2467 if (eeprom_data & IGB_EEPROM_APME)
2468 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2469
2470 /* now that we have the eeprom settings, apply the special cases where
2471 * the eeprom may be wrong or the board simply won't support wake on
2472 * lan on a particular port
2473 */
2474 switch (pdev->device) {
2475 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2476 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2477 break;
2478 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2479 case E1000_DEV_ID_82576_FIBER:
2480 case E1000_DEV_ID_82576_SERDES:
2481 /* Wake events only supported on port A for dual fiber
2482 * regardless of eeprom setting
2483 */
2484 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2485 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2486 break;
2487 case E1000_DEV_ID_82576_QUAD_COPPER:
2488 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2489 /* if quad port adapter, disable WoL on all but port A */
2490 if (global_quad_port_a != 0)
2491 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2492 else
2493 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2494 /* Reset for multiple quad port adapters */
2495 if (++global_quad_port_a == 4)
2496 global_quad_port_a = 0;
2497 break;
2498 default:
2499 /* If the device can't wake, don't set software support */
2500 if (!device_can_wakeup(&adapter->pdev->dev))
2501 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2502 }
2503
2504 /* initialize the wol settings based on the eeprom settings */
2505 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2506 adapter->wol |= E1000_WUFC_MAG;
2507
2508 /* Some vendors want WoL disabled by default, but still supported */
2509 if ((hw->mac.type == e1000_i350) &&
2510 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2511 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2512 adapter->wol = 0;
2513 }
2514
2515 device_set_wakeup_enable(&adapter->pdev->dev,
2516 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2517
2518 /* reset the hardware with the new settings */
2519 igb_reset(adapter);
2520
2521 /* Init the I2C interface */
2522 err = igb_init_i2c(adapter);
2523 if (err) {
2524 dev_err(&pdev->dev, "failed to init i2c interface\n");
2525 goto err_eeprom;
2526 }
2527
2528 /* let the f/w know that the h/w is now under the control of the
2529 * driver.
2530 */
2531 igb_get_hw_control(adapter);
2532
2533 strcpy(netdev->name, "eth%d");
2534 err = register_netdev(netdev);
2535 if (err)
2536 goto err_register;
2537
2538 /* carrier off reporting is important to ethtool even BEFORE open */
2539 netif_carrier_off(netdev);
2540
2541#ifdef CONFIG_IGB_DCA
2542 if (dca_add_requester(&pdev->dev) == 0) {
2543 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2544 dev_info(&pdev->dev, "DCA enabled\n");
2545 igb_setup_dca(adapter);
2546 }
2547
2548#endif
2549#ifdef CONFIG_IGB_HWMON
2550 /* Initialize the thermal sensor on i350 devices. */
2551 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2552 u16 ets_word;
2553
2554 /* Read the NVM to determine if this i350 device supports an
2555 * external thermal sensor.
2556 */
2557 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2558 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2559 adapter->ets = true;
2560 else
2561 adapter->ets = false;
2562 if (igb_sysfs_init(adapter))
2563 dev_err(&pdev->dev,
2564 "failed to allocate sysfs resources\n");
2565 } else {
2566 adapter->ets = false;
2567 }
2568#endif
2569 /* Check if Media Autosense is enabled */
2570 adapter->ei = *ei;
2571 if (hw->dev_spec._82575.mas_capable)
2572 igb_init_mas(adapter);
2573
2574 /* do hw tstamp init after resetting */
2575 igb_ptp_init(adapter);
2576
2577 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2578 /* print bus type/speed/width info, not applicable to i354 */
2579 if (hw->mac.type != e1000_i354) {
2580 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2581 netdev->name,
2582 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2583 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2584 "unknown"),
2585 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2586 "Width x4" :
2587 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2588 "Width x2" :
2589 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2590 "Width x1" : "unknown"), netdev->dev_addr);
2591 }
2592
2593 if ((hw->mac.type >= e1000_i210 ||
2594 igb_get_flash_presence_i210(hw))) {
2595 ret_val = igb_read_part_string(hw, part_str,
2596 E1000_PBANUM_LENGTH);
2597 } else {
2598 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2599 }
2600
2601 if (ret_val)
2602 strcpy(part_str, "Unknown");
2603 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2604 dev_info(&pdev->dev,
2605 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2606 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2607 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2608 adapter->num_rx_queues, adapter->num_tx_queues);
2609 if (hw->phy.media_type == e1000_media_type_copper) {
2610 switch (hw->mac.type) {
2611 case e1000_i350:
2612 case e1000_i210:
2613 case e1000_i211:
2614 /* Enable EEE for internal copper PHY devices */
2615 err = igb_set_eee_i350(hw);
2616 if ((!err) &&
2617 (!hw->dev_spec._82575.eee_disable)) {
2618 adapter->eee_advert =
2619 MDIO_EEE_100TX | MDIO_EEE_1000T;
2620 adapter->flags |= IGB_FLAG_EEE;
2621 }
2622 break;
2623 case e1000_i354:
2624 if ((rd32(E1000_CTRL_EXT) &
2625 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2626 err = igb_set_eee_i354(hw);
2627 if ((!err) &&
2628 (!hw->dev_spec._82575.eee_disable)) {
2629 adapter->eee_advert =
2630 MDIO_EEE_100TX | MDIO_EEE_1000T;
2631 adapter->flags |= IGB_FLAG_EEE;
2632 }
2633 }
2634 break;
2635 default:
2636 break;
2637 }
2638 }
2639 pm_runtime_put_noidle(&pdev->dev);
2640 return 0;
2641
2642err_register:
2643 igb_release_hw_control(adapter);
2644 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2645err_eeprom:
2646 if (!igb_check_reset_block(hw))
2647 igb_reset_phy(hw);
2648
2649 if (hw->flash_address)
2650 iounmap(hw->flash_address);
2651err_sw_init:
2652 igb_clear_interrupt_scheme(adapter);
2653 pci_iounmap(pdev, hw->hw_addr);
2654err_ioremap:
2655 free_netdev(netdev);
2656err_alloc_etherdev:
2657 pci_release_selected_regions(pdev,
2658 pci_select_bars(pdev, IORESOURCE_MEM));
2659err_pci_reg:
2660err_dma:
2661 pci_disable_device(pdev);
2662 return err;
2663}
2664
2665#ifdef CONFIG_PCI_IOV
2666static int igb_disable_sriov(struct pci_dev *pdev)
2667{
2668 struct net_device *netdev = pci_get_drvdata(pdev);
2669 struct igb_adapter *adapter = netdev_priv(netdev);
2670 struct e1000_hw *hw = &adapter->hw;
2671
2672 /* reclaim resources allocated to VFs */
2673 if (adapter->vf_data) {
2674 /* disable iov and allow time for transactions to clear */
2675 if (pci_vfs_assigned(pdev)) {
2676 dev_warn(&pdev->dev,
2677 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2678 return -EPERM;
2679 } else {
2680 pci_disable_sriov(pdev);
2681 msleep(500);
2682 }
2683
2684 kfree(adapter->vf_data);
2685 adapter->vf_data = NULL;
2686 adapter->vfs_allocated_count = 0;
2687 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2688 wrfl();
2689 msleep(100);
2690 dev_info(&pdev->dev, "IOV Disabled\n");
2691
2692 /* Re-enable DMA Coalescing flag since IOV is turned off */
2693 adapter->flags |= IGB_FLAG_DMAC;
2694 }
2695
2696 return 0;
2697}
2698
2699static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2700{
2701 struct net_device *netdev = pci_get_drvdata(pdev);
2702 struct igb_adapter *adapter = netdev_priv(netdev);
2703 int old_vfs = pci_num_vf(pdev);
2704 int err = 0;
2705 int i;
2706
2707 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2708 err = -EPERM;
2709 goto out;
2710 }
2711 if (!num_vfs)
2712 goto out;
2713
2714 if (old_vfs) {
2715 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2716 old_vfs, max_vfs);
2717 adapter->vfs_allocated_count = old_vfs;
2718 } else
2719 adapter->vfs_allocated_count = num_vfs;
2720
2721 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2722 sizeof(struct vf_data_storage), GFP_KERNEL);
2723
2724 /* if allocation failed then we do not support SR-IOV */
2725 if (!adapter->vf_data) {
2726 adapter->vfs_allocated_count = 0;
2727 dev_err(&pdev->dev,
2728 "Unable to allocate memory for VF Data Storage\n");
2729 err = -ENOMEM;
2730 goto out;
2731 }
2732
2733 /* only call pci_enable_sriov() if no VFs are allocated already */
2734 if (!old_vfs) {
2735 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2736 if (err)
2737 goto err_out;
2738 }
2739 dev_info(&pdev->dev, "%d VFs allocated\n",
2740 adapter->vfs_allocated_count);
2741 for (i = 0; i < adapter->vfs_allocated_count; i++)
2742 igb_vf_configure(adapter, i);
2743
2744 /* DMA Coalescing is not supported in IOV mode. */
2745 adapter->flags &= ~IGB_FLAG_DMAC;
2746 goto out;
2747
2748err_out:
2749 kfree(adapter->vf_data);
2750 adapter->vf_data = NULL;
2751 adapter->vfs_allocated_count = 0;
2752out:
2753 return err;
2754}
2755
2756#endif
2757/**
2758 * igb_remove_i2c - Cleanup I2C interface
2759 * @adapter: pointer to adapter structure
2760 **/
2761static void igb_remove_i2c(struct igb_adapter *adapter)
2762{
2763 /* free the adapter bus structure */
2764 i2c_del_adapter(&adapter->i2c_adap);
2765}
2766
2767/**
2768 * igb_remove - Device Removal Routine
2769 * @pdev: PCI device information struct
2770 *
2771 * igb_remove is called by the PCI subsystem to alert the driver
2772 * that it should release a PCI device. The could be caused by a
2773 * Hot-Plug event, or because the driver is going to be removed from
2774 * memory.
2775 **/
2776static void igb_remove(struct pci_dev *pdev)
2777{
2778 struct net_device *netdev = pci_get_drvdata(pdev);
2779 struct igb_adapter *adapter = netdev_priv(netdev);
2780 struct e1000_hw *hw = &adapter->hw;
2781
2782 pm_runtime_get_noresume(&pdev->dev);
2783#ifdef CONFIG_IGB_HWMON
2784 igb_sysfs_exit(adapter);
2785#endif
2786 igb_remove_i2c(adapter);
2787 igb_ptp_stop(adapter);
2788 /* The watchdog timer may be rescheduled, so explicitly
2789 * disable watchdog from being rescheduled.
2790 */
2791 set_bit(__IGB_DOWN, &adapter->state);
2792 del_timer_sync(&adapter->watchdog_timer);
2793 del_timer_sync(&adapter->phy_info_timer);
2794
2795 cancel_work_sync(&adapter->reset_task);
2796 cancel_work_sync(&adapter->watchdog_task);
2797
2798#ifdef CONFIG_IGB_DCA
2799 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2800 dev_info(&pdev->dev, "DCA disabled\n");
2801 dca_remove_requester(&pdev->dev);
2802 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2803 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2804 }
2805#endif
2806
2807 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2808 * would have already happened in close and is redundant.
2809 */
2810 igb_release_hw_control(adapter);
2811
2812 unregister_netdev(netdev);
2813
2814 igb_clear_interrupt_scheme(adapter);
2815
2816#ifdef CONFIG_PCI_IOV
2817 igb_disable_sriov(pdev);
2818#endif
2819
2820 pci_iounmap(pdev, hw->hw_addr);
2821 if (hw->flash_address)
2822 iounmap(hw->flash_address);
2823 pci_release_selected_regions(pdev,
2824 pci_select_bars(pdev, IORESOURCE_MEM));
2825
2826 kfree(adapter->shadow_vfta);
2827 free_netdev(netdev);
2828
2829 pci_disable_pcie_error_reporting(pdev);
2830
2831 pci_disable_device(pdev);
2832}
2833
2834/**
2835 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2836 * @adapter: board private structure to initialize
2837 *
2838 * This function initializes the vf specific data storage and then attempts to
2839 * allocate the VFs. The reason for ordering it this way is because it is much
2840 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2841 * the memory for the VFs.
2842 **/
2843static void igb_probe_vfs(struct igb_adapter *adapter)
2844{
2845#ifdef CONFIG_PCI_IOV
2846 struct pci_dev *pdev = adapter->pdev;
2847 struct e1000_hw *hw = &adapter->hw;
2848
2849 /* Virtualization features not supported on i210 family. */
2850 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2851 return;
2852
2853 pci_sriov_set_totalvfs(pdev, 7);
2854 igb_pci_enable_sriov(pdev, max_vfs);
2855
2856#endif /* CONFIG_PCI_IOV */
2857}
2858
2859static void igb_init_queue_configuration(struct igb_adapter *adapter)
2860{
2861 struct e1000_hw *hw = &adapter->hw;
2862 u32 max_rss_queues;
2863
2864 /* Determine the maximum number of RSS queues supported. */
2865 switch (hw->mac.type) {
2866 case e1000_i211:
2867 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2868 break;
2869 case e1000_82575:
2870 case e1000_i210:
2871 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2872 break;
2873 case e1000_i350:
2874 /* I350 cannot do RSS and SR-IOV at the same time */
2875 if (!!adapter->vfs_allocated_count) {
2876 max_rss_queues = 1;
2877 break;
2878 }
2879 /* fall through */
2880 case e1000_82576:
2881 if (!!adapter->vfs_allocated_count) {
2882 max_rss_queues = 2;
2883 break;
2884 }
2885 /* fall through */
2886 case e1000_82580:
2887 case e1000_i354:
2888 default:
2889 max_rss_queues = IGB_MAX_RX_QUEUES;
2890 break;
2891 }
2892
2893 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2894
2895 /* Determine if we need to pair queues. */
2896 switch (hw->mac.type) {
2897 case e1000_82575:
2898 case e1000_i211:
2899 /* Device supports enough interrupts without queue pairing. */
2900 break;
2901 case e1000_82576:
2902 /* If VFs are going to be allocated with RSS queues then we
2903 * should pair the queues in order to conserve interrupts due
2904 * to limited supply.
2905 */
2906 if ((adapter->rss_queues > 1) &&
2907 (adapter->vfs_allocated_count > 6))
2908 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2909 /* fall through */
2910 case e1000_82580:
2911 case e1000_i350:
2912 case e1000_i354:
2913 case e1000_i210:
2914 default:
2915 /* If rss_queues > half of max_rss_queues, pair the queues in
2916 * order to conserve interrupts due to limited supply.
2917 */
2918 if (adapter->rss_queues > (max_rss_queues / 2))
2919 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2920 break;
2921 }
2922}
2923
2924/**
2925 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2926 * @adapter: board private structure to initialize
2927 *
2928 * igb_sw_init initializes the Adapter private data structure.
2929 * Fields are initialized based on PCI device information and
2930 * OS network device settings (MTU size).
2931 **/
2932static int igb_sw_init(struct igb_adapter *adapter)
2933{
2934 struct e1000_hw *hw = &adapter->hw;
2935 struct net_device *netdev = adapter->netdev;
2936 struct pci_dev *pdev = adapter->pdev;
2937
2938 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2939
2940 /* set default ring sizes */
2941 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2942 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2943
2944 /* set default ITR values */
2945 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2946 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2947
2948 /* set default work limits */
2949 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2950
2951 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2952 VLAN_HLEN;
2953 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2954
2955 spin_lock_init(&adapter->stats64_lock);
2956#ifdef CONFIG_PCI_IOV
2957 switch (hw->mac.type) {
2958 case e1000_82576:
2959 case e1000_i350:
2960 if (max_vfs > 7) {
2961 dev_warn(&pdev->dev,
2962 "Maximum of 7 VFs per PF, using max\n");
2963 max_vfs = adapter->vfs_allocated_count = 7;
2964 } else
2965 adapter->vfs_allocated_count = max_vfs;
2966 if (adapter->vfs_allocated_count)
2967 dev_warn(&pdev->dev,
2968 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2969 break;
2970 default:
2971 break;
2972 }
2973#endif /* CONFIG_PCI_IOV */
2974
2975 igb_init_queue_configuration(adapter);
2976
2977 /* Setup and initialize a copy of the hw vlan table array */
2978 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2979 GFP_ATOMIC);
2980
2981 /* This call may decrease the number of queues */
2982 if (igb_init_interrupt_scheme(adapter, true)) {
2983 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2984 return -ENOMEM;
2985 }
2986
2987 igb_probe_vfs(adapter);
2988
2989 /* Explicitly disable IRQ since the NIC can be in any state. */
2990 igb_irq_disable(adapter);
2991
2992 if (hw->mac.type >= e1000_i350)
2993 adapter->flags &= ~IGB_FLAG_DMAC;
2994
2995 set_bit(__IGB_DOWN, &adapter->state);
2996 return 0;
2997}
2998
2999/**
3000 * igb_open - Called when a network interface is made active
3001 * @netdev: network interface device structure
3002 *
3003 * Returns 0 on success, negative value on failure
3004 *
3005 * The open entry point is called when a network interface is made
3006 * active by the system (IFF_UP). At this point all resources needed
3007 * for transmit and receive operations are allocated, the interrupt
3008 * handler is registered with the OS, the watchdog timer is started,
3009 * and the stack is notified that the interface is ready.
3010 **/
3011static int __igb_open(struct net_device *netdev, bool resuming)
3012{
3013 struct igb_adapter *adapter = netdev_priv(netdev);
3014 struct e1000_hw *hw = &adapter->hw;
3015 struct pci_dev *pdev = adapter->pdev;
3016 int err;
3017 int i;
3018
3019 /* disallow open during test */
3020 if (test_bit(__IGB_TESTING, &adapter->state)) {
3021 WARN_ON(resuming);
3022 return -EBUSY;
3023 }
3024
3025 if (!resuming)
3026 pm_runtime_get_sync(&pdev->dev);
3027
3028 netif_carrier_off(netdev);
3029
3030 /* allocate transmit descriptors */
3031 err = igb_setup_all_tx_resources(adapter);
3032 if (err)
3033 goto err_setup_tx;
3034
3035 /* allocate receive descriptors */
3036 err = igb_setup_all_rx_resources(adapter);
3037 if (err)
3038 goto err_setup_rx;
3039
3040 igb_power_up_link(adapter);
3041
3042 /* before we allocate an interrupt, we must be ready to handle it.
3043 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3044 * as soon as we call pci_request_irq, so we have to setup our
3045 * clean_rx handler before we do so.
3046 */
3047 igb_configure(adapter);
3048
3049 err = igb_request_irq(adapter);
3050 if (err)
3051 goto err_req_irq;
3052
3053 /* Notify the stack of the actual queue counts. */
3054 err = netif_set_real_num_tx_queues(adapter->netdev,
3055 adapter->num_tx_queues);
3056 if (err)
3057 goto err_set_queues;
3058
3059 err = netif_set_real_num_rx_queues(adapter->netdev,
3060 adapter->num_rx_queues);
3061 if (err)
3062 goto err_set_queues;
3063
3064 /* From here on the code is the same as igb_up() */
3065 clear_bit(__IGB_DOWN, &adapter->state);
3066
3067 for (i = 0; i < adapter->num_q_vectors; i++)
3068 napi_enable(&(adapter->q_vector[i]->napi));
3069
3070 /* Clear any pending interrupts. */
3071 rd32(E1000_ICR);
3072
3073 igb_irq_enable(adapter);
3074
3075 /* notify VFs that reset has been completed */
3076 if (adapter->vfs_allocated_count) {
3077 u32 reg_data = rd32(E1000_CTRL_EXT);
3078
3079 reg_data |= E1000_CTRL_EXT_PFRSTD;
3080 wr32(E1000_CTRL_EXT, reg_data);
3081 }
3082
3083 netif_tx_start_all_queues(netdev);
3084
3085 if (!resuming)
3086 pm_runtime_put(&pdev->dev);
3087
3088 /* start the watchdog. */
3089 hw->mac.get_link_status = 1;
3090 schedule_work(&adapter->watchdog_task);
3091
3092 return 0;
3093
3094err_set_queues:
3095 igb_free_irq(adapter);
3096err_req_irq:
3097 igb_release_hw_control(adapter);
3098 igb_power_down_link(adapter);
3099 igb_free_all_rx_resources(adapter);
3100err_setup_rx:
3101 igb_free_all_tx_resources(adapter);
3102err_setup_tx:
3103 igb_reset(adapter);
3104 if (!resuming)
3105 pm_runtime_put(&pdev->dev);
3106
3107 return err;
3108}
3109
3110static int igb_open(struct net_device *netdev)
3111{
3112 return __igb_open(netdev, false);
3113}
3114
3115/**
3116 * igb_close - Disables a network interface
3117 * @netdev: network interface device structure
3118 *
3119 * Returns 0, this is not allowed to fail
3120 *
3121 * The close entry point is called when an interface is de-activated
3122 * by the OS. The hardware is still under the driver's control, but
3123 * needs to be disabled. A global MAC reset is issued to stop the
3124 * hardware, and all transmit and receive resources are freed.
3125 **/
3126static int __igb_close(struct net_device *netdev, bool suspending)
3127{
3128 struct igb_adapter *adapter = netdev_priv(netdev);
3129 struct pci_dev *pdev = adapter->pdev;
3130
3131 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3132
3133 if (!suspending)
3134 pm_runtime_get_sync(&pdev->dev);
3135
3136 igb_down(adapter);
3137 igb_free_irq(adapter);
3138
3139 igb_free_all_tx_resources(adapter);
3140 igb_free_all_rx_resources(adapter);
3141
3142 if (!suspending)
3143 pm_runtime_put_sync(&pdev->dev);
3144 return 0;
3145}
3146
3147static int igb_close(struct net_device *netdev)
3148{
3149 return __igb_close(netdev, false);
3150}
3151
3152/**
3153 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3154 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3155 *
3156 * Return 0 on success, negative on failure
3157 **/
3158int igb_setup_tx_resources(struct igb_ring *tx_ring)
3159{
3160 struct device *dev = tx_ring->dev;
3161 int size;
3162
3163 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3164
3165 tx_ring->tx_buffer_info = vzalloc(size);
3166 if (!tx_ring->tx_buffer_info)
3167 goto err;
3168
3169 /* round up to nearest 4K */
3170 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3171 tx_ring->size = ALIGN(tx_ring->size, 4096);
3172
3173 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3174 &tx_ring->dma, GFP_KERNEL);
3175 if (!tx_ring->desc)
3176 goto err;
3177
3178 tx_ring->next_to_use = 0;
3179 tx_ring->next_to_clean = 0;
3180
3181 return 0;
3182
3183err:
3184 vfree(tx_ring->tx_buffer_info);
3185 tx_ring->tx_buffer_info = NULL;
3186 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3187 return -ENOMEM;
3188}
3189
3190/**
3191 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3192 * (Descriptors) for all queues
3193 * @adapter: board private structure
3194 *
3195 * Return 0 on success, negative on failure
3196 **/
3197static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3198{
3199 struct pci_dev *pdev = adapter->pdev;
3200 int i, err = 0;
3201
3202 for (i = 0; i < adapter->num_tx_queues; i++) {
3203 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3204 if (err) {
3205 dev_err(&pdev->dev,
3206 "Allocation for Tx Queue %u failed\n", i);
3207 for (i--; i >= 0; i--)
3208 igb_free_tx_resources(adapter->tx_ring[i]);
3209 break;
3210 }
3211 }
3212
3213 return err;
3214}
3215
3216/**
3217 * igb_setup_tctl - configure the transmit control registers
3218 * @adapter: Board private structure
3219 **/
3220void igb_setup_tctl(struct igb_adapter *adapter)
3221{
3222 struct e1000_hw *hw = &adapter->hw;
3223 u32 tctl;
3224
3225 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3226 wr32(E1000_TXDCTL(0), 0);
3227
3228 /* Program the Transmit Control Register */
3229 tctl = rd32(E1000_TCTL);
3230 tctl &= ~E1000_TCTL_CT;
3231 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3232 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3233
3234 igb_config_collision_dist(hw);
3235
3236 /* Enable transmits */
3237 tctl |= E1000_TCTL_EN;
3238
3239 wr32(E1000_TCTL, tctl);
3240}
3241
3242/**
3243 * igb_configure_tx_ring - Configure transmit ring after Reset
3244 * @adapter: board private structure
3245 * @ring: tx ring to configure
3246 *
3247 * Configure a transmit ring after a reset.
3248 **/
3249void igb_configure_tx_ring(struct igb_adapter *adapter,
3250 struct igb_ring *ring)
3251{
3252 struct e1000_hw *hw = &adapter->hw;
3253 u32 txdctl = 0;
3254 u64 tdba = ring->dma;
3255 int reg_idx = ring->reg_idx;
3256
3257 /* disable the queue */
3258 wr32(E1000_TXDCTL(reg_idx), 0);
3259 wrfl();
3260 mdelay(10);
3261
3262 wr32(E1000_TDLEN(reg_idx),
3263 ring->count * sizeof(union e1000_adv_tx_desc));
3264 wr32(E1000_TDBAL(reg_idx),
3265 tdba & 0x00000000ffffffffULL);
3266 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3267
3268 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3269 wr32(E1000_TDH(reg_idx), 0);
3270 writel(0, ring->tail);
3271
3272 txdctl |= IGB_TX_PTHRESH;
3273 txdctl |= IGB_TX_HTHRESH << 8;
3274 txdctl |= IGB_TX_WTHRESH << 16;
3275
3276 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3277 wr32(E1000_TXDCTL(reg_idx), txdctl);
3278}
3279
3280/**
3281 * igb_configure_tx - Configure transmit Unit after Reset
3282 * @adapter: board private structure
3283 *
3284 * Configure the Tx unit of the MAC after a reset.
3285 **/
3286static void igb_configure_tx(struct igb_adapter *adapter)
3287{
3288 int i;
3289
3290 for (i = 0; i < adapter->num_tx_queues; i++)
3291 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3292}
3293
3294/**
3295 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3296 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3297 *
3298 * Returns 0 on success, negative on failure
3299 **/
3300int igb_setup_rx_resources(struct igb_ring *rx_ring)
3301{
3302 struct device *dev = rx_ring->dev;
3303 int size;
3304
3305 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3306
3307 rx_ring->rx_buffer_info = vzalloc(size);
3308 if (!rx_ring->rx_buffer_info)
3309 goto err;
3310
3311 /* Round up to nearest 4K */
3312 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3313 rx_ring->size = ALIGN(rx_ring->size, 4096);
3314
3315 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3316 &rx_ring->dma, GFP_KERNEL);
3317 if (!rx_ring->desc)
3318 goto err;
3319
3320 rx_ring->next_to_alloc = 0;
3321 rx_ring->next_to_clean = 0;
3322 rx_ring->next_to_use = 0;
3323
3324 return 0;
3325
3326err:
3327 vfree(rx_ring->rx_buffer_info);
3328 rx_ring->rx_buffer_info = NULL;
3329 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3330 return -ENOMEM;
3331}
3332
3333/**
3334 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3335 * (Descriptors) for all queues
3336 * @adapter: board private structure
3337 *
3338 * Return 0 on success, negative on failure
3339 **/
3340static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3341{
3342 struct pci_dev *pdev = adapter->pdev;
3343 int i, err = 0;
3344
3345 for (i = 0; i < adapter->num_rx_queues; i++) {
3346 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3347 if (err) {
3348 dev_err(&pdev->dev,
3349 "Allocation for Rx Queue %u failed\n", i);
3350 for (i--; i >= 0; i--)
3351 igb_free_rx_resources(adapter->rx_ring[i]);
3352 break;
3353 }
3354 }
3355
3356 return err;
3357}
3358
3359/**
3360 * igb_setup_mrqc - configure the multiple receive queue control registers
3361 * @adapter: Board private structure
3362 **/
3363static void igb_setup_mrqc(struct igb_adapter *adapter)
3364{
3365 struct e1000_hw *hw = &adapter->hw;
3366 u32 mrqc, rxcsum;
3367 u32 j, num_rx_queues;
3368 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3369 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3370 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3371 0xFA01ACBE };
3372
3373 /* Fill out hash function seeds */
3374 for (j = 0; j < 10; j++)
3375 wr32(E1000_RSSRK(j), rsskey[j]);
3376
3377 num_rx_queues = adapter->rss_queues;
3378
3379 switch (hw->mac.type) {
3380 case e1000_82576:
3381 /* 82576 supports 2 RSS queues for SR-IOV */
3382 if (adapter->vfs_allocated_count)
3383 num_rx_queues = 2;
3384 break;
3385 default:
3386 break;
3387 }
3388
3389 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3390 for (j = 0; j < IGB_RETA_SIZE; j++)
3391 adapter->rss_indir_tbl[j] =
3392 (j * num_rx_queues) / IGB_RETA_SIZE;
3393 adapter->rss_indir_tbl_init = num_rx_queues;
3394 }
3395 igb_write_rss_indir_tbl(adapter);
3396
3397 /* Disable raw packet checksumming so that RSS hash is placed in
3398 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3399 * offloads as they are enabled by default
3400 */
3401 rxcsum = rd32(E1000_RXCSUM);
3402 rxcsum |= E1000_RXCSUM_PCSD;
3403
3404 if (adapter->hw.mac.type >= e1000_82576)
3405 /* Enable Receive Checksum Offload for SCTP */
3406 rxcsum |= E1000_RXCSUM_CRCOFL;
3407
3408 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3409 wr32(E1000_RXCSUM, rxcsum);
3410
3411 /* Generate RSS hash based on packet types, TCP/UDP
3412 * port numbers and/or IPv4/v6 src and dst addresses
3413 */
3414 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3415 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3416 E1000_MRQC_RSS_FIELD_IPV6 |
3417 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3418 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3419
3420 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3421 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3422 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3423 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3424
3425 /* If VMDq is enabled then we set the appropriate mode for that, else
3426 * we default to RSS so that an RSS hash is calculated per packet even
3427 * if we are only using one queue
3428 */
3429 if (adapter->vfs_allocated_count) {
3430 if (hw->mac.type > e1000_82575) {
3431 /* Set the default pool for the PF's first queue */
3432 u32 vtctl = rd32(E1000_VT_CTL);
3433
3434 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3435 E1000_VT_CTL_DISABLE_DEF_POOL);
3436 vtctl |= adapter->vfs_allocated_count <<
3437 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3438 wr32(E1000_VT_CTL, vtctl);
3439 }
3440 if (adapter->rss_queues > 1)
3441 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3442 else
3443 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3444 } else {
3445 if (hw->mac.type != e1000_i211)
3446 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3447 }
3448 igb_vmm_control(adapter);
3449
3450 wr32(E1000_MRQC, mrqc);
3451}
3452
3453/**
3454 * igb_setup_rctl - configure the receive control registers
3455 * @adapter: Board private structure
3456 **/
3457void igb_setup_rctl(struct igb_adapter *adapter)
3458{
3459 struct e1000_hw *hw = &adapter->hw;
3460 u32 rctl;
3461
3462 rctl = rd32(E1000_RCTL);
3463
3464 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3465 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3466
3467 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3468 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3469
3470 /* enable stripping of CRC. It's unlikely this will break BMC
3471 * redirection as it did with e1000. Newer features require
3472 * that the HW strips the CRC.
3473 */
3474 rctl |= E1000_RCTL_SECRC;
3475
3476 /* disable store bad packets and clear size bits. */
3477 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3478
3479 /* enable LPE to prevent packets larger than max_frame_size */
3480 rctl |= E1000_RCTL_LPE;
3481
3482 /* disable queue 0 to prevent tail write w/o re-config */
3483 wr32(E1000_RXDCTL(0), 0);
3484
3485 /* Attention!!! For SR-IOV PF driver operations you must enable
3486 * queue drop for all VF and PF queues to prevent head of line blocking
3487 * if an un-trusted VF does not provide descriptors to hardware.
3488 */
3489 if (adapter->vfs_allocated_count) {
3490 /* set all queue drop enable bits */
3491 wr32(E1000_QDE, ALL_QUEUES);
3492 }
3493
3494 /* This is useful for sniffing bad packets. */
3495 if (adapter->netdev->features & NETIF_F_RXALL) {
3496 /* UPE and MPE will be handled by normal PROMISC logic
3497 * in e1000e_set_rx_mode
3498 */
3499 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3500 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3501 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3502
3503 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3504 E1000_RCTL_DPF | /* Allow filtered pause */
3505 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3506 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3507 * and that breaks VLANs.
3508 */
3509 }
3510
3511 wr32(E1000_RCTL, rctl);
3512}
3513
3514static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3515 int vfn)
3516{
3517 struct e1000_hw *hw = &adapter->hw;
3518 u32 vmolr;
3519
3520 /* if it isn't the PF check to see if VFs are enabled and
3521 * increase the size to support vlan tags
3522 */
3523 if (vfn < adapter->vfs_allocated_count &&
3524 adapter->vf_data[vfn].vlans_enabled)
3525 size += VLAN_TAG_SIZE;
3526
3527 vmolr = rd32(E1000_VMOLR(vfn));
3528 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3529 vmolr |= size | E1000_VMOLR_LPE;
3530 wr32(E1000_VMOLR(vfn), vmolr);
3531
3532 return 0;
3533}
3534
3535/**
3536 * igb_rlpml_set - set maximum receive packet size
3537 * @adapter: board private structure
3538 *
3539 * Configure maximum receivable packet size.
3540 **/
3541static void igb_rlpml_set(struct igb_adapter *adapter)
3542{
3543 u32 max_frame_size = adapter->max_frame_size;
3544 struct e1000_hw *hw = &adapter->hw;
3545 u16 pf_id = adapter->vfs_allocated_count;
3546
3547 if (pf_id) {
3548 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3549 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3550 * to our max jumbo frame size, in case we need to enable
3551 * jumbo frames on one of the rings later.
3552 * This will not pass over-length frames into the default
3553 * queue because it's gated by the VMOLR.RLPML.
3554 */
3555 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3556 }
3557
3558 wr32(E1000_RLPML, max_frame_size);
3559}
3560
3561static inline void igb_set_vmolr(struct igb_adapter *adapter,
3562 int vfn, bool aupe)
3563{
3564 struct e1000_hw *hw = &adapter->hw;
3565 u32 vmolr;
3566
3567 /* This register exists only on 82576 and newer so if we are older then
3568 * we should exit and do nothing
3569 */
3570 if (hw->mac.type < e1000_82576)
3571 return;
3572
3573 vmolr = rd32(E1000_VMOLR(vfn));
3574 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3575 if (hw->mac.type == e1000_i350) {
3576 u32 dvmolr;
3577
3578 dvmolr = rd32(E1000_DVMOLR(vfn));
3579 dvmolr |= E1000_DVMOLR_STRVLAN;
3580 wr32(E1000_DVMOLR(vfn), dvmolr);
3581 }
3582 if (aupe)
3583 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3584 else
3585 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3586
3587 /* clear all bits that might not be set */
3588 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3589
3590 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3591 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3592 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3593 * multicast packets
3594 */
3595 if (vfn <= adapter->vfs_allocated_count)
3596 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3597
3598 wr32(E1000_VMOLR(vfn), vmolr);
3599}
3600
3601/**
3602 * igb_configure_rx_ring - Configure a receive ring after Reset
3603 * @adapter: board private structure
3604 * @ring: receive ring to be configured
3605 *
3606 * Configure the Rx unit of the MAC after a reset.
3607 **/
3608void igb_configure_rx_ring(struct igb_adapter *adapter,
3609 struct igb_ring *ring)
3610{
3611 struct e1000_hw *hw = &adapter->hw;
3612 u64 rdba = ring->dma;
3613 int reg_idx = ring->reg_idx;
3614 u32 srrctl = 0, rxdctl = 0;
3615
3616 /* disable the queue */
3617 wr32(E1000_RXDCTL(reg_idx), 0);
3618
3619 /* Set DMA base address registers */
3620 wr32(E1000_RDBAL(reg_idx),
3621 rdba & 0x00000000ffffffffULL);
3622 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3623 wr32(E1000_RDLEN(reg_idx),
3624 ring->count * sizeof(union e1000_adv_rx_desc));
3625
3626 /* initialize head and tail */
3627 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3628 wr32(E1000_RDH(reg_idx), 0);
3629 writel(0, ring->tail);
3630
3631 /* set descriptor configuration */
3632 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3633 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3634 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3635 if (hw->mac.type >= e1000_82580)
3636 srrctl |= E1000_SRRCTL_TIMESTAMP;
3637 /* Only set Drop Enable if we are supporting multiple queues */
3638 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3639 srrctl |= E1000_SRRCTL_DROP_EN;
3640
3641 wr32(E1000_SRRCTL(reg_idx), srrctl);
3642
3643 /* set filtering for VMDQ pools */
3644 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3645
3646 rxdctl |= IGB_RX_PTHRESH;
3647 rxdctl |= IGB_RX_HTHRESH << 8;
3648 rxdctl |= IGB_RX_WTHRESH << 16;
3649
3650 /* enable receive descriptor fetching */
3651 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3652 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3653}
3654
3655/**
3656 * igb_configure_rx - Configure receive Unit after Reset
3657 * @adapter: board private structure
3658 *
3659 * Configure the Rx unit of the MAC after a reset.
3660 **/
3661static void igb_configure_rx(struct igb_adapter *adapter)
3662{
3663 int i;
3664
3665 /* set UTA to appropriate mode */
3666 igb_set_uta(adapter);
3667
3668 /* set the correct pool for the PF default MAC address in entry 0 */
3669 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3670 adapter->vfs_allocated_count);
3671
3672 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3673 * the Base and Length of the Rx Descriptor Ring
3674 */
3675 for (i = 0; i < adapter->num_rx_queues; i++)
3676 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3677}
3678
3679/**
3680 * igb_free_tx_resources - Free Tx Resources per Queue
3681 * @tx_ring: Tx descriptor ring for a specific queue
3682 *
3683 * Free all transmit software resources
3684 **/
3685void igb_free_tx_resources(struct igb_ring *tx_ring)
3686{
3687 igb_clean_tx_ring(tx_ring);
3688
3689 vfree(tx_ring->tx_buffer_info);
3690 tx_ring->tx_buffer_info = NULL;
3691
3692 /* if not set, then don't free */
3693 if (!tx_ring->desc)
3694 return;
3695
3696 dma_free_coherent(tx_ring->dev, tx_ring->size,
3697 tx_ring->desc, tx_ring->dma);
3698
3699 tx_ring->desc = NULL;
3700}
3701
3702/**
3703 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3704 * @adapter: board private structure
3705 *
3706 * Free all transmit software resources
3707 **/
3708static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3709{
3710 int i;
3711
3712 for (i = 0; i < adapter->num_tx_queues; i++)
3713 igb_free_tx_resources(adapter->tx_ring[i]);
3714}
3715
3716void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3717 struct igb_tx_buffer *tx_buffer)
3718{
3719 if (tx_buffer->skb) {
3720 dev_kfree_skb_any(tx_buffer->skb);
3721 if (dma_unmap_len(tx_buffer, len))
3722 dma_unmap_single(ring->dev,
3723 dma_unmap_addr(tx_buffer, dma),
3724 dma_unmap_len(tx_buffer, len),
3725 DMA_TO_DEVICE);
3726 } else if (dma_unmap_len(tx_buffer, len)) {
3727 dma_unmap_page(ring->dev,
3728 dma_unmap_addr(tx_buffer, dma),
3729 dma_unmap_len(tx_buffer, len),
3730 DMA_TO_DEVICE);
3731 }
3732 tx_buffer->next_to_watch = NULL;
3733 tx_buffer->skb = NULL;
3734 dma_unmap_len_set(tx_buffer, len, 0);
3735 /* buffer_info must be completely set up in the transmit path */
3736}
3737
3738/**
3739 * igb_clean_tx_ring - Free Tx Buffers
3740 * @tx_ring: ring to be cleaned
3741 **/
3742static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3743{
3744 struct igb_tx_buffer *buffer_info;
3745 unsigned long size;
3746 u16 i;
3747
3748 if (!tx_ring->tx_buffer_info)
3749 return;
3750 /* Free all the Tx ring sk_buffs */
3751
3752 for (i = 0; i < tx_ring->count; i++) {
3753 buffer_info = &tx_ring->tx_buffer_info[i];
3754 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3755 }
3756
3757 netdev_tx_reset_queue(txring_txq(tx_ring));
3758
3759 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3760 memset(tx_ring->tx_buffer_info, 0, size);
3761
3762 /* Zero out the descriptor ring */
3763 memset(tx_ring->desc, 0, tx_ring->size);
3764
3765 tx_ring->next_to_use = 0;
3766 tx_ring->next_to_clean = 0;
3767}
3768
3769/**
3770 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3771 * @adapter: board private structure
3772 **/
3773static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3774{
3775 int i;
3776
3777 for (i = 0; i < adapter->num_tx_queues; i++)
3778 igb_clean_tx_ring(adapter->tx_ring[i]);
3779}
3780
3781/**
3782 * igb_free_rx_resources - Free Rx Resources
3783 * @rx_ring: ring to clean the resources from
3784 *
3785 * Free all receive software resources
3786 **/
3787void igb_free_rx_resources(struct igb_ring *rx_ring)
3788{
3789 igb_clean_rx_ring(rx_ring);
3790
3791 vfree(rx_ring->rx_buffer_info);
3792 rx_ring->rx_buffer_info = NULL;
3793
3794 /* if not set, then don't free */
3795 if (!rx_ring->desc)
3796 return;
3797
3798 dma_free_coherent(rx_ring->dev, rx_ring->size,
3799 rx_ring->desc, rx_ring->dma);
3800
3801 rx_ring->desc = NULL;
3802}
3803
3804/**
3805 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3806 * @adapter: board private structure
3807 *
3808 * Free all receive software resources
3809 **/
3810static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3811{
3812 int i;
3813
3814 for (i = 0; i < adapter->num_rx_queues; i++)
3815 igb_free_rx_resources(adapter->rx_ring[i]);
3816}
3817
3818/**
3819 * igb_clean_rx_ring - Free Rx Buffers per Queue
3820 * @rx_ring: ring to free buffers from
3821 **/
3822static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3823{
3824 unsigned long size;
3825 u16 i;
3826
3827 if (rx_ring->skb)
3828 dev_kfree_skb(rx_ring->skb);
3829 rx_ring->skb = NULL;
3830
3831 if (!rx_ring->rx_buffer_info)
3832 return;
3833
3834 /* Free all the Rx ring sk_buffs */
3835 for (i = 0; i < rx_ring->count; i++) {
3836 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3837
3838 if (!buffer_info->page)
3839 continue;
3840
3841 dma_unmap_page(rx_ring->dev,
3842 buffer_info->dma,
3843 PAGE_SIZE,
3844 DMA_FROM_DEVICE);
3845 __free_page(buffer_info->page);
3846
3847 buffer_info->page = NULL;
3848 }
3849
3850 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3851 memset(rx_ring->rx_buffer_info, 0, size);
3852
3853 /* Zero out the descriptor ring */
3854 memset(rx_ring->desc, 0, rx_ring->size);
3855
3856 rx_ring->next_to_alloc = 0;
3857 rx_ring->next_to_clean = 0;
3858 rx_ring->next_to_use = 0;
3859}
3860
3861/**
3862 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3863 * @adapter: board private structure
3864 **/
3865static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3866{
3867 int i;
3868
3869 for (i = 0; i < adapter->num_rx_queues; i++)
3870 igb_clean_rx_ring(adapter->rx_ring[i]);
3871}
3872
3873/**
3874 * igb_set_mac - Change the Ethernet Address of the NIC
3875 * @netdev: network interface device structure
3876 * @p: pointer to an address structure
3877 *
3878 * Returns 0 on success, negative on failure
3879 **/
3880static int igb_set_mac(struct net_device *netdev, void *p)
3881{
3882 struct igb_adapter *adapter = netdev_priv(netdev);
3883 struct e1000_hw *hw = &adapter->hw;
3884 struct sockaddr *addr = p;
3885
3886 if (!is_valid_ether_addr(addr->sa_data))
3887 return -EADDRNOTAVAIL;
3888
3889 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3890 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3891
3892 /* set the correct pool for the new PF MAC address in entry 0 */
3893 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3894 adapter->vfs_allocated_count);
3895
3896 return 0;
3897}
3898
3899/**
3900 * igb_write_mc_addr_list - write multicast addresses to MTA
3901 * @netdev: network interface device structure
3902 *
3903 * Writes multicast address list to the MTA hash table.
3904 * Returns: -ENOMEM on failure
3905 * 0 on no addresses written
3906 * X on writing X addresses to MTA
3907 **/
3908static int igb_write_mc_addr_list(struct net_device *netdev)
3909{
3910 struct igb_adapter *adapter = netdev_priv(netdev);
3911 struct e1000_hw *hw = &adapter->hw;
3912 struct netdev_hw_addr *ha;
3913 u8 *mta_list;
3914 int i;
3915
3916 if (netdev_mc_empty(netdev)) {
3917 /* nothing to program, so clear mc list */
3918 igb_update_mc_addr_list(hw, NULL, 0);
3919 igb_restore_vf_multicasts(adapter);
3920 return 0;
3921 }
3922
3923 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3924 if (!mta_list)
3925 return -ENOMEM;
3926
3927 /* The shared function expects a packed array of only addresses. */
3928 i = 0;
3929 netdev_for_each_mc_addr(ha, netdev)
3930 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3931
3932 igb_update_mc_addr_list(hw, mta_list, i);
3933 kfree(mta_list);
3934
3935 return netdev_mc_count(netdev);
3936}
3937
3938/**
3939 * igb_write_uc_addr_list - write unicast addresses to RAR table
3940 * @netdev: network interface device structure
3941 *
3942 * Writes unicast address list to the RAR table.
3943 * Returns: -ENOMEM on failure/insufficient address space
3944 * 0 on no addresses written
3945 * X on writing X addresses to the RAR table
3946 **/
3947static int igb_write_uc_addr_list(struct net_device *netdev)
3948{
3949 struct igb_adapter *adapter = netdev_priv(netdev);
3950 struct e1000_hw *hw = &adapter->hw;
3951 unsigned int vfn = adapter->vfs_allocated_count;
3952 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3953 int count = 0;
3954
3955 /* return ENOMEM indicating insufficient memory for addresses */
3956 if (netdev_uc_count(netdev) > rar_entries)
3957 return -ENOMEM;
3958
3959 if (!netdev_uc_empty(netdev) && rar_entries) {
3960 struct netdev_hw_addr *ha;
3961
3962 netdev_for_each_uc_addr(ha, netdev) {
3963 if (!rar_entries)
3964 break;
3965 igb_rar_set_qsel(adapter, ha->addr,
3966 rar_entries--,
3967 vfn);
3968 count++;
3969 }
3970 }
3971 /* write the addresses in reverse order to avoid write combining */
3972 for (; rar_entries > 0 ; rar_entries--) {
3973 wr32(E1000_RAH(rar_entries), 0);
3974 wr32(E1000_RAL(rar_entries), 0);
3975 }
3976 wrfl();
3977
3978 return count;
3979}
3980
3981/**
3982 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3983 * @netdev: network interface device structure
3984 *
3985 * The set_rx_mode entry point is called whenever the unicast or multicast
3986 * address lists or the network interface flags are updated. This routine is
3987 * responsible for configuring the hardware for proper unicast, multicast,
3988 * promiscuous mode, and all-multi behavior.
3989 **/
3990static void igb_set_rx_mode(struct net_device *netdev)
3991{
3992 struct igb_adapter *adapter = netdev_priv(netdev);
3993 struct e1000_hw *hw = &adapter->hw;
3994 unsigned int vfn = adapter->vfs_allocated_count;
3995 u32 rctl, vmolr = 0;
3996 int count;
3997
3998 /* Check for Promiscuous and All Multicast modes */
3999 rctl = rd32(E1000_RCTL);
4000
4001 /* clear the effected bits */
4002 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4003
4004 if (netdev->flags & IFF_PROMISC) {
4005 /* retain VLAN HW filtering if in VT mode */
4006 if (adapter->vfs_allocated_count)
4007 rctl |= E1000_RCTL_VFE;
4008 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4009 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4010 } else {
4011 if (netdev->flags & IFF_ALLMULTI) {
4012 rctl |= E1000_RCTL_MPE;
4013 vmolr |= E1000_VMOLR_MPME;
4014 } else {
4015 /* Write addresses to the MTA, if the attempt fails
4016 * then we should just turn on promiscuous mode so
4017 * that we can at least receive multicast traffic
4018 */
4019 count = igb_write_mc_addr_list(netdev);
4020 if (count < 0) {
4021 rctl |= E1000_RCTL_MPE;
4022 vmolr |= E1000_VMOLR_MPME;
4023 } else if (count) {
4024 vmolr |= E1000_VMOLR_ROMPE;
4025 }
4026 }
4027 /* Write addresses to available RAR registers, if there is not
4028 * sufficient space to store all the addresses then enable
4029 * unicast promiscuous mode
4030 */
4031 count = igb_write_uc_addr_list(netdev);
4032 if (count < 0) {
4033 rctl |= E1000_RCTL_UPE;
4034 vmolr |= E1000_VMOLR_ROPE;
4035 }
4036 rctl |= E1000_RCTL_VFE;
4037 }
4038 wr32(E1000_RCTL, rctl);
4039
4040 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4041 * the VMOLR to enable the appropriate modes. Without this workaround
4042 * we will have issues with VLAN tag stripping not being done for frames
4043 * that are only arriving because we are the default pool
4044 */
4045 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4046 return;
4047
4048 vmolr |= rd32(E1000_VMOLR(vfn)) &
4049 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4050 wr32(E1000_VMOLR(vfn), vmolr);
4051 igb_restore_vf_multicasts(adapter);
4052}
4053
4054static void igb_check_wvbr(struct igb_adapter *adapter)
4055{
4056 struct e1000_hw *hw = &adapter->hw;
4057 u32 wvbr = 0;
4058
4059 switch (hw->mac.type) {
4060 case e1000_82576:
4061 case e1000_i350:
4062 wvbr = rd32(E1000_WVBR);
4063 if (!wvbr)
4064 return;
4065 break;
4066 default:
4067 break;
4068 }
4069
4070 adapter->wvbr |= wvbr;
4071}
4072
4073#define IGB_STAGGERED_QUEUE_OFFSET 8
4074
4075static void igb_spoof_check(struct igb_adapter *adapter)
4076{
4077 int j;
4078
4079 if (!adapter->wvbr)
4080 return;
4081
4082 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4083 if (adapter->wvbr & (1 << j) ||
4084 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4085 dev_warn(&adapter->pdev->dev,
4086 "Spoof event(s) detected on VF %d\n", j);
4087 adapter->wvbr &=
4088 ~((1 << j) |
4089 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4090 }
4091 }
4092}
4093
4094/* Need to wait a few seconds after link up to get diagnostic information from
4095 * the phy
4096 */
4097static void igb_update_phy_info(unsigned long data)
4098{
4099 struct igb_adapter *adapter = (struct igb_adapter *) data;
4100 igb_get_phy_info(&adapter->hw);
4101}
4102
4103/**
4104 * igb_has_link - check shared code for link and determine up/down
4105 * @adapter: pointer to driver private info
4106 **/
4107bool igb_has_link(struct igb_adapter *adapter)
4108{
4109 struct e1000_hw *hw = &adapter->hw;
4110 bool link_active = false;
4111
4112 /* get_link_status is set on LSC (link status) interrupt or
4113 * rx sequence error interrupt. get_link_status will stay
4114 * false until the e1000_check_for_link establishes link
4115 * for copper adapters ONLY
4116 */
4117 switch (hw->phy.media_type) {
4118 case e1000_media_type_copper:
4119 if (!hw->mac.get_link_status)
4120 return true;
4121 case e1000_media_type_internal_serdes:
4122 hw->mac.ops.check_for_link(hw);
4123 link_active = !hw->mac.get_link_status;
4124 break;
4125 default:
4126 case e1000_media_type_unknown:
4127 break;
4128 }
4129
4130 if (((hw->mac.type == e1000_i210) ||
4131 (hw->mac.type == e1000_i211)) &&
4132 (hw->phy.id == I210_I_PHY_ID)) {
4133 if (!netif_carrier_ok(adapter->netdev)) {
4134 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4135 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4136 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4137 adapter->link_check_timeout = jiffies;
4138 }
4139 }
4140
4141 return link_active;
4142}
4143
4144static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4145{
4146 bool ret = false;
4147 u32 ctrl_ext, thstat;
4148
4149 /* check for thermal sensor event on i350 copper only */
4150 if (hw->mac.type == e1000_i350) {
4151 thstat = rd32(E1000_THSTAT);
4152 ctrl_ext = rd32(E1000_CTRL_EXT);
4153
4154 if ((hw->phy.media_type == e1000_media_type_copper) &&
4155 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4156 ret = !!(thstat & event);
4157 }
4158
4159 return ret;
4160}
4161
4162/**
4163 * igb_watchdog - Timer Call-back
4164 * @data: pointer to adapter cast into an unsigned long
4165 **/
4166static void igb_watchdog(unsigned long data)
4167{
4168 struct igb_adapter *adapter = (struct igb_adapter *)data;
4169 /* Do the rest outside of interrupt context */
4170 schedule_work(&adapter->watchdog_task);
4171}
4172
4173static void igb_watchdog_task(struct work_struct *work)
4174{
4175 struct igb_adapter *adapter = container_of(work,
4176 struct igb_adapter,
4177 watchdog_task);
4178 struct e1000_hw *hw = &adapter->hw;
4179 struct e1000_phy_info *phy = &hw->phy;
4180 struct net_device *netdev = adapter->netdev;
4181 u32 link;
4182 int i;
4183 u32 connsw;
4184
4185 link = igb_has_link(adapter);
4186
4187 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4188 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4189 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4190 else
4191 link = false;
4192 }
4193
4194 /* Force link down if we have fiber to swap to */
4195 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4196 if (hw->phy.media_type == e1000_media_type_copper) {
4197 connsw = rd32(E1000_CONNSW);
4198 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4199 link = 0;
4200 }
4201 }
4202 if (link) {
4203 /* Perform a reset if the media type changed. */
4204 if (hw->dev_spec._82575.media_changed) {
4205 hw->dev_spec._82575.media_changed = false;
4206 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4207 igb_reset(adapter);
4208 }
4209 /* Cancel scheduled suspend requests. */
4210 pm_runtime_resume(netdev->dev.parent);
4211
4212 if (!netif_carrier_ok(netdev)) {
4213 u32 ctrl;
4214
4215 hw->mac.ops.get_speed_and_duplex(hw,
4216 &adapter->link_speed,
4217 &adapter->link_duplex);
4218
4219 ctrl = rd32(E1000_CTRL);
4220 /* Links status message must follow this format */
4221 netdev_info(netdev,
4222 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4223 netdev->name,
4224 adapter->link_speed,
4225 adapter->link_duplex == FULL_DUPLEX ?
4226 "Full" : "Half",
4227 (ctrl & E1000_CTRL_TFCE) &&
4228 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4229 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4230 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4231
4232 /* disable EEE if enabled */
4233 if ((adapter->flags & IGB_FLAG_EEE) &&
4234 (adapter->link_duplex == HALF_DUPLEX)) {
4235 dev_info(&adapter->pdev->dev,
4236 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4237 adapter->hw.dev_spec._82575.eee_disable = true;
4238 adapter->flags &= ~IGB_FLAG_EEE;
4239 }
4240
4241 /* check if SmartSpeed worked */
4242 igb_check_downshift(hw);
4243 if (phy->speed_downgraded)
4244 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4245
4246 /* check for thermal sensor event */
4247 if (igb_thermal_sensor_event(hw,
4248 E1000_THSTAT_LINK_THROTTLE))
4249 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4250
4251 /* adjust timeout factor according to speed/duplex */
4252 adapter->tx_timeout_factor = 1;
4253 switch (adapter->link_speed) {
4254 case SPEED_10:
4255 adapter->tx_timeout_factor = 14;
4256 break;
4257 case SPEED_100:
4258 /* maybe add some timeout factor ? */
4259 break;
4260 }
4261
4262 netif_carrier_on(netdev);
4263
4264 igb_ping_all_vfs(adapter);
4265 igb_check_vf_rate_limit(adapter);
4266
4267 /* link state has changed, schedule phy info update */
4268 if (!test_bit(__IGB_DOWN, &adapter->state))
4269 mod_timer(&adapter->phy_info_timer,
4270 round_jiffies(jiffies + 2 * HZ));
4271 }
4272 } else {
4273 if (netif_carrier_ok(netdev)) {
4274 adapter->link_speed = 0;
4275 adapter->link_duplex = 0;
4276
4277 /* check for thermal sensor event */
4278 if (igb_thermal_sensor_event(hw,
4279 E1000_THSTAT_PWR_DOWN)) {
4280 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4281 }
4282
4283 /* Links status message must follow this format */
4284 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4285 netdev->name);
4286 netif_carrier_off(netdev);
4287
4288 igb_ping_all_vfs(adapter);
4289
4290 /* link state has changed, schedule phy info update */
4291 if (!test_bit(__IGB_DOWN, &adapter->state))
4292 mod_timer(&adapter->phy_info_timer,
4293 round_jiffies(jiffies + 2 * HZ));
4294
4295 /* link is down, time to check for alternate media */
4296 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4297 igb_check_swap_media(adapter);
4298 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4299 schedule_work(&adapter->reset_task);
4300 /* return immediately */
4301 return;
4302 }
4303 }
4304 pm_schedule_suspend(netdev->dev.parent,
4305 MSEC_PER_SEC * 5);
4306
4307 /* also check for alternate media here */
4308 } else if (!netif_carrier_ok(netdev) &&
4309 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4310 igb_check_swap_media(adapter);
4311 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4312 schedule_work(&adapter->reset_task);
4313 /* return immediately */
4314 return;
4315 }
4316 }
4317 }
4318
4319 spin_lock(&adapter->stats64_lock);
4320 igb_update_stats(adapter, &adapter->stats64);
4321 spin_unlock(&adapter->stats64_lock);
4322
4323 for (i = 0; i < adapter->num_tx_queues; i++) {
4324 struct igb_ring *tx_ring = adapter->tx_ring[i];
4325 if (!netif_carrier_ok(netdev)) {
4326 /* We've lost link, so the controller stops DMA,
4327 * but we've got queued Tx work that's never going
4328 * to get done, so reset controller to flush Tx.
4329 * (Do the reset outside of interrupt context).
4330 */
4331 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4332 adapter->tx_timeout_count++;
4333 schedule_work(&adapter->reset_task);
4334 /* return immediately since reset is imminent */
4335 return;
4336 }
4337 }
4338
4339 /* Force detection of hung controller every watchdog period */
4340 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4341 }
4342
4343 /* Cause software interrupt to ensure Rx ring is cleaned */
4344 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4345 u32 eics = 0;
4346
4347 for (i = 0; i < adapter->num_q_vectors; i++)
4348 eics |= adapter->q_vector[i]->eims_value;
4349 wr32(E1000_EICS, eics);
4350 } else {
4351 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4352 }
4353
4354 igb_spoof_check(adapter);
4355 igb_ptp_rx_hang(adapter);
4356
4357 /* Reset the timer */
4358 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4359 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4360 mod_timer(&adapter->watchdog_timer,
4361 round_jiffies(jiffies + HZ));
4362 else
4363 mod_timer(&adapter->watchdog_timer,
4364 round_jiffies(jiffies + 2 * HZ));
4365 }
4366}
4367
4368enum latency_range {
4369 lowest_latency = 0,
4370 low_latency = 1,
4371 bulk_latency = 2,
4372 latency_invalid = 255
4373};
4374
4375/**
4376 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4377 * @q_vector: pointer to q_vector
4378 *
4379 * Stores a new ITR value based on strictly on packet size. This
4380 * algorithm is less sophisticated than that used in igb_update_itr,
4381 * due to the difficulty of synchronizing statistics across multiple
4382 * receive rings. The divisors and thresholds used by this function
4383 * were determined based on theoretical maximum wire speed and testing
4384 * data, in order to minimize response time while increasing bulk
4385 * throughput.
4386 * This functionality is controlled by ethtool's coalescing settings.
4387 * NOTE: This function is called only when operating in a multiqueue
4388 * receive environment.
4389 **/
4390static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4391{
4392 int new_val = q_vector->itr_val;
4393 int avg_wire_size = 0;
4394 struct igb_adapter *adapter = q_vector->adapter;
4395 unsigned int packets;
4396
4397 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4398 * ints/sec - ITR timer value of 120 ticks.
4399 */
4400 if (adapter->link_speed != SPEED_1000) {
4401 new_val = IGB_4K_ITR;
4402 goto set_itr_val;
4403 }
4404
4405 packets = q_vector->rx.total_packets;
4406 if (packets)
4407 avg_wire_size = q_vector->rx.total_bytes / packets;
4408
4409 packets = q_vector->tx.total_packets;
4410 if (packets)
4411 avg_wire_size = max_t(u32, avg_wire_size,
4412 q_vector->tx.total_bytes / packets);
4413
4414 /* if avg_wire_size isn't set no work was done */
4415 if (!avg_wire_size)
4416 goto clear_counts;
4417
4418 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4419 avg_wire_size += 24;
4420
4421 /* Don't starve jumbo frames */
4422 avg_wire_size = min(avg_wire_size, 3000);
4423
4424 /* Give a little boost to mid-size frames */
4425 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4426 new_val = avg_wire_size / 3;
4427 else
4428 new_val = avg_wire_size / 2;
4429
4430 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4431 if (new_val < IGB_20K_ITR &&
4432 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4433 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4434 new_val = IGB_20K_ITR;
4435
4436set_itr_val:
4437 if (new_val != q_vector->itr_val) {
4438 q_vector->itr_val = new_val;
4439 q_vector->set_itr = 1;
4440 }
4441clear_counts:
4442 q_vector->rx.total_bytes = 0;
4443 q_vector->rx.total_packets = 0;
4444 q_vector->tx.total_bytes = 0;
4445 q_vector->tx.total_packets = 0;
4446}
4447
4448/**
4449 * igb_update_itr - update the dynamic ITR value based on statistics
4450 * @q_vector: pointer to q_vector
4451 * @ring_container: ring info to update the itr for
4452 *
4453 * Stores a new ITR value based on packets and byte
4454 * counts during the last interrupt. The advantage of per interrupt
4455 * computation is faster updates and more accurate ITR for the current
4456 * traffic pattern. Constants in this function were computed
4457 * based on theoretical maximum wire speed and thresholds were set based
4458 * on testing data as well as attempting to minimize response time
4459 * while increasing bulk throughput.
4460 * This functionality is controlled by ethtool's coalescing settings.
4461 * NOTE: These calculations are only valid when operating in a single-
4462 * queue environment.
4463 **/
4464static void igb_update_itr(struct igb_q_vector *q_vector,
4465 struct igb_ring_container *ring_container)
4466{
4467 unsigned int packets = ring_container->total_packets;
4468 unsigned int bytes = ring_container->total_bytes;
4469 u8 itrval = ring_container->itr;
4470
4471 /* no packets, exit with status unchanged */
4472 if (packets == 0)
4473 return;
4474
4475 switch (itrval) {
4476 case lowest_latency:
4477 /* handle TSO and jumbo frames */
4478 if (bytes/packets > 8000)
4479 itrval = bulk_latency;
4480 else if ((packets < 5) && (bytes > 512))
4481 itrval = low_latency;
4482 break;
4483 case low_latency: /* 50 usec aka 20000 ints/s */
4484 if (bytes > 10000) {
4485 /* this if handles the TSO accounting */
4486 if (bytes/packets > 8000)
4487 itrval = bulk_latency;
4488 else if ((packets < 10) || ((bytes/packets) > 1200))
4489 itrval = bulk_latency;
4490 else if ((packets > 35))
4491 itrval = lowest_latency;
4492 } else if (bytes/packets > 2000) {
4493 itrval = bulk_latency;
4494 } else if (packets <= 2 && bytes < 512) {
4495 itrval = lowest_latency;
4496 }
4497 break;
4498 case bulk_latency: /* 250 usec aka 4000 ints/s */
4499 if (bytes > 25000) {
4500 if (packets > 35)
4501 itrval = low_latency;
4502 } else if (bytes < 1500) {
4503 itrval = low_latency;
4504 }
4505 break;
4506 }
4507
4508 /* clear work counters since we have the values we need */
4509 ring_container->total_bytes = 0;
4510 ring_container->total_packets = 0;
4511
4512 /* write updated itr to ring container */
4513 ring_container->itr = itrval;
4514}
4515
4516static void igb_set_itr(struct igb_q_vector *q_vector)
4517{
4518 struct igb_adapter *adapter = q_vector->adapter;
4519 u32 new_itr = q_vector->itr_val;
4520 u8 current_itr = 0;
4521
4522 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4523 if (adapter->link_speed != SPEED_1000) {
4524 current_itr = 0;
4525 new_itr = IGB_4K_ITR;
4526 goto set_itr_now;
4527 }
4528
4529 igb_update_itr(q_vector, &q_vector->tx);
4530 igb_update_itr(q_vector, &q_vector->rx);
4531
4532 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4533
4534 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4535 if (current_itr == lowest_latency &&
4536 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4537 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4538 current_itr = low_latency;
4539
4540 switch (current_itr) {
4541 /* counts and packets in update_itr are dependent on these numbers */
4542 case lowest_latency:
4543 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4544 break;
4545 case low_latency:
4546 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4547 break;
4548 case bulk_latency:
4549 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4550 break;
4551 default:
4552 break;
4553 }
4554
4555set_itr_now:
4556 if (new_itr != q_vector->itr_val) {
4557 /* this attempts to bias the interrupt rate towards Bulk
4558 * by adding intermediate steps when interrupt rate is
4559 * increasing
4560 */
4561 new_itr = new_itr > q_vector->itr_val ?
4562 max((new_itr * q_vector->itr_val) /
4563 (new_itr + (q_vector->itr_val >> 2)),
4564 new_itr) : new_itr;
4565 /* Don't write the value here; it resets the adapter's
4566 * internal timer, and causes us to delay far longer than
4567 * we should between interrupts. Instead, we write the ITR
4568 * value at the beginning of the next interrupt so the timing
4569 * ends up being correct.
4570 */
4571 q_vector->itr_val = new_itr;
4572 q_vector->set_itr = 1;
4573 }
4574}
4575
4576static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4577 u32 type_tucmd, u32 mss_l4len_idx)
4578{
4579 struct e1000_adv_tx_context_desc *context_desc;
4580 u16 i = tx_ring->next_to_use;
4581
4582 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4583
4584 i++;
4585 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4586
4587 /* set bits to identify this as an advanced context descriptor */
4588 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4589
4590 /* For 82575, context index must be unique per ring. */
4591 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4592 mss_l4len_idx |= tx_ring->reg_idx << 4;
4593
4594 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4595 context_desc->seqnum_seed = 0;
4596 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4597 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4598}
4599
4600static int igb_tso(struct igb_ring *tx_ring,
4601 struct igb_tx_buffer *first,
4602 u8 *hdr_len)
4603{
4604 struct sk_buff *skb = first->skb;
4605 u32 vlan_macip_lens, type_tucmd;
4606 u32 mss_l4len_idx, l4len;
4607 int err;
4608
4609 if (skb->ip_summed != CHECKSUM_PARTIAL)
4610 return 0;
4611
4612 if (!skb_is_gso(skb))
4613 return 0;
4614
4615 err = skb_cow_head(skb, 0);
4616 if (err < 0)
4617 return err;
4618
4619 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4620 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4621
4622 if (first->protocol == htons(ETH_P_IP)) {
4623 struct iphdr *iph = ip_hdr(skb);
4624 iph->tot_len = 0;
4625 iph->check = 0;
4626 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4627 iph->daddr, 0,
4628 IPPROTO_TCP,
4629 0);
4630 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4631 first->tx_flags |= IGB_TX_FLAGS_TSO |
4632 IGB_TX_FLAGS_CSUM |
4633 IGB_TX_FLAGS_IPV4;
4634 } else if (skb_is_gso_v6(skb)) {
4635 ipv6_hdr(skb)->payload_len = 0;
4636 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4637 &ipv6_hdr(skb)->daddr,
4638 0, IPPROTO_TCP, 0);
4639 first->tx_flags |= IGB_TX_FLAGS_TSO |
4640 IGB_TX_FLAGS_CSUM;
4641 }
4642
4643 /* compute header lengths */
4644 l4len = tcp_hdrlen(skb);
4645 *hdr_len = skb_transport_offset(skb) + l4len;
4646
4647 /* update gso size and bytecount with header size */
4648 first->gso_segs = skb_shinfo(skb)->gso_segs;
4649 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4650
4651 /* MSS L4LEN IDX */
4652 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4653 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4654
4655 /* VLAN MACLEN IPLEN */
4656 vlan_macip_lens = skb_network_header_len(skb);
4657 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4658 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4659
4660 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4661
4662 return 1;
4663}
4664
4665static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4666{
4667 struct sk_buff *skb = first->skb;
4668 u32 vlan_macip_lens = 0;
4669 u32 mss_l4len_idx = 0;
4670 u32 type_tucmd = 0;
4671
4672 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4673 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4674 return;
4675 } else {
4676 u8 l4_hdr = 0;
4677
4678 switch (first->protocol) {
4679 case htons(ETH_P_IP):
4680 vlan_macip_lens |= skb_network_header_len(skb);
4681 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4682 l4_hdr = ip_hdr(skb)->protocol;
4683 break;
4684 case htons(ETH_P_IPV6):
4685 vlan_macip_lens |= skb_network_header_len(skb);
4686 l4_hdr = ipv6_hdr(skb)->nexthdr;
4687 break;
4688 default:
4689 if (unlikely(net_ratelimit())) {
4690 dev_warn(tx_ring->dev,
4691 "partial checksum but proto=%x!\n",
4692 first->protocol);
4693 }
4694 break;
4695 }
4696
4697 switch (l4_hdr) {
4698 case IPPROTO_TCP:
4699 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4700 mss_l4len_idx = tcp_hdrlen(skb) <<
4701 E1000_ADVTXD_L4LEN_SHIFT;
4702 break;
4703 case IPPROTO_SCTP:
4704 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4705 mss_l4len_idx = sizeof(struct sctphdr) <<
4706 E1000_ADVTXD_L4LEN_SHIFT;
4707 break;
4708 case IPPROTO_UDP:
4709 mss_l4len_idx = sizeof(struct udphdr) <<
4710 E1000_ADVTXD_L4LEN_SHIFT;
4711 break;
4712 default:
4713 if (unlikely(net_ratelimit())) {
4714 dev_warn(tx_ring->dev,
4715 "partial checksum but l4 proto=%x!\n",
4716 l4_hdr);
4717 }
4718 break;
4719 }
4720
4721 /* update TX checksum flag */
4722 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4723 }
4724
4725 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4726 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4727
4728 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4729}
4730
4731#define IGB_SET_FLAG(_input, _flag, _result) \
4732 ((_flag <= _result) ? \
4733 ((u32)(_input & _flag) * (_result / _flag)) : \
4734 ((u32)(_input & _flag) / (_flag / _result)))
4735
4736static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4737{
4738 /* set type for advanced descriptor with frame checksum insertion */
4739 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4740 E1000_ADVTXD_DCMD_DEXT |
4741 E1000_ADVTXD_DCMD_IFCS;
4742
4743 /* set HW vlan bit if vlan is present */
4744 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4745 (E1000_ADVTXD_DCMD_VLE));
4746
4747 /* set segmentation bits for TSO */
4748 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4749 (E1000_ADVTXD_DCMD_TSE));
4750
4751 /* set timestamp bit if present */
4752 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4753 (E1000_ADVTXD_MAC_TSTAMP));
4754
4755 /* insert frame checksum */
4756 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4757
4758 return cmd_type;
4759}
4760
4761static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4762 union e1000_adv_tx_desc *tx_desc,
4763 u32 tx_flags, unsigned int paylen)
4764{
4765 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4766
4767 /* 82575 requires a unique index per ring */
4768 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4769 olinfo_status |= tx_ring->reg_idx << 4;
4770
4771 /* insert L4 checksum */
4772 olinfo_status |= IGB_SET_FLAG(tx_flags,
4773 IGB_TX_FLAGS_CSUM,
4774 (E1000_TXD_POPTS_TXSM << 8));
4775
4776 /* insert IPv4 checksum */
4777 olinfo_status |= IGB_SET_FLAG(tx_flags,
4778 IGB_TX_FLAGS_IPV4,
4779 (E1000_TXD_POPTS_IXSM << 8));
4780
4781 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4782}
4783
4784static void igb_tx_map(struct igb_ring *tx_ring,
4785 struct igb_tx_buffer *first,
4786 const u8 hdr_len)
4787{
4788 struct sk_buff *skb = first->skb;
4789 struct igb_tx_buffer *tx_buffer;
4790 union e1000_adv_tx_desc *tx_desc;
4791 struct skb_frag_struct *frag;
4792 dma_addr_t dma;
4793 unsigned int data_len, size;
4794 u32 tx_flags = first->tx_flags;
4795 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4796 u16 i = tx_ring->next_to_use;
4797
4798 tx_desc = IGB_TX_DESC(tx_ring, i);
4799
4800 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4801
4802 size = skb_headlen(skb);
4803 data_len = skb->data_len;
4804
4805 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4806
4807 tx_buffer = first;
4808
4809 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4810 if (dma_mapping_error(tx_ring->dev, dma))
4811 goto dma_error;
4812
4813 /* record length, and DMA address */
4814 dma_unmap_len_set(tx_buffer, len, size);
4815 dma_unmap_addr_set(tx_buffer, dma, dma);
4816
4817 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4818
4819 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4820 tx_desc->read.cmd_type_len =
4821 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4822
4823 i++;
4824 tx_desc++;
4825 if (i == tx_ring->count) {
4826 tx_desc = IGB_TX_DESC(tx_ring, 0);
4827 i = 0;
4828 }
4829 tx_desc->read.olinfo_status = 0;
4830
4831 dma += IGB_MAX_DATA_PER_TXD;
4832 size -= IGB_MAX_DATA_PER_TXD;
4833
4834 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4835 }
4836
4837 if (likely(!data_len))
4838 break;
4839
4840 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4841
4842 i++;
4843 tx_desc++;
4844 if (i == tx_ring->count) {
4845 tx_desc = IGB_TX_DESC(tx_ring, 0);
4846 i = 0;
4847 }
4848 tx_desc->read.olinfo_status = 0;
4849
4850 size = skb_frag_size(frag);
4851 data_len -= size;
4852
4853 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4854 size, DMA_TO_DEVICE);
4855
4856 tx_buffer = &tx_ring->tx_buffer_info[i];
4857 }
4858
4859 /* write last descriptor with RS and EOP bits */
4860 cmd_type |= size | IGB_TXD_DCMD;
4861 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4862
4863 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4864
4865 /* set the timestamp */
4866 first->time_stamp = jiffies;
4867
4868 /* Force memory writes to complete before letting h/w know there
4869 * are new descriptors to fetch. (Only applicable for weak-ordered
4870 * memory model archs, such as IA-64).
4871 *
4872 * We also need this memory barrier to make certain all of the
4873 * status bits have been updated before next_to_watch is written.
4874 */
4875 wmb();
4876
4877 /* set next_to_watch value indicating a packet is present */
4878 first->next_to_watch = tx_desc;
4879
4880 i++;
4881 if (i == tx_ring->count)
4882 i = 0;
4883
4884 tx_ring->next_to_use = i;
4885
4886 writel(i, tx_ring->tail);
4887
4888 /* we need this if more than one processor can write to our tail
4889 * at a time, it synchronizes IO on IA64/Altix systems
4890 */
4891 mmiowb();
4892
4893 return;
4894
4895dma_error:
4896 dev_err(tx_ring->dev, "TX DMA map failed\n");
4897
4898 /* clear dma mappings for failed tx_buffer_info map */
4899 for (;;) {
4900 tx_buffer = &tx_ring->tx_buffer_info[i];
4901 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4902 if (tx_buffer == first)
4903 break;
4904 if (i == 0)
4905 i = tx_ring->count;
4906 i--;
4907 }
4908
4909 tx_ring->next_to_use = i;
4910}
4911
4912static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4913{
4914 struct net_device *netdev = tx_ring->netdev;
4915
4916 netif_stop_subqueue(netdev, tx_ring->queue_index);
4917
4918 /* Herbert's original patch had:
4919 * smp_mb__after_netif_stop_queue();
4920 * but since that doesn't exist yet, just open code it.
4921 */
4922 smp_mb();
4923
4924 /* We need to check again in a case another CPU has just
4925 * made room available.
4926 */
4927 if (igb_desc_unused(tx_ring) < size)
4928 return -EBUSY;
4929
4930 /* A reprieve! */
4931 netif_wake_subqueue(netdev, tx_ring->queue_index);
4932
4933 u64_stats_update_begin(&tx_ring->tx_syncp2);
4934 tx_ring->tx_stats.restart_queue2++;
4935 u64_stats_update_end(&tx_ring->tx_syncp2);
4936
4937 return 0;
4938}
4939
4940static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4941{
4942 if (igb_desc_unused(tx_ring) >= size)
4943 return 0;
4944 return __igb_maybe_stop_tx(tx_ring, size);
4945}
4946
4947netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4948 struct igb_ring *tx_ring)
4949{
4950 struct igb_tx_buffer *first;
4951 int tso;
4952 u32 tx_flags = 0;
4953 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4954 __be16 protocol = vlan_get_protocol(skb);
4955 u8 hdr_len = 0;
4956
4957 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4958 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4959 * + 2 desc gap to keep tail from touching head,
4960 * + 1 desc for context descriptor,
4961 * otherwise try next time
4962 */
4963 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4964 unsigned short f;
4965
4966 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4967 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4968 } else {
4969 count += skb_shinfo(skb)->nr_frags;
4970 }
4971
4972 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4973 /* this is a hard error */
4974 return NETDEV_TX_BUSY;
4975 }
4976
4977 /* record the location of the first descriptor for this packet */
4978 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4979 first->skb = skb;
4980 first->bytecount = skb->len;
4981 first->gso_segs = 1;
4982
4983 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4984 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4985
4986 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4987 &adapter->state)) {
4988 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4989 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4990
4991 adapter->ptp_tx_skb = skb_get(skb);
4992 adapter->ptp_tx_start = jiffies;
4993 if (adapter->hw.mac.type == e1000_82576)
4994 schedule_work(&adapter->ptp_tx_work);
4995 }
4996 }
4997
4998 skb_tx_timestamp(skb);
4999
5000 if (vlan_tx_tag_present(skb)) {
5001 tx_flags |= IGB_TX_FLAGS_VLAN;
5002 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5003 }
5004
5005 /* record initial flags and protocol */
5006 first->tx_flags = tx_flags;
5007 first->protocol = protocol;
5008
5009 tso = igb_tso(tx_ring, first, &hdr_len);
5010 if (tso < 0)
5011 goto out_drop;
5012 else if (!tso)
5013 igb_tx_csum(tx_ring, first);
5014
5015 igb_tx_map(tx_ring, first, hdr_len);
5016
5017 /* Make sure there is space in the ring for the next send. */
5018 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5019
5020 return NETDEV_TX_OK;
5021
5022out_drop:
5023 igb_unmap_and_free_tx_resource(tx_ring, first);
5024
5025 return NETDEV_TX_OK;
5026}
5027
5028static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5029 struct sk_buff *skb)
5030{
5031 unsigned int r_idx = skb->queue_mapping;
5032
5033 if (r_idx >= adapter->num_tx_queues)
5034 r_idx = r_idx % adapter->num_tx_queues;
5035
5036 return adapter->tx_ring[r_idx];
5037}
5038
5039static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5040 struct net_device *netdev)
5041{
5042 struct igb_adapter *adapter = netdev_priv(netdev);
5043
5044 if (test_bit(__IGB_DOWN, &adapter->state)) {
5045 dev_kfree_skb_any(skb);
5046 return NETDEV_TX_OK;
5047 }
5048
5049 if (skb->len <= 0) {
5050 dev_kfree_skb_any(skb);
5051 return NETDEV_TX_OK;
5052 }
5053
5054 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5055 * in order to meet this minimum size requirement.
5056 */
5057 if (unlikely(skb->len < 17)) {
5058 if (skb_pad(skb, 17 - skb->len))
5059 return NETDEV_TX_OK;
5060 skb->len = 17;
5061 skb_set_tail_pointer(skb, 17);
5062 }
5063
5064 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5065}
5066
5067/**
5068 * igb_tx_timeout - Respond to a Tx Hang
5069 * @netdev: network interface device structure
5070 **/
5071static void igb_tx_timeout(struct net_device *netdev)
5072{
5073 struct igb_adapter *adapter = netdev_priv(netdev);
5074 struct e1000_hw *hw = &adapter->hw;
5075
5076 /* Do the reset outside of interrupt context */
5077 adapter->tx_timeout_count++;
5078
5079 if (hw->mac.type >= e1000_82580)
5080 hw->dev_spec._82575.global_device_reset = true;
5081
5082 schedule_work(&adapter->reset_task);
5083 wr32(E1000_EICS,
5084 (adapter->eims_enable_mask & ~adapter->eims_other));
5085}
5086
5087static void igb_reset_task(struct work_struct *work)
5088{
5089 struct igb_adapter *adapter;
5090 adapter = container_of(work, struct igb_adapter, reset_task);
5091
5092 igb_dump(adapter);
5093 netdev_err(adapter->netdev, "Reset adapter\n");
5094 igb_reinit_locked(adapter);
5095}
5096
5097/**
5098 * igb_get_stats64 - Get System Network Statistics
5099 * @netdev: network interface device structure
5100 * @stats: rtnl_link_stats64 pointer
5101 **/
5102static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5103 struct rtnl_link_stats64 *stats)
5104{
5105 struct igb_adapter *adapter = netdev_priv(netdev);
5106
5107 spin_lock(&adapter->stats64_lock);
5108 igb_update_stats(adapter, &adapter->stats64);
5109 memcpy(stats, &adapter->stats64, sizeof(*stats));
5110 spin_unlock(&adapter->stats64_lock);
5111
5112 return stats;
5113}
5114
5115/**
5116 * igb_change_mtu - Change the Maximum Transfer Unit
5117 * @netdev: network interface device structure
5118 * @new_mtu: new value for maximum frame size
5119 *
5120 * Returns 0 on success, negative on failure
5121 **/
5122static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5123{
5124 struct igb_adapter *adapter = netdev_priv(netdev);
5125 struct pci_dev *pdev = adapter->pdev;
5126 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5127
5128 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5129 dev_err(&pdev->dev, "Invalid MTU setting\n");
5130 return -EINVAL;
5131 }
5132
5133#define MAX_STD_JUMBO_FRAME_SIZE 9238
5134 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5135 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5136 return -EINVAL;
5137 }
5138
5139 /* adjust max frame to be at least the size of a standard frame */
5140 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5141 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5142
5143 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5144 usleep_range(1000, 2000);
5145
5146 /* igb_down has a dependency on max_frame_size */
5147 adapter->max_frame_size = max_frame;
5148
5149 if (netif_running(netdev))
5150 igb_down(adapter);
5151
5152 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5153 netdev->mtu, new_mtu);
5154 netdev->mtu = new_mtu;
5155
5156 if (netif_running(netdev))
5157 igb_up(adapter);
5158 else
5159 igb_reset(adapter);
5160
5161 clear_bit(__IGB_RESETTING, &adapter->state);
5162
5163 return 0;
5164}
5165
5166/**
5167 * igb_update_stats - Update the board statistics counters
5168 * @adapter: board private structure
5169 **/
5170void igb_update_stats(struct igb_adapter *adapter,
5171 struct rtnl_link_stats64 *net_stats)
5172{
5173 struct e1000_hw *hw = &adapter->hw;
5174 struct pci_dev *pdev = adapter->pdev;
5175 u32 reg, mpc;
5176 u16 phy_tmp;
5177 int i;
5178 u64 bytes, packets;
5179 unsigned int start;
5180 u64 _bytes, _packets;
5181
5182#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5183
5184 /* Prevent stats update while adapter is being reset, or if the pci
5185 * connection is down.
5186 */
5187 if (adapter->link_speed == 0)
5188 return;
5189 if (pci_channel_offline(pdev))
5190 return;
5191
5192 bytes = 0;
5193 packets = 0;
5194
5195 rcu_read_lock();
5196 for (i = 0; i < adapter->num_rx_queues; i++) {
5197 struct igb_ring *ring = adapter->rx_ring[i];
5198 u32 rqdpc = rd32(E1000_RQDPC(i));
5199 if (hw->mac.type >= e1000_i210)
5200 wr32(E1000_RQDPC(i), 0);
5201
5202 if (rqdpc) {
5203 ring->rx_stats.drops += rqdpc;
5204 net_stats->rx_fifo_errors += rqdpc;
5205 }
5206
5207 do {
5208 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5209 _bytes = ring->rx_stats.bytes;
5210 _packets = ring->rx_stats.packets;
5211 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5212 bytes += _bytes;
5213 packets += _packets;
5214 }
5215
5216 net_stats->rx_bytes = bytes;
5217 net_stats->rx_packets = packets;
5218
5219 bytes = 0;
5220 packets = 0;
5221 for (i = 0; i < adapter->num_tx_queues; i++) {
5222 struct igb_ring *ring = adapter->tx_ring[i];
5223 do {
5224 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5225 _bytes = ring->tx_stats.bytes;
5226 _packets = ring->tx_stats.packets;
5227 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5228 bytes += _bytes;
5229 packets += _packets;
5230 }
5231 net_stats->tx_bytes = bytes;
5232 net_stats->tx_packets = packets;
5233 rcu_read_unlock();
5234
5235 /* read stats registers */
5236 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5237 adapter->stats.gprc += rd32(E1000_GPRC);
5238 adapter->stats.gorc += rd32(E1000_GORCL);
5239 rd32(E1000_GORCH); /* clear GORCL */
5240 adapter->stats.bprc += rd32(E1000_BPRC);
5241 adapter->stats.mprc += rd32(E1000_MPRC);
5242 adapter->stats.roc += rd32(E1000_ROC);
5243
5244 adapter->stats.prc64 += rd32(E1000_PRC64);
5245 adapter->stats.prc127 += rd32(E1000_PRC127);
5246 adapter->stats.prc255 += rd32(E1000_PRC255);
5247 adapter->stats.prc511 += rd32(E1000_PRC511);
5248 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5249 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5250 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5251 adapter->stats.sec += rd32(E1000_SEC);
5252
5253 mpc = rd32(E1000_MPC);
5254 adapter->stats.mpc += mpc;
5255 net_stats->rx_fifo_errors += mpc;
5256 adapter->stats.scc += rd32(E1000_SCC);
5257 adapter->stats.ecol += rd32(E1000_ECOL);
5258 adapter->stats.mcc += rd32(E1000_MCC);
5259 adapter->stats.latecol += rd32(E1000_LATECOL);
5260 adapter->stats.dc += rd32(E1000_DC);
5261 adapter->stats.rlec += rd32(E1000_RLEC);
5262 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5263 adapter->stats.xontxc += rd32(E1000_XONTXC);
5264 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5265 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5266 adapter->stats.fcruc += rd32(E1000_FCRUC);
5267 adapter->stats.gptc += rd32(E1000_GPTC);
5268 adapter->stats.gotc += rd32(E1000_GOTCL);
5269 rd32(E1000_GOTCH); /* clear GOTCL */
5270 adapter->stats.rnbc += rd32(E1000_RNBC);
5271 adapter->stats.ruc += rd32(E1000_RUC);
5272 adapter->stats.rfc += rd32(E1000_RFC);
5273 adapter->stats.rjc += rd32(E1000_RJC);
5274 adapter->stats.tor += rd32(E1000_TORH);
5275 adapter->stats.tot += rd32(E1000_TOTH);
5276 adapter->stats.tpr += rd32(E1000_TPR);
5277
5278 adapter->stats.ptc64 += rd32(E1000_PTC64);
5279 adapter->stats.ptc127 += rd32(E1000_PTC127);
5280 adapter->stats.ptc255 += rd32(E1000_PTC255);
5281 adapter->stats.ptc511 += rd32(E1000_PTC511);
5282 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5283 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5284
5285 adapter->stats.mptc += rd32(E1000_MPTC);
5286 adapter->stats.bptc += rd32(E1000_BPTC);
5287
5288 adapter->stats.tpt += rd32(E1000_TPT);
5289 adapter->stats.colc += rd32(E1000_COLC);
5290
5291 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5292 /* read internal phy specific stats */
5293 reg = rd32(E1000_CTRL_EXT);
5294 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5295 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5296
5297 /* this stat has invalid values on i210/i211 */
5298 if ((hw->mac.type != e1000_i210) &&
5299 (hw->mac.type != e1000_i211))
5300 adapter->stats.tncrs += rd32(E1000_TNCRS);
5301 }
5302
5303 adapter->stats.tsctc += rd32(E1000_TSCTC);
5304 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5305
5306 adapter->stats.iac += rd32(E1000_IAC);
5307 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5308 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5309 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5310 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5311 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5312 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5313 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5314 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5315
5316 /* Fill out the OS statistics structure */
5317 net_stats->multicast = adapter->stats.mprc;
5318 net_stats->collisions = adapter->stats.colc;
5319
5320 /* Rx Errors */
5321
5322 /* RLEC on some newer hardware can be incorrect so build
5323 * our own version based on RUC and ROC
5324 */
5325 net_stats->rx_errors = adapter->stats.rxerrc +
5326 adapter->stats.crcerrs + adapter->stats.algnerrc +
5327 adapter->stats.ruc + adapter->stats.roc +
5328 adapter->stats.cexterr;
5329 net_stats->rx_length_errors = adapter->stats.ruc +
5330 adapter->stats.roc;
5331 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5332 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5333 net_stats->rx_missed_errors = adapter->stats.mpc;
5334
5335 /* Tx Errors */
5336 net_stats->tx_errors = adapter->stats.ecol +
5337 adapter->stats.latecol;
5338 net_stats->tx_aborted_errors = adapter->stats.ecol;
5339 net_stats->tx_window_errors = adapter->stats.latecol;
5340 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5341
5342 /* Tx Dropped needs to be maintained elsewhere */
5343
5344 /* Phy Stats */
5345 if (hw->phy.media_type == e1000_media_type_copper) {
5346 if ((adapter->link_speed == SPEED_1000) &&
5347 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5348 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5349 adapter->phy_stats.idle_errors += phy_tmp;
5350 }
5351 }
5352
5353 /* Management Stats */
5354 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5355 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5356 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5357
5358 /* OS2BMC Stats */
5359 reg = rd32(E1000_MANC);
5360 if (reg & E1000_MANC_EN_BMC2OS) {
5361 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5362 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5363 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5364 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5365 }
5366}
5367
5368static irqreturn_t igb_msix_other(int irq, void *data)
5369{
5370 struct igb_adapter *adapter = data;
5371 struct e1000_hw *hw = &adapter->hw;
5372 u32 icr = rd32(E1000_ICR);
5373 /* reading ICR causes bit 31 of EICR to be cleared */
5374
5375 if (icr & E1000_ICR_DRSTA)
5376 schedule_work(&adapter->reset_task);
5377
5378 if (icr & E1000_ICR_DOUTSYNC) {
5379 /* HW is reporting DMA is out of sync */
5380 adapter->stats.doosync++;
5381 /* The DMA Out of Sync is also indication of a spoof event
5382 * in IOV mode. Check the Wrong VM Behavior register to
5383 * see if it is really a spoof event.
5384 */
5385 igb_check_wvbr(adapter);
5386 }
5387
5388 /* Check for a mailbox event */
5389 if (icr & E1000_ICR_VMMB)
5390 igb_msg_task(adapter);
5391
5392 if (icr & E1000_ICR_LSC) {
5393 hw->mac.get_link_status = 1;
5394 /* guard against interrupt when we're going down */
5395 if (!test_bit(__IGB_DOWN, &adapter->state))
5396 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5397 }
5398
5399 if (icr & E1000_ICR_TS) {
5400 u32 tsicr = rd32(E1000_TSICR);
5401
5402 if (tsicr & E1000_TSICR_TXTS) {
5403 /* acknowledge the interrupt */
5404 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5405 /* retrieve hardware timestamp */
5406 schedule_work(&adapter->ptp_tx_work);
5407 }
5408 }
5409
5410 wr32(E1000_EIMS, adapter->eims_other);
5411
5412 return IRQ_HANDLED;
5413}
5414
5415static void igb_write_itr(struct igb_q_vector *q_vector)
5416{
5417 struct igb_adapter *adapter = q_vector->adapter;
5418 u32 itr_val = q_vector->itr_val & 0x7FFC;
5419
5420 if (!q_vector->set_itr)
5421 return;
5422
5423 if (!itr_val)
5424 itr_val = 0x4;
5425
5426 if (adapter->hw.mac.type == e1000_82575)
5427 itr_val |= itr_val << 16;
5428 else
5429 itr_val |= E1000_EITR_CNT_IGNR;
5430
5431 writel(itr_val, q_vector->itr_register);
5432 q_vector->set_itr = 0;
5433}
5434
5435static irqreturn_t igb_msix_ring(int irq, void *data)
5436{
5437 struct igb_q_vector *q_vector = data;
5438
5439 /* Write the ITR value calculated from the previous interrupt. */
5440 igb_write_itr(q_vector);
5441
5442 napi_schedule(&q_vector->napi);
5443
5444 return IRQ_HANDLED;
5445}
5446
5447#ifdef CONFIG_IGB_DCA
5448static void igb_update_tx_dca(struct igb_adapter *adapter,
5449 struct igb_ring *tx_ring,
5450 int cpu)
5451{
5452 struct e1000_hw *hw = &adapter->hw;
5453 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5454
5455 if (hw->mac.type != e1000_82575)
5456 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5457
5458 /* We can enable relaxed ordering for reads, but not writes when
5459 * DCA is enabled. This is due to a known issue in some chipsets
5460 * which will cause the DCA tag to be cleared.
5461 */
5462 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5463 E1000_DCA_TXCTRL_DATA_RRO_EN |
5464 E1000_DCA_TXCTRL_DESC_DCA_EN;
5465
5466 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5467}
5468
5469static void igb_update_rx_dca(struct igb_adapter *adapter,
5470 struct igb_ring *rx_ring,
5471 int cpu)
5472{
5473 struct e1000_hw *hw = &adapter->hw;
5474 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5475
5476 if (hw->mac.type != e1000_82575)
5477 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5478
5479 /* We can enable relaxed ordering for reads, but not writes when
5480 * DCA is enabled. This is due to a known issue in some chipsets
5481 * which will cause the DCA tag to be cleared.
5482 */
5483 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5484 E1000_DCA_RXCTRL_DESC_DCA_EN;
5485
5486 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5487}
5488
5489static void igb_update_dca(struct igb_q_vector *q_vector)
5490{
5491 struct igb_adapter *adapter = q_vector->adapter;
5492 int cpu = get_cpu();
5493
5494 if (q_vector->cpu == cpu)
5495 goto out_no_update;
5496
5497 if (q_vector->tx.ring)
5498 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5499
5500 if (q_vector->rx.ring)
5501 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5502
5503 q_vector->cpu = cpu;
5504out_no_update:
5505 put_cpu();
5506}
5507
5508static void igb_setup_dca(struct igb_adapter *adapter)
5509{
5510 struct e1000_hw *hw = &adapter->hw;
5511 int i;
5512
5513 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5514 return;
5515
5516 /* Always use CB2 mode, difference is masked in the CB driver. */
5517 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5518
5519 for (i = 0; i < adapter->num_q_vectors; i++) {
5520 adapter->q_vector[i]->cpu = -1;
5521 igb_update_dca(adapter->q_vector[i]);
5522 }
5523}
5524
5525static int __igb_notify_dca(struct device *dev, void *data)
5526{
5527 struct net_device *netdev = dev_get_drvdata(dev);
5528 struct igb_adapter *adapter = netdev_priv(netdev);
5529 struct pci_dev *pdev = adapter->pdev;
5530 struct e1000_hw *hw = &adapter->hw;
5531 unsigned long event = *(unsigned long *)data;
5532
5533 switch (event) {
5534 case DCA_PROVIDER_ADD:
5535 /* if already enabled, don't do it again */
5536 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5537 break;
5538 if (dca_add_requester(dev) == 0) {
5539 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5540 dev_info(&pdev->dev, "DCA enabled\n");
5541 igb_setup_dca(adapter);
5542 break;
5543 }
5544 /* Fall Through since DCA is disabled. */
5545 case DCA_PROVIDER_REMOVE:
5546 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5547 /* without this a class_device is left
5548 * hanging around in the sysfs model
5549 */
5550 dca_remove_requester(dev);
5551 dev_info(&pdev->dev, "DCA disabled\n");
5552 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5553 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5554 }
5555 break;
5556 }
5557
5558 return 0;
5559}
5560
5561static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5562 void *p)
5563{
5564 int ret_val;
5565
5566 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5567 __igb_notify_dca);
5568
5569 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5570}
5571#endif /* CONFIG_IGB_DCA */
5572
5573#ifdef CONFIG_PCI_IOV
5574static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5575{
5576 unsigned char mac_addr[ETH_ALEN];
5577
5578 eth_zero_addr(mac_addr);
5579 igb_set_vf_mac(adapter, vf, mac_addr);
5580
5581 /* By default spoof check is enabled for all VFs */
5582 adapter->vf_data[vf].spoofchk_enabled = true;
5583
5584 return 0;
5585}
5586
5587#endif
5588static void igb_ping_all_vfs(struct igb_adapter *adapter)
5589{
5590 struct e1000_hw *hw = &adapter->hw;
5591 u32 ping;
5592 int i;
5593
5594 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5595 ping = E1000_PF_CONTROL_MSG;
5596 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5597 ping |= E1000_VT_MSGTYPE_CTS;
5598 igb_write_mbx(hw, &ping, 1, i);
5599 }
5600}
5601
5602static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5603{
5604 struct e1000_hw *hw = &adapter->hw;
5605 u32 vmolr = rd32(E1000_VMOLR(vf));
5606 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5607
5608 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5609 IGB_VF_FLAG_MULTI_PROMISC);
5610 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5611
5612 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5613 vmolr |= E1000_VMOLR_MPME;
5614 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5615 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5616 } else {
5617 /* if we have hashes and we are clearing a multicast promisc
5618 * flag we need to write the hashes to the MTA as this step
5619 * was previously skipped
5620 */
5621 if (vf_data->num_vf_mc_hashes > 30) {
5622 vmolr |= E1000_VMOLR_MPME;
5623 } else if (vf_data->num_vf_mc_hashes) {
5624 int j;
5625
5626 vmolr |= E1000_VMOLR_ROMPE;
5627 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5628 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5629 }
5630 }
5631
5632 wr32(E1000_VMOLR(vf), vmolr);
5633
5634 /* there are flags left unprocessed, likely not supported */
5635 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5636 return -EINVAL;
5637
5638 return 0;
5639}
5640
5641static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5642 u32 *msgbuf, u32 vf)
5643{
5644 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5645 u16 *hash_list = (u16 *)&msgbuf[1];
5646 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5647 int i;
5648
5649 /* salt away the number of multicast addresses assigned
5650 * to this VF for later use to restore when the PF multi cast
5651 * list changes
5652 */
5653 vf_data->num_vf_mc_hashes = n;
5654
5655 /* only up to 30 hash values supported */
5656 if (n > 30)
5657 n = 30;
5658
5659 /* store the hashes for later use */
5660 for (i = 0; i < n; i++)
5661 vf_data->vf_mc_hashes[i] = hash_list[i];
5662
5663 /* Flush and reset the mta with the new values */
5664 igb_set_rx_mode(adapter->netdev);
5665
5666 return 0;
5667}
5668
5669static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5670{
5671 struct e1000_hw *hw = &adapter->hw;
5672 struct vf_data_storage *vf_data;
5673 int i, j;
5674
5675 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5676 u32 vmolr = rd32(E1000_VMOLR(i));
5677
5678 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5679
5680 vf_data = &adapter->vf_data[i];
5681
5682 if ((vf_data->num_vf_mc_hashes > 30) ||
5683 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5684 vmolr |= E1000_VMOLR_MPME;
5685 } else if (vf_data->num_vf_mc_hashes) {
5686 vmolr |= E1000_VMOLR_ROMPE;
5687 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5688 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5689 }
5690 wr32(E1000_VMOLR(i), vmolr);
5691 }
5692}
5693
5694static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5695{
5696 struct e1000_hw *hw = &adapter->hw;
5697 u32 pool_mask, reg, vid;
5698 int i;
5699
5700 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5701
5702 /* Find the vlan filter for this id */
5703 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5704 reg = rd32(E1000_VLVF(i));
5705
5706 /* remove the vf from the pool */
5707 reg &= ~pool_mask;
5708
5709 /* if pool is empty then remove entry from vfta */
5710 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5711 (reg & E1000_VLVF_VLANID_ENABLE)) {
5712 reg = 0;
5713 vid = reg & E1000_VLVF_VLANID_MASK;
5714 igb_vfta_set(hw, vid, false);
5715 }
5716
5717 wr32(E1000_VLVF(i), reg);
5718 }
5719
5720 adapter->vf_data[vf].vlans_enabled = 0;
5721}
5722
5723static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5724{
5725 struct e1000_hw *hw = &adapter->hw;
5726 u32 reg, i;
5727
5728 /* The vlvf table only exists on 82576 hardware and newer */
5729 if (hw->mac.type < e1000_82576)
5730 return -1;
5731
5732 /* we only need to do this if VMDq is enabled */
5733 if (!adapter->vfs_allocated_count)
5734 return -1;
5735
5736 /* Find the vlan filter for this id */
5737 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5738 reg = rd32(E1000_VLVF(i));
5739 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5740 vid == (reg & E1000_VLVF_VLANID_MASK))
5741 break;
5742 }
5743
5744 if (add) {
5745 if (i == E1000_VLVF_ARRAY_SIZE) {
5746 /* Did not find a matching VLAN ID entry that was
5747 * enabled. Search for a free filter entry, i.e.
5748 * one without the enable bit set
5749 */
5750 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5751 reg = rd32(E1000_VLVF(i));
5752 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5753 break;
5754 }
5755 }
5756 if (i < E1000_VLVF_ARRAY_SIZE) {
5757 /* Found an enabled/available entry */
5758 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5759
5760 /* if !enabled we need to set this up in vfta */
5761 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5762 /* add VID to filter table */
5763 igb_vfta_set(hw, vid, true);
5764 reg |= E1000_VLVF_VLANID_ENABLE;
5765 }
5766 reg &= ~E1000_VLVF_VLANID_MASK;
5767 reg |= vid;
5768 wr32(E1000_VLVF(i), reg);
5769
5770 /* do not modify RLPML for PF devices */
5771 if (vf >= adapter->vfs_allocated_count)
5772 return 0;
5773
5774 if (!adapter->vf_data[vf].vlans_enabled) {
5775 u32 size;
5776
5777 reg = rd32(E1000_VMOLR(vf));
5778 size = reg & E1000_VMOLR_RLPML_MASK;
5779 size += 4;
5780 reg &= ~E1000_VMOLR_RLPML_MASK;
5781 reg |= size;
5782 wr32(E1000_VMOLR(vf), reg);
5783 }
5784
5785 adapter->vf_data[vf].vlans_enabled++;
5786 }
5787 } else {
5788 if (i < E1000_VLVF_ARRAY_SIZE) {
5789 /* remove vf from the pool */
5790 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5791 /* if pool is empty then remove entry from vfta */
5792 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5793 reg = 0;
5794 igb_vfta_set(hw, vid, false);
5795 }
5796 wr32(E1000_VLVF(i), reg);
5797
5798 /* do not modify RLPML for PF devices */
5799 if (vf >= adapter->vfs_allocated_count)
5800 return 0;
5801
5802 adapter->vf_data[vf].vlans_enabled--;
5803 if (!adapter->vf_data[vf].vlans_enabled) {
5804 u32 size;
5805
5806 reg = rd32(E1000_VMOLR(vf));
5807 size = reg & E1000_VMOLR_RLPML_MASK;
5808 size -= 4;
5809 reg &= ~E1000_VMOLR_RLPML_MASK;
5810 reg |= size;
5811 wr32(E1000_VMOLR(vf), reg);
5812 }
5813 }
5814 }
5815 return 0;
5816}
5817
5818static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5819{
5820 struct e1000_hw *hw = &adapter->hw;
5821
5822 if (vid)
5823 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5824 else
5825 wr32(E1000_VMVIR(vf), 0);
5826}
5827
5828static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5829 int vf, u16 vlan, u8 qos)
5830{
5831 int err = 0;
5832 struct igb_adapter *adapter = netdev_priv(netdev);
5833
5834 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5835 return -EINVAL;
5836 if (vlan || qos) {
5837 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5838 if (err)
5839 goto out;
5840 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5841 igb_set_vmolr(adapter, vf, !vlan);
5842 adapter->vf_data[vf].pf_vlan = vlan;
5843 adapter->vf_data[vf].pf_qos = qos;
5844 dev_info(&adapter->pdev->dev,
5845 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5846 if (test_bit(__IGB_DOWN, &adapter->state)) {
5847 dev_warn(&adapter->pdev->dev,
5848 "The VF VLAN has been set, but the PF device is not up.\n");
5849 dev_warn(&adapter->pdev->dev,
5850 "Bring the PF device up before attempting to use the VF device.\n");
5851 }
5852 } else {
5853 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5854 false, vf);
5855 igb_set_vmvir(adapter, vlan, vf);
5856 igb_set_vmolr(adapter, vf, true);
5857 adapter->vf_data[vf].pf_vlan = 0;
5858 adapter->vf_data[vf].pf_qos = 0;
5859 }
5860out:
5861 return err;
5862}
5863
5864static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5865{
5866 struct e1000_hw *hw = &adapter->hw;
5867 int i;
5868 u32 reg;
5869
5870 /* Find the vlan filter for this id */
5871 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5872 reg = rd32(E1000_VLVF(i));
5873 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5874 vid == (reg & E1000_VLVF_VLANID_MASK))
5875 break;
5876 }
5877
5878 if (i >= E1000_VLVF_ARRAY_SIZE)
5879 i = -1;
5880
5881 return i;
5882}
5883
5884static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5885{
5886 struct e1000_hw *hw = &adapter->hw;
5887 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5888 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5889 int err = 0;
5890
5891 /* If in promiscuous mode we need to make sure the PF also has
5892 * the VLAN filter set.
5893 */
5894 if (add && (adapter->netdev->flags & IFF_PROMISC))
5895 err = igb_vlvf_set(adapter, vid, add,
5896 adapter->vfs_allocated_count);
5897 if (err)
5898 goto out;
5899
5900 err = igb_vlvf_set(adapter, vid, add, vf);
5901
5902 if (err)
5903 goto out;
5904
5905 /* Go through all the checks to see if the VLAN filter should
5906 * be wiped completely.
5907 */
5908 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5909 u32 vlvf, bits;
5910 int regndx = igb_find_vlvf_entry(adapter, vid);
5911
5912 if (regndx < 0)
5913 goto out;
5914 /* See if any other pools are set for this VLAN filter
5915 * entry other than the PF.
5916 */
5917 vlvf = bits = rd32(E1000_VLVF(regndx));
5918 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5919 adapter->vfs_allocated_count);
5920 /* If the filter was removed then ensure PF pool bit
5921 * is cleared if the PF only added itself to the pool
5922 * because the PF is in promiscuous mode.
5923 */
5924 if ((vlvf & VLAN_VID_MASK) == vid &&
5925 !test_bit(vid, adapter->active_vlans) &&
5926 !bits)
5927 igb_vlvf_set(adapter, vid, add,
5928 adapter->vfs_allocated_count);
5929 }
5930
5931out:
5932 return err;
5933}
5934
5935static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5936{
5937 /* clear flags - except flag that indicates PF has set the MAC */
5938 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5939 adapter->vf_data[vf].last_nack = jiffies;
5940
5941 /* reset offloads to defaults */
5942 igb_set_vmolr(adapter, vf, true);
5943
5944 /* reset vlans for device */
5945 igb_clear_vf_vfta(adapter, vf);
5946 if (adapter->vf_data[vf].pf_vlan)
5947 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5948 adapter->vf_data[vf].pf_vlan,
5949 adapter->vf_data[vf].pf_qos);
5950 else
5951 igb_clear_vf_vfta(adapter, vf);
5952
5953 /* reset multicast table array for vf */
5954 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5955
5956 /* Flush and reset the mta with the new values */
5957 igb_set_rx_mode(adapter->netdev);
5958}
5959
5960static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5961{
5962 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5963
5964 /* clear mac address as we were hotplug removed/added */
5965 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5966 eth_zero_addr(vf_mac);
5967
5968 /* process remaining reset events */
5969 igb_vf_reset(adapter, vf);
5970}
5971
5972static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5973{
5974 struct e1000_hw *hw = &adapter->hw;
5975 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5976 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5977 u32 reg, msgbuf[3];
5978 u8 *addr = (u8 *)(&msgbuf[1]);
5979
5980 /* process all the same items cleared in a function level reset */
5981 igb_vf_reset(adapter, vf);
5982
5983 /* set vf mac address */
5984 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5985
5986 /* enable transmit and receive for vf */
5987 reg = rd32(E1000_VFTE);
5988 wr32(E1000_VFTE, reg | (1 << vf));
5989 reg = rd32(E1000_VFRE);
5990 wr32(E1000_VFRE, reg | (1 << vf));
5991
5992 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5993
5994 /* reply to reset with ack and vf mac address */
5995 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5996 memcpy(addr, vf_mac, ETH_ALEN);
5997 igb_write_mbx(hw, msgbuf, 3, vf);
5998}
5999
6000static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6001{
6002 /* The VF MAC Address is stored in a packed array of bytes
6003 * starting at the second 32 bit word of the msg array
6004 */
6005 unsigned char *addr = (char *)&msg[1];
6006 int err = -1;
6007
6008 if (is_valid_ether_addr(addr))
6009 err = igb_set_vf_mac(adapter, vf, addr);
6010
6011 return err;
6012}
6013
6014static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6015{
6016 struct e1000_hw *hw = &adapter->hw;
6017 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6018 u32 msg = E1000_VT_MSGTYPE_NACK;
6019
6020 /* if device isn't clear to send it shouldn't be reading either */
6021 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6022 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6023 igb_write_mbx(hw, &msg, 1, vf);
6024 vf_data->last_nack = jiffies;
6025 }
6026}
6027
6028static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6029{
6030 struct pci_dev *pdev = adapter->pdev;
6031 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6032 struct e1000_hw *hw = &adapter->hw;
6033 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6034 s32 retval;
6035
6036 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6037
6038 if (retval) {
6039 /* if receive failed revoke VF CTS stats and restart init */
6040 dev_err(&pdev->dev, "Error receiving message from VF\n");
6041 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6042 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6043 return;
6044 goto out;
6045 }
6046
6047 /* this is a message we already processed, do nothing */
6048 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6049 return;
6050
6051 /* until the vf completes a reset it should not be
6052 * allowed to start any configuration.
6053 */
6054 if (msgbuf[0] == E1000_VF_RESET) {
6055 igb_vf_reset_msg(adapter, vf);
6056 return;
6057 }
6058
6059 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6060 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6061 return;
6062 retval = -1;
6063 goto out;
6064 }
6065
6066 switch ((msgbuf[0] & 0xFFFF)) {
6067 case E1000_VF_SET_MAC_ADDR:
6068 retval = -EINVAL;
6069 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6070 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6071 else
6072 dev_warn(&pdev->dev,
6073 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6074 vf);
6075 break;
6076 case E1000_VF_SET_PROMISC:
6077 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6078 break;
6079 case E1000_VF_SET_MULTICAST:
6080 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6081 break;
6082 case E1000_VF_SET_LPE:
6083 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6084 break;
6085 case E1000_VF_SET_VLAN:
6086 retval = -1;
6087 if (vf_data->pf_vlan)
6088 dev_warn(&pdev->dev,
6089 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6090 vf);
6091 else
6092 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6093 break;
6094 default:
6095 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6096 retval = -1;
6097 break;
6098 }
6099
6100 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6101out:
6102 /* notify the VF of the results of what it sent us */
6103 if (retval)
6104 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6105 else
6106 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6107
6108 igb_write_mbx(hw, msgbuf, 1, vf);
6109}
6110
6111static void igb_msg_task(struct igb_adapter *adapter)
6112{
6113 struct e1000_hw *hw = &adapter->hw;
6114 u32 vf;
6115
6116 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6117 /* process any reset requests */
6118 if (!igb_check_for_rst(hw, vf))
6119 igb_vf_reset_event(adapter, vf);
6120
6121 /* process any messages pending */
6122 if (!igb_check_for_msg(hw, vf))
6123 igb_rcv_msg_from_vf(adapter, vf);
6124
6125 /* process any acks */
6126 if (!igb_check_for_ack(hw, vf))
6127 igb_rcv_ack_from_vf(adapter, vf);
6128 }
6129}
6130
6131/**
6132 * igb_set_uta - Set unicast filter table address
6133 * @adapter: board private structure
6134 *
6135 * The unicast table address is a register array of 32-bit registers.
6136 * The table is meant to be used in a way similar to how the MTA is used
6137 * however due to certain limitations in the hardware it is necessary to
6138 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6139 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6140 **/
6141static void igb_set_uta(struct igb_adapter *adapter)
6142{
6143 struct e1000_hw *hw = &adapter->hw;
6144 int i;
6145
6146 /* The UTA table only exists on 82576 hardware and newer */
6147 if (hw->mac.type < e1000_82576)
6148 return;
6149
6150 /* we only need to do this if VMDq is enabled */
6151 if (!adapter->vfs_allocated_count)
6152 return;
6153
6154 for (i = 0; i < hw->mac.uta_reg_count; i++)
6155 array_wr32(E1000_UTA, i, ~0);
6156}
6157
6158/**
6159 * igb_intr_msi - Interrupt Handler
6160 * @irq: interrupt number
6161 * @data: pointer to a network interface device structure
6162 **/
6163static irqreturn_t igb_intr_msi(int irq, void *data)
6164{
6165 struct igb_adapter *adapter = data;
6166 struct igb_q_vector *q_vector = adapter->q_vector[0];
6167 struct e1000_hw *hw = &adapter->hw;
6168 /* read ICR disables interrupts using IAM */
6169 u32 icr = rd32(E1000_ICR);
6170
6171 igb_write_itr(q_vector);
6172
6173 if (icr & E1000_ICR_DRSTA)
6174 schedule_work(&adapter->reset_task);
6175
6176 if (icr & E1000_ICR_DOUTSYNC) {
6177 /* HW is reporting DMA is out of sync */
6178 adapter->stats.doosync++;
6179 }
6180
6181 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6182 hw->mac.get_link_status = 1;
6183 if (!test_bit(__IGB_DOWN, &adapter->state))
6184 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6185 }
6186
6187 if (icr & E1000_ICR_TS) {
6188 u32 tsicr = rd32(E1000_TSICR);
6189
6190 if (tsicr & E1000_TSICR_TXTS) {
6191 /* acknowledge the interrupt */
6192 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6193 /* retrieve hardware timestamp */
6194 schedule_work(&adapter->ptp_tx_work);
6195 }
6196 }
6197
6198 napi_schedule(&q_vector->napi);
6199
6200 return IRQ_HANDLED;
6201}
6202
6203/**
6204 * igb_intr - Legacy Interrupt Handler
6205 * @irq: interrupt number
6206 * @data: pointer to a network interface device structure
6207 **/
6208static irqreturn_t igb_intr(int irq, void *data)
6209{
6210 struct igb_adapter *adapter = data;
6211 struct igb_q_vector *q_vector = adapter->q_vector[0];
6212 struct e1000_hw *hw = &adapter->hw;
6213 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6214 * need for the IMC write
6215 */
6216 u32 icr = rd32(E1000_ICR);
6217
6218 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6219 * not set, then the adapter didn't send an interrupt
6220 */
6221 if (!(icr & E1000_ICR_INT_ASSERTED))
6222 return IRQ_NONE;
6223
6224 igb_write_itr(q_vector);
6225
6226 if (icr & E1000_ICR_DRSTA)
6227 schedule_work(&adapter->reset_task);
6228
6229 if (icr & E1000_ICR_DOUTSYNC) {
6230 /* HW is reporting DMA is out of sync */
6231 adapter->stats.doosync++;
6232 }
6233
6234 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6235 hw->mac.get_link_status = 1;
6236 /* guard against interrupt when we're going down */
6237 if (!test_bit(__IGB_DOWN, &adapter->state))
6238 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6239 }
6240
6241 if (icr & E1000_ICR_TS) {
6242 u32 tsicr = rd32(E1000_TSICR);
6243
6244 if (tsicr & E1000_TSICR_TXTS) {
6245 /* acknowledge the interrupt */
6246 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6247 /* retrieve hardware timestamp */
6248 schedule_work(&adapter->ptp_tx_work);
6249 }
6250 }
6251
6252 napi_schedule(&q_vector->napi);
6253
6254 return IRQ_HANDLED;
6255}
6256
6257static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6258{
6259 struct igb_adapter *adapter = q_vector->adapter;
6260 struct e1000_hw *hw = &adapter->hw;
6261
6262 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6263 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6264 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6265 igb_set_itr(q_vector);
6266 else
6267 igb_update_ring_itr(q_vector);
6268 }
6269
6270 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6271 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6272 wr32(E1000_EIMS, q_vector->eims_value);
6273 else
6274 igb_irq_enable(adapter);
6275 }
6276}
6277
6278/**
6279 * igb_poll - NAPI Rx polling callback
6280 * @napi: napi polling structure
6281 * @budget: count of how many packets we should handle
6282 **/
6283static int igb_poll(struct napi_struct *napi, int budget)
6284{
6285 struct igb_q_vector *q_vector = container_of(napi,
6286 struct igb_q_vector,
6287 napi);
6288 bool clean_complete = true;
6289
6290#ifdef CONFIG_IGB_DCA
6291 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6292 igb_update_dca(q_vector);
6293#endif
6294 if (q_vector->tx.ring)
6295 clean_complete = igb_clean_tx_irq(q_vector);
6296
6297 if (q_vector->rx.ring)
6298 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6299
6300 /* If all work not completed, return budget and keep polling */
6301 if (!clean_complete)
6302 return budget;
6303
6304 /* If not enough Rx work done, exit the polling mode */
6305 napi_complete(napi);
6306 igb_ring_irq_enable(q_vector);
6307
6308 return 0;
6309}
6310
6311/**
6312 * igb_clean_tx_irq - Reclaim resources after transmit completes
6313 * @q_vector: pointer to q_vector containing needed info
6314 *
6315 * returns true if ring is completely cleaned
6316 **/
6317static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6318{
6319 struct igb_adapter *adapter = q_vector->adapter;
6320 struct igb_ring *tx_ring = q_vector->tx.ring;
6321 struct igb_tx_buffer *tx_buffer;
6322 union e1000_adv_tx_desc *tx_desc;
6323 unsigned int total_bytes = 0, total_packets = 0;
6324 unsigned int budget = q_vector->tx.work_limit;
6325 unsigned int i = tx_ring->next_to_clean;
6326
6327 if (test_bit(__IGB_DOWN, &adapter->state))
6328 return true;
6329
6330 tx_buffer = &tx_ring->tx_buffer_info[i];
6331 tx_desc = IGB_TX_DESC(tx_ring, i);
6332 i -= tx_ring->count;
6333
6334 do {
6335 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6336
6337 /* if next_to_watch is not set then there is no work pending */
6338 if (!eop_desc)
6339 break;
6340
6341 /* prevent any other reads prior to eop_desc */
6342 read_barrier_depends();
6343
6344 /* if DD is not set pending work has not been completed */
6345 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6346 break;
6347
6348 /* clear next_to_watch to prevent false hangs */
6349 tx_buffer->next_to_watch = NULL;
6350
6351 /* update the statistics for this packet */
6352 total_bytes += tx_buffer->bytecount;
6353 total_packets += tx_buffer->gso_segs;
6354
6355 /* free the skb */
6356 dev_kfree_skb_any(tx_buffer->skb);
6357
6358 /* unmap skb header data */
6359 dma_unmap_single(tx_ring->dev,
6360 dma_unmap_addr(tx_buffer, dma),
6361 dma_unmap_len(tx_buffer, len),
6362 DMA_TO_DEVICE);
6363
6364 /* clear tx_buffer data */
6365 tx_buffer->skb = NULL;
6366 dma_unmap_len_set(tx_buffer, len, 0);
6367
6368 /* clear last DMA location and unmap remaining buffers */
6369 while (tx_desc != eop_desc) {
6370 tx_buffer++;
6371 tx_desc++;
6372 i++;
6373 if (unlikely(!i)) {
6374 i -= tx_ring->count;
6375 tx_buffer = tx_ring->tx_buffer_info;
6376 tx_desc = IGB_TX_DESC(tx_ring, 0);
6377 }
6378
6379 /* unmap any remaining paged data */
6380 if (dma_unmap_len(tx_buffer, len)) {
6381 dma_unmap_page(tx_ring->dev,
6382 dma_unmap_addr(tx_buffer, dma),
6383 dma_unmap_len(tx_buffer, len),
6384 DMA_TO_DEVICE);
6385 dma_unmap_len_set(tx_buffer, len, 0);
6386 }
6387 }
6388
6389 /* move us one more past the eop_desc for start of next pkt */
6390 tx_buffer++;
6391 tx_desc++;
6392 i++;
6393 if (unlikely(!i)) {
6394 i -= tx_ring->count;
6395 tx_buffer = tx_ring->tx_buffer_info;
6396 tx_desc = IGB_TX_DESC(tx_ring, 0);
6397 }
6398
6399 /* issue prefetch for next Tx descriptor */
6400 prefetch(tx_desc);
6401
6402 /* update budget accounting */
6403 budget--;
6404 } while (likely(budget));
6405
6406 netdev_tx_completed_queue(txring_txq(tx_ring),
6407 total_packets, total_bytes);
6408 i += tx_ring->count;
6409 tx_ring->next_to_clean = i;
6410 u64_stats_update_begin(&tx_ring->tx_syncp);
6411 tx_ring->tx_stats.bytes += total_bytes;
6412 tx_ring->tx_stats.packets += total_packets;
6413 u64_stats_update_end(&tx_ring->tx_syncp);
6414 q_vector->tx.total_bytes += total_bytes;
6415 q_vector->tx.total_packets += total_packets;
6416
6417 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6418 struct e1000_hw *hw = &adapter->hw;
6419
6420 /* Detect a transmit hang in hardware, this serializes the
6421 * check with the clearing of time_stamp and movement of i
6422 */
6423 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6424 if (tx_buffer->next_to_watch &&
6425 time_after(jiffies, tx_buffer->time_stamp +
6426 (adapter->tx_timeout_factor * HZ)) &&
6427 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6428
6429 /* detected Tx unit hang */
6430 dev_err(tx_ring->dev,
6431 "Detected Tx Unit Hang\n"
6432 " Tx Queue <%d>\n"
6433 " TDH <%x>\n"
6434 " TDT <%x>\n"
6435 " next_to_use <%x>\n"
6436 " next_to_clean <%x>\n"
6437 "buffer_info[next_to_clean]\n"
6438 " time_stamp <%lx>\n"
6439 " next_to_watch <%p>\n"
6440 " jiffies <%lx>\n"
6441 " desc.status <%x>\n",
6442 tx_ring->queue_index,
6443 rd32(E1000_TDH(tx_ring->reg_idx)),
6444 readl(tx_ring->tail),
6445 tx_ring->next_to_use,
6446 tx_ring->next_to_clean,
6447 tx_buffer->time_stamp,
6448 tx_buffer->next_to_watch,
6449 jiffies,
6450 tx_buffer->next_to_watch->wb.status);
6451 netif_stop_subqueue(tx_ring->netdev,
6452 tx_ring->queue_index);
6453
6454 /* we are about to reset, no point in enabling stuff */
6455 return true;
6456 }
6457 }
6458
6459#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6460 if (unlikely(total_packets &&
6461 netif_carrier_ok(tx_ring->netdev) &&
6462 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6463 /* Make sure that anybody stopping the queue after this
6464 * sees the new next_to_clean.
6465 */
6466 smp_mb();
6467 if (__netif_subqueue_stopped(tx_ring->netdev,
6468 tx_ring->queue_index) &&
6469 !(test_bit(__IGB_DOWN, &adapter->state))) {
6470 netif_wake_subqueue(tx_ring->netdev,
6471 tx_ring->queue_index);
6472
6473 u64_stats_update_begin(&tx_ring->tx_syncp);
6474 tx_ring->tx_stats.restart_queue++;
6475 u64_stats_update_end(&tx_ring->tx_syncp);
6476 }
6477 }
6478
6479 return !!budget;
6480}
6481
6482/**
6483 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6484 * @rx_ring: rx descriptor ring to store buffers on
6485 * @old_buff: donor buffer to have page reused
6486 *
6487 * Synchronizes page for reuse by the adapter
6488 **/
6489static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6490 struct igb_rx_buffer *old_buff)
6491{
6492 struct igb_rx_buffer *new_buff;
6493 u16 nta = rx_ring->next_to_alloc;
6494
6495 new_buff = &rx_ring->rx_buffer_info[nta];
6496
6497 /* update, and store next to alloc */
6498 nta++;
6499 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6500
6501 /* transfer page from old buffer to new buffer */
6502 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6503
6504 /* sync the buffer for use by the device */
6505 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6506 old_buff->page_offset,
6507 IGB_RX_BUFSZ,
6508 DMA_FROM_DEVICE);
6509}
6510
6511static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6512 struct page *page,
6513 unsigned int truesize)
6514{
6515 /* avoid re-using remote pages */
6516 if (unlikely(page_to_nid(page) != numa_node_id()))
6517 return false;
6518
6519#if (PAGE_SIZE < 8192)
6520 /* if we are only owner of page we can reuse it */
6521 if (unlikely(page_count(page) != 1))
6522 return false;
6523
6524 /* flip page offset to other buffer */
6525 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6526
6527 /* since we are the only owner of the page and we need to
6528 * increment it, just set the value to 2 in order to avoid
6529 * an unnecessary locked operation
6530 */
6531 atomic_set(&page->_count, 2);
6532#else
6533 /* move offset up to the next cache line */
6534 rx_buffer->page_offset += truesize;
6535
6536 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6537 return false;
6538
6539 /* bump ref count on page before it is given to the stack */
6540 get_page(page);
6541#endif
6542
6543 return true;
6544}
6545
6546/**
6547 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6548 * @rx_ring: rx descriptor ring to transact packets on
6549 * @rx_buffer: buffer containing page to add
6550 * @rx_desc: descriptor containing length of buffer written by hardware
6551 * @skb: sk_buff to place the data into
6552 *
6553 * This function will add the data contained in rx_buffer->page to the skb.
6554 * This is done either through a direct copy if the data in the buffer is
6555 * less than the skb header size, otherwise it will just attach the page as
6556 * a frag to the skb.
6557 *
6558 * The function will then update the page offset if necessary and return
6559 * true if the buffer can be reused by the adapter.
6560 **/
6561static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6562 struct igb_rx_buffer *rx_buffer,
6563 union e1000_adv_rx_desc *rx_desc,
6564 struct sk_buff *skb)
6565{
6566 struct page *page = rx_buffer->page;
6567 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6568#if (PAGE_SIZE < 8192)
6569 unsigned int truesize = IGB_RX_BUFSZ;
6570#else
6571 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6572#endif
6573
6574 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6575 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6576
6577 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6578 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6579 va += IGB_TS_HDR_LEN;
6580 size -= IGB_TS_HDR_LEN;
6581 }
6582
6583 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6584
6585 /* we can reuse buffer as-is, just make sure it is local */
6586 if (likely(page_to_nid(page) == numa_node_id()))
6587 return true;
6588
6589 /* this page cannot be reused so discard it */
6590 put_page(page);
6591 return false;
6592 }
6593
6594 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6595 rx_buffer->page_offset, size, truesize);
6596
6597 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6598}
6599
6600static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6601 union e1000_adv_rx_desc *rx_desc,
6602 struct sk_buff *skb)
6603{
6604 struct igb_rx_buffer *rx_buffer;
6605 struct page *page;
6606
6607 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6608
6609 page = rx_buffer->page;
6610 prefetchw(page);
6611
6612 if (likely(!skb)) {
6613 void *page_addr = page_address(page) +
6614 rx_buffer->page_offset;
6615
6616 /* prefetch first cache line of first page */
6617 prefetch(page_addr);
6618#if L1_CACHE_BYTES < 128
6619 prefetch(page_addr + L1_CACHE_BYTES);
6620#endif
6621
6622 /* allocate a skb to store the frags */
6623 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6624 IGB_RX_HDR_LEN);
6625 if (unlikely(!skb)) {
6626 rx_ring->rx_stats.alloc_failed++;
6627 return NULL;
6628 }
6629
6630 /* we will be copying header into skb->data in
6631 * pskb_may_pull so it is in our interest to prefetch
6632 * it now to avoid a possible cache miss
6633 */
6634 prefetchw(skb->data);
6635 }
6636
6637 /* we are reusing so sync this buffer for CPU use */
6638 dma_sync_single_range_for_cpu(rx_ring->dev,
6639 rx_buffer->dma,
6640 rx_buffer->page_offset,
6641 IGB_RX_BUFSZ,
6642 DMA_FROM_DEVICE);
6643
6644 /* pull page into skb */
6645 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6646 /* hand second half of page back to the ring */
6647 igb_reuse_rx_page(rx_ring, rx_buffer);
6648 } else {
6649 /* we are not reusing the buffer so unmap it */
6650 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6651 PAGE_SIZE, DMA_FROM_DEVICE);
6652 }
6653
6654 /* clear contents of rx_buffer */
6655 rx_buffer->page = NULL;
6656
6657 return skb;
6658}
6659
6660static inline void igb_rx_checksum(struct igb_ring *ring,
6661 union e1000_adv_rx_desc *rx_desc,
6662 struct sk_buff *skb)
6663{
6664 skb_checksum_none_assert(skb);
6665
6666 /* Ignore Checksum bit is set */
6667 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6668 return;
6669
6670 /* Rx checksum disabled via ethtool */
6671 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6672 return;
6673
6674 /* TCP/UDP checksum error bit is set */
6675 if (igb_test_staterr(rx_desc,
6676 E1000_RXDEXT_STATERR_TCPE |
6677 E1000_RXDEXT_STATERR_IPE)) {
6678 /* work around errata with sctp packets where the TCPE aka
6679 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6680 * packets, (aka let the stack check the crc32c)
6681 */
6682 if (!((skb->len == 60) &&
6683 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6684 u64_stats_update_begin(&ring->rx_syncp);
6685 ring->rx_stats.csum_err++;
6686 u64_stats_update_end(&ring->rx_syncp);
6687 }
6688 /* let the stack verify checksum errors */
6689 return;
6690 }
6691 /* It must be a TCP or UDP packet with a valid checksum */
6692 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6693 E1000_RXD_STAT_UDPCS))
6694 skb->ip_summed = CHECKSUM_UNNECESSARY;
6695
6696 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6697 le32_to_cpu(rx_desc->wb.upper.status_error));
6698}
6699
6700static inline void igb_rx_hash(struct igb_ring *ring,
6701 union e1000_adv_rx_desc *rx_desc,
6702 struct sk_buff *skb)
6703{
6704 if (ring->netdev->features & NETIF_F_RXHASH)
6705 skb_set_hash(skb,
6706 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6707 PKT_HASH_TYPE_L3);
6708}
6709
6710/**
6711 * igb_is_non_eop - process handling of non-EOP buffers
6712 * @rx_ring: Rx ring being processed
6713 * @rx_desc: Rx descriptor for current buffer
6714 * @skb: current socket buffer containing buffer in progress
6715 *
6716 * This function updates next to clean. If the buffer is an EOP buffer
6717 * this function exits returning false, otherwise it will place the
6718 * sk_buff in the next buffer to be chained and return true indicating
6719 * that this is in fact a non-EOP buffer.
6720 **/
6721static bool igb_is_non_eop(struct igb_ring *rx_ring,
6722 union e1000_adv_rx_desc *rx_desc)
6723{
6724 u32 ntc = rx_ring->next_to_clean + 1;
6725
6726 /* fetch, update, and store next to clean */
6727 ntc = (ntc < rx_ring->count) ? ntc : 0;
6728 rx_ring->next_to_clean = ntc;
6729
6730 prefetch(IGB_RX_DESC(rx_ring, ntc));
6731
6732 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6733 return false;
6734
6735 return true;
6736}
6737
6738/**
6739 * igb_get_headlen - determine size of header for LRO/GRO
6740 * @data: pointer to the start of the headers
6741 * @max_len: total length of section to find headers in
6742 *
6743 * This function is meant to determine the length of headers that will
6744 * be recognized by hardware for LRO, and GRO offloads. The main
6745 * motivation of doing this is to only perform one pull for IPv4 TCP
6746 * packets so that we can do basic things like calculating the gso_size
6747 * based on the average data per packet.
6748 **/
6749static unsigned int igb_get_headlen(unsigned char *data,
6750 unsigned int max_len)
6751{
6752 union {
6753 unsigned char *network;
6754 /* l2 headers */
6755 struct ethhdr *eth;
6756 struct vlan_hdr *vlan;
6757 /* l3 headers */
6758 struct iphdr *ipv4;
6759 struct ipv6hdr *ipv6;
6760 } hdr;
6761 __be16 protocol;
6762 u8 nexthdr = 0; /* default to not TCP */
6763 u8 hlen;
6764
6765 /* this should never happen, but better safe than sorry */
6766 if (max_len < ETH_HLEN)
6767 return max_len;
6768
6769 /* initialize network frame pointer */
6770 hdr.network = data;
6771
6772 /* set first protocol and move network header forward */
6773 protocol = hdr.eth->h_proto;
6774 hdr.network += ETH_HLEN;
6775
6776 /* handle any vlan tag if present */
6777 if (protocol == htons(ETH_P_8021Q)) {
6778 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6779 return max_len;
6780
6781 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6782 hdr.network += VLAN_HLEN;
6783 }
6784
6785 /* handle L3 protocols */
6786 if (protocol == htons(ETH_P_IP)) {
6787 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6788 return max_len;
6789
6790 /* access ihl as a u8 to avoid unaligned access on ia64 */
6791 hlen = (hdr.network[0] & 0x0F) << 2;
6792
6793 /* verify hlen meets minimum size requirements */
6794 if (hlen < sizeof(struct iphdr))
6795 return hdr.network - data;
6796
6797 /* record next protocol if header is present */
6798 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6799 nexthdr = hdr.ipv4->protocol;
6800 } else if (protocol == htons(ETH_P_IPV6)) {
6801 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6802 return max_len;
6803
6804 /* record next protocol */
6805 nexthdr = hdr.ipv6->nexthdr;
6806 hlen = sizeof(struct ipv6hdr);
6807 } else {
6808 return hdr.network - data;
6809 }
6810
6811 /* relocate pointer to start of L4 header */
6812 hdr.network += hlen;
6813
6814 /* finally sort out TCP */
6815 if (nexthdr == IPPROTO_TCP) {
6816 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6817 return max_len;
6818
6819 /* access doff as a u8 to avoid unaligned access on ia64 */
6820 hlen = (hdr.network[12] & 0xF0) >> 2;
6821
6822 /* verify hlen meets minimum size requirements */
6823 if (hlen < sizeof(struct tcphdr))
6824 return hdr.network - data;
6825
6826 hdr.network += hlen;
6827 } else if (nexthdr == IPPROTO_UDP) {
6828 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6829 return max_len;
6830
6831 hdr.network += sizeof(struct udphdr);
6832 }
6833
6834 /* If everything has gone correctly hdr.network should be the
6835 * data section of the packet and will be the end of the header.
6836 * If not then it probably represents the end of the last recognized
6837 * header.
6838 */
6839 if ((hdr.network - data) < max_len)
6840 return hdr.network - data;
6841 else
6842 return max_len;
6843}
6844
6845/**
6846 * igb_pull_tail - igb specific version of skb_pull_tail
6847 * @rx_ring: rx descriptor ring packet is being transacted on
6848 * @rx_desc: pointer to the EOP Rx descriptor
6849 * @skb: pointer to current skb being adjusted
6850 *
6851 * This function is an igb specific version of __pskb_pull_tail. The
6852 * main difference between this version and the original function is that
6853 * this function can make several assumptions about the state of things
6854 * that allow for significant optimizations versus the standard function.
6855 * As a result we can do things like drop a frag and maintain an accurate
6856 * truesize for the skb.
6857 */
6858static void igb_pull_tail(struct igb_ring *rx_ring,
6859 union e1000_adv_rx_desc *rx_desc,
6860 struct sk_buff *skb)
6861{
6862 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6863 unsigned char *va;
6864 unsigned int pull_len;
6865
6866 /* it is valid to use page_address instead of kmap since we are
6867 * working with pages allocated out of the lomem pool per
6868 * alloc_page(GFP_ATOMIC)
6869 */
6870 va = skb_frag_address(frag);
6871
6872 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6873 /* retrieve timestamp from buffer */
6874 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6875
6876 /* update pointers to remove timestamp header */
6877 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6878 frag->page_offset += IGB_TS_HDR_LEN;
6879 skb->data_len -= IGB_TS_HDR_LEN;
6880 skb->len -= IGB_TS_HDR_LEN;
6881
6882 /* move va to start of packet data */
6883 va += IGB_TS_HDR_LEN;
6884 }
6885
6886 /* we need the header to contain the greater of either ETH_HLEN or
6887 * 60 bytes if the skb->len is less than 60 for skb_pad.
6888 */
6889 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6890
6891 /* align pull length to size of long to optimize memcpy performance */
6892 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6893
6894 /* update all of the pointers */
6895 skb_frag_size_sub(frag, pull_len);
6896 frag->page_offset += pull_len;
6897 skb->data_len -= pull_len;
6898 skb->tail += pull_len;
6899}
6900
6901/**
6902 * igb_cleanup_headers - Correct corrupted or empty headers
6903 * @rx_ring: rx descriptor ring packet is being transacted on
6904 * @rx_desc: pointer to the EOP Rx descriptor
6905 * @skb: pointer to current skb being fixed
6906 *
6907 * Address the case where we are pulling data in on pages only
6908 * and as such no data is present in the skb header.
6909 *
6910 * In addition if skb is not at least 60 bytes we need to pad it so that
6911 * it is large enough to qualify as a valid Ethernet frame.
6912 *
6913 * Returns true if an error was encountered and skb was freed.
6914 **/
6915static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6916 union e1000_adv_rx_desc *rx_desc,
6917 struct sk_buff *skb)
6918{
6919 if (unlikely((igb_test_staterr(rx_desc,
6920 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6921 struct net_device *netdev = rx_ring->netdev;
6922 if (!(netdev->features & NETIF_F_RXALL)) {
6923 dev_kfree_skb_any(skb);
6924 return true;
6925 }
6926 }
6927
6928 /* place header in linear portion of buffer */
6929 if (skb_is_nonlinear(skb))
6930 igb_pull_tail(rx_ring, rx_desc, skb);
6931
6932 /* if skb_pad returns an error the skb was freed */
6933 if (unlikely(skb->len < 60)) {
6934 int pad_len = 60 - skb->len;
6935
6936 if (skb_pad(skb, pad_len))
6937 return true;
6938 __skb_put(skb, pad_len);
6939 }
6940
6941 return false;
6942}
6943
6944/**
6945 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6946 * @rx_ring: rx descriptor ring packet is being transacted on
6947 * @rx_desc: pointer to the EOP Rx descriptor
6948 * @skb: pointer to current skb being populated
6949 *
6950 * This function checks the ring, descriptor, and packet information in
6951 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6952 * other fields within the skb.
6953 **/
6954static void igb_process_skb_fields(struct igb_ring *rx_ring,
6955 union e1000_adv_rx_desc *rx_desc,
6956 struct sk_buff *skb)
6957{
6958 struct net_device *dev = rx_ring->netdev;
6959
6960 igb_rx_hash(rx_ring, rx_desc, skb);
6961
6962 igb_rx_checksum(rx_ring, rx_desc, skb);
6963
6964 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6965 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6966 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6967
6968 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6969 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6970 u16 vid;
6971
6972 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6973 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6974 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6975 else
6976 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6977
6978 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6979 }
6980
6981 skb_record_rx_queue(skb, rx_ring->queue_index);
6982
6983 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6984}
6985
6986static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6987{
6988 struct igb_ring *rx_ring = q_vector->rx.ring;
6989 struct sk_buff *skb = rx_ring->skb;
6990 unsigned int total_bytes = 0, total_packets = 0;
6991 u16 cleaned_count = igb_desc_unused(rx_ring);
6992
6993 while (likely(total_packets < budget)) {
6994 union e1000_adv_rx_desc *rx_desc;
6995
6996 /* return some buffers to hardware, one at a time is too slow */
6997 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6998 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6999 cleaned_count = 0;
7000 }
7001
7002 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7003
7004 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
7005 break;
7006
7007 /* This memory barrier is needed to keep us from reading
7008 * any other fields out of the rx_desc until we know the
7009 * RXD_STAT_DD bit is set
7010 */
7011 rmb();
7012
7013 /* retrieve a buffer from the ring */
7014 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7015
7016 /* exit if we failed to retrieve a buffer */
7017 if (!skb)
7018 break;
7019
7020 cleaned_count++;
7021
7022 /* fetch next buffer in frame if non-eop */
7023 if (igb_is_non_eop(rx_ring, rx_desc))
7024 continue;
7025
7026 /* verify the packet layout is correct */
7027 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7028 skb = NULL;
7029 continue;
7030 }
7031
7032 /* probably a little skewed due to removing CRC */
7033 total_bytes += skb->len;
7034
7035 /* populate checksum, timestamp, VLAN, and protocol */
7036 igb_process_skb_fields(rx_ring, rx_desc, skb);
7037
7038 napi_gro_receive(&q_vector->napi, skb);
7039
7040 /* reset skb pointer */
7041 skb = NULL;
7042
7043 /* update budget accounting */
7044 total_packets++;
7045 }
7046
7047 /* place incomplete frames back on ring for completion */
7048 rx_ring->skb = skb;
7049
7050 u64_stats_update_begin(&rx_ring->rx_syncp);
7051 rx_ring->rx_stats.packets += total_packets;
7052 rx_ring->rx_stats.bytes += total_bytes;
7053 u64_stats_update_end(&rx_ring->rx_syncp);
7054 q_vector->rx.total_packets += total_packets;
7055 q_vector->rx.total_bytes += total_bytes;
7056
7057 if (cleaned_count)
7058 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7059
7060 return total_packets < budget;
7061}
7062
7063static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7064 struct igb_rx_buffer *bi)
7065{
7066 struct page *page = bi->page;
7067 dma_addr_t dma;
7068
7069 /* since we are recycling buffers we should seldom need to alloc */
7070 if (likely(page))
7071 return true;
7072
7073 /* alloc new page for storage */
7074 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7075 if (unlikely(!page)) {
7076 rx_ring->rx_stats.alloc_failed++;
7077 return false;
7078 }
7079
7080 /* map page for use */
7081 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7082
7083 /* if mapping failed free memory back to system since
7084 * there isn't much point in holding memory we can't use
7085 */
7086 if (dma_mapping_error(rx_ring->dev, dma)) {
7087 __free_page(page);
7088
7089 rx_ring->rx_stats.alloc_failed++;
7090 return false;
7091 }
7092
7093 bi->dma = dma;
7094 bi->page = page;
7095 bi->page_offset = 0;
7096
7097 return true;
7098}
7099
7100/**
7101 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7102 * @adapter: address of board private structure
7103 **/
7104void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7105{
7106 union e1000_adv_rx_desc *rx_desc;
7107 struct igb_rx_buffer *bi;
7108 u16 i = rx_ring->next_to_use;
7109
7110 /* nothing to do */
7111 if (!cleaned_count)
7112 return;
7113
7114 rx_desc = IGB_RX_DESC(rx_ring, i);
7115 bi = &rx_ring->rx_buffer_info[i];
7116 i -= rx_ring->count;
7117
7118 do {
7119 if (!igb_alloc_mapped_page(rx_ring, bi))
7120 break;
7121
7122 /* Refresh the desc even if buffer_addrs didn't change
7123 * because each write-back erases this info.
7124 */
7125 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7126
7127 rx_desc++;
7128 bi++;
7129 i++;
7130 if (unlikely(!i)) {
7131 rx_desc = IGB_RX_DESC(rx_ring, 0);
7132 bi = rx_ring->rx_buffer_info;
7133 i -= rx_ring->count;
7134 }
7135
7136 /* clear the hdr_addr for the next_to_use descriptor */
7137 rx_desc->read.hdr_addr = 0;
7138
7139 cleaned_count--;
7140 } while (cleaned_count);
7141
7142 i += rx_ring->count;
7143
7144 if (rx_ring->next_to_use != i) {
7145 /* record the next descriptor to use */
7146 rx_ring->next_to_use = i;
7147
7148 /* update next to alloc since we have filled the ring */
7149 rx_ring->next_to_alloc = i;
7150
7151 /* Force memory writes to complete before letting h/w
7152 * know there are new descriptors to fetch. (Only
7153 * applicable for weak-ordered memory model archs,
7154 * such as IA-64).
7155 */
7156 wmb();
7157 writel(i, rx_ring->tail);
7158 }
7159}
7160
7161/**
7162 * igb_mii_ioctl -
7163 * @netdev:
7164 * @ifreq:
7165 * @cmd:
7166 **/
7167static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7168{
7169 struct igb_adapter *adapter = netdev_priv(netdev);
7170 struct mii_ioctl_data *data = if_mii(ifr);
7171
7172 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7173 return -EOPNOTSUPP;
7174
7175 switch (cmd) {
7176 case SIOCGMIIPHY:
7177 data->phy_id = adapter->hw.phy.addr;
7178 break;
7179 case SIOCGMIIREG:
7180 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7181 &data->val_out))
7182 return -EIO;
7183 break;
7184 case SIOCSMIIREG:
7185 default:
7186 return -EOPNOTSUPP;
7187 }
7188 return 0;
7189}
7190
7191/**
7192 * igb_ioctl -
7193 * @netdev:
7194 * @ifreq:
7195 * @cmd:
7196 **/
7197static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7198{
7199 switch (cmd) {
7200 case SIOCGMIIPHY:
7201 case SIOCGMIIREG:
7202 case SIOCSMIIREG:
7203 return igb_mii_ioctl(netdev, ifr, cmd);
7204 case SIOCGHWTSTAMP:
7205 return igb_ptp_get_ts_config(netdev, ifr);
7206 case SIOCSHWTSTAMP:
7207 return igb_ptp_set_ts_config(netdev, ifr);
7208 default:
7209 return -EOPNOTSUPP;
7210 }
7211}
7212
7213s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7214{
7215 struct igb_adapter *adapter = hw->back;
7216
7217 if (pcie_capability_read_word(adapter->pdev, reg, value))
7218 return -E1000_ERR_CONFIG;
7219
7220 return 0;
7221}
7222
7223s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7224{
7225 struct igb_adapter *adapter = hw->back;
7226
7227 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7228 return -E1000_ERR_CONFIG;
7229
7230 return 0;
7231}
7232
7233static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7234{
7235 struct igb_adapter *adapter = netdev_priv(netdev);
7236 struct e1000_hw *hw = &adapter->hw;
7237 u32 ctrl, rctl;
7238 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7239
7240 if (enable) {
7241 /* enable VLAN tag insert/strip */
7242 ctrl = rd32(E1000_CTRL);
7243 ctrl |= E1000_CTRL_VME;
7244 wr32(E1000_CTRL, ctrl);
7245
7246 /* Disable CFI check */
7247 rctl = rd32(E1000_RCTL);
7248 rctl &= ~E1000_RCTL_CFIEN;
7249 wr32(E1000_RCTL, rctl);
7250 } else {
7251 /* disable VLAN tag insert/strip */
7252 ctrl = rd32(E1000_CTRL);
7253 ctrl &= ~E1000_CTRL_VME;
7254 wr32(E1000_CTRL, ctrl);
7255 }
7256
7257 igb_rlpml_set(adapter);
7258}
7259
7260static int igb_vlan_rx_add_vid(struct net_device *netdev,
7261 __be16 proto, u16 vid)
7262{
7263 struct igb_adapter *adapter = netdev_priv(netdev);
7264 struct e1000_hw *hw = &adapter->hw;
7265 int pf_id = adapter->vfs_allocated_count;
7266
7267 /* attempt to add filter to vlvf array */
7268 igb_vlvf_set(adapter, vid, true, pf_id);
7269
7270 /* add the filter since PF can receive vlans w/o entry in vlvf */
7271 igb_vfta_set(hw, vid, true);
7272
7273 set_bit(vid, adapter->active_vlans);
7274
7275 return 0;
7276}
7277
7278static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7279 __be16 proto, u16 vid)
7280{
7281 struct igb_adapter *adapter = netdev_priv(netdev);
7282 struct e1000_hw *hw = &adapter->hw;
7283 int pf_id = adapter->vfs_allocated_count;
7284 s32 err;
7285
7286 /* remove vlan from VLVF table array */
7287 err = igb_vlvf_set(adapter, vid, false, pf_id);
7288
7289 /* if vid was not present in VLVF just remove it from table */
7290 if (err)
7291 igb_vfta_set(hw, vid, false);
7292
7293 clear_bit(vid, adapter->active_vlans);
7294
7295 return 0;
7296}
7297
7298static void igb_restore_vlan(struct igb_adapter *adapter)
7299{
7300 u16 vid;
7301
7302 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7303
7304 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7305 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7306}
7307
7308int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7309{
7310 struct pci_dev *pdev = adapter->pdev;
7311 struct e1000_mac_info *mac = &adapter->hw.mac;
7312
7313 mac->autoneg = 0;
7314
7315 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7316 * for the switch() below to work
7317 */
7318 if ((spd & 1) || (dplx & ~1))
7319 goto err_inval;
7320
7321 /* Fiber NIC's only allow 1000 gbps Full duplex
7322 * and 100Mbps Full duplex for 100baseFx sfp
7323 */
7324 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7325 switch (spd + dplx) {
7326 case SPEED_10 + DUPLEX_HALF:
7327 case SPEED_10 + DUPLEX_FULL:
7328 case SPEED_100 + DUPLEX_HALF:
7329 goto err_inval;
7330 default:
7331 break;
7332 }
7333 }
7334
7335 switch (spd + dplx) {
7336 case SPEED_10 + DUPLEX_HALF:
7337 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7338 break;
7339 case SPEED_10 + DUPLEX_FULL:
7340 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7341 break;
7342 case SPEED_100 + DUPLEX_HALF:
7343 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7344 break;
7345 case SPEED_100 + DUPLEX_FULL:
7346 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7347 break;
7348 case SPEED_1000 + DUPLEX_FULL:
7349 mac->autoneg = 1;
7350 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7351 break;
7352 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7353 default:
7354 goto err_inval;
7355 }
7356
7357 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7358 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7359
7360 return 0;
7361
7362err_inval:
7363 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7364 return -EINVAL;
7365}
7366
7367static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7368 bool runtime)
7369{
7370 struct net_device *netdev = pci_get_drvdata(pdev);
7371 struct igb_adapter *adapter = netdev_priv(netdev);
7372 struct e1000_hw *hw = &adapter->hw;
7373 u32 ctrl, rctl, status;
7374 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7375#ifdef CONFIG_PM
7376 int retval = 0;
7377#endif
7378
7379 netif_device_detach(netdev);
7380
7381 if (netif_running(netdev))
7382 __igb_close(netdev, true);
7383
7384 igb_clear_interrupt_scheme(adapter);
7385
7386#ifdef CONFIG_PM
7387 retval = pci_save_state(pdev);
7388 if (retval)
7389 return retval;
7390#endif
7391
7392 status = rd32(E1000_STATUS);
7393 if (status & E1000_STATUS_LU)
7394 wufc &= ~E1000_WUFC_LNKC;
7395
7396 if (wufc) {
7397 igb_setup_rctl(adapter);
7398 igb_set_rx_mode(netdev);
7399
7400 /* turn on all-multi mode if wake on multicast is enabled */
7401 if (wufc & E1000_WUFC_MC) {
7402 rctl = rd32(E1000_RCTL);
7403 rctl |= E1000_RCTL_MPE;
7404 wr32(E1000_RCTL, rctl);
7405 }
7406
7407 ctrl = rd32(E1000_CTRL);
7408 /* advertise wake from D3Cold */
7409 #define E1000_CTRL_ADVD3WUC 0x00100000
7410 /* phy power management enable */
7411 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7412 ctrl |= E1000_CTRL_ADVD3WUC;
7413 wr32(E1000_CTRL, ctrl);
7414
7415 /* Allow time for pending master requests to run */
7416 igb_disable_pcie_master(hw);
7417
7418 wr32(E1000_WUC, E1000_WUC_PME_EN);
7419 wr32(E1000_WUFC, wufc);
7420 } else {
7421 wr32(E1000_WUC, 0);
7422 wr32(E1000_WUFC, 0);
7423 }
7424
7425 *enable_wake = wufc || adapter->en_mng_pt;
7426 if (!*enable_wake)
7427 igb_power_down_link(adapter);
7428 else
7429 igb_power_up_link(adapter);
7430
7431 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7432 * would have already happened in close and is redundant.
7433 */
7434 igb_release_hw_control(adapter);
7435
7436 pci_disable_device(pdev);
7437
7438 return 0;
7439}
7440
7441#ifdef CONFIG_PM
7442#ifdef CONFIG_PM_SLEEP
7443static int igb_suspend(struct device *dev)
7444{
7445 int retval;
7446 bool wake;
7447 struct pci_dev *pdev = to_pci_dev(dev);
7448
7449 retval = __igb_shutdown(pdev, &wake, 0);
7450 if (retval)
7451 return retval;
7452
7453 if (wake) {
7454 pci_prepare_to_sleep(pdev);
7455 } else {
7456 pci_wake_from_d3(pdev, false);
7457 pci_set_power_state(pdev, PCI_D3hot);
7458 }
7459
7460 return 0;
7461}
7462#endif /* CONFIG_PM_SLEEP */
7463
7464static int igb_resume(struct device *dev)
7465{
7466 struct pci_dev *pdev = to_pci_dev(dev);
7467 struct net_device *netdev = pci_get_drvdata(pdev);
7468 struct igb_adapter *adapter = netdev_priv(netdev);
7469 struct e1000_hw *hw = &adapter->hw;
7470 u32 err;
7471
7472 pci_set_power_state(pdev, PCI_D0);
7473 pci_restore_state(pdev);
7474 pci_save_state(pdev);
7475
7476 err = pci_enable_device_mem(pdev);
7477 if (err) {
7478 dev_err(&pdev->dev,
7479 "igb: Cannot enable PCI device from suspend\n");
7480 return err;
7481 }
7482 pci_set_master(pdev);
7483
7484 pci_enable_wake(pdev, PCI_D3hot, 0);
7485 pci_enable_wake(pdev, PCI_D3cold, 0);
7486
7487 if (igb_init_interrupt_scheme(adapter, true)) {
7488 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7489 return -ENOMEM;
7490 }
7491
7492 igb_reset(adapter);
7493
7494 /* let the f/w know that the h/w is now under the control of the
7495 * driver.
7496 */
7497 igb_get_hw_control(adapter);
7498
7499 wr32(E1000_WUS, ~0);
7500
7501 if (netdev->flags & IFF_UP) {
7502 rtnl_lock();
7503 err = __igb_open(netdev, true);
7504 rtnl_unlock();
7505 if (err)
7506 return err;
7507 }
7508
7509 netif_device_attach(netdev);
7510 return 0;
7511}
7512
7513#ifdef CONFIG_PM_RUNTIME
7514static int igb_runtime_idle(struct device *dev)
7515{
7516 struct pci_dev *pdev = to_pci_dev(dev);
7517 struct net_device *netdev = pci_get_drvdata(pdev);
7518 struct igb_adapter *adapter = netdev_priv(netdev);
7519
7520 if (!igb_has_link(adapter))
7521 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7522
7523 return -EBUSY;
7524}
7525
7526static int igb_runtime_suspend(struct device *dev)
7527{
7528 struct pci_dev *pdev = to_pci_dev(dev);
7529 int retval;
7530 bool wake;
7531
7532 retval = __igb_shutdown(pdev, &wake, 1);
7533 if (retval)
7534 return retval;
7535
7536 if (wake) {
7537 pci_prepare_to_sleep(pdev);
7538 } else {
7539 pci_wake_from_d3(pdev, false);
7540 pci_set_power_state(pdev, PCI_D3hot);
7541 }
7542
7543 return 0;
7544}
7545
7546static int igb_runtime_resume(struct device *dev)
7547{
7548 return igb_resume(dev);
7549}
7550#endif /* CONFIG_PM_RUNTIME */
7551#endif
7552
7553static void igb_shutdown(struct pci_dev *pdev)
7554{
7555 bool wake;
7556
7557 __igb_shutdown(pdev, &wake, 0);
7558
7559 if (system_state == SYSTEM_POWER_OFF) {
7560 pci_wake_from_d3(pdev, wake);
7561 pci_set_power_state(pdev, PCI_D3hot);
7562 }
7563}
7564
7565#ifdef CONFIG_PCI_IOV
7566static int igb_sriov_reinit(struct pci_dev *dev)
7567{
7568 struct net_device *netdev = pci_get_drvdata(dev);
7569 struct igb_adapter *adapter = netdev_priv(netdev);
7570 struct pci_dev *pdev = adapter->pdev;
7571
7572 rtnl_lock();
7573
7574 if (netif_running(netdev))
7575 igb_close(netdev);
7576
7577 igb_clear_interrupt_scheme(adapter);
7578
7579 igb_init_queue_configuration(adapter);
7580
7581 if (igb_init_interrupt_scheme(adapter, true)) {
7582 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7583 return -ENOMEM;
7584 }
7585
7586 if (netif_running(netdev))
7587 igb_open(netdev);
7588
7589 rtnl_unlock();
7590
7591 return 0;
7592}
7593
7594static int igb_pci_disable_sriov(struct pci_dev *dev)
7595{
7596 int err = igb_disable_sriov(dev);
7597
7598 if (!err)
7599 err = igb_sriov_reinit(dev);
7600
7601 return err;
7602}
7603
7604static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7605{
7606 int err = igb_enable_sriov(dev, num_vfs);
7607
7608 if (err)
7609 goto out;
7610
7611 err = igb_sriov_reinit(dev);
7612 if (!err)
7613 return num_vfs;
7614
7615out:
7616 return err;
7617}
7618
7619#endif
7620static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7621{
7622#ifdef CONFIG_PCI_IOV
7623 if (num_vfs == 0)
7624 return igb_pci_disable_sriov(dev);
7625 else
7626 return igb_pci_enable_sriov(dev, num_vfs);
7627#endif
7628 return 0;
7629}
7630
7631#ifdef CONFIG_NET_POLL_CONTROLLER
7632/* Polling 'interrupt' - used by things like netconsole to send skbs
7633 * without having to re-enable interrupts. It's not called while
7634 * the interrupt routine is executing.
7635 */
7636static void igb_netpoll(struct net_device *netdev)
7637{
7638 struct igb_adapter *adapter = netdev_priv(netdev);
7639 struct e1000_hw *hw = &adapter->hw;
7640 struct igb_q_vector *q_vector;
7641 int i;
7642
7643 for (i = 0; i < adapter->num_q_vectors; i++) {
7644 q_vector = adapter->q_vector[i];
7645 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7646 wr32(E1000_EIMC, q_vector->eims_value);
7647 else
7648 igb_irq_disable(adapter);
7649 napi_schedule(&q_vector->napi);
7650 }
7651}
7652#endif /* CONFIG_NET_POLL_CONTROLLER */
7653
7654/**
7655 * igb_io_error_detected - called when PCI error is detected
7656 * @pdev: Pointer to PCI device
7657 * @state: The current pci connection state
7658 *
7659 * This function is called after a PCI bus error affecting
7660 * this device has been detected.
7661 **/
7662static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7663 pci_channel_state_t state)
7664{
7665 struct net_device *netdev = pci_get_drvdata(pdev);
7666 struct igb_adapter *adapter = netdev_priv(netdev);
7667
7668 netif_device_detach(netdev);
7669
7670 if (state == pci_channel_io_perm_failure)
7671 return PCI_ERS_RESULT_DISCONNECT;
7672
7673 if (netif_running(netdev))
7674 igb_down(adapter);
7675 pci_disable_device(pdev);
7676
7677 /* Request a slot slot reset. */
7678 return PCI_ERS_RESULT_NEED_RESET;
7679}
7680
7681/**
7682 * igb_io_slot_reset - called after the pci bus has been reset.
7683 * @pdev: Pointer to PCI device
7684 *
7685 * Restart the card from scratch, as if from a cold-boot. Implementation
7686 * resembles the first-half of the igb_resume routine.
7687 **/
7688static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7689{
7690 struct net_device *netdev = pci_get_drvdata(pdev);
7691 struct igb_adapter *adapter = netdev_priv(netdev);
7692 struct e1000_hw *hw = &adapter->hw;
7693 pci_ers_result_t result;
7694 int err;
7695
7696 if (pci_enable_device_mem(pdev)) {
7697 dev_err(&pdev->dev,
7698 "Cannot re-enable PCI device after reset.\n");
7699 result = PCI_ERS_RESULT_DISCONNECT;
7700 } else {
7701 pci_set_master(pdev);
7702 pci_restore_state(pdev);
7703 pci_save_state(pdev);
7704
7705 pci_enable_wake(pdev, PCI_D3hot, 0);
7706 pci_enable_wake(pdev, PCI_D3cold, 0);
7707
7708 igb_reset(adapter);
7709 wr32(E1000_WUS, ~0);
7710 result = PCI_ERS_RESULT_RECOVERED;
7711 }
7712
7713 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7714 if (err) {
7715 dev_err(&pdev->dev,
7716 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7717 err);
7718 /* non-fatal, continue */
7719 }
7720
7721 return result;
7722}
7723
7724/**
7725 * igb_io_resume - called when traffic can start flowing again.
7726 * @pdev: Pointer to PCI device
7727 *
7728 * This callback is called when the error recovery driver tells us that
7729 * its OK to resume normal operation. Implementation resembles the
7730 * second-half of the igb_resume routine.
7731 */
7732static void igb_io_resume(struct pci_dev *pdev)
7733{
7734 struct net_device *netdev = pci_get_drvdata(pdev);
7735 struct igb_adapter *adapter = netdev_priv(netdev);
7736
7737 if (netif_running(netdev)) {
7738 if (igb_up(adapter)) {
7739 dev_err(&pdev->dev, "igb_up failed after reset\n");
7740 return;
7741 }
7742 }
7743
7744 netif_device_attach(netdev);
7745
7746 /* let the f/w know that the h/w is now under the control of the
7747 * driver.
7748 */
7749 igb_get_hw_control(adapter);
7750}
7751
7752static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7753 u8 qsel)
7754{
7755 u32 rar_low, rar_high;
7756 struct e1000_hw *hw = &adapter->hw;
7757
7758 /* HW expects these in little endian so we reverse the byte order
7759 * from network order (big endian) to little endian
7760 */
7761 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7762 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7763 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7764
7765 /* Indicate to hardware the Address is Valid. */
7766 rar_high |= E1000_RAH_AV;
7767
7768 if (hw->mac.type == e1000_82575)
7769 rar_high |= E1000_RAH_POOL_1 * qsel;
7770 else
7771 rar_high |= E1000_RAH_POOL_1 << qsel;
7772
7773 wr32(E1000_RAL(index), rar_low);
7774 wrfl();
7775 wr32(E1000_RAH(index), rar_high);
7776 wrfl();
7777}
7778
7779static int igb_set_vf_mac(struct igb_adapter *adapter,
7780 int vf, unsigned char *mac_addr)
7781{
7782 struct e1000_hw *hw = &adapter->hw;
7783 /* VF MAC addresses start at end of receive addresses and moves
7784 * towards the first, as a result a collision should not be possible
7785 */
7786 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7787
7788 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7789
7790 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7791
7792 return 0;
7793}
7794
7795static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7796{
7797 struct igb_adapter *adapter = netdev_priv(netdev);
7798 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7799 return -EINVAL;
7800 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7801 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7802 dev_info(&adapter->pdev->dev,
7803 "Reload the VF driver to make this change effective.");
7804 if (test_bit(__IGB_DOWN, &adapter->state)) {
7805 dev_warn(&adapter->pdev->dev,
7806 "The VF MAC address has been set, but the PF device is not up.\n");
7807 dev_warn(&adapter->pdev->dev,
7808 "Bring the PF device up before attempting to use the VF device.\n");
7809 }
7810 return igb_set_vf_mac(adapter, vf, mac);
7811}
7812
7813static int igb_link_mbps(int internal_link_speed)
7814{
7815 switch (internal_link_speed) {
7816 case SPEED_100:
7817 return 100;
7818 case SPEED_1000:
7819 return 1000;
7820 default:
7821 return 0;
7822 }
7823}
7824
7825static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7826 int link_speed)
7827{
7828 int rf_dec, rf_int;
7829 u32 bcnrc_val;
7830
7831 if (tx_rate != 0) {
7832 /* Calculate the rate factor values to set */
7833 rf_int = link_speed / tx_rate;
7834 rf_dec = (link_speed - (rf_int * tx_rate));
7835 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7836 tx_rate;
7837
7838 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7839 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7840 E1000_RTTBCNRC_RF_INT_MASK);
7841 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7842 } else {
7843 bcnrc_val = 0;
7844 }
7845
7846 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7847 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7848 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7849 */
7850 wr32(E1000_RTTBCNRM, 0x14);
7851 wr32(E1000_RTTBCNRC, bcnrc_val);
7852}
7853
7854static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7855{
7856 int actual_link_speed, i;
7857 bool reset_rate = false;
7858
7859 /* VF TX rate limit was not set or not supported */
7860 if ((adapter->vf_rate_link_speed == 0) ||
7861 (adapter->hw.mac.type != e1000_82576))
7862 return;
7863
7864 actual_link_speed = igb_link_mbps(adapter->link_speed);
7865 if (actual_link_speed != adapter->vf_rate_link_speed) {
7866 reset_rate = true;
7867 adapter->vf_rate_link_speed = 0;
7868 dev_info(&adapter->pdev->dev,
7869 "Link speed has been changed. VF Transmit rate is disabled\n");
7870 }
7871
7872 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7873 if (reset_rate)
7874 adapter->vf_data[i].tx_rate = 0;
7875
7876 igb_set_vf_rate_limit(&adapter->hw, i,
7877 adapter->vf_data[i].tx_rate,
7878 actual_link_speed);
7879 }
7880}
7881
7882static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7883{
7884 struct igb_adapter *adapter = netdev_priv(netdev);
7885 struct e1000_hw *hw = &adapter->hw;
7886 int actual_link_speed;
7887
7888 if (hw->mac.type != e1000_82576)
7889 return -EOPNOTSUPP;
7890
7891 actual_link_speed = igb_link_mbps(adapter->link_speed);
7892 if ((vf >= adapter->vfs_allocated_count) ||
7893 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7894 (tx_rate < 0) || (tx_rate > actual_link_speed))
7895 return -EINVAL;
7896
7897 adapter->vf_rate_link_speed = actual_link_speed;
7898 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7899 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7900
7901 return 0;
7902}
7903
7904static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7905 bool setting)
7906{
7907 struct igb_adapter *adapter = netdev_priv(netdev);
7908 struct e1000_hw *hw = &adapter->hw;
7909 u32 reg_val, reg_offset;
7910
7911 if (!adapter->vfs_allocated_count)
7912 return -EOPNOTSUPP;
7913
7914 if (vf >= adapter->vfs_allocated_count)
7915 return -EINVAL;
7916
7917 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7918 reg_val = rd32(reg_offset);
7919 if (setting)
7920 reg_val |= ((1 << vf) |
7921 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7922 else
7923 reg_val &= ~((1 << vf) |
7924 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7925 wr32(reg_offset, reg_val);
7926
7927 adapter->vf_data[vf].spoofchk_enabled = setting;
7928 return E1000_SUCCESS;
7929}
7930
7931static int igb_ndo_get_vf_config(struct net_device *netdev,
7932 int vf, struct ifla_vf_info *ivi)
7933{
7934 struct igb_adapter *adapter = netdev_priv(netdev);
7935 if (vf >= adapter->vfs_allocated_count)
7936 return -EINVAL;
7937 ivi->vf = vf;
7938 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7939 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7940 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7941 ivi->qos = adapter->vf_data[vf].pf_qos;
7942 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7943 return 0;
7944}
7945
7946static void igb_vmm_control(struct igb_adapter *adapter)
7947{
7948 struct e1000_hw *hw = &adapter->hw;
7949 u32 reg;
7950
7951 switch (hw->mac.type) {
7952 case e1000_82575:
7953 case e1000_i210:
7954 case e1000_i211:
7955 case e1000_i354:
7956 default:
7957 /* replication is not supported for 82575 */
7958 return;
7959 case e1000_82576:
7960 /* notify HW that the MAC is adding vlan tags */
7961 reg = rd32(E1000_DTXCTL);
7962 reg |= E1000_DTXCTL_VLAN_ADDED;
7963 wr32(E1000_DTXCTL, reg);
7964 /* Fall through */
7965 case e1000_82580:
7966 /* enable replication vlan tag stripping */
7967 reg = rd32(E1000_RPLOLR);
7968 reg |= E1000_RPLOLR_STRVLAN;
7969 wr32(E1000_RPLOLR, reg);
7970 /* Fall through */
7971 case e1000_i350:
7972 /* none of the above registers are supported by i350 */
7973 break;
7974 }
7975
7976 if (adapter->vfs_allocated_count) {
7977 igb_vmdq_set_loopback_pf(hw, true);
7978 igb_vmdq_set_replication_pf(hw, true);
7979 igb_vmdq_set_anti_spoofing_pf(hw, true,
7980 adapter->vfs_allocated_count);
7981 } else {
7982 igb_vmdq_set_loopback_pf(hw, false);
7983 igb_vmdq_set_replication_pf(hw, false);
7984 }
7985}
7986
7987static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7988{
7989 struct e1000_hw *hw = &adapter->hw;
7990 u32 dmac_thr;
7991 u16 hwm;
7992
7993 if (hw->mac.type > e1000_82580) {
7994 if (adapter->flags & IGB_FLAG_DMAC) {
7995 u32 reg;
7996
7997 /* force threshold to 0. */
7998 wr32(E1000_DMCTXTH, 0);
7999
8000 /* DMA Coalescing high water mark needs to be greater
8001 * than the Rx threshold. Set hwm to PBA - max frame
8002 * size in 16B units, capping it at PBA - 6KB.
8003 */
8004 hwm = 64 * pba - adapter->max_frame_size / 16;
8005 if (hwm < 64 * (pba - 6))
8006 hwm = 64 * (pba - 6);
8007 reg = rd32(E1000_FCRTC);
8008 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8009 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8010 & E1000_FCRTC_RTH_COAL_MASK);
8011 wr32(E1000_FCRTC, reg);
8012
8013 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8014 * frame size, capping it at PBA - 10KB.
8015 */
8016 dmac_thr = pba - adapter->max_frame_size / 512;
8017 if (dmac_thr < pba - 10)
8018 dmac_thr = pba - 10;
8019 reg = rd32(E1000_DMACR);
8020 reg &= ~E1000_DMACR_DMACTHR_MASK;
8021 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8022 & E1000_DMACR_DMACTHR_MASK);
8023
8024 /* transition to L0x or L1 if available..*/
8025 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8026
8027 /* watchdog timer= +-1000 usec in 32usec intervals */
8028 reg |= (1000 >> 5);
8029
8030 /* Disable BMC-to-OS Watchdog Enable */
8031 if (hw->mac.type != e1000_i354)
8032 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8033
8034 wr32(E1000_DMACR, reg);
8035
8036 /* no lower threshold to disable
8037 * coalescing(smart fifb)-UTRESH=0
8038 */
8039 wr32(E1000_DMCRTRH, 0);
8040
8041 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8042
8043 wr32(E1000_DMCTLX, reg);
8044
8045 /* free space in tx packet buffer to wake from
8046 * DMA coal
8047 */
8048 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8049 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8050
8051 /* make low power state decision controlled
8052 * by DMA coal
8053 */
8054 reg = rd32(E1000_PCIEMISC);
8055 reg &= ~E1000_PCIEMISC_LX_DECISION;
8056 wr32(E1000_PCIEMISC, reg);
8057 } /* endif adapter->dmac is not disabled */
8058 } else if (hw->mac.type == e1000_82580) {
8059 u32 reg = rd32(E1000_PCIEMISC);
8060
8061 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8062 wr32(E1000_DMACR, 0);
8063 }
8064}
8065
8066/**
8067 * igb_read_i2c_byte - Reads 8 bit word over I2C
8068 * @hw: pointer to hardware structure
8069 * @byte_offset: byte offset to read
8070 * @dev_addr: device address
8071 * @data: value read
8072 *
8073 * Performs byte read operation over I2C interface at
8074 * a specified device address.
8075 **/
8076s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8077 u8 dev_addr, u8 *data)
8078{
8079 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8080 struct i2c_client *this_client = adapter->i2c_client;
8081 s32 status;
8082 u16 swfw_mask = 0;
8083
8084 if (!this_client)
8085 return E1000_ERR_I2C;
8086
8087 swfw_mask = E1000_SWFW_PHY0_SM;
8088
8089 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8090 != E1000_SUCCESS)
8091 return E1000_ERR_SWFW_SYNC;
8092
8093 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8094 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8095
8096 if (status < 0)
8097 return E1000_ERR_I2C;
8098 else {
8099 *data = status;
8100 return E1000_SUCCESS;
8101 }
8102}
8103
8104/**
8105 * igb_write_i2c_byte - Writes 8 bit word over I2C
8106 * @hw: pointer to hardware structure
8107 * @byte_offset: byte offset to write
8108 * @dev_addr: device address
8109 * @data: value to write
8110 *
8111 * Performs byte write operation over I2C interface at
8112 * a specified device address.
8113 **/
8114s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8115 u8 dev_addr, u8 data)
8116{
8117 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8118 struct i2c_client *this_client = adapter->i2c_client;
8119 s32 status;
8120 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8121
8122 if (!this_client)
8123 return E1000_ERR_I2C;
8124
8125 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8126 return E1000_ERR_SWFW_SYNC;
8127 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8128 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8129
8130 if (status)
8131 return E1000_ERR_I2C;
8132 else
8133 return E1000_SUCCESS;
8134
8135}
8136
8137int igb_reinit_queues(struct igb_adapter *adapter)
8138{
8139 struct net_device *netdev = adapter->netdev;
8140 struct pci_dev *pdev = adapter->pdev;
8141 int err = 0;
8142
8143 if (netif_running(netdev))
8144 igb_close(netdev);
8145
8146 igb_reset_interrupt_capability(adapter);
8147
8148 if (igb_init_interrupt_scheme(adapter, true)) {
8149 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8150 return -ENOMEM;
8151 }
8152
8153 if (netif_running(netdev))
8154 err = igb_open(netdev);
8155
8156 return err;
8157}
8158/* igb_main.c */
This page took 0.052459 seconds and 5 git commands to generate.