igbvf: clear buffer_info->dma after dma_unmap_single()
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
... / ...
CommitLineData
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/module.h>
27#include <linux/types.h>
28#include <linux/init.h>
29#include <linux/bitops.h>
30#include <linux/vmalloc.h>
31#include <linux/pagemap.h>
32#include <linux/netdevice.h>
33#include <linux/ipv6.h>
34#include <linux/slab.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/net_tstamp.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
43#include <linux/pci-aspm.h>
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/ip.h>
47#include <linux/tcp.h>
48#include <linux/sctp.h>
49#include <linux/if_ether.h>
50#include <linux/aer.h>
51#include <linux/prefetch.h>
52#include <linux/pm_runtime.h>
53#ifdef CONFIG_IGB_DCA
54#include <linux/dca.h>
55#endif
56#include <linux/i2c.h>
57#include "igb.h"
58
59#define MAJ 5
60#define MIN 3
61#define BUILD 0
62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63__stringify(BUILD) "-k"
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
68static const char igb_copyright[] =
69 "Copyright (c) 2007-2014 Intel Corporation.";
70
71static const struct e1000_info *igb_info_tbl[] = {
72 [board_82575] = &e1000_82575_info,
73};
74
75static const struct pci_device_id igb_pci_tbl[] = {
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 /* required last entry */
112 {0, }
113};
114
115MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
121static void igb_setup_mrqc(struct igb_adapter *);
122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123static void igb_remove(struct pci_dev *pdev);
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
127static void igb_configure(struct igb_adapter *);
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
134static void igb_set_rx_mode(struct net_device *);
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 struct rtnl_link_stats64 *stats);
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
143static void igb_set_uta(struct igb_adapter *adapter);
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
147static irqreturn_t igb_msix_ring(int irq, void *);
148#ifdef CONFIG_IGB_DCA
149static void igb_update_dca(struct igb_q_vector *);
150static void igb_setup_dca(struct igb_adapter *);
151#endif /* CONFIG_IGB_DCA */
152static int igb_poll(struct napi_struct *, int);
153static bool igb_clean_tx_irq(struct igb_q_vector *);
154static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
158static void igb_vlan_mode(struct net_device *netdev,
159 netdev_features_t features);
160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162static void igb_restore_vlan(struct igb_adapter *);
163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164static void igb_ping_all_vfs(struct igb_adapter *);
165static void igb_msg_task(struct igb_adapter *);
166static void igb_vmm_control(struct igb_adapter *);
167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 int vf, u16 vlan, u8 qos);
172static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 bool setting);
175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179#ifdef CONFIG_PCI_IOV
180static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182#endif
183
184#ifdef CONFIG_PM
185#ifdef CONFIG_PM_SLEEP
186static int igb_suspend(struct device *);
187#endif
188static int igb_resume(struct device *);
189static int igb_runtime_suspend(struct device *dev);
190static int igb_runtime_resume(struct device *dev);
191static int igb_runtime_idle(struct device *dev);
192static const struct dev_pm_ops igb_pm_ops = {
193 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
194 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
195 igb_runtime_idle)
196};
197#endif
198static void igb_shutdown(struct pci_dev *);
199static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200#ifdef CONFIG_IGB_DCA
201static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202static struct notifier_block dca_notifier = {
203 .notifier_call = igb_notify_dca,
204 .next = NULL,
205 .priority = 0
206};
207#endif
208#ifdef CONFIG_NET_POLL_CONTROLLER
209/* for netdump / net console */
210static void igb_netpoll(struct net_device *);
211#endif
212#ifdef CONFIG_PCI_IOV
213static unsigned int max_vfs;
214module_param(max_vfs, uint, 0);
215MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
216#endif /* CONFIG_PCI_IOV */
217
218static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219 pci_channel_state_t);
220static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221static void igb_io_resume(struct pci_dev *);
222
223static const struct pci_error_handlers igb_err_handler = {
224 .error_detected = igb_io_error_detected,
225 .slot_reset = igb_io_slot_reset,
226 .resume = igb_io_resume,
227};
228
229static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230
231static struct pci_driver igb_driver = {
232 .name = igb_driver_name,
233 .id_table = igb_pci_tbl,
234 .probe = igb_probe,
235 .remove = igb_remove,
236#ifdef CONFIG_PM
237 .driver.pm = &igb_pm_ops,
238#endif
239 .shutdown = igb_shutdown,
240 .sriov_configure = igb_pci_sriov_configure,
241 .err_handler = &igb_err_handler
242};
243
244MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246MODULE_LICENSE("GPL");
247MODULE_VERSION(DRV_VERSION);
248
249#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250static int debug = -1;
251module_param(debug, int, 0);
252MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254struct igb_reg_info {
255 u32 ofs;
256 char *name;
257};
258
259static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261 /* General Registers */
262 {E1000_CTRL, "CTRL"},
263 {E1000_STATUS, "STATUS"},
264 {E1000_CTRL_EXT, "CTRL_EXT"},
265
266 /* Interrupt Registers */
267 {E1000_ICR, "ICR"},
268
269 /* RX Registers */
270 {E1000_RCTL, "RCTL"},
271 {E1000_RDLEN(0), "RDLEN"},
272 {E1000_RDH(0), "RDH"},
273 {E1000_RDT(0), "RDT"},
274 {E1000_RXDCTL(0), "RXDCTL"},
275 {E1000_RDBAL(0), "RDBAL"},
276 {E1000_RDBAH(0), "RDBAH"},
277
278 /* TX Registers */
279 {E1000_TCTL, "TCTL"},
280 {E1000_TDBAL(0), "TDBAL"},
281 {E1000_TDBAH(0), "TDBAH"},
282 {E1000_TDLEN(0), "TDLEN"},
283 {E1000_TDH(0), "TDH"},
284 {E1000_TDT(0), "TDT"},
285 {E1000_TXDCTL(0), "TXDCTL"},
286 {E1000_TDFH, "TDFH"},
287 {E1000_TDFT, "TDFT"},
288 {E1000_TDFHS, "TDFHS"},
289 {E1000_TDFPC, "TDFPC"},
290
291 /* List Terminator */
292 {}
293};
294
295/* igb_regdump - register printout routine */
296static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
297{
298 int n = 0;
299 char rname[16];
300 u32 regs[8];
301
302 switch (reginfo->ofs) {
303 case E1000_RDLEN(0):
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_RDLEN(n));
306 break;
307 case E1000_RDH(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDH(n));
310 break;
311 case E1000_RDT(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RDT(n));
314 break;
315 case E1000_RXDCTL(0):
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RXDCTL(n));
318 break;
319 case E1000_RDBAL(0):
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RDBAL(n));
322 break;
323 case E1000_RDBAH(0):
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAH(n));
326 break;
327 case E1000_TDBAL(0):
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_RDBAL(n));
330 break;
331 case E1000_TDBAH(0):
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_TDBAH(n));
334 break;
335 case E1000_TDLEN(0):
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDLEN(n));
338 break;
339 case E1000_TDH(0):
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDH(n));
342 break;
343 case E1000_TDT(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TDT(n));
346 break;
347 case E1000_TXDCTL(0):
348 for (n = 0; n < 4; n++)
349 regs[n] = rd32(E1000_TXDCTL(n));
350 break;
351 default:
352 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
353 return;
354 }
355
356 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
357 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
358 regs[2], regs[3]);
359}
360
361/* igb_dump - Print registers, Tx-rings and Rx-rings */
362static void igb_dump(struct igb_adapter *adapter)
363{
364 struct net_device *netdev = adapter->netdev;
365 struct e1000_hw *hw = &adapter->hw;
366 struct igb_reg_info *reginfo;
367 struct igb_ring *tx_ring;
368 union e1000_adv_tx_desc *tx_desc;
369 struct my_u0 { u64 a; u64 b; } *u0;
370 struct igb_ring *rx_ring;
371 union e1000_adv_rx_desc *rx_desc;
372 u32 staterr;
373 u16 i, n;
374
375 if (!netif_msg_hw(adapter))
376 return;
377
378 /* Print netdevice Info */
379 if (netdev) {
380 dev_info(&adapter->pdev->dev, "Net device Info\n");
381 pr_info("Device Name state trans_start last_rx\n");
382 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383 netdev->state, netdev->trans_start, netdev->last_rx);
384 }
385
386 /* Print Registers */
387 dev_info(&adapter->pdev->dev, "Register Dump\n");
388 pr_info(" Register Name Value\n");
389 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390 reginfo->name; reginfo++) {
391 igb_regdump(hw, reginfo);
392 }
393
394 /* Print TX Ring Summary */
395 if (!netdev || !netif_running(netdev))
396 goto exit;
397
398 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
400 for (n = 0; n < adapter->num_tx_queues; n++) {
401 struct igb_tx_buffer *buffer_info;
402 tx_ring = adapter->tx_ring[n];
403 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405 n, tx_ring->next_to_use, tx_ring->next_to_clean,
406 (u64)dma_unmap_addr(buffer_info, dma),
407 dma_unmap_len(buffer_info, len),
408 buffer_info->next_to_watch,
409 (u64)buffer_info->time_stamp);
410 }
411
412 /* Print TX Rings */
413 if (!netif_msg_tx_done(adapter))
414 goto rx_ring_summary;
415
416 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418 /* Transmit Descriptor Formats
419 *
420 * Advanced Transmit Descriptor
421 * +--------------------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +--------------------------------------------------------------+
424 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
425 * +--------------------------------------------------------------+
426 * 63 46 45 40 39 38 36 35 32 31 24 15 0
427 */
428
429 for (n = 0; n < adapter->num_tx_queues; n++) {
430 tx_ring = adapter->tx_ring[n];
431 pr_info("------------------------------------\n");
432 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433 pr_info("------------------------------------\n");
434 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
435
436 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
437 const char *next_desc;
438 struct igb_tx_buffer *buffer_info;
439 tx_desc = IGB_TX_DESC(tx_ring, i);
440 buffer_info = &tx_ring->tx_buffer_info[i];
441 u0 = (struct my_u0 *)tx_desc;
442 if (i == tx_ring->next_to_use &&
443 i == tx_ring->next_to_clean)
444 next_desc = " NTC/U";
445 else if (i == tx_ring->next_to_use)
446 next_desc = " NTU";
447 else if (i == tx_ring->next_to_clean)
448 next_desc = " NTC";
449 else
450 next_desc = "";
451
452 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
453 i, le64_to_cpu(u0->a),
454 le64_to_cpu(u0->b),
455 (u64)dma_unmap_addr(buffer_info, dma),
456 dma_unmap_len(buffer_info, len),
457 buffer_info->next_to_watch,
458 (u64)buffer_info->time_stamp,
459 buffer_info->skb, next_desc);
460
461 if (netif_msg_pktdata(adapter) && buffer_info->skb)
462 print_hex_dump(KERN_INFO, "",
463 DUMP_PREFIX_ADDRESS,
464 16, 1, buffer_info->skb->data,
465 dma_unmap_len(buffer_info, len),
466 true);
467 }
468 }
469
470 /* Print RX Rings Summary */
471rx_ring_summary:
472 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
473 pr_info("Queue [NTU] [NTC]\n");
474 for (n = 0; n < adapter->num_rx_queues; n++) {
475 rx_ring = adapter->rx_ring[n];
476 pr_info(" %5d %5X %5X\n",
477 n, rx_ring->next_to_use, rx_ring->next_to_clean);
478 }
479
480 /* Print RX Rings */
481 if (!netif_msg_rx_status(adapter))
482 goto exit;
483
484 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
485
486 /* Advanced Receive Descriptor (Read) Format
487 * 63 1 0
488 * +-----------------------------------------------------+
489 * 0 | Packet Buffer Address [63:1] |A0/NSE|
490 * +----------------------------------------------+------+
491 * 8 | Header Buffer Address [63:1] | DD |
492 * +-----------------------------------------------------+
493 *
494 *
495 * Advanced Receive Descriptor (Write-Back) Format
496 *
497 * 63 48 47 32 31 30 21 20 17 16 4 3 0
498 * +------------------------------------------------------+
499 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
500 * | Checksum Ident | | | | Type | Type |
501 * +------------------------------------------------------+
502 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
503 * +------------------------------------------------------+
504 * 63 48 47 32 31 20 19 0
505 */
506
507 for (n = 0; n < adapter->num_rx_queues; n++) {
508 rx_ring = adapter->rx_ring[n];
509 pr_info("------------------------------------\n");
510 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
511 pr_info("------------------------------------\n");
512 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
513 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
514
515 for (i = 0; i < rx_ring->count; i++) {
516 const char *next_desc;
517 struct igb_rx_buffer *buffer_info;
518 buffer_info = &rx_ring->rx_buffer_info[i];
519 rx_desc = IGB_RX_DESC(rx_ring, i);
520 u0 = (struct my_u0 *)rx_desc;
521 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
522
523 if (i == rx_ring->next_to_use)
524 next_desc = " NTU";
525 else if (i == rx_ring->next_to_clean)
526 next_desc = " NTC";
527 else
528 next_desc = "";
529
530 if (staterr & E1000_RXD_STAT_DD) {
531 /* Descriptor Done */
532 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
533 "RWB", i,
534 le64_to_cpu(u0->a),
535 le64_to_cpu(u0->b),
536 next_desc);
537 } else {
538 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
539 "R ", i,
540 le64_to_cpu(u0->a),
541 le64_to_cpu(u0->b),
542 (u64)buffer_info->dma,
543 next_desc);
544
545 if (netif_msg_pktdata(adapter) &&
546 buffer_info->dma && buffer_info->page) {
547 print_hex_dump(KERN_INFO, "",
548 DUMP_PREFIX_ADDRESS,
549 16, 1,
550 page_address(buffer_info->page) +
551 buffer_info->page_offset,
552 IGB_RX_BUFSZ, true);
553 }
554 }
555 }
556 }
557
558exit:
559 return;
560}
561
562/**
563 * igb_get_i2c_data - Reads the I2C SDA data bit
564 * @hw: pointer to hardware structure
565 * @i2cctl: Current value of I2CCTL register
566 *
567 * Returns the I2C data bit value
568 **/
569static int igb_get_i2c_data(void *data)
570{
571 struct igb_adapter *adapter = (struct igb_adapter *)data;
572 struct e1000_hw *hw = &adapter->hw;
573 s32 i2cctl = rd32(E1000_I2CPARAMS);
574
575 return !!(i2cctl & E1000_I2C_DATA_IN);
576}
577
578/**
579 * igb_set_i2c_data - Sets the I2C data bit
580 * @data: pointer to hardware structure
581 * @state: I2C data value (0 or 1) to set
582 *
583 * Sets the I2C data bit
584 **/
585static void igb_set_i2c_data(void *data, int state)
586{
587 struct igb_adapter *adapter = (struct igb_adapter *)data;
588 struct e1000_hw *hw = &adapter->hw;
589 s32 i2cctl = rd32(E1000_I2CPARAMS);
590
591 if (state)
592 i2cctl |= E1000_I2C_DATA_OUT;
593 else
594 i2cctl &= ~E1000_I2C_DATA_OUT;
595
596 i2cctl &= ~E1000_I2C_DATA_OE_N;
597 i2cctl |= E1000_I2C_CLK_OE_N;
598 wr32(E1000_I2CPARAMS, i2cctl);
599 wrfl();
600
601}
602
603/**
604 * igb_set_i2c_clk - Sets the I2C SCL clock
605 * @data: pointer to hardware structure
606 * @state: state to set clock
607 *
608 * Sets the I2C clock line to state
609 **/
610static void igb_set_i2c_clk(void *data, int state)
611{
612 struct igb_adapter *adapter = (struct igb_adapter *)data;
613 struct e1000_hw *hw = &adapter->hw;
614 s32 i2cctl = rd32(E1000_I2CPARAMS);
615
616 if (state) {
617 i2cctl |= E1000_I2C_CLK_OUT;
618 i2cctl &= ~E1000_I2C_CLK_OE_N;
619 } else {
620 i2cctl &= ~E1000_I2C_CLK_OUT;
621 i2cctl &= ~E1000_I2C_CLK_OE_N;
622 }
623 wr32(E1000_I2CPARAMS, i2cctl);
624 wrfl();
625}
626
627/**
628 * igb_get_i2c_clk - Gets the I2C SCL clock state
629 * @data: pointer to hardware structure
630 *
631 * Gets the I2C clock state
632 **/
633static int igb_get_i2c_clk(void *data)
634{
635 struct igb_adapter *adapter = (struct igb_adapter *)data;
636 struct e1000_hw *hw = &adapter->hw;
637 s32 i2cctl = rd32(E1000_I2CPARAMS);
638
639 return !!(i2cctl & E1000_I2C_CLK_IN);
640}
641
642static const struct i2c_algo_bit_data igb_i2c_algo = {
643 .setsda = igb_set_i2c_data,
644 .setscl = igb_set_i2c_clk,
645 .getsda = igb_get_i2c_data,
646 .getscl = igb_get_i2c_clk,
647 .udelay = 5,
648 .timeout = 20,
649};
650
651/**
652 * igb_get_hw_dev - return device
653 * @hw: pointer to hardware structure
654 *
655 * used by hardware layer to print debugging information
656 **/
657struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
658{
659 struct igb_adapter *adapter = hw->back;
660 return adapter->netdev;
661}
662
663/**
664 * igb_init_module - Driver Registration Routine
665 *
666 * igb_init_module is the first routine called when the driver is
667 * loaded. All it does is register with the PCI subsystem.
668 **/
669static int __init igb_init_module(void)
670{
671 int ret;
672
673 pr_info("%s - version %s\n",
674 igb_driver_string, igb_driver_version);
675 pr_info("%s\n", igb_copyright);
676
677#ifdef CONFIG_IGB_DCA
678 dca_register_notify(&dca_notifier);
679#endif
680 ret = pci_register_driver(&igb_driver);
681 return ret;
682}
683
684module_init(igb_init_module);
685
686/**
687 * igb_exit_module - Driver Exit Cleanup Routine
688 *
689 * igb_exit_module is called just before the driver is removed
690 * from memory.
691 **/
692static void __exit igb_exit_module(void)
693{
694#ifdef CONFIG_IGB_DCA
695 dca_unregister_notify(&dca_notifier);
696#endif
697 pci_unregister_driver(&igb_driver);
698}
699
700module_exit(igb_exit_module);
701
702#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
703/**
704 * igb_cache_ring_register - Descriptor ring to register mapping
705 * @adapter: board private structure to initialize
706 *
707 * Once we know the feature-set enabled for the device, we'll cache
708 * the register offset the descriptor ring is assigned to.
709 **/
710static void igb_cache_ring_register(struct igb_adapter *adapter)
711{
712 int i = 0, j = 0;
713 u32 rbase_offset = adapter->vfs_allocated_count;
714
715 switch (adapter->hw.mac.type) {
716 case e1000_82576:
717 /* The queues are allocated for virtualization such that VF 0
718 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
719 * In order to avoid collision we start at the first free queue
720 * and continue consuming queues in the same sequence
721 */
722 if (adapter->vfs_allocated_count) {
723 for (; i < adapter->rss_queues; i++)
724 adapter->rx_ring[i]->reg_idx = rbase_offset +
725 Q_IDX_82576(i);
726 }
727 /* Fall through */
728 case e1000_82575:
729 case e1000_82580:
730 case e1000_i350:
731 case e1000_i354:
732 case e1000_i210:
733 case e1000_i211:
734 /* Fall through */
735 default:
736 for (; i < adapter->num_rx_queues; i++)
737 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738 for (; j < adapter->num_tx_queues; j++)
739 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740 break;
741 }
742}
743
744u32 igb_rd32(struct e1000_hw *hw, u32 reg)
745{
746 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
747 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
748 u32 value = 0;
749
750 if (E1000_REMOVED(hw_addr))
751 return ~value;
752
753 value = readl(&hw_addr[reg]);
754
755 /* reads should not return all F's */
756 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
757 struct net_device *netdev = igb->netdev;
758 hw->hw_addr = NULL;
759 netif_device_detach(netdev);
760 netdev_err(netdev, "PCIe link lost, device now detached\n");
761 }
762
763 return value;
764}
765
766/**
767 * igb_write_ivar - configure ivar for given MSI-X vector
768 * @hw: pointer to the HW structure
769 * @msix_vector: vector number we are allocating to a given ring
770 * @index: row index of IVAR register to write within IVAR table
771 * @offset: column offset of in IVAR, should be multiple of 8
772 *
773 * This function is intended to handle the writing of the IVAR register
774 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
775 * each containing an cause allocation for an Rx and Tx ring, and a
776 * variable number of rows depending on the number of queues supported.
777 **/
778static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
779 int index, int offset)
780{
781 u32 ivar = array_rd32(E1000_IVAR0, index);
782
783 /* clear any bits that are currently set */
784 ivar &= ~((u32)0xFF << offset);
785
786 /* write vector and valid bit */
787 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
788
789 array_wr32(E1000_IVAR0, index, ivar);
790}
791
792#define IGB_N0_QUEUE -1
793static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
794{
795 struct igb_adapter *adapter = q_vector->adapter;
796 struct e1000_hw *hw = &adapter->hw;
797 int rx_queue = IGB_N0_QUEUE;
798 int tx_queue = IGB_N0_QUEUE;
799 u32 msixbm = 0;
800
801 if (q_vector->rx.ring)
802 rx_queue = q_vector->rx.ring->reg_idx;
803 if (q_vector->tx.ring)
804 tx_queue = q_vector->tx.ring->reg_idx;
805
806 switch (hw->mac.type) {
807 case e1000_82575:
808 /* The 82575 assigns vectors using a bitmask, which matches the
809 * bitmask for the EICR/EIMS/EIMC registers. To assign one
810 * or more queues to a vector, we write the appropriate bits
811 * into the MSIXBM register for that vector.
812 */
813 if (rx_queue > IGB_N0_QUEUE)
814 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
815 if (tx_queue > IGB_N0_QUEUE)
816 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
817 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
818 msixbm |= E1000_EIMS_OTHER;
819 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
820 q_vector->eims_value = msixbm;
821 break;
822 case e1000_82576:
823 /* 82576 uses a table that essentially consists of 2 columns
824 * with 8 rows. The ordering is column-major so we use the
825 * lower 3 bits as the row index, and the 4th bit as the
826 * column offset.
827 */
828 if (rx_queue > IGB_N0_QUEUE)
829 igb_write_ivar(hw, msix_vector,
830 rx_queue & 0x7,
831 (rx_queue & 0x8) << 1);
832 if (tx_queue > IGB_N0_QUEUE)
833 igb_write_ivar(hw, msix_vector,
834 tx_queue & 0x7,
835 ((tx_queue & 0x8) << 1) + 8);
836 q_vector->eims_value = 1 << msix_vector;
837 break;
838 case e1000_82580:
839 case e1000_i350:
840 case e1000_i354:
841 case e1000_i210:
842 case e1000_i211:
843 /* On 82580 and newer adapters the scheme is similar to 82576
844 * however instead of ordering column-major we have things
845 * ordered row-major. So we traverse the table by using
846 * bit 0 as the column offset, and the remaining bits as the
847 * row index.
848 */
849 if (rx_queue > IGB_N0_QUEUE)
850 igb_write_ivar(hw, msix_vector,
851 rx_queue >> 1,
852 (rx_queue & 0x1) << 4);
853 if (tx_queue > IGB_N0_QUEUE)
854 igb_write_ivar(hw, msix_vector,
855 tx_queue >> 1,
856 ((tx_queue & 0x1) << 4) + 8);
857 q_vector->eims_value = 1 << msix_vector;
858 break;
859 default:
860 BUG();
861 break;
862 }
863
864 /* add q_vector eims value to global eims_enable_mask */
865 adapter->eims_enable_mask |= q_vector->eims_value;
866
867 /* configure q_vector to set itr on first interrupt */
868 q_vector->set_itr = 1;
869}
870
871/**
872 * igb_configure_msix - Configure MSI-X hardware
873 * @adapter: board private structure to initialize
874 *
875 * igb_configure_msix sets up the hardware to properly
876 * generate MSI-X interrupts.
877 **/
878static void igb_configure_msix(struct igb_adapter *adapter)
879{
880 u32 tmp;
881 int i, vector = 0;
882 struct e1000_hw *hw = &adapter->hw;
883
884 adapter->eims_enable_mask = 0;
885
886 /* set vector for other causes, i.e. link changes */
887 switch (hw->mac.type) {
888 case e1000_82575:
889 tmp = rd32(E1000_CTRL_EXT);
890 /* enable MSI-X PBA support*/
891 tmp |= E1000_CTRL_EXT_PBA_CLR;
892
893 /* Auto-Mask interrupts upon ICR read. */
894 tmp |= E1000_CTRL_EXT_EIAME;
895 tmp |= E1000_CTRL_EXT_IRCA;
896
897 wr32(E1000_CTRL_EXT, tmp);
898
899 /* enable msix_other interrupt */
900 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
901 adapter->eims_other = E1000_EIMS_OTHER;
902
903 break;
904
905 case e1000_82576:
906 case e1000_82580:
907 case e1000_i350:
908 case e1000_i354:
909 case e1000_i210:
910 case e1000_i211:
911 /* Turn on MSI-X capability first, or our settings
912 * won't stick. And it will take days to debug.
913 */
914 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
915 E1000_GPIE_PBA | E1000_GPIE_EIAME |
916 E1000_GPIE_NSICR);
917
918 /* enable msix_other interrupt */
919 adapter->eims_other = 1 << vector;
920 tmp = (vector++ | E1000_IVAR_VALID) << 8;
921
922 wr32(E1000_IVAR_MISC, tmp);
923 break;
924 default:
925 /* do nothing, since nothing else supports MSI-X */
926 break;
927 } /* switch (hw->mac.type) */
928
929 adapter->eims_enable_mask |= adapter->eims_other;
930
931 for (i = 0; i < adapter->num_q_vectors; i++)
932 igb_assign_vector(adapter->q_vector[i], vector++);
933
934 wrfl();
935}
936
937/**
938 * igb_request_msix - Initialize MSI-X interrupts
939 * @adapter: board private structure to initialize
940 *
941 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
942 * kernel.
943 **/
944static int igb_request_msix(struct igb_adapter *adapter)
945{
946 struct net_device *netdev = adapter->netdev;
947 struct e1000_hw *hw = &adapter->hw;
948 int i, err = 0, vector = 0, free_vector = 0;
949
950 err = request_irq(adapter->msix_entries[vector].vector,
951 igb_msix_other, 0, netdev->name, adapter);
952 if (err)
953 goto err_out;
954
955 for (i = 0; i < adapter->num_q_vectors; i++) {
956 struct igb_q_vector *q_vector = adapter->q_vector[i];
957
958 vector++;
959
960 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
961
962 if (q_vector->rx.ring && q_vector->tx.ring)
963 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
964 q_vector->rx.ring->queue_index);
965 else if (q_vector->tx.ring)
966 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
967 q_vector->tx.ring->queue_index);
968 else if (q_vector->rx.ring)
969 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
970 q_vector->rx.ring->queue_index);
971 else
972 sprintf(q_vector->name, "%s-unused", netdev->name);
973
974 err = request_irq(adapter->msix_entries[vector].vector,
975 igb_msix_ring, 0, q_vector->name,
976 q_vector);
977 if (err)
978 goto err_free;
979 }
980
981 igb_configure_msix(adapter);
982 return 0;
983
984err_free:
985 /* free already assigned IRQs */
986 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
987
988 vector--;
989 for (i = 0; i < vector; i++) {
990 free_irq(adapter->msix_entries[free_vector++].vector,
991 adapter->q_vector[i]);
992 }
993err_out:
994 return err;
995}
996
997/**
998 * igb_free_q_vector - Free memory allocated for specific interrupt vector
999 * @adapter: board private structure to initialize
1000 * @v_idx: Index of vector to be freed
1001 *
1002 * This function frees the memory allocated to the q_vector.
1003 **/
1004static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005{
1006 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008 adapter->q_vector[v_idx] = NULL;
1009
1010 /* igb_get_stats64() might access the rings on this vector,
1011 * we must wait a grace period before freeing it.
1012 */
1013 if (q_vector)
1014 kfree_rcu(q_vector, rcu);
1015}
1016
1017/**
1018 * igb_reset_q_vector - Reset config for interrupt vector
1019 * @adapter: board private structure to initialize
1020 * @v_idx: Index of vector to be reset
1021 *
1022 * If NAPI is enabled it will delete any references to the
1023 * NAPI struct. This is preparation for igb_free_q_vector.
1024 **/
1025static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1026{
1027 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1028
1029 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1030 * allocated. So, q_vector is NULL so we should stop here.
1031 */
1032 if (!q_vector)
1033 return;
1034
1035 if (q_vector->tx.ring)
1036 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1037
1038 if (q_vector->rx.ring)
1039 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1040
1041 netif_napi_del(&q_vector->napi);
1042
1043}
1044
1045static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1046{
1047 int v_idx = adapter->num_q_vectors;
1048
1049 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1050 pci_disable_msix(adapter->pdev);
1051 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1052 pci_disable_msi(adapter->pdev);
1053
1054 while (v_idx--)
1055 igb_reset_q_vector(adapter, v_idx);
1056}
1057
1058/**
1059 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1060 * @adapter: board private structure to initialize
1061 *
1062 * This function frees the memory allocated to the q_vectors. In addition if
1063 * NAPI is enabled it will delete any references to the NAPI struct prior
1064 * to freeing the q_vector.
1065 **/
1066static void igb_free_q_vectors(struct igb_adapter *adapter)
1067{
1068 int v_idx = adapter->num_q_vectors;
1069
1070 adapter->num_tx_queues = 0;
1071 adapter->num_rx_queues = 0;
1072 adapter->num_q_vectors = 0;
1073
1074 while (v_idx--) {
1075 igb_reset_q_vector(adapter, v_idx);
1076 igb_free_q_vector(adapter, v_idx);
1077 }
1078}
1079
1080/**
1081 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1082 * @adapter: board private structure to initialize
1083 *
1084 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1085 * MSI-X interrupts allocated.
1086 */
1087static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1088{
1089 igb_free_q_vectors(adapter);
1090 igb_reset_interrupt_capability(adapter);
1091}
1092
1093/**
1094 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1095 * @adapter: board private structure to initialize
1096 * @msix: boolean value of MSIX capability
1097 *
1098 * Attempt to configure interrupts using the best available
1099 * capabilities of the hardware and kernel.
1100 **/
1101static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1102{
1103 int err;
1104 int numvecs, i;
1105
1106 if (!msix)
1107 goto msi_only;
1108 adapter->flags |= IGB_FLAG_HAS_MSIX;
1109
1110 /* Number of supported queues. */
1111 adapter->num_rx_queues = adapter->rss_queues;
1112 if (adapter->vfs_allocated_count)
1113 adapter->num_tx_queues = 1;
1114 else
1115 adapter->num_tx_queues = adapter->rss_queues;
1116
1117 /* start with one vector for every Rx queue */
1118 numvecs = adapter->num_rx_queues;
1119
1120 /* if Tx handler is separate add 1 for every Tx queue */
1121 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1122 numvecs += adapter->num_tx_queues;
1123
1124 /* store the number of vectors reserved for queues */
1125 adapter->num_q_vectors = numvecs;
1126
1127 /* add 1 vector for link status interrupts */
1128 numvecs++;
1129 for (i = 0; i < numvecs; i++)
1130 adapter->msix_entries[i].entry = i;
1131
1132 err = pci_enable_msix_range(adapter->pdev,
1133 adapter->msix_entries,
1134 numvecs,
1135 numvecs);
1136 if (err > 0)
1137 return;
1138
1139 igb_reset_interrupt_capability(adapter);
1140
1141 /* If we can't do MSI-X, try MSI */
1142msi_only:
1143 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1144#ifdef CONFIG_PCI_IOV
1145 /* disable SR-IOV for non MSI-X configurations */
1146 if (adapter->vf_data) {
1147 struct e1000_hw *hw = &adapter->hw;
1148 /* disable iov and allow time for transactions to clear */
1149 pci_disable_sriov(adapter->pdev);
1150 msleep(500);
1151
1152 kfree(adapter->vf_data);
1153 adapter->vf_data = NULL;
1154 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1155 wrfl();
1156 msleep(100);
1157 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1158 }
1159#endif
1160 adapter->vfs_allocated_count = 0;
1161 adapter->rss_queues = 1;
1162 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1163 adapter->num_rx_queues = 1;
1164 adapter->num_tx_queues = 1;
1165 adapter->num_q_vectors = 1;
1166 if (!pci_enable_msi(adapter->pdev))
1167 adapter->flags |= IGB_FLAG_HAS_MSI;
1168}
1169
1170static void igb_add_ring(struct igb_ring *ring,
1171 struct igb_ring_container *head)
1172{
1173 head->ring = ring;
1174 head->count++;
1175}
1176
1177/**
1178 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1179 * @adapter: board private structure to initialize
1180 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1181 * @v_idx: index of vector in adapter struct
1182 * @txr_count: total number of Tx rings to allocate
1183 * @txr_idx: index of first Tx ring to allocate
1184 * @rxr_count: total number of Rx rings to allocate
1185 * @rxr_idx: index of first Rx ring to allocate
1186 *
1187 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1188 **/
1189static int igb_alloc_q_vector(struct igb_adapter *adapter,
1190 int v_count, int v_idx,
1191 int txr_count, int txr_idx,
1192 int rxr_count, int rxr_idx)
1193{
1194 struct igb_q_vector *q_vector;
1195 struct igb_ring *ring;
1196 int ring_count, size;
1197
1198 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1199 if (txr_count > 1 || rxr_count > 1)
1200 return -ENOMEM;
1201
1202 ring_count = txr_count + rxr_count;
1203 size = sizeof(struct igb_q_vector) +
1204 (sizeof(struct igb_ring) * ring_count);
1205
1206 /* allocate q_vector and rings */
1207 q_vector = adapter->q_vector[v_idx];
1208 if (!q_vector) {
1209 q_vector = kzalloc(size, GFP_KERNEL);
1210 } else if (size > ksize(q_vector)) {
1211 kfree_rcu(q_vector, rcu);
1212 q_vector = kzalloc(size, GFP_KERNEL);
1213 } else {
1214 memset(q_vector, 0, size);
1215 }
1216 if (!q_vector)
1217 return -ENOMEM;
1218
1219 /* initialize NAPI */
1220 netif_napi_add(adapter->netdev, &q_vector->napi,
1221 igb_poll, 64);
1222
1223 /* tie q_vector and adapter together */
1224 adapter->q_vector[v_idx] = q_vector;
1225 q_vector->adapter = adapter;
1226
1227 /* initialize work limits */
1228 q_vector->tx.work_limit = adapter->tx_work_limit;
1229
1230 /* initialize ITR configuration */
1231 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1232 q_vector->itr_val = IGB_START_ITR;
1233
1234 /* initialize pointer to rings */
1235 ring = q_vector->ring;
1236
1237 /* intialize ITR */
1238 if (rxr_count) {
1239 /* rx or rx/tx vector */
1240 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1241 q_vector->itr_val = adapter->rx_itr_setting;
1242 } else {
1243 /* tx only vector */
1244 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1245 q_vector->itr_val = adapter->tx_itr_setting;
1246 }
1247
1248 if (txr_count) {
1249 /* assign generic ring traits */
1250 ring->dev = &adapter->pdev->dev;
1251 ring->netdev = adapter->netdev;
1252
1253 /* configure backlink on ring */
1254 ring->q_vector = q_vector;
1255
1256 /* update q_vector Tx values */
1257 igb_add_ring(ring, &q_vector->tx);
1258
1259 /* For 82575, context index must be unique per ring. */
1260 if (adapter->hw.mac.type == e1000_82575)
1261 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1262
1263 /* apply Tx specific ring traits */
1264 ring->count = adapter->tx_ring_count;
1265 ring->queue_index = txr_idx;
1266
1267 u64_stats_init(&ring->tx_syncp);
1268 u64_stats_init(&ring->tx_syncp2);
1269
1270 /* assign ring to adapter */
1271 adapter->tx_ring[txr_idx] = ring;
1272
1273 /* push pointer to next ring */
1274 ring++;
1275 }
1276
1277 if (rxr_count) {
1278 /* assign generic ring traits */
1279 ring->dev = &adapter->pdev->dev;
1280 ring->netdev = adapter->netdev;
1281
1282 /* configure backlink on ring */
1283 ring->q_vector = q_vector;
1284
1285 /* update q_vector Rx values */
1286 igb_add_ring(ring, &q_vector->rx);
1287
1288 /* set flag indicating ring supports SCTP checksum offload */
1289 if (adapter->hw.mac.type >= e1000_82576)
1290 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1291
1292 /* On i350, i354, i210, and i211, loopback VLAN packets
1293 * have the tag byte-swapped.
1294 */
1295 if (adapter->hw.mac.type >= e1000_i350)
1296 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1297
1298 /* apply Rx specific ring traits */
1299 ring->count = adapter->rx_ring_count;
1300 ring->queue_index = rxr_idx;
1301
1302 u64_stats_init(&ring->rx_syncp);
1303
1304 /* assign ring to adapter */
1305 adapter->rx_ring[rxr_idx] = ring;
1306 }
1307
1308 return 0;
1309}
1310
1311
1312/**
1313 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1314 * @adapter: board private structure to initialize
1315 *
1316 * We allocate one q_vector per queue interrupt. If allocation fails we
1317 * return -ENOMEM.
1318 **/
1319static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1320{
1321 int q_vectors = adapter->num_q_vectors;
1322 int rxr_remaining = adapter->num_rx_queues;
1323 int txr_remaining = adapter->num_tx_queues;
1324 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1325 int err;
1326
1327 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1328 for (; rxr_remaining; v_idx++) {
1329 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1330 0, 0, 1, rxr_idx);
1331
1332 if (err)
1333 goto err_out;
1334
1335 /* update counts and index */
1336 rxr_remaining--;
1337 rxr_idx++;
1338 }
1339 }
1340
1341 for (; v_idx < q_vectors; v_idx++) {
1342 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1343 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1344
1345 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1346 tqpv, txr_idx, rqpv, rxr_idx);
1347
1348 if (err)
1349 goto err_out;
1350
1351 /* update counts and index */
1352 rxr_remaining -= rqpv;
1353 txr_remaining -= tqpv;
1354 rxr_idx++;
1355 txr_idx++;
1356 }
1357
1358 return 0;
1359
1360err_out:
1361 adapter->num_tx_queues = 0;
1362 adapter->num_rx_queues = 0;
1363 adapter->num_q_vectors = 0;
1364
1365 while (v_idx--)
1366 igb_free_q_vector(adapter, v_idx);
1367
1368 return -ENOMEM;
1369}
1370
1371/**
1372 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1373 * @adapter: board private structure to initialize
1374 * @msix: boolean value of MSIX capability
1375 *
1376 * This function initializes the interrupts and allocates all of the queues.
1377 **/
1378static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1379{
1380 struct pci_dev *pdev = adapter->pdev;
1381 int err;
1382
1383 igb_set_interrupt_capability(adapter, msix);
1384
1385 err = igb_alloc_q_vectors(adapter);
1386 if (err) {
1387 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1388 goto err_alloc_q_vectors;
1389 }
1390
1391 igb_cache_ring_register(adapter);
1392
1393 return 0;
1394
1395err_alloc_q_vectors:
1396 igb_reset_interrupt_capability(adapter);
1397 return err;
1398}
1399
1400/**
1401 * igb_request_irq - initialize interrupts
1402 * @adapter: board private structure to initialize
1403 *
1404 * Attempts to configure interrupts using the best available
1405 * capabilities of the hardware and kernel.
1406 **/
1407static int igb_request_irq(struct igb_adapter *adapter)
1408{
1409 struct net_device *netdev = adapter->netdev;
1410 struct pci_dev *pdev = adapter->pdev;
1411 int err = 0;
1412
1413 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1414 err = igb_request_msix(adapter);
1415 if (!err)
1416 goto request_done;
1417 /* fall back to MSI */
1418 igb_free_all_tx_resources(adapter);
1419 igb_free_all_rx_resources(adapter);
1420
1421 igb_clear_interrupt_scheme(adapter);
1422 err = igb_init_interrupt_scheme(adapter, false);
1423 if (err)
1424 goto request_done;
1425
1426 igb_setup_all_tx_resources(adapter);
1427 igb_setup_all_rx_resources(adapter);
1428 igb_configure(adapter);
1429 }
1430
1431 igb_assign_vector(adapter->q_vector[0], 0);
1432
1433 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1434 err = request_irq(pdev->irq, igb_intr_msi, 0,
1435 netdev->name, adapter);
1436 if (!err)
1437 goto request_done;
1438
1439 /* fall back to legacy interrupts */
1440 igb_reset_interrupt_capability(adapter);
1441 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1442 }
1443
1444 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1445 netdev->name, adapter);
1446
1447 if (err)
1448 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1449 err);
1450
1451request_done:
1452 return err;
1453}
1454
1455static void igb_free_irq(struct igb_adapter *adapter)
1456{
1457 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1458 int vector = 0, i;
1459
1460 free_irq(adapter->msix_entries[vector++].vector, adapter);
1461
1462 for (i = 0; i < adapter->num_q_vectors; i++)
1463 free_irq(adapter->msix_entries[vector++].vector,
1464 adapter->q_vector[i]);
1465 } else {
1466 free_irq(adapter->pdev->irq, adapter);
1467 }
1468}
1469
1470/**
1471 * igb_irq_disable - Mask off interrupt generation on the NIC
1472 * @adapter: board private structure
1473 **/
1474static void igb_irq_disable(struct igb_adapter *adapter)
1475{
1476 struct e1000_hw *hw = &adapter->hw;
1477
1478 /* we need to be careful when disabling interrupts. The VFs are also
1479 * mapped into these registers and so clearing the bits can cause
1480 * issues on the VF drivers so we only need to clear what we set
1481 */
1482 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1483 u32 regval = rd32(E1000_EIAM);
1484
1485 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1486 wr32(E1000_EIMC, adapter->eims_enable_mask);
1487 regval = rd32(E1000_EIAC);
1488 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1489 }
1490
1491 wr32(E1000_IAM, 0);
1492 wr32(E1000_IMC, ~0);
1493 wrfl();
1494 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1495 int i;
1496
1497 for (i = 0; i < adapter->num_q_vectors; i++)
1498 synchronize_irq(adapter->msix_entries[i].vector);
1499 } else {
1500 synchronize_irq(adapter->pdev->irq);
1501 }
1502}
1503
1504/**
1505 * igb_irq_enable - Enable default interrupt generation settings
1506 * @adapter: board private structure
1507 **/
1508static void igb_irq_enable(struct igb_adapter *adapter)
1509{
1510 struct e1000_hw *hw = &adapter->hw;
1511
1512 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1513 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1514 u32 regval = rd32(E1000_EIAC);
1515
1516 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1517 regval = rd32(E1000_EIAM);
1518 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1519 wr32(E1000_EIMS, adapter->eims_enable_mask);
1520 if (adapter->vfs_allocated_count) {
1521 wr32(E1000_MBVFIMR, 0xFF);
1522 ims |= E1000_IMS_VMMB;
1523 }
1524 wr32(E1000_IMS, ims);
1525 } else {
1526 wr32(E1000_IMS, IMS_ENABLE_MASK |
1527 E1000_IMS_DRSTA);
1528 wr32(E1000_IAM, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
1530 }
1531}
1532
1533static void igb_update_mng_vlan(struct igb_adapter *adapter)
1534{
1535 struct e1000_hw *hw = &adapter->hw;
1536 u16 vid = adapter->hw.mng_cookie.vlan_id;
1537 u16 old_vid = adapter->mng_vlan_id;
1538
1539 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1540 /* add VID to filter table */
1541 igb_vfta_set(hw, vid, true);
1542 adapter->mng_vlan_id = vid;
1543 } else {
1544 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1545 }
1546
1547 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1548 (vid != old_vid) &&
1549 !test_bit(old_vid, adapter->active_vlans)) {
1550 /* remove VID from filter table */
1551 igb_vfta_set(hw, old_vid, false);
1552 }
1553}
1554
1555/**
1556 * igb_release_hw_control - release control of the h/w to f/w
1557 * @adapter: address of board private structure
1558 *
1559 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1560 * For ASF and Pass Through versions of f/w this means that the
1561 * driver is no longer loaded.
1562 **/
1563static void igb_release_hw_control(struct igb_adapter *adapter)
1564{
1565 struct e1000_hw *hw = &adapter->hw;
1566 u32 ctrl_ext;
1567
1568 /* Let firmware take over control of h/w */
1569 ctrl_ext = rd32(E1000_CTRL_EXT);
1570 wr32(E1000_CTRL_EXT,
1571 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1572}
1573
1574/**
1575 * igb_get_hw_control - get control of the h/w from f/w
1576 * @adapter: address of board private structure
1577 *
1578 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1579 * For ASF and Pass Through versions of f/w this means that
1580 * the driver is loaded.
1581 **/
1582static void igb_get_hw_control(struct igb_adapter *adapter)
1583{
1584 struct e1000_hw *hw = &adapter->hw;
1585 u32 ctrl_ext;
1586
1587 /* Let firmware know the driver has taken over */
1588 ctrl_ext = rd32(E1000_CTRL_EXT);
1589 wr32(E1000_CTRL_EXT,
1590 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1591}
1592
1593/**
1594 * igb_configure - configure the hardware for RX and TX
1595 * @adapter: private board structure
1596 **/
1597static void igb_configure(struct igb_adapter *adapter)
1598{
1599 struct net_device *netdev = adapter->netdev;
1600 int i;
1601
1602 igb_get_hw_control(adapter);
1603 igb_set_rx_mode(netdev);
1604
1605 igb_restore_vlan(adapter);
1606
1607 igb_setup_tctl(adapter);
1608 igb_setup_mrqc(adapter);
1609 igb_setup_rctl(adapter);
1610
1611 igb_configure_tx(adapter);
1612 igb_configure_rx(adapter);
1613
1614 igb_rx_fifo_flush_82575(&adapter->hw);
1615
1616 /* call igb_desc_unused which always leaves
1617 * at least 1 descriptor unused to make sure
1618 * next_to_use != next_to_clean
1619 */
1620 for (i = 0; i < adapter->num_rx_queues; i++) {
1621 struct igb_ring *ring = adapter->rx_ring[i];
1622 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1623 }
1624}
1625
1626/**
1627 * igb_power_up_link - Power up the phy/serdes link
1628 * @adapter: address of board private structure
1629 **/
1630void igb_power_up_link(struct igb_adapter *adapter)
1631{
1632 igb_reset_phy(&adapter->hw);
1633
1634 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1635 igb_power_up_phy_copper(&adapter->hw);
1636 else
1637 igb_power_up_serdes_link_82575(&adapter->hw);
1638
1639 igb_setup_link(&adapter->hw);
1640}
1641
1642/**
1643 * igb_power_down_link - Power down the phy/serdes link
1644 * @adapter: address of board private structure
1645 */
1646static void igb_power_down_link(struct igb_adapter *adapter)
1647{
1648 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1649 igb_power_down_phy_copper_82575(&adapter->hw);
1650 else
1651 igb_shutdown_serdes_link_82575(&adapter->hw);
1652}
1653
1654/**
1655 * Detect and switch function for Media Auto Sense
1656 * @adapter: address of the board private structure
1657 **/
1658static void igb_check_swap_media(struct igb_adapter *adapter)
1659{
1660 struct e1000_hw *hw = &adapter->hw;
1661 u32 ctrl_ext, connsw;
1662 bool swap_now = false;
1663
1664 ctrl_ext = rd32(E1000_CTRL_EXT);
1665 connsw = rd32(E1000_CONNSW);
1666
1667 /* need to live swap if current media is copper and we have fiber/serdes
1668 * to go to.
1669 */
1670
1671 if ((hw->phy.media_type == e1000_media_type_copper) &&
1672 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1673 swap_now = true;
1674 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1675 /* copper signal takes time to appear */
1676 if (adapter->copper_tries < 4) {
1677 adapter->copper_tries++;
1678 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1679 wr32(E1000_CONNSW, connsw);
1680 return;
1681 } else {
1682 adapter->copper_tries = 0;
1683 if ((connsw & E1000_CONNSW_PHYSD) &&
1684 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1685 swap_now = true;
1686 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1687 wr32(E1000_CONNSW, connsw);
1688 }
1689 }
1690 }
1691
1692 if (!swap_now)
1693 return;
1694
1695 switch (hw->phy.media_type) {
1696 case e1000_media_type_copper:
1697 netdev_info(adapter->netdev,
1698 "MAS: changing media to fiber/serdes\n");
1699 ctrl_ext |=
1700 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1701 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1702 adapter->copper_tries = 0;
1703 break;
1704 case e1000_media_type_internal_serdes:
1705 case e1000_media_type_fiber:
1706 netdev_info(adapter->netdev,
1707 "MAS: changing media to copper\n");
1708 ctrl_ext &=
1709 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1710 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1711 break;
1712 default:
1713 /* shouldn't get here during regular operation */
1714 netdev_err(adapter->netdev,
1715 "AMS: Invalid media type found, returning\n");
1716 break;
1717 }
1718 wr32(E1000_CTRL_EXT, ctrl_ext);
1719}
1720
1721/**
1722 * igb_up - Open the interface and prepare it to handle traffic
1723 * @adapter: board private structure
1724 **/
1725int igb_up(struct igb_adapter *adapter)
1726{
1727 struct e1000_hw *hw = &adapter->hw;
1728 int i;
1729
1730 /* hardware has been reset, we need to reload some things */
1731 igb_configure(adapter);
1732
1733 clear_bit(__IGB_DOWN, &adapter->state);
1734
1735 for (i = 0; i < adapter->num_q_vectors; i++)
1736 napi_enable(&(adapter->q_vector[i]->napi));
1737
1738 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1739 igb_configure_msix(adapter);
1740 else
1741 igb_assign_vector(adapter->q_vector[0], 0);
1742
1743 /* Clear any pending interrupts. */
1744 rd32(E1000_ICR);
1745 igb_irq_enable(adapter);
1746
1747 /* notify VFs that reset has been completed */
1748 if (adapter->vfs_allocated_count) {
1749 u32 reg_data = rd32(E1000_CTRL_EXT);
1750
1751 reg_data |= E1000_CTRL_EXT_PFRSTD;
1752 wr32(E1000_CTRL_EXT, reg_data);
1753 }
1754
1755 netif_tx_start_all_queues(adapter->netdev);
1756
1757 /* start the watchdog. */
1758 hw->mac.get_link_status = 1;
1759 schedule_work(&adapter->watchdog_task);
1760
1761 if ((adapter->flags & IGB_FLAG_EEE) &&
1762 (!hw->dev_spec._82575.eee_disable))
1763 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1764
1765 return 0;
1766}
1767
1768void igb_down(struct igb_adapter *adapter)
1769{
1770 struct net_device *netdev = adapter->netdev;
1771 struct e1000_hw *hw = &adapter->hw;
1772 u32 tctl, rctl;
1773 int i;
1774
1775 /* signal that we're down so the interrupt handler does not
1776 * reschedule our watchdog timer
1777 */
1778 set_bit(__IGB_DOWN, &adapter->state);
1779
1780 /* disable receives in the hardware */
1781 rctl = rd32(E1000_RCTL);
1782 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1783 /* flush and sleep below */
1784
1785 netif_carrier_off(netdev);
1786 netif_tx_stop_all_queues(netdev);
1787
1788 /* disable transmits in the hardware */
1789 tctl = rd32(E1000_TCTL);
1790 tctl &= ~E1000_TCTL_EN;
1791 wr32(E1000_TCTL, tctl);
1792 /* flush both disables and wait for them to finish */
1793 wrfl();
1794 usleep_range(10000, 11000);
1795
1796 igb_irq_disable(adapter);
1797
1798 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1799
1800 for (i = 0; i < adapter->num_q_vectors; i++) {
1801 if (adapter->q_vector[i]) {
1802 napi_synchronize(&adapter->q_vector[i]->napi);
1803 napi_disable(&adapter->q_vector[i]->napi);
1804 }
1805 }
1806
1807 del_timer_sync(&adapter->watchdog_timer);
1808 del_timer_sync(&adapter->phy_info_timer);
1809
1810 /* record the stats before reset*/
1811 spin_lock(&adapter->stats64_lock);
1812 igb_update_stats(adapter, &adapter->stats64);
1813 spin_unlock(&adapter->stats64_lock);
1814
1815 adapter->link_speed = 0;
1816 adapter->link_duplex = 0;
1817
1818 if (!pci_channel_offline(adapter->pdev))
1819 igb_reset(adapter);
1820 igb_clean_all_tx_rings(adapter);
1821 igb_clean_all_rx_rings(adapter);
1822#ifdef CONFIG_IGB_DCA
1823
1824 /* since we reset the hardware DCA settings were cleared */
1825 igb_setup_dca(adapter);
1826#endif
1827}
1828
1829void igb_reinit_locked(struct igb_adapter *adapter)
1830{
1831 WARN_ON(in_interrupt());
1832 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1833 usleep_range(1000, 2000);
1834 igb_down(adapter);
1835 igb_up(adapter);
1836 clear_bit(__IGB_RESETTING, &adapter->state);
1837}
1838
1839/** igb_enable_mas - Media Autosense re-enable after swap
1840 *
1841 * @adapter: adapter struct
1842 **/
1843static void igb_enable_mas(struct igb_adapter *adapter)
1844{
1845 struct e1000_hw *hw = &adapter->hw;
1846 u32 connsw = rd32(E1000_CONNSW);
1847
1848 /* configure for SerDes media detect */
1849 if ((hw->phy.media_type == e1000_media_type_copper) &&
1850 (!(connsw & E1000_CONNSW_SERDESD))) {
1851 connsw |= E1000_CONNSW_ENRGSRC;
1852 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1853 wr32(E1000_CONNSW, connsw);
1854 wrfl();
1855 }
1856}
1857
1858void igb_reset(struct igb_adapter *adapter)
1859{
1860 struct pci_dev *pdev = adapter->pdev;
1861 struct e1000_hw *hw = &adapter->hw;
1862 struct e1000_mac_info *mac = &hw->mac;
1863 struct e1000_fc_info *fc = &hw->fc;
1864 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1865
1866 /* Repartition Pba for greater than 9k mtu
1867 * To take effect CTRL.RST is required.
1868 */
1869 switch (mac->type) {
1870 case e1000_i350:
1871 case e1000_i354:
1872 case e1000_82580:
1873 pba = rd32(E1000_RXPBS);
1874 pba = igb_rxpbs_adjust_82580(pba);
1875 break;
1876 case e1000_82576:
1877 pba = rd32(E1000_RXPBS);
1878 pba &= E1000_RXPBS_SIZE_MASK_82576;
1879 break;
1880 case e1000_82575:
1881 case e1000_i210:
1882 case e1000_i211:
1883 default:
1884 pba = E1000_PBA_34K;
1885 break;
1886 }
1887
1888 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1889 (mac->type < e1000_82576)) {
1890 /* adjust PBA for jumbo frames */
1891 wr32(E1000_PBA, pba);
1892
1893 /* To maintain wire speed transmits, the Tx FIFO should be
1894 * large enough to accommodate two full transmit packets,
1895 * rounded up to the next 1KB and expressed in KB. Likewise,
1896 * the Rx FIFO should be large enough to accommodate at least
1897 * one full receive packet and is similarly rounded up and
1898 * expressed in KB.
1899 */
1900 pba = rd32(E1000_PBA);
1901 /* upper 16 bits has Tx packet buffer allocation size in KB */
1902 tx_space = pba >> 16;
1903 /* lower 16 bits has Rx packet buffer allocation size in KB */
1904 pba &= 0xffff;
1905 /* the Tx fifo also stores 16 bytes of information about the Tx
1906 * but don't include ethernet FCS because hardware appends it
1907 */
1908 min_tx_space = (adapter->max_frame_size +
1909 sizeof(union e1000_adv_tx_desc) -
1910 ETH_FCS_LEN) * 2;
1911 min_tx_space = ALIGN(min_tx_space, 1024);
1912 min_tx_space >>= 10;
1913 /* software strips receive CRC, so leave room for it */
1914 min_rx_space = adapter->max_frame_size;
1915 min_rx_space = ALIGN(min_rx_space, 1024);
1916 min_rx_space >>= 10;
1917
1918 /* If current Tx allocation is less than the min Tx FIFO size,
1919 * and the min Tx FIFO size is less than the current Rx FIFO
1920 * allocation, take space away from current Rx allocation
1921 */
1922 if (tx_space < min_tx_space &&
1923 ((min_tx_space - tx_space) < pba)) {
1924 pba = pba - (min_tx_space - tx_space);
1925
1926 /* if short on Rx space, Rx wins and must trump Tx
1927 * adjustment
1928 */
1929 if (pba < min_rx_space)
1930 pba = min_rx_space;
1931 }
1932 wr32(E1000_PBA, pba);
1933 }
1934
1935 /* flow control settings */
1936 /* The high water mark must be low enough to fit one full frame
1937 * (or the size used for early receive) above it in the Rx FIFO.
1938 * Set it to the lower of:
1939 * - 90% of the Rx FIFO size, or
1940 * - the full Rx FIFO size minus one full frame
1941 */
1942 hwm = min(((pba << 10) * 9 / 10),
1943 ((pba << 10) - 2 * adapter->max_frame_size));
1944
1945 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1946 fc->low_water = fc->high_water - 16;
1947 fc->pause_time = 0xFFFF;
1948 fc->send_xon = 1;
1949 fc->current_mode = fc->requested_mode;
1950
1951 /* disable receive for all VFs and wait one second */
1952 if (adapter->vfs_allocated_count) {
1953 int i;
1954
1955 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1956 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1957
1958 /* ping all the active vfs to let them know we are going down */
1959 igb_ping_all_vfs(adapter);
1960
1961 /* disable transmits and receives */
1962 wr32(E1000_VFRE, 0);
1963 wr32(E1000_VFTE, 0);
1964 }
1965
1966 /* Allow time for pending master requests to run */
1967 hw->mac.ops.reset_hw(hw);
1968 wr32(E1000_WUC, 0);
1969
1970 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1971 /* need to resetup here after media swap */
1972 adapter->ei.get_invariants(hw);
1973 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1974 }
1975 if ((mac->type == e1000_82575) &&
1976 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1977 igb_enable_mas(adapter);
1978 }
1979 if (hw->mac.ops.init_hw(hw))
1980 dev_err(&pdev->dev, "Hardware Error\n");
1981
1982 /* Flow control settings reset on hardware reset, so guarantee flow
1983 * control is off when forcing speed.
1984 */
1985 if (!hw->mac.autoneg)
1986 igb_force_mac_fc(hw);
1987
1988 igb_init_dmac(adapter, pba);
1989#ifdef CONFIG_IGB_HWMON
1990 /* Re-initialize the thermal sensor on i350 devices. */
1991 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1992 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1993 /* If present, re-initialize the external thermal sensor
1994 * interface.
1995 */
1996 if (adapter->ets)
1997 mac->ops.init_thermal_sensor_thresh(hw);
1998 }
1999 }
2000#endif
2001 /* Re-establish EEE setting */
2002 if (hw->phy.media_type == e1000_media_type_copper) {
2003 switch (mac->type) {
2004 case e1000_i350:
2005 case e1000_i210:
2006 case e1000_i211:
2007 igb_set_eee_i350(hw, true, true);
2008 break;
2009 case e1000_i354:
2010 igb_set_eee_i354(hw, true, true);
2011 break;
2012 default:
2013 break;
2014 }
2015 }
2016 if (!netif_running(adapter->netdev))
2017 igb_power_down_link(adapter);
2018
2019 igb_update_mng_vlan(adapter);
2020
2021 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2022 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2023
2024 /* Re-enable PTP, where applicable. */
2025 igb_ptp_reset(adapter);
2026
2027 igb_get_phy_info(hw);
2028}
2029
2030static netdev_features_t igb_fix_features(struct net_device *netdev,
2031 netdev_features_t features)
2032{
2033 /* Since there is no support for separate Rx/Tx vlan accel
2034 * enable/disable make sure Tx flag is always in same state as Rx.
2035 */
2036 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2037 features |= NETIF_F_HW_VLAN_CTAG_TX;
2038 else
2039 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2040
2041 return features;
2042}
2043
2044static int igb_set_features(struct net_device *netdev,
2045 netdev_features_t features)
2046{
2047 netdev_features_t changed = netdev->features ^ features;
2048 struct igb_adapter *adapter = netdev_priv(netdev);
2049
2050 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2051 igb_vlan_mode(netdev, features);
2052
2053 if (!(changed & NETIF_F_RXALL))
2054 return 0;
2055
2056 netdev->features = features;
2057
2058 if (netif_running(netdev))
2059 igb_reinit_locked(adapter);
2060 else
2061 igb_reset(adapter);
2062
2063 return 0;
2064}
2065
2066static const struct net_device_ops igb_netdev_ops = {
2067 .ndo_open = igb_open,
2068 .ndo_stop = igb_close,
2069 .ndo_start_xmit = igb_xmit_frame,
2070 .ndo_get_stats64 = igb_get_stats64,
2071 .ndo_set_rx_mode = igb_set_rx_mode,
2072 .ndo_set_mac_address = igb_set_mac,
2073 .ndo_change_mtu = igb_change_mtu,
2074 .ndo_do_ioctl = igb_ioctl,
2075 .ndo_tx_timeout = igb_tx_timeout,
2076 .ndo_validate_addr = eth_validate_addr,
2077 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2078 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2079 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2080 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2081 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2082 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2083 .ndo_get_vf_config = igb_ndo_get_vf_config,
2084#ifdef CONFIG_NET_POLL_CONTROLLER
2085 .ndo_poll_controller = igb_netpoll,
2086#endif
2087 .ndo_fix_features = igb_fix_features,
2088 .ndo_set_features = igb_set_features,
2089 .ndo_features_check = passthru_features_check,
2090};
2091
2092/**
2093 * igb_set_fw_version - Configure version string for ethtool
2094 * @adapter: adapter struct
2095 **/
2096void igb_set_fw_version(struct igb_adapter *adapter)
2097{
2098 struct e1000_hw *hw = &adapter->hw;
2099 struct e1000_fw_version fw;
2100
2101 igb_get_fw_version(hw, &fw);
2102
2103 switch (hw->mac.type) {
2104 case e1000_i210:
2105 case e1000_i211:
2106 if (!(igb_get_flash_presence_i210(hw))) {
2107 snprintf(adapter->fw_version,
2108 sizeof(adapter->fw_version),
2109 "%2d.%2d-%d",
2110 fw.invm_major, fw.invm_minor,
2111 fw.invm_img_type);
2112 break;
2113 }
2114 /* fall through */
2115 default:
2116 /* if option is rom valid, display its version too */
2117 if (fw.or_valid) {
2118 snprintf(adapter->fw_version,
2119 sizeof(adapter->fw_version),
2120 "%d.%d, 0x%08x, %d.%d.%d",
2121 fw.eep_major, fw.eep_minor, fw.etrack_id,
2122 fw.or_major, fw.or_build, fw.or_patch);
2123 /* no option rom */
2124 } else if (fw.etrack_id != 0X0000) {
2125 snprintf(adapter->fw_version,
2126 sizeof(adapter->fw_version),
2127 "%d.%d, 0x%08x",
2128 fw.eep_major, fw.eep_minor, fw.etrack_id);
2129 } else {
2130 snprintf(adapter->fw_version,
2131 sizeof(adapter->fw_version),
2132 "%d.%d.%d",
2133 fw.eep_major, fw.eep_minor, fw.eep_build);
2134 }
2135 break;
2136 }
2137}
2138
2139/**
2140 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2141 *
2142 * @adapter: adapter struct
2143 **/
2144static void igb_init_mas(struct igb_adapter *adapter)
2145{
2146 struct e1000_hw *hw = &adapter->hw;
2147 u16 eeprom_data;
2148
2149 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2150 switch (hw->bus.func) {
2151 case E1000_FUNC_0:
2152 if (eeprom_data & IGB_MAS_ENABLE_0) {
2153 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2154 netdev_info(adapter->netdev,
2155 "MAS: Enabling Media Autosense for port %d\n",
2156 hw->bus.func);
2157 }
2158 break;
2159 case E1000_FUNC_1:
2160 if (eeprom_data & IGB_MAS_ENABLE_1) {
2161 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2162 netdev_info(adapter->netdev,
2163 "MAS: Enabling Media Autosense for port %d\n",
2164 hw->bus.func);
2165 }
2166 break;
2167 case E1000_FUNC_2:
2168 if (eeprom_data & IGB_MAS_ENABLE_2) {
2169 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2170 netdev_info(adapter->netdev,
2171 "MAS: Enabling Media Autosense for port %d\n",
2172 hw->bus.func);
2173 }
2174 break;
2175 case E1000_FUNC_3:
2176 if (eeprom_data & IGB_MAS_ENABLE_3) {
2177 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2178 netdev_info(adapter->netdev,
2179 "MAS: Enabling Media Autosense for port %d\n",
2180 hw->bus.func);
2181 }
2182 break;
2183 default:
2184 /* Shouldn't get here */
2185 netdev_err(adapter->netdev,
2186 "MAS: Invalid port configuration, returning\n");
2187 break;
2188 }
2189}
2190
2191/**
2192 * igb_init_i2c - Init I2C interface
2193 * @adapter: pointer to adapter structure
2194 **/
2195static s32 igb_init_i2c(struct igb_adapter *adapter)
2196{
2197 s32 status = 0;
2198
2199 /* I2C interface supported on i350 devices */
2200 if (adapter->hw.mac.type != e1000_i350)
2201 return 0;
2202
2203 /* Initialize the i2c bus which is controlled by the registers.
2204 * This bus will use the i2c_algo_bit structue that implements
2205 * the protocol through toggling of the 4 bits in the register.
2206 */
2207 adapter->i2c_adap.owner = THIS_MODULE;
2208 adapter->i2c_algo = igb_i2c_algo;
2209 adapter->i2c_algo.data = adapter;
2210 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2211 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2212 strlcpy(adapter->i2c_adap.name, "igb BB",
2213 sizeof(adapter->i2c_adap.name));
2214 status = i2c_bit_add_bus(&adapter->i2c_adap);
2215 return status;
2216}
2217
2218/**
2219 * igb_probe - Device Initialization Routine
2220 * @pdev: PCI device information struct
2221 * @ent: entry in igb_pci_tbl
2222 *
2223 * Returns 0 on success, negative on failure
2224 *
2225 * igb_probe initializes an adapter identified by a pci_dev structure.
2226 * The OS initialization, configuring of the adapter private structure,
2227 * and a hardware reset occur.
2228 **/
2229static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2230{
2231 struct net_device *netdev;
2232 struct igb_adapter *adapter;
2233 struct e1000_hw *hw;
2234 u16 eeprom_data = 0;
2235 s32 ret_val;
2236 static int global_quad_port_a; /* global quad port a indication */
2237 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2238 int err, pci_using_dac;
2239 u8 part_str[E1000_PBANUM_LENGTH];
2240
2241 /* Catch broken hardware that put the wrong VF device ID in
2242 * the PCIe SR-IOV capability.
2243 */
2244 if (pdev->is_virtfn) {
2245 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2246 pci_name(pdev), pdev->vendor, pdev->device);
2247 return -EINVAL;
2248 }
2249
2250 err = pci_enable_device_mem(pdev);
2251 if (err)
2252 return err;
2253
2254 pci_using_dac = 0;
2255 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2256 if (!err) {
2257 pci_using_dac = 1;
2258 } else {
2259 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2260 if (err) {
2261 dev_err(&pdev->dev,
2262 "No usable DMA configuration, aborting\n");
2263 goto err_dma;
2264 }
2265 }
2266
2267 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2268 IORESOURCE_MEM),
2269 igb_driver_name);
2270 if (err)
2271 goto err_pci_reg;
2272
2273 pci_enable_pcie_error_reporting(pdev);
2274
2275 pci_set_master(pdev);
2276 pci_save_state(pdev);
2277
2278 err = -ENOMEM;
2279 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2280 IGB_MAX_TX_QUEUES);
2281 if (!netdev)
2282 goto err_alloc_etherdev;
2283
2284 SET_NETDEV_DEV(netdev, &pdev->dev);
2285
2286 pci_set_drvdata(pdev, netdev);
2287 adapter = netdev_priv(netdev);
2288 adapter->netdev = netdev;
2289 adapter->pdev = pdev;
2290 hw = &adapter->hw;
2291 hw->back = adapter;
2292 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2293
2294 err = -EIO;
2295 hw->hw_addr = pci_iomap(pdev, 0, 0);
2296 if (!hw->hw_addr)
2297 goto err_ioremap;
2298
2299 netdev->netdev_ops = &igb_netdev_ops;
2300 igb_set_ethtool_ops(netdev);
2301 netdev->watchdog_timeo = 5 * HZ;
2302
2303 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2304
2305 netdev->mem_start = pci_resource_start(pdev, 0);
2306 netdev->mem_end = pci_resource_end(pdev, 0);
2307
2308 /* PCI config space info */
2309 hw->vendor_id = pdev->vendor;
2310 hw->device_id = pdev->device;
2311 hw->revision_id = pdev->revision;
2312 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2313 hw->subsystem_device_id = pdev->subsystem_device;
2314
2315 /* Copy the default MAC, PHY and NVM function pointers */
2316 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2317 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2318 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2319 /* Initialize skew-specific constants */
2320 err = ei->get_invariants(hw);
2321 if (err)
2322 goto err_sw_init;
2323
2324 /* setup the private structure */
2325 err = igb_sw_init(adapter);
2326 if (err)
2327 goto err_sw_init;
2328
2329 igb_get_bus_info_pcie(hw);
2330
2331 hw->phy.autoneg_wait_to_complete = false;
2332
2333 /* Copper options */
2334 if (hw->phy.media_type == e1000_media_type_copper) {
2335 hw->phy.mdix = AUTO_ALL_MODES;
2336 hw->phy.disable_polarity_correction = false;
2337 hw->phy.ms_type = e1000_ms_hw_default;
2338 }
2339
2340 if (igb_check_reset_block(hw))
2341 dev_info(&pdev->dev,
2342 "PHY reset is blocked due to SOL/IDER session.\n");
2343
2344 /* features is initialized to 0 in allocation, it might have bits
2345 * set by igb_sw_init so we should use an or instead of an
2346 * assignment.
2347 */
2348 netdev->features |= NETIF_F_SG |
2349 NETIF_F_IP_CSUM |
2350 NETIF_F_IPV6_CSUM |
2351 NETIF_F_TSO |
2352 NETIF_F_TSO6 |
2353 NETIF_F_RXHASH |
2354 NETIF_F_RXCSUM |
2355 NETIF_F_HW_VLAN_CTAG_RX |
2356 NETIF_F_HW_VLAN_CTAG_TX;
2357
2358 /* copy netdev features into list of user selectable features */
2359 netdev->hw_features |= netdev->features;
2360 netdev->hw_features |= NETIF_F_RXALL;
2361
2362 /* set this bit last since it cannot be part of hw_features */
2363 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2364
2365 netdev->vlan_features |= NETIF_F_TSO |
2366 NETIF_F_TSO6 |
2367 NETIF_F_IP_CSUM |
2368 NETIF_F_IPV6_CSUM |
2369 NETIF_F_SG;
2370
2371 netdev->priv_flags |= IFF_SUPP_NOFCS;
2372
2373 if (pci_using_dac) {
2374 netdev->features |= NETIF_F_HIGHDMA;
2375 netdev->vlan_features |= NETIF_F_HIGHDMA;
2376 }
2377
2378 if (hw->mac.type >= e1000_82576) {
2379 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2380 netdev->features |= NETIF_F_SCTP_CSUM;
2381 }
2382
2383 netdev->priv_flags |= IFF_UNICAST_FLT;
2384
2385 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2386
2387 /* before reading the NVM, reset the controller to put the device in a
2388 * known good starting state
2389 */
2390 hw->mac.ops.reset_hw(hw);
2391
2392 /* make sure the NVM is good , i211/i210 parts can have special NVM
2393 * that doesn't contain a checksum
2394 */
2395 switch (hw->mac.type) {
2396 case e1000_i210:
2397 case e1000_i211:
2398 if (igb_get_flash_presence_i210(hw)) {
2399 if (hw->nvm.ops.validate(hw) < 0) {
2400 dev_err(&pdev->dev,
2401 "The NVM Checksum Is Not Valid\n");
2402 err = -EIO;
2403 goto err_eeprom;
2404 }
2405 }
2406 break;
2407 default:
2408 if (hw->nvm.ops.validate(hw) < 0) {
2409 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2410 err = -EIO;
2411 goto err_eeprom;
2412 }
2413 break;
2414 }
2415
2416 /* copy the MAC address out of the NVM */
2417 if (hw->mac.ops.read_mac_addr(hw))
2418 dev_err(&pdev->dev, "NVM Read Error\n");
2419
2420 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2421
2422 if (!is_valid_ether_addr(netdev->dev_addr)) {
2423 dev_err(&pdev->dev, "Invalid MAC Address\n");
2424 err = -EIO;
2425 goto err_eeprom;
2426 }
2427
2428 /* get firmware version for ethtool -i */
2429 igb_set_fw_version(adapter);
2430
2431 /* configure RXPBSIZE and TXPBSIZE */
2432 if (hw->mac.type == e1000_i210) {
2433 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2434 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2435 }
2436
2437 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2438 (unsigned long) adapter);
2439 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2440 (unsigned long) adapter);
2441
2442 INIT_WORK(&adapter->reset_task, igb_reset_task);
2443 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2444
2445 /* Initialize link properties that are user-changeable */
2446 adapter->fc_autoneg = true;
2447 hw->mac.autoneg = true;
2448 hw->phy.autoneg_advertised = 0x2f;
2449
2450 hw->fc.requested_mode = e1000_fc_default;
2451 hw->fc.current_mode = e1000_fc_default;
2452
2453 igb_validate_mdi_setting(hw);
2454
2455 /* By default, support wake on port A */
2456 if (hw->bus.func == 0)
2457 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2458
2459 /* Check the NVM for wake support on non-port A ports */
2460 if (hw->mac.type >= e1000_82580)
2461 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2462 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2463 &eeprom_data);
2464 else if (hw->bus.func == 1)
2465 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2466
2467 if (eeprom_data & IGB_EEPROM_APME)
2468 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2469
2470 /* now that we have the eeprom settings, apply the special cases where
2471 * the eeprom may be wrong or the board simply won't support wake on
2472 * lan on a particular port
2473 */
2474 switch (pdev->device) {
2475 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2476 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2477 break;
2478 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2479 case E1000_DEV_ID_82576_FIBER:
2480 case E1000_DEV_ID_82576_SERDES:
2481 /* Wake events only supported on port A for dual fiber
2482 * regardless of eeprom setting
2483 */
2484 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2485 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2486 break;
2487 case E1000_DEV_ID_82576_QUAD_COPPER:
2488 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2489 /* if quad port adapter, disable WoL on all but port A */
2490 if (global_quad_port_a != 0)
2491 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2492 else
2493 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2494 /* Reset for multiple quad port adapters */
2495 if (++global_quad_port_a == 4)
2496 global_quad_port_a = 0;
2497 break;
2498 default:
2499 /* If the device can't wake, don't set software support */
2500 if (!device_can_wakeup(&adapter->pdev->dev))
2501 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2502 }
2503
2504 /* initialize the wol settings based on the eeprom settings */
2505 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2506 adapter->wol |= E1000_WUFC_MAG;
2507
2508 /* Some vendors want WoL disabled by default, but still supported */
2509 if ((hw->mac.type == e1000_i350) &&
2510 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2511 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2512 adapter->wol = 0;
2513 }
2514
2515 device_set_wakeup_enable(&adapter->pdev->dev,
2516 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2517
2518 /* reset the hardware with the new settings */
2519 igb_reset(adapter);
2520
2521 /* Init the I2C interface */
2522 err = igb_init_i2c(adapter);
2523 if (err) {
2524 dev_err(&pdev->dev, "failed to init i2c interface\n");
2525 goto err_eeprom;
2526 }
2527
2528 /* let the f/w know that the h/w is now under the control of the
2529 * driver.
2530 */
2531 igb_get_hw_control(adapter);
2532
2533 strcpy(netdev->name, "eth%d");
2534 err = register_netdev(netdev);
2535 if (err)
2536 goto err_register;
2537
2538 /* carrier off reporting is important to ethtool even BEFORE open */
2539 netif_carrier_off(netdev);
2540
2541#ifdef CONFIG_IGB_DCA
2542 if (dca_add_requester(&pdev->dev) == 0) {
2543 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2544 dev_info(&pdev->dev, "DCA enabled\n");
2545 igb_setup_dca(adapter);
2546 }
2547
2548#endif
2549#ifdef CONFIG_IGB_HWMON
2550 /* Initialize the thermal sensor on i350 devices. */
2551 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2552 u16 ets_word;
2553
2554 /* Read the NVM to determine if this i350 device supports an
2555 * external thermal sensor.
2556 */
2557 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2558 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2559 adapter->ets = true;
2560 else
2561 adapter->ets = false;
2562 if (igb_sysfs_init(adapter))
2563 dev_err(&pdev->dev,
2564 "failed to allocate sysfs resources\n");
2565 } else {
2566 adapter->ets = false;
2567 }
2568#endif
2569 /* Check if Media Autosense is enabled */
2570 adapter->ei = *ei;
2571 if (hw->dev_spec._82575.mas_capable)
2572 igb_init_mas(adapter);
2573
2574 /* do hw tstamp init after resetting */
2575 igb_ptp_init(adapter);
2576
2577 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2578 /* print bus type/speed/width info, not applicable to i354 */
2579 if (hw->mac.type != e1000_i354) {
2580 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2581 netdev->name,
2582 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2583 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2584 "unknown"),
2585 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2586 "Width x4" :
2587 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2588 "Width x2" :
2589 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2590 "Width x1" : "unknown"), netdev->dev_addr);
2591 }
2592
2593 if ((hw->mac.type >= e1000_i210 ||
2594 igb_get_flash_presence_i210(hw))) {
2595 ret_val = igb_read_part_string(hw, part_str,
2596 E1000_PBANUM_LENGTH);
2597 } else {
2598 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2599 }
2600
2601 if (ret_val)
2602 strcpy(part_str, "Unknown");
2603 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2604 dev_info(&pdev->dev,
2605 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2606 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2607 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2608 adapter->num_rx_queues, adapter->num_tx_queues);
2609 if (hw->phy.media_type == e1000_media_type_copper) {
2610 switch (hw->mac.type) {
2611 case e1000_i350:
2612 case e1000_i210:
2613 case e1000_i211:
2614 /* Enable EEE for internal copper PHY devices */
2615 err = igb_set_eee_i350(hw, true, true);
2616 if ((!err) &&
2617 (!hw->dev_spec._82575.eee_disable)) {
2618 adapter->eee_advert =
2619 MDIO_EEE_100TX | MDIO_EEE_1000T;
2620 adapter->flags |= IGB_FLAG_EEE;
2621 }
2622 break;
2623 case e1000_i354:
2624 if ((rd32(E1000_CTRL_EXT) &
2625 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2626 err = igb_set_eee_i354(hw, true, true);
2627 if ((!err) &&
2628 (!hw->dev_spec._82575.eee_disable)) {
2629 adapter->eee_advert =
2630 MDIO_EEE_100TX | MDIO_EEE_1000T;
2631 adapter->flags |= IGB_FLAG_EEE;
2632 }
2633 }
2634 break;
2635 default:
2636 break;
2637 }
2638 }
2639 pm_runtime_put_noidle(&pdev->dev);
2640 return 0;
2641
2642err_register:
2643 igb_release_hw_control(adapter);
2644 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2645err_eeprom:
2646 if (!igb_check_reset_block(hw))
2647 igb_reset_phy(hw);
2648
2649 if (hw->flash_address)
2650 iounmap(hw->flash_address);
2651err_sw_init:
2652 kfree(adapter->shadow_vfta);
2653 igb_clear_interrupt_scheme(adapter);
2654 pci_iounmap(pdev, hw->hw_addr);
2655err_ioremap:
2656 free_netdev(netdev);
2657err_alloc_etherdev:
2658 pci_release_selected_regions(pdev,
2659 pci_select_bars(pdev, IORESOURCE_MEM));
2660err_pci_reg:
2661err_dma:
2662 pci_disable_device(pdev);
2663 return err;
2664}
2665
2666#ifdef CONFIG_PCI_IOV
2667static int igb_disable_sriov(struct pci_dev *pdev)
2668{
2669 struct net_device *netdev = pci_get_drvdata(pdev);
2670 struct igb_adapter *adapter = netdev_priv(netdev);
2671 struct e1000_hw *hw = &adapter->hw;
2672
2673 /* reclaim resources allocated to VFs */
2674 if (adapter->vf_data) {
2675 /* disable iov and allow time for transactions to clear */
2676 if (pci_vfs_assigned(pdev)) {
2677 dev_warn(&pdev->dev,
2678 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2679 return -EPERM;
2680 } else {
2681 pci_disable_sriov(pdev);
2682 msleep(500);
2683 }
2684
2685 kfree(adapter->vf_data);
2686 adapter->vf_data = NULL;
2687 adapter->vfs_allocated_count = 0;
2688 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2689 wrfl();
2690 msleep(100);
2691 dev_info(&pdev->dev, "IOV Disabled\n");
2692
2693 /* Re-enable DMA Coalescing flag since IOV is turned off */
2694 adapter->flags |= IGB_FLAG_DMAC;
2695 }
2696
2697 return 0;
2698}
2699
2700static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2701{
2702 struct net_device *netdev = pci_get_drvdata(pdev);
2703 struct igb_adapter *adapter = netdev_priv(netdev);
2704 int old_vfs = pci_num_vf(pdev);
2705 int err = 0;
2706 int i;
2707
2708 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2709 err = -EPERM;
2710 goto out;
2711 }
2712 if (!num_vfs)
2713 goto out;
2714
2715 if (old_vfs) {
2716 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2717 old_vfs, max_vfs);
2718 adapter->vfs_allocated_count = old_vfs;
2719 } else
2720 adapter->vfs_allocated_count = num_vfs;
2721
2722 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2723 sizeof(struct vf_data_storage), GFP_KERNEL);
2724
2725 /* if allocation failed then we do not support SR-IOV */
2726 if (!adapter->vf_data) {
2727 adapter->vfs_allocated_count = 0;
2728 dev_err(&pdev->dev,
2729 "Unable to allocate memory for VF Data Storage\n");
2730 err = -ENOMEM;
2731 goto out;
2732 }
2733
2734 /* only call pci_enable_sriov() if no VFs are allocated already */
2735 if (!old_vfs) {
2736 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2737 if (err)
2738 goto err_out;
2739 }
2740 dev_info(&pdev->dev, "%d VFs allocated\n",
2741 adapter->vfs_allocated_count);
2742 for (i = 0; i < adapter->vfs_allocated_count; i++)
2743 igb_vf_configure(adapter, i);
2744
2745 /* DMA Coalescing is not supported in IOV mode. */
2746 adapter->flags &= ~IGB_FLAG_DMAC;
2747 goto out;
2748
2749err_out:
2750 kfree(adapter->vf_data);
2751 adapter->vf_data = NULL;
2752 adapter->vfs_allocated_count = 0;
2753out:
2754 return err;
2755}
2756
2757#endif
2758/**
2759 * igb_remove_i2c - Cleanup I2C interface
2760 * @adapter: pointer to adapter structure
2761 **/
2762static void igb_remove_i2c(struct igb_adapter *adapter)
2763{
2764 /* free the adapter bus structure */
2765 i2c_del_adapter(&adapter->i2c_adap);
2766}
2767
2768/**
2769 * igb_remove - Device Removal Routine
2770 * @pdev: PCI device information struct
2771 *
2772 * igb_remove is called by the PCI subsystem to alert the driver
2773 * that it should release a PCI device. The could be caused by a
2774 * Hot-Plug event, or because the driver is going to be removed from
2775 * memory.
2776 **/
2777static void igb_remove(struct pci_dev *pdev)
2778{
2779 struct net_device *netdev = pci_get_drvdata(pdev);
2780 struct igb_adapter *adapter = netdev_priv(netdev);
2781 struct e1000_hw *hw = &adapter->hw;
2782
2783 pm_runtime_get_noresume(&pdev->dev);
2784#ifdef CONFIG_IGB_HWMON
2785 igb_sysfs_exit(adapter);
2786#endif
2787 igb_remove_i2c(adapter);
2788 igb_ptp_stop(adapter);
2789 /* The watchdog timer may be rescheduled, so explicitly
2790 * disable watchdog from being rescheduled.
2791 */
2792 set_bit(__IGB_DOWN, &adapter->state);
2793 del_timer_sync(&adapter->watchdog_timer);
2794 del_timer_sync(&adapter->phy_info_timer);
2795
2796 cancel_work_sync(&adapter->reset_task);
2797 cancel_work_sync(&adapter->watchdog_task);
2798
2799#ifdef CONFIG_IGB_DCA
2800 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2801 dev_info(&pdev->dev, "DCA disabled\n");
2802 dca_remove_requester(&pdev->dev);
2803 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2804 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2805 }
2806#endif
2807
2808 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2809 * would have already happened in close and is redundant.
2810 */
2811 igb_release_hw_control(adapter);
2812
2813#ifdef CONFIG_PCI_IOV
2814 igb_disable_sriov(pdev);
2815#endif
2816
2817 unregister_netdev(netdev);
2818
2819 igb_clear_interrupt_scheme(adapter);
2820
2821 pci_iounmap(pdev, hw->hw_addr);
2822 if (hw->flash_address)
2823 iounmap(hw->flash_address);
2824 pci_release_selected_regions(pdev,
2825 pci_select_bars(pdev, IORESOURCE_MEM));
2826
2827 kfree(adapter->shadow_vfta);
2828 free_netdev(netdev);
2829
2830 pci_disable_pcie_error_reporting(pdev);
2831
2832 pci_disable_device(pdev);
2833}
2834
2835/**
2836 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2837 * @adapter: board private structure to initialize
2838 *
2839 * This function initializes the vf specific data storage and then attempts to
2840 * allocate the VFs. The reason for ordering it this way is because it is much
2841 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2842 * the memory for the VFs.
2843 **/
2844static void igb_probe_vfs(struct igb_adapter *adapter)
2845{
2846#ifdef CONFIG_PCI_IOV
2847 struct pci_dev *pdev = adapter->pdev;
2848 struct e1000_hw *hw = &adapter->hw;
2849
2850 /* Virtualization features not supported on i210 family. */
2851 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2852 return;
2853
2854 pci_sriov_set_totalvfs(pdev, 7);
2855 igb_enable_sriov(pdev, max_vfs);
2856
2857#endif /* CONFIG_PCI_IOV */
2858}
2859
2860static void igb_init_queue_configuration(struct igb_adapter *adapter)
2861{
2862 struct e1000_hw *hw = &adapter->hw;
2863 u32 max_rss_queues;
2864
2865 /* Determine the maximum number of RSS queues supported. */
2866 switch (hw->mac.type) {
2867 case e1000_i211:
2868 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2869 break;
2870 case e1000_82575:
2871 case e1000_i210:
2872 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2873 break;
2874 case e1000_i350:
2875 /* I350 cannot do RSS and SR-IOV at the same time */
2876 if (!!adapter->vfs_allocated_count) {
2877 max_rss_queues = 1;
2878 break;
2879 }
2880 /* fall through */
2881 case e1000_82576:
2882 if (!!adapter->vfs_allocated_count) {
2883 max_rss_queues = 2;
2884 break;
2885 }
2886 /* fall through */
2887 case e1000_82580:
2888 case e1000_i354:
2889 default:
2890 max_rss_queues = IGB_MAX_RX_QUEUES;
2891 break;
2892 }
2893
2894 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2895
2896 igb_set_flag_queue_pairs(adapter, max_rss_queues);
2897}
2898
2899void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2900 const u32 max_rss_queues)
2901{
2902 struct e1000_hw *hw = &adapter->hw;
2903
2904 /* Determine if we need to pair queues. */
2905 switch (hw->mac.type) {
2906 case e1000_82575:
2907 case e1000_i211:
2908 /* Device supports enough interrupts without queue pairing. */
2909 break;
2910 case e1000_82576:
2911 /* If VFs are going to be allocated with RSS queues then we
2912 * should pair the queues in order to conserve interrupts due
2913 * to limited supply.
2914 */
2915 if ((adapter->rss_queues > 1) &&
2916 (adapter->vfs_allocated_count > 6))
2917 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2918 /* fall through */
2919 case e1000_82580:
2920 case e1000_i350:
2921 case e1000_i354:
2922 case e1000_i210:
2923 default:
2924 /* If rss_queues > half of max_rss_queues, pair the queues in
2925 * order to conserve interrupts due to limited supply.
2926 */
2927 if (adapter->rss_queues > (max_rss_queues / 2))
2928 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2929 break;
2930 }
2931}
2932
2933/**
2934 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2935 * @adapter: board private structure to initialize
2936 *
2937 * igb_sw_init initializes the Adapter private data structure.
2938 * Fields are initialized based on PCI device information and
2939 * OS network device settings (MTU size).
2940 **/
2941static int igb_sw_init(struct igb_adapter *adapter)
2942{
2943 struct e1000_hw *hw = &adapter->hw;
2944 struct net_device *netdev = adapter->netdev;
2945 struct pci_dev *pdev = adapter->pdev;
2946
2947 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2948
2949 /* set default ring sizes */
2950 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2951 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2952
2953 /* set default ITR values */
2954 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2955 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2956
2957 /* set default work limits */
2958 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2959
2960 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2961 VLAN_HLEN;
2962 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2963
2964 spin_lock_init(&adapter->stats64_lock);
2965#ifdef CONFIG_PCI_IOV
2966 switch (hw->mac.type) {
2967 case e1000_82576:
2968 case e1000_i350:
2969 if (max_vfs > 7) {
2970 dev_warn(&pdev->dev,
2971 "Maximum of 7 VFs per PF, using max\n");
2972 max_vfs = adapter->vfs_allocated_count = 7;
2973 } else
2974 adapter->vfs_allocated_count = max_vfs;
2975 if (adapter->vfs_allocated_count)
2976 dev_warn(&pdev->dev,
2977 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2978 break;
2979 default:
2980 break;
2981 }
2982#endif /* CONFIG_PCI_IOV */
2983
2984 igb_init_queue_configuration(adapter);
2985
2986 /* Setup and initialize a copy of the hw vlan table array */
2987 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2988 GFP_ATOMIC);
2989
2990 /* This call may decrease the number of queues */
2991 if (igb_init_interrupt_scheme(adapter, true)) {
2992 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2993 return -ENOMEM;
2994 }
2995
2996 igb_probe_vfs(adapter);
2997
2998 /* Explicitly disable IRQ since the NIC can be in any state. */
2999 igb_irq_disable(adapter);
3000
3001 if (hw->mac.type >= e1000_i350)
3002 adapter->flags &= ~IGB_FLAG_DMAC;
3003
3004 set_bit(__IGB_DOWN, &adapter->state);
3005 return 0;
3006}
3007
3008/**
3009 * igb_open - Called when a network interface is made active
3010 * @netdev: network interface device structure
3011 *
3012 * Returns 0 on success, negative value on failure
3013 *
3014 * The open entry point is called when a network interface is made
3015 * active by the system (IFF_UP). At this point all resources needed
3016 * for transmit and receive operations are allocated, the interrupt
3017 * handler is registered with the OS, the watchdog timer is started,
3018 * and the stack is notified that the interface is ready.
3019 **/
3020static int __igb_open(struct net_device *netdev, bool resuming)
3021{
3022 struct igb_adapter *adapter = netdev_priv(netdev);
3023 struct e1000_hw *hw = &adapter->hw;
3024 struct pci_dev *pdev = adapter->pdev;
3025 int err;
3026 int i;
3027
3028 /* disallow open during test */
3029 if (test_bit(__IGB_TESTING, &adapter->state)) {
3030 WARN_ON(resuming);
3031 return -EBUSY;
3032 }
3033
3034 if (!resuming)
3035 pm_runtime_get_sync(&pdev->dev);
3036
3037 netif_carrier_off(netdev);
3038
3039 /* allocate transmit descriptors */
3040 err = igb_setup_all_tx_resources(adapter);
3041 if (err)
3042 goto err_setup_tx;
3043
3044 /* allocate receive descriptors */
3045 err = igb_setup_all_rx_resources(adapter);
3046 if (err)
3047 goto err_setup_rx;
3048
3049 igb_power_up_link(adapter);
3050
3051 /* before we allocate an interrupt, we must be ready to handle it.
3052 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3053 * as soon as we call pci_request_irq, so we have to setup our
3054 * clean_rx handler before we do so.
3055 */
3056 igb_configure(adapter);
3057
3058 err = igb_request_irq(adapter);
3059 if (err)
3060 goto err_req_irq;
3061
3062 /* Notify the stack of the actual queue counts. */
3063 err = netif_set_real_num_tx_queues(adapter->netdev,
3064 adapter->num_tx_queues);
3065 if (err)
3066 goto err_set_queues;
3067
3068 err = netif_set_real_num_rx_queues(adapter->netdev,
3069 adapter->num_rx_queues);
3070 if (err)
3071 goto err_set_queues;
3072
3073 /* From here on the code is the same as igb_up() */
3074 clear_bit(__IGB_DOWN, &adapter->state);
3075
3076 for (i = 0; i < adapter->num_q_vectors; i++)
3077 napi_enable(&(adapter->q_vector[i]->napi));
3078
3079 /* Clear any pending interrupts. */
3080 rd32(E1000_ICR);
3081
3082 igb_irq_enable(adapter);
3083
3084 /* notify VFs that reset has been completed */
3085 if (adapter->vfs_allocated_count) {
3086 u32 reg_data = rd32(E1000_CTRL_EXT);
3087
3088 reg_data |= E1000_CTRL_EXT_PFRSTD;
3089 wr32(E1000_CTRL_EXT, reg_data);
3090 }
3091
3092 netif_tx_start_all_queues(netdev);
3093
3094 if (!resuming)
3095 pm_runtime_put(&pdev->dev);
3096
3097 /* start the watchdog. */
3098 hw->mac.get_link_status = 1;
3099 schedule_work(&adapter->watchdog_task);
3100
3101 return 0;
3102
3103err_set_queues:
3104 igb_free_irq(adapter);
3105err_req_irq:
3106 igb_release_hw_control(adapter);
3107 igb_power_down_link(adapter);
3108 igb_free_all_rx_resources(adapter);
3109err_setup_rx:
3110 igb_free_all_tx_resources(adapter);
3111err_setup_tx:
3112 igb_reset(adapter);
3113 if (!resuming)
3114 pm_runtime_put(&pdev->dev);
3115
3116 return err;
3117}
3118
3119static int igb_open(struct net_device *netdev)
3120{
3121 return __igb_open(netdev, false);
3122}
3123
3124/**
3125 * igb_close - Disables a network interface
3126 * @netdev: network interface device structure
3127 *
3128 * Returns 0, this is not allowed to fail
3129 *
3130 * The close entry point is called when an interface is de-activated
3131 * by the OS. The hardware is still under the driver's control, but
3132 * needs to be disabled. A global MAC reset is issued to stop the
3133 * hardware, and all transmit and receive resources are freed.
3134 **/
3135static int __igb_close(struct net_device *netdev, bool suspending)
3136{
3137 struct igb_adapter *adapter = netdev_priv(netdev);
3138 struct pci_dev *pdev = adapter->pdev;
3139
3140 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3141
3142 if (!suspending)
3143 pm_runtime_get_sync(&pdev->dev);
3144
3145 igb_down(adapter);
3146 igb_free_irq(adapter);
3147
3148 igb_free_all_tx_resources(adapter);
3149 igb_free_all_rx_resources(adapter);
3150
3151 if (!suspending)
3152 pm_runtime_put_sync(&pdev->dev);
3153 return 0;
3154}
3155
3156static int igb_close(struct net_device *netdev)
3157{
3158 return __igb_close(netdev, false);
3159}
3160
3161/**
3162 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3163 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3164 *
3165 * Return 0 on success, negative on failure
3166 **/
3167int igb_setup_tx_resources(struct igb_ring *tx_ring)
3168{
3169 struct device *dev = tx_ring->dev;
3170 int size;
3171
3172 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3173
3174 tx_ring->tx_buffer_info = vzalloc(size);
3175 if (!tx_ring->tx_buffer_info)
3176 goto err;
3177
3178 /* round up to nearest 4K */
3179 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3180 tx_ring->size = ALIGN(tx_ring->size, 4096);
3181
3182 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3183 &tx_ring->dma, GFP_KERNEL);
3184 if (!tx_ring->desc)
3185 goto err;
3186
3187 tx_ring->next_to_use = 0;
3188 tx_ring->next_to_clean = 0;
3189
3190 return 0;
3191
3192err:
3193 vfree(tx_ring->tx_buffer_info);
3194 tx_ring->tx_buffer_info = NULL;
3195 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3196 return -ENOMEM;
3197}
3198
3199/**
3200 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3201 * (Descriptors) for all queues
3202 * @adapter: board private structure
3203 *
3204 * Return 0 on success, negative on failure
3205 **/
3206static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3207{
3208 struct pci_dev *pdev = adapter->pdev;
3209 int i, err = 0;
3210
3211 for (i = 0; i < adapter->num_tx_queues; i++) {
3212 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3213 if (err) {
3214 dev_err(&pdev->dev,
3215 "Allocation for Tx Queue %u failed\n", i);
3216 for (i--; i >= 0; i--)
3217 igb_free_tx_resources(adapter->tx_ring[i]);
3218 break;
3219 }
3220 }
3221
3222 return err;
3223}
3224
3225/**
3226 * igb_setup_tctl - configure the transmit control registers
3227 * @adapter: Board private structure
3228 **/
3229void igb_setup_tctl(struct igb_adapter *adapter)
3230{
3231 struct e1000_hw *hw = &adapter->hw;
3232 u32 tctl;
3233
3234 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3235 wr32(E1000_TXDCTL(0), 0);
3236
3237 /* Program the Transmit Control Register */
3238 tctl = rd32(E1000_TCTL);
3239 tctl &= ~E1000_TCTL_CT;
3240 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3241 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3242
3243 igb_config_collision_dist(hw);
3244
3245 /* Enable transmits */
3246 tctl |= E1000_TCTL_EN;
3247
3248 wr32(E1000_TCTL, tctl);
3249}
3250
3251/**
3252 * igb_configure_tx_ring - Configure transmit ring after Reset
3253 * @adapter: board private structure
3254 * @ring: tx ring to configure
3255 *
3256 * Configure a transmit ring after a reset.
3257 **/
3258void igb_configure_tx_ring(struct igb_adapter *adapter,
3259 struct igb_ring *ring)
3260{
3261 struct e1000_hw *hw = &adapter->hw;
3262 u32 txdctl = 0;
3263 u64 tdba = ring->dma;
3264 int reg_idx = ring->reg_idx;
3265
3266 /* disable the queue */
3267 wr32(E1000_TXDCTL(reg_idx), 0);
3268 wrfl();
3269 mdelay(10);
3270
3271 wr32(E1000_TDLEN(reg_idx),
3272 ring->count * sizeof(union e1000_adv_tx_desc));
3273 wr32(E1000_TDBAL(reg_idx),
3274 tdba & 0x00000000ffffffffULL);
3275 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3276
3277 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3278 wr32(E1000_TDH(reg_idx), 0);
3279 writel(0, ring->tail);
3280
3281 txdctl |= IGB_TX_PTHRESH;
3282 txdctl |= IGB_TX_HTHRESH << 8;
3283 txdctl |= IGB_TX_WTHRESH << 16;
3284
3285 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3286 wr32(E1000_TXDCTL(reg_idx), txdctl);
3287}
3288
3289/**
3290 * igb_configure_tx - Configure transmit Unit after Reset
3291 * @adapter: board private structure
3292 *
3293 * Configure the Tx unit of the MAC after a reset.
3294 **/
3295static void igb_configure_tx(struct igb_adapter *adapter)
3296{
3297 int i;
3298
3299 for (i = 0; i < adapter->num_tx_queues; i++)
3300 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3301}
3302
3303/**
3304 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3305 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3306 *
3307 * Returns 0 on success, negative on failure
3308 **/
3309int igb_setup_rx_resources(struct igb_ring *rx_ring)
3310{
3311 struct device *dev = rx_ring->dev;
3312 int size;
3313
3314 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3315
3316 rx_ring->rx_buffer_info = vzalloc(size);
3317 if (!rx_ring->rx_buffer_info)
3318 goto err;
3319
3320 /* Round up to nearest 4K */
3321 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3322 rx_ring->size = ALIGN(rx_ring->size, 4096);
3323
3324 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3325 &rx_ring->dma, GFP_KERNEL);
3326 if (!rx_ring->desc)
3327 goto err;
3328
3329 rx_ring->next_to_alloc = 0;
3330 rx_ring->next_to_clean = 0;
3331 rx_ring->next_to_use = 0;
3332
3333 return 0;
3334
3335err:
3336 vfree(rx_ring->rx_buffer_info);
3337 rx_ring->rx_buffer_info = NULL;
3338 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3339 return -ENOMEM;
3340}
3341
3342/**
3343 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3344 * (Descriptors) for all queues
3345 * @adapter: board private structure
3346 *
3347 * Return 0 on success, negative on failure
3348 **/
3349static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3350{
3351 struct pci_dev *pdev = adapter->pdev;
3352 int i, err = 0;
3353
3354 for (i = 0; i < adapter->num_rx_queues; i++) {
3355 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3356 if (err) {
3357 dev_err(&pdev->dev,
3358 "Allocation for Rx Queue %u failed\n", i);
3359 for (i--; i >= 0; i--)
3360 igb_free_rx_resources(adapter->rx_ring[i]);
3361 break;
3362 }
3363 }
3364
3365 return err;
3366}
3367
3368/**
3369 * igb_setup_mrqc - configure the multiple receive queue control registers
3370 * @adapter: Board private structure
3371 **/
3372static void igb_setup_mrqc(struct igb_adapter *adapter)
3373{
3374 struct e1000_hw *hw = &adapter->hw;
3375 u32 mrqc, rxcsum;
3376 u32 j, num_rx_queues;
3377 u32 rss_key[10];
3378
3379 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3380 for (j = 0; j < 10; j++)
3381 wr32(E1000_RSSRK(j), rss_key[j]);
3382
3383 num_rx_queues = adapter->rss_queues;
3384
3385 switch (hw->mac.type) {
3386 case e1000_82576:
3387 /* 82576 supports 2 RSS queues for SR-IOV */
3388 if (adapter->vfs_allocated_count)
3389 num_rx_queues = 2;
3390 break;
3391 default:
3392 break;
3393 }
3394
3395 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3396 for (j = 0; j < IGB_RETA_SIZE; j++)
3397 adapter->rss_indir_tbl[j] =
3398 (j * num_rx_queues) / IGB_RETA_SIZE;
3399 adapter->rss_indir_tbl_init = num_rx_queues;
3400 }
3401 igb_write_rss_indir_tbl(adapter);
3402
3403 /* Disable raw packet checksumming so that RSS hash is placed in
3404 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3405 * offloads as they are enabled by default
3406 */
3407 rxcsum = rd32(E1000_RXCSUM);
3408 rxcsum |= E1000_RXCSUM_PCSD;
3409
3410 if (adapter->hw.mac.type >= e1000_82576)
3411 /* Enable Receive Checksum Offload for SCTP */
3412 rxcsum |= E1000_RXCSUM_CRCOFL;
3413
3414 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3415 wr32(E1000_RXCSUM, rxcsum);
3416
3417 /* Generate RSS hash based on packet types, TCP/UDP
3418 * port numbers and/or IPv4/v6 src and dst addresses
3419 */
3420 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3421 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3422 E1000_MRQC_RSS_FIELD_IPV6 |
3423 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3424 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3425
3426 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3427 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3428 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3429 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3430
3431 /* If VMDq is enabled then we set the appropriate mode for that, else
3432 * we default to RSS so that an RSS hash is calculated per packet even
3433 * if we are only using one queue
3434 */
3435 if (adapter->vfs_allocated_count) {
3436 if (hw->mac.type > e1000_82575) {
3437 /* Set the default pool for the PF's first queue */
3438 u32 vtctl = rd32(E1000_VT_CTL);
3439
3440 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3441 E1000_VT_CTL_DISABLE_DEF_POOL);
3442 vtctl |= adapter->vfs_allocated_count <<
3443 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3444 wr32(E1000_VT_CTL, vtctl);
3445 }
3446 if (adapter->rss_queues > 1)
3447 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3448 else
3449 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3450 } else {
3451 if (hw->mac.type != e1000_i211)
3452 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3453 }
3454 igb_vmm_control(adapter);
3455
3456 wr32(E1000_MRQC, mrqc);
3457}
3458
3459/**
3460 * igb_setup_rctl - configure the receive control registers
3461 * @adapter: Board private structure
3462 **/
3463void igb_setup_rctl(struct igb_adapter *adapter)
3464{
3465 struct e1000_hw *hw = &adapter->hw;
3466 u32 rctl;
3467
3468 rctl = rd32(E1000_RCTL);
3469
3470 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3471 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3472
3473 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3474 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3475
3476 /* enable stripping of CRC. It's unlikely this will break BMC
3477 * redirection as it did with e1000. Newer features require
3478 * that the HW strips the CRC.
3479 */
3480 rctl |= E1000_RCTL_SECRC;
3481
3482 /* disable store bad packets and clear size bits. */
3483 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3484
3485 /* enable LPE to prevent packets larger than max_frame_size */
3486 rctl |= E1000_RCTL_LPE;
3487
3488 /* disable queue 0 to prevent tail write w/o re-config */
3489 wr32(E1000_RXDCTL(0), 0);
3490
3491 /* Attention!!! For SR-IOV PF driver operations you must enable
3492 * queue drop for all VF and PF queues to prevent head of line blocking
3493 * if an un-trusted VF does not provide descriptors to hardware.
3494 */
3495 if (adapter->vfs_allocated_count) {
3496 /* set all queue drop enable bits */
3497 wr32(E1000_QDE, ALL_QUEUES);
3498 }
3499
3500 /* This is useful for sniffing bad packets. */
3501 if (adapter->netdev->features & NETIF_F_RXALL) {
3502 /* UPE and MPE will be handled by normal PROMISC logic
3503 * in e1000e_set_rx_mode
3504 */
3505 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3506 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3507 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3508
3509 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3510 E1000_RCTL_DPF | /* Allow filtered pause */
3511 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3512 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3513 * and that breaks VLANs.
3514 */
3515 }
3516
3517 wr32(E1000_RCTL, rctl);
3518}
3519
3520static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3521 int vfn)
3522{
3523 struct e1000_hw *hw = &adapter->hw;
3524 u32 vmolr;
3525
3526 /* if it isn't the PF check to see if VFs are enabled and
3527 * increase the size to support vlan tags
3528 */
3529 if (vfn < adapter->vfs_allocated_count &&
3530 adapter->vf_data[vfn].vlans_enabled)
3531 size += VLAN_TAG_SIZE;
3532
3533 vmolr = rd32(E1000_VMOLR(vfn));
3534 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3535 vmolr |= size | E1000_VMOLR_LPE;
3536 wr32(E1000_VMOLR(vfn), vmolr);
3537
3538 return 0;
3539}
3540
3541/**
3542 * igb_rlpml_set - set maximum receive packet size
3543 * @adapter: board private structure
3544 *
3545 * Configure maximum receivable packet size.
3546 **/
3547static void igb_rlpml_set(struct igb_adapter *adapter)
3548{
3549 u32 max_frame_size = adapter->max_frame_size;
3550 struct e1000_hw *hw = &adapter->hw;
3551 u16 pf_id = adapter->vfs_allocated_count;
3552
3553 if (pf_id) {
3554 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3555 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3556 * to our max jumbo frame size, in case we need to enable
3557 * jumbo frames on one of the rings later.
3558 * This will not pass over-length frames into the default
3559 * queue because it's gated by the VMOLR.RLPML.
3560 */
3561 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3562 }
3563
3564 wr32(E1000_RLPML, max_frame_size);
3565}
3566
3567static inline void igb_set_vmolr(struct igb_adapter *adapter,
3568 int vfn, bool aupe)
3569{
3570 struct e1000_hw *hw = &adapter->hw;
3571 u32 vmolr;
3572
3573 /* This register exists only on 82576 and newer so if we are older then
3574 * we should exit and do nothing
3575 */
3576 if (hw->mac.type < e1000_82576)
3577 return;
3578
3579 vmolr = rd32(E1000_VMOLR(vfn));
3580 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3581 if (hw->mac.type == e1000_i350) {
3582 u32 dvmolr;
3583
3584 dvmolr = rd32(E1000_DVMOLR(vfn));
3585 dvmolr |= E1000_DVMOLR_STRVLAN;
3586 wr32(E1000_DVMOLR(vfn), dvmolr);
3587 }
3588 if (aupe)
3589 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3590 else
3591 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3592
3593 /* clear all bits that might not be set */
3594 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3595
3596 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3597 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3598 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3599 * multicast packets
3600 */
3601 if (vfn <= adapter->vfs_allocated_count)
3602 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3603
3604 wr32(E1000_VMOLR(vfn), vmolr);
3605}
3606
3607/**
3608 * igb_configure_rx_ring - Configure a receive ring after Reset
3609 * @adapter: board private structure
3610 * @ring: receive ring to be configured
3611 *
3612 * Configure the Rx unit of the MAC after a reset.
3613 **/
3614void igb_configure_rx_ring(struct igb_adapter *adapter,
3615 struct igb_ring *ring)
3616{
3617 struct e1000_hw *hw = &adapter->hw;
3618 u64 rdba = ring->dma;
3619 int reg_idx = ring->reg_idx;
3620 u32 srrctl = 0, rxdctl = 0;
3621
3622 /* disable the queue */
3623 wr32(E1000_RXDCTL(reg_idx), 0);
3624
3625 /* Set DMA base address registers */
3626 wr32(E1000_RDBAL(reg_idx),
3627 rdba & 0x00000000ffffffffULL);
3628 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3629 wr32(E1000_RDLEN(reg_idx),
3630 ring->count * sizeof(union e1000_adv_rx_desc));
3631
3632 /* initialize head and tail */
3633 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3634 wr32(E1000_RDH(reg_idx), 0);
3635 writel(0, ring->tail);
3636
3637 /* set descriptor configuration */
3638 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3639 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3640 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3641 if (hw->mac.type >= e1000_82580)
3642 srrctl |= E1000_SRRCTL_TIMESTAMP;
3643 /* Only set Drop Enable if we are supporting multiple queues */
3644 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3645 srrctl |= E1000_SRRCTL_DROP_EN;
3646
3647 wr32(E1000_SRRCTL(reg_idx), srrctl);
3648
3649 /* set filtering for VMDQ pools */
3650 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3651
3652 rxdctl |= IGB_RX_PTHRESH;
3653 rxdctl |= IGB_RX_HTHRESH << 8;
3654 rxdctl |= IGB_RX_WTHRESH << 16;
3655
3656 /* enable receive descriptor fetching */
3657 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3658 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3659}
3660
3661/**
3662 * igb_configure_rx - Configure receive Unit after Reset
3663 * @adapter: board private structure
3664 *
3665 * Configure the Rx unit of the MAC after a reset.
3666 **/
3667static void igb_configure_rx(struct igb_adapter *adapter)
3668{
3669 int i;
3670
3671 /* set UTA to appropriate mode */
3672 igb_set_uta(adapter);
3673
3674 /* set the correct pool for the PF default MAC address in entry 0 */
3675 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3676 adapter->vfs_allocated_count);
3677
3678 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3679 * the Base and Length of the Rx Descriptor Ring
3680 */
3681 for (i = 0; i < adapter->num_rx_queues; i++)
3682 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3683}
3684
3685/**
3686 * igb_free_tx_resources - Free Tx Resources per Queue
3687 * @tx_ring: Tx descriptor ring for a specific queue
3688 *
3689 * Free all transmit software resources
3690 **/
3691void igb_free_tx_resources(struct igb_ring *tx_ring)
3692{
3693 igb_clean_tx_ring(tx_ring);
3694
3695 vfree(tx_ring->tx_buffer_info);
3696 tx_ring->tx_buffer_info = NULL;
3697
3698 /* if not set, then don't free */
3699 if (!tx_ring->desc)
3700 return;
3701
3702 dma_free_coherent(tx_ring->dev, tx_ring->size,
3703 tx_ring->desc, tx_ring->dma);
3704
3705 tx_ring->desc = NULL;
3706}
3707
3708/**
3709 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3710 * @adapter: board private structure
3711 *
3712 * Free all transmit software resources
3713 **/
3714static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3715{
3716 int i;
3717
3718 for (i = 0; i < adapter->num_tx_queues; i++)
3719 if (adapter->tx_ring[i])
3720 igb_free_tx_resources(adapter->tx_ring[i]);
3721}
3722
3723void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3724 struct igb_tx_buffer *tx_buffer)
3725{
3726 if (tx_buffer->skb) {
3727 dev_kfree_skb_any(tx_buffer->skb);
3728 if (dma_unmap_len(tx_buffer, len))
3729 dma_unmap_single(ring->dev,
3730 dma_unmap_addr(tx_buffer, dma),
3731 dma_unmap_len(tx_buffer, len),
3732 DMA_TO_DEVICE);
3733 } else if (dma_unmap_len(tx_buffer, len)) {
3734 dma_unmap_page(ring->dev,
3735 dma_unmap_addr(tx_buffer, dma),
3736 dma_unmap_len(tx_buffer, len),
3737 DMA_TO_DEVICE);
3738 }
3739 tx_buffer->next_to_watch = NULL;
3740 tx_buffer->skb = NULL;
3741 dma_unmap_len_set(tx_buffer, len, 0);
3742 /* buffer_info must be completely set up in the transmit path */
3743}
3744
3745/**
3746 * igb_clean_tx_ring - Free Tx Buffers
3747 * @tx_ring: ring to be cleaned
3748 **/
3749static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3750{
3751 struct igb_tx_buffer *buffer_info;
3752 unsigned long size;
3753 u16 i;
3754
3755 if (!tx_ring->tx_buffer_info)
3756 return;
3757 /* Free all the Tx ring sk_buffs */
3758
3759 for (i = 0; i < tx_ring->count; i++) {
3760 buffer_info = &tx_ring->tx_buffer_info[i];
3761 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3762 }
3763
3764 netdev_tx_reset_queue(txring_txq(tx_ring));
3765
3766 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3767 memset(tx_ring->tx_buffer_info, 0, size);
3768
3769 /* Zero out the descriptor ring */
3770 memset(tx_ring->desc, 0, tx_ring->size);
3771
3772 tx_ring->next_to_use = 0;
3773 tx_ring->next_to_clean = 0;
3774}
3775
3776/**
3777 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3778 * @adapter: board private structure
3779 **/
3780static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3781{
3782 int i;
3783
3784 for (i = 0; i < adapter->num_tx_queues; i++)
3785 if (adapter->tx_ring[i])
3786 igb_clean_tx_ring(adapter->tx_ring[i]);
3787}
3788
3789/**
3790 * igb_free_rx_resources - Free Rx Resources
3791 * @rx_ring: ring to clean the resources from
3792 *
3793 * Free all receive software resources
3794 **/
3795void igb_free_rx_resources(struct igb_ring *rx_ring)
3796{
3797 igb_clean_rx_ring(rx_ring);
3798
3799 vfree(rx_ring->rx_buffer_info);
3800 rx_ring->rx_buffer_info = NULL;
3801
3802 /* if not set, then don't free */
3803 if (!rx_ring->desc)
3804 return;
3805
3806 dma_free_coherent(rx_ring->dev, rx_ring->size,
3807 rx_ring->desc, rx_ring->dma);
3808
3809 rx_ring->desc = NULL;
3810}
3811
3812/**
3813 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3814 * @adapter: board private structure
3815 *
3816 * Free all receive software resources
3817 **/
3818static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3819{
3820 int i;
3821
3822 for (i = 0; i < adapter->num_rx_queues; i++)
3823 if (adapter->rx_ring[i])
3824 igb_free_rx_resources(adapter->rx_ring[i]);
3825}
3826
3827/**
3828 * igb_clean_rx_ring - Free Rx Buffers per Queue
3829 * @rx_ring: ring to free buffers from
3830 **/
3831static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3832{
3833 unsigned long size;
3834 u16 i;
3835
3836 if (rx_ring->skb)
3837 dev_kfree_skb(rx_ring->skb);
3838 rx_ring->skb = NULL;
3839
3840 if (!rx_ring->rx_buffer_info)
3841 return;
3842
3843 /* Free all the Rx ring sk_buffs */
3844 for (i = 0; i < rx_ring->count; i++) {
3845 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3846
3847 if (!buffer_info->page)
3848 continue;
3849
3850 dma_unmap_page(rx_ring->dev,
3851 buffer_info->dma,
3852 PAGE_SIZE,
3853 DMA_FROM_DEVICE);
3854 __free_page(buffer_info->page);
3855
3856 buffer_info->page = NULL;
3857 }
3858
3859 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3860 memset(rx_ring->rx_buffer_info, 0, size);
3861
3862 /* Zero out the descriptor ring */
3863 memset(rx_ring->desc, 0, rx_ring->size);
3864
3865 rx_ring->next_to_alloc = 0;
3866 rx_ring->next_to_clean = 0;
3867 rx_ring->next_to_use = 0;
3868}
3869
3870/**
3871 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3872 * @adapter: board private structure
3873 **/
3874static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3875{
3876 int i;
3877
3878 for (i = 0; i < adapter->num_rx_queues; i++)
3879 if (adapter->rx_ring[i])
3880 igb_clean_rx_ring(adapter->rx_ring[i]);
3881}
3882
3883/**
3884 * igb_set_mac - Change the Ethernet Address of the NIC
3885 * @netdev: network interface device structure
3886 * @p: pointer to an address structure
3887 *
3888 * Returns 0 on success, negative on failure
3889 **/
3890static int igb_set_mac(struct net_device *netdev, void *p)
3891{
3892 struct igb_adapter *adapter = netdev_priv(netdev);
3893 struct e1000_hw *hw = &adapter->hw;
3894 struct sockaddr *addr = p;
3895
3896 if (!is_valid_ether_addr(addr->sa_data))
3897 return -EADDRNOTAVAIL;
3898
3899 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3900 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3901
3902 /* set the correct pool for the new PF MAC address in entry 0 */
3903 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3904 adapter->vfs_allocated_count);
3905
3906 return 0;
3907}
3908
3909/**
3910 * igb_write_mc_addr_list - write multicast addresses to MTA
3911 * @netdev: network interface device structure
3912 *
3913 * Writes multicast address list to the MTA hash table.
3914 * Returns: -ENOMEM on failure
3915 * 0 on no addresses written
3916 * X on writing X addresses to MTA
3917 **/
3918static int igb_write_mc_addr_list(struct net_device *netdev)
3919{
3920 struct igb_adapter *adapter = netdev_priv(netdev);
3921 struct e1000_hw *hw = &adapter->hw;
3922 struct netdev_hw_addr *ha;
3923 u8 *mta_list;
3924 int i;
3925
3926 if (netdev_mc_empty(netdev)) {
3927 /* nothing to program, so clear mc list */
3928 igb_update_mc_addr_list(hw, NULL, 0);
3929 igb_restore_vf_multicasts(adapter);
3930 return 0;
3931 }
3932
3933 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3934 if (!mta_list)
3935 return -ENOMEM;
3936
3937 /* The shared function expects a packed array of only addresses. */
3938 i = 0;
3939 netdev_for_each_mc_addr(ha, netdev)
3940 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3941
3942 igb_update_mc_addr_list(hw, mta_list, i);
3943 kfree(mta_list);
3944
3945 return netdev_mc_count(netdev);
3946}
3947
3948/**
3949 * igb_write_uc_addr_list - write unicast addresses to RAR table
3950 * @netdev: network interface device structure
3951 *
3952 * Writes unicast address list to the RAR table.
3953 * Returns: -ENOMEM on failure/insufficient address space
3954 * 0 on no addresses written
3955 * X on writing X addresses to the RAR table
3956 **/
3957static int igb_write_uc_addr_list(struct net_device *netdev)
3958{
3959 struct igb_adapter *adapter = netdev_priv(netdev);
3960 struct e1000_hw *hw = &adapter->hw;
3961 unsigned int vfn = adapter->vfs_allocated_count;
3962 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3963 int count = 0;
3964
3965 /* return ENOMEM indicating insufficient memory for addresses */
3966 if (netdev_uc_count(netdev) > rar_entries)
3967 return -ENOMEM;
3968
3969 if (!netdev_uc_empty(netdev) && rar_entries) {
3970 struct netdev_hw_addr *ha;
3971
3972 netdev_for_each_uc_addr(ha, netdev) {
3973 if (!rar_entries)
3974 break;
3975 igb_rar_set_qsel(adapter, ha->addr,
3976 rar_entries--,
3977 vfn);
3978 count++;
3979 }
3980 }
3981 /* write the addresses in reverse order to avoid write combining */
3982 for (; rar_entries > 0 ; rar_entries--) {
3983 wr32(E1000_RAH(rar_entries), 0);
3984 wr32(E1000_RAL(rar_entries), 0);
3985 }
3986 wrfl();
3987
3988 return count;
3989}
3990
3991/**
3992 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3993 * @netdev: network interface device structure
3994 *
3995 * The set_rx_mode entry point is called whenever the unicast or multicast
3996 * address lists or the network interface flags are updated. This routine is
3997 * responsible for configuring the hardware for proper unicast, multicast,
3998 * promiscuous mode, and all-multi behavior.
3999 **/
4000static void igb_set_rx_mode(struct net_device *netdev)
4001{
4002 struct igb_adapter *adapter = netdev_priv(netdev);
4003 struct e1000_hw *hw = &adapter->hw;
4004 unsigned int vfn = adapter->vfs_allocated_count;
4005 u32 rctl, vmolr = 0;
4006 int count;
4007
4008 /* Check for Promiscuous and All Multicast modes */
4009 rctl = rd32(E1000_RCTL);
4010
4011 /* clear the effected bits */
4012 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4013
4014 if (netdev->flags & IFF_PROMISC) {
4015 /* retain VLAN HW filtering if in VT mode */
4016 if (adapter->vfs_allocated_count)
4017 rctl |= E1000_RCTL_VFE;
4018 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4019 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4020 } else {
4021 if (netdev->flags & IFF_ALLMULTI) {
4022 rctl |= E1000_RCTL_MPE;
4023 vmolr |= E1000_VMOLR_MPME;
4024 } else {
4025 /* Write addresses to the MTA, if the attempt fails
4026 * then we should just turn on promiscuous mode so
4027 * that we can at least receive multicast traffic
4028 */
4029 count = igb_write_mc_addr_list(netdev);
4030 if (count < 0) {
4031 rctl |= E1000_RCTL_MPE;
4032 vmolr |= E1000_VMOLR_MPME;
4033 } else if (count) {
4034 vmolr |= E1000_VMOLR_ROMPE;
4035 }
4036 }
4037 /* Write addresses to available RAR registers, if there is not
4038 * sufficient space to store all the addresses then enable
4039 * unicast promiscuous mode
4040 */
4041 count = igb_write_uc_addr_list(netdev);
4042 if (count < 0) {
4043 rctl |= E1000_RCTL_UPE;
4044 vmolr |= E1000_VMOLR_ROPE;
4045 }
4046 rctl |= E1000_RCTL_VFE;
4047 }
4048 wr32(E1000_RCTL, rctl);
4049
4050 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4051 * the VMOLR to enable the appropriate modes. Without this workaround
4052 * we will have issues with VLAN tag stripping not being done for frames
4053 * that are only arriving because we are the default pool
4054 */
4055 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4056 return;
4057
4058 vmolr |= rd32(E1000_VMOLR(vfn)) &
4059 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4060 wr32(E1000_VMOLR(vfn), vmolr);
4061 igb_restore_vf_multicasts(adapter);
4062}
4063
4064static void igb_check_wvbr(struct igb_adapter *adapter)
4065{
4066 struct e1000_hw *hw = &adapter->hw;
4067 u32 wvbr = 0;
4068
4069 switch (hw->mac.type) {
4070 case e1000_82576:
4071 case e1000_i350:
4072 wvbr = rd32(E1000_WVBR);
4073 if (!wvbr)
4074 return;
4075 break;
4076 default:
4077 break;
4078 }
4079
4080 adapter->wvbr |= wvbr;
4081}
4082
4083#define IGB_STAGGERED_QUEUE_OFFSET 8
4084
4085static void igb_spoof_check(struct igb_adapter *adapter)
4086{
4087 int j;
4088
4089 if (!adapter->wvbr)
4090 return;
4091
4092 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4093 if (adapter->wvbr & (1 << j) ||
4094 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4095 dev_warn(&adapter->pdev->dev,
4096 "Spoof event(s) detected on VF %d\n", j);
4097 adapter->wvbr &=
4098 ~((1 << j) |
4099 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4100 }
4101 }
4102}
4103
4104/* Need to wait a few seconds after link up to get diagnostic information from
4105 * the phy
4106 */
4107static void igb_update_phy_info(unsigned long data)
4108{
4109 struct igb_adapter *adapter = (struct igb_adapter *) data;
4110 igb_get_phy_info(&adapter->hw);
4111}
4112
4113/**
4114 * igb_has_link - check shared code for link and determine up/down
4115 * @adapter: pointer to driver private info
4116 **/
4117bool igb_has_link(struct igb_adapter *adapter)
4118{
4119 struct e1000_hw *hw = &adapter->hw;
4120 bool link_active = false;
4121
4122 /* get_link_status is set on LSC (link status) interrupt or
4123 * rx sequence error interrupt. get_link_status will stay
4124 * false until the e1000_check_for_link establishes link
4125 * for copper adapters ONLY
4126 */
4127 switch (hw->phy.media_type) {
4128 case e1000_media_type_copper:
4129 if (!hw->mac.get_link_status)
4130 return true;
4131 case e1000_media_type_internal_serdes:
4132 hw->mac.ops.check_for_link(hw);
4133 link_active = !hw->mac.get_link_status;
4134 break;
4135 default:
4136 case e1000_media_type_unknown:
4137 break;
4138 }
4139
4140 if (((hw->mac.type == e1000_i210) ||
4141 (hw->mac.type == e1000_i211)) &&
4142 (hw->phy.id == I210_I_PHY_ID)) {
4143 if (!netif_carrier_ok(adapter->netdev)) {
4144 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4145 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4146 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4147 adapter->link_check_timeout = jiffies;
4148 }
4149 }
4150
4151 return link_active;
4152}
4153
4154static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4155{
4156 bool ret = false;
4157 u32 ctrl_ext, thstat;
4158
4159 /* check for thermal sensor event on i350 copper only */
4160 if (hw->mac.type == e1000_i350) {
4161 thstat = rd32(E1000_THSTAT);
4162 ctrl_ext = rd32(E1000_CTRL_EXT);
4163
4164 if ((hw->phy.media_type == e1000_media_type_copper) &&
4165 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4166 ret = !!(thstat & event);
4167 }
4168
4169 return ret;
4170}
4171
4172/**
4173 * igb_check_lvmmc - check for malformed packets received
4174 * and indicated in LVMMC register
4175 * @adapter: pointer to adapter
4176 **/
4177static void igb_check_lvmmc(struct igb_adapter *adapter)
4178{
4179 struct e1000_hw *hw = &adapter->hw;
4180 u32 lvmmc;
4181
4182 lvmmc = rd32(E1000_LVMMC);
4183 if (lvmmc) {
4184 if (unlikely(net_ratelimit())) {
4185 netdev_warn(adapter->netdev,
4186 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4187 lvmmc);
4188 }
4189 }
4190}
4191
4192/**
4193 * igb_watchdog - Timer Call-back
4194 * @data: pointer to adapter cast into an unsigned long
4195 **/
4196static void igb_watchdog(unsigned long data)
4197{
4198 struct igb_adapter *adapter = (struct igb_adapter *)data;
4199 /* Do the rest outside of interrupt context */
4200 schedule_work(&adapter->watchdog_task);
4201}
4202
4203static void igb_watchdog_task(struct work_struct *work)
4204{
4205 struct igb_adapter *adapter = container_of(work,
4206 struct igb_adapter,
4207 watchdog_task);
4208 struct e1000_hw *hw = &adapter->hw;
4209 struct e1000_phy_info *phy = &hw->phy;
4210 struct net_device *netdev = adapter->netdev;
4211 u32 link;
4212 int i;
4213 u32 connsw;
4214
4215 link = igb_has_link(adapter);
4216
4217 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4218 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4219 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4220 else
4221 link = false;
4222 }
4223
4224 /* Force link down if we have fiber to swap to */
4225 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4226 if (hw->phy.media_type == e1000_media_type_copper) {
4227 connsw = rd32(E1000_CONNSW);
4228 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4229 link = 0;
4230 }
4231 }
4232 if (link) {
4233 /* Perform a reset if the media type changed. */
4234 if (hw->dev_spec._82575.media_changed) {
4235 hw->dev_spec._82575.media_changed = false;
4236 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4237 igb_reset(adapter);
4238 }
4239 /* Cancel scheduled suspend requests. */
4240 pm_runtime_resume(netdev->dev.parent);
4241
4242 if (!netif_carrier_ok(netdev)) {
4243 u32 ctrl;
4244
4245 hw->mac.ops.get_speed_and_duplex(hw,
4246 &adapter->link_speed,
4247 &adapter->link_duplex);
4248
4249 ctrl = rd32(E1000_CTRL);
4250 /* Links status message must follow this format */
4251 netdev_info(netdev,
4252 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4253 netdev->name,
4254 adapter->link_speed,
4255 adapter->link_duplex == FULL_DUPLEX ?
4256 "Full" : "Half",
4257 (ctrl & E1000_CTRL_TFCE) &&
4258 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4259 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4260 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4261
4262 /* disable EEE if enabled */
4263 if ((adapter->flags & IGB_FLAG_EEE) &&
4264 (adapter->link_duplex == HALF_DUPLEX)) {
4265 dev_info(&adapter->pdev->dev,
4266 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4267 adapter->hw.dev_spec._82575.eee_disable = true;
4268 adapter->flags &= ~IGB_FLAG_EEE;
4269 }
4270
4271 /* check if SmartSpeed worked */
4272 igb_check_downshift(hw);
4273 if (phy->speed_downgraded)
4274 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4275
4276 /* check for thermal sensor event */
4277 if (igb_thermal_sensor_event(hw,
4278 E1000_THSTAT_LINK_THROTTLE))
4279 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4280
4281 /* adjust timeout factor according to speed/duplex */
4282 adapter->tx_timeout_factor = 1;
4283 switch (adapter->link_speed) {
4284 case SPEED_10:
4285 adapter->tx_timeout_factor = 14;
4286 break;
4287 case SPEED_100:
4288 /* maybe add some timeout factor ? */
4289 break;
4290 }
4291
4292 netif_carrier_on(netdev);
4293
4294 igb_ping_all_vfs(adapter);
4295 igb_check_vf_rate_limit(adapter);
4296
4297 /* link state has changed, schedule phy info update */
4298 if (!test_bit(__IGB_DOWN, &adapter->state))
4299 mod_timer(&adapter->phy_info_timer,
4300 round_jiffies(jiffies + 2 * HZ));
4301 }
4302 } else {
4303 if (netif_carrier_ok(netdev)) {
4304 adapter->link_speed = 0;
4305 adapter->link_duplex = 0;
4306
4307 /* check for thermal sensor event */
4308 if (igb_thermal_sensor_event(hw,
4309 E1000_THSTAT_PWR_DOWN)) {
4310 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4311 }
4312
4313 /* Links status message must follow this format */
4314 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4315 netdev->name);
4316 netif_carrier_off(netdev);
4317
4318 igb_ping_all_vfs(adapter);
4319
4320 /* link state has changed, schedule phy info update */
4321 if (!test_bit(__IGB_DOWN, &adapter->state))
4322 mod_timer(&adapter->phy_info_timer,
4323 round_jiffies(jiffies + 2 * HZ));
4324
4325 /* link is down, time to check for alternate media */
4326 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4327 igb_check_swap_media(adapter);
4328 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4329 schedule_work(&adapter->reset_task);
4330 /* return immediately */
4331 return;
4332 }
4333 }
4334 pm_schedule_suspend(netdev->dev.parent,
4335 MSEC_PER_SEC * 5);
4336
4337 /* also check for alternate media here */
4338 } else if (!netif_carrier_ok(netdev) &&
4339 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4340 igb_check_swap_media(adapter);
4341 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4342 schedule_work(&adapter->reset_task);
4343 /* return immediately */
4344 return;
4345 }
4346 }
4347 }
4348
4349 spin_lock(&adapter->stats64_lock);
4350 igb_update_stats(adapter, &adapter->stats64);
4351 spin_unlock(&adapter->stats64_lock);
4352
4353 for (i = 0; i < adapter->num_tx_queues; i++) {
4354 struct igb_ring *tx_ring = adapter->tx_ring[i];
4355 if (!netif_carrier_ok(netdev)) {
4356 /* We've lost link, so the controller stops DMA,
4357 * but we've got queued Tx work that's never going
4358 * to get done, so reset controller to flush Tx.
4359 * (Do the reset outside of interrupt context).
4360 */
4361 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4362 adapter->tx_timeout_count++;
4363 schedule_work(&adapter->reset_task);
4364 /* return immediately since reset is imminent */
4365 return;
4366 }
4367 }
4368
4369 /* Force detection of hung controller every watchdog period */
4370 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4371 }
4372
4373 /* Cause software interrupt to ensure Rx ring is cleaned */
4374 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4375 u32 eics = 0;
4376
4377 for (i = 0; i < adapter->num_q_vectors; i++)
4378 eics |= adapter->q_vector[i]->eims_value;
4379 wr32(E1000_EICS, eics);
4380 } else {
4381 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4382 }
4383
4384 igb_spoof_check(adapter);
4385 igb_ptp_rx_hang(adapter);
4386
4387 /* Check LVMMC register on i350/i354 only */
4388 if ((adapter->hw.mac.type == e1000_i350) ||
4389 (adapter->hw.mac.type == e1000_i354))
4390 igb_check_lvmmc(adapter);
4391
4392 /* Reset the timer */
4393 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4394 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4395 mod_timer(&adapter->watchdog_timer,
4396 round_jiffies(jiffies + HZ));
4397 else
4398 mod_timer(&adapter->watchdog_timer,
4399 round_jiffies(jiffies + 2 * HZ));
4400 }
4401}
4402
4403enum latency_range {
4404 lowest_latency = 0,
4405 low_latency = 1,
4406 bulk_latency = 2,
4407 latency_invalid = 255
4408};
4409
4410/**
4411 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4412 * @q_vector: pointer to q_vector
4413 *
4414 * Stores a new ITR value based on strictly on packet size. This
4415 * algorithm is less sophisticated than that used in igb_update_itr,
4416 * due to the difficulty of synchronizing statistics across multiple
4417 * receive rings. The divisors and thresholds used by this function
4418 * were determined based on theoretical maximum wire speed and testing
4419 * data, in order to minimize response time while increasing bulk
4420 * throughput.
4421 * This functionality is controlled by ethtool's coalescing settings.
4422 * NOTE: This function is called only when operating in a multiqueue
4423 * receive environment.
4424 **/
4425static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4426{
4427 int new_val = q_vector->itr_val;
4428 int avg_wire_size = 0;
4429 struct igb_adapter *adapter = q_vector->adapter;
4430 unsigned int packets;
4431
4432 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4433 * ints/sec - ITR timer value of 120 ticks.
4434 */
4435 if (adapter->link_speed != SPEED_1000) {
4436 new_val = IGB_4K_ITR;
4437 goto set_itr_val;
4438 }
4439
4440 packets = q_vector->rx.total_packets;
4441 if (packets)
4442 avg_wire_size = q_vector->rx.total_bytes / packets;
4443
4444 packets = q_vector->tx.total_packets;
4445 if (packets)
4446 avg_wire_size = max_t(u32, avg_wire_size,
4447 q_vector->tx.total_bytes / packets);
4448
4449 /* if avg_wire_size isn't set no work was done */
4450 if (!avg_wire_size)
4451 goto clear_counts;
4452
4453 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4454 avg_wire_size += 24;
4455
4456 /* Don't starve jumbo frames */
4457 avg_wire_size = min(avg_wire_size, 3000);
4458
4459 /* Give a little boost to mid-size frames */
4460 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4461 new_val = avg_wire_size / 3;
4462 else
4463 new_val = avg_wire_size / 2;
4464
4465 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4466 if (new_val < IGB_20K_ITR &&
4467 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4468 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4469 new_val = IGB_20K_ITR;
4470
4471set_itr_val:
4472 if (new_val != q_vector->itr_val) {
4473 q_vector->itr_val = new_val;
4474 q_vector->set_itr = 1;
4475 }
4476clear_counts:
4477 q_vector->rx.total_bytes = 0;
4478 q_vector->rx.total_packets = 0;
4479 q_vector->tx.total_bytes = 0;
4480 q_vector->tx.total_packets = 0;
4481}
4482
4483/**
4484 * igb_update_itr - update the dynamic ITR value based on statistics
4485 * @q_vector: pointer to q_vector
4486 * @ring_container: ring info to update the itr for
4487 *
4488 * Stores a new ITR value based on packets and byte
4489 * counts during the last interrupt. The advantage of per interrupt
4490 * computation is faster updates and more accurate ITR for the current
4491 * traffic pattern. Constants in this function were computed
4492 * based on theoretical maximum wire speed and thresholds were set based
4493 * on testing data as well as attempting to minimize response time
4494 * while increasing bulk throughput.
4495 * This functionality is controlled by ethtool's coalescing settings.
4496 * NOTE: These calculations are only valid when operating in a single-
4497 * queue environment.
4498 **/
4499static void igb_update_itr(struct igb_q_vector *q_vector,
4500 struct igb_ring_container *ring_container)
4501{
4502 unsigned int packets = ring_container->total_packets;
4503 unsigned int bytes = ring_container->total_bytes;
4504 u8 itrval = ring_container->itr;
4505
4506 /* no packets, exit with status unchanged */
4507 if (packets == 0)
4508 return;
4509
4510 switch (itrval) {
4511 case lowest_latency:
4512 /* handle TSO and jumbo frames */
4513 if (bytes/packets > 8000)
4514 itrval = bulk_latency;
4515 else if ((packets < 5) && (bytes > 512))
4516 itrval = low_latency;
4517 break;
4518 case low_latency: /* 50 usec aka 20000 ints/s */
4519 if (bytes > 10000) {
4520 /* this if handles the TSO accounting */
4521 if (bytes/packets > 8000)
4522 itrval = bulk_latency;
4523 else if ((packets < 10) || ((bytes/packets) > 1200))
4524 itrval = bulk_latency;
4525 else if ((packets > 35))
4526 itrval = lowest_latency;
4527 } else if (bytes/packets > 2000) {
4528 itrval = bulk_latency;
4529 } else if (packets <= 2 && bytes < 512) {
4530 itrval = lowest_latency;
4531 }
4532 break;
4533 case bulk_latency: /* 250 usec aka 4000 ints/s */
4534 if (bytes > 25000) {
4535 if (packets > 35)
4536 itrval = low_latency;
4537 } else if (bytes < 1500) {
4538 itrval = low_latency;
4539 }
4540 break;
4541 }
4542
4543 /* clear work counters since we have the values we need */
4544 ring_container->total_bytes = 0;
4545 ring_container->total_packets = 0;
4546
4547 /* write updated itr to ring container */
4548 ring_container->itr = itrval;
4549}
4550
4551static void igb_set_itr(struct igb_q_vector *q_vector)
4552{
4553 struct igb_adapter *adapter = q_vector->adapter;
4554 u32 new_itr = q_vector->itr_val;
4555 u8 current_itr = 0;
4556
4557 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4558 if (adapter->link_speed != SPEED_1000) {
4559 current_itr = 0;
4560 new_itr = IGB_4K_ITR;
4561 goto set_itr_now;
4562 }
4563
4564 igb_update_itr(q_vector, &q_vector->tx);
4565 igb_update_itr(q_vector, &q_vector->rx);
4566
4567 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4568
4569 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4570 if (current_itr == lowest_latency &&
4571 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4572 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4573 current_itr = low_latency;
4574
4575 switch (current_itr) {
4576 /* counts and packets in update_itr are dependent on these numbers */
4577 case lowest_latency:
4578 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4579 break;
4580 case low_latency:
4581 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4582 break;
4583 case bulk_latency:
4584 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4585 break;
4586 default:
4587 break;
4588 }
4589
4590set_itr_now:
4591 if (new_itr != q_vector->itr_val) {
4592 /* this attempts to bias the interrupt rate towards Bulk
4593 * by adding intermediate steps when interrupt rate is
4594 * increasing
4595 */
4596 new_itr = new_itr > q_vector->itr_val ?
4597 max((new_itr * q_vector->itr_val) /
4598 (new_itr + (q_vector->itr_val >> 2)),
4599 new_itr) : new_itr;
4600 /* Don't write the value here; it resets the adapter's
4601 * internal timer, and causes us to delay far longer than
4602 * we should between interrupts. Instead, we write the ITR
4603 * value at the beginning of the next interrupt so the timing
4604 * ends up being correct.
4605 */
4606 q_vector->itr_val = new_itr;
4607 q_vector->set_itr = 1;
4608 }
4609}
4610
4611static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4612 u32 type_tucmd, u32 mss_l4len_idx)
4613{
4614 struct e1000_adv_tx_context_desc *context_desc;
4615 u16 i = tx_ring->next_to_use;
4616
4617 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4618
4619 i++;
4620 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4621
4622 /* set bits to identify this as an advanced context descriptor */
4623 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4624
4625 /* For 82575, context index must be unique per ring. */
4626 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4627 mss_l4len_idx |= tx_ring->reg_idx << 4;
4628
4629 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4630 context_desc->seqnum_seed = 0;
4631 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4632 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4633}
4634
4635static int igb_tso(struct igb_ring *tx_ring,
4636 struct igb_tx_buffer *first,
4637 u8 *hdr_len)
4638{
4639 struct sk_buff *skb = first->skb;
4640 u32 vlan_macip_lens, type_tucmd;
4641 u32 mss_l4len_idx, l4len;
4642 int err;
4643
4644 if (skb->ip_summed != CHECKSUM_PARTIAL)
4645 return 0;
4646
4647 if (!skb_is_gso(skb))
4648 return 0;
4649
4650 err = skb_cow_head(skb, 0);
4651 if (err < 0)
4652 return err;
4653
4654 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4655 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4656
4657 if (first->protocol == htons(ETH_P_IP)) {
4658 struct iphdr *iph = ip_hdr(skb);
4659 iph->tot_len = 0;
4660 iph->check = 0;
4661 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4662 iph->daddr, 0,
4663 IPPROTO_TCP,
4664 0);
4665 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4666 first->tx_flags |= IGB_TX_FLAGS_TSO |
4667 IGB_TX_FLAGS_CSUM |
4668 IGB_TX_FLAGS_IPV4;
4669 } else if (skb_is_gso_v6(skb)) {
4670 ipv6_hdr(skb)->payload_len = 0;
4671 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4672 &ipv6_hdr(skb)->daddr,
4673 0, IPPROTO_TCP, 0);
4674 first->tx_flags |= IGB_TX_FLAGS_TSO |
4675 IGB_TX_FLAGS_CSUM;
4676 }
4677
4678 /* compute header lengths */
4679 l4len = tcp_hdrlen(skb);
4680 *hdr_len = skb_transport_offset(skb) + l4len;
4681
4682 /* update gso size and bytecount with header size */
4683 first->gso_segs = skb_shinfo(skb)->gso_segs;
4684 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4685
4686 /* MSS L4LEN IDX */
4687 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4688 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4689
4690 /* VLAN MACLEN IPLEN */
4691 vlan_macip_lens = skb_network_header_len(skb);
4692 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4693 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4694
4695 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4696
4697 return 1;
4698}
4699
4700static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4701{
4702 struct sk_buff *skb = first->skb;
4703 u32 vlan_macip_lens = 0;
4704 u32 mss_l4len_idx = 0;
4705 u32 type_tucmd = 0;
4706
4707 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4708 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4709 return;
4710 } else {
4711 u8 l4_hdr = 0;
4712
4713 switch (first->protocol) {
4714 case htons(ETH_P_IP):
4715 vlan_macip_lens |= skb_network_header_len(skb);
4716 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4717 l4_hdr = ip_hdr(skb)->protocol;
4718 break;
4719 case htons(ETH_P_IPV6):
4720 vlan_macip_lens |= skb_network_header_len(skb);
4721 l4_hdr = ipv6_hdr(skb)->nexthdr;
4722 break;
4723 default:
4724 if (unlikely(net_ratelimit())) {
4725 dev_warn(tx_ring->dev,
4726 "partial checksum but proto=%x!\n",
4727 first->protocol);
4728 }
4729 break;
4730 }
4731
4732 switch (l4_hdr) {
4733 case IPPROTO_TCP:
4734 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4735 mss_l4len_idx = tcp_hdrlen(skb) <<
4736 E1000_ADVTXD_L4LEN_SHIFT;
4737 break;
4738 case IPPROTO_SCTP:
4739 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4740 mss_l4len_idx = sizeof(struct sctphdr) <<
4741 E1000_ADVTXD_L4LEN_SHIFT;
4742 break;
4743 case IPPROTO_UDP:
4744 mss_l4len_idx = sizeof(struct udphdr) <<
4745 E1000_ADVTXD_L4LEN_SHIFT;
4746 break;
4747 default:
4748 if (unlikely(net_ratelimit())) {
4749 dev_warn(tx_ring->dev,
4750 "partial checksum but l4 proto=%x!\n",
4751 l4_hdr);
4752 }
4753 break;
4754 }
4755
4756 /* update TX checksum flag */
4757 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4758 }
4759
4760 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4761 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4762
4763 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4764}
4765
4766#define IGB_SET_FLAG(_input, _flag, _result) \
4767 ((_flag <= _result) ? \
4768 ((u32)(_input & _flag) * (_result / _flag)) : \
4769 ((u32)(_input & _flag) / (_flag / _result)))
4770
4771static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4772{
4773 /* set type for advanced descriptor with frame checksum insertion */
4774 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4775 E1000_ADVTXD_DCMD_DEXT |
4776 E1000_ADVTXD_DCMD_IFCS;
4777
4778 /* set HW vlan bit if vlan is present */
4779 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4780 (E1000_ADVTXD_DCMD_VLE));
4781
4782 /* set segmentation bits for TSO */
4783 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4784 (E1000_ADVTXD_DCMD_TSE));
4785
4786 /* set timestamp bit if present */
4787 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4788 (E1000_ADVTXD_MAC_TSTAMP));
4789
4790 /* insert frame checksum */
4791 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4792
4793 return cmd_type;
4794}
4795
4796static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4797 union e1000_adv_tx_desc *tx_desc,
4798 u32 tx_flags, unsigned int paylen)
4799{
4800 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4801
4802 /* 82575 requires a unique index per ring */
4803 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4804 olinfo_status |= tx_ring->reg_idx << 4;
4805
4806 /* insert L4 checksum */
4807 olinfo_status |= IGB_SET_FLAG(tx_flags,
4808 IGB_TX_FLAGS_CSUM,
4809 (E1000_TXD_POPTS_TXSM << 8));
4810
4811 /* insert IPv4 checksum */
4812 olinfo_status |= IGB_SET_FLAG(tx_flags,
4813 IGB_TX_FLAGS_IPV4,
4814 (E1000_TXD_POPTS_IXSM << 8));
4815
4816 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4817}
4818
4819static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4820{
4821 struct net_device *netdev = tx_ring->netdev;
4822
4823 netif_stop_subqueue(netdev, tx_ring->queue_index);
4824
4825 /* Herbert's original patch had:
4826 * smp_mb__after_netif_stop_queue();
4827 * but since that doesn't exist yet, just open code it.
4828 */
4829 smp_mb();
4830
4831 /* We need to check again in a case another CPU has just
4832 * made room available.
4833 */
4834 if (igb_desc_unused(tx_ring) < size)
4835 return -EBUSY;
4836
4837 /* A reprieve! */
4838 netif_wake_subqueue(netdev, tx_ring->queue_index);
4839
4840 u64_stats_update_begin(&tx_ring->tx_syncp2);
4841 tx_ring->tx_stats.restart_queue2++;
4842 u64_stats_update_end(&tx_ring->tx_syncp2);
4843
4844 return 0;
4845}
4846
4847static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4848{
4849 if (igb_desc_unused(tx_ring) >= size)
4850 return 0;
4851 return __igb_maybe_stop_tx(tx_ring, size);
4852}
4853
4854static void igb_tx_map(struct igb_ring *tx_ring,
4855 struct igb_tx_buffer *first,
4856 const u8 hdr_len)
4857{
4858 struct sk_buff *skb = first->skb;
4859 struct igb_tx_buffer *tx_buffer;
4860 union e1000_adv_tx_desc *tx_desc;
4861 struct skb_frag_struct *frag;
4862 dma_addr_t dma;
4863 unsigned int data_len, size;
4864 u32 tx_flags = first->tx_flags;
4865 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4866 u16 i = tx_ring->next_to_use;
4867
4868 tx_desc = IGB_TX_DESC(tx_ring, i);
4869
4870 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4871
4872 size = skb_headlen(skb);
4873 data_len = skb->data_len;
4874
4875 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4876
4877 tx_buffer = first;
4878
4879 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4880 if (dma_mapping_error(tx_ring->dev, dma))
4881 goto dma_error;
4882
4883 /* record length, and DMA address */
4884 dma_unmap_len_set(tx_buffer, len, size);
4885 dma_unmap_addr_set(tx_buffer, dma, dma);
4886
4887 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4888
4889 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4890 tx_desc->read.cmd_type_len =
4891 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4892
4893 i++;
4894 tx_desc++;
4895 if (i == tx_ring->count) {
4896 tx_desc = IGB_TX_DESC(tx_ring, 0);
4897 i = 0;
4898 }
4899 tx_desc->read.olinfo_status = 0;
4900
4901 dma += IGB_MAX_DATA_PER_TXD;
4902 size -= IGB_MAX_DATA_PER_TXD;
4903
4904 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4905 }
4906
4907 if (likely(!data_len))
4908 break;
4909
4910 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4911
4912 i++;
4913 tx_desc++;
4914 if (i == tx_ring->count) {
4915 tx_desc = IGB_TX_DESC(tx_ring, 0);
4916 i = 0;
4917 }
4918 tx_desc->read.olinfo_status = 0;
4919
4920 size = skb_frag_size(frag);
4921 data_len -= size;
4922
4923 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4924 size, DMA_TO_DEVICE);
4925
4926 tx_buffer = &tx_ring->tx_buffer_info[i];
4927 }
4928
4929 /* write last descriptor with RS and EOP bits */
4930 cmd_type |= size | IGB_TXD_DCMD;
4931 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4932
4933 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4934
4935 /* set the timestamp */
4936 first->time_stamp = jiffies;
4937
4938 /* Force memory writes to complete before letting h/w know there
4939 * are new descriptors to fetch. (Only applicable for weak-ordered
4940 * memory model archs, such as IA-64).
4941 *
4942 * We also need this memory barrier to make certain all of the
4943 * status bits have been updated before next_to_watch is written.
4944 */
4945 wmb();
4946
4947 /* set next_to_watch value indicating a packet is present */
4948 first->next_to_watch = tx_desc;
4949
4950 i++;
4951 if (i == tx_ring->count)
4952 i = 0;
4953
4954 tx_ring->next_to_use = i;
4955
4956 /* Make sure there is space in the ring for the next send. */
4957 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4958
4959 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4960 writel(i, tx_ring->tail);
4961
4962 /* we need this if more than one processor can write to our tail
4963 * at a time, it synchronizes IO on IA64/Altix systems
4964 */
4965 mmiowb();
4966 }
4967 return;
4968
4969dma_error:
4970 dev_err(tx_ring->dev, "TX DMA map failed\n");
4971
4972 /* clear dma mappings for failed tx_buffer_info map */
4973 for (;;) {
4974 tx_buffer = &tx_ring->tx_buffer_info[i];
4975 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4976 if (tx_buffer == first)
4977 break;
4978 if (i == 0)
4979 i = tx_ring->count;
4980 i--;
4981 }
4982
4983 tx_ring->next_to_use = i;
4984}
4985
4986netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4987 struct igb_ring *tx_ring)
4988{
4989 struct igb_tx_buffer *first;
4990 int tso;
4991 u32 tx_flags = 0;
4992 unsigned short f;
4993 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4994 __be16 protocol = vlan_get_protocol(skb);
4995 u8 hdr_len = 0;
4996
4997 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4998 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4999 * + 2 desc gap to keep tail from touching head,
5000 * + 1 desc for context descriptor,
5001 * otherwise try next time
5002 */
5003 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5004 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5005
5006 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5007 /* this is a hard error */
5008 return NETDEV_TX_BUSY;
5009 }
5010
5011 /* record the location of the first descriptor for this packet */
5012 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5013 first->skb = skb;
5014 first->bytecount = skb->len;
5015 first->gso_segs = 1;
5016
5017 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5018 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5019
5020 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5021 &adapter->state)) {
5022 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5023 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5024
5025 adapter->ptp_tx_skb = skb_get(skb);
5026 adapter->ptp_tx_start = jiffies;
5027 if (adapter->hw.mac.type == e1000_82576)
5028 schedule_work(&adapter->ptp_tx_work);
5029 }
5030 }
5031
5032 skb_tx_timestamp(skb);
5033
5034 if (skb_vlan_tag_present(skb)) {
5035 tx_flags |= IGB_TX_FLAGS_VLAN;
5036 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5037 }
5038
5039 /* record initial flags and protocol */
5040 first->tx_flags = tx_flags;
5041 first->protocol = protocol;
5042
5043 tso = igb_tso(tx_ring, first, &hdr_len);
5044 if (tso < 0)
5045 goto out_drop;
5046 else if (!tso)
5047 igb_tx_csum(tx_ring, first);
5048
5049 igb_tx_map(tx_ring, first, hdr_len);
5050
5051 return NETDEV_TX_OK;
5052
5053out_drop:
5054 igb_unmap_and_free_tx_resource(tx_ring, first);
5055
5056 return NETDEV_TX_OK;
5057}
5058
5059static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5060 struct sk_buff *skb)
5061{
5062 unsigned int r_idx = skb->queue_mapping;
5063
5064 if (r_idx >= adapter->num_tx_queues)
5065 r_idx = r_idx % adapter->num_tx_queues;
5066
5067 return adapter->tx_ring[r_idx];
5068}
5069
5070static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5071 struct net_device *netdev)
5072{
5073 struct igb_adapter *adapter = netdev_priv(netdev);
5074
5075 if (test_bit(__IGB_DOWN, &adapter->state)) {
5076 dev_kfree_skb_any(skb);
5077 return NETDEV_TX_OK;
5078 }
5079
5080 if (skb->len <= 0) {
5081 dev_kfree_skb_any(skb);
5082 return NETDEV_TX_OK;
5083 }
5084
5085 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5086 * in order to meet this minimum size requirement.
5087 */
5088 if (skb_put_padto(skb, 17))
5089 return NETDEV_TX_OK;
5090
5091 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5092}
5093
5094/**
5095 * igb_tx_timeout - Respond to a Tx Hang
5096 * @netdev: network interface device structure
5097 **/
5098static void igb_tx_timeout(struct net_device *netdev)
5099{
5100 struct igb_adapter *adapter = netdev_priv(netdev);
5101 struct e1000_hw *hw = &adapter->hw;
5102
5103 /* Do the reset outside of interrupt context */
5104 adapter->tx_timeout_count++;
5105
5106 if (hw->mac.type >= e1000_82580)
5107 hw->dev_spec._82575.global_device_reset = true;
5108
5109 schedule_work(&adapter->reset_task);
5110 wr32(E1000_EICS,
5111 (adapter->eims_enable_mask & ~adapter->eims_other));
5112}
5113
5114static void igb_reset_task(struct work_struct *work)
5115{
5116 struct igb_adapter *adapter;
5117 adapter = container_of(work, struct igb_adapter, reset_task);
5118
5119 igb_dump(adapter);
5120 netdev_err(adapter->netdev, "Reset adapter\n");
5121 igb_reinit_locked(adapter);
5122}
5123
5124/**
5125 * igb_get_stats64 - Get System Network Statistics
5126 * @netdev: network interface device structure
5127 * @stats: rtnl_link_stats64 pointer
5128 **/
5129static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5130 struct rtnl_link_stats64 *stats)
5131{
5132 struct igb_adapter *adapter = netdev_priv(netdev);
5133
5134 spin_lock(&adapter->stats64_lock);
5135 igb_update_stats(adapter, &adapter->stats64);
5136 memcpy(stats, &adapter->stats64, sizeof(*stats));
5137 spin_unlock(&adapter->stats64_lock);
5138
5139 return stats;
5140}
5141
5142/**
5143 * igb_change_mtu - Change the Maximum Transfer Unit
5144 * @netdev: network interface device structure
5145 * @new_mtu: new value for maximum frame size
5146 *
5147 * Returns 0 on success, negative on failure
5148 **/
5149static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5150{
5151 struct igb_adapter *adapter = netdev_priv(netdev);
5152 struct pci_dev *pdev = adapter->pdev;
5153 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5154
5155 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5156 dev_err(&pdev->dev, "Invalid MTU setting\n");
5157 return -EINVAL;
5158 }
5159
5160#define MAX_STD_JUMBO_FRAME_SIZE 9238
5161 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5162 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5163 return -EINVAL;
5164 }
5165
5166 /* adjust max frame to be at least the size of a standard frame */
5167 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5168 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5169
5170 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5171 usleep_range(1000, 2000);
5172
5173 /* igb_down has a dependency on max_frame_size */
5174 adapter->max_frame_size = max_frame;
5175
5176 if (netif_running(netdev))
5177 igb_down(adapter);
5178
5179 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5180 netdev->mtu, new_mtu);
5181 netdev->mtu = new_mtu;
5182
5183 if (netif_running(netdev))
5184 igb_up(adapter);
5185 else
5186 igb_reset(adapter);
5187
5188 clear_bit(__IGB_RESETTING, &adapter->state);
5189
5190 return 0;
5191}
5192
5193/**
5194 * igb_update_stats - Update the board statistics counters
5195 * @adapter: board private structure
5196 **/
5197void igb_update_stats(struct igb_adapter *adapter,
5198 struct rtnl_link_stats64 *net_stats)
5199{
5200 struct e1000_hw *hw = &adapter->hw;
5201 struct pci_dev *pdev = adapter->pdev;
5202 u32 reg, mpc;
5203 int i;
5204 u64 bytes, packets;
5205 unsigned int start;
5206 u64 _bytes, _packets;
5207
5208 /* Prevent stats update while adapter is being reset, or if the pci
5209 * connection is down.
5210 */
5211 if (adapter->link_speed == 0)
5212 return;
5213 if (pci_channel_offline(pdev))
5214 return;
5215
5216 bytes = 0;
5217 packets = 0;
5218
5219 rcu_read_lock();
5220 for (i = 0; i < adapter->num_rx_queues; i++) {
5221 struct igb_ring *ring = adapter->rx_ring[i];
5222 u32 rqdpc = rd32(E1000_RQDPC(i));
5223 if (hw->mac.type >= e1000_i210)
5224 wr32(E1000_RQDPC(i), 0);
5225
5226 if (rqdpc) {
5227 ring->rx_stats.drops += rqdpc;
5228 net_stats->rx_fifo_errors += rqdpc;
5229 }
5230
5231 do {
5232 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5233 _bytes = ring->rx_stats.bytes;
5234 _packets = ring->rx_stats.packets;
5235 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5236 bytes += _bytes;
5237 packets += _packets;
5238 }
5239
5240 net_stats->rx_bytes = bytes;
5241 net_stats->rx_packets = packets;
5242
5243 bytes = 0;
5244 packets = 0;
5245 for (i = 0; i < adapter->num_tx_queues; i++) {
5246 struct igb_ring *ring = adapter->tx_ring[i];
5247 do {
5248 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5249 _bytes = ring->tx_stats.bytes;
5250 _packets = ring->tx_stats.packets;
5251 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5252 bytes += _bytes;
5253 packets += _packets;
5254 }
5255 net_stats->tx_bytes = bytes;
5256 net_stats->tx_packets = packets;
5257 rcu_read_unlock();
5258
5259 /* read stats registers */
5260 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5261 adapter->stats.gprc += rd32(E1000_GPRC);
5262 adapter->stats.gorc += rd32(E1000_GORCL);
5263 rd32(E1000_GORCH); /* clear GORCL */
5264 adapter->stats.bprc += rd32(E1000_BPRC);
5265 adapter->stats.mprc += rd32(E1000_MPRC);
5266 adapter->stats.roc += rd32(E1000_ROC);
5267
5268 adapter->stats.prc64 += rd32(E1000_PRC64);
5269 adapter->stats.prc127 += rd32(E1000_PRC127);
5270 adapter->stats.prc255 += rd32(E1000_PRC255);
5271 adapter->stats.prc511 += rd32(E1000_PRC511);
5272 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5273 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5274 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5275 adapter->stats.sec += rd32(E1000_SEC);
5276
5277 mpc = rd32(E1000_MPC);
5278 adapter->stats.mpc += mpc;
5279 net_stats->rx_fifo_errors += mpc;
5280 adapter->stats.scc += rd32(E1000_SCC);
5281 adapter->stats.ecol += rd32(E1000_ECOL);
5282 adapter->stats.mcc += rd32(E1000_MCC);
5283 adapter->stats.latecol += rd32(E1000_LATECOL);
5284 adapter->stats.dc += rd32(E1000_DC);
5285 adapter->stats.rlec += rd32(E1000_RLEC);
5286 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5287 adapter->stats.xontxc += rd32(E1000_XONTXC);
5288 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5289 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5290 adapter->stats.fcruc += rd32(E1000_FCRUC);
5291 adapter->stats.gptc += rd32(E1000_GPTC);
5292 adapter->stats.gotc += rd32(E1000_GOTCL);
5293 rd32(E1000_GOTCH); /* clear GOTCL */
5294 adapter->stats.rnbc += rd32(E1000_RNBC);
5295 adapter->stats.ruc += rd32(E1000_RUC);
5296 adapter->stats.rfc += rd32(E1000_RFC);
5297 adapter->stats.rjc += rd32(E1000_RJC);
5298 adapter->stats.tor += rd32(E1000_TORH);
5299 adapter->stats.tot += rd32(E1000_TOTH);
5300 adapter->stats.tpr += rd32(E1000_TPR);
5301
5302 adapter->stats.ptc64 += rd32(E1000_PTC64);
5303 adapter->stats.ptc127 += rd32(E1000_PTC127);
5304 adapter->stats.ptc255 += rd32(E1000_PTC255);
5305 adapter->stats.ptc511 += rd32(E1000_PTC511);
5306 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5307 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5308
5309 adapter->stats.mptc += rd32(E1000_MPTC);
5310 adapter->stats.bptc += rd32(E1000_BPTC);
5311
5312 adapter->stats.tpt += rd32(E1000_TPT);
5313 adapter->stats.colc += rd32(E1000_COLC);
5314
5315 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5316 /* read internal phy specific stats */
5317 reg = rd32(E1000_CTRL_EXT);
5318 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5319 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5320
5321 /* this stat has invalid values on i210/i211 */
5322 if ((hw->mac.type != e1000_i210) &&
5323 (hw->mac.type != e1000_i211))
5324 adapter->stats.tncrs += rd32(E1000_TNCRS);
5325 }
5326
5327 adapter->stats.tsctc += rd32(E1000_TSCTC);
5328 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5329
5330 adapter->stats.iac += rd32(E1000_IAC);
5331 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5332 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5333 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5334 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5335 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5336 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5337 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5338 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5339
5340 /* Fill out the OS statistics structure */
5341 net_stats->multicast = adapter->stats.mprc;
5342 net_stats->collisions = adapter->stats.colc;
5343
5344 /* Rx Errors */
5345
5346 /* RLEC on some newer hardware can be incorrect so build
5347 * our own version based on RUC and ROC
5348 */
5349 net_stats->rx_errors = adapter->stats.rxerrc +
5350 adapter->stats.crcerrs + adapter->stats.algnerrc +
5351 adapter->stats.ruc + adapter->stats.roc +
5352 adapter->stats.cexterr;
5353 net_stats->rx_length_errors = adapter->stats.ruc +
5354 adapter->stats.roc;
5355 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5356 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5357 net_stats->rx_missed_errors = adapter->stats.mpc;
5358
5359 /* Tx Errors */
5360 net_stats->tx_errors = adapter->stats.ecol +
5361 adapter->stats.latecol;
5362 net_stats->tx_aborted_errors = adapter->stats.ecol;
5363 net_stats->tx_window_errors = adapter->stats.latecol;
5364 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5365
5366 /* Tx Dropped needs to be maintained elsewhere */
5367
5368 /* Management Stats */
5369 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5370 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5371 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5372
5373 /* OS2BMC Stats */
5374 reg = rd32(E1000_MANC);
5375 if (reg & E1000_MANC_EN_BMC2OS) {
5376 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5377 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5378 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5379 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5380 }
5381}
5382
5383static void igb_tsync_interrupt(struct igb_adapter *adapter)
5384{
5385 struct e1000_hw *hw = &adapter->hw;
5386 struct ptp_clock_event event;
5387 struct timespec ts;
5388 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5389
5390 if (tsicr & TSINTR_SYS_WRAP) {
5391 event.type = PTP_CLOCK_PPS;
5392 if (adapter->ptp_caps.pps)
5393 ptp_clock_event(adapter->ptp_clock, &event);
5394 else
5395 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5396 ack |= TSINTR_SYS_WRAP;
5397 }
5398
5399 if (tsicr & E1000_TSICR_TXTS) {
5400 /* retrieve hardware timestamp */
5401 schedule_work(&adapter->ptp_tx_work);
5402 ack |= E1000_TSICR_TXTS;
5403 }
5404
5405 if (tsicr & TSINTR_TT0) {
5406 spin_lock(&adapter->tmreg_lock);
5407 ts = timespec_add(adapter->perout[0].start,
5408 adapter->perout[0].period);
5409 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5410 wr32(E1000_TRGTTIMH0, ts.tv_sec);
5411 tsauxc = rd32(E1000_TSAUXC);
5412 tsauxc |= TSAUXC_EN_TT0;
5413 wr32(E1000_TSAUXC, tsauxc);
5414 adapter->perout[0].start = ts;
5415 spin_unlock(&adapter->tmreg_lock);
5416 ack |= TSINTR_TT0;
5417 }
5418
5419 if (tsicr & TSINTR_TT1) {
5420 spin_lock(&adapter->tmreg_lock);
5421 ts = timespec_add(adapter->perout[1].start,
5422 adapter->perout[1].period);
5423 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5424 wr32(E1000_TRGTTIMH1, ts.tv_sec);
5425 tsauxc = rd32(E1000_TSAUXC);
5426 tsauxc |= TSAUXC_EN_TT1;
5427 wr32(E1000_TSAUXC, tsauxc);
5428 adapter->perout[1].start = ts;
5429 spin_unlock(&adapter->tmreg_lock);
5430 ack |= TSINTR_TT1;
5431 }
5432
5433 if (tsicr & TSINTR_AUTT0) {
5434 nsec = rd32(E1000_AUXSTMPL0);
5435 sec = rd32(E1000_AUXSTMPH0);
5436 event.type = PTP_CLOCK_EXTTS;
5437 event.index = 0;
5438 event.timestamp = sec * 1000000000ULL + nsec;
5439 ptp_clock_event(adapter->ptp_clock, &event);
5440 ack |= TSINTR_AUTT0;
5441 }
5442
5443 if (tsicr & TSINTR_AUTT1) {
5444 nsec = rd32(E1000_AUXSTMPL1);
5445 sec = rd32(E1000_AUXSTMPH1);
5446 event.type = PTP_CLOCK_EXTTS;
5447 event.index = 1;
5448 event.timestamp = sec * 1000000000ULL + nsec;
5449 ptp_clock_event(adapter->ptp_clock, &event);
5450 ack |= TSINTR_AUTT1;
5451 }
5452
5453 /* acknowledge the interrupts */
5454 wr32(E1000_TSICR, ack);
5455}
5456
5457static irqreturn_t igb_msix_other(int irq, void *data)
5458{
5459 struct igb_adapter *adapter = data;
5460 struct e1000_hw *hw = &adapter->hw;
5461 u32 icr = rd32(E1000_ICR);
5462 /* reading ICR causes bit 31 of EICR to be cleared */
5463
5464 if (icr & E1000_ICR_DRSTA)
5465 schedule_work(&adapter->reset_task);
5466
5467 if (icr & E1000_ICR_DOUTSYNC) {
5468 /* HW is reporting DMA is out of sync */
5469 adapter->stats.doosync++;
5470 /* The DMA Out of Sync is also indication of a spoof event
5471 * in IOV mode. Check the Wrong VM Behavior register to
5472 * see if it is really a spoof event.
5473 */
5474 igb_check_wvbr(adapter);
5475 }
5476
5477 /* Check for a mailbox event */
5478 if (icr & E1000_ICR_VMMB)
5479 igb_msg_task(adapter);
5480
5481 if (icr & E1000_ICR_LSC) {
5482 hw->mac.get_link_status = 1;
5483 /* guard against interrupt when we're going down */
5484 if (!test_bit(__IGB_DOWN, &adapter->state))
5485 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5486 }
5487
5488 if (icr & E1000_ICR_TS)
5489 igb_tsync_interrupt(adapter);
5490
5491 wr32(E1000_EIMS, adapter->eims_other);
5492
5493 return IRQ_HANDLED;
5494}
5495
5496static void igb_write_itr(struct igb_q_vector *q_vector)
5497{
5498 struct igb_adapter *adapter = q_vector->adapter;
5499 u32 itr_val = q_vector->itr_val & 0x7FFC;
5500
5501 if (!q_vector->set_itr)
5502 return;
5503
5504 if (!itr_val)
5505 itr_val = 0x4;
5506
5507 if (adapter->hw.mac.type == e1000_82575)
5508 itr_val |= itr_val << 16;
5509 else
5510 itr_val |= E1000_EITR_CNT_IGNR;
5511
5512 writel(itr_val, q_vector->itr_register);
5513 q_vector->set_itr = 0;
5514}
5515
5516static irqreturn_t igb_msix_ring(int irq, void *data)
5517{
5518 struct igb_q_vector *q_vector = data;
5519
5520 /* Write the ITR value calculated from the previous interrupt. */
5521 igb_write_itr(q_vector);
5522
5523 napi_schedule(&q_vector->napi);
5524
5525 return IRQ_HANDLED;
5526}
5527
5528#ifdef CONFIG_IGB_DCA
5529static void igb_update_tx_dca(struct igb_adapter *adapter,
5530 struct igb_ring *tx_ring,
5531 int cpu)
5532{
5533 struct e1000_hw *hw = &adapter->hw;
5534 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5535
5536 if (hw->mac.type != e1000_82575)
5537 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5538
5539 /* We can enable relaxed ordering for reads, but not writes when
5540 * DCA is enabled. This is due to a known issue in some chipsets
5541 * which will cause the DCA tag to be cleared.
5542 */
5543 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5544 E1000_DCA_TXCTRL_DATA_RRO_EN |
5545 E1000_DCA_TXCTRL_DESC_DCA_EN;
5546
5547 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5548}
5549
5550static void igb_update_rx_dca(struct igb_adapter *adapter,
5551 struct igb_ring *rx_ring,
5552 int cpu)
5553{
5554 struct e1000_hw *hw = &adapter->hw;
5555 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5556
5557 if (hw->mac.type != e1000_82575)
5558 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5559
5560 /* We can enable relaxed ordering for reads, but not writes when
5561 * DCA is enabled. This is due to a known issue in some chipsets
5562 * which will cause the DCA tag to be cleared.
5563 */
5564 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5565 E1000_DCA_RXCTRL_DESC_DCA_EN;
5566
5567 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5568}
5569
5570static void igb_update_dca(struct igb_q_vector *q_vector)
5571{
5572 struct igb_adapter *adapter = q_vector->adapter;
5573 int cpu = get_cpu();
5574
5575 if (q_vector->cpu == cpu)
5576 goto out_no_update;
5577
5578 if (q_vector->tx.ring)
5579 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5580
5581 if (q_vector->rx.ring)
5582 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5583
5584 q_vector->cpu = cpu;
5585out_no_update:
5586 put_cpu();
5587}
5588
5589static void igb_setup_dca(struct igb_adapter *adapter)
5590{
5591 struct e1000_hw *hw = &adapter->hw;
5592 int i;
5593
5594 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5595 return;
5596
5597 /* Always use CB2 mode, difference is masked in the CB driver. */
5598 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5599
5600 for (i = 0; i < adapter->num_q_vectors; i++) {
5601 adapter->q_vector[i]->cpu = -1;
5602 igb_update_dca(adapter->q_vector[i]);
5603 }
5604}
5605
5606static int __igb_notify_dca(struct device *dev, void *data)
5607{
5608 struct net_device *netdev = dev_get_drvdata(dev);
5609 struct igb_adapter *adapter = netdev_priv(netdev);
5610 struct pci_dev *pdev = adapter->pdev;
5611 struct e1000_hw *hw = &adapter->hw;
5612 unsigned long event = *(unsigned long *)data;
5613
5614 switch (event) {
5615 case DCA_PROVIDER_ADD:
5616 /* if already enabled, don't do it again */
5617 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5618 break;
5619 if (dca_add_requester(dev) == 0) {
5620 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5621 dev_info(&pdev->dev, "DCA enabled\n");
5622 igb_setup_dca(adapter);
5623 break;
5624 }
5625 /* Fall Through since DCA is disabled. */
5626 case DCA_PROVIDER_REMOVE:
5627 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5628 /* without this a class_device is left
5629 * hanging around in the sysfs model
5630 */
5631 dca_remove_requester(dev);
5632 dev_info(&pdev->dev, "DCA disabled\n");
5633 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5634 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5635 }
5636 break;
5637 }
5638
5639 return 0;
5640}
5641
5642static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5643 void *p)
5644{
5645 int ret_val;
5646
5647 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5648 __igb_notify_dca);
5649
5650 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5651}
5652#endif /* CONFIG_IGB_DCA */
5653
5654#ifdef CONFIG_PCI_IOV
5655static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5656{
5657 unsigned char mac_addr[ETH_ALEN];
5658
5659 eth_zero_addr(mac_addr);
5660 igb_set_vf_mac(adapter, vf, mac_addr);
5661
5662 /* By default spoof check is enabled for all VFs */
5663 adapter->vf_data[vf].spoofchk_enabled = true;
5664
5665 return 0;
5666}
5667
5668#endif
5669static void igb_ping_all_vfs(struct igb_adapter *adapter)
5670{
5671 struct e1000_hw *hw = &adapter->hw;
5672 u32 ping;
5673 int i;
5674
5675 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5676 ping = E1000_PF_CONTROL_MSG;
5677 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5678 ping |= E1000_VT_MSGTYPE_CTS;
5679 igb_write_mbx(hw, &ping, 1, i);
5680 }
5681}
5682
5683static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5684{
5685 struct e1000_hw *hw = &adapter->hw;
5686 u32 vmolr = rd32(E1000_VMOLR(vf));
5687 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5688
5689 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5690 IGB_VF_FLAG_MULTI_PROMISC);
5691 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5692
5693 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5694 vmolr |= E1000_VMOLR_MPME;
5695 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5696 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5697 } else {
5698 /* if we have hashes and we are clearing a multicast promisc
5699 * flag we need to write the hashes to the MTA as this step
5700 * was previously skipped
5701 */
5702 if (vf_data->num_vf_mc_hashes > 30) {
5703 vmolr |= E1000_VMOLR_MPME;
5704 } else if (vf_data->num_vf_mc_hashes) {
5705 int j;
5706
5707 vmolr |= E1000_VMOLR_ROMPE;
5708 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5709 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5710 }
5711 }
5712
5713 wr32(E1000_VMOLR(vf), vmolr);
5714
5715 /* there are flags left unprocessed, likely not supported */
5716 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5717 return -EINVAL;
5718
5719 return 0;
5720}
5721
5722static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5723 u32 *msgbuf, u32 vf)
5724{
5725 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5726 u16 *hash_list = (u16 *)&msgbuf[1];
5727 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5728 int i;
5729
5730 /* salt away the number of multicast addresses assigned
5731 * to this VF for later use to restore when the PF multi cast
5732 * list changes
5733 */
5734 vf_data->num_vf_mc_hashes = n;
5735
5736 /* only up to 30 hash values supported */
5737 if (n > 30)
5738 n = 30;
5739
5740 /* store the hashes for later use */
5741 for (i = 0; i < n; i++)
5742 vf_data->vf_mc_hashes[i] = hash_list[i];
5743
5744 /* Flush and reset the mta with the new values */
5745 igb_set_rx_mode(adapter->netdev);
5746
5747 return 0;
5748}
5749
5750static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5751{
5752 struct e1000_hw *hw = &adapter->hw;
5753 struct vf_data_storage *vf_data;
5754 int i, j;
5755
5756 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5757 u32 vmolr = rd32(E1000_VMOLR(i));
5758
5759 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5760
5761 vf_data = &adapter->vf_data[i];
5762
5763 if ((vf_data->num_vf_mc_hashes > 30) ||
5764 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5765 vmolr |= E1000_VMOLR_MPME;
5766 } else if (vf_data->num_vf_mc_hashes) {
5767 vmolr |= E1000_VMOLR_ROMPE;
5768 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5769 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5770 }
5771 wr32(E1000_VMOLR(i), vmolr);
5772 }
5773}
5774
5775static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5776{
5777 struct e1000_hw *hw = &adapter->hw;
5778 u32 pool_mask, reg, vid;
5779 int i;
5780
5781 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5782
5783 /* Find the vlan filter for this id */
5784 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5785 reg = rd32(E1000_VLVF(i));
5786
5787 /* remove the vf from the pool */
5788 reg &= ~pool_mask;
5789
5790 /* if pool is empty then remove entry from vfta */
5791 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5792 (reg & E1000_VLVF_VLANID_ENABLE)) {
5793 reg = 0;
5794 vid = reg & E1000_VLVF_VLANID_MASK;
5795 igb_vfta_set(hw, vid, false);
5796 }
5797
5798 wr32(E1000_VLVF(i), reg);
5799 }
5800
5801 adapter->vf_data[vf].vlans_enabled = 0;
5802}
5803
5804static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5805{
5806 struct e1000_hw *hw = &adapter->hw;
5807 u32 reg, i;
5808
5809 /* The vlvf table only exists on 82576 hardware and newer */
5810 if (hw->mac.type < e1000_82576)
5811 return -1;
5812
5813 /* we only need to do this if VMDq is enabled */
5814 if (!adapter->vfs_allocated_count)
5815 return -1;
5816
5817 /* Find the vlan filter for this id */
5818 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5819 reg = rd32(E1000_VLVF(i));
5820 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5821 vid == (reg & E1000_VLVF_VLANID_MASK))
5822 break;
5823 }
5824
5825 if (add) {
5826 if (i == E1000_VLVF_ARRAY_SIZE) {
5827 /* Did not find a matching VLAN ID entry that was
5828 * enabled. Search for a free filter entry, i.e.
5829 * one without the enable bit set
5830 */
5831 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5832 reg = rd32(E1000_VLVF(i));
5833 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5834 break;
5835 }
5836 }
5837 if (i < E1000_VLVF_ARRAY_SIZE) {
5838 /* Found an enabled/available entry */
5839 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5840
5841 /* if !enabled we need to set this up in vfta */
5842 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5843 /* add VID to filter table */
5844 igb_vfta_set(hw, vid, true);
5845 reg |= E1000_VLVF_VLANID_ENABLE;
5846 }
5847 reg &= ~E1000_VLVF_VLANID_MASK;
5848 reg |= vid;
5849 wr32(E1000_VLVF(i), reg);
5850
5851 /* do not modify RLPML for PF devices */
5852 if (vf >= adapter->vfs_allocated_count)
5853 return 0;
5854
5855 if (!adapter->vf_data[vf].vlans_enabled) {
5856 u32 size;
5857
5858 reg = rd32(E1000_VMOLR(vf));
5859 size = reg & E1000_VMOLR_RLPML_MASK;
5860 size += 4;
5861 reg &= ~E1000_VMOLR_RLPML_MASK;
5862 reg |= size;
5863 wr32(E1000_VMOLR(vf), reg);
5864 }
5865
5866 adapter->vf_data[vf].vlans_enabled++;
5867 }
5868 } else {
5869 if (i < E1000_VLVF_ARRAY_SIZE) {
5870 /* remove vf from the pool */
5871 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5872 /* if pool is empty then remove entry from vfta */
5873 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5874 reg = 0;
5875 igb_vfta_set(hw, vid, false);
5876 }
5877 wr32(E1000_VLVF(i), reg);
5878
5879 /* do not modify RLPML for PF devices */
5880 if (vf >= adapter->vfs_allocated_count)
5881 return 0;
5882
5883 adapter->vf_data[vf].vlans_enabled--;
5884 if (!adapter->vf_data[vf].vlans_enabled) {
5885 u32 size;
5886
5887 reg = rd32(E1000_VMOLR(vf));
5888 size = reg & E1000_VMOLR_RLPML_MASK;
5889 size -= 4;
5890 reg &= ~E1000_VMOLR_RLPML_MASK;
5891 reg |= size;
5892 wr32(E1000_VMOLR(vf), reg);
5893 }
5894 }
5895 }
5896 return 0;
5897}
5898
5899static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5900{
5901 struct e1000_hw *hw = &adapter->hw;
5902
5903 if (vid)
5904 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5905 else
5906 wr32(E1000_VMVIR(vf), 0);
5907}
5908
5909static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5910 int vf, u16 vlan, u8 qos)
5911{
5912 int err = 0;
5913 struct igb_adapter *adapter = netdev_priv(netdev);
5914
5915 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5916 return -EINVAL;
5917 if (vlan || qos) {
5918 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5919 if (err)
5920 goto out;
5921 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5922 igb_set_vmolr(adapter, vf, !vlan);
5923 adapter->vf_data[vf].pf_vlan = vlan;
5924 adapter->vf_data[vf].pf_qos = qos;
5925 dev_info(&adapter->pdev->dev,
5926 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5927 if (test_bit(__IGB_DOWN, &adapter->state)) {
5928 dev_warn(&adapter->pdev->dev,
5929 "The VF VLAN has been set, but the PF device is not up.\n");
5930 dev_warn(&adapter->pdev->dev,
5931 "Bring the PF device up before attempting to use the VF device.\n");
5932 }
5933 } else {
5934 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5935 false, vf);
5936 igb_set_vmvir(adapter, vlan, vf);
5937 igb_set_vmolr(adapter, vf, true);
5938 adapter->vf_data[vf].pf_vlan = 0;
5939 adapter->vf_data[vf].pf_qos = 0;
5940 }
5941out:
5942 return err;
5943}
5944
5945static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5946{
5947 struct e1000_hw *hw = &adapter->hw;
5948 int i;
5949 u32 reg;
5950
5951 /* Find the vlan filter for this id */
5952 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5953 reg = rd32(E1000_VLVF(i));
5954 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5955 vid == (reg & E1000_VLVF_VLANID_MASK))
5956 break;
5957 }
5958
5959 if (i >= E1000_VLVF_ARRAY_SIZE)
5960 i = -1;
5961
5962 return i;
5963}
5964
5965static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5966{
5967 struct e1000_hw *hw = &adapter->hw;
5968 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5969 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5970 int err = 0;
5971
5972 /* If in promiscuous mode we need to make sure the PF also has
5973 * the VLAN filter set.
5974 */
5975 if (add && (adapter->netdev->flags & IFF_PROMISC))
5976 err = igb_vlvf_set(adapter, vid, add,
5977 adapter->vfs_allocated_count);
5978 if (err)
5979 goto out;
5980
5981 err = igb_vlvf_set(adapter, vid, add, vf);
5982
5983 if (err)
5984 goto out;
5985
5986 /* Go through all the checks to see if the VLAN filter should
5987 * be wiped completely.
5988 */
5989 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5990 u32 vlvf, bits;
5991 int regndx = igb_find_vlvf_entry(adapter, vid);
5992
5993 if (regndx < 0)
5994 goto out;
5995 /* See if any other pools are set for this VLAN filter
5996 * entry other than the PF.
5997 */
5998 vlvf = bits = rd32(E1000_VLVF(regndx));
5999 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6000 adapter->vfs_allocated_count);
6001 /* If the filter was removed then ensure PF pool bit
6002 * is cleared if the PF only added itself to the pool
6003 * because the PF is in promiscuous mode.
6004 */
6005 if ((vlvf & VLAN_VID_MASK) == vid &&
6006 !test_bit(vid, adapter->active_vlans) &&
6007 !bits)
6008 igb_vlvf_set(adapter, vid, add,
6009 adapter->vfs_allocated_count);
6010 }
6011
6012out:
6013 return err;
6014}
6015
6016static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6017{
6018 /* clear flags - except flag that indicates PF has set the MAC */
6019 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6020 adapter->vf_data[vf].last_nack = jiffies;
6021
6022 /* reset offloads to defaults */
6023 igb_set_vmolr(adapter, vf, true);
6024
6025 /* reset vlans for device */
6026 igb_clear_vf_vfta(adapter, vf);
6027 if (adapter->vf_data[vf].pf_vlan)
6028 igb_ndo_set_vf_vlan(adapter->netdev, vf,
6029 adapter->vf_data[vf].pf_vlan,
6030 adapter->vf_data[vf].pf_qos);
6031 else
6032 igb_clear_vf_vfta(adapter, vf);
6033
6034 /* reset multicast table array for vf */
6035 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6036
6037 /* Flush and reset the mta with the new values */
6038 igb_set_rx_mode(adapter->netdev);
6039}
6040
6041static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6042{
6043 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6044
6045 /* clear mac address as we were hotplug removed/added */
6046 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6047 eth_zero_addr(vf_mac);
6048
6049 /* process remaining reset events */
6050 igb_vf_reset(adapter, vf);
6051}
6052
6053static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6054{
6055 struct e1000_hw *hw = &adapter->hw;
6056 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6057 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6058 u32 reg, msgbuf[3];
6059 u8 *addr = (u8 *)(&msgbuf[1]);
6060
6061 /* process all the same items cleared in a function level reset */
6062 igb_vf_reset(adapter, vf);
6063
6064 /* set vf mac address */
6065 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6066
6067 /* enable transmit and receive for vf */
6068 reg = rd32(E1000_VFTE);
6069 wr32(E1000_VFTE, reg | (1 << vf));
6070 reg = rd32(E1000_VFRE);
6071 wr32(E1000_VFRE, reg | (1 << vf));
6072
6073 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6074
6075 /* reply to reset with ack and vf mac address */
6076 if (!is_zero_ether_addr(vf_mac)) {
6077 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6078 memcpy(addr, vf_mac, ETH_ALEN);
6079 } else {
6080 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6081 }
6082 igb_write_mbx(hw, msgbuf, 3, vf);
6083}
6084
6085static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6086{
6087 /* The VF MAC Address is stored in a packed array of bytes
6088 * starting at the second 32 bit word of the msg array
6089 */
6090 unsigned char *addr = (char *)&msg[1];
6091 int err = -1;
6092
6093 if (is_valid_ether_addr(addr))
6094 err = igb_set_vf_mac(adapter, vf, addr);
6095
6096 return err;
6097}
6098
6099static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6100{
6101 struct e1000_hw *hw = &adapter->hw;
6102 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6103 u32 msg = E1000_VT_MSGTYPE_NACK;
6104
6105 /* if device isn't clear to send it shouldn't be reading either */
6106 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6107 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6108 igb_write_mbx(hw, &msg, 1, vf);
6109 vf_data->last_nack = jiffies;
6110 }
6111}
6112
6113static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6114{
6115 struct pci_dev *pdev = adapter->pdev;
6116 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6117 struct e1000_hw *hw = &adapter->hw;
6118 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6119 s32 retval;
6120
6121 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6122
6123 if (retval) {
6124 /* if receive failed revoke VF CTS stats and restart init */
6125 dev_err(&pdev->dev, "Error receiving message from VF\n");
6126 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6127 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6128 return;
6129 goto out;
6130 }
6131
6132 /* this is a message we already processed, do nothing */
6133 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6134 return;
6135
6136 /* until the vf completes a reset it should not be
6137 * allowed to start any configuration.
6138 */
6139 if (msgbuf[0] == E1000_VF_RESET) {
6140 igb_vf_reset_msg(adapter, vf);
6141 return;
6142 }
6143
6144 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6145 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6146 return;
6147 retval = -1;
6148 goto out;
6149 }
6150
6151 switch ((msgbuf[0] & 0xFFFF)) {
6152 case E1000_VF_SET_MAC_ADDR:
6153 retval = -EINVAL;
6154 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6155 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6156 else
6157 dev_warn(&pdev->dev,
6158 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6159 vf);
6160 break;
6161 case E1000_VF_SET_PROMISC:
6162 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6163 break;
6164 case E1000_VF_SET_MULTICAST:
6165 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6166 break;
6167 case E1000_VF_SET_LPE:
6168 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6169 break;
6170 case E1000_VF_SET_VLAN:
6171 retval = -1;
6172 if (vf_data->pf_vlan)
6173 dev_warn(&pdev->dev,
6174 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6175 vf);
6176 else
6177 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6178 break;
6179 default:
6180 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6181 retval = -1;
6182 break;
6183 }
6184
6185 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6186out:
6187 /* notify the VF of the results of what it sent us */
6188 if (retval)
6189 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6190 else
6191 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6192
6193 igb_write_mbx(hw, msgbuf, 1, vf);
6194}
6195
6196static void igb_msg_task(struct igb_adapter *adapter)
6197{
6198 struct e1000_hw *hw = &adapter->hw;
6199 u32 vf;
6200
6201 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6202 /* process any reset requests */
6203 if (!igb_check_for_rst(hw, vf))
6204 igb_vf_reset_event(adapter, vf);
6205
6206 /* process any messages pending */
6207 if (!igb_check_for_msg(hw, vf))
6208 igb_rcv_msg_from_vf(adapter, vf);
6209
6210 /* process any acks */
6211 if (!igb_check_for_ack(hw, vf))
6212 igb_rcv_ack_from_vf(adapter, vf);
6213 }
6214}
6215
6216/**
6217 * igb_set_uta - Set unicast filter table address
6218 * @adapter: board private structure
6219 *
6220 * The unicast table address is a register array of 32-bit registers.
6221 * The table is meant to be used in a way similar to how the MTA is used
6222 * however due to certain limitations in the hardware it is necessary to
6223 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6224 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6225 **/
6226static void igb_set_uta(struct igb_adapter *adapter)
6227{
6228 struct e1000_hw *hw = &adapter->hw;
6229 int i;
6230
6231 /* The UTA table only exists on 82576 hardware and newer */
6232 if (hw->mac.type < e1000_82576)
6233 return;
6234
6235 /* we only need to do this if VMDq is enabled */
6236 if (!adapter->vfs_allocated_count)
6237 return;
6238
6239 for (i = 0; i < hw->mac.uta_reg_count; i++)
6240 array_wr32(E1000_UTA, i, ~0);
6241}
6242
6243/**
6244 * igb_intr_msi - Interrupt Handler
6245 * @irq: interrupt number
6246 * @data: pointer to a network interface device structure
6247 **/
6248static irqreturn_t igb_intr_msi(int irq, void *data)
6249{
6250 struct igb_adapter *adapter = data;
6251 struct igb_q_vector *q_vector = adapter->q_vector[0];
6252 struct e1000_hw *hw = &adapter->hw;
6253 /* read ICR disables interrupts using IAM */
6254 u32 icr = rd32(E1000_ICR);
6255
6256 igb_write_itr(q_vector);
6257
6258 if (icr & E1000_ICR_DRSTA)
6259 schedule_work(&adapter->reset_task);
6260
6261 if (icr & E1000_ICR_DOUTSYNC) {
6262 /* HW is reporting DMA is out of sync */
6263 adapter->stats.doosync++;
6264 }
6265
6266 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6267 hw->mac.get_link_status = 1;
6268 if (!test_bit(__IGB_DOWN, &adapter->state))
6269 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6270 }
6271
6272 if (icr & E1000_ICR_TS)
6273 igb_tsync_interrupt(adapter);
6274
6275 napi_schedule(&q_vector->napi);
6276
6277 return IRQ_HANDLED;
6278}
6279
6280/**
6281 * igb_intr - Legacy Interrupt Handler
6282 * @irq: interrupt number
6283 * @data: pointer to a network interface device structure
6284 **/
6285static irqreturn_t igb_intr(int irq, void *data)
6286{
6287 struct igb_adapter *adapter = data;
6288 struct igb_q_vector *q_vector = adapter->q_vector[0];
6289 struct e1000_hw *hw = &adapter->hw;
6290 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6291 * need for the IMC write
6292 */
6293 u32 icr = rd32(E1000_ICR);
6294
6295 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6296 * not set, then the adapter didn't send an interrupt
6297 */
6298 if (!(icr & E1000_ICR_INT_ASSERTED))
6299 return IRQ_NONE;
6300
6301 igb_write_itr(q_vector);
6302
6303 if (icr & E1000_ICR_DRSTA)
6304 schedule_work(&adapter->reset_task);
6305
6306 if (icr & E1000_ICR_DOUTSYNC) {
6307 /* HW is reporting DMA is out of sync */
6308 adapter->stats.doosync++;
6309 }
6310
6311 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6312 hw->mac.get_link_status = 1;
6313 /* guard against interrupt when we're going down */
6314 if (!test_bit(__IGB_DOWN, &adapter->state))
6315 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6316 }
6317
6318 if (icr & E1000_ICR_TS)
6319 igb_tsync_interrupt(adapter);
6320
6321 napi_schedule(&q_vector->napi);
6322
6323 return IRQ_HANDLED;
6324}
6325
6326static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6327{
6328 struct igb_adapter *adapter = q_vector->adapter;
6329 struct e1000_hw *hw = &adapter->hw;
6330
6331 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6332 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6333 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6334 igb_set_itr(q_vector);
6335 else
6336 igb_update_ring_itr(q_vector);
6337 }
6338
6339 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6340 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6341 wr32(E1000_EIMS, q_vector->eims_value);
6342 else
6343 igb_irq_enable(adapter);
6344 }
6345}
6346
6347/**
6348 * igb_poll - NAPI Rx polling callback
6349 * @napi: napi polling structure
6350 * @budget: count of how many packets we should handle
6351 **/
6352static int igb_poll(struct napi_struct *napi, int budget)
6353{
6354 struct igb_q_vector *q_vector = container_of(napi,
6355 struct igb_q_vector,
6356 napi);
6357 bool clean_complete = true;
6358
6359#ifdef CONFIG_IGB_DCA
6360 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6361 igb_update_dca(q_vector);
6362#endif
6363 if (q_vector->tx.ring)
6364 clean_complete = igb_clean_tx_irq(q_vector);
6365
6366 if (q_vector->rx.ring)
6367 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6368
6369 /* If all work not completed, return budget and keep polling */
6370 if (!clean_complete)
6371 return budget;
6372
6373 /* If not enough Rx work done, exit the polling mode */
6374 napi_complete(napi);
6375 igb_ring_irq_enable(q_vector);
6376
6377 return 0;
6378}
6379
6380/**
6381 * igb_clean_tx_irq - Reclaim resources after transmit completes
6382 * @q_vector: pointer to q_vector containing needed info
6383 *
6384 * returns true if ring is completely cleaned
6385 **/
6386static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6387{
6388 struct igb_adapter *adapter = q_vector->adapter;
6389 struct igb_ring *tx_ring = q_vector->tx.ring;
6390 struct igb_tx_buffer *tx_buffer;
6391 union e1000_adv_tx_desc *tx_desc;
6392 unsigned int total_bytes = 0, total_packets = 0;
6393 unsigned int budget = q_vector->tx.work_limit;
6394 unsigned int i = tx_ring->next_to_clean;
6395
6396 if (test_bit(__IGB_DOWN, &adapter->state))
6397 return true;
6398
6399 tx_buffer = &tx_ring->tx_buffer_info[i];
6400 tx_desc = IGB_TX_DESC(tx_ring, i);
6401 i -= tx_ring->count;
6402
6403 do {
6404 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6405
6406 /* if next_to_watch is not set then there is no work pending */
6407 if (!eop_desc)
6408 break;
6409
6410 /* prevent any other reads prior to eop_desc */
6411 read_barrier_depends();
6412
6413 /* if DD is not set pending work has not been completed */
6414 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6415 break;
6416
6417 /* clear next_to_watch to prevent false hangs */
6418 tx_buffer->next_to_watch = NULL;
6419
6420 /* update the statistics for this packet */
6421 total_bytes += tx_buffer->bytecount;
6422 total_packets += tx_buffer->gso_segs;
6423
6424 /* free the skb */
6425 dev_consume_skb_any(tx_buffer->skb);
6426
6427 /* unmap skb header data */
6428 dma_unmap_single(tx_ring->dev,
6429 dma_unmap_addr(tx_buffer, dma),
6430 dma_unmap_len(tx_buffer, len),
6431 DMA_TO_DEVICE);
6432
6433 /* clear tx_buffer data */
6434 tx_buffer->skb = NULL;
6435 dma_unmap_len_set(tx_buffer, len, 0);
6436
6437 /* clear last DMA location and unmap remaining buffers */
6438 while (tx_desc != eop_desc) {
6439 tx_buffer++;
6440 tx_desc++;
6441 i++;
6442 if (unlikely(!i)) {
6443 i -= tx_ring->count;
6444 tx_buffer = tx_ring->tx_buffer_info;
6445 tx_desc = IGB_TX_DESC(tx_ring, 0);
6446 }
6447
6448 /* unmap any remaining paged data */
6449 if (dma_unmap_len(tx_buffer, len)) {
6450 dma_unmap_page(tx_ring->dev,
6451 dma_unmap_addr(tx_buffer, dma),
6452 dma_unmap_len(tx_buffer, len),
6453 DMA_TO_DEVICE);
6454 dma_unmap_len_set(tx_buffer, len, 0);
6455 }
6456 }
6457
6458 /* move us one more past the eop_desc for start of next pkt */
6459 tx_buffer++;
6460 tx_desc++;
6461 i++;
6462 if (unlikely(!i)) {
6463 i -= tx_ring->count;
6464 tx_buffer = tx_ring->tx_buffer_info;
6465 tx_desc = IGB_TX_DESC(tx_ring, 0);
6466 }
6467
6468 /* issue prefetch for next Tx descriptor */
6469 prefetch(tx_desc);
6470
6471 /* update budget accounting */
6472 budget--;
6473 } while (likely(budget));
6474
6475 netdev_tx_completed_queue(txring_txq(tx_ring),
6476 total_packets, total_bytes);
6477 i += tx_ring->count;
6478 tx_ring->next_to_clean = i;
6479 u64_stats_update_begin(&tx_ring->tx_syncp);
6480 tx_ring->tx_stats.bytes += total_bytes;
6481 tx_ring->tx_stats.packets += total_packets;
6482 u64_stats_update_end(&tx_ring->tx_syncp);
6483 q_vector->tx.total_bytes += total_bytes;
6484 q_vector->tx.total_packets += total_packets;
6485
6486 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6487 struct e1000_hw *hw = &adapter->hw;
6488
6489 /* Detect a transmit hang in hardware, this serializes the
6490 * check with the clearing of time_stamp and movement of i
6491 */
6492 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6493 if (tx_buffer->next_to_watch &&
6494 time_after(jiffies, tx_buffer->time_stamp +
6495 (adapter->tx_timeout_factor * HZ)) &&
6496 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6497
6498 /* detected Tx unit hang */
6499 dev_err(tx_ring->dev,
6500 "Detected Tx Unit Hang\n"
6501 " Tx Queue <%d>\n"
6502 " TDH <%x>\n"
6503 " TDT <%x>\n"
6504 " next_to_use <%x>\n"
6505 " next_to_clean <%x>\n"
6506 "buffer_info[next_to_clean]\n"
6507 " time_stamp <%lx>\n"
6508 " next_to_watch <%p>\n"
6509 " jiffies <%lx>\n"
6510 " desc.status <%x>\n",
6511 tx_ring->queue_index,
6512 rd32(E1000_TDH(tx_ring->reg_idx)),
6513 readl(tx_ring->tail),
6514 tx_ring->next_to_use,
6515 tx_ring->next_to_clean,
6516 tx_buffer->time_stamp,
6517 tx_buffer->next_to_watch,
6518 jiffies,
6519 tx_buffer->next_to_watch->wb.status);
6520 netif_stop_subqueue(tx_ring->netdev,
6521 tx_ring->queue_index);
6522
6523 /* we are about to reset, no point in enabling stuff */
6524 return true;
6525 }
6526 }
6527
6528#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6529 if (unlikely(total_packets &&
6530 netif_carrier_ok(tx_ring->netdev) &&
6531 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6532 /* Make sure that anybody stopping the queue after this
6533 * sees the new next_to_clean.
6534 */
6535 smp_mb();
6536 if (__netif_subqueue_stopped(tx_ring->netdev,
6537 tx_ring->queue_index) &&
6538 !(test_bit(__IGB_DOWN, &adapter->state))) {
6539 netif_wake_subqueue(tx_ring->netdev,
6540 tx_ring->queue_index);
6541
6542 u64_stats_update_begin(&tx_ring->tx_syncp);
6543 tx_ring->tx_stats.restart_queue++;
6544 u64_stats_update_end(&tx_ring->tx_syncp);
6545 }
6546 }
6547
6548 return !!budget;
6549}
6550
6551/**
6552 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6553 * @rx_ring: rx descriptor ring to store buffers on
6554 * @old_buff: donor buffer to have page reused
6555 *
6556 * Synchronizes page for reuse by the adapter
6557 **/
6558static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6559 struct igb_rx_buffer *old_buff)
6560{
6561 struct igb_rx_buffer *new_buff;
6562 u16 nta = rx_ring->next_to_alloc;
6563
6564 new_buff = &rx_ring->rx_buffer_info[nta];
6565
6566 /* update, and store next to alloc */
6567 nta++;
6568 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6569
6570 /* transfer page from old buffer to new buffer */
6571 *new_buff = *old_buff;
6572
6573 /* sync the buffer for use by the device */
6574 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6575 old_buff->page_offset,
6576 IGB_RX_BUFSZ,
6577 DMA_FROM_DEVICE);
6578}
6579
6580static inline bool igb_page_is_reserved(struct page *page)
6581{
6582 return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
6583}
6584
6585static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6586 struct page *page,
6587 unsigned int truesize)
6588{
6589 /* avoid re-using remote pages */
6590 if (unlikely(igb_page_is_reserved(page)))
6591 return false;
6592
6593#if (PAGE_SIZE < 8192)
6594 /* if we are only owner of page we can reuse it */
6595 if (unlikely(page_count(page) != 1))
6596 return false;
6597
6598 /* flip page offset to other buffer */
6599 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6600#else
6601 /* move offset up to the next cache line */
6602 rx_buffer->page_offset += truesize;
6603
6604 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6605 return false;
6606#endif
6607
6608 /* Even if we own the page, we are not allowed to use atomic_set()
6609 * This would break get_page_unless_zero() users.
6610 */
6611 atomic_inc(&page->_count);
6612
6613 return true;
6614}
6615
6616/**
6617 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6618 * @rx_ring: rx descriptor ring to transact packets on
6619 * @rx_buffer: buffer containing page to add
6620 * @rx_desc: descriptor containing length of buffer written by hardware
6621 * @skb: sk_buff to place the data into
6622 *
6623 * This function will add the data contained in rx_buffer->page to the skb.
6624 * This is done either through a direct copy if the data in the buffer is
6625 * less than the skb header size, otherwise it will just attach the page as
6626 * a frag to the skb.
6627 *
6628 * The function will then update the page offset if necessary and return
6629 * true if the buffer can be reused by the adapter.
6630 **/
6631static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6632 struct igb_rx_buffer *rx_buffer,
6633 union e1000_adv_rx_desc *rx_desc,
6634 struct sk_buff *skb)
6635{
6636 struct page *page = rx_buffer->page;
6637 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6638 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6639#if (PAGE_SIZE < 8192)
6640 unsigned int truesize = IGB_RX_BUFSZ;
6641#else
6642 unsigned int truesize = SKB_DATA_ALIGN(size);
6643#endif
6644 unsigned int pull_len;
6645
6646 if (unlikely(skb_is_nonlinear(skb)))
6647 goto add_tail_frag;
6648
6649 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6650 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6651 va += IGB_TS_HDR_LEN;
6652 size -= IGB_TS_HDR_LEN;
6653 }
6654
6655 if (likely(size <= IGB_RX_HDR_LEN)) {
6656 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6657
6658 /* page is not reserved, we can reuse buffer as-is */
6659 if (likely(!igb_page_is_reserved(page)))
6660 return true;
6661
6662 /* this page cannot be reused so discard it */
6663 __free_page(page);
6664 return false;
6665 }
6666
6667 /* we need the header to contain the greater of either ETH_HLEN or
6668 * 60 bytes if the skb->len is less than 60 for skb_pad.
6669 */
6670 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6671
6672 /* align pull length to size of long to optimize memcpy performance */
6673 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6674
6675 /* update all of the pointers */
6676 va += pull_len;
6677 size -= pull_len;
6678
6679add_tail_frag:
6680 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6681 (unsigned long)va & ~PAGE_MASK, size, truesize);
6682
6683 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6684}
6685
6686static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6687 union e1000_adv_rx_desc *rx_desc,
6688 struct sk_buff *skb)
6689{
6690 struct igb_rx_buffer *rx_buffer;
6691 struct page *page;
6692
6693 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6694 page = rx_buffer->page;
6695 prefetchw(page);
6696
6697 if (likely(!skb)) {
6698 void *page_addr = page_address(page) +
6699 rx_buffer->page_offset;
6700
6701 /* prefetch first cache line of first page */
6702 prefetch(page_addr);
6703#if L1_CACHE_BYTES < 128
6704 prefetch(page_addr + L1_CACHE_BYTES);
6705#endif
6706
6707 /* allocate a skb to store the frags */
6708 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6709 if (unlikely(!skb)) {
6710 rx_ring->rx_stats.alloc_failed++;
6711 return NULL;
6712 }
6713
6714 /* we will be copying header into skb->data in
6715 * pskb_may_pull so it is in our interest to prefetch
6716 * it now to avoid a possible cache miss
6717 */
6718 prefetchw(skb->data);
6719 }
6720
6721 /* we are reusing so sync this buffer for CPU use */
6722 dma_sync_single_range_for_cpu(rx_ring->dev,
6723 rx_buffer->dma,
6724 rx_buffer->page_offset,
6725 IGB_RX_BUFSZ,
6726 DMA_FROM_DEVICE);
6727
6728 /* pull page into skb */
6729 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6730 /* hand second half of page back to the ring */
6731 igb_reuse_rx_page(rx_ring, rx_buffer);
6732 } else {
6733 /* we are not reusing the buffer so unmap it */
6734 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6735 PAGE_SIZE, DMA_FROM_DEVICE);
6736 }
6737
6738 /* clear contents of rx_buffer */
6739 rx_buffer->page = NULL;
6740
6741 return skb;
6742}
6743
6744static inline void igb_rx_checksum(struct igb_ring *ring,
6745 union e1000_adv_rx_desc *rx_desc,
6746 struct sk_buff *skb)
6747{
6748 skb_checksum_none_assert(skb);
6749
6750 /* Ignore Checksum bit is set */
6751 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6752 return;
6753
6754 /* Rx checksum disabled via ethtool */
6755 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6756 return;
6757
6758 /* TCP/UDP checksum error bit is set */
6759 if (igb_test_staterr(rx_desc,
6760 E1000_RXDEXT_STATERR_TCPE |
6761 E1000_RXDEXT_STATERR_IPE)) {
6762 /* work around errata with sctp packets where the TCPE aka
6763 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6764 * packets, (aka let the stack check the crc32c)
6765 */
6766 if (!((skb->len == 60) &&
6767 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6768 u64_stats_update_begin(&ring->rx_syncp);
6769 ring->rx_stats.csum_err++;
6770 u64_stats_update_end(&ring->rx_syncp);
6771 }
6772 /* let the stack verify checksum errors */
6773 return;
6774 }
6775 /* It must be a TCP or UDP packet with a valid checksum */
6776 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6777 E1000_RXD_STAT_UDPCS))
6778 skb->ip_summed = CHECKSUM_UNNECESSARY;
6779
6780 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6781 le32_to_cpu(rx_desc->wb.upper.status_error));
6782}
6783
6784static inline void igb_rx_hash(struct igb_ring *ring,
6785 union e1000_adv_rx_desc *rx_desc,
6786 struct sk_buff *skb)
6787{
6788 if (ring->netdev->features & NETIF_F_RXHASH)
6789 skb_set_hash(skb,
6790 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6791 PKT_HASH_TYPE_L3);
6792}
6793
6794/**
6795 * igb_is_non_eop - process handling of non-EOP buffers
6796 * @rx_ring: Rx ring being processed
6797 * @rx_desc: Rx descriptor for current buffer
6798 * @skb: current socket buffer containing buffer in progress
6799 *
6800 * This function updates next to clean. If the buffer is an EOP buffer
6801 * this function exits returning false, otherwise it will place the
6802 * sk_buff in the next buffer to be chained and return true indicating
6803 * that this is in fact a non-EOP buffer.
6804 **/
6805static bool igb_is_non_eop(struct igb_ring *rx_ring,
6806 union e1000_adv_rx_desc *rx_desc)
6807{
6808 u32 ntc = rx_ring->next_to_clean + 1;
6809
6810 /* fetch, update, and store next to clean */
6811 ntc = (ntc < rx_ring->count) ? ntc : 0;
6812 rx_ring->next_to_clean = ntc;
6813
6814 prefetch(IGB_RX_DESC(rx_ring, ntc));
6815
6816 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6817 return false;
6818
6819 return true;
6820}
6821
6822/**
6823 * igb_cleanup_headers - Correct corrupted or empty headers
6824 * @rx_ring: rx descriptor ring packet is being transacted on
6825 * @rx_desc: pointer to the EOP Rx descriptor
6826 * @skb: pointer to current skb being fixed
6827 *
6828 * Address the case where we are pulling data in on pages only
6829 * and as such no data is present in the skb header.
6830 *
6831 * In addition if skb is not at least 60 bytes we need to pad it so that
6832 * it is large enough to qualify as a valid Ethernet frame.
6833 *
6834 * Returns true if an error was encountered and skb was freed.
6835 **/
6836static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6837 union e1000_adv_rx_desc *rx_desc,
6838 struct sk_buff *skb)
6839{
6840 if (unlikely((igb_test_staterr(rx_desc,
6841 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6842 struct net_device *netdev = rx_ring->netdev;
6843 if (!(netdev->features & NETIF_F_RXALL)) {
6844 dev_kfree_skb_any(skb);
6845 return true;
6846 }
6847 }
6848
6849 /* if eth_skb_pad returns an error the skb was freed */
6850 if (eth_skb_pad(skb))
6851 return true;
6852
6853 return false;
6854}
6855
6856/**
6857 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6858 * @rx_ring: rx descriptor ring packet is being transacted on
6859 * @rx_desc: pointer to the EOP Rx descriptor
6860 * @skb: pointer to current skb being populated
6861 *
6862 * This function checks the ring, descriptor, and packet information in
6863 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6864 * other fields within the skb.
6865 **/
6866static void igb_process_skb_fields(struct igb_ring *rx_ring,
6867 union e1000_adv_rx_desc *rx_desc,
6868 struct sk_buff *skb)
6869{
6870 struct net_device *dev = rx_ring->netdev;
6871
6872 igb_rx_hash(rx_ring, rx_desc, skb);
6873
6874 igb_rx_checksum(rx_ring, rx_desc, skb);
6875
6876 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6877 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6878 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6879
6880 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6881 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6882 u16 vid;
6883
6884 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6885 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6886 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6887 else
6888 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6889
6890 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6891 }
6892
6893 skb_record_rx_queue(skb, rx_ring->queue_index);
6894
6895 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6896}
6897
6898static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6899{
6900 struct igb_ring *rx_ring = q_vector->rx.ring;
6901 struct sk_buff *skb = rx_ring->skb;
6902 unsigned int total_bytes = 0, total_packets = 0;
6903 u16 cleaned_count = igb_desc_unused(rx_ring);
6904
6905 while (likely(total_packets < budget)) {
6906 union e1000_adv_rx_desc *rx_desc;
6907
6908 /* return some buffers to hardware, one at a time is too slow */
6909 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6910 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6911 cleaned_count = 0;
6912 }
6913
6914 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6915
6916 if (!rx_desc->wb.upper.status_error)
6917 break;
6918
6919 /* This memory barrier is needed to keep us from reading
6920 * any other fields out of the rx_desc until we know the
6921 * descriptor has been written back
6922 */
6923 dma_rmb();
6924
6925 /* retrieve a buffer from the ring */
6926 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6927
6928 /* exit if we failed to retrieve a buffer */
6929 if (!skb)
6930 break;
6931
6932 cleaned_count++;
6933
6934 /* fetch next buffer in frame if non-eop */
6935 if (igb_is_non_eop(rx_ring, rx_desc))
6936 continue;
6937
6938 /* verify the packet layout is correct */
6939 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6940 skb = NULL;
6941 continue;
6942 }
6943
6944 /* probably a little skewed due to removing CRC */
6945 total_bytes += skb->len;
6946
6947 /* populate checksum, timestamp, VLAN, and protocol */
6948 igb_process_skb_fields(rx_ring, rx_desc, skb);
6949
6950 napi_gro_receive(&q_vector->napi, skb);
6951
6952 /* reset skb pointer */
6953 skb = NULL;
6954
6955 /* update budget accounting */
6956 total_packets++;
6957 }
6958
6959 /* place incomplete frames back on ring for completion */
6960 rx_ring->skb = skb;
6961
6962 u64_stats_update_begin(&rx_ring->rx_syncp);
6963 rx_ring->rx_stats.packets += total_packets;
6964 rx_ring->rx_stats.bytes += total_bytes;
6965 u64_stats_update_end(&rx_ring->rx_syncp);
6966 q_vector->rx.total_packets += total_packets;
6967 q_vector->rx.total_bytes += total_bytes;
6968
6969 if (cleaned_count)
6970 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6971
6972 return total_packets < budget;
6973}
6974
6975static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6976 struct igb_rx_buffer *bi)
6977{
6978 struct page *page = bi->page;
6979 dma_addr_t dma;
6980
6981 /* since we are recycling buffers we should seldom need to alloc */
6982 if (likely(page))
6983 return true;
6984
6985 /* alloc new page for storage */
6986 page = dev_alloc_page();
6987 if (unlikely(!page)) {
6988 rx_ring->rx_stats.alloc_failed++;
6989 return false;
6990 }
6991
6992 /* map page for use */
6993 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6994
6995 /* if mapping failed free memory back to system since
6996 * there isn't much point in holding memory we can't use
6997 */
6998 if (dma_mapping_error(rx_ring->dev, dma)) {
6999 __free_page(page);
7000
7001 rx_ring->rx_stats.alloc_failed++;
7002 return false;
7003 }
7004
7005 bi->dma = dma;
7006 bi->page = page;
7007 bi->page_offset = 0;
7008
7009 return true;
7010}
7011
7012/**
7013 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7014 * @adapter: address of board private structure
7015 **/
7016void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7017{
7018 union e1000_adv_rx_desc *rx_desc;
7019 struct igb_rx_buffer *bi;
7020 u16 i = rx_ring->next_to_use;
7021
7022 /* nothing to do */
7023 if (!cleaned_count)
7024 return;
7025
7026 rx_desc = IGB_RX_DESC(rx_ring, i);
7027 bi = &rx_ring->rx_buffer_info[i];
7028 i -= rx_ring->count;
7029
7030 do {
7031 if (!igb_alloc_mapped_page(rx_ring, bi))
7032 break;
7033
7034 /* Refresh the desc even if buffer_addrs didn't change
7035 * because each write-back erases this info.
7036 */
7037 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7038
7039 rx_desc++;
7040 bi++;
7041 i++;
7042 if (unlikely(!i)) {
7043 rx_desc = IGB_RX_DESC(rx_ring, 0);
7044 bi = rx_ring->rx_buffer_info;
7045 i -= rx_ring->count;
7046 }
7047
7048 /* clear the status bits for the next_to_use descriptor */
7049 rx_desc->wb.upper.status_error = 0;
7050
7051 cleaned_count--;
7052 } while (cleaned_count);
7053
7054 i += rx_ring->count;
7055
7056 if (rx_ring->next_to_use != i) {
7057 /* record the next descriptor to use */
7058 rx_ring->next_to_use = i;
7059
7060 /* update next to alloc since we have filled the ring */
7061 rx_ring->next_to_alloc = i;
7062
7063 /* Force memory writes to complete before letting h/w
7064 * know there are new descriptors to fetch. (Only
7065 * applicable for weak-ordered memory model archs,
7066 * such as IA-64).
7067 */
7068 wmb();
7069 writel(i, rx_ring->tail);
7070 }
7071}
7072
7073/**
7074 * igb_mii_ioctl -
7075 * @netdev:
7076 * @ifreq:
7077 * @cmd:
7078 **/
7079static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7080{
7081 struct igb_adapter *adapter = netdev_priv(netdev);
7082 struct mii_ioctl_data *data = if_mii(ifr);
7083
7084 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7085 return -EOPNOTSUPP;
7086
7087 switch (cmd) {
7088 case SIOCGMIIPHY:
7089 data->phy_id = adapter->hw.phy.addr;
7090 break;
7091 case SIOCGMIIREG:
7092 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7093 &data->val_out))
7094 return -EIO;
7095 break;
7096 case SIOCSMIIREG:
7097 default:
7098 return -EOPNOTSUPP;
7099 }
7100 return 0;
7101}
7102
7103/**
7104 * igb_ioctl -
7105 * @netdev:
7106 * @ifreq:
7107 * @cmd:
7108 **/
7109static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7110{
7111 switch (cmd) {
7112 case SIOCGMIIPHY:
7113 case SIOCGMIIREG:
7114 case SIOCSMIIREG:
7115 return igb_mii_ioctl(netdev, ifr, cmd);
7116 case SIOCGHWTSTAMP:
7117 return igb_ptp_get_ts_config(netdev, ifr);
7118 case SIOCSHWTSTAMP:
7119 return igb_ptp_set_ts_config(netdev, ifr);
7120 default:
7121 return -EOPNOTSUPP;
7122 }
7123}
7124
7125void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7126{
7127 struct igb_adapter *adapter = hw->back;
7128
7129 pci_read_config_word(adapter->pdev, reg, value);
7130}
7131
7132void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7133{
7134 struct igb_adapter *adapter = hw->back;
7135
7136 pci_write_config_word(adapter->pdev, reg, *value);
7137}
7138
7139s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7140{
7141 struct igb_adapter *adapter = hw->back;
7142
7143 if (pcie_capability_read_word(adapter->pdev, reg, value))
7144 return -E1000_ERR_CONFIG;
7145
7146 return 0;
7147}
7148
7149s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7150{
7151 struct igb_adapter *adapter = hw->back;
7152
7153 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7154 return -E1000_ERR_CONFIG;
7155
7156 return 0;
7157}
7158
7159static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7160{
7161 struct igb_adapter *adapter = netdev_priv(netdev);
7162 struct e1000_hw *hw = &adapter->hw;
7163 u32 ctrl, rctl;
7164 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7165
7166 if (enable) {
7167 /* enable VLAN tag insert/strip */
7168 ctrl = rd32(E1000_CTRL);
7169 ctrl |= E1000_CTRL_VME;
7170 wr32(E1000_CTRL, ctrl);
7171
7172 /* Disable CFI check */
7173 rctl = rd32(E1000_RCTL);
7174 rctl &= ~E1000_RCTL_CFIEN;
7175 wr32(E1000_RCTL, rctl);
7176 } else {
7177 /* disable VLAN tag insert/strip */
7178 ctrl = rd32(E1000_CTRL);
7179 ctrl &= ~E1000_CTRL_VME;
7180 wr32(E1000_CTRL, ctrl);
7181 }
7182
7183 igb_rlpml_set(adapter);
7184}
7185
7186static int igb_vlan_rx_add_vid(struct net_device *netdev,
7187 __be16 proto, u16 vid)
7188{
7189 struct igb_adapter *adapter = netdev_priv(netdev);
7190 struct e1000_hw *hw = &adapter->hw;
7191 int pf_id = adapter->vfs_allocated_count;
7192
7193 /* attempt to add filter to vlvf array */
7194 igb_vlvf_set(adapter, vid, true, pf_id);
7195
7196 /* add the filter since PF can receive vlans w/o entry in vlvf */
7197 igb_vfta_set(hw, vid, true);
7198
7199 set_bit(vid, adapter->active_vlans);
7200
7201 return 0;
7202}
7203
7204static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7205 __be16 proto, u16 vid)
7206{
7207 struct igb_adapter *adapter = netdev_priv(netdev);
7208 struct e1000_hw *hw = &adapter->hw;
7209 int pf_id = adapter->vfs_allocated_count;
7210 s32 err;
7211
7212 /* remove vlan from VLVF table array */
7213 err = igb_vlvf_set(adapter, vid, false, pf_id);
7214
7215 /* if vid was not present in VLVF just remove it from table */
7216 if (err)
7217 igb_vfta_set(hw, vid, false);
7218
7219 clear_bit(vid, adapter->active_vlans);
7220
7221 return 0;
7222}
7223
7224static void igb_restore_vlan(struct igb_adapter *adapter)
7225{
7226 u16 vid;
7227
7228 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7229
7230 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7231 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7232}
7233
7234int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7235{
7236 struct pci_dev *pdev = adapter->pdev;
7237 struct e1000_mac_info *mac = &adapter->hw.mac;
7238
7239 mac->autoneg = 0;
7240
7241 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7242 * for the switch() below to work
7243 */
7244 if ((spd & 1) || (dplx & ~1))
7245 goto err_inval;
7246
7247 /* Fiber NIC's only allow 1000 gbps Full duplex
7248 * and 100Mbps Full duplex for 100baseFx sfp
7249 */
7250 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7251 switch (spd + dplx) {
7252 case SPEED_10 + DUPLEX_HALF:
7253 case SPEED_10 + DUPLEX_FULL:
7254 case SPEED_100 + DUPLEX_HALF:
7255 goto err_inval;
7256 default:
7257 break;
7258 }
7259 }
7260
7261 switch (spd + dplx) {
7262 case SPEED_10 + DUPLEX_HALF:
7263 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7264 break;
7265 case SPEED_10 + DUPLEX_FULL:
7266 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7267 break;
7268 case SPEED_100 + DUPLEX_HALF:
7269 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7270 break;
7271 case SPEED_100 + DUPLEX_FULL:
7272 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7273 break;
7274 case SPEED_1000 + DUPLEX_FULL:
7275 mac->autoneg = 1;
7276 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7277 break;
7278 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7279 default:
7280 goto err_inval;
7281 }
7282
7283 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7284 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7285
7286 return 0;
7287
7288err_inval:
7289 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7290 return -EINVAL;
7291}
7292
7293static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7294 bool runtime)
7295{
7296 struct net_device *netdev = pci_get_drvdata(pdev);
7297 struct igb_adapter *adapter = netdev_priv(netdev);
7298 struct e1000_hw *hw = &adapter->hw;
7299 u32 ctrl, rctl, status;
7300 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7301#ifdef CONFIG_PM
7302 int retval = 0;
7303#endif
7304
7305 netif_device_detach(netdev);
7306
7307 if (netif_running(netdev))
7308 __igb_close(netdev, true);
7309
7310 igb_clear_interrupt_scheme(adapter);
7311
7312#ifdef CONFIG_PM
7313 retval = pci_save_state(pdev);
7314 if (retval)
7315 return retval;
7316#endif
7317
7318 status = rd32(E1000_STATUS);
7319 if (status & E1000_STATUS_LU)
7320 wufc &= ~E1000_WUFC_LNKC;
7321
7322 if (wufc) {
7323 igb_setup_rctl(adapter);
7324 igb_set_rx_mode(netdev);
7325
7326 /* turn on all-multi mode if wake on multicast is enabled */
7327 if (wufc & E1000_WUFC_MC) {
7328 rctl = rd32(E1000_RCTL);
7329 rctl |= E1000_RCTL_MPE;
7330 wr32(E1000_RCTL, rctl);
7331 }
7332
7333 ctrl = rd32(E1000_CTRL);
7334 /* advertise wake from D3Cold */
7335 #define E1000_CTRL_ADVD3WUC 0x00100000
7336 /* phy power management enable */
7337 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7338 ctrl |= E1000_CTRL_ADVD3WUC;
7339 wr32(E1000_CTRL, ctrl);
7340
7341 /* Allow time for pending master requests to run */
7342 igb_disable_pcie_master(hw);
7343
7344 wr32(E1000_WUC, E1000_WUC_PME_EN);
7345 wr32(E1000_WUFC, wufc);
7346 } else {
7347 wr32(E1000_WUC, 0);
7348 wr32(E1000_WUFC, 0);
7349 }
7350
7351 *enable_wake = wufc || adapter->en_mng_pt;
7352 if (!*enable_wake)
7353 igb_power_down_link(adapter);
7354 else
7355 igb_power_up_link(adapter);
7356
7357 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7358 * would have already happened in close and is redundant.
7359 */
7360 igb_release_hw_control(adapter);
7361
7362 pci_disable_device(pdev);
7363
7364 return 0;
7365}
7366
7367#ifdef CONFIG_PM
7368#ifdef CONFIG_PM_SLEEP
7369static int igb_suspend(struct device *dev)
7370{
7371 int retval;
7372 bool wake;
7373 struct pci_dev *pdev = to_pci_dev(dev);
7374
7375 retval = __igb_shutdown(pdev, &wake, 0);
7376 if (retval)
7377 return retval;
7378
7379 if (wake) {
7380 pci_prepare_to_sleep(pdev);
7381 } else {
7382 pci_wake_from_d3(pdev, false);
7383 pci_set_power_state(pdev, PCI_D3hot);
7384 }
7385
7386 return 0;
7387}
7388#endif /* CONFIG_PM_SLEEP */
7389
7390static int igb_resume(struct device *dev)
7391{
7392 struct pci_dev *pdev = to_pci_dev(dev);
7393 struct net_device *netdev = pci_get_drvdata(pdev);
7394 struct igb_adapter *adapter = netdev_priv(netdev);
7395 struct e1000_hw *hw = &adapter->hw;
7396 u32 err;
7397
7398 pci_set_power_state(pdev, PCI_D0);
7399 pci_restore_state(pdev);
7400 pci_save_state(pdev);
7401
7402 if (!pci_device_is_present(pdev))
7403 return -ENODEV;
7404 err = pci_enable_device_mem(pdev);
7405 if (err) {
7406 dev_err(&pdev->dev,
7407 "igb: Cannot enable PCI device from suspend\n");
7408 return err;
7409 }
7410 pci_set_master(pdev);
7411
7412 pci_enable_wake(pdev, PCI_D3hot, 0);
7413 pci_enable_wake(pdev, PCI_D3cold, 0);
7414
7415 if (igb_init_interrupt_scheme(adapter, true)) {
7416 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7417 rtnl_unlock();
7418 return -ENOMEM;
7419 }
7420
7421 igb_reset(adapter);
7422
7423 /* let the f/w know that the h/w is now under the control of the
7424 * driver.
7425 */
7426 igb_get_hw_control(adapter);
7427
7428 wr32(E1000_WUS, ~0);
7429
7430 if (netdev->flags & IFF_UP) {
7431 rtnl_lock();
7432 err = __igb_open(netdev, true);
7433 rtnl_unlock();
7434 if (err)
7435 return err;
7436 }
7437
7438 netif_device_attach(netdev);
7439 return 0;
7440}
7441
7442static int igb_runtime_idle(struct device *dev)
7443{
7444 struct pci_dev *pdev = to_pci_dev(dev);
7445 struct net_device *netdev = pci_get_drvdata(pdev);
7446 struct igb_adapter *adapter = netdev_priv(netdev);
7447
7448 if (!igb_has_link(adapter))
7449 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7450
7451 return -EBUSY;
7452}
7453
7454static int igb_runtime_suspend(struct device *dev)
7455{
7456 struct pci_dev *pdev = to_pci_dev(dev);
7457 int retval;
7458 bool wake;
7459
7460 retval = __igb_shutdown(pdev, &wake, 1);
7461 if (retval)
7462 return retval;
7463
7464 if (wake) {
7465 pci_prepare_to_sleep(pdev);
7466 } else {
7467 pci_wake_from_d3(pdev, false);
7468 pci_set_power_state(pdev, PCI_D3hot);
7469 }
7470
7471 return 0;
7472}
7473
7474static int igb_runtime_resume(struct device *dev)
7475{
7476 return igb_resume(dev);
7477}
7478#endif /* CONFIG_PM */
7479
7480static void igb_shutdown(struct pci_dev *pdev)
7481{
7482 bool wake;
7483
7484 __igb_shutdown(pdev, &wake, 0);
7485
7486 if (system_state == SYSTEM_POWER_OFF) {
7487 pci_wake_from_d3(pdev, wake);
7488 pci_set_power_state(pdev, PCI_D3hot);
7489 }
7490}
7491
7492#ifdef CONFIG_PCI_IOV
7493static int igb_sriov_reinit(struct pci_dev *dev)
7494{
7495 struct net_device *netdev = pci_get_drvdata(dev);
7496 struct igb_adapter *adapter = netdev_priv(netdev);
7497 struct pci_dev *pdev = adapter->pdev;
7498
7499 rtnl_lock();
7500
7501 if (netif_running(netdev))
7502 igb_close(netdev);
7503 else
7504 igb_reset(adapter);
7505
7506 igb_clear_interrupt_scheme(adapter);
7507
7508 igb_init_queue_configuration(adapter);
7509
7510 if (igb_init_interrupt_scheme(adapter, true)) {
7511 rtnl_unlock();
7512 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7513 return -ENOMEM;
7514 }
7515
7516 if (netif_running(netdev))
7517 igb_open(netdev);
7518
7519 rtnl_unlock();
7520
7521 return 0;
7522}
7523
7524static int igb_pci_disable_sriov(struct pci_dev *dev)
7525{
7526 int err = igb_disable_sriov(dev);
7527
7528 if (!err)
7529 err = igb_sriov_reinit(dev);
7530
7531 return err;
7532}
7533
7534static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7535{
7536 int err = igb_enable_sriov(dev, num_vfs);
7537
7538 if (err)
7539 goto out;
7540
7541 err = igb_sriov_reinit(dev);
7542 if (!err)
7543 return num_vfs;
7544
7545out:
7546 return err;
7547}
7548
7549#endif
7550static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7551{
7552#ifdef CONFIG_PCI_IOV
7553 if (num_vfs == 0)
7554 return igb_pci_disable_sriov(dev);
7555 else
7556 return igb_pci_enable_sriov(dev, num_vfs);
7557#endif
7558 return 0;
7559}
7560
7561#ifdef CONFIG_NET_POLL_CONTROLLER
7562/* Polling 'interrupt' - used by things like netconsole to send skbs
7563 * without having to re-enable interrupts. It's not called while
7564 * the interrupt routine is executing.
7565 */
7566static void igb_netpoll(struct net_device *netdev)
7567{
7568 struct igb_adapter *adapter = netdev_priv(netdev);
7569 struct e1000_hw *hw = &adapter->hw;
7570 struct igb_q_vector *q_vector;
7571 int i;
7572
7573 for (i = 0; i < adapter->num_q_vectors; i++) {
7574 q_vector = adapter->q_vector[i];
7575 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7576 wr32(E1000_EIMC, q_vector->eims_value);
7577 else
7578 igb_irq_disable(adapter);
7579 napi_schedule(&q_vector->napi);
7580 }
7581}
7582#endif /* CONFIG_NET_POLL_CONTROLLER */
7583
7584/**
7585 * igb_io_error_detected - called when PCI error is detected
7586 * @pdev: Pointer to PCI device
7587 * @state: The current pci connection state
7588 *
7589 * This function is called after a PCI bus error affecting
7590 * this device has been detected.
7591 **/
7592static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7593 pci_channel_state_t state)
7594{
7595 struct net_device *netdev = pci_get_drvdata(pdev);
7596 struct igb_adapter *adapter = netdev_priv(netdev);
7597
7598 netif_device_detach(netdev);
7599
7600 if (state == pci_channel_io_perm_failure)
7601 return PCI_ERS_RESULT_DISCONNECT;
7602
7603 if (netif_running(netdev))
7604 igb_down(adapter);
7605 pci_disable_device(pdev);
7606
7607 /* Request a slot slot reset. */
7608 return PCI_ERS_RESULT_NEED_RESET;
7609}
7610
7611/**
7612 * igb_io_slot_reset - called after the pci bus has been reset.
7613 * @pdev: Pointer to PCI device
7614 *
7615 * Restart the card from scratch, as if from a cold-boot. Implementation
7616 * resembles the first-half of the igb_resume routine.
7617 **/
7618static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7619{
7620 struct net_device *netdev = pci_get_drvdata(pdev);
7621 struct igb_adapter *adapter = netdev_priv(netdev);
7622 struct e1000_hw *hw = &adapter->hw;
7623 pci_ers_result_t result;
7624 int err;
7625
7626 if (pci_enable_device_mem(pdev)) {
7627 dev_err(&pdev->dev,
7628 "Cannot re-enable PCI device after reset.\n");
7629 result = PCI_ERS_RESULT_DISCONNECT;
7630 } else {
7631 pci_set_master(pdev);
7632 pci_restore_state(pdev);
7633 pci_save_state(pdev);
7634
7635 pci_enable_wake(pdev, PCI_D3hot, 0);
7636 pci_enable_wake(pdev, PCI_D3cold, 0);
7637
7638 igb_reset(adapter);
7639 wr32(E1000_WUS, ~0);
7640 result = PCI_ERS_RESULT_RECOVERED;
7641 }
7642
7643 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7644 if (err) {
7645 dev_err(&pdev->dev,
7646 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7647 err);
7648 /* non-fatal, continue */
7649 }
7650
7651 return result;
7652}
7653
7654/**
7655 * igb_io_resume - called when traffic can start flowing again.
7656 * @pdev: Pointer to PCI device
7657 *
7658 * This callback is called when the error recovery driver tells us that
7659 * its OK to resume normal operation. Implementation resembles the
7660 * second-half of the igb_resume routine.
7661 */
7662static void igb_io_resume(struct pci_dev *pdev)
7663{
7664 struct net_device *netdev = pci_get_drvdata(pdev);
7665 struct igb_adapter *adapter = netdev_priv(netdev);
7666
7667 if (netif_running(netdev)) {
7668 if (igb_up(adapter)) {
7669 dev_err(&pdev->dev, "igb_up failed after reset\n");
7670 return;
7671 }
7672 }
7673
7674 netif_device_attach(netdev);
7675
7676 /* let the f/w know that the h/w is now under the control of the
7677 * driver.
7678 */
7679 igb_get_hw_control(adapter);
7680}
7681
7682static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7683 u8 qsel)
7684{
7685 u32 rar_low, rar_high;
7686 struct e1000_hw *hw = &adapter->hw;
7687
7688 /* HW expects these in little endian so we reverse the byte order
7689 * from network order (big endian) to little endian
7690 */
7691 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7692 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7693 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7694
7695 /* Indicate to hardware the Address is Valid. */
7696 rar_high |= E1000_RAH_AV;
7697
7698 if (hw->mac.type == e1000_82575)
7699 rar_high |= E1000_RAH_POOL_1 * qsel;
7700 else
7701 rar_high |= E1000_RAH_POOL_1 << qsel;
7702
7703 wr32(E1000_RAL(index), rar_low);
7704 wrfl();
7705 wr32(E1000_RAH(index), rar_high);
7706 wrfl();
7707}
7708
7709static int igb_set_vf_mac(struct igb_adapter *adapter,
7710 int vf, unsigned char *mac_addr)
7711{
7712 struct e1000_hw *hw = &adapter->hw;
7713 /* VF MAC addresses start at end of receive addresses and moves
7714 * towards the first, as a result a collision should not be possible
7715 */
7716 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7717
7718 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7719
7720 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7721
7722 return 0;
7723}
7724
7725static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7726{
7727 struct igb_adapter *adapter = netdev_priv(netdev);
7728 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7729 return -EINVAL;
7730 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7731 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7732 dev_info(&adapter->pdev->dev,
7733 "Reload the VF driver to make this change effective.");
7734 if (test_bit(__IGB_DOWN, &adapter->state)) {
7735 dev_warn(&adapter->pdev->dev,
7736 "The VF MAC address has been set, but the PF device is not up.\n");
7737 dev_warn(&adapter->pdev->dev,
7738 "Bring the PF device up before attempting to use the VF device.\n");
7739 }
7740 return igb_set_vf_mac(adapter, vf, mac);
7741}
7742
7743static int igb_link_mbps(int internal_link_speed)
7744{
7745 switch (internal_link_speed) {
7746 case SPEED_100:
7747 return 100;
7748 case SPEED_1000:
7749 return 1000;
7750 default:
7751 return 0;
7752 }
7753}
7754
7755static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7756 int link_speed)
7757{
7758 int rf_dec, rf_int;
7759 u32 bcnrc_val;
7760
7761 if (tx_rate != 0) {
7762 /* Calculate the rate factor values to set */
7763 rf_int = link_speed / tx_rate;
7764 rf_dec = (link_speed - (rf_int * tx_rate));
7765 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7766 tx_rate;
7767
7768 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7769 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7770 E1000_RTTBCNRC_RF_INT_MASK);
7771 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7772 } else {
7773 bcnrc_val = 0;
7774 }
7775
7776 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7777 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7778 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7779 */
7780 wr32(E1000_RTTBCNRM, 0x14);
7781 wr32(E1000_RTTBCNRC, bcnrc_val);
7782}
7783
7784static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7785{
7786 int actual_link_speed, i;
7787 bool reset_rate = false;
7788
7789 /* VF TX rate limit was not set or not supported */
7790 if ((adapter->vf_rate_link_speed == 0) ||
7791 (adapter->hw.mac.type != e1000_82576))
7792 return;
7793
7794 actual_link_speed = igb_link_mbps(adapter->link_speed);
7795 if (actual_link_speed != adapter->vf_rate_link_speed) {
7796 reset_rate = true;
7797 adapter->vf_rate_link_speed = 0;
7798 dev_info(&adapter->pdev->dev,
7799 "Link speed has been changed. VF Transmit rate is disabled\n");
7800 }
7801
7802 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7803 if (reset_rate)
7804 adapter->vf_data[i].tx_rate = 0;
7805
7806 igb_set_vf_rate_limit(&adapter->hw, i,
7807 adapter->vf_data[i].tx_rate,
7808 actual_link_speed);
7809 }
7810}
7811
7812static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7813 int min_tx_rate, int max_tx_rate)
7814{
7815 struct igb_adapter *adapter = netdev_priv(netdev);
7816 struct e1000_hw *hw = &adapter->hw;
7817 int actual_link_speed;
7818
7819 if (hw->mac.type != e1000_82576)
7820 return -EOPNOTSUPP;
7821
7822 if (min_tx_rate)
7823 return -EINVAL;
7824
7825 actual_link_speed = igb_link_mbps(adapter->link_speed);
7826 if ((vf >= adapter->vfs_allocated_count) ||
7827 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7828 (max_tx_rate < 0) ||
7829 (max_tx_rate > actual_link_speed))
7830 return -EINVAL;
7831
7832 adapter->vf_rate_link_speed = actual_link_speed;
7833 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7834 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7835
7836 return 0;
7837}
7838
7839static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7840 bool setting)
7841{
7842 struct igb_adapter *adapter = netdev_priv(netdev);
7843 struct e1000_hw *hw = &adapter->hw;
7844 u32 reg_val, reg_offset;
7845
7846 if (!adapter->vfs_allocated_count)
7847 return -EOPNOTSUPP;
7848
7849 if (vf >= adapter->vfs_allocated_count)
7850 return -EINVAL;
7851
7852 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7853 reg_val = rd32(reg_offset);
7854 if (setting)
7855 reg_val |= ((1 << vf) |
7856 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7857 else
7858 reg_val &= ~((1 << vf) |
7859 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7860 wr32(reg_offset, reg_val);
7861
7862 adapter->vf_data[vf].spoofchk_enabled = setting;
7863 return 0;
7864}
7865
7866static int igb_ndo_get_vf_config(struct net_device *netdev,
7867 int vf, struct ifla_vf_info *ivi)
7868{
7869 struct igb_adapter *adapter = netdev_priv(netdev);
7870 if (vf >= adapter->vfs_allocated_count)
7871 return -EINVAL;
7872 ivi->vf = vf;
7873 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7874 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7875 ivi->min_tx_rate = 0;
7876 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7877 ivi->qos = adapter->vf_data[vf].pf_qos;
7878 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7879 return 0;
7880}
7881
7882static void igb_vmm_control(struct igb_adapter *adapter)
7883{
7884 struct e1000_hw *hw = &adapter->hw;
7885 u32 reg;
7886
7887 switch (hw->mac.type) {
7888 case e1000_82575:
7889 case e1000_i210:
7890 case e1000_i211:
7891 case e1000_i354:
7892 default:
7893 /* replication is not supported for 82575 */
7894 return;
7895 case e1000_82576:
7896 /* notify HW that the MAC is adding vlan tags */
7897 reg = rd32(E1000_DTXCTL);
7898 reg |= E1000_DTXCTL_VLAN_ADDED;
7899 wr32(E1000_DTXCTL, reg);
7900 /* Fall through */
7901 case e1000_82580:
7902 /* enable replication vlan tag stripping */
7903 reg = rd32(E1000_RPLOLR);
7904 reg |= E1000_RPLOLR_STRVLAN;
7905 wr32(E1000_RPLOLR, reg);
7906 /* Fall through */
7907 case e1000_i350:
7908 /* none of the above registers are supported by i350 */
7909 break;
7910 }
7911
7912 if (adapter->vfs_allocated_count) {
7913 igb_vmdq_set_loopback_pf(hw, true);
7914 igb_vmdq_set_replication_pf(hw, true);
7915 igb_vmdq_set_anti_spoofing_pf(hw, true,
7916 adapter->vfs_allocated_count);
7917 } else {
7918 igb_vmdq_set_loopback_pf(hw, false);
7919 igb_vmdq_set_replication_pf(hw, false);
7920 }
7921}
7922
7923static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7924{
7925 struct e1000_hw *hw = &adapter->hw;
7926 u32 dmac_thr;
7927 u16 hwm;
7928
7929 if (hw->mac.type > e1000_82580) {
7930 if (adapter->flags & IGB_FLAG_DMAC) {
7931 u32 reg;
7932
7933 /* force threshold to 0. */
7934 wr32(E1000_DMCTXTH, 0);
7935
7936 /* DMA Coalescing high water mark needs to be greater
7937 * than the Rx threshold. Set hwm to PBA - max frame
7938 * size in 16B units, capping it at PBA - 6KB.
7939 */
7940 hwm = 64 * pba - adapter->max_frame_size / 16;
7941 if (hwm < 64 * (pba - 6))
7942 hwm = 64 * (pba - 6);
7943 reg = rd32(E1000_FCRTC);
7944 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7945 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7946 & E1000_FCRTC_RTH_COAL_MASK);
7947 wr32(E1000_FCRTC, reg);
7948
7949 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7950 * frame size, capping it at PBA - 10KB.
7951 */
7952 dmac_thr = pba - adapter->max_frame_size / 512;
7953 if (dmac_thr < pba - 10)
7954 dmac_thr = pba - 10;
7955 reg = rd32(E1000_DMACR);
7956 reg &= ~E1000_DMACR_DMACTHR_MASK;
7957 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7958 & E1000_DMACR_DMACTHR_MASK);
7959
7960 /* transition to L0x or L1 if available..*/
7961 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7962
7963 /* watchdog timer= +-1000 usec in 32usec intervals */
7964 reg |= (1000 >> 5);
7965
7966 /* Disable BMC-to-OS Watchdog Enable */
7967 if (hw->mac.type != e1000_i354)
7968 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7969
7970 wr32(E1000_DMACR, reg);
7971
7972 /* no lower threshold to disable
7973 * coalescing(smart fifb)-UTRESH=0
7974 */
7975 wr32(E1000_DMCRTRH, 0);
7976
7977 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7978
7979 wr32(E1000_DMCTLX, reg);
7980
7981 /* free space in tx packet buffer to wake from
7982 * DMA coal
7983 */
7984 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7985 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7986
7987 /* make low power state decision controlled
7988 * by DMA coal
7989 */
7990 reg = rd32(E1000_PCIEMISC);
7991 reg &= ~E1000_PCIEMISC_LX_DECISION;
7992 wr32(E1000_PCIEMISC, reg);
7993 } /* endif adapter->dmac is not disabled */
7994 } else if (hw->mac.type == e1000_82580) {
7995 u32 reg = rd32(E1000_PCIEMISC);
7996
7997 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7998 wr32(E1000_DMACR, 0);
7999 }
8000}
8001
8002/**
8003 * igb_read_i2c_byte - Reads 8 bit word over I2C
8004 * @hw: pointer to hardware structure
8005 * @byte_offset: byte offset to read
8006 * @dev_addr: device address
8007 * @data: value read
8008 *
8009 * Performs byte read operation over I2C interface at
8010 * a specified device address.
8011 **/
8012s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8013 u8 dev_addr, u8 *data)
8014{
8015 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8016 struct i2c_client *this_client = adapter->i2c_client;
8017 s32 status;
8018 u16 swfw_mask = 0;
8019
8020 if (!this_client)
8021 return E1000_ERR_I2C;
8022
8023 swfw_mask = E1000_SWFW_PHY0_SM;
8024
8025 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8026 return E1000_ERR_SWFW_SYNC;
8027
8028 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8029 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8030
8031 if (status < 0)
8032 return E1000_ERR_I2C;
8033 else {
8034 *data = status;
8035 return 0;
8036 }
8037}
8038
8039/**
8040 * igb_write_i2c_byte - Writes 8 bit word over I2C
8041 * @hw: pointer to hardware structure
8042 * @byte_offset: byte offset to write
8043 * @dev_addr: device address
8044 * @data: value to write
8045 *
8046 * Performs byte write operation over I2C interface at
8047 * a specified device address.
8048 **/
8049s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8050 u8 dev_addr, u8 data)
8051{
8052 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8053 struct i2c_client *this_client = adapter->i2c_client;
8054 s32 status;
8055 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8056
8057 if (!this_client)
8058 return E1000_ERR_I2C;
8059
8060 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8061 return E1000_ERR_SWFW_SYNC;
8062 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8063 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8064
8065 if (status)
8066 return E1000_ERR_I2C;
8067 else
8068 return 0;
8069
8070}
8071
8072int igb_reinit_queues(struct igb_adapter *adapter)
8073{
8074 struct net_device *netdev = adapter->netdev;
8075 struct pci_dev *pdev = adapter->pdev;
8076 int err = 0;
8077
8078 if (netif_running(netdev))
8079 igb_close(netdev);
8080
8081 igb_reset_interrupt_capability(adapter);
8082
8083 if (igb_init_interrupt_scheme(adapter, true)) {
8084 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8085 return -ENOMEM;
8086 }
8087
8088 if (netif_running(netdev))
8089 err = igb_open(netdev);
8090
8091 return err;
8092}
8093/* igb_main.c */
This page took 0.051292 seconds and 5 git commands to generate.