Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <linux/time.h>
21#include <linux/bitops.h>
22#include <linux/etherdevice.h>
23#include <asm/unaligned.h>
24
25#include "hw.h"
26#include "hw-ops.h"
27#include "ar9003_mac.h"
28#include "ar9003_mci.h"
29#include "ar9003_phy.h"
30#include "ath9k.h"
31
32static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
33
34MODULE_AUTHOR("Atheros Communications");
35MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37MODULE_LICENSE("Dual BSD/GPL");
38
39static void ath9k_hw_set_clockrate(struct ath_hw *ah)
40{
41 struct ath_common *common = ath9k_hw_common(ah);
42 struct ath9k_channel *chan = ah->curchan;
43 unsigned int clockrate;
44
45 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
46 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
47 clockrate = 117;
48 else if (!chan) /* should really check for CCK instead */
49 clockrate = ATH9K_CLOCK_RATE_CCK;
50 else if (IS_CHAN_2GHZ(chan))
51 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
52 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
53 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
54 else
55 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
56
57 if (chan) {
58 if (IS_CHAN_HT40(chan))
59 clockrate *= 2;
60 if (IS_CHAN_HALF_RATE(chan))
61 clockrate /= 2;
62 if (IS_CHAN_QUARTER_RATE(chan))
63 clockrate /= 4;
64 }
65
66 common->clockrate = clockrate;
67}
68
69static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
70{
71 struct ath_common *common = ath9k_hw_common(ah);
72
73 return usecs * common->clockrate;
74}
75
76bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77{
78 int i;
79
80 BUG_ON(timeout < AH_TIME_QUANTUM);
81
82 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83 if ((REG_READ(ah, reg) & mask) == val)
84 return true;
85
86 udelay(AH_TIME_QUANTUM);
87 }
88
89 ath_dbg(ath9k_hw_common(ah), ANY,
90 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91 timeout, reg, REG_READ(ah, reg), mask, val);
92
93 return false;
94}
95EXPORT_SYMBOL(ath9k_hw_wait);
96
97void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
98 int hw_delay)
99{
100 hw_delay /= 10;
101
102 if (IS_CHAN_HALF_RATE(chan))
103 hw_delay *= 2;
104 else if (IS_CHAN_QUARTER_RATE(chan))
105 hw_delay *= 4;
106
107 udelay(hw_delay + BASE_ACTIVATE_DELAY);
108}
109
110void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
111 int column, unsigned int *writecnt)
112{
113 int r;
114
115 ENABLE_REGWRITE_BUFFER(ah);
116 for (r = 0; r < array->ia_rows; r++) {
117 REG_WRITE(ah, INI_RA(array, r, 0),
118 INI_RA(array, r, column));
119 DO_DELAY(*writecnt);
120 }
121 REGWRITE_BUFFER_FLUSH(ah);
122}
123
124u32 ath9k_hw_reverse_bits(u32 val, u32 n)
125{
126 u32 retval;
127 int i;
128
129 for (i = 0, retval = 0; i < n; i++) {
130 retval = (retval << 1) | (val & 1);
131 val >>= 1;
132 }
133 return retval;
134}
135
136u16 ath9k_hw_computetxtime(struct ath_hw *ah,
137 u8 phy, int kbps,
138 u32 frameLen, u16 rateix,
139 bool shortPreamble)
140{
141 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
142
143 if (kbps == 0)
144 return 0;
145
146 switch (phy) {
147 case WLAN_RC_PHY_CCK:
148 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
149 if (shortPreamble)
150 phyTime >>= 1;
151 numBits = frameLen << 3;
152 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
153 break;
154 case WLAN_RC_PHY_OFDM:
155 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
156 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
157 numBits = OFDM_PLCP_BITS + (frameLen << 3);
158 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159 txTime = OFDM_SIFS_TIME_QUARTER
160 + OFDM_PREAMBLE_TIME_QUARTER
161 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
162 } else if (ah->curchan &&
163 IS_CHAN_HALF_RATE(ah->curchan)) {
164 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
165 numBits = OFDM_PLCP_BITS + (frameLen << 3);
166 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
167 txTime = OFDM_SIFS_TIME_HALF +
168 OFDM_PREAMBLE_TIME_HALF
169 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
170 } else {
171 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
172 numBits = OFDM_PLCP_BITS + (frameLen << 3);
173 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
174 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
175 + (numSymbols * OFDM_SYMBOL_TIME);
176 }
177 break;
178 default:
179 ath_err(ath9k_hw_common(ah),
180 "Unknown phy %u (rate ix %u)\n", phy, rateix);
181 txTime = 0;
182 break;
183 }
184
185 return txTime;
186}
187EXPORT_SYMBOL(ath9k_hw_computetxtime);
188
189void ath9k_hw_get_channel_centers(struct ath_hw *ah,
190 struct ath9k_channel *chan,
191 struct chan_centers *centers)
192{
193 int8_t extoff;
194
195 if (!IS_CHAN_HT40(chan)) {
196 centers->ctl_center = centers->ext_center =
197 centers->synth_center = chan->channel;
198 return;
199 }
200
201 if (IS_CHAN_HT40PLUS(chan)) {
202 centers->synth_center =
203 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
204 extoff = 1;
205 } else {
206 centers->synth_center =
207 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
208 extoff = -1;
209 }
210
211 centers->ctl_center =
212 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
213 /* 25 MHz spacing is supported by hw but not on upper layers */
214 centers->ext_center =
215 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
216}
217
218/******************/
219/* Chip Revisions */
220/******************/
221
222static void ath9k_hw_read_revisions(struct ath_hw *ah)
223{
224 u32 val;
225
226 if (ah->get_mac_revision)
227 ah->hw_version.macRev = ah->get_mac_revision();
228
229 switch (ah->hw_version.devid) {
230 case AR5416_AR9100_DEVID:
231 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
232 break;
233 case AR9300_DEVID_AR9330:
234 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
235 if (!ah->get_mac_revision) {
236 val = REG_READ(ah, AR_SREV);
237 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
238 }
239 return;
240 case AR9300_DEVID_AR9340:
241 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
242 return;
243 case AR9300_DEVID_QCA955X:
244 ah->hw_version.macVersion = AR_SREV_VERSION_9550;
245 return;
246 case AR9300_DEVID_AR953X:
247 ah->hw_version.macVersion = AR_SREV_VERSION_9531;
248 return;
249 case AR9300_DEVID_QCA956X:
250 ah->hw_version.macVersion = AR_SREV_VERSION_9561;
251 }
252
253 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
254
255 if (val == 0xFF) {
256 val = REG_READ(ah, AR_SREV);
257 ah->hw_version.macVersion =
258 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
259 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
260
261 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
262 ah->is_pciexpress = true;
263 else
264 ah->is_pciexpress = (val &
265 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
266 } else {
267 if (!AR_SREV_9100(ah))
268 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
269
270 ah->hw_version.macRev = val & AR_SREV_REVISION;
271
272 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
273 ah->is_pciexpress = true;
274 }
275}
276
277/************************************/
278/* HW Attach, Detach, Init Routines */
279/************************************/
280
281static void ath9k_hw_disablepcie(struct ath_hw *ah)
282{
283 if (!AR_SREV_5416(ah))
284 return;
285
286 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
287 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
288 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
289 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
290 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
292 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
293 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
294 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
295
296 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
297}
298
299/* This should work for all families including legacy */
300static bool ath9k_hw_chip_test(struct ath_hw *ah)
301{
302 struct ath_common *common = ath9k_hw_common(ah);
303 u32 regAddr[2] = { AR_STA_ID0 };
304 u32 regHold[2];
305 static const u32 patternData[4] = {
306 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
307 };
308 int i, j, loop_max;
309
310 if (!AR_SREV_9300_20_OR_LATER(ah)) {
311 loop_max = 2;
312 regAddr[1] = AR_PHY_BASE + (8 << 2);
313 } else
314 loop_max = 1;
315
316 for (i = 0; i < loop_max; i++) {
317 u32 addr = regAddr[i];
318 u32 wrData, rdData;
319
320 regHold[i] = REG_READ(ah, addr);
321 for (j = 0; j < 0x100; j++) {
322 wrData = (j << 16) | j;
323 REG_WRITE(ah, addr, wrData);
324 rdData = REG_READ(ah, addr);
325 if (rdData != wrData) {
326 ath_err(common,
327 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
328 addr, wrData, rdData);
329 return false;
330 }
331 }
332 for (j = 0; j < 4; j++) {
333 wrData = patternData[j];
334 REG_WRITE(ah, addr, wrData);
335 rdData = REG_READ(ah, addr);
336 if (wrData != rdData) {
337 ath_err(common,
338 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
339 addr, wrData, rdData);
340 return false;
341 }
342 }
343 REG_WRITE(ah, regAddr[i], regHold[i]);
344 }
345 udelay(100);
346
347 return true;
348}
349
350static void ath9k_hw_init_config(struct ath_hw *ah)
351{
352 struct ath_common *common = ath9k_hw_common(ah);
353
354 ah->config.dma_beacon_response_time = 1;
355 ah->config.sw_beacon_response_time = 6;
356 ah->config.cwm_ignore_extcca = 0;
357 ah->config.analog_shiftreg = 1;
358
359 ah->config.rx_intr_mitigation = true;
360
361 if (AR_SREV_9300_20_OR_LATER(ah)) {
362 ah->config.rimt_last = 500;
363 ah->config.rimt_first = 2000;
364 } else {
365 ah->config.rimt_last = 250;
366 ah->config.rimt_first = 700;
367 }
368
369 /*
370 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
371 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
372 * This means we use it for all AR5416 devices, and the few
373 * minor PCI AR9280 devices out there.
374 *
375 * Serialization is required because these devices do not handle
376 * well the case of two concurrent reads/writes due to the latency
377 * involved. During one read/write another read/write can be issued
378 * on another CPU while the previous read/write may still be working
379 * on our hardware, if we hit this case the hardware poops in a loop.
380 * We prevent this by serializing reads and writes.
381 *
382 * This issue is not present on PCI-Express devices or pre-AR5416
383 * devices (legacy, 802.11abg).
384 */
385 if (num_possible_cpus() > 1)
386 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
387
388 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
389 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
390 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
391 !ah->is_pciexpress)) {
392 ah->config.serialize_regmode = SER_REG_MODE_ON;
393 } else {
394 ah->config.serialize_regmode = SER_REG_MODE_OFF;
395 }
396 }
397
398 ath_dbg(common, RESET, "serialize_regmode is %d\n",
399 ah->config.serialize_regmode);
400
401 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
402 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
403 else
404 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
405}
406
407static void ath9k_hw_init_defaults(struct ath_hw *ah)
408{
409 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
410
411 regulatory->country_code = CTRY_DEFAULT;
412 regulatory->power_limit = MAX_RATE_POWER;
413
414 ah->hw_version.magic = AR5416_MAGIC;
415 ah->hw_version.subvendorid = 0;
416
417 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
418 AR_STA_ID1_MCAST_KSRCH;
419 if (AR_SREV_9100(ah))
420 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
421
422 ah->slottime = ATH9K_SLOT_TIME_9;
423 ah->globaltxtimeout = (u32) -1;
424 ah->power_mode = ATH9K_PM_UNDEFINED;
425 ah->htc_reset_init = true;
426
427 ah->tpc_enabled = false;
428
429 ah->ani_function = ATH9K_ANI_ALL;
430 if (!AR_SREV_9300_20_OR_LATER(ah))
431 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
432
433 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
434 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
435 else
436 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
437}
438
439static int ath9k_hw_init_macaddr(struct ath_hw *ah)
440{
441 struct ath_common *common = ath9k_hw_common(ah);
442 u32 sum;
443 int i;
444 u16 eeval;
445 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
446
447 sum = 0;
448 for (i = 0; i < 3; i++) {
449 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
450 sum += eeval;
451 common->macaddr[2 * i] = eeval >> 8;
452 common->macaddr[2 * i + 1] = eeval & 0xff;
453 }
454 if (!is_valid_ether_addr(common->macaddr)) {
455 ath_err(common,
456 "eeprom contains invalid mac address: %pM\n",
457 common->macaddr);
458
459 random_ether_addr(common->macaddr);
460 ath_err(common,
461 "random mac address will be used: %pM\n",
462 common->macaddr);
463 }
464
465 return 0;
466}
467
468static int ath9k_hw_post_init(struct ath_hw *ah)
469{
470 struct ath_common *common = ath9k_hw_common(ah);
471 int ecode;
472
473 if (common->bus_ops->ath_bus_type != ATH_USB) {
474 if (!ath9k_hw_chip_test(ah))
475 return -ENODEV;
476 }
477
478 if (!AR_SREV_9300_20_OR_LATER(ah)) {
479 ecode = ar9002_hw_rf_claim(ah);
480 if (ecode != 0)
481 return ecode;
482 }
483
484 ecode = ath9k_hw_eeprom_init(ah);
485 if (ecode != 0)
486 return ecode;
487
488 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
489 ah->eep_ops->get_eeprom_ver(ah),
490 ah->eep_ops->get_eeprom_rev(ah));
491
492 ath9k_hw_ani_init(ah);
493
494 /*
495 * EEPROM needs to be initialized before we do this.
496 * This is required for regulatory compliance.
497 */
498 if (AR_SREV_9300_20_OR_LATER(ah)) {
499 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
500 if ((regdmn & 0xF0) == CTL_FCC) {
501 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
502 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
503 }
504 }
505
506 return 0;
507}
508
509static int ath9k_hw_attach_ops(struct ath_hw *ah)
510{
511 if (!AR_SREV_9300_20_OR_LATER(ah))
512 return ar9002_hw_attach_ops(ah);
513
514 ar9003_hw_attach_ops(ah);
515 return 0;
516}
517
518/* Called for all hardware families */
519static int __ath9k_hw_init(struct ath_hw *ah)
520{
521 struct ath_common *common = ath9k_hw_common(ah);
522 int r = 0;
523
524 ath9k_hw_read_revisions(ah);
525
526 switch (ah->hw_version.macVersion) {
527 case AR_SREV_VERSION_5416_PCI:
528 case AR_SREV_VERSION_5416_PCIE:
529 case AR_SREV_VERSION_9160:
530 case AR_SREV_VERSION_9100:
531 case AR_SREV_VERSION_9280:
532 case AR_SREV_VERSION_9285:
533 case AR_SREV_VERSION_9287:
534 case AR_SREV_VERSION_9271:
535 case AR_SREV_VERSION_9300:
536 case AR_SREV_VERSION_9330:
537 case AR_SREV_VERSION_9485:
538 case AR_SREV_VERSION_9340:
539 case AR_SREV_VERSION_9462:
540 case AR_SREV_VERSION_9550:
541 case AR_SREV_VERSION_9565:
542 case AR_SREV_VERSION_9531:
543 case AR_SREV_VERSION_9561:
544 break;
545 default:
546 ath_err(common,
547 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
548 ah->hw_version.macVersion, ah->hw_version.macRev);
549 return -EOPNOTSUPP;
550 }
551
552 /*
553 * Read back AR_WA into a permanent copy and set bits 14 and 17.
554 * We need to do this to avoid RMW of this register. We cannot
555 * read the reg when chip is asleep.
556 */
557 if (AR_SREV_9300_20_OR_LATER(ah)) {
558 ah->WARegVal = REG_READ(ah, AR_WA);
559 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
560 AR_WA_ASPM_TIMER_BASED_DISABLE);
561 }
562
563 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
564 ath_err(common, "Couldn't reset chip\n");
565 return -EIO;
566 }
567
568 if (AR_SREV_9565(ah)) {
569 ah->WARegVal |= AR_WA_BIT22;
570 REG_WRITE(ah, AR_WA, ah->WARegVal);
571 }
572
573 ath9k_hw_init_defaults(ah);
574 ath9k_hw_init_config(ah);
575
576 r = ath9k_hw_attach_ops(ah);
577 if (r)
578 return r;
579
580 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
581 ath_err(common, "Couldn't wakeup chip\n");
582 return -EIO;
583 }
584
585 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
586 AR_SREV_9330(ah) || AR_SREV_9550(ah))
587 ah->is_pciexpress = false;
588
589 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
590 ath9k_hw_init_cal_settings(ah);
591
592 if (!ah->is_pciexpress)
593 ath9k_hw_disablepcie(ah);
594
595 r = ath9k_hw_post_init(ah);
596 if (r)
597 return r;
598
599 ath9k_hw_init_mode_gain_regs(ah);
600 r = ath9k_hw_fill_cap_info(ah);
601 if (r)
602 return r;
603
604 r = ath9k_hw_init_macaddr(ah);
605 if (r) {
606 ath_err(common, "Failed to initialize MAC address\n");
607 return r;
608 }
609
610 ath9k_hw_init_hang_checks(ah);
611
612 common->state = ATH_HW_INITIALIZED;
613
614 return 0;
615}
616
617int ath9k_hw_init(struct ath_hw *ah)
618{
619 int ret;
620 struct ath_common *common = ath9k_hw_common(ah);
621
622 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
623 switch (ah->hw_version.devid) {
624 case AR5416_DEVID_PCI:
625 case AR5416_DEVID_PCIE:
626 case AR5416_AR9100_DEVID:
627 case AR9160_DEVID_PCI:
628 case AR9280_DEVID_PCI:
629 case AR9280_DEVID_PCIE:
630 case AR9285_DEVID_PCIE:
631 case AR9287_DEVID_PCI:
632 case AR9287_DEVID_PCIE:
633 case AR2427_DEVID_PCIE:
634 case AR9300_DEVID_PCIE:
635 case AR9300_DEVID_AR9485_PCIE:
636 case AR9300_DEVID_AR9330:
637 case AR9300_DEVID_AR9340:
638 case AR9300_DEVID_QCA955X:
639 case AR9300_DEVID_AR9580:
640 case AR9300_DEVID_AR9462:
641 case AR9485_DEVID_AR1111:
642 case AR9300_DEVID_AR9565:
643 case AR9300_DEVID_AR953X:
644 case AR9300_DEVID_QCA956X:
645 break;
646 default:
647 if (common->bus_ops->ath_bus_type == ATH_USB)
648 break;
649 ath_err(common, "Hardware device ID 0x%04x not supported\n",
650 ah->hw_version.devid);
651 return -EOPNOTSUPP;
652 }
653
654 ret = __ath9k_hw_init(ah);
655 if (ret) {
656 ath_err(common,
657 "Unable to initialize hardware; initialization status: %d\n",
658 ret);
659 return ret;
660 }
661
662 ath_dynack_init(ah);
663
664 return 0;
665}
666EXPORT_SYMBOL(ath9k_hw_init);
667
668static void ath9k_hw_init_qos(struct ath_hw *ah)
669{
670 ENABLE_REGWRITE_BUFFER(ah);
671
672 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
673 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
674
675 REG_WRITE(ah, AR_QOS_NO_ACK,
676 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
677 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
678 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
679
680 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
681 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
682 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
683 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
684 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
685
686 REGWRITE_BUFFER_FLUSH(ah);
687}
688
689u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
690{
691 struct ath_common *common = ath9k_hw_common(ah);
692 int i = 0;
693
694 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
695 udelay(100);
696 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
697
698 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
699
700 udelay(100);
701
702 if (WARN_ON_ONCE(i >= 100)) {
703 ath_err(common, "PLL4 meaurement not done\n");
704 break;
705 }
706
707 i++;
708 }
709
710 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
711}
712EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
713
714static void ath9k_hw_init_pll(struct ath_hw *ah,
715 struct ath9k_channel *chan)
716{
717 u32 pll;
718
719 pll = ath9k_hw_compute_pll_control(ah, chan);
720
721 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
722 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
723 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
724 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
725 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
726 AR_CH0_DPLL2_KD, 0x40);
727 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
728 AR_CH0_DPLL2_KI, 0x4);
729
730 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
731 AR_CH0_BB_DPLL1_REFDIV, 0x5);
732 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
733 AR_CH0_BB_DPLL1_NINI, 0x58);
734 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
735 AR_CH0_BB_DPLL1_NFRAC, 0x0);
736
737 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
738 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
739 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
740 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
741 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
742 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
743
744 /* program BB PLL phase_shift to 0x6 */
745 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
746 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
747
748 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
749 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
750 udelay(1000);
751 } else if (AR_SREV_9330(ah)) {
752 u32 ddr_dpll2, pll_control2, kd;
753
754 if (ah->is_clk_25mhz) {
755 ddr_dpll2 = 0x18e82f01;
756 pll_control2 = 0xe04a3d;
757 kd = 0x1d;
758 } else {
759 ddr_dpll2 = 0x19e82f01;
760 pll_control2 = 0x886666;
761 kd = 0x3d;
762 }
763
764 /* program DDR PLL ki and kd value */
765 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
766
767 /* program DDR PLL phase_shift */
768 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
769 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
770
771 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
772 pll | AR_RTC_9300_PLL_BYPASS);
773 udelay(1000);
774
775 /* program refdiv, nint, frac to RTC register */
776 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
777
778 /* program BB PLL kd and ki value */
779 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
780 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
781
782 /* program BB PLL phase_shift */
783 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
784 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
785 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
786 AR_SREV_9561(ah)) {
787 u32 regval, pll2_divint, pll2_divfrac, refdiv;
788
789 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
790 pll | AR_RTC_9300_SOC_PLL_BYPASS);
791 udelay(1000);
792
793 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
794 udelay(100);
795
796 if (ah->is_clk_25mhz) {
797 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
798 pll2_divint = 0x1c;
799 pll2_divfrac = 0xa3d2;
800 refdiv = 1;
801 } else {
802 pll2_divint = 0x54;
803 pll2_divfrac = 0x1eb85;
804 refdiv = 3;
805 }
806 } else {
807 if (AR_SREV_9340(ah)) {
808 pll2_divint = 88;
809 pll2_divfrac = 0;
810 refdiv = 5;
811 } else {
812 pll2_divint = 0x11;
813 pll2_divfrac = (AR_SREV_9531(ah) ||
814 AR_SREV_9561(ah)) ?
815 0x26665 : 0x26666;
816 refdiv = 1;
817 }
818 }
819
820 regval = REG_READ(ah, AR_PHY_PLL_MODE);
821 if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
822 regval |= (0x1 << 22);
823 else
824 regval |= (0x1 << 16);
825 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
826 udelay(100);
827
828 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
829 (pll2_divint << 18) | pll2_divfrac);
830 udelay(100);
831
832 regval = REG_READ(ah, AR_PHY_PLL_MODE);
833 if (AR_SREV_9340(ah))
834 regval = (regval & 0x80071fff) |
835 (0x1 << 30) |
836 (0x1 << 13) |
837 (0x4 << 26) |
838 (0x18 << 19);
839 else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
840 regval = (regval & 0x01c00fff) |
841 (0x1 << 31) |
842 (0x2 << 29) |
843 (0xa << 25) |
844 (0x1 << 19);
845
846 if (AR_SREV_9531(ah))
847 regval |= (0x6 << 12);
848 } else
849 regval = (regval & 0x80071fff) |
850 (0x3 << 30) |
851 (0x1 << 13) |
852 (0x4 << 26) |
853 (0x60 << 19);
854 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
855
856 if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
857 REG_WRITE(ah, AR_PHY_PLL_MODE,
858 REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
859 else
860 REG_WRITE(ah, AR_PHY_PLL_MODE,
861 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
862
863 udelay(1000);
864 }
865
866 if (AR_SREV_9565(ah))
867 pll |= 0x40000;
868 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
869
870 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
871 AR_SREV_9550(ah))
872 udelay(1000);
873
874 /* Switch the core clock for ar9271 to 117Mhz */
875 if (AR_SREV_9271(ah)) {
876 udelay(500);
877 REG_WRITE(ah, 0x50040, 0x304);
878 }
879
880 udelay(RTC_PLL_SETTLE_DELAY);
881
882 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
883}
884
885static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
886 enum nl80211_iftype opmode)
887{
888 u32 sync_default = AR_INTR_SYNC_DEFAULT;
889 u32 imr_reg = AR_IMR_TXERR |
890 AR_IMR_TXURN |
891 AR_IMR_RXERR |
892 AR_IMR_RXORN |
893 AR_IMR_BCNMISC;
894
895 if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
896 AR_SREV_9561(ah))
897 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
898
899 if (AR_SREV_9300_20_OR_LATER(ah)) {
900 imr_reg |= AR_IMR_RXOK_HP;
901 if (ah->config.rx_intr_mitigation)
902 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
903 else
904 imr_reg |= AR_IMR_RXOK_LP;
905
906 } else {
907 if (ah->config.rx_intr_mitigation)
908 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
909 else
910 imr_reg |= AR_IMR_RXOK;
911 }
912
913 if (ah->config.tx_intr_mitigation)
914 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
915 else
916 imr_reg |= AR_IMR_TXOK;
917
918 ENABLE_REGWRITE_BUFFER(ah);
919
920 REG_WRITE(ah, AR_IMR, imr_reg);
921 ah->imrs2_reg |= AR_IMR_S2_GTT;
922 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
923
924 if (!AR_SREV_9100(ah)) {
925 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
926 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
927 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
928 }
929
930 REGWRITE_BUFFER_FLUSH(ah);
931
932 if (AR_SREV_9300_20_OR_LATER(ah)) {
933 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
934 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
935 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
936 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
937 }
938}
939
940static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
941{
942 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
943 val = min(val, (u32) 0xFFFF);
944 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
945}
946
947void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
948{
949 u32 val = ath9k_hw_mac_to_clks(ah, us);
950 val = min(val, (u32) 0xFFFF);
951 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
952}
953
954void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
955{
956 u32 val = ath9k_hw_mac_to_clks(ah, us);
957 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
958 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
959}
960
961void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
962{
963 u32 val = ath9k_hw_mac_to_clks(ah, us);
964 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
965 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
966}
967
968static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
969{
970 if (tu > 0xFFFF) {
971 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
972 tu);
973 ah->globaltxtimeout = (u32) -1;
974 return false;
975 } else {
976 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
977 ah->globaltxtimeout = tu;
978 return true;
979 }
980}
981
982void ath9k_hw_init_global_settings(struct ath_hw *ah)
983{
984 struct ath_common *common = ath9k_hw_common(ah);
985 const struct ath9k_channel *chan = ah->curchan;
986 int acktimeout, ctstimeout, ack_offset = 0;
987 int slottime;
988 int sifstime;
989 int rx_lat = 0, tx_lat = 0, eifs = 0;
990 u32 reg;
991
992 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
993 ah->misc_mode);
994
995 if (!chan)
996 return;
997
998 if (ah->misc_mode != 0)
999 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1000
1001 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1002 rx_lat = 41;
1003 else
1004 rx_lat = 37;
1005 tx_lat = 54;
1006
1007 if (IS_CHAN_5GHZ(chan))
1008 sifstime = 16;
1009 else
1010 sifstime = 10;
1011
1012 if (IS_CHAN_HALF_RATE(chan)) {
1013 eifs = 175;
1014 rx_lat *= 2;
1015 tx_lat *= 2;
1016 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1017 tx_lat += 11;
1018
1019 sifstime = 32;
1020 ack_offset = 16;
1021 slottime = 13;
1022 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1023 eifs = 340;
1024 rx_lat = (rx_lat * 4) - 1;
1025 tx_lat *= 4;
1026 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1027 tx_lat += 22;
1028
1029 sifstime = 64;
1030 ack_offset = 32;
1031 slottime = 21;
1032 } else {
1033 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1034 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1035 reg = AR_USEC_ASYNC_FIFO;
1036 } else {
1037 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1038 common->clockrate;
1039 reg = REG_READ(ah, AR_USEC);
1040 }
1041 rx_lat = MS(reg, AR_USEC_RX_LAT);
1042 tx_lat = MS(reg, AR_USEC_TX_LAT);
1043
1044 slottime = ah->slottime;
1045 }
1046
1047 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1048 slottime += 3 * ah->coverage_class;
1049 acktimeout = slottime + sifstime + ack_offset;
1050 ctstimeout = acktimeout;
1051
1052 /*
1053 * Workaround for early ACK timeouts, add an offset to match the
1054 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1055 * This was initially only meant to work around an issue with delayed
1056 * BA frames in some implementations, but it has been found to fix ACK
1057 * timeout issues in other cases as well.
1058 */
1059 if (IS_CHAN_2GHZ(chan) &&
1060 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1061 acktimeout += 64 - sifstime - ah->slottime;
1062 ctstimeout += 48 - sifstime - ah->slottime;
1063 }
1064
1065 if (ah->dynack.enabled) {
1066 acktimeout = ah->dynack.ackto;
1067 ctstimeout = acktimeout;
1068 slottime = (acktimeout - 3) / 2;
1069 } else {
1070 ah->dynack.ackto = acktimeout;
1071 }
1072
1073 ath9k_hw_set_sifs_time(ah, sifstime);
1074 ath9k_hw_setslottime(ah, slottime);
1075 ath9k_hw_set_ack_timeout(ah, acktimeout);
1076 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1077 if (ah->globaltxtimeout != (u32) -1)
1078 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1079
1080 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1081 REG_RMW(ah, AR_USEC,
1082 (common->clockrate - 1) |
1083 SM(rx_lat, AR_USEC_RX_LAT) |
1084 SM(tx_lat, AR_USEC_TX_LAT),
1085 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1086
1087}
1088EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1089
1090void ath9k_hw_deinit(struct ath_hw *ah)
1091{
1092 struct ath_common *common = ath9k_hw_common(ah);
1093
1094 if (common->state < ATH_HW_INITIALIZED)
1095 return;
1096
1097 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1098}
1099EXPORT_SYMBOL(ath9k_hw_deinit);
1100
1101/*******/
1102/* INI */
1103/*******/
1104
1105u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1106{
1107 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1108
1109 if (IS_CHAN_2GHZ(chan))
1110 ctl |= CTL_11G;
1111 else
1112 ctl |= CTL_11A;
1113
1114 return ctl;
1115}
1116
1117/****************************************/
1118/* Reset and Channel Switching Routines */
1119/****************************************/
1120
1121static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1122{
1123 struct ath_common *common = ath9k_hw_common(ah);
1124 int txbuf_size;
1125
1126 ENABLE_REGWRITE_BUFFER(ah);
1127
1128 /*
1129 * set AHB_MODE not to do cacheline prefetches
1130 */
1131 if (!AR_SREV_9300_20_OR_LATER(ah))
1132 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1133
1134 /*
1135 * let mac dma reads be in 128 byte chunks
1136 */
1137 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1138
1139 REGWRITE_BUFFER_FLUSH(ah);
1140
1141 /*
1142 * Restore TX Trigger Level to its pre-reset value.
1143 * The initial value depends on whether aggregation is enabled, and is
1144 * adjusted whenever underruns are detected.
1145 */
1146 if (!AR_SREV_9300_20_OR_LATER(ah))
1147 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1148
1149 ENABLE_REGWRITE_BUFFER(ah);
1150
1151 /*
1152 * let mac dma writes be in 128 byte chunks
1153 */
1154 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1155
1156 /*
1157 * Setup receive FIFO threshold to hold off TX activities
1158 */
1159 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1160
1161 if (AR_SREV_9300_20_OR_LATER(ah)) {
1162 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1163 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1164
1165 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1166 ah->caps.rx_status_len);
1167 }
1168
1169 /*
1170 * reduce the number of usable entries in PCU TXBUF to avoid
1171 * wrap around issues.
1172 */
1173 if (AR_SREV_9285(ah)) {
1174 /* For AR9285 the number of Fifos are reduced to half.
1175 * So set the usable tx buf size also to half to
1176 * avoid data/delimiter underruns
1177 */
1178 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1179 } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1180 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1181 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1182 } else {
1183 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1184 }
1185
1186 if (!AR_SREV_9271(ah))
1187 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1188
1189 REGWRITE_BUFFER_FLUSH(ah);
1190
1191 if (AR_SREV_9300_20_OR_LATER(ah))
1192 ath9k_hw_reset_txstatus_ring(ah);
1193}
1194
1195static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1196{
1197 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1198 u32 set = AR_STA_ID1_KSRCH_MODE;
1199
1200 switch (opmode) {
1201 case NL80211_IFTYPE_ADHOC:
1202 if (!AR_SREV_9340_13(ah)) {
1203 set |= AR_STA_ID1_ADHOC;
1204 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1205 break;
1206 }
1207 /* fall through */
1208 case NL80211_IFTYPE_MESH_POINT:
1209 case NL80211_IFTYPE_AP:
1210 set |= AR_STA_ID1_STA_AP;
1211 /* fall through */
1212 case NL80211_IFTYPE_STATION:
1213 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1214 break;
1215 default:
1216 if (!ah->is_monitoring)
1217 set = 0;
1218 break;
1219 }
1220 REG_RMW(ah, AR_STA_ID1, set, mask);
1221}
1222
1223void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1224 u32 *coef_mantissa, u32 *coef_exponent)
1225{
1226 u32 coef_exp, coef_man;
1227
1228 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1229 if ((coef_scaled >> coef_exp) & 0x1)
1230 break;
1231
1232 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1233
1234 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1235
1236 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1237 *coef_exponent = coef_exp - 16;
1238}
1239
1240/* AR9330 WAR:
1241 * call external reset function to reset WMAC if:
1242 * - doing a cold reset
1243 * - we have pending frames in the TX queues.
1244 */
1245static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1246{
1247 int i, npend = 0;
1248
1249 for (i = 0; i < AR_NUM_QCU; i++) {
1250 npend = ath9k_hw_numtxpending(ah, i);
1251 if (npend)
1252 break;
1253 }
1254
1255 if (ah->external_reset &&
1256 (npend || type == ATH9K_RESET_COLD)) {
1257 int reset_err = 0;
1258
1259 ath_dbg(ath9k_hw_common(ah), RESET,
1260 "reset MAC via external reset\n");
1261
1262 reset_err = ah->external_reset();
1263 if (reset_err) {
1264 ath_err(ath9k_hw_common(ah),
1265 "External reset failed, err=%d\n",
1266 reset_err);
1267 return false;
1268 }
1269
1270 REG_WRITE(ah, AR_RTC_RESET, 1);
1271 }
1272
1273 return true;
1274}
1275
1276static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1277{
1278 u32 rst_flags;
1279 u32 tmpReg;
1280
1281 if (AR_SREV_9100(ah)) {
1282 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1283 AR_RTC_DERIVED_CLK_PERIOD, 1);
1284 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1285 }
1286
1287 ENABLE_REGWRITE_BUFFER(ah);
1288
1289 if (AR_SREV_9300_20_OR_LATER(ah)) {
1290 REG_WRITE(ah, AR_WA, ah->WARegVal);
1291 udelay(10);
1292 }
1293
1294 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1295 AR_RTC_FORCE_WAKE_ON_INT);
1296
1297 if (AR_SREV_9100(ah)) {
1298 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1299 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1300 } else {
1301 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1302 if (AR_SREV_9340(ah))
1303 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1304 else
1305 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1306 AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1307
1308 if (tmpReg) {
1309 u32 val;
1310 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1311
1312 val = AR_RC_HOSTIF;
1313 if (!AR_SREV_9300_20_OR_LATER(ah))
1314 val |= AR_RC_AHB;
1315 REG_WRITE(ah, AR_RC, val);
1316
1317 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1318 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1319
1320 rst_flags = AR_RTC_RC_MAC_WARM;
1321 if (type == ATH9K_RESET_COLD)
1322 rst_flags |= AR_RTC_RC_MAC_COLD;
1323 }
1324
1325 if (AR_SREV_9330(ah)) {
1326 if (!ath9k_hw_ar9330_reset_war(ah, type))
1327 return false;
1328 }
1329
1330 if (ath9k_hw_mci_is_enabled(ah))
1331 ar9003_mci_check_gpm_offset(ah);
1332
1333 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1334
1335 REGWRITE_BUFFER_FLUSH(ah);
1336
1337 if (AR_SREV_9300_20_OR_LATER(ah))
1338 udelay(50);
1339 else if (AR_SREV_9100(ah))
1340 mdelay(10);
1341 else
1342 udelay(100);
1343
1344 REG_WRITE(ah, AR_RTC_RC, 0);
1345 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1346 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1347 return false;
1348 }
1349
1350 if (!AR_SREV_9100(ah))
1351 REG_WRITE(ah, AR_RC, 0);
1352
1353 if (AR_SREV_9100(ah))
1354 udelay(50);
1355
1356 return true;
1357}
1358
1359static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1360{
1361 ENABLE_REGWRITE_BUFFER(ah);
1362
1363 if (AR_SREV_9300_20_OR_LATER(ah)) {
1364 REG_WRITE(ah, AR_WA, ah->WARegVal);
1365 udelay(10);
1366 }
1367
1368 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1369 AR_RTC_FORCE_WAKE_ON_INT);
1370
1371 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1372 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1373
1374 REG_WRITE(ah, AR_RTC_RESET, 0);
1375
1376 REGWRITE_BUFFER_FLUSH(ah);
1377
1378 udelay(2);
1379
1380 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1381 REG_WRITE(ah, AR_RC, 0);
1382
1383 REG_WRITE(ah, AR_RTC_RESET, 1);
1384
1385 if (!ath9k_hw_wait(ah,
1386 AR_RTC_STATUS,
1387 AR_RTC_STATUS_M,
1388 AR_RTC_STATUS_ON,
1389 AH_WAIT_TIMEOUT)) {
1390 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1391 return false;
1392 }
1393
1394 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1395}
1396
1397static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1398{
1399 bool ret = false;
1400
1401 if (AR_SREV_9300_20_OR_LATER(ah)) {
1402 REG_WRITE(ah, AR_WA, ah->WARegVal);
1403 udelay(10);
1404 }
1405
1406 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1407 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1408
1409 if (!ah->reset_power_on)
1410 type = ATH9K_RESET_POWER_ON;
1411
1412 switch (type) {
1413 case ATH9K_RESET_POWER_ON:
1414 ret = ath9k_hw_set_reset_power_on(ah);
1415 if (ret)
1416 ah->reset_power_on = true;
1417 break;
1418 case ATH9K_RESET_WARM:
1419 case ATH9K_RESET_COLD:
1420 ret = ath9k_hw_set_reset(ah, type);
1421 break;
1422 default:
1423 break;
1424 }
1425
1426 return ret;
1427}
1428
1429static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1430 struct ath9k_channel *chan)
1431{
1432 int reset_type = ATH9K_RESET_WARM;
1433
1434 if (AR_SREV_9280(ah)) {
1435 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1436 reset_type = ATH9K_RESET_POWER_ON;
1437 else
1438 reset_type = ATH9K_RESET_COLD;
1439 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1440 (REG_READ(ah, AR_CR) & AR_CR_RXE))
1441 reset_type = ATH9K_RESET_COLD;
1442
1443 if (!ath9k_hw_set_reset_reg(ah, reset_type))
1444 return false;
1445
1446 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1447 return false;
1448
1449 ah->chip_fullsleep = false;
1450
1451 if (AR_SREV_9330(ah))
1452 ar9003_hw_internal_regulator_apply(ah);
1453 ath9k_hw_init_pll(ah, chan);
1454
1455 return true;
1456}
1457
1458static bool ath9k_hw_channel_change(struct ath_hw *ah,
1459 struct ath9k_channel *chan)
1460{
1461 struct ath_common *common = ath9k_hw_common(ah);
1462 struct ath9k_hw_capabilities *pCap = &ah->caps;
1463 bool band_switch = false, mode_diff = false;
1464 u8 ini_reloaded = 0;
1465 u32 qnum;
1466 int r;
1467
1468 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1469 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1470 band_switch = !!(flags_diff & CHANNEL_5GHZ);
1471 mode_diff = !!(flags_diff & ~CHANNEL_HT);
1472 }
1473
1474 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1475 if (ath9k_hw_numtxpending(ah, qnum)) {
1476 ath_dbg(common, QUEUE,
1477 "Transmit frames pending on queue %d\n", qnum);
1478 return false;
1479 }
1480 }
1481
1482 if (!ath9k_hw_rfbus_req(ah)) {
1483 ath_err(common, "Could not kill baseband RX\n");
1484 return false;
1485 }
1486
1487 if (band_switch || mode_diff) {
1488 ath9k_hw_mark_phy_inactive(ah);
1489 udelay(5);
1490
1491 if (band_switch)
1492 ath9k_hw_init_pll(ah, chan);
1493
1494 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1495 ath_err(common, "Failed to do fast channel change\n");
1496 return false;
1497 }
1498 }
1499
1500 ath9k_hw_set_channel_regs(ah, chan);
1501
1502 r = ath9k_hw_rf_set_freq(ah, chan);
1503 if (r) {
1504 ath_err(common, "Failed to set channel\n");
1505 return false;
1506 }
1507 ath9k_hw_set_clockrate(ah);
1508 ath9k_hw_apply_txpower(ah, chan, false);
1509
1510 ath9k_hw_set_delta_slope(ah, chan);
1511 ath9k_hw_spur_mitigate_freq(ah, chan);
1512
1513 if (band_switch || ini_reloaded)
1514 ah->eep_ops->set_board_values(ah, chan);
1515
1516 ath9k_hw_init_bb(ah, chan);
1517 ath9k_hw_rfbus_done(ah);
1518
1519 if (band_switch || ini_reloaded) {
1520 ah->ah_flags |= AH_FASTCC;
1521 ath9k_hw_init_cal(ah, chan);
1522 ah->ah_flags &= ~AH_FASTCC;
1523 }
1524
1525 return true;
1526}
1527
1528static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1529{
1530 u32 gpio_mask = ah->gpio_mask;
1531 int i;
1532
1533 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1534 if (!(gpio_mask & 1))
1535 continue;
1536
1537 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1538 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1539 }
1540}
1541
1542void ath9k_hw_check_nav(struct ath_hw *ah)
1543{
1544 struct ath_common *common = ath9k_hw_common(ah);
1545 u32 val;
1546
1547 val = REG_READ(ah, AR_NAV);
1548 if (val != 0xdeadbeef && val > 0x7fff) {
1549 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1550 REG_WRITE(ah, AR_NAV, 0);
1551 }
1552}
1553EXPORT_SYMBOL(ath9k_hw_check_nav);
1554
1555bool ath9k_hw_check_alive(struct ath_hw *ah)
1556{
1557 int count = 50;
1558 u32 reg, last_val;
1559
1560 if (AR_SREV_9300(ah))
1561 return !ath9k_hw_detect_mac_hang(ah);
1562
1563 if (AR_SREV_9285_12_OR_LATER(ah))
1564 return true;
1565
1566 last_val = REG_READ(ah, AR_OBS_BUS_1);
1567 do {
1568 reg = REG_READ(ah, AR_OBS_BUS_1);
1569 if (reg != last_val)
1570 return true;
1571
1572 udelay(1);
1573 last_val = reg;
1574 if ((reg & 0x7E7FFFEF) == 0x00702400)
1575 continue;
1576
1577 switch (reg & 0x7E000B00) {
1578 case 0x1E000000:
1579 case 0x52000B00:
1580 case 0x18000B00:
1581 continue;
1582 default:
1583 return true;
1584 }
1585 } while (count-- > 0);
1586
1587 return false;
1588}
1589EXPORT_SYMBOL(ath9k_hw_check_alive);
1590
1591static void ath9k_hw_init_mfp(struct ath_hw *ah)
1592{
1593 /* Setup MFP options for CCMP */
1594 if (AR_SREV_9280_20_OR_LATER(ah)) {
1595 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1596 * frames when constructing CCMP AAD. */
1597 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1598 0xc7ff);
1599 if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1600 ah->sw_mgmt_crypto_tx = true;
1601 else
1602 ah->sw_mgmt_crypto_tx = false;
1603 ah->sw_mgmt_crypto_rx = false;
1604 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1605 /* Disable hardware crypto for management frames */
1606 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1607 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1608 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1609 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1610 ah->sw_mgmt_crypto_tx = true;
1611 ah->sw_mgmt_crypto_rx = true;
1612 } else {
1613 ah->sw_mgmt_crypto_tx = true;
1614 ah->sw_mgmt_crypto_rx = true;
1615 }
1616}
1617
1618static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1619 u32 macStaId1, u32 saveDefAntenna)
1620{
1621 struct ath_common *common = ath9k_hw_common(ah);
1622
1623 ENABLE_REGWRITE_BUFFER(ah);
1624
1625 REG_RMW(ah, AR_STA_ID1, macStaId1
1626 | AR_STA_ID1_RTS_USE_DEF
1627 | ah->sta_id1_defaults,
1628 ~AR_STA_ID1_SADH_MASK);
1629 ath_hw_setbssidmask(common);
1630 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1631 ath9k_hw_write_associd(ah);
1632 REG_WRITE(ah, AR_ISR, ~0);
1633 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1634
1635 REGWRITE_BUFFER_FLUSH(ah);
1636
1637 ath9k_hw_set_operating_mode(ah, ah->opmode);
1638}
1639
1640static void ath9k_hw_init_queues(struct ath_hw *ah)
1641{
1642 int i;
1643
1644 ENABLE_REGWRITE_BUFFER(ah);
1645
1646 for (i = 0; i < AR_NUM_DCU; i++)
1647 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1648
1649 REGWRITE_BUFFER_FLUSH(ah);
1650
1651 ah->intr_txqs = 0;
1652 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1653 ath9k_hw_resettxqueue(ah, i);
1654}
1655
1656/*
1657 * For big endian systems turn on swapping for descriptors
1658 */
1659static void ath9k_hw_init_desc(struct ath_hw *ah)
1660{
1661 struct ath_common *common = ath9k_hw_common(ah);
1662
1663 if (AR_SREV_9100(ah)) {
1664 u32 mask;
1665 mask = REG_READ(ah, AR_CFG);
1666 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1667 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1668 mask);
1669 } else {
1670 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1671 REG_WRITE(ah, AR_CFG, mask);
1672 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1673 REG_READ(ah, AR_CFG));
1674 }
1675 } else {
1676 if (common->bus_ops->ath_bus_type == ATH_USB) {
1677 /* Configure AR9271 target WLAN */
1678 if (AR_SREV_9271(ah))
1679 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1680 else
1681 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1682 }
1683#ifdef __BIG_ENDIAN
1684 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1685 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1686 AR_SREV_9561(ah))
1687 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1688 else
1689 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1690#endif
1691 }
1692}
1693
1694/*
1695 * Fast channel change:
1696 * (Change synthesizer based on channel freq without resetting chip)
1697 */
1698static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1699{
1700 struct ath_common *common = ath9k_hw_common(ah);
1701 struct ath9k_hw_capabilities *pCap = &ah->caps;
1702 int ret;
1703
1704 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1705 goto fail;
1706
1707 if (ah->chip_fullsleep)
1708 goto fail;
1709
1710 if (!ah->curchan)
1711 goto fail;
1712
1713 if (chan->channel == ah->curchan->channel)
1714 goto fail;
1715
1716 if ((ah->curchan->channelFlags | chan->channelFlags) &
1717 (CHANNEL_HALF | CHANNEL_QUARTER))
1718 goto fail;
1719
1720 /*
1721 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1722 */
1723 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1724 ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1725 goto fail;
1726
1727 if (!ath9k_hw_check_alive(ah))
1728 goto fail;
1729
1730 /*
1731 * For AR9462, make sure that calibration data for
1732 * re-using are present.
1733 */
1734 if (AR_SREV_9462(ah) && (ah->caldata &&
1735 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1736 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1737 !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1738 goto fail;
1739
1740 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1741 ah->curchan->channel, chan->channel);
1742
1743 ret = ath9k_hw_channel_change(ah, chan);
1744 if (!ret)
1745 goto fail;
1746
1747 if (ath9k_hw_mci_is_enabled(ah))
1748 ar9003_mci_2g5g_switch(ah, false);
1749
1750 ath9k_hw_loadnf(ah, ah->curchan);
1751 ath9k_hw_start_nfcal(ah, true);
1752
1753 if (AR_SREV_9271(ah))
1754 ar9002_hw_load_ani_reg(ah, chan);
1755
1756 return 0;
1757fail:
1758 return -EINVAL;
1759}
1760
1761u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1762{
1763 struct timespec ts;
1764 s64 usec;
1765
1766 if (!cur) {
1767 getrawmonotonic(&ts);
1768 cur = &ts;
1769 }
1770
1771 usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1772 usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1773
1774 return (u32) usec;
1775}
1776EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1777
1778int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1779 struct ath9k_hw_cal_data *caldata, bool fastcc)
1780{
1781 struct ath_common *common = ath9k_hw_common(ah);
1782 u32 saveLedState;
1783 u32 saveDefAntenna;
1784 u32 macStaId1;
1785 u64 tsf = 0;
1786 s64 usec = 0;
1787 int r;
1788 bool start_mci_reset = false;
1789 bool save_fullsleep = ah->chip_fullsleep;
1790
1791 if (ath9k_hw_mci_is_enabled(ah)) {
1792 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1793 if (start_mci_reset)
1794 return 0;
1795 }
1796
1797 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1798 return -EIO;
1799
1800 if (ah->curchan && !ah->chip_fullsleep)
1801 ath9k_hw_getnf(ah, ah->curchan);
1802
1803 ah->caldata = caldata;
1804 if (caldata && (chan->channel != caldata->channel ||
1805 chan->channelFlags != caldata->channelFlags)) {
1806 /* Operating channel changed, reset channel calibration data */
1807 memset(caldata, 0, sizeof(*caldata));
1808 ath9k_init_nfcal_hist_buffer(ah, chan);
1809 } else if (caldata) {
1810 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1811 }
1812 ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1813
1814 if (fastcc) {
1815 r = ath9k_hw_do_fastcc(ah, chan);
1816 if (!r)
1817 return r;
1818 }
1819
1820 if (ath9k_hw_mci_is_enabled(ah))
1821 ar9003_mci_stop_bt(ah, save_fullsleep);
1822
1823 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1824 if (saveDefAntenna == 0)
1825 saveDefAntenna = 1;
1826
1827 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1828
1829 /* Save TSF before chip reset, a cold reset clears it */
1830 tsf = ath9k_hw_gettsf64(ah);
1831 usec = ktime_to_us(ktime_get_raw());
1832
1833 saveLedState = REG_READ(ah, AR_CFG_LED) &
1834 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1835 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1836
1837 ath9k_hw_mark_phy_inactive(ah);
1838
1839 ah->paprd_table_write_done = false;
1840
1841 /* Only required on the first reset */
1842 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1843 REG_WRITE(ah,
1844 AR9271_RESET_POWER_DOWN_CONTROL,
1845 AR9271_RADIO_RF_RST);
1846 udelay(50);
1847 }
1848
1849 if (!ath9k_hw_chip_reset(ah, chan)) {
1850 ath_err(common, "Chip reset failed\n");
1851 return -EINVAL;
1852 }
1853
1854 /* Only required on the first reset */
1855 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1856 ah->htc_reset_init = false;
1857 REG_WRITE(ah,
1858 AR9271_RESET_POWER_DOWN_CONTROL,
1859 AR9271_GATE_MAC_CTL);
1860 udelay(50);
1861 }
1862
1863 /* Restore TSF */
1864 usec = ktime_to_us(ktime_get_raw()) - usec;
1865 ath9k_hw_settsf64(ah, tsf + usec);
1866
1867 if (AR_SREV_9280_20_OR_LATER(ah))
1868 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1869
1870 if (!AR_SREV_9300_20_OR_LATER(ah))
1871 ar9002_hw_enable_async_fifo(ah);
1872
1873 r = ath9k_hw_process_ini(ah, chan);
1874 if (r)
1875 return r;
1876
1877 ath9k_hw_set_rfmode(ah, chan);
1878
1879 if (ath9k_hw_mci_is_enabled(ah))
1880 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1881
1882 /*
1883 * Some AR91xx SoC devices frequently fail to accept TSF writes
1884 * right after the chip reset. When that happens, write a new
1885 * value after the initvals have been applied, with an offset
1886 * based on measured time difference
1887 */
1888 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1889 tsf += 1500;
1890 ath9k_hw_settsf64(ah, tsf);
1891 }
1892
1893 ath9k_hw_init_mfp(ah);
1894
1895 ath9k_hw_set_delta_slope(ah, chan);
1896 ath9k_hw_spur_mitigate_freq(ah, chan);
1897 ah->eep_ops->set_board_values(ah, chan);
1898
1899 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1900
1901 r = ath9k_hw_rf_set_freq(ah, chan);
1902 if (r)
1903 return r;
1904
1905 ath9k_hw_set_clockrate(ah);
1906
1907 ath9k_hw_init_queues(ah);
1908 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1909 ath9k_hw_ani_cache_ini_regs(ah);
1910 ath9k_hw_init_qos(ah);
1911
1912 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1913 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1914
1915 ath9k_hw_init_global_settings(ah);
1916
1917 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1918 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1919 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1920 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1921 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1922 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1923 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1924 }
1925
1926 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1927
1928 ath9k_hw_set_dma(ah);
1929
1930 if (!ath9k_hw_mci_is_enabled(ah))
1931 REG_WRITE(ah, AR_OBS, 8);
1932
1933 if (ah->config.rx_intr_mitigation) {
1934 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1935 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1936 }
1937
1938 if (ah->config.tx_intr_mitigation) {
1939 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1940 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1941 }
1942
1943 ath9k_hw_init_bb(ah, chan);
1944
1945 if (caldata) {
1946 clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1947 clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1948 }
1949 if (!ath9k_hw_init_cal(ah, chan))
1950 return -EIO;
1951
1952 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1953 return -EIO;
1954
1955 ENABLE_REGWRITE_BUFFER(ah);
1956
1957 ath9k_hw_restore_chainmask(ah);
1958 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1959
1960 REGWRITE_BUFFER_FLUSH(ah);
1961
1962 ath9k_hw_gen_timer_start_tsf2(ah);
1963
1964 ath9k_hw_init_desc(ah);
1965
1966 if (ath9k_hw_btcoex_is_enabled(ah))
1967 ath9k_hw_btcoex_enable(ah);
1968
1969 if (ath9k_hw_mci_is_enabled(ah))
1970 ar9003_mci_check_bt(ah);
1971
1972 if (AR_SREV_9300_20_OR_LATER(ah)) {
1973 ath9k_hw_loadnf(ah, chan);
1974 ath9k_hw_start_nfcal(ah, true);
1975 }
1976
1977 if (AR_SREV_9300_20_OR_LATER(ah))
1978 ar9003_hw_bb_watchdog_config(ah);
1979
1980 if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1981 ar9003_hw_disable_phy_restart(ah);
1982
1983 ath9k_hw_apply_gpio_override(ah);
1984
1985 if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1986 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1987
1988 if (ah->hw->conf.radar_enabled) {
1989 /* set HW specific DFS configuration */
1990 ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
1991 ath9k_hw_set_radar_params(ah);
1992 }
1993
1994 return 0;
1995}
1996EXPORT_SYMBOL(ath9k_hw_reset);
1997
1998/******************************/
1999/* Power Management (Chipset) */
2000/******************************/
2001
2002/*
2003 * Notify Power Mgt is disabled in self-generated frames.
2004 * If requested, force chip to sleep.
2005 */
2006static void ath9k_set_power_sleep(struct ath_hw *ah)
2007{
2008 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2009
2010 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2011 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2012 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2013 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2014 /* xxx Required for WLAN only case ? */
2015 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2016 udelay(100);
2017 }
2018
2019 /*
2020 * Clear the RTC force wake bit to allow the
2021 * mac to go to sleep.
2022 */
2023 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2024
2025 if (ath9k_hw_mci_is_enabled(ah))
2026 udelay(100);
2027
2028 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2029 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2030
2031 /* Shutdown chip. Active low */
2032 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2033 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2034 udelay(2);
2035 }
2036
2037 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2038 if (AR_SREV_9300_20_OR_LATER(ah))
2039 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2040}
2041
2042/*
2043 * Notify Power Management is enabled in self-generating
2044 * frames. If request, set power mode of chip to
2045 * auto/normal. Duration in units of 128us (1/8 TU).
2046 */
2047static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2048{
2049 struct ath9k_hw_capabilities *pCap = &ah->caps;
2050
2051 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2052
2053 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2054 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2055 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2056 AR_RTC_FORCE_WAKE_ON_INT);
2057 } else {
2058
2059 /* When chip goes into network sleep, it could be waken
2060 * up by MCI_INT interrupt caused by BT's HW messages
2061 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2062 * rate (~100us). This will cause chip to leave and
2063 * re-enter network sleep mode frequently, which in
2064 * consequence will have WLAN MCI HW to generate lots of
2065 * SYS_WAKING and SYS_SLEEPING messages which will make
2066 * BT CPU to busy to process.
2067 */
2068 if (ath9k_hw_mci_is_enabled(ah))
2069 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2070 AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2071 /*
2072 * Clear the RTC force wake bit to allow the
2073 * mac to go to sleep.
2074 */
2075 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2076
2077 if (ath9k_hw_mci_is_enabled(ah))
2078 udelay(30);
2079 }
2080
2081 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2082 if (AR_SREV_9300_20_OR_LATER(ah))
2083 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2084}
2085
2086static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2087{
2088 u32 val;
2089 int i;
2090
2091 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2092 if (AR_SREV_9300_20_OR_LATER(ah)) {
2093 REG_WRITE(ah, AR_WA, ah->WARegVal);
2094 udelay(10);
2095 }
2096
2097 if ((REG_READ(ah, AR_RTC_STATUS) &
2098 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2099 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2100 return false;
2101 }
2102 if (!AR_SREV_9300_20_OR_LATER(ah))
2103 ath9k_hw_init_pll(ah, NULL);
2104 }
2105 if (AR_SREV_9100(ah))
2106 REG_SET_BIT(ah, AR_RTC_RESET,
2107 AR_RTC_RESET_EN);
2108
2109 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2110 AR_RTC_FORCE_WAKE_EN);
2111 if (AR_SREV_9100(ah))
2112 mdelay(10);
2113 else
2114 udelay(50);
2115
2116 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2117 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2118 if (val == AR_RTC_STATUS_ON)
2119 break;
2120 udelay(50);
2121 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2122 AR_RTC_FORCE_WAKE_EN);
2123 }
2124 if (i == 0) {
2125 ath_err(ath9k_hw_common(ah),
2126 "Failed to wakeup in %uus\n",
2127 POWER_UP_TIME / 20);
2128 return false;
2129 }
2130
2131 if (ath9k_hw_mci_is_enabled(ah))
2132 ar9003_mci_set_power_awake(ah);
2133
2134 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2135
2136 return true;
2137}
2138
2139bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2140{
2141 struct ath_common *common = ath9k_hw_common(ah);
2142 int status = true;
2143 static const char *modes[] = {
2144 "AWAKE",
2145 "FULL-SLEEP",
2146 "NETWORK SLEEP",
2147 "UNDEFINED"
2148 };
2149
2150 if (ah->power_mode == mode)
2151 return status;
2152
2153 ath_dbg(common, RESET, "%s -> %s\n",
2154 modes[ah->power_mode], modes[mode]);
2155
2156 switch (mode) {
2157 case ATH9K_PM_AWAKE:
2158 status = ath9k_hw_set_power_awake(ah);
2159 break;
2160 case ATH9K_PM_FULL_SLEEP:
2161 if (ath9k_hw_mci_is_enabled(ah))
2162 ar9003_mci_set_full_sleep(ah);
2163
2164 ath9k_set_power_sleep(ah);
2165 ah->chip_fullsleep = true;
2166 break;
2167 case ATH9K_PM_NETWORK_SLEEP:
2168 ath9k_set_power_network_sleep(ah);
2169 break;
2170 default:
2171 ath_err(common, "Unknown power mode %u\n", mode);
2172 return false;
2173 }
2174 ah->power_mode = mode;
2175
2176 /*
2177 * XXX: If this warning never comes up after a while then
2178 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2179 * ath9k_hw_setpower() return type void.
2180 */
2181
2182 if (!(ah->ah_flags & AH_UNPLUGGED))
2183 ATH_DBG_WARN_ON_ONCE(!status);
2184
2185 return status;
2186}
2187EXPORT_SYMBOL(ath9k_hw_setpower);
2188
2189/*******************/
2190/* Beacon Handling */
2191/*******************/
2192
2193void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2194{
2195 int flags = 0;
2196
2197 ENABLE_REGWRITE_BUFFER(ah);
2198
2199 switch (ah->opmode) {
2200 case NL80211_IFTYPE_ADHOC:
2201 REG_SET_BIT(ah, AR_TXCFG,
2202 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2203 case NL80211_IFTYPE_MESH_POINT:
2204 case NL80211_IFTYPE_AP:
2205 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2206 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2207 TU_TO_USEC(ah->config.dma_beacon_response_time));
2208 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2209 TU_TO_USEC(ah->config.sw_beacon_response_time));
2210 flags |=
2211 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2212 break;
2213 default:
2214 ath_dbg(ath9k_hw_common(ah), BEACON,
2215 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2216 return;
2217 break;
2218 }
2219
2220 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2221 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2222 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2223
2224 REGWRITE_BUFFER_FLUSH(ah);
2225
2226 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2227}
2228EXPORT_SYMBOL(ath9k_hw_beaconinit);
2229
2230void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2231 const struct ath9k_beacon_state *bs)
2232{
2233 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2234 struct ath9k_hw_capabilities *pCap = &ah->caps;
2235 struct ath_common *common = ath9k_hw_common(ah);
2236
2237 ENABLE_REGWRITE_BUFFER(ah);
2238
2239 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2240 REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2241 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2242
2243 REGWRITE_BUFFER_FLUSH(ah);
2244
2245 REG_RMW_FIELD(ah, AR_RSSI_THR,
2246 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2247
2248 beaconintval = bs->bs_intval;
2249
2250 if (bs->bs_sleepduration > beaconintval)
2251 beaconintval = bs->bs_sleepduration;
2252
2253 dtimperiod = bs->bs_dtimperiod;
2254 if (bs->bs_sleepduration > dtimperiod)
2255 dtimperiod = bs->bs_sleepduration;
2256
2257 if (beaconintval == dtimperiod)
2258 nextTbtt = bs->bs_nextdtim;
2259 else
2260 nextTbtt = bs->bs_nexttbtt;
2261
2262 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2263 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2264 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2265 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2266
2267 ENABLE_REGWRITE_BUFFER(ah);
2268
2269 REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2270 REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2271
2272 REG_WRITE(ah, AR_SLEEP1,
2273 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2274 | AR_SLEEP1_ASSUME_DTIM);
2275
2276 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2277 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2278 else
2279 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2280
2281 REG_WRITE(ah, AR_SLEEP2,
2282 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2283
2284 REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2285 REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2286
2287 REGWRITE_BUFFER_FLUSH(ah);
2288
2289 REG_SET_BIT(ah, AR_TIMER_MODE,
2290 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2291 AR_DTIM_TIMER_EN);
2292
2293 /* TSF Out of Range Threshold */
2294 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2295}
2296EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2297
2298/*******************/
2299/* HW Capabilities */
2300/*******************/
2301
2302static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2303{
2304 eeprom_chainmask &= chip_chainmask;
2305 if (eeprom_chainmask)
2306 return eeprom_chainmask;
2307 else
2308 return chip_chainmask;
2309}
2310
2311/**
2312 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2313 * @ah: the atheros hardware data structure
2314 *
2315 * We enable DFS support upstream on chipsets which have passed a series
2316 * of tests. The testing requirements are going to be documented. Desired
2317 * test requirements are documented at:
2318 *
2319 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2320 *
2321 * Once a new chipset gets properly tested an individual commit can be used
2322 * to document the testing for DFS for that chipset.
2323 */
2324static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2325{
2326
2327 switch (ah->hw_version.macVersion) {
2328 /* for temporary testing DFS with 9280 */
2329 case AR_SREV_VERSION_9280:
2330 /* AR9580 will likely be our first target to get testing on */
2331 case AR_SREV_VERSION_9580:
2332 return true;
2333 default:
2334 return false;
2335 }
2336}
2337
2338int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2339{
2340 struct ath9k_hw_capabilities *pCap = &ah->caps;
2341 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2342 struct ath_common *common = ath9k_hw_common(ah);
2343
2344 u16 eeval;
2345 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2346
2347 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2348 regulatory->current_rd = eeval;
2349
2350 if (ah->opmode != NL80211_IFTYPE_AP &&
2351 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2352 if (regulatory->current_rd == 0x64 ||
2353 regulatory->current_rd == 0x65)
2354 regulatory->current_rd += 5;
2355 else if (regulatory->current_rd == 0x41)
2356 regulatory->current_rd = 0x43;
2357 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2358 regulatory->current_rd);
2359 }
2360
2361 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2362
2363 if (eeval & AR5416_OPFLAGS_11A) {
2364 if (ah->disable_5ghz)
2365 ath_warn(common, "disabling 5GHz band\n");
2366 else
2367 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2368 }
2369
2370 if (eeval & AR5416_OPFLAGS_11G) {
2371 if (ah->disable_2ghz)
2372 ath_warn(common, "disabling 2GHz band\n");
2373 else
2374 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2375 }
2376
2377 if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2378 ath_err(common, "both bands are disabled\n");
2379 return -EINVAL;
2380 }
2381
2382 if (AR_SREV_9485(ah) ||
2383 AR_SREV_9285(ah) ||
2384 AR_SREV_9330(ah) ||
2385 AR_SREV_9565(ah))
2386 pCap->chip_chainmask = 1;
2387 else if (!AR_SREV_9280_20_OR_LATER(ah))
2388 pCap->chip_chainmask = 7;
2389 else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2390 AR_SREV_9340(ah) ||
2391 AR_SREV_9462(ah) ||
2392 AR_SREV_9531(ah))
2393 pCap->chip_chainmask = 3;
2394 else
2395 pCap->chip_chainmask = 7;
2396
2397 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2398 /*
2399 * For AR9271 we will temporarilly uses the rx chainmax as read from
2400 * the EEPROM.
2401 */
2402 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2403 !(eeval & AR5416_OPFLAGS_11A) &&
2404 !(AR_SREV_9271(ah)))
2405 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2406 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2407 else if (AR_SREV_9100(ah))
2408 pCap->rx_chainmask = 0x7;
2409 else
2410 /* Use rx_chainmask from EEPROM. */
2411 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2412
2413 pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2414 pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2415 ah->txchainmask = pCap->tx_chainmask;
2416 ah->rxchainmask = pCap->rx_chainmask;
2417
2418 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2419
2420 /* enable key search for every frame in an aggregate */
2421 if (AR_SREV_9300_20_OR_LATER(ah))
2422 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2423
2424 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2425
2426 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2427 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2428 else
2429 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2430
2431 if (AR_SREV_9271(ah))
2432 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2433 else if (AR_DEVID_7010(ah))
2434 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2435 else if (AR_SREV_9300_20_OR_LATER(ah))
2436 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2437 else if (AR_SREV_9287_11_OR_LATER(ah))
2438 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2439 else if (AR_SREV_9285_12_OR_LATER(ah))
2440 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2441 else if (AR_SREV_9280_20_OR_LATER(ah))
2442 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2443 else
2444 pCap->num_gpio_pins = AR_NUM_GPIO;
2445
2446 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2447 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2448 else
2449 pCap->rts_aggr_limit = (8 * 1024);
2450
2451#ifdef CONFIG_ATH9K_RFKILL
2452 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2453 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2454 ah->rfkill_gpio =
2455 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2456 ah->rfkill_polarity =
2457 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2458
2459 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2460 }
2461#endif
2462 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2463 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2464 else
2465 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2466
2467 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2468 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2469 else
2470 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2471
2472 if (AR_SREV_9300_20_OR_LATER(ah)) {
2473 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2474 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2475 !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2476 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2477
2478 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2479 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2480 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2481 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2482 pCap->txs_len = sizeof(struct ar9003_txs);
2483 } else {
2484 pCap->tx_desc_len = sizeof(struct ath_desc);
2485 if (AR_SREV_9280_20(ah))
2486 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2487 }
2488
2489 if (AR_SREV_9300_20_OR_LATER(ah))
2490 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2491
2492 if (AR_SREV_9561(ah))
2493 ah->ent_mode = 0x3BDA000;
2494 else if (AR_SREV_9300_20_OR_LATER(ah))
2495 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2496
2497 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2498 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2499
2500 if (AR_SREV_9285(ah)) {
2501 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2502 ant_div_ctl1 =
2503 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2504 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2505 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2506 ath_info(common, "Enable LNA combining\n");
2507 }
2508 }
2509 }
2510
2511 if (AR_SREV_9300_20_OR_LATER(ah)) {
2512 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2513 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2514 }
2515
2516 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2517 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2518 if ((ant_div_ctl1 >> 0x6) == 0x3) {
2519 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2520 ath_info(common, "Enable LNA combining\n");
2521 }
2522 }
2523
2524 if (ath9k_hw_dfs_tested(ah))
2525 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2526
2527 tx_chainmask = pCap->tx_chainmask;
2528 rx_chainmask = pCap->rx_chainmask;
2529 while (tx_chainmask || rx_chainmask) {
2530 if (tx_chainmask & BIT(0))
2531 pCap->max_txchains++;
2532 if (rx_chainmask & BIT(0))
2533 pCap->max_rxchains++;
2534
2535 tx_chainmask >>= 1;
2536 rx_chainmask >>= 1;
2537 }
2538
2539 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2540 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2541 pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2542
2543 if (AR_SREV_9462_20_OR_LATER(ah))
2544 pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2545 }
2546
2547 if (AR_SREV_9300_20_OR_LATER(ah) &&
2548 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2549 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2550
2551#ifdef CONFIG_ATH9K_WOW
2552 if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2553 ah->wow.max_patterns = MAX_NUM_PATTERN;
2554 else
2555 ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2556#endif
2557
2558 return 0;
2559}
2560
2561/****************************/
2562/* GPIO / RFKILL / Antennae */
2563/****************************/
2564
2565static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2566 u32 gpio, u32 type)
2567{
2568 int addr;
2569 u32 gpio_shift, tmp;
2570
2571 if (gpio > 11)
2572 addr = AR_GPIO_OUTPUT_MUX3;
2573 else if (gpio > 5)
2574 addr = AR_GPIO_OUTPUT_MUX2;
2575 else
2576 addr = AR_GPIO_OUTPUT_MUX1;
2577
2578 gpio_shift = (gpio % 6) * 5;
2579
2580 if (AR_SREV_9280_20_OR_LATER(ah)
2581 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2582 REG_RMW(ah, addr, (type << gpio_shift),
2583 (0x1f << gpio_shift));
2584 } else {
2585 tmp = REG_READ(ah, addr);
2586 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2587 tmp &= ~(0x1f << gpio_shift);
2588 tmp |= (type << gpio_shift);
2589 REG_WRITE(ah, addr, tmp);
2590 }
2591}
2592
2593void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2594{
2595 u32 gpio_shift;
2596
2597 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2598
2599 if (AR_DEVID_7010(ah)) {
2600 gpio_shift = gpio;
2601 REG_RMW(ah, AR7010_GPIO_OE,
2602 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2603 (AR7010_GPIO_OE_MASK << gpio_shift));
2604 return;
2605 }
2606
2607 gpio_shift = gpio << 1;
2608 REG_RMW(ah,
2609 AR_GPIO_OE_OUT,
2610 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2611 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2612}
2613EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2614
2615u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2616{
2617#define MS_REG_READ(x, y) \
2618 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2619
2620 if (gpio >= ah->caps.num_gpio_pins)
2621 return 0xffffffff;
2622
2623 if (AR_DEVID_7010(ah)) {
2624 u32 val;
2625 val = REG_READ(ah, AR7010_GPIO_IN);
2626 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2627 } else if (AR_SREV_9300_20_OR_LATER(ah))
2628 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2629 AR_GPIO_BIT(gpio)) != 0;
2630 else if (AR_SREV_9271(ah))
2631 return MS_REG_READ(AR9271, gpio) != 0;
2632 else if (AR_SREV_9287_11_OR_LATER(ah))
2633 return MS_REG_READ(AR9287, gpio) != 0;
2634 else if (AR_SREV_9285_12_OR_LATER(ah))
2635 return MS_REG_READ(AR9285, gpio) != 0;
2636 else if (AR_SREV_9280_20_OR_LATER(ah))
2637 return MS_REG_READ(AR928X, gpio) != 0;
2638 else
2639 return MS_REG_READ(AR, gpio) != 0;
2640}
2641EXPORT_SYMBOL(ath9k_hw_gpio_get);
2642
2643void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2644 u32 ah_signal_type)
2645{
2646 u32 gpio_shift;
2647
2648 if (AR_DEVID_7010(ah)) {
2649 gpio_shift = gpio;
2650 REG_RMW(ah, AR7010_GPIO_OE,
2651 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2652 (AR7010_GPIO_OE_MASK << gpio_shift));
2653 return;
2654 }
2655
2656 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2657 gpio_shift = 2 * gpio;
2658 REG_RMW(ah,
2659 AR_GPIO_OE_OUT,
2660 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2661 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2662}
2663EXPORT_SYMBOL(ath9k_hw_cfg_output);
2664
2665void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2666{
2667 if (AR_DEVID_7010(ah)) {
2668 val = val ? 0 : 1;
2669 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2670 AR_GPIO_BIT(gpio));
2671 return;
2672 }
2673
2674 if (AR_SREV_9271(ah))
2675 val = ~val;
2676
2677 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2678 AR_GPIO_BIT(gpio));
2679}
2680EXPORT_SYMBOL(ath9k_hw_set_gpio);
2681
2682void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2683{
2684 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2685}
2686EXPORT_SYMBOL(ath9k_hw_setantenna);
2687
2688/*********************/
2689/* General Operation */
2690/*********************/
2691
2692u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2693{
2694 u32 bits = REG_READ(ah, AR_RX_FILTER);
2695 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2696
2697 if (phybits & AR_PHY_ERR_RADAR)
2698 bits |= ATH9K_RX_FILTER_PHYRADAR;
2699 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2700 bits |= ATH9K_RX_FILTER_PHYERR;
2701
2702 return bits;
2703}
2704EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2705
2706void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2707{
2708 u32 phybits;
2709
2710 ENABLE_REGWRITE_BUFFER(ah);
2711
2712 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2713 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2714
2715 REG_WRITE(ah, AR_RX_FILTER, bits);
2716
2717 phybits = 0;
2718 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2719 phybits |= AR_PHY_ERR_RADAR;
2720 if (bits & ATH9K_RX_FILTER_PHYERR)
2721 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2722 REG_WRITE(ah, AR_PHY_ERR, phybits);
2723
2724 if (phybits)
2725 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2726 else
2727 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2728
2729 REGWRITE_BUFFER_FLUSH(ah);
2730}
2731EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2732
2733bool ath9k_hw_phy_disable(struct ath_hw *ah)
2734{
2735 if (ath9k_hw_mci_is_enabled(ah))
2736 ar9003_mci_bt_gain_ctrl(ah);
2737
2738 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2739 return false;
2740
2741 ath9k_hw_init_pll(ah, NULL);
2742 ah->htc_reset_init = true;
2743 return true;
2744}
2745EXPORT_SYMBOL(ath9k_hw_phy_disable);
2746
2747bool ath9k_hw_disable(struct ath_hw *ah)
2748{
2749 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2750 return false;
2751
2752 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2753 return false;
2754
2755 ath9k_hw_init_pll(ah, NULL);
2756 return true;
2757}
2758EXPORT_SYMBOL(ath9k_hw_disable);
2759
2760static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2761{
2762 enum eeprom_param gain_param;
2763
2764 if (IS_CHAN_2GHZ(chan))
2765 gain_param = EEP_ANTENNA_GAIN_2G;
2766 else
2767 gain_param = EEP_ANTENNA_GAIN_5G;
2768
2769 return ah->eep_ops->get_eeprom(ah, gain_param);
2770}
2771
2772void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2773 bool test)
2774{
2775 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2776 struct ieee80211_channel *channel;
2777 int chan_pwr, new_pwr, max_gain;
2778 int ant_gain, ant_reduction = 0;
2779
2780 if (!chan)
2781 return;
2782
2783 channel = chan->chan;
2784 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2785 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2786 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2787
2788 ant_gain = get_antenna_gain(ah, chan);
2789 if (ant_gain > max_gain)
2790 ant_reduction = ant_gain - max_gain;
2791
2792 ah->eep_ops->set_txpower(ah, chan,
2793 ath9k_regd_get_ctl(reg, chan),
2794 ant_reduction, new_pwr, test);
2795}
2796
2797void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2798{
2799 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2800 struct ath9k_channel *chan = ah->curchan;
2801 struct ieee80211_channel *channel = chan->chan;
2802
2803 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2804 if (test)
2805 channel->max_power = MAX_RATE_POWER / 2;
2806
2807 ath9k_hw_apply_txpower(ah, chan, test);
2808
2809 if (test)
2810 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2811}
2812EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2813
2814void ath9k_hw_setopmode(struct ath_hw *ah)
2815{
2816 ath9k_hw_set_operating_mode(ah, ah->opmode);
2817}
2818EXPORT_SYMBOL(ath9k_hw_setopmode);
2819
2820void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2821{
2822 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2823 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2824}
2825EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2826
2827void ath9k_hw_write_associd(struct ath_hw *ah)
2828{
2829 struct ath_common *common = ath9k_hw_common(ah);
2830
2831 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2832 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2833 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2834}
2835EXPORT_SYMBOL(ath9k_hw_write_associd);
2836
2837#define ATH9K_MAX_TSF_READ 10
2838
2839u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2840{
2841 u32 tsf_lower, tsf_upper1, tsf_upper2;
2842 int i;
2843
2844 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2845 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2846 tsf_lower = REG_READ(ah, AR_TSF_L32);
2847 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2848 if (tsf_upper2 == tsf_upper1)
2849 break;
2850 tsf_upper1 = tsf_upper2;
2851 }
2852
2853 WARN_ON( i == ATH9K_MAX_TSF_READ );
2854
2855 return (((u64)tsf_upper1 << 32) | tsf_lower);
2856}
2857EXPORT_SYMBOL(ath9k_hw_gettsf64);
2858
2859void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2860{
2861 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2862 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2863}
2864EXPORT_SYMBOL(ath9k_hw_settsf64);
2865
2866void ath9k_hw_reset_tsf(struct ath_hw *ah)
2867{
2868 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2869 AH_TSF_WRITE_TIMEOUT))
2870 ath_dbg(ath9k_hw_common(ah), RESET,
2871 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2872
2873 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2874}
2875EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2876
2877void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2878{
2879 if (set)
2880 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2881 else
2882 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2883}
2884EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2885
2886void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2887{
2888 u32 macmode;
2889
2890 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2891 macmode = AR_2040_JOINED_RX_CLEAR;
2892 else
2893 macmode = 0;
2894
2895 REG_WRITE(ah, AR_2040_MODE, macmode);
2896}
2897
2898/* HW Generic timers configuration */
2899
2900static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2901{
2902 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2903 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2904 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2905 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2906 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2907 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2908 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2909 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2910 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2911 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2912 AR_NDP2_TIMER_MODE, 0x0002},
2913 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2914 AR_NDP2_TIMER_MODE, 0x0004},
2915 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2916 AR_NDP2_TIMER_MODE, 0x0008},
2917 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2918 AR_NDP2_TIMER_MODE, 0x0010},
2919 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2920 AR_NDP2_TIMER_MODE, 0x0020},
2921 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2922 AR_NDP2_TIMER_MODE, 0x0040},
2923 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2924 AR_NDP2_TIMER_MODE, 0x0080}
2925};
2926
2927/* HW generic timer primitives */
2928
2929u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2930{
2931 return REG_READ(ah, AR_TSF_L32);
2932}
2933EXPORT_SYMBOL(ath9k_hw_gettsf32);
2934
2935void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
2936{
2937 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2938
2939 if (timer_table->tsf2_enabled) {
2940 REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
2941 REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
2942 }
2943}
2944
2945struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2946 void (*trigger)(void *),
2947 void (*overflow)(void *),
2948 void *arg,
2949 u8 timer_index)
2950{
2951 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2952 struct ath_gen_timer *timer;
2953
2954 if ((timer_index < AR_FIRST_NDP_TIMER) ||
2955 (timer_index >= ATH_MAX_GEN_TIMER))
2956 return NULL;
2957
2958 if ((timer_index > AR_FIRST_NDP_TIMER) &&
2959 !AR_SREV_9300_20_OR_LATER(ah))
2960 return NULL;
2961
2962 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2963 if (timer == NULL)
2964 return NULL;
2965
2966 /* allocate a hardware generic timer slot */
2967 timer_table->timers[timer_index] = timer;
2968 timer->index = timer_index;
2969 timer->trigger = trigger;
2970 timer->overflow = overflow;
2971 timer->arg = arg;
2972
2973 if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
2974 timer_table->tsf2_enabled = true;
2975 ath9k_hw_gen_timer_start_tsf2(ah);
2976 }
2977
2978 return timer;
2979}
2980EXPORT_SYMBOL(ath_gen_timer_alloc);
2981
2982void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2983 struct ath_gen_timer *timer,
2984 u32 timer_next,
2985 u32 timer_period)
2986{
2987 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2988 u32 mask = 0;
2989
2990 timer_table->timer_mask |= BIT(timer->index);
2991
2992 /*
2993 * Program generic timer registers
2994 */
2995 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2996 timer_next);
2997 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2998 timer_period);
2999 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3000 gen_tmr_configuration[timer->index].mode_mask);
3001
3002 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3003 /*
3004 * Starting from AR9462, each generic timer can select which tsf
3005 * to use. But we still follow the old rule, 0 - 7 use tsf and
3006 * 8 - 15 use tsf2.
3007 */
3008 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3009 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3010 (1 << timer->index));
3011 else
3012 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3013 (1 << timer->index));
3014 }
3015
3016 if (timer->trigger)
3017 mask |= SM(AR_GENTMR_BIT(timer->index),
3018 AR_IMR_S5_GENTIMER_TRIG);
3019 if (timer->overflow)
3020 mask |= SM(AR_GENTMR_BIT(timer->index),
3021 AR_IMR_S5_GENTIMER_THRESH);
3022
3023 REG_SET_BIT(ah, AR_IMR_S5, mask);
3024
3025 if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3026 ah->imask |= ATH9K_INT_GENTIMER;
3027 ath9k_hw_set_interrupts(ah);
3028 }
3029}
3030EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3031
3032void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3033{
3034 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3035
3036 /* Clear generic timer enable bits. */
3037 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3038 gen_tmr_configuration[timer->index].mode_mask);
3039
3040 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3041 /*
3042 * Need to switch back to TSF if it was using TSF2.
3043 */
3044 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3045 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3046 (1 << timer->index));
3047 }
3048 }
3049
3050 /* Disable both trigger and thresh interrupt masks */
3051 REG_CLR_BIT(ah, AR_IMR_S5,
3052 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3053 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3054
3055 timer_table->timer_mask &= ~BIT(timer->index);
3056
3057 if (timer_table->timer_mask == 0) {
3058 ah->imask &= ~ATH9K_INT_GENTIMER;
3059 ath9k_hw_set_interrupts(ah);
3060 }
3061}
3062EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3063
3064void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3065{
3066 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3067
3068 /* free the hardware generic timer slot */
3069 timer_table->timers[timer->index] = NULL;
3070 kfree(timer);
3071}
3072EXPORT_SYMBOL(ath_gen_timer_free);
3073
3074/*
3075 * Generic Timer Interrupts handling
3076 */
3077void ath_gen_timer_isr(struct ath_hw *ah)
3078{
3079 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3080 struct ath_gen_timer *timer;
3081 unsigned long trigger_mask, thresh_mask;
3082 unsigned int index;
3083
3084 /* get hardware generic timer interrupt status */
3085 trigger_mask = ah->intr_gen_timer_trigger;
3086 thresh_mask = ah->intr_gen_timer_thresh;
3087 trigger_mask &= timer_table->timer_mask;
3088 thresh_mask &= timer_table->timer_mask;
3089
3090 for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3091 timer = timer_table->timers[index];
3092 if (!timer)
3093 continue;
3094 if (!timer->overflow)
3095 continue;
3096
3097 trigger_mask &= ~BIT(index);
3098 timer->overflow(timer->arg);
3099 }
3100
3101 for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3102 timer = timer_table->timers[index];
3103 if (!timer)
3104 continue;
3105 if (!timer->trigger)
3106 continue;
3107 timer->trigger(timer->arg);
3108 }
3109}
3110EXPORT_SYMBOL(ath_gen_timer_isr);
3111
3112/********/
3113/* HTC */
3114/********/
3115
3116static struct {
3117 u32 version;
3118 const char * name;
3119} ath_mac_bb_names[] = {
3120 /* Devices with external radios */
3121 { AR_SREV_VERSION_5416_PCI, "5416" },
3122 { AR_SREV_VERSION_5416_PCIE, "5418" },
3123 { AR_SREV_VERSION_9100, "9100" },
3124 { AR_SREV_VERSION_9160, "9160" },
3125 /* Single-chip solutions */
3126 { AR_SREV_VERSION_9280, "9280" },
3127 { AR_SREV_VERSION_9285, "9285" },
3128 { AR_SREV_VERSION_9287, "9287" },
3129 { AR_SREV_VERSION_9271, "9271" },
3130 { AR_SREV_VERSION_9300, "9300" },
3131 { AR_SREV_VERSION_9330, "9330" },
3132 { AR_SREV_VERSION_9340, "9340" },
3133 { AR_SREV_VERSION_9485, "9485" },
3134 { AR_SREV_VERSION_9462, "9462" },
3135 { AR_SREV_VERSION_9550, "9550" },
3136 { AR_SREV_VERSION_9565, "9565" },
3137 { AR_SREV_VERSION_9531, "9531" },
3138};
3139
3140/* For devices with external radios */
3141static struct {
3142 u16 version;
3143 const char * name;
3144} ath_rf_names[] = {
3145 { 0, "5133" },
3146 { AR_RAD5133_SREV_MAJOR, "5133" },
3147 { AR_RAD5122_SREV_MAJOR, "5122" },
3148 { AR_RAD2133_SREV_MAJOR, "2133" },
3149 { AR_RAD2122_SREV_MAJOR, "2122" }
3150};
3151
3152/*
3153 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3154 */
3155static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3156{
3157 int i;
3158
3159 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3160 if (ath_mac_bb_names[i].version == mac_bb_version) {
3161 return ath_mac_bb_names[i].name;
3162 }
3163 }
3164
3165 return "????";
3166}
3167
3168/*
3169 * Return the RF name. "????" is returned if the RF is unknown.
3170 * Used for devices with external radios.
3171 */
3172static const char *ath9k_hw_rf_name(u16 rf_version)
3173{
3174 int i;
3175
3176 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3177 if (ath_rf_names[i].version == rf_version) {
3178 return ath_rf_names[i].name;
3179 }
3180 }
3181
3182 return "????";
3183}
3184
3185void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3186{
3187 int used;
3188
3189 /* chipsets >= AR9280 are single-chip */
3190 if (AR_SREV_9280_20_OR_LATER(ah)) {
3191 used = scnprintf(hw_name, len,
3192 "Atheros AR%s Rev:%x",
3193 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3194 ah->hw_version.macRev);
3195 }
3196 else {
3197 used = scnprintf(hw_name, len,
3198 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3199 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3200 ah->hw_version.macRev,
3201 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3202 & AR_RADIO_SREV_MAJOR)),
3203 ah->hw_version.phyRev);
3204 }
3205
3206 hw_name[used] = '\0';
3207}
3208EXPORT_SYMBOL(ath9k_hw_name);
This page took 0.037383 seconds and 5 git commands to generate.