ath9k: make rfkill configurable
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/dma-mapping.h>
18#include "ath9k.h"
19#include "ar9003_mac.h"
20
21#define BITS_PER_BYTE 8
22#define OFDM_PLCP_BITS 22
23#define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24#define L_STF 8
25#define L_LTF 8
26#define L_SIG 4
27#define HT_SIG 8
28#define HT_STF 4
29#define HT_LTF(_ns) (4 * (_ns))
30#define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31#define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32#define TIME_SYMBOLS(t) ((t) >> 2)
33#define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34#define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35#define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48};
49
50#define IS_HT_RATE(_rate) ((_rate) & 0x80)
51
52static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
53 struct ath_atx_tid *tid, struct sk_buff *skb);
54static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
55 int tx_flags, struct ath_txq *txq);
56static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
57 struct ath_txq *txq, struct list_head *bf_q,
58 struct ath_tx_status *ts, int txok);
59static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 struct list_head *head, bool internal);
61static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_tx_status *ts, int nframes, int nbad,
63 int txok);
64static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 int seqno);
66static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 struct ath_txq *txq,
68 struct ath_atx_tid *tid,
69 struct sk_buff *skb);
70
71enum {
72 MCS_HT20,
73 MCS_HT20_SGI,
74 MCS_HT40,
75 MCS_HT40_SGI,
76};
77
78/*********************/
79/* Aggregation logic */
80/*********************/
81
82void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
83 __acquires(&txq->axq_lock)
84{
85 spin_lock_bh(&txq->axq_lock);
86}
87
88void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
89 __releases(&txq->axq_lock)
90{
91 spin_unlock_bh(&txq->axq_lock);
92}
93
94void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
95 __releases(&txq->axq_lock)
96{
97 struct sk_buff_head q;
98 struct sk_buff *skb;
99
100 __skb_queue_head_init(&q);
101 skb_queue_splice_init(&txq->complete_q, &q);
102 spin_unlock_bh(&txq->axq_lock);
103
104 while ((skb = __skb_dequeue(&q)))
105 ieee80211_tx_status(sc->hw, skb);
106}
107
108static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
109{
110 struct ath_atx_ac *ac = tid->ac;
111
112 if (tid->paused)
113 return;
114
115 if (tid->sched)
116 return;
117
118 tid->sched = true;
119 list_add_tail(&tid->list, &ac->tid_q);
120
121 if (ac->sched)
122 return;
123
124 ac->sched = true;
125 list_add_tail(&ac->list, &txq->axq_acq);
126}
127
128static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
129{
130 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
131 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
132 sizeof(tx_info->rate_driver_data));
133 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
134}
135
136static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
137{
138 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
139 seqno << IEEE80211_SEQ_SEQ_SHIFT);
140}
141
142static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
143 struct ath_buf *bf)
144{
145 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
146 ARRAY_SIZE(bf->rates));
147}
148
149static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
150{
151 struct ath_txq *txq = tid->ac->txq;
152 struct sk_buff *skb;
153 struct ath_buf *bf;
154 struct list_head bf_head;
155 struct ath_tx_status ts;
156 struct ath_frame_info *fi;
157 bool sendbar = false;
158
159 INIT_LIST_HEAD(&bf_head);
160
161 memset(&ts, 0, sizeof(ts));
162
163 while ((skb = __skb_dequeue(&tid->buf_q))) {
164 fi = get_frame_info(skb);
165 bf = fi->bf;
166
167 if (!bf) {
168 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
169 if (!bf) {
170 ieee80211_free_txskb(sc->hw, skb);
171 continue;
172 }
173 }
174
175 if (fi->retries) {
176 list_add_tail(&bf->list, &bf_head);
177 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
178 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
179 sendbar = true;
180 } else {
181 ath_set_rates(tid->an->vif, tid->an->sta, bf);
182 ath_tx_send_normal(sc, txq, NULL, skb);
183 }
184 }
185
186 if (sendbar) {
187 ath_txq_unlock(sc, txq);
188 ath_send_bar(tid, tid->seq_start);
189 ath_txq_lock(sc, txq);
190 }
191}
192
193static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
194 int seqno)
195{
196 int index, cindex;
197
198 index = ATH_BA_INDEX(tid->seq_start, seqno);
199 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
200
201 __clear_bit(cindex, tid->tx_buf);
202
203 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
204 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
205 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
206 if (tid->bar_index >= 0)
207 tid->bar_index--;
208 }
209}
210
211static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
212 u16 seqno)
213{
214 int index, cindex;
215
216 index = ATH_BA_INDEX(tid->seq_start, seqno);
217 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
218 __set_bit(cindex, tid->tx_buf);
219
220 if (index >= ((tid->baw_tail - tid->baw_head) &
221 (ATH_TID_MAX_BUFS - 1))) {
222 tid->baw_tail = cindex;
223 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
224 }
225}
226
227/*
228 * TODO: For frame(s) that are in the retry state, we will reuse the
229 * sequence number(s) without setting the retry bit. The
230 * alternative is to give up on these and BAR the receiver's window
231 * forward.
232 */
233static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
234 struct ath_atx_tid *tid)
235
236{
237 struct sk_buff *skb;
238 struct ath_buf *bf;
239 struct list_head bf_head;
240 struct ath_tx_status ts;
241 struct ath_frame_info *fi;
242
243 memset(&ts, 0, sizeof(ts));
244 INIT_LIST_HEAD(&bf_head);
245
246 while ((skb = __skb_dequeue(&tid->buf_q))) {
247 fi = get_frame_info(skb);
248 bf = fi->bf;
249
250 if (!bf) {
251 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
252 continue;
253 }
254
255 list_add_tail(&bf->list, &bf_head);
256
257 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
258 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
259 }
260
261 tid->seq_next = tid->seq_start;
262 tid->baw_tail = tid->baw_head;
263 tid->bar_index = -1;
264}
265
266static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
267 struct sk_buff *skb, int count)
268{
269 struct ath_frame_info *fi = get_frame_info(skb);
270 struct ath_buf *bf = fi->bf;
271 struct ieee80211_hdr *hdr;
272 int prev = fi->retries;
273
274 TX_STAT_INC(txq->axq_qnum, a_retries);
275 fi->retries += count;
276
277 if (prev > 0)
278 return;
279
280 hdr = (struct ieee80211_hdr *)skb->data;
281 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
282 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
283 sizeof(*hdr), DMA_TO_DEVICE);
284}
285
286static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
287{
288 struct ath_buf *bf = NULL;
289
290 spin_lock_bh(&sc->tx.txbuflock);
291
292 if (unlikely(list_empty(&sc->tx.txbuf))) {
293 spin_unlock_bh(&sc->tx.txbuflock);
294 return NULL;
295 }
296
297 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
298 list_del(&bf->list);
299
300 spin_unlock_bh(&sc->tx.txbuflock);
301
302 return bf;
303}
304
305static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
306{
307 spin_lock_bh(&sc->tx.txbuflock);
308 list_add_tail(&bf->list, &sc->tx.txbuf);
309 spin_unlock_bh(&sc->tx.txbuflock);
310}
311
312static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
313{
314 struct ath_buf *tbf;
315
316 tbf = ath_tx_get_buffer(sc);
317 if (WARN_ON(!tbf))
318 return NULL;
319
320 ATH_TXBUF_RESET(tbf);
321
322 tbf->bf_mpdu = bf->bf_mpdu;
323 tbf->bf_buf_addr = bf->bf_buf_addr;
324 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
325 tbf->bf_state = bf->bf_state;
326
327 return tbf;
328}
329
330static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
331 struct ath_tx_status *ts, int txok,
332 int *nframes, int *nbad)
333{
334 struct ath_frame_info *fi;
335 u16 seq_st = 0;
336 u32 ba[WME_BA_BMP_SIZE >> 5];
337 int ba_index;
338 int isaggr = 0;
339
340 *nbad = 0;
341 *nframes = 0;
342
343 isaggr = bf_isaggr(bf);
344 if (isaggr) {
345 seq_st = ts->ts_seqnum;
346 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
347 }
348
349 while (bf) {
350 fi = get_frame_info(bf->bf_mpdu);
351 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
352
353 (*nframes)++;
354 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
355 (*nbad)++;
356
357 bf = bf->bf_next;
358 }
359}
360
361
362static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
363 struct ath_buf *bf, struct list_head *bf_q,
364 struct ath_tx_status *ts, int txok)
365{
366 struct ath_node *an = NULL;
367 struct sk_buff *skb;
368 struct ieee80211_sta *sta;
369 struct ieee80211_hw *hw = sc->hw;
370 struct ieee80211_hdr *hdr;
371 struct ieee80211_tx_info *tx_info;
372 struct ath_atx_tid *tid = NULL;
373 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
374 struct list_head bf_head;
375 struct sk_buff_head bf_pending;
376 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
377 u32 ba[WME_BA_BMP_SIZE >> 5];
378 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
379 bool rc_update = true, isba;
380 struct ieee80211_tx_rate rates[4];
381 struct ath_frame_info *fi;
382 int nframes;
383 u8 tidno;
384 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
385 int i, retries;
386 int bar_index = -1;
387
388 skb = bf->bf_mpdu;
389 hdr = (struct ieee80211_hdr *)skb->data;
390
391 tx_info = IEEE80211_SKB_CB(skb);
392
393 memcpy(rates, bf->rates, sizeof(rates));
394
395 retries = ts->ts_longretry + 1;
396 for (i = 0; i < ts->ts_rateindex; i++)
397 retries += rates[i].count;
398
399 rcu_read_lock();
400
401 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
402 if (!sta) {
403 rcu_read_unlock();
404
405 INIT_LIST_HEAD(&bf_head);
406 while (bf) {
407 bf_next = bf->bf_next;
408
409 if (!bf->bf_stale || bf_next != NULL)
410 list_move_tail(&bf->list, &bf_head);
411
412 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
413
414 bf = bf_next;
415 }
416 return;
417 }
418
419 an = (struct ath_node *)sta->drv_priv;
420 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
421 tid = ATH_AN_2_TID(an, tidno);
422 seq_first = tid->seq_start;
423 isba = ts->ts_flags & ATH9K_TX_BA;
424
425 /*
426 * The hardware occasionally sends a tx status for the wrong TID.
427 * In this case, the BA status cannot be considered valid and all
428 * subframes need to be retransmitted
429 *
430 * Only BlockAcks have a TID and therefore normal Acks cannot be
431 * checked
432 */
433 if (isba && tidno != ts->tid)
434 txok = false;
435
436 isaggr = bf_isaggr(bf);
437 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
438
439 if (isaggr && txok) {
440 if (ts->ts_flags & ATH9K_TX_BA) {
441 seq_st = ts->ts_seqnum;
442 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
443 } else {
444 /*
445 * AR5416 can become deaf/mute when BA
446 * issue happens. Chip needs to be reset.
447 * But AP code may have sychronization issues
448 * when perform internal reset in this routine.
449 * Only enable reset in STA mode for now.
450 */
451 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
452 needreset = 1;
453 }
454 }
455
456 __skb_queue_head_init(&bf_pending);
457
458 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
459 while (bf) {
460 u16 seqno = bf->bf_state.seqno;
461
462 txfail = txpending = sendbar = 0;
463 bf_next = bf->bf_next;
464
465 skb = bf->bf_mpdu;
466 tx_info = IEEE80211_SKB_CB(skb);
467 fi = get_frame_info(skb);
468
469 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
470 /*
471 * Outside of the current BlockAck window,
472 * maybe part of a previous session
473 */
474 txfail = 1;
475 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
476 /* transmit completion, subframe is
477 * acked by block ack */
478 acked_cnt++;
479 } else if (!isaggr && txok) {
480 /* transmit completion */
481 acked_cnt++;
482 } else if (flush) {
483 txpending = 1;
484 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
485 if (txok || !an->sleeping)
486 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
487 retries);
488
489 txpending = 1;
490 } else {
491 txfail = 1;
492 txfail_cnt++;
493 bar_index = max_t(int, bar_index,
494 ATH_BA_INDEX(seq_first, seqno));
495 }
496
497 /*
498 * Make sure the last desc is reclaimed if it
499 * not a holding desc.
500 */
501 INIT_LIST_HEAD(&bf_head);
502 if (bf_next != NULL || !bf_last->bf_stale)
503 list_move_tail(&bf->list, &bf_head);
504
505 if (!txpending) {
506 /*
507 * complete the acked-ones/xretried ones; update
508 * block-ack window
509 */
510 ath_tx_update_baw(sc, tid, seqno);
511
512 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
513 memcpy(tx_info->control.rates, rates, sizeof(rates));
514 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
515 rc_update = false;
516 }
517
518 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
519 !txfail);
520 } else {
521 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
522 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
523 ieee80211_sta_eosp(sta);
524 }
525 /* retry the un-acked ones */
526 if (bf->bf_next == NULL && bf_last->bf_stale) {
527 struct ath_buf *tbf;
528
529 tbf = ath_clone_txbuf(sc, bf_last);
530 /*
531 * Update tx baw and complete the
532 * frame with failed status if we
533 * run out of tx buf.
534 */
535 if (!tbf) {
536 ath_tx_update_baw(sc, tid, seqno);
537
538 ath_tx_complete_buf(sc, bf, txq,
539 &bf_head, ts, 0);
540 bar_index = max_t(int, bar_index,
541 ATH_BA_INDEX(seq_first, seqno));
542 break;
543 }
544
545 fi->bf = tbf;
546 }
547
548 /*
549 * Put this buffer to the temporary pending
550 * queue to retain ordering
551 */
552 __skb_queue_tail(&bf_pending, skb);
553 }
554
555 bf = bf_next;
556 }
557
558 /* prepend un-acked frames to the beginning of the pending frame queue */
559 if (!skb_queue_empty(&bf_pending)) {
560 if (an->sleeping)
561 ieee80211_sta_set_buffered(sta, tid->tidno, true);
562
563 skb_queue_splice(&bf_pending, &tid->buf_q);
564 if (!an->sleeping) {
565 ath_tx_queue_tid(txq, tid);
566
567 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
568 tid->ac->clear_ps_filter = true;
569 }
570 }
571
572 if (bar_index >= 0) {
573 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
574
575 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
576 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
577
578 ath_txq_unlock(sc, txq);
579 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
580 ath_txq_lock(sc, txq);
581 }
582
583 rcu_read_unlock();
584
585 if (needreset)
586 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
587}
588
589static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
590{
591 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
592 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
593}
594
595static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
596 struct ath_tx_status *ts, struct ath_buf *bf,
597 struct list_head *bf_head)
598{
599 struct ieee80211_tx_info *info;
600 bool txok, flush;
601
602 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
603 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
604 txq->axq_tx_inprogress = false;
605
606 txq->axq_depth--;
607 if (bf_is_ampdu_not_probing(bf))
608 txq->axq_ampdu_depth--;
609
610 if (!bf_isampdu(bf)) {
611 if (!flush) {
612 info = IEEE80211_SKB_CB(bf->bf_mpdu);
613 memcpy(info->control.rates, bf->rates,
614 sizeof(info->control.rates));
615 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
616 }
617 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
618 } else
619 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
620
621 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
622 ath_txq_schedule(sc, txq);
623}
624
625static bool ath_lookup_legacy(struct ath_buf *bf)
626{
627 struct sk_buff *skb;
628 struct ieee80211_tx_info *tx_info;
629 struct ieee80211_tx_rate *rates;
630 int i;
631
632 skb = bf->bf_mpdu;
633 tx_info = IEEE80211_SKB_CB(skb);
634 rates = tx_info->control.rates;
635
636 for (i = 0; i < 4; i++) {
637 if (!rates[i].count || rates[i].idx < 0)
638 break;
639
640 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
641 return true;
642 }
643
644 return false;
645}
646
647static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
648 struct ath_atx_tid *tid)
649{
650 struct sk_buff *skb;
651 struct ieee80211_tx_info *tx_info;
652 struct ieee80211_tx_rate *rates;
653 u32 max_4ms_framelen, frmlen;
654 u16 aggr_limit, bt_aggr_limit, legacy = 0;
655 int q = tid->ac->txq->mac80211_qnum;
656 int i;
657
658 skb = bf->bf_mpdu;
659 tx_info = IEEE80211_SKB_CB(skb);
660 rates = bf->rates;
661
662 /*
663 * Find the lowest frame length among the rate series that will have a
664 * 4ms (or TXOP limited) transmit duration.
665 */
666 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
667
668 for (i = 0; i < 4; i++) {
669 int modeidx;
670
671 if (!rates[i].count)
672 continue;
673
674 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
675 legacy = 1;
676 break;
677 }
678
679 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
680 modeidx = MCS_HT40;
681 else
682 modeidx = MCS_HT20;
683
684 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
685 modeidx++;
686
687 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
688 max_4ms_framelen = min(max_4ms_framelen, frmlen);
689 }
690
691 /*
692 * limit aggregate size by the minimum rate if rate selected is
693 * not a probe rate, if rate selected is a probe rate then
694 * avoid aggregation of this packet.
695 */
696 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
697 return 0;
698
699 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
700
701 /*
702 * Override the default aggregation limit for BTCOEX.
703 */
704 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
705 if (bt_aggr_limit)
706 aggr_limit = bt_aggr_limit;
707
708 /*
709 * h/w can accept aggregates up to 16 bit lengths (65535).
710 * The IE, however can hold up to 65536, which shows up here
711 * as zero. Ignore 65536 since we are constrained by hw.
712 */
713 if (tid->an->maxampdu)
714 aggr_limit = min(aggr_limit, tid->an->maxampdu);
715
716 return aggr_limit;
717}
718
719/*
720 * Returns the number of delimiters to be added to
721 * meet the minimum required mpdudensity.
722 */
723static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
724 struct ath_buf *bf, u16 frmlen,
725 bool first_subfrm)
726{
727#define FIRST_DESC_NDELIMS 60
728 u32 nsymbits, nsymbols;
729 u16 minlen;
730 u8 flags, rix;
731 int width, streams, half_gi, ndelim, mindelim;
732 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
733
734 /* Select standard number of delimiters based on frame length alone */
735 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
736
737 /*
738 * If encryption enabled, hardware requires some more padding between
739 * subframes.
740 * TODO - this could be improved to be dependent on the rate.
741 * The hardware can keep up at lower rates, but not higher rates
742 */
743 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
744 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
745 ndelim += ATH_AGGR_ENCRYPTDELIM;
746
747 /*
748 * Add delimiter when using RTS/CTS with aggregation
749 * and non enterprise AR9003 card
750 */
751 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
752 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
753 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
754
755 /*
756 * Convert desired mpdu density from microeconds to bytes based
757 * on highest rate in rate series (i.e. first rate) to determine
758 * required minimum length for subframe. Take into account
759 * whether high rate is 20 or 40Mhz and half or full GI.
760 *
761 * If there is no mpdu density restriction, no further calculation
762 * is needed.
763 */
764
765 if (tid->an->mpdudensity == 0)
766 return ndelim;
767
768 rix = bf->rates[0].idx;
769 flags = bf->rates[0].flags;
770 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
771 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
772
773 if (half_gi)
774 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
775 else
776 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
777
778 if (nsymbols == 0)
779 nsymbols = 1;
780
781 streams = HT_RC_2_STREAMS(rix);
782 nsymbits = bits_per_symbol[rix % 8][width] * streams;
783 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
784
785 if (frmlen < minlen) {
786 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
787 ndelim = max(mindelim, ndelim);
788 }
789
790 return ndelim;
791}
792
793static struct ath_buf *
794ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
795 struct ath_atx_tid *tid)
796{
797 struct ath_frame_info *fi;
798 struct sk_buff *skb;
799 struct ath_buf *bf;
800 u16 seqno;
801
802 while (1) {
803 skb = skb_peek(&tid->buf_q);
804 if (!skb)
805 break;
806
807 fi = get_frame_info(skb);
808 bf = fi->bf;
809 if (!fi->bf)
810 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
811
812 if (!bf) {
813 __skb_unlink(skb, &tid->buf_q);
814 ieee80211_free_txskb(sc->hw, skb);
815 continue;
816 }
817
818 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
819 seqno = bf->bf_state.seqno;
820
821 /* do not step over block-ack window */
822 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
823 break;
824
825 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
826 struct ath_tx_status ts = {};
827 struct list_head bf_head;
828
829 INIT_LIST_HEAD(&bf_head);
830 list_add(&bf->list, &bf_head);
831 __skb_unlink(skb, &tid->buf_q);
832 ath_tx_update_baw(sc, tid, seqno);
833 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
834 continue;
835 }
836
837 bf->bf_next = NULL;
838 bf->bf_lastbf = bf;
839 return bf;
840 }
841
842 return NULL;
843}
844
845static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
846 struct ath_txq *txq,
847 struct ath_atx_tid *tid,
848 struct list_head *bf_q,
849 int *aggr_len)
850{
851#define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
852 struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
853 int rl = 0, nframes = 0, ndelim, prev_al = 0;
854 u16 aggr_limit = 0, al = 0, bpad = 0,
855 al_delta, h_baw = tid->baw_size / 2;
856 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
857 struct ieee80211_tx_info *tx_info;
858 struct ath_frame_info *fi;
859 struct sk_buff *skb;
860
861 do {
862 bf = ath_tx_get_tid_subframe(sc, txq, tid);
863 if (!bf) {
864 status = ATH_AGGR_BAW_CLOSED;
865 break;
866 }
867
868 skb = bf->bf_mpdu;
869 fi = get_frame_info(skb);
870
871 if (!bf_first)
872 bf_first = bf;
873
874 if (!rl) {
875 ath_set_rates(tid->an->vif, tid->an->sta, bf);
876 aggr_limit = ath_lookup_rate(sc, bf, tid);
877 rl = 1;
878 }
879
880 /* do not exceed aggregation limit */
881 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
882
883 if (nframes &&
884 ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
885 ath_lookup_legacy(bf))) {
886 status = ATH_AGGR_LIMITED;
887 break;
888 }
889
890 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
891 if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
892 break;
893
894 /* do not exceed subframe limit */
895 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
896 status = ATH_AGGR_LIMITED;
897 break;
898 }
899
900 /* add padding for previous frame to aggregation length */
901 al += bpad + al_delta;
902
903 /*
904 * Get the delimiters needed to meet the MPDU
905 * density for this node.
906 */
907 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
908 !nframes);
909 bpad = PADBYTES(al_delta) + (ndelim << 2);
910
911 nframes++;
912 bf->bf_next = NULL;
913
914 /* link buffers of this frame to the aggregate */
915 if (!fi->retries)
916 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
917 bf->bf_state.ndelim = ndelim;
918
919 __skb_unlink(skb, &tid->buf_q);
920 list_add_tail(&bf->list, bf_q);
921 if (bf_prev)
922 bf_prev->bf_next = bf;
923
924 bf_prev = bf;
925
926 } while (!skb_queue_empty(&tid->buf_q));
927
928 *aggr_len = al;
929
930 return status;
931#undef PADBYTES
932}
933
934/*
935 * rix - rate index
936 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
937 * width - 0 for 20 MHz, 1 for 40 MHz
938 * half_gi - to use 4us v/s 3.6 us for symbol time
939 */
940static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
941 int width, int half_gi, bool shortPreamble)
942{
943 u32 nbits, nsymbits, duration, nsymbols;
944 int streams;
945
946 /* find number of symbols: PLCP + data */
947 streams = HT_RC_2_STREAMS(rix);
948 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
949 nsymbits = bits_per_symbol[rix % 8][width] * streams;
950 nsymbols = (nbits + nsymbits - 1) / nsymbits;
951
952 if (!half_gi)
953 duration = SYMBOL_TIME(nsymbols);
954 else
955 duration = SYMBOL_TIME_HALFGI(nsymbols);
956
957 /* addup duration for legacy/ht training and signal fields */
958 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
959
960 return duration;
961}
962
963static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
964{
965 int streams = HT_RC_2_STREAMS(mcs);
966 int symbols, bits;
967 int bytes = 0;
968
969 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
970 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
971 bits -= OFDM_PLCP_BITS;
972 bytes = bits / 8;
973 bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
974 if (bytes > 65532)
975 bytes = 65532;
976
977 return bytes;
978}
979
980void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
981{
982 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
983 int mcs;
984
985 /* 4ms is the default (and maximum) duration */
986 if (!txop || txop > 4096)
987 txop = 4096;
988
989 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
990 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
991 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
992 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
993 for (mcs = 0; mcs < 32; mcs++) {
994 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
995 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
996 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
997 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
998 }
999}
1000
1001static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1002 struct ath_tx_info *info, int len)
1003{
1004 struct ath_hw *ah = sc->sc_ah;
1005 struct sk_buff *skb;
1006 struct ieee80211_tx_info *tx_info;
1007 struct ieee80211_tx_rate *rates;
1008 const struct ieee80211_rate *rate;
1009 struct ieee80211_hdr *hdr;
1010 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1011 int i;
1012 u8 rix = 0;
1013
1014 skb = bf->bf_mpdu;
1015 tx_info = IEEE80211_SKB_CB(skb);
1016 rates = bf->rates;
1017 hdr = (struct ieee80211_hdr *)skb->data;
1018
1019 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1020 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1021 info->rtscts_rate = fi->rtscts_rate;
1022
1023 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1024 bool is_40, is_sgi, is_sp;
1025 int phy;
1026
1027 if (!rates[i].count || (rates[i].idx < 0))
1028 continue;
1029
1030 rix = rates[i].idx;
1031 info->rates[i].Tries = rates[i].count;
1032
1033 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1034 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1035 info->flags |= ATH9K_TXDESC_RTSENA;
1036 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1037 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1038 info->flags |= ATH9K_TXDESC_CTSENA;
1039 }
1040
1041 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1042 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1043 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1044 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1045
1046 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1047 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1048 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1049
1050 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1051 /* MCS rates */
1052 info->rates[i].Rate = rix | 0x80;
1053 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1054 ah->txchainmask, info->rates[i].Rate);
1055 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1056 is_40, is_sgi, is_sp);
1057 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1058 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1059 continue;
1060 }
1061
1062 /* legacy rates */
1063 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1064 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1065 !(rate->flags & IEEE80211_RATE_ERP_G))
1066 phy = WLAN_RC_PHY_CCK;
1067 else
1068 phy = WLAN_RC_PHY_OFDM;
1069
1070 info->rates[i].Rate = rate->hw_value;
1071 if (rate->hw_value_short) {
1072 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1073 info->rates[i].Rate |= rate->hw_value_short;
1074 } else {
1075 is_sp = false;
1076 }
1077
1078 if (bf->bf_state.bfs_paprd)
1079 info->rates[i].ChSel = ah->txchainmask;
1080 else
1081 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1082 ah->txchainmask, info->rates[i].Rate);
1083
1084 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1085 phy, rate->bitrate * 100, len, rix, is_sp);
1086 }
1087
1088 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1089 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1090 info->flags &= ~ATH9K_TXDESC_RTSENA;
1091
1092 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1093 if (info->flags & ATH9K_TXDESC_RTSENA)
1094 info->flags &= ~ATH9K_TXDESC_CTSENA;
1095}
1096
1097static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1098{
1099 struct ieee80211_hdr *hdr;
1100 enum ath9k_pkt_type htype;
1101 __le16 fc;
1102
1103 hdr = (struct ieee80211_hdr *)skb->data;
1104 fc = hdr->frame_control;
1105
1106 if (ieee80211_is_beacon(fc))
1107 htype = ATH9K_PKT_TYPE_BEACON;
1108 else if (ieee80211_is_probe_resp(fc))
1109 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1110 else if (ieee80211_is_atim(fc))
1111 htype = ATH9K_PKT_TYPE_ATIM;
1112 else if (ieee80211_is_pspoll(fc))
1113 htype = ATH9K_PKT_TYPE_PSPOLL;
1114 else
1115 htype = ATH9K_PKT_TYPE_NORMAL;
1116
1117 return htype;
1118}
1119
1120static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1121 struct ath_txq *txq, int len)
1122{
1123 struct ath_hw *ah = sc->sc_ah;
1124 struct ath_buf *bf_first = NULL;
1125 struct ath_tx_info info;
1126
1127 memset(&info, 0, sizeof(info));
1128 info.is_first = true;
1129 info.is_last = true;
1130 info.txpower = MAX_RATE_POWER;
1131 info.qcu = txq->axq_qnum;
1132
1133 while (bf) {
1134 struct sk_buff *skb = bf->bf_mpdu;
1135 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1136 struct ath_frame_info *fi = get_frame_info(skb);
1137 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1138
1139 info.type = get_hw_packet_type(skb);
1140 if (bf->bf_next)
1141 info.link = bf->bf_next->bf_daddr;
1142 else
1143 info.link = 0;
1144
1145 if (!bf_first) {
1146 bf_first = bf;
1147
1148 info.flags = ATH9K_TXDESC_INTREQ;
1149 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1150 txq == sc->tx.uapsdq)
1151 info.flags |= ATH9K_TXDESC_CLRDMASK;
1152
1153 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1154 info.flags |= ATH9K_TXDESC_NOACK;
1155 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1156 info.flags |= ATH9K_TXDESC_LDPC;
1157
1158 if (bf->bf_state.bfs_paprd)
1159 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1160 ATH9K_TXDESC_PAPRD_S;
1161
1162 ath_buf_set_rate(sc, bf, &info, len);
1163 }
1164
1165 info.buf_addr[0] = bf->bf_buf_addr;
1166 info.buf_len[0] = skb->len;
1167 info.pkt_len = fi->framelen;
1168 info.keyix = fi->keyix;
1169 info.keytype = fi->keytype;
1170
1171 if (aggr) {
1172 if (bf == bf_first)
1173 info.aggr = AGGR_BUF_FIRST;
1174 else if (bf == bf_first->bf_lastbf)
1175 info.aggr = AGGR_BUF_LAST;
1176 else
1177 info.aggr = AGGR_BUF_MIDDLE;
1178
1179 info.ndelim = bf->bf_state.ndelim;
1180 info.aggr_len = len;
1181 }
1182
1183 if (bf == bf_first->bf_lastbf)
1184 bf_first = NULL;
1185
1186 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1187 bf = bf->bf_next;
1188 }
1189}
1190
1191static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1192 struct ath_atx_tid *tid)
1193{
1194 struct ath_buf *bf;
1195 enum ATH_AGGR_STATUS status;
1196 struct ieee80211_tx_info *tx_info;
1197 struct list_head bf_q;
1198 int aggr_len;
1199
1200 do {
1201 if (skb_queue_empty(&tid->buf_q))
1202 return;
1203
1204 INIT_LIST_HEAD(&bf_q);
1205
1206 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1207
1208 /*
1209 * no frames picked up to be aggregated;
1210 * block-ack window is not open.
1211 */
1212 if (list_empty(&bf_q))
1213 break;
1214
1215 bf = list_first_entry(&bf_q, struct ath_buf, list);
1216 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1217 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1218
1219 if (tid->ac->clear_ps_filter) {
1220 tid->ac->clear_ps_filter = false;
1221 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1222 } else {
1223 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1224 }
1225
1226 /* if only one frame, send as non-aggregate */
1227 if (bf == bf->bf_lastbf) {
1228 aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1229 bf->bf_state.bf_type = BUF_AMPDU;
1230 } else {
1231 TX_STAT_INC(txq->axq_qnum, a_aggr);
1232 }
1233
1234 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1235 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1236 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1237 status != ATH_AGGR_BAW_CLOSED);
1238}
1239
1240int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1241 u16 tid, u16 *ssn)
1242{
1243 struct ath_atx_tid *txtid;
1244 struct ath_node *an;
1245 u8 density;
1246
1247 an = (struct ath_node *)sta->drv_priv;
1248 txtid = ATH_AN_2_TID(an, tid);
1249
1250 /* update ampdu factor/density, they may have changed. This may happen
1251 * in HT IBSS when a beacon with HT-info is received after the station
1252 * has already been added.
1253 */
1254 if (sta->ht_cap.ht_supported) {
1255 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1256 sta->ht_cap.ampdu_factor);
1257 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1258 an->mpdudensity = density;
1259 }
1260
1261 txtid->active = true;
1262 txtid->paused = true;
1263 *ssn = txtid->seq_start = txtid->seq_next;
1264 txtid->bar_index = -1;
1265
1266 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1267 txtid->baw_head = txtid->baw_tail = 0;
1268
1269 return 0;
1270}
1271
1272void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1273{
1274 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1275 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1276 struct ath_txq *txq = txtid->ac->txq;
1277
1278 ath_txq_lock(sc, txq);
1279 txtid->active = false;
1280 txtid->paused = true;
1281 ath_tx_flush_tid(sc, txtid);
1282 ath_txq_unlock_complete(sc, txq);
1283}
1284
1285void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1286 struct ath_node *an)
1287{
1288 struct ath_atx_tid *tid;
1289 struct ath_atx_ac *ac;
1290 struct ath_txq *txq;
1291 bool buffered;
1292 int tidno;
1293
1294 for (tidno = 0, tid = &an->tid[tidno];
1295 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1296
1297 if (!tid->sched)
1298 continue;
1299
1300 ac = tid->ac;
1301 txq = ac->txq;
1302
1303 ath_txq_lock(sc, txq);
1304
1305 buffered = !skb_queue_empty(&tid->buf_q);
1306
1307 tid->sched = false;
1308 list_del(&tid->list);
1309
1310 if (ac->sched) {
1311 ac->sched = false;
1312 list_del(&ac->list);
1313 }
1314
1315 ath_txq_unlock(sc, txq);
1316
1317 ieee80211_sta_set_buffered(sta, tidno, buffered);
1318 }
1319}
1320
1321void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1322{
1323 struct ath_atx_tid *tid;
1324 struct ath_atx_ac *ac;
1325 struct ath_txq *txq;
1326 int tidno;
1327
1328 for (tidno = 0, tid = &an->tid[tidno];
1329 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1330
1331 ac = tid->ac;
1332 txq = ac->txq;
1333
1334 ath_txq_lock(sc, txq);
1335 ac->clear_ps_filter = true;
1336
1337 if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1338 ath_tx_queue_tid(txq, tid);
1339 ath_txq_schedule(sc, txq);
1340 }
1341
1342 ath_txq_unlock_complete(sc, txq);
1343 }
1344}
1345
1346void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1347 u16 tidno)
1348{
1349 struct ath_atx_tid *tid;
1350 struct ath_node *an;
1351 struct ath_txq *txq;
1352
1353 an = (struct ath_node *)sta->drv_priv;
1354 tid = ATH_AN_2_TID(an, tidno);
1355 txq = tid->ac->txq;
1356
1357 ath_txq_lock(sc, txq);
1358
1359 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1360 tid->paused = false;
1361
1362 if (!skb_queue_empty(&tid->buf_q)) {
1363 ath_tx_queue_tid(txq, tid);
1364 ath_txq_schedule(sc, txq);
1365 }
1366
1367 ath_txq_unlock_complete(sc, txq);
1368}
1369
1370void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1371 struct ieee80211_sta *sta,
1372 u16 tids, int nframes,
1373 enum ieee80211_frame_release_type reason,
1374 bool more_data)
1375{
1376 struct ath_softc *sc = hw->priv;
1377 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1378 struct ath_txq *txq = sc->tx.uapsdq;
1379 struct ieee80211_tx_info *info;
1380 struct list_head bf_q;
1381 struct ath_buf *bf_tail = NULL, *bf;
1382 int sent = 0;
1383 int i;
1384
1385 INIT_LIST_HEAD(&bf_q);
1386 for (i = 0; tids && nframes; i++, tids >>= 1) {
1387 struct ath_atx_tid *tid;
1388
1389 if (!(tids & 1))
1390 continue;
1391
1392 tid = ATH_AN_2_TID(an, i);
1393 if (tid->paused)
1394 continue;
1395
1396 ath_txq_lock(sc, tid->ac->txq);
1397 while (!skb_queue_empty(&tid->buf_q) && nframes > 0) {
1398 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid);
1399 if (!bf)
1400 break;
1401
1402 __skb_unlink(bf->bf_mpdu, &tid->buf_q);
1403 list_add_tail(&bf->list, &bf_q);
1404 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1405 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1406 bf->bf_state.bf_type &= ~BUF_AGGR;
1407 if (bf_tail)
1408 bf_tail->bf_next = bf;
1409
1410 bf_tail = bf;
1411 nframes--;
1412 sent++;
1413 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1414
1415 if (skb_queue_empty(&tid->buf_q))
1416 ieee80211_sta_set_buffered(an->sta, i, false);
1417 }
1418 ath_txq_unlock_complete(sc, tid->ac->txq);
1419 }
1420
1421 if (list_empty(&bf_q))
1422 return;
1423
1424 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1425 info->flags |= IEEE80211_TX_STATUS_EOSP;
1426
1427 bf = list_first_entry(&bf_q, struct ath_buf, list);
1428 ath_txq_lock(sc, txq);
1429 ath_tx_fill_desc(sc, bf, txq, 0);
1430 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1431 ath_txq_unlock(sc, txq);
1432}
1433
1434/********************/
1435/* Queue Management */
1436/********************/
1437
1438struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1439{
1440 struct ath_hw *ah = sc->sc_ah;
1441 struct ath9k_tx_queue_info qi;
1442 static const int subtype_txq_to_hwq[] = {
1443 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1444 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1445 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1446 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1447 };
1448 int axq_qnum, i;
1449
1450 memset(&qi, 0, sizeof(qi));
1451 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1452 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1453 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1454 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1455 qi.tqi_physCompBuf = 0;
1456
1457 /*
1458 * Enable interrupts only for EOL and DESC conditions.
1459 * We mark tx descriptors to receive a DESC interrupt
1460 * when a tx queue gets deep; otherwise waiting for the
1461 * EOL to reap descriptors. Note that this is done to
1462 * reduce interrupt load and this only defers reaping
1463 * descriptors, never transmitting frames. Aside from
1464 * reducing interrupts this also permits more concurrency.
1465 * The only potential downside is if the tx queue backs
1466 * up in which case the top half of the kernel may backup
1467 * due to a lack of tx descriptors.
1468 *
1469 * The UAPSD queue is an exception, since we take a desc-
1470 * based intr on the EOSP frames.
1471 */
1472 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1473 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1474 } else {
1475 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1476 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1477 else
1478 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1479 TXQ_FLAG_TXDESCINT_ENABLE;
1480 }
1481 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1482 if (axq_qnum == -1) {
1483 /*
1484 * NB: don't print a message, this happens
1485 * normally on parts with too few tx queues
1486 */
1487 return NULL;
1488 }
1489 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1490 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1491
1492 txq->axq_qnum = axq_qnum;
1493 txq->mac80211_qnum = -1;
1494 txq->axq_link = NULL;
1495 __skb_queue_head_init(&txq->complete_q);
1496 INIT_LIST_HEAD(&txq->axq_q);
1497 INIT_LIST_HEAD(&txq->axq_acq);
1498 spin_lock_init(&txq->axq_lock);
1499 txq->axq_depth = 0;
1500 txq->axq_ampdu_depth = 0;
1501 txq->axq_tx_inprogress = false;
1502 sc->tx.txqsetup |= 1<<axq_qnum;
1503
1504 txq->txq_headidx = txq->txq_tailidx = 0;
1505 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1506 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1507 }
1508 return &sc->tx.txq[axq_qnum];
1509}
1510
1511int ath_txq_update(struct ath_softc *sc, int qnum,
1512 struct ath9k_tx_queue_info *qinfo)
1513{
1514 struct ath_hw *ah = sc->sc_ah;
1515 int error = 0;
1516 struct ath9k_tx_queue_info qi;
1517
1518 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1519
1520 ath9k_hw_get_txq_props(ah, qnum, &qi);
1521 qi.tqi_aifs = qinfo->tqi_aifs;
1522 qi.tqi_cwmin = qinfo->tqi_cwmin;
1523 qi.tqi_cwmax = qinfo->tqi_cwmax;
1524 qi.tqi_burstTime = qinfo->tqi_burstTime;
1525 qi.tqi_readyTime = qinfo->tqi_readyTime;
1526
1527 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1528 ath_err(ath9k_hw_common(sc->sc_ah),
1529 "Unable to update hardware queue %u!\n", qnum);
1530 error = -EIO;
1531 } else {
1532 ath9k_hw_resettxqueue(ah, qnum);
1533 }
1534
1535 return error;
1536}
1537
1538int ath_cabq_update(struct ath_softc *sc)
1539{
1540 struct ath9k_tx_queue_info qi;
1541 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1542 int qnum = sc->beacon.cabq->axq_qnum;
1543
1544 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1545 /*
1546 * Ensure the readytime % is within the bounds.
1547 */
1548 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1549 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1550 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1551 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1552
1553 qi.tqi_readyTime = (cur_conf->beacon_interval *
1554 sc->config.cabqReadytime) / 100;
1555 ath_txq_update(sc, qnum, &qi);
1556
1557 return 0;
1558}
1559
1560static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1561 struct list_head *list)
1562{
1563 struct ath_buf *bf, *lastbf;
1564 struct list_head bf_head;
1565 struct ath_tx_status ts;
1566
1567 memset(&ts, 0, sizeof(ts));
1568 ts.ts_status = ATH9K_TX_FLUSH;
1569 INIT_LIST_HEAD(&bf_head);
1570
1571 while (!list_empty(list)) {
1572 bf = list_first_entry(list, struct ath_buf, list);
1573
1574 if (bf->bf_stale) {
1575 list_del(&bf->list);
1576
1577 ath_tx_return_buffer(sc, bf);
1578 continue;
1579 }
1580
1581 lastbf = bf->bf_lastbf;
1582 list_cut_position(&bf_head, list, &lastbf->list);
1583 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1584 }
1585}
1586
1587/*
1588 * Drain a given TX queue (could be Beacon or Data)
1589 *
1590 * This assumes output has been stopped and
1591 * we do not need to block ath_tx_tasklet.
1592 */
1593void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1594{
1595 ath_txq_lock(sc, txq);
1596
1597 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1598 int idx = txq->txq_tailidx;
1599
1600 while (!list_empty(&txq->txq_fifo[idx])) {
1601 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1602
1603 INCR(idx, ATH_TXFIFO_DEPTH);
1604 }
1605 txq->txq_tailidx = idx;
1606 }
1607
1608 txq->axq_link = NULL;
1609 txq->axq_tx_inprogress = false;
1610 ath_drain_txq_list(sc, txq, &txq->axq_q);
1611
1612 ath_txq_unlock_complete(sc, txq);
1613}
1614
1615bool ath_drain_all_txq(struct ath_softc *sc)
1616{
1617 struct ath_hw *ah = sc->sc_ah;
1618 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1619 struct ath_txq *txq;
1620 int i;
1621 u32 npend = 0;
1622
1623 if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1624 return true;
1625
1626 ath9k_hw_abort_tx_dma(ah);
1627
1628 /* Check if any queue remains active */
1629 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1630 if (!ATH_TXQ_SETUP(sc, i))
1631 continue;
1632
1633 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1634 npend |= BIT(i);
1635 }
1636
1637 if (npend)
1638 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1639
1640 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1641 if (!ATH_TXQ_SETUP(sc, i))
1642 continue;
1643
1644 /*
1645 * The caller will resume queues with ieee80211_wake_queues.
1646 * Mark the queue as not stopped to prevent ath_tx_complete
1647 * from waking the queue too early.
1648 */
1649 txq = &sc->tx.txq[i];
1650 txq->stopped = false;
1651 ath_draintxq(sc, txq);
1652 }
1653
1654 return !npend;
1655}
1656
1657void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1658{
1659 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1660 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1661}
1662
1663/* For each axq_acq entry, for each tid, try to schedule packets
1664 * for transmit until ampdu_depth has reached min Q depth.
1665 */
1666void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1667{
1668 struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1669 struct ath_atx_tid *tid, *last_tid;
1670
1671 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1672 list_empty(&txq->axq_acq) ||
1673 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1674 return;
1675
1676 rcu_read_lock();
1677
1678 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1679 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1680
1681 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1682 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1683 list_del(&ac->list);
1684 ac->sched = false;
1685
1686 while (!list_empty(&ac->tid_q)) {
1687 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1688 list);
1689 list_del(&tid->list);
1690 tid->sched = false;
1691
1692 if (tid->paused)
1693 continue;
1694
1695 ath_tx_sched_aggr(sc, txq, tid);
1696
1697 /*
1698 * add tid to round-robin queue if more frames
1699 * are pending for the tid
1700 */
1701 if (!skb_queue_empty(&tid->buf_q))
1702 ath_tx_queue_tid(txq, tid);
1703
1704 if (tid == last_tid ||
1705 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1706 break;
1707 }
1708
1709 if (!list_empty(&ac->tid_q) && !ac->sched) {
1710 ac->sched = true;
1711 list_add_tail(&ac->list, &txq->axq_acq);
1712 }
1713
1714 if (ac == last_ac ||
1715 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1716 break;
1717 }
1718
1719 rcu_read_unlock();
1720}
1721
1722/***********/
1723/* TX, DMA */
1724/***********/
1725
1726/*
1727 * Insert a chain of ath_buf (descriptors) on a txq and
1728 * assume the descriptors are already chained together by caller.
1729 */
1730static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1731 struct list_head *head, bool internal)
1732{
1733 struct ath_hw *ah = sc->sc_ah;
1734 struct ath_common *common = ath9k_hw_common(ah);
1735 struct ath_buf *bf, *bf_last;
1736 bool puttxbuf = false;
1737 bool edma;
1738
1739 /*
1740 * Insert the frame on the outbound list and
1741 * pass it on to the hardware.
1742 */
1743
1744 if (list_empty(head))
1745 return;
1746
1747 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1748 bf = list_first_entry(head, struct ath_buf, list);
1749 bf_last = list_entry(head->prev, struct ath_buf, list);
1750
1751 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1752 txq->axq_qnum, txq->axq_depth);
1753
1754 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1755 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1756 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1757 puttxbuf = true;
1758 } else {
1759 list_splice_tail_init(head, &txq->axq_q);
1760
1761 if (txq->axq_link) {
1762 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1763 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1764 txq->axq_qnum, txq->axq_link,
1765 ito64(bf->bf_daddr), bf->bf_desc);
1766 } else if (!edma)
1767 puttxbuf = true;
1768
1769 txq->axq_link = bf_last->bf_desc;
1770 }
1771
1772 if (puttxbuf) {
1773 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1774 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1775 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1776 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1777 }
1778
1779 if (!edma) {
1780 TX_STAT_INC(txq->axq_qnum, txstart);
1781 ath9k_hw_txstart(ah, txq->axq_qnum);
1782 }
1783
1784 if (!internal) {
1785 while (bf) {
1786 txq->axq_depth++;
1787 if (bf_is_ampdu_not_probing(bf))
1788 txq->axq_ampdu_depth++;
1789
1790 bf = bf->bf_lastbf->bf_next;
1791 }
1792 }
1793}
1794
1795static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_txq *txq,
1796 struct ath_atx_tid *tid, struct sk_buff *skb,
1797 struct ath_tx_control *txctl)
1798{
1799 struct ath_frame_info *fi = get_frame_info(skb);
1800 struct list_head bf_head;
1801 struct ath_buf *bf;
1802
1803 /*
1804 * Do not queue to h/w when any of the following conditions is true:
1805 * - there are pending frames in software queue
1806 * - the TID is currently paused for ADDBA/BAR request
1807 * - seqno is not within block-ack window
1808 * - h/w queue depth exceeds low water mark
1809 */
1810 if ((!skb_queue_empty(&tid->buf_q) || tid->paused ||
1811 !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1812 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) &&
1813 txq != sc->tx.uapsdq) {
1814 /*
1815 * Add this frame to software queue for scheduling later
1816 * for aggregation.
1817 */
1818 TX_STAT_INC(txq->axq_qnum, a_queued_sw);
1819 __skb_queue_tail(&tid->buf_q, skb);
1820 if (!txctl->an || !txctl->an->sleeping)
1821 ath_tx_queue_tid(txq, tid);
1822 return;
1823 }
1824
1825 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
1826 if (!bf) {
1827 ieee80211_free_txskb(sc->hw, skb);
1828 return;
1829 }
1830
1831 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1832 bf->bf_state.bf_type = BUF_AMPDU;
1833 INIT_LIST_HEAD(&bf_head);
1834 list_add(&bf->list, &bf_head);
1835
1836 /* Add sub-frame to BAW */
1837 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1838
1839 /* Queue to h/w without aggregation */
1840 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1841 bf->bf_lastbf = bf;
1842 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1843 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1844}
1845
1846static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1847 struct ath_atx_tid *tid, struct sk_buff *skb)
1848{
1849 struct ath_frame_info *fi = get_frame_info(skb);
1850 struct list_head bf_head;
1851 struct ath_buf *bf;
1852
1853 bf = fi->bf;
1854
1855 INIT_LIST_HEAD(&bf_head);
1856 list_add_tail(&bf->list, &bf_head);
1857 bf->bf_state.bf_type = 0;
1858
1859 bf->bf_next = NULL;
1860 bf->bf_lastbf = bf;
1861 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1862 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1863 TX_STAT_INC(txq->axq_qnum, queued);
1864}
1865
1866static void setup_frame_info(struct ieee80211_hw *hw,
1867 struct ieee80211_sta *sta,
1868 struct sk_buff *skb,
1869 int framelen)
1870{
1871 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1872 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1873 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1874 const struct ieee80211_rate *rate;
1875 struct ath_frame_info *fi = get_frame_info(skb);
1876 struct ath_node *an = NULL;
1877 enum ath9k_key_type keytype;
1878 bool short_preamble = false;
1879
1880 /*
1881 * We check if Short Preamble is needed for the CTS rate by
1882 * checking the BSS's global flag.
1883 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1884 */
1885 if (tx_info->control.vif &&
1886 tx_info->control.vif->bss_conf.use_short_preamble)
1887 short_preamble = true;
1888
1889 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
1890 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1891
1892 if (sta)
1893 an = (struct ath_node *) sta->drv_priv;
1894
1895 memset(fi, 0, sizeof(*fi));
1896 if (hw_key)
1897 fi->keyix = hw_key->hw_key_idx;
1898 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1899 fi->keyix = an->ps_key;
1900 else
1901 fi->keyix = ATH9K_TXKEYIX_INVALID;
1902 fi->keytype = keytype;
1903 fi->framelen = framelen;
1904 fi->rtscts_rate = rate->hw_value;
1905 if (short_preamble)
1906 fi->rtscts_rate |= rate->hw_value_short;
1907}
1908
1909u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1910{
1911 struct ath_hw *ah = sc->sc_ah;
1912 struct ath9k_channel *curchan = ah->curchan;
1913
1914 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1915 (curchan->channelFlags & CHANNEL_5GHZ) &&
1916 (chainmask == 0x7) && (rate < 0x90))
1917 return 0x3;
1918 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
1919 IS_CCK_RATE(rate))
1920 return 0x2;
1921 else
1922 return chainmask;
1923}
1924
1925/*
1926 * Assign a descriptor (and sequence number if necessary,
1927 * and map buffer for DMA. Frees skb on error
1928 */
1929static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1930 struct ath_txq *txq,
1931 struct ath_atx_tid *tid,
1932 struct sk_buff *skb)
1933{
1934 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1935 struct ath_frame_info *fi = get_frame_info(skb);
1936 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1937 struct ath_buf *bf;
1938 int fragno;
1939 u16 seqno;
1940
1941 bf = ath_tx_get_buffer(sc);
1942 if (!bf) {
1943 ath_dbg(common, XMIT, "TX buffers are full\n");
1944 return NULL;
1945 }
1946
1947 ATH_TXBUF_RESET(bf);
1948
1949 if (tid) {
1950 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1951 seqno = tid->seq_next;
1952 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1953
1954 if (fragno)
1955 hdr->seq_ctrl |= cpu_to_le16(fragno);
1956
1957 if (!ieee80211_has_morefrags(hdr->frame_control))
1958 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1959
1960 bf->bf_state.seqno = seqno;
1961 }
1962
1963 bf->bf_mpdu = skb;
1964
1965 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1966 skb->len, DMA_TO_DEVICE);
1967 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1968 bf->bf_mpdu = NULL;
1969 bf->bf_buf_addr = 0;
1970 ath_err(ath9k_hw_common(sc->sc_ah),
1971 "dma_mapping_error() on TX\n");
1972 ath_tx_return_buffer(sc, bf);
1973 return NULL;
1974 }
1975
1976 fi->bf = bf;
1977
1978 return bf;
1979}
1980
1981static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
1982 struct ath_tx_control *txctl)
1983{
1984 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1985 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1986 struct ieee80211_sta *sta = txctl->sta;
1987 struct ieee80211_vif *vif = info->control.vif;
1988 struct ath_softc *sc = hw->priv;
1989 int frmlen = skb->len + FCS_LEN;
1990 int padpos, padsize;
1991
1992 /* NOTE: sta can be NULL according to net/mac80211.h */
1993 if (sta)
1994 txctl->an = (struct ath_node *)sta->drv_priv;
1995
1996 if (info->control.hw_key)
1997 frmlen += info->control.hw_key->icv_len;
1998
1999 /*
2000 * As a temporary workaround, assign seq# here; this will likely need
2001 * to be cleaned up to work better with Beacon transmission and virtual
2002 * BSSes.
2003 */
2004 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2005 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2006 sc->tx.seq_no += 0x10;
2007 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2008 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2009 }
2010
2011 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2012 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2013 !ieee80211_is_data(hdr->frame_control))
2014 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2015
2016 /* Add the padding after the header if this is not already done */
2017 padpos = ieee80211_hdrlen(hdr->frame_control);
2018 padsize = padpos & 3;
2019 if (padsize && skb->len > padpos) {
2020 if (skb_headroom(skb) < padsize)
2021 return -ENOMEM;
2022
2023 skb_push(skb, padsize);
2024 memmove(skb->data, skb->data + padsize, padpos);
2025 }
2026
2027 setup_frame_info(hw, sta, skb, frmlen);
2028 return 0;
2029}
2030
2031
2032/* Upon failure caller should free skb */
2033int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2034 struct ath_tx_control *txctl)
2035{
2036 struct ieee80211_hdr *hdr;
2037 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2038 struct ieee80211_sta *sta = txctl->sta;
2039 struct ieee80211_vif *vif = info->control.vif;
2040 struct ath_softc *sc = hw->priv;
2041 struct ath_txq *txq = txctl->txq;
2042 struct ath_atx_tid *tid = NULL;
2043 struct ath_buf *bf;
2044 u8 tidno;
2045 int q;
2046 int ret;
2047
2048 ret = ath_tx_prepare(hw, skb, txctl);
2049 if (ret)
2050 return ret;
2051
2052 hdr = (struct ieee80211_hdr *) skb->data;
2053 /*
2054 * At this point, the vif, hw_key and sta pointers in the tx control
2055 * info are no longer valid (overwritten by the ath_frame_info data.
2056 */
2057
2058 q = skb_get_queue_mapping(skb);
2059
2060 ath_txq_lock(sc, txq);
2061 if (txq == sc->tx.txq_map[q] &&
2062 ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2063 !txq->stopped) {
2064 ieee80211_stop_queue(sc->hw, q);
2065 txq->stopped = true;
2066 }
2067
2068 if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
2069 ath_txq_unlock(sc, txq);
2070 txq = sc->tx.uapsdq;
2071 ath_txq_lock(sc, txq);
2072 }
2073
2074 if (txctl->an && ieee80211_is_data_qos(hdr->frame_control)) {
2075 tidno = ieee80211_get_qos_ctl(hdr)[0] &
2076 IEEE80211_QOS_CTL_TID_MASK;
2077 tid = ATH_AN_2_TID(txctl->an, tidno);
2078
2079 WARN_ON(tid->ac->txq != txctl->txq);
2080 }
2081
2082 if ((info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
2083 /*
2084 * Try aggregation if it's a unicast data frame
2085 * and the destination is HT capable.
2086 */
2087 ath_tx_send_ampdu(sc, txq, tid, skb, txctl);
2088 goto out;
2089 }
2090
2091 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2092 if (!bf) {
2093 if (txctl->paprd)
2094 dev_kfree_skb_any(skb);
2095 else
2096 ieee80211_free_txskb(sc->hw, skb);
2097 goto out;
2098 }
2099
2100 bf->bf_state.bfs_paprd = txctl->paprd;
2101
2102 if (txctl->paprd)
2103 bf->bf_state.bfs_paprd_timestamp = jiffies;
2104
2105 ath_set_rates(vif, sta, bf);
2106 ath_tx_send_normal(sc, txq, tid, skb);
2107
2108out:
2109 ath_txq_unlock(sc, txq);
2110
2111 return 0;
2112}
2113
2114void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2115 struct sk_buff *skb)
2116{
2117 struct ath_softc *sc = hw->priv;
2118 struct ath_tx_control txctl = {
2119 .txq = sc->beacon.cabq
2120 };
2121 struct ath_tx_info info = {};
2122 struct ieee80211_hdr *hdr;
2123 struct ath_buf *bf_tail = NULL;
2124 struct ath_buf *bf;
2125 LIST_HEAD(bf_q);
2126 int duration = 0;
2127 int max_duration;
2128
2129 max_duration =
2130 sc->cur_beacon_conf.beacon_interval * 1000 *
2131 sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
2132
2133 do {
2134 struct ath_frame_info *fi = get_frame_info(skb);
2135
2136 if (ath_tx_prepare(hw, skb, &txctl))
2137 break;
2138
2139 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2140 if (!bf)
2141 break;
2142
2143 bf->bf_lastbf = bf;
2144 ath_set_rates(vif, NULL, bf);
2145 ath_buf_set_rate(sc, bf, &info, fi->framelen);
2146 duration += info.rates[0].PktDuration;
2147 if (bf_tail)
2148 bf_tail->bf_next = bf;
2149
2150 list_add_tail(&bf->list, &bf_q);
2151 bf_tail = bf;
2152 skb = NULL;
2153
2154 if (duration > max_duration)
2155 break;
2156
2157 skb = ieee80211_get_buffered_bc(hw, vif);
2158 } while(skb);
2159
2160 if (skb)
2161 ieee80211_free_txskb(hw, skb);
2162
2163 if (list_empty(&bf_q))
2164 return;
2165
2166 bf = list_first_entry(&bf_q, struct ath_buf, list);
2167 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2168
2169 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2170 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2171 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2172 sizeof(*hdr), DMA_TO_DEVICE);
2173 }
2174
2175 ath_txq_lock(sc, txctl.txq);
2176 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2177 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2178 TX_STAT_INC(txctl.txq->axq_qnum, queued);
2179 ath_txq_unlock(sc, txctl.txq);
2180}
2181
2182/*****************/
2183/* TX Completion */
2184/*****************/
2185
2186static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2187 int tx_flags, struct ath_txq *txq)
2188{
2189 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2190 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2191 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2192 int q, padpos, padsize;
2193 unsigned long flags;
2194
2195 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2196
2197 if (sc->sc_ah->caldata)
2198 sc->sc_ah->caldata->paprd_packet_sent = true;
2199
2200 if (!(tx_flags & ATH_TX_ERROR))
2201 /* Frame was ACKed */
2202 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2203
2204 padpos = ieee80211_hdrlen(hdr->frame_control);
2205 padsize = padpos & 3;
2206 if (padsize && skb->len>padpos+padsize) {
2207 /*
2208 * Remove MAC header padding before giving the frame back to
2209 * mac80211.
2210 */
2211 memmove(skb->data + padsize, skb->data, padpos);
2212 skb_pull(skb, padsize);
2213 }
2214
2215 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2216 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2217 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2218 ath_dbg(common, PS,
2219 "Going back to sleep after having received TX status (0x%lx)\n",
2220 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2221 PS_WAIT_FOR_CAB |
2222 PS_WAIT_FOR_PSPOLL_DATA |
2223 PS_WAIT_FOR_TX_ACK));
2224 }
2225 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2226
2227 __skb_queue_tail(&txq->complete_q, skb);
2228
2229 q = skb_get_queue_mapping(skb);
2230 if (txq == sc->tx.uapsdq)
2231 txq = sc->tx.txq_map[q];
2232
2233 if (txq == sc->tx.txq_map[q]) {
2234 if (WARN_ON(--txq->pending_frames < 0))
2235 txq->pending_frames = 0;
2236
2237 if (txq->stopped &&
2238 txq->pending_frames < sc->tx.txq_max_pending[q]) {
2239 ieee80211_wake_queue(sc->hw, q);
2240 txq->stopped = false;
2241 }
2242 }
2243}
2244
2245static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2246 struct ath_txq *txq, struct list_head *bf_q,
2247 struct ath_tx_status *ts, int txok)
2248{
2249 struct sk_buff *skb = bf->bf_mpdu;
2250 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2251 unsigned long flags;
2252 int tx_flags = 0;
2253
2254 if (!txok)
2255 tx_flags |= ATH_TX_ERROR;
2256
2257 if (ts->ts_status & ATH9K_TXERR_FILT)
2258 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2259
2260 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2261 bf->bf_buf_addr = 0;
2262
2263 if (bf->bf_state.bfs_paprd) {
2264 if (time_after(jiffies,
2265 bf->bf_state.bfs_paprd_timestamp +
2266 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2267 dev_kfree_skb_any(skb);
2268 else
2269 complete(&sc->paprd_complete);
2270 } else {
2271 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2272 ath_tx_complete(sc, skb, tx_flags, txq);
2273 }
2274 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2275 * accidentally reference it later.
2276 */
2277 bf->bf_mpdu = NULL;
2278
2279 /*
2280 * Return the list of ath_buf of this mpdu to free queue
2281 */
2282 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2283 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2284 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2285}
2286
2287static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2288 struct ath_tx_status *ts, int nframes, int nbad,
2289 int txok)
2290{
2291 struct sk_buff *skb = bf->bf_mpdu;
2292 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2293 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2294 struct ieee80211_hw *hw = sc->hw;
2295 struct ath_hw *ah = sc->sc_ah;
2296 u8 i, tx_rateindex;
2297
2298 if (txok)
2299 tx_info->status.ack_signal = ts->ts_rssi;
2300
2301 tx_rateindex = ts->ts_rateindex;
2302 WARN_ON(tx_rateindex >= hw->max_rates);
2303
2304 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2305 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2306
2307 BUG_ON(nbad > nframes);
2308 }
2309 tx_info->status.ampdu_len = nframes;
2310 tx_info->status.ampdu_ack_len = nframes - nbad;
2311
2312 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2313 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2314 /*
2315 * If an underrun error is seen assume it as an excessive
2316 * retry only if max frame trigger level has been reached
2317 * (2 KB for single stream, and 4 KB for dual stream).
2318 * Adjust the long retry as if the frame was tried
2319 * hw->max_rate_tries times to affect how rate control updates
2320 * PER for the failed rate.
2321 * In case of congestion on the bus penalizing this type of
2322 * underruns should help hardware actually transmit new frames
2323 * successfully by eventually preferring slower rates.
2324 * This itself should also alleviate congestion on the bus.
2325 */
2326 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2327 ATH9K_TX_DELIM_UNDERRUN)) &&
2328 ieee80211_is_data(hdr->frame_control) &&
2329 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2330 tx_info->status.rates[tx_rateindex].count =
2331 hw->max_rate_tries;
2332 }
2333
2334 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2335 tx_info->status.rates[i].count = 0;
2336 tx_info->status.rates[i].idx = -1;
2337 }
2338
2339 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2340}
2341
2342static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2343{
2344 struct ath_hw *ah = sc->sc_ah;
2345 struct ath_common *common = ath9k_hw_common(ah);
2346 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2347 struct list_head bf_head;
2348 struct ath_desc *ds;
2349 struct ath_tx_status ts;
2350 int status;
2351
2352 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2353 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2354 txq->axq_link);
2355
2356 ath_txq_lock(sc, txq);
2357 for (;;) {
2358 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2359 break;
2360
2361 if (list_empty(&txq->axq_q)) {
2362 txq->axq_link = NULL;
2363 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2364 ath_txq_schedule(sc, txq);
2365 break;
2366 }
2367 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2368
2369 /*
2370 * There is a race condition that a BH gets scheduled
2371 * after sw writes TxE and before hw re-load the last
2372 * descriptor to get the newly chained one.
2373 * Software must keep the last DONE descriptor as a
2374 * holding descriptor - software does so by marking
2375 * it with the STALE flag.
2376 */
2377 bf_held = NULL;
2378 if (bf->bf_stale) {
2379 bf_held = bf;
2380 if (list_is_last(&bf_held->list, &txq->axq_q))
2381 break;
2382
2383 bf = list_entry(bf_held->list.next, struct ath_buf,
2384 list);
2385 }
2386
2387 lastbf = bf->bf_lastbf;
2388 ds = lastbf->bf_desc;
2389
2390 memset(&ts, 0, sizeof(ts));
2391 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2392 if (status == -EINPROGRESS)
2393 break;
2394
2395 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2396
2397 /*
2398 * Remove ath_buf's of the same transmit unit from txq,
2399 * however leave the last descriptor back as the holding
2400 * descriptor for hw.
2401 */
2402 lastbf->bf_stale = true;
2403 INIT_LIST_HEAD(&bf_head);
2404 if (!list_is_singular(&lastbf->list))
2405 list_cut_position(&bf_head,
2406 &txq->axq_q, lastbf->list.prev);
2407
2408 if (bf_held) {
2409 list_del(&bf_held->list);
2410 ath_tx_return_buffer(sc, bf_held);
2411 }
2412
2413 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2414 }
2415 ath_txq_unlock_complete(sc, txq);
2416}
2417
2418void ath_tx_tasklet(struct ath_softc *sc)
2419{
2420 struct ath_hw *ah = sc->sc_ah;
2421 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2422 int i;
2423
2424 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2425 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2426 ath_tx_processq(sc, &sc->tx.txq[i]);
2427 }
2428}
2429
2430void ath_tx_edma_tasklet(struct ath_softc *sc)
2431{
2432 struct ath_tx_status ts;
2433 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2434 struct ath_hw *ah = sc->sc_ah;
2435 struct ath_txq *txq;
2436 struct ath_buf *bf, *lastbf;
2437 struct list_head bf_head;
2438 struct list_head *fifo_list;
2439 int status;
2440
2441 for (;;) {
2442 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2443 break;
2444
2445 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2446 if (status == -EINPROGRESS)
2447 break;
2448 if (status == -EIO) {
2449 ath_dbg(common, XMIT, "Error processing tx status\n");
2450 break;
2451 }
2452
2453 /* Process beacon completions separately */
2454 if (ts.qid == sc->beacon.beaconq) {
2455 sc->beacon.tx_processed = true;
2456 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2457 continue;
2458 }
2459
2460 txq = &sc->tx.txq[ts.qid];
2461
2462 ath_txq_lock(sc, txq);
2463
2464 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2465
2466 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2467 if (list_empty(fifo_list)) {
2468 ath_txq_unlock(sc, txq);
2469 return;
2470 }
2471
2472 bf = list_first_entry(fifo_list, struct ath_buf, list);
2473 if (bf->bf_stale) {
2474 list_del(&bf->list);
2475 ath_tx_return_buffer(sc, bf);
2476 bf = list_first_entry(fifo_list, struct ath_buf, list);
2477 }
2478
2479 lastbf = bf->bf_lastbf;
2480
2481 INIT_LIST_HEAD(&bf_head);
2482 if (list_is_last(&lastbf->list, fifo_list)) {
2483 list_splice_tail_init(fifo_list, &bf_head);
2484 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2485
2486 if (!list_empty(&txq->axq_q)) {
2487 struct list_head bf_q;
2488
2489 INIT_LIST_HEAD(&bf_q);
2490 txq->axq_link = NULL;
2491 list_splice_tail_init(&txq->axq_q, &bf_q);
2492 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2493 }
2494 } else {
2495 lastbf->bf_stale = true;
2496 if (bf != lastbf)
2497 list_cut_position(&bf_head, fifo_list,
2498 lastbf->list.prev);
2499 }
2500
2501 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2502 ath_txq_unlock_complete(sc, txq);
2503 }
2504}
2505
2506/*****************/
2507/* Init, Cleanup */
2508/*****************/
2509
2510static int ath_txstatus_setup(struct ath_softc *sc, int size)
2511{
2512 struct ath_descdma *dd = &sc->txsdma;
2513 u8 txs_len = sc->sc_ah->caps.txs_len;
2514
2515 dd->dd_desc_len = size * txs_len;
2516 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2517 &dd->dd_desc_paddr, GFP_KERNEL);
2518 if (!dd->dd_desc)
2519 return -ENOMEM;
2520
2521 return 0;
2522}
2523
2524static int ath_tx_edma_init(struct ath_softc *sc)
2525{
2526 int err;
2527
2528 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2529 if (!err)
2530 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2531 sc->txsdma.dd_desc_paddr,
2532 ATH_TXSTATUS_RING_SIZE);
2533
2534 return err;
2535}
2536
2537int ath_tx_init(struct ath_softc *sc, int nbufs)
2538{
2539 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2540 int error = 0;
2541
2542 spin_lock_init(&sc->tx.txbuflock);
2543
2544 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2545 "tx", nbufs, 1, 1);
2546 if (error != 0) {
2547 ath_err(common,
2548 "Failed to allocate tx descriptors: %d\n", error);
2549 return error;
2550 }
2551
2552 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2553 "beacon", ATH_BCBUF, 1, 1);
2554 if (error != 0) {
2555 ath_err(common,
2556 "Failed to allocate beacon descriptors: %d\n", error);
2557 return error;
2558 }
2559
2560 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2561
2562 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2563 error = ath_tx_edma_init(sc);
2564
2565 return error;
2566}
2567
2568void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2569{
2570 struct ath_atx_tid *tid;
2571 struct ath_atx_ac *ac;
2572 int tidno, acno;
2573
2574 for (tidno = 0, tid = &an->tid[tidno];
2575 tidno < IEEE80211_NUM_TIDS;
2576 tidno++, tid++) {
2577 tid->an = an;
2578 tid->tidno = tidno;
2579 tid->seq_start = tid->seq_next = 0;
2580 tid->baw_size = WME_MAX_BA;
2581 tid->baw_head = tid->baw_tail = 0;
2582 tid->sched = false;
2583 tid->paused = false;
2584 tid->active = false;
2585 __skb_queue_head_init(&tid->buf_q);
2586 acno = TID_TO_WME_AC(tidno);
2587 tid->ac = &an->ac[acno];
2588 }
2589
2590 for (acno = 0, ac = &an->ac[acno];
2591 acno < IEEE80211_NUM_ACS; acno++, ac++) {
2592 ac->sched = false;
2593 ac->txq = sc->tx.txq_map[acno];
2594 INIT_LIST_HEAD(&ac->tid_q);
2595 }
2596}
2597
2598void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2599{
2600 struct ath_atx_ac *ac;
2601 struct ath_atx_tid *tid;
2602 struct ath_txq *txq;
2603 int tidno;
2604
2605 for (tidno = 0, tid = &an->tid[tidno];
2606 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2607
2608 ac = tid->ac;
2609 txq = ac->txq;
2610
2611 ath_txq_lock(sc, txq);
2612
2613 if (tid->sched) {
2614 list_del(&tid->list);
2615 tid->sched = false;
2616 }
2617
2618 if (ac->sched) {
2619 list_del(&ac->list);
2620 tid->ac->sched = false;
2621 }
2622
2623 ath_tid_drain(sc, txq, tid);
2624 tid->active = false;
2625
2626 ath_txq_unlock(sc, txq);
2627 }
2628}
This page took 0.035083 seconds and 5 git commands to generate.