rt2x00: Shortcut link state updates when not operating as STA
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
... / ...
CommitLineData
1/*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22
23/*
24 Module: rt2x00lib
25 Abstract: rt2x00 queue specific routines.
26 */
27
28#include <linux/slab.h>
29#include <linux/kernel.h>
30#include <linux/module.h>
31#include <linux/dma-mapping.h>
32
33#include "rt2x00.h"
34#include "rt2x00lib.h"
35
36struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
37 struct queue_entry *entry)
38{
39 struct sk_buff *skb;
40 struct skb_frame_desc *skbdesc;
41 unsigned int frame_size;
42 unsigned int head_size = 0;
43 unsigned int tail_size = 0;
44
45 /*
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
48 */
49 frame_size = entry->queue->data_size + entry->queue->desc_size;
50
51 /*
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
55 */
56 head_size = 4;
57
58 /*
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
62 */
63 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
64 head_size += 8;
65 tail_size += 8;
66 }
67
68 /*
69 * Allocate skbuffer.
70 */
71 skb = dev_alloc_skb(frame_size + head_size + tail_size);
72 if (!skb)
73 return NULL;
74
75 /*
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
78 */
79 skb_reserve(skb, head_size);
80 skb_put(skb, frame_size);
81
82 /*
83 * Populate skbdesc.
84 */
85 skbdesc = get_skb_frame_desc(skb);
86 memset(skbdesc, 0, sizeof(*skbdesc));
87 skbdesc->entry = entry;
88
89 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
90 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 skb->data,
92 skb->len,
93 DMA_FROM_DEVICE);
94 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
95 }
96
97 return skb;
98}
99
100void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
101{
102 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
103
104 skbdesc->skb_dma =
105 dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
106 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
107}
108EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
109
110void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
111{
112 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
113
114 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
115 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
116 DMA_FROM_DEVICE);
117 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
118 }
119
120 if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
122 DMA_TO_DEVICE);
123 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
124 }
125}
126EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
127
128void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
129{
130 if (!skb)
131 return;
132
133 rt2x00queue_unmap_skb(rt2x00dev, skb);
134 dev_kfree_skb_any(skb);
135}
136
137void rt2x00queue_align_frame(struct sk_buff *skb)
138{
139 unsigned int frame_length = skb->len;
140 unsigned int align = ALIGN_SIZE(skb, 0);
141
142 if (!align)
143 return;
144
145 skb_push(skb, align);
146 memmove(skb->data, skb->data + align, frame_length);
147 skb_trim(skb, frame_length);
148}
149
150void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
151{
152 unsigned int frame_length = skb->len;
153 unsigned int align = ALIGN_SIZE(skb, header_length);
154
155 if (!align)
156 return;
157
158 skb_push(skb, align);
159 memmove(skb->data, skb->data + align, frame_length);
160 skb_trim(skb, frame_length);
161}
162
163void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
164{
165 unsigned int payload_length = skb->len - header_length;
166 unsigned int header_align = ALIGN_SIZE(skb, 0);
167 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
168 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
169
170 /*
171 * Adjust the header alignment if the payload needs to be moved more
172 * than the header.
173 */
174 if (payload_align > header_align)
175 header_align += 4;
176
177 /* There is nothing to do if no alignment is needed */
178 if (!header_align)
179 return;
180
181 /* Reserve the amount of space needed in front of the frame */
182 skb_push(skb, header_align);
183
184 /*
185 * Move the header.
186 */
187 memmove(skb->data, skb->data + header_align, header_length);
188
189 /* Move the payload, if present and if required */
190 if (payload_length && payload_align)
191 memmove(skb->data + header_length + l2pad,
192 skb->data + header_length + l2pad + payload_align,
193 payload_length);
194
195 /* Trim the skb to the correct size */
196 skb_trim(skb, header_length + l2pad + payload_length);
197}
198
199void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
200{
201 unsigned int l2pad = L2PAD_SIZE(header_length);
202
203 if (!l2pad)
204 return;
205
206 memmove(skb->data + l2pad, skb->data, header_length);
207 skb_pull(skb, l2pad);
208}
209
210static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
211 struct txentry_desc *txdesc)
212{
213 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
214 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
215 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
216 unsigned long irqflags;
217
218 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
219 unlikely(!tx_info->control.vif))
220 return;
221
222 /*
223 * Hardware should insert sequence counter.
224 * FIXME: We insert a software sequence counter first for
225 * hardware that doesn't support hardware sequence counting.
226 *
227 * This is wrong because beacons are not getting sequence
228 * numbers assigned properly.
229 *
230 * A secondary problem exists for drivers that cannot toggle
231 * sequence counting per-frame, since those will override the
232 * sequence counter given by mac80211.
233 */
234 spin_lock_irqsave(&intf->seqlock, irqflags);
235
236 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
237 intf->seqno += 0x10;
238 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
239 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
240
241 spin_unlock_irqrestore(&intf->seqlock, irqflags);
242
243 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
244}
245
246static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
247 struct txentry_desc *txdesc,
248 const struct rt2x00_rate *hwrate)
249{
250 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
251 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
252 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
253 unsigned int data_length;
254 unsigned int duration;
255 unsigned int residual;
256
257 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
258 data_length = entry->skb->len + 4;
259 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
260
261 /*
262 * PLCP setup
263 * Length calculation depends on OFDM/CCK rate.
264 */
265 txdesc->signal = hwrate->plcp;
266 txdesc->service = 0x04;
267
268 if (hwrate->flags & DEV_RATE_OFDM) {
269 txdesc->length_high = (data_length >> 6) & 0x3f;
270 txdesc->length_low = data_length & 0x3f;
271 } else {
272 /*
273 * Convert length to microseconds.
274 */
275 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
276 duration = GET_DURATION(data_length, hwrate->bitrate);
277
278 if (residual != 0) {
279 duration++;
280
281 /*
282 * Check if we need to set the Length Extension
283 */
284 if (hwrate->bitrate == 110 && residual <= 30)
285 txdesc->service |= 0x80;
286 }
287
288 txdesc->length_high = (duration >> 8) & 0xff;
289 txdesc->length_low = duration & 0xff;
290
291 /*
292 * When preamble is enabled we should set the
293 * preamble bit for the signal.
294 */
295 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
296 txdesc->signal |= 0x08;
297 }
298}
299
300static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
301 struct txentry_desc *txdesc)
302{
303 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
304 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
305 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
306 struct ieee80211_rate *rate =
307 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
308 const struct rt2x00_rate *hwrate;
309
310 memset(txdesc, 0, sizeof(*txdesc));
311
312 /*
313 * Initialize information from queue
314 */
315 txdesc->qid = entry->queue->qid;
316 txdesc->cw_min = entry->queue->cw_min;
317 txdesc->cw_max = entry->queue->cw_max;
318 txdesc->aifs = entry->queue->aifs;
319
320 /*
321 * Header and frame information.
322 */
323 txdesc->length = entry->skb->len;
324 txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
325
326 /*
327 * Check whether this frame is to be acked.
328 */
329 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
330 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
331
332 /*
333 * Check if this is a RTS/CTS frame
334 */
335 if (ieee80211_is_rts(hdr->frame_control) ||
336 ieee80211_is_cts(hdr->frame_control)) {
337 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
338 if (ieee80211_is_rts(hdr->frame_control))
339 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
340 else
341 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
342 if (tx_info->control.rts_cts_rate_idx >= 0)
343 rate =
344 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
345 }
346
347 /*
348 * Determine retry information.
349 */
350 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
351 if (txdesc->retry_limit >= rt2x00dev->long_retry)
352 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
353
354 /*
355 * Check if more fragments are pending
356 */
357 if (ieee80211_has_morefrags(hdr->frame_control)) {
358 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
359 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
360 }
361
362 /*
363 * Check if more frames (!= fragments) are pending
364 */
365 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
366 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
367
368 /*
369 * Beacons and probe responses require the tsf timestamp
370 * to be inserted into the frame, except for a frame that has been injected
371 * through a monitor interface. This latter is needed for testing a
372 * monitor interface.
373 */
374 if ((ieee80211_is_beacon(hdr->frame_control) ||
375 ieee80211_is_probe_resp(hdr->frame_control)) &&
376 (!(tx_info->flags & IEEE80211_TX_CTL_INJECTED)))
377 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
378
379 /*
380 * Determine with what IFS priority this frame should be send.
381 * Set ifs to IFS_SIFS when the this is not the first fragment,
382 * or this fragment came after RTS/CTS.
383 */
384 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
385 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
386 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
387 txdesc->ifs = IFS_BACKOFF;
388 } else
389 txdesc->ifs = IFS_SIFS;
390
391 /*
392 * Determine rate modulation.
393 */
394 hwrate = rt2x00_get_rate(rate->hw_value);
395 txdesc->rate_mode = RATE_MODE_CCK;
396 if (hwrate->flags & DEV_RATE_OFDM)
397 txdesc->rate_mode = RATE_MODE_OFDM;
398
399 /*
400 * Apply TX descriptor handling by components
401 */
402 rt2x00crypto_create_tx_descriptor(entry, txdesc);
403 rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
404 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
405 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
406}
407
408static int rt2x00queue_write_tx_data(struct queue_entry *entry,
409 struct txentry_desc *txdesc)
410{
411 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
412
413 /*
414 * This should not happen, we already checked the entry
415 * was ours. When the hardware disagrees there has been
416 * a queue corruption!
417 */
418 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
419 rt2x00dev->ops->lib->get_entry_state(entry))) {
420 ERROR(rt2x00dev,
421 "Corrupt queue %d, accessing entry which is not ours.\n"
422 "Please file bug report to %s.\n",
423 entry->queue->qid, DRV_PROJECT);
424 return -EINVAL;
425 }
426
427 /*
428 * Add the requested extra tx headroom in front of the skb.
429 */
430 skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
431 memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
432
433 /*
434 * Call the driver's write_tx_data function, if it exists.
435 */
436 if (rt2x00dev->ops->lib->write_tx_data)
437 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
438
439 /*
440 * Map the skb to DMA.
441 */
442 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
443 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
444
445 return 0;
446}
447
448static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
449 struct txentry_desc *txdesc)
450{
451 struct data_queue *queue = entry->queue;
452
453 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
454
455 /*
456 * All processing on the frame has been completed, this means
457 * it is now ready to be dumped to userspace through debugfs.
458 */
459 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
460}
461
462static void rt2x00queue_kick_tx_queue(struct queue_entry *entry,
463 struct txentry_desc *txdesc)
464{
465 struct data_queue *queue = entry->queue;
466 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
467
468 /*
469 * Check if we need to kick the queue, there are however a few rules
470 * 1) Don't kick unless this is the last in frame in a burst.
471 * When the burst flag is set, this frame is always followed
472 * by another frame which in some way are related to eachother.
473 * This is true for fragments, RTS or CTS-to-self frames.
474 * 2) Rule 1 can be broken when the available entries
475 * in the queue are less then a certain threshold.
476 */
477 if (rt2x00queue_threshold(queue) ||
478 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
479 rt2x00dev->ops->lib->kick_tx_queue(queue);
480}
481
482int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
483 bool local)
484{
485 struct ieee80211_tx_info *tx_info;
486 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
487 struct txentry_desc txdesc;
488 struct skb_frame_desc *skbdesc;
489 u8 rate_idx, rate_flags;
490
491 if (unlikely(rt2x00queue_full(queue)))
492 return -ENOBUFS;
493
494 if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
495 ERROR(queue->rt2x00dev,
496 "Arrived at non-free entry in the non-full queue %d.\n"
497 "Please file bug report to %s.\n",
498 queue->qid, DRV_PROJECT);
499 return -EINVAL;
500 }
501
502 /*
503 * Copy all TX descriptor information into txdesc,
504 * after that we are free to use the skb->cb array
505 * for our information.
506 */
507 entry->skb = skb;
508 rt2x00queue_create_tx_descriptor(entry, &txdesc);
509
510 /*
511 * All information is retrieved from the skb->cb array,
512 * now we should claim ownership of the driver part of that
513 * array, preserving the bitrate index and flags.
514 */
515 tx_info = IEEE80211_SKB_CB(skb);
516 rate_idx = tx_info->control.rates[0].idx;
517 rate_flags = tx_info->control.rates[0].flags;
518 skbdesc = get_skb_frame_desc(skb);
519 memset(skbdesc, 0, sizeof(*skbdesc));
520 skbdesc->entry = entry;
521 skbdesc->tx_rate_idx = rate_idx;
522 skbdesc->tx_rate_flags = rate_flags;
523
524 if (local)
525 skbdesc->flags |= SKBDESC_NOT_MAC80211;
526
527 /*
528 * When hardware encryption is supported, and this frame
529 * is to be encrypted, we should strip the IV/EIV data from
530 * the frame so we can provide it to the driver separately.
531 */
532 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
533 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
534 if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
535 rt2x00crypto_tx_copy_iv(skb, &txdesc);
536 else
537 rt2x00crypto_tx_remove_iv(skb, &txdesc);
538 }
539
540 /*
541 * When DMA allocation is required we should guarentee to the
542 * driver that the DMA is aligned to a 4-byte boundary.
543 * However some drivers require L2 padding to pad the payload
544 * rather then the header. This could be a requirement for
545 * PCI and USB devices, while header alignment only is valid
546 * for PCI devices.
547 */
548 if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
549 rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
550 else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
551 rt2x00queue_align_frame(entry->skb);
552
553 /*
554 * It could be possible that the queue was corrupted and this
555 * call failed. Since we always return NETDEV_TX_OK to mac80211,
556 * this frame will simply be dropped.
557 */
558 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
559 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
560 entry->skb = NULL;
561 return -EIO;
562 }
563
564 set_bit(ENTRY_DATA_PENDING, &entry->flags);
565
566 rt2x00queue_index_inc(queue, Q_INDEX);
567 rt2x00queue_write_tx_descriptor(entry, &txdesc);
568 rt2x00queue_kick_tx_queue(entry, &txdesc);
569
570 return 0;
571}
572
573int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
574 struct ieee80211_vif *vif,
575 const bool enable_beacon)
576{
577 struct rt2x00_intf *intf = vif_to_intf(vif);
578 struct skb_frame_desc *skbdesc;
579 struct txentry_desc txdesc;
580
581 if (unlikely(!intf->beacon))
582 return -ENOBUFS;
583
584 mutex_lock(&intf->beacon_skb_mutex);
585
586 /*
587 * Clean up the beacon skb.
588 */
589 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
590 intf->beacon->skb = NULL;
591
592 if (!enable_beacon) {
593 rt2x00dev->ops->lib->kill_tx_queue(intf->beacon->queue);
594 mutex_unlock(&intf->beacon_skb_mutex);
595 return 0;
596 }
597
598 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
599 if (!intf->beacon->skb) {
600 mutex_unlock(&intf->beacon_skb_mutex);
601 return -ENOMEM;
602 }
603
604 /*
605 * Copy all TX descriptor information into txdesc,
606 * after that we are free to use the skb->cb array
607 * for our information.
608 */
609 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
610
611 /*
612 * Fill in skb descriptor
613 */
614 skbdesc = get_skb_frame_desc(intf->beacon->skb);
615 memset(skbdesc, 0, sizeof(*skbdesc));
616 skbdesc->entry = intf->beacon;
617
618 /*
619 * Send beacon to hardware and enable beacon genaration..
620 */
621 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
622
623 mutex_unlock(&intf->beacon_skb_mutex);
624
625 return 0;
626}
627
628void rt2x00queue_for_each_entry(struct data_queue *queue,
629 enum queue_index start,
630 enum queue_index end,
631 void (*fn)(struct queue_entry *entry))
632{
633 unsigned long irqflags;
634 unsigned int index_start;
635 unsigned int index_end;
636 unsigned int i;
637
638 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
639 ERROR(queue->rt2x00dev,
640 "Entry requested from invalid index range (%d - %d)\n",
641 start, end);
642 return;
643 }
644
645 /*
646 * Only protect the range we are going to loop over,
647 * if during our loop a extra entry is set to pending
648 * it should not be kicked during this run, since it
649 * is part of another TX operation.
650 */
651 spin_lock_irqsave(&queue->lock, irqflags);
652 index_start = queue->index[start];
653 index_end = queue->index[end];
654 spin_unlock_irqrestore(&queue->lock, irqflags);
655
656 /*
657 * Start from the TX done pointer, this guarentees that we will
658 * send out all frames in the correct order.
659 */
660 if (index_start < index_end) {
661 for (i = index_start; i < index_end; i++)
662 fn(&queue->entries[i]);
663 } else {
664 for (i = index_start; i < queue->limit; i++)
665 fn(&queue->entries[i]);
666
667 for (i = 0; i < index_end; i++)
668 fn(&queue->entries[i]);
669 }
670}
671EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
672
673struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
674 const enum data_queue_qid queue)
675{
676 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
677
678 if (queue == QID_RX)
679 return rt2x00dev->rx;
680
681 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
682 return &rt2x00dev->tx[queue];
683
684 if (!rt2x00dev->bcn)
685 return NULL;
686
687 if (queue == QID_BEACON)
688 return &rt2x00dev->bcn[0];
689 else if (queue == QID_ATIM && atim)
690 return &rt2x00dev->bcn[1];
691
692 return NULL;
693}
694EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
695
696struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
697 enum queue_index index)
698{
699 struct queue_entry *entry;
700 unsigned long irqflags;
701
702 if (unlikely(index >= Q_INDEX_MAX)) {
703 ERROR(queue->rt2x00dev,
704 "Entry requested from invalid index type (%d)\n", index);
705 return NULL;
706 }
707
708 spin_lock_irqsave(&queue->lock, irqflags);
709
710 entry = &queue->entries[queue->index[index]];
711
712 spin_unlock_irqrestore(&queue->lock, irqflags);
713
714 return entry;
715}
716EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
717
718void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
719{
720 unsigned long irqflags;
721
722 if (unlikely(index >= Q_INDEX_MAX)) {
723 ERROR(queue->rt2x00dev,
724 "Index change on invalid index type (%d)\n", index);
725 return;
726 }
727
728 spin_lock_irqsave(&queue->lock, irqflags);
729
730 queue->index[index]++;
731 if (queue->index[index] >= queue->limit)
732 queue->index[index] = 0;
733
734 queue->last_action[index] = jiffies;
735
736 if (index == Q_INDEX) {
737 queue->length++;
738 } else if (index == Q_INDEX_DONE) {
739 queue->length--;
740 queue->count++;
741 }
742
743 spin_unlock_irqrestore(&queue->lock, irqflags);
744}
745
746static void rt2x00queue_reset(struct data_queue *queue)
747{
748 unsigned long irqflags;
749 unsigned int i;
750
751 spin_lock_irqsave(&queue->lock, irqflags);
752
753 queue->count = 0;
754 queue->length = 0;
755
756 for (i = 0; i < Q_INDEX_MAX; i++) {
757 queue->index[i] = 0;
758 queue->last_action[i] = jiffies;
759 }
760
761 spin_unlock_irqrestore(&queue->lock, irqflags);
762}
763
764void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
765{
766 struct data_queue *queue;
767
768 txall_queue_for_each(rt2x00dev, queue)
769 rt2x00dev->ops->lib->kill_tx_queue(queue);
770}
771
772void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
773{
774 struct data_queue *queue;
775 unsigned int i;
776
777 queue_for_each(rt2x00dev, queue) {
778 rt2x00queue_reset(queue);
779
780 for (i = 0; i < queue->limit; i++) {
781 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
782 if (queue->qid == QID_RX)
783 rt2x00queue_index_inc(queue, Q_INDEX);
784 }
785 }
786}
787
788static int rt2x00queue_alloc_entries(struct data_queue *queue,
789 const struct data_queue_desc *qdesc)
790{
791 struct queue_entry *entries;
792 unsigned int entry_size;
793 unsigned int i;
794
795 rt2x00queue_reset(queue);
796
797 queue->limit = qdesc->entry_num;
798 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
799 queue->data_size = qdesc->data_size;
800 queue->desc_size = qdesc->desc_size;
801
802 /*
803 * Allocate all queue entries.
804 */
805 entry_size = sizeof(*entries) + qdesc->priv_size;
806 entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
807 if (!entries)
808 return -ENOMEM;
809
810#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
811 ( ((char *)(__base)) + ((__limit) * (__esize)) + \
812 ((__index) * (__psize)) )
813
814 for (i = 0; i < queue->limit; i++) {
815 entries[i].flags = 0;
816 entries[i].queue = queue;
817 entries[i].skb = NULL;
818 entries[i].entry_idx = i;
819 entries[i].priv_data =
820 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
821 sizeof(*entries), qdesc->priv_size);
822 }
823
824#undef QUEUE_ENTRY_PRIV_OFFSET
825
826 queue->entries = entries;
827
828 return 0;
829}
830
831static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
832 struct data_queue *queue)
833{
834 unsigned int i;
835
836 if (!queue->entries)
837 return;
838
839 for (i = 0; i < queue->limit; i++) {
840 if (queue->entries[i].skb)
841 rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
842 }
843}
844
845static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
846 struct data_queue *queue)
847{
848 unsigned int i;
849 struct sk_buff *skb;
850
851 for (i = 0; i < queue->limit; i++) {
852 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
853 if (!skb)
854 return -ENOMEM;
855 queue->entries[i].skb = skb;
856 }
857
858 return 0;
859}
860
861int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
862{
863 struct data_queue *queue;
864 int status;
865
866 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
867 if (status)
868 goto exit;
869
870 tx_queue_for_each(rt2x00dev, queue) {
871 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
872 if (status)
873 goto exit;
874 }
875
876 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
877 if (status)
878 goto exit;
879
880 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
881 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
882 rt2x00dev->ops->atim);
883 if (status)
884 goto exit;
885 }
886
887 status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
888 if (status)
889 goto exit;
890
891 return 0;
892
893exit:
894 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
895
896 rt2x00queue_uninitialize(rt2x00dev);
897
898 return status;
899}
900
901void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
902{
903 struct data_queue *queue;
904
905 rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
906
907 queue_for_each(rt2x00dev, queue) {
908 kfree(queue->entries);
909 queue->entries = NULL;
910 }
911}
912
913static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
914 struct data_queue *queue, enum data_queue_qid qid)
915{
916 spin_lock_init(&queue->lock);
917
918 queue->rt2x00dev = rt2x00dev;
919 queue->qid = qid;
920 queue->txop = 0;
921 queue->aifs = 2;
922 queue->cw_min = 5;
923 queue->cw_max = 10;
924}
925
926int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
927{
928 struct data_queue *queue;
929 enum data_queue_qid qid;
930 unsigned int req_atim =
931 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
932
933 /*
934 * We need the following queues:
935 * RX: 1
936 * TX: ops->tx_queues
937 * Beacon: 1
938 * Atim: 1 (if required)
939 */
940 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
941
942 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
943 if (!queue) {
944 ERROR(rt2x00dev, "Queue allocation failed.\n");
945 return -ENOMEM;
946 }
947
948 /*
949 * Initialize pointers
950 */
951 rt2x00dev->rx = queue;
952 rt2x00dev->tx = &queue[1];
953 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
954
955 /*
956 * Initialize queue parameters.
957 * RX: qid = QID_RX
958 * TX: qid = QID_AC_BE + index
959 * TX: cw_min: 2^5 = 32.
960 * TX: cw_max: 2^10 = 1024.
961 * BCN: qid = QID_BEACON
962 * ATIM: qid = QID_ATIM
963 */
964 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
965
966 qid = QID_AC_BE;
967 tx_queue_for_each(rt2x00dev, queue)
968 rt2x00queue_init(rt2x00dev, queue, qid++);
969
970 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
971 if (req_atim)
972 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
973
974 return 0;
975}
976
977void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
978{
979 kfree(rt2x00dev->rx);
980 rt2x00dev->rx = NULL;
981 rt2x00dev->tx = NULL;
982 rt2x00dev->bcn = NULL;
983}
This page took 0.055506 seconds and 5 git commands to generate.