Linux 3.16-rc1
[deliverable/linux.git] / drivers / pci / pci.c
... / ...
CommitLineData
1/*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10#include <linux/kernel.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/pm.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/string.h>
19#include <linux/log2.h>
20#include <linux/pci-aspm.h>
21#include <linux/pm_wakeup.h>
22#include <linux/interrupt.h>
23#include <linux/device.h>
24#include <linux/pm_runtime.h>
25#include <linux/pci_hotplug.h>
26#include <asm-generic/pci-bridge.h>
27#include <asm/setup.h>
28#include "pci.h"
29
30const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32};
33EXPORT_SYMBOL_GPL(pci_power_names);
34
35int isa_dma_bridge_buggy;
36EXPORT_SYMBOL(isa_dma_bridge_buggy);
37
38int pci_pci_problems;
39EXPORT_SYMBOL(pci_pci_problems);
40
41unsigned int pci_pm_d3_delay;
42
43static void pci_pme_list_scan(struct work_struct *work);
44
45static LIST_HEAD(pci_pme_list);
46static DEFINE_MUTEX(pci_pme_list_mutex);
47static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48
49struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
52};
53
54#define PME_TIMEOUT 1000 /* How long between PME checks */
55
56static void pci_dev_d3_sleep(struct pci_dev *dev)
57{
58 unsigned int delay = dev->d3_delay;
59
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
62
63 msleep(delay);
64}
65
66#ifdef CONFIG_PCI_DOMAINS
67int pci_domains_supported = 1;
68#endif
69
70#define DEFAULT_CARDBUS_IO_SIZE (256)
71#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72/* pci=cbmemsize=nnM,cbiosize=nn can override this */
73unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75
76#define DEFAULT_HOTPLUG_IO_SIZE (256)
77#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78/* pci=hpmemsize=nnM,hpiosize=nn can override this */
79unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81
82enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83
84/*
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
89 */
90u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91u8 pci_cache_line_size;
92
93/*
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
96 */
97unsigned int pcibios_max_latency = 255;
98
99/* If set, the PCIe ARI capability will not be used. */
100static bool pcie_ari_disabled;
101
102/**
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
105 *
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
108 */
109unsigned char pci_bus_max_busnr(struct pci_bus *bus)
110{
111 struct pci_bus *tmp;
112 unsigned char max, n;
113
114 max = bus->busn_res.end;
115 list_for_each_entry(tmp, &bus->children, node) {
116 n = pci_bus_max_busnr(tmp);
117 if (n > max)
118 max = n;
119 }
120 return max;
121}
122EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123
124#ifdef CONFIG_HAS_IOMEM
125void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126{
127 /*
128 * Make sure the BAR is actually a memory resource, not an IO resource
129 */
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
133 }
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
136}
137EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138#endif
139
140#define PCI_FIND_CAP_TTL 48
141
142static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
144{
145 u8 id;
146
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
159 }
160 return 0;
161}
162
163static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
165{
166 int ttl = PCI_FIND_CAP_TTL;
167
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169}
170
171int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172{
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
175}
176EXPORT_SYMBOL_GPL(pci_find_next_capability);
177
178static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
180{
181 u16 status;
182
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
186
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
195 }
196
197 return 0;
198}
199
200/**
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
209 *
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
218 */
219int pci_find_capability(struct pci_dev *dev, int cap)
220{
221 int pos;
222
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226
227 return pos;
228}
229EXPORT_SYMBOL(pci_find_capability);
230
231/**
232 * pci_bus_find_capability - query for devices' capabilities
233 * @bus: the PCI bus to query
234 * @devfn: PCI device to query
235 * @cap: capability code
236 *
237 * Like pci_find_capability() but works for pci devices that do not have a
238 * pci_dev structure set up yet.
239 *
240 * Returns the address of the requested capability structure within the
241 * device's PCI configuration space or 0 in case the device does not
242 * support it.
243 */
244int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
245{
246 int pos;
247 u8 hdr_type;
248
249 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
250
251 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
252 if (pos)
253 pos = __pci_find_next_cap(bus, devfn, pos, cap);
254
255 return pos;
256}
257EXPORT_SYMBOL(pci_bus_find_capability);
258
259/**
260 * pci_find_next_ext_capability - Find an extended capability
261 * @dev: PCI device to query
262 * @start: address at which to start looking (0 to start at beginning of list)
263 * @cap: capability code
264 *
265 * Returns the address of the next matching extended capability structure
266 * within the device's PCI configuration space or 0 if the device does
267 * not support it. Some capabilities can occur several times, e.g., the
268 * vendor-specific capability, and this provides a way to find them all.
269 */
270int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
271{
272 u32 header;
273 int ttl;
274 int pos = PCI_CFG_SPACE_SIZE;
275
276 /* minimum 8 bytes per capability */
277 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
278
279 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
280 return 0;
281
282 if (start)
283 pos = start;
284
285 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
286 return 0;
287
288 /*
289 * If we have no capabilities, this is indicated by cap ID,
290 * cap version and next pointer all being 0.
291 */
292 if (header == 0)
293 return 0;
294
295 while (ttl-- > 0) {
296 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
297 return pos;
298
299 pos = PCI_EXT_CAP_NEXT(header);
300 if (pos < PCI_CFG_SPACE_SIZE)
301 break;
302
303 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
304 break;
305 }
306
307 return 0;
308}
309EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
310
311/**
312 * pci_find_ext_capability - Find an extended capability
313 * @dev: PCI device to query
314 * @cap: capability code
315 *
316 * Returns the address of the requested extended capability structure
317 * within the device's PCI configuration space or 0 if the device does
318 * not support it. Possible values for @cap:
319 *
320 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
321 * %PCI_EXT_CAP_ID_VC Virtual Channel
322 * %PCI_EXT_CAP_ID_DSN Device Serial Number
323 * %PCI_EXT_CAP_ID_PWR Power Budgeting
324 */
325int pci_find_ext_capability(struct pci_dev *dev, int cap)
326{
327 return pci_find_next_ext_capability(dev, 0, cap);
328}
329EXPORT_SYMBOL_GPL(pci_find_ext_capability);
330
331static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
332{
333 int rc, ttl = PCI_FIND_CAP_TTL;
334 u8 cap, mask;
335
336 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
337 mask = HT_3BIT_CAP_MASK;
338 else
339 mask = HT_5BIT_CAP_MASK;
340
341 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
342 PCI_CAP_ID_HT, &ttl);
343 while (pos) {
344 rc = pci_read_config_byte(dev, pos + 3, &cap);
345 if (rc != PCIBIOS_SUCCESSFUL)
346 return 0;
347
348 if ((cap & mask) == ht_cap)
349 return pos;
350
351 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
352 pos + PCI_CAP_LIST_NEXT,
353 PCI_CAP_ID_HT, &ttl);
354 }
355
356 return 0;
357}
358/**
359 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
360 * @dev: PCI device to query
361 * @pos: Position from which to continue searching
362 * @ht_cap: Hypertransport capability code
363 *
364 * To be used in conjunction with pci_find_ht_capability() to search for
365 * all capabilities matching @ht_cap. @pos should always be a value returned
366 * from pci_find_ht_capability().
367 *
368 * NB. To be 100% safe against broken PCI devices, the caller should take
369 * steps to avoid an infinite loop.
370 */
371int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
372{
373 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
374}
375EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
376
377/**
378 * pci_find_ht_capability - query a device's Hypertransport capabilities
379 * @dev: PCI device to query
380 * @ht_cap: Hypertransport capability code
381 *
382 * Tell if a device supports a given Hypertransport capability.
383 * Returns an address within the device's PCI configuration space
384 * or 0 in case the device does not support the request capability.
385 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
386 * which has a Hypertransport capability matching @ht_cap.
387 */
388int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
389{
390 int pos;
391
392 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
393 if (pos)
394 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
395
396 return pos;
397}
398EXPORT_SYMBOL_GPL(pci_find_ht_capability);
399
400/**
401 * pci_find_parent_resource - return resource region of parent bus of given region
402 * @dev: PCI device structure contains resources to be searched
403 * @res: child resource record for which parent is sought
404 *
405 * For given resource region of given device, return the resource
406 * region of parent bus the given region is contained in.
407 */
408struct resource *pci_find_parent_resource(const struct pci_dev *dev,
409 struct resource *res)
410{
411 const struct pci_bus *bus = dev->bus;
412 struct resource *r;
413 int i;
414
415 pci_bus_for_each_resource(bus, r, i) {
416 if (!r)
417 continue;
418 if (res->start && resource_contains(r, res)) {
419
420 /*
421 * If the window is prefetchable but the BAR is
422 * not, the allocator made a mistake.
423 */
424 if (r->flags & IORESOURCE_PREFETCH &&
425 !(res->flags & IORESOURCE_PREFETCH))
426 return NULL;
427
428 /*
429 * If we're below a transparent bridge, there may
430 * be both a positively-decoded aperture and a
431 * subtractively-decoded region that contain the BAR.
432 * We want the positively-decoded one, so this depends
433 * on pci_bus_for_each_resource() giving us those
434 * first.
435 */
436 return r;
437 }
438 }
439 return NULL;
440}
441EXPORT_SYMBOL(pci_find_parent_resource);
442
443/**
444 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
445 * @dev: the PCI device to operate on
446 * @pos: config space offset of status word
447 * @mask: mask of bit(s) to care about in status word
448 *
449 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
450 */
451int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
452{
453 int i;
454
455 /* Wait for Transaction Pending bit clean */
456 for (i = 0; i < 4; i++) {
457 u16 status;
458 if (i)
459 msleep((1 << (i - 1)) * 100);
460
461 pci_read_config_word(dev, pos, &status);
462 if (!(status & mask))
463 return 1;
464 }
465
466 return 0;
467}
468
469/**
470 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
471 * @dev: PCI device to have its BARs restored
472 *
473 * Restore the BAR values for a given device, so as to make it
474 * accessible by its driver.
475 */
476static void pci_restore_bars(struct pci_dev *dev)
477{
478 int i;
479
480 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
481 pci_update_resource(dev, i);
482}
483
484static struct pci_platform_pm_ops *pci_platform_pm;
485
486int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
487{
488 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
489 || !ops->sleep_wake)
490 return -EINVAL;
491 pci_platform_pm = ops;
492 return 0;
493}
494
495static inline bool platform_pci_power_manageable(struct pci_dev *dev)
496{
497 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
498}
499
500static inline int platform_pci_set_power_state(struct pci_dev *dev,
501 pci_power_t t)
502{
503 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
504}
505
506static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
507{
508 return pci_platform_pm ?
509 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
510}
511
512static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
513{
514 return pci_platform_pm ?
515 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
516}
517
518static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
519{
520 return pci_platform_pm ?
521 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
522}
523
524/**
525 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
526 * given PCI device
527 * @dev: PCI device to handle.
528 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
529 *
530 * RETURN VALUE:
531 * -EINVAL if the requested state is invalid.
532 * -EIO if device does not support PCI PM or its PM capabilities register has a
533 * wrong version, or device doesn't support the requested state.
534 * 0 if device already is in the requested state.
535 * 0 if device's power state has been successfully changed.
536 */
537static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
538{
539 u16 pmcsr;
540 bool need_restore = false;
541
542 /* Check if we're already there */
543 if (dev->current_state == state)
544 return 0;
545
546 if (!dev->pm_cap)
547 return -EIO;
548
549 if (state < PCI_D0 || state > PCI_D3hot)
550 return -EINVAL;
551
552 /* Validate current state:
553 * Can enter D0 from any state, but if we can only go deeper
554 * to sleep if we're already in a low power state
555 */
556 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
557 && dev->current_state > state) {
558 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
559 dev->current_state, state);
560 return -EINVAL;
561 }
562
563 /* check if this device supports the desired state */
564 if ((state == PCI_D1 && !dev->d1_support)
565 || (state == PCI_D2 && !dev->d2_support))
566 return -EIO;
567
568 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
569
570 /* If we're (effectively) in D3, force entire word to 0.
571 * This doesn't affect PME_Status, disables PME_En, and
572 * sets PowerState to 0.
573 */
574 switch (dev->current_state) {
575 case PCI_D0:
576 case PCI_D1:
577 case PCI_D2:
578 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
579 pmcsr |= state;
580 break;
581 case PCI_D3hot:
582 case PCI_D3cold:
583 case PCI_UNKNOWN: /* Boot-up */
584 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
585 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
586 need_restore = true;
587 /* Fall-through: force to D0 */
588 default:
589 pmcsr = 0;
590 break;
591 }
592
593 /* enter specified state */
594 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
595
596 /* Mandatory power management transition delays */
597 /* see PCI PM 1.1 5.6.1 table 18 */
598 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
599 pci_dev_d3_sleep(dev);
600 else if (state == PCI_D2 || dev->current_state == PCI_D2)
601 udelay(PCI_PM_D2_DELAY);
602
603 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
604 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
605 if (dev->current_state != state && printk_ratelimit())
606 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
607 dev->current_state);
608
609 /*
610 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
611 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
612 * from D3hot to D0 _may_ perform an internal reset, thereby
613 * going to "D0 Uninitialized" rather than "D0 Initialized".
614 * For example, at least some versions of the 3c905B and the
615 * 3c556B exhibit this behaviour.
616 *
617 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
618 * devices in a D3hot state at boot. Consequently, we need to
619 * restore at least the BARs so that the device will be
620 * accessible to its driver.
621 */
622 if (need_restore)
623 pci_restore_bars(dev);
624
625 if (dev->bus->self)
626 pcie_aspm_pm_state_change(dev->bus->self);
627
628 return 0;
629}
630
631/**
632 * pci_update_current_state - Read PCI power state of given device from its
633 * PCI PM registers and cache it
634 * @dev: PCI device to handle.
635 * @state: State to cache in case the device doesn't have the PM capability
636 */
637void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
638{
639 if (dev->pm_cap) {
640 u16 pmcsr;
641
642 /*
643 * Configuration space is not accessible for device in
644 * D3cold, so just keep or set D3cold for safety
645 */
646 if (dev->current_state == PCI_D3cold)
647 return;
648 if (state == PCI_D3cold) {
649 dev->current_state = PCI_D3cold;
650 return;
651 }
652 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
653 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
654 } else {
655 dev->current_state = state;
656 }
657}
658
659/**
660 * pci_power_up - Put the given device into D0 forcibly
661 * @dev: PCI device to power up
662 */
663void pci_power_up(struct pci_dev *dev)
664{
665 if (platform_pci_power_manageable(dev))
666 platform_pci_set_power_state(dev, PCI_D0);
667
668 pci_raw_set_power_state(dev, PCI_D0);
669 pci_update_current_state(dev, PCI_D0);
670}
671
672/**
673 * pci_platform_power_transition - Use platform to change device power state
674 * @dev: PCI device to handle.
675 * @state: State to put the device into.
676 */
677static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
678{
679 int error;
680
681 if (platform_pci_power_manageable(dev)) {
682 error = platform_pci_set_power_state(dev, state);
683 if (!error)
684 pci_update_current_state(dev, state);
685 } else
686 error = -ENODEV;
687
688 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
689 dev->current_state = PCI_D0;
690
691 return error;
692}
693
694/**
695 * pci_wakeup - Wake up a PCI device
696 * @pci_dev: Device to handle.
697 * @ign: ignored parameter
698 */
699static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
700{
701 pci_wakeup_event(pci_dev);
702 pm_request_resume(&pci_dev->dev);
703 return 0;
704}
705
706/**
707 * pci_wakeup_bus - Walk given bus and wake up devices on it
708 * @bus: Top bus of the subtree to walk.
709 */
710static void pci_wakeup_bus(struct pci_bus *bus)
711{
712 if (bus)
713 pci_walk_bus(bus, pci_wakeup, NULL);
714}
715
716/**
717 * __pci_start_power_transition - Start power transition of a PCI device
718 * @dev: PCI device to handle.
719 * @state: State to put the device into.
720 */
721static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
722{
723 if (state == PCI_D0) {
724 pci_platform_power_transition(dev, PCI_D0);
725 /*
726 * Mandatory power management transition delays, see
727 * PCI Express Base Specification Revision 2.0 Section
728 * 6.6.1: Conventional Reset. Do not delay for
729 * devices powered on/off by corresponding bridge,
730 * because have already delayed for the bridge.
731 */
732 if (dev->runtime_d3cold) {
733 msleep(dev->d3cold_delay);
734 /*
735 * When powering on a bridge from D3cold, the
736 * whole hierarchy may be powered on into
737 * D0uninitialized state, resume them to give
738 * them a chance to suspend again
739 */
740 pci_wakeup_bus(dev->subordinate);
741 }
742 }
743}
744
745/**
746 * __pci_dev_set_current_state - Set current state of a PCI device
747 * @dev: Device to handle
748 * @data: pointer to state to be set
749 */
750static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
751{
752 pci_power_t state = *(pci_power_t *)data;
753
754 dev->current_state = state;
755 return 0;
756}
757
758/**
759 * __pci_bus_set_current_state - Walk given bus and set current state of devices
760 * @bus: Top bus of the subtree to walk.
761 * @state: state to be set
762 */
763static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
764{
765 if (bus)
766 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
767}
768
769/**
770 * __pci_complete_power_transition - Complete power transition of a PCI device
771 * @dev: PCI device to handle.
772 * @state: State to put the device into.
773 *
774 * This function should not be called directly by device drivers.
775 */
776int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
777{
778 int ret;
779
780 if (state <= PCI_D0)
781 return -EINVAL;
782 ret = pci_platform_power_transition(dev, state);
783 /* Power off the bridge may power off the whole hierarchy */
784 if (!ret && state == PCI_D3cold)
785 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
786 return ret;
787}
788EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
789
790/**
791 * pci_set_power_state - Set the power state of a PCI device
792 * @dev: PCI device to handle.
793 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
794 *
795 * Transition a device to a new power state, using the platform firmware and/or
796 * the device's PCI PM registers.
797 *
798 * RETURN VALUE:
799 * -EINVAL if the requested state is invalid.
800 * -EIO if device does not support PCI PM or its PM capabilities register has a
801 * wrong version, or device doesn't support the requested state.
802 * 0 if device already is in the requested state.
803 * 0 if device's power state has been successfully changed.
804 */
805int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
806{
807 int error;
808
809 /* bound the state we're entering */
810 if (state > PCI_D3cold)
811 state = PCI_D3cold;
812 else if (state < PCI_D0)
813 state = PCI_D0;
814 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
815 /*
816 * If the device or the parent bridge do not support PCI PM,
817 * ignore the request if we're doing anything other than putting
818 * it into D0 (which would only happen on boot).
819 */
820 return 0;
821
822 /* Check if we're already there */
823 if (dev->current_state == state)
824 return 0;
825
826 __pci_start_power_transition(dev, state);
827
828 /* This device is quirked not to be put into D3, so
829 don't put it in D3 */
830 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
831 return 0;
832
833 /*
834 * To put device in D3cold, we put device into D3hot in native
835 * way, then put device into D3cold with platform ops
836 */
837 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
838 PCI_D3hot : state);
839
840 if (!__pci_complete_power_transition(dev, state))
841 error = 0;
842 /*
843 * When aspm_policy is "powersave" this call ensures
844 * that ASPM is configured.
845 */
846 if (!error && dev->bus->self)
847 pcie_aspm_powersave_config_link(dev->bus->self);
848
849 return error;
850}
851EXPORT_SYMBOL(pci_set_power_state);
852
853/**
854 * pci_choose_state - Choose the power state of a PCI device
855 * @dev: PCI device to be suspended
856 * @state: target sleep state for the whole system. This is the value
857 * that is passed to suspend() function.
858 *
859 * Returns PCI power state suitable for given device and given system
860 * message.
861 */
862
863pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
864{
865 pci_power_t ret;
866
867 if (!dev->pm_cap)
868 return PCI_D0;
869
870 ret = platform_pci_choose_state(dev);
871 if (ret != PCI_POWER_ERROR)
872 return ret;
873
874 switch (state.event) {
875 case PM_EVENT_ON:
876 return PCI_D0;
877 case PM_EVENT_FREEZE:
878 case PM_EVENT_PRETHAW:
879 /* REVISIT both freeze and pre-thaw "should" use D0 */
880 case PM_EVENT_SUSPEND:
881 case PM_EVENT_HIBERNATE:
882 return PCI_D3hot;
883 default:
884 dev_info(&dev->dev, "unrecognized suspend event %d\n",
885 state.event);
886 BUG();
887 }
888 return PCI_D0;
889}
890EXPORT_SYMBOL(pci_choose_state);
891
892#define PCI_EXP_SAVE_REGS 7
893
894static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
895 u16 cap, bool extended)
896{
897 struct pci_cap_saved_state *tmp;
898
899 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
900 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
901 return tmp;
902 }
903 return NULL;
904}
905
906struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
907{
908 return _pci_find_saved_cap(dev, cap, false);
909}
910
911struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
912{
913 return _pci_find_saved_cap(dev, cap, true);
914}
915
916static int pci_save_pcie_state(struct pci_dev *dev)
917{
918 int i = 0;
919 struct pci_cap_saved_state *save_state;
920 u16 *cap;
921
922 if (!pci_is_pcie(dev))
923 return 0;
924
925 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
926 if (!save_state) {
927 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
928 return -ENOMEM;
929 }
930
931 cap = (u16 *)&save_state->cap.data[0];
932 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
933 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
934 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
935 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
936 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
937 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
938 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
939
940 return 0;
941}
942
943static void pci_restore_pcie_state(struct pci_dev *dev)
944{
945 int i = 0;
946 struct pci_cap_saved_state *save_state;
947 u16 *cap;
948
949 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
950 if (!save_state)
951 return;
952
953 cap = (u16 *)&save_state->cap.data[0];
954 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
955 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
956 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
957 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
958 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
959 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
960 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
961}
962
963
964static int pci_save_pcix_state(struct pci_dev *dev)
965{
966 int pos;
967 struct pci_cap_saved_state *save_state;
968
969 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
970 if (pos <= 0)
971 return 0;
972
973 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
974 if (!save_state) {
975 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
976 return -ENOMEM;
977 }
978
979 pci_read_config_word(dev, pos + PCI_X_CMD,
980 (u16 *)save_state->cap.data);
981
982 return 0;
983}
984
985static void pci_restore_pcix_state(struct pci_dev *dev)
986{
987 int i = 0, pos;
988 struct pci_cap_saved_state *save_state;
989 u16 *cap;
990
991 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
992 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
993 if (!save_state || pos <= 0)
994 return;
995 cap = (u16 *)&save_state->cap.data[0];
996
997 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
998}
999
1000
1001/**
1002 * pci_save_state - save the PCI configuration space of a device before suspending
1003 * @dev: - PCI device that we're dealing with
1004 */
1005int pci_save_state(struct pci_dev *dev)
1006{
1007 int i;
1008 /* XXX: 100% dword access ok here? */
1009 for (i = 0; i < 16; i++)
1010 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1011 dev->state_saved = true;
1012 if ((i = pci_save_pcie_state(dev)) != 0)
1013 return i;
1014 if ((i = pci_save_pcix_state(dev)) != 0)
1015 return i;
1016 if ((i = pci_save_vc_state(dev)) != 0)
1017 return i;
1018 return 0;
1019}
1020EXPORT_SYMBOL(pci_save_state);
1021
1022static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1023 u32 saved_val, int retry)
1024{
1025 u32 val;
1026
1027 pci_read_config_dword(pdev, offset, &val);
1028 if (val == saved_val)
1029 return;
1030
1031 for (;;) {
1032 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1033 offset, val, saved_val);
1034 pci_write_config_dword(pdev, offset, saved_val);
1035 if (retry-- <= 0)
1036 return;
1037
1038 pci_read_config_dword(pdev, offset, &val);
1039 if (val == saved_val)
1040 return;
1041
1042 mdelay(1);
1043 }
1044}
1045
1046static void pci_restore_config_space_range(struct pci_dev *pdev,
1047 int start, int end, int retry)
1048{
1049 int index;
1050
1051 for (index = end; index >= start; index--)
1052 pci_restore_config_dword(pdev, 4 * index,
1053 pdev->saved_config_space[index],
1054 retry);
1055}
1056
1057static void pci_restore_config_space(struct pci_dev *pdev)
1058{
1059 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1060 pci_restore_config_space_range(pdev, 10, 15, 0);
1061 /* Restore BARs before the command register. */
1062 pci_restore_config_space_range(pdev, 4, 9, 10);
1063 pci_restore_config_space_range(pdev, 0, 3, 0);
1064 } else {
1065 pci_restore_config_space_range(pdev, 0, 15, 0);
1066 }
1067}
1068
1069/**
1070 * pci_restore_state - Restore the saved state of a PCI device
1071 * @dev: - PCI device that we're dealing with
1072 */
1073void pci_restore_state(struct pci_dev *dev)
1074{
1075 if (!dev->state_saved)
1076 return;
1077
1078 /* PCI Express register must be restored first */
1079 pci_restore_pcie_state(dev);
1080 pci_restore_ats_state(dev);
1081 pci_restore_vc_state(dev);
1082
1083 pci_restore_config_space(dev);
1084
1085 pci_restore_pcix_state(dev);
1086 pci_restore_msi_state(dev);
1087 pci_restore_iov_state(dev);
1088
1089 dev->state_saved = false;
1090}
1091EXPORT_SYMBOL(pci_restore_state);
1092
1093struct pci_saved_state {
1094 u32 config_space[16];
1095 struct pci_cap_saved_data cap[0];
1096};
1097
1098/**
1099 * pci_store_saved_state - Allocate and return an opaque struct containing
1100 * the device saved state.
1101 * @dev: PCI device that we're dealing with
1102 *
1103 * Return NULL if no state or error.
1104 */
1105struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1106{
1107 struct pci_saved_state *state;
1108 struct pci_cap_saved_state *tmp;
1109 struct pci_cap_saved_data *cap;
1110 size_t size;
1111
1112 if (!dev->state_saved)
1113 return NULL;
1114
1115 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1116
1117 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1118 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1119
1120 state = kzalloc(size, GFP_KERNEL);
1121 if (!state)
1122 return NULL;
1123
1124 memcpy(state->config_space, dev->saved_config_space,
1125 sizeof(state->config_space));
1126
1127 cap = state->cap;
1128 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1129 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1130 memcpy(cap, &tmp->cap, len);
1131 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1132 }
1133 /* Empty cap_save terminates list */
1134
1135 return state;
1136}
1137EXPORT_SYMBOL_GPL(pci_store_saved_state);
1138
1139/**
1140 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1141 * @dev: PCI device that we're dealing with
1142 * @state: Saved state returned from pci_store_saved_state()
1143 */
1144static int pci_load_saved_state(struct pci_dev *dev,
1145 struct pci_saved_state *state)
1146{
1147 struct pci_cap_saved_data *cap;
1148
1149 dev->state_saved = false;
1150
1151 if (!state)
1152 return 0;
1153
1154 memcpy(dev->saved_config_space, state->config_space,
1155 sizeof(state->config_space));
1156
1157 cap = state->cap;
1158 while (cap->size) {
1159 struct pci_cap_saved_state *tmp;
1160
1161 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1162 if (!tmp || tmp->cap.size != cap->size)
1163 return -EINVAL;
1164
1165 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1166 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1167 sizeof(struct pci_cap_saved_data) + cap->size);
1168 }
1169
1170 dev->state_saved = true;
1171 return 0;
1172}
1173
1174/**
1175 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1176 * and free the memory allocated for it.
1177 * @dev: PCI device that we're dealing with
1178 * @state: Pointer to saved state returned from pci_store_saved_state()
1179 */
1180int pci_load_and_free_saved_state(struct pci_dev *dev,
1181 struct pci_saved_state **state)
1182{
1183 int ret = pci_load_saved_state(dev, *state);
1184 kfree(*state);
1185 *state = NULL;
1186 return ret;
1187}
1188EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1189
1190int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1191{
1192 return pci_enable_resources(dev, bars);
1193}
1194
1195static int do_pci_enable_device(struct pci_dev *dev, int bars)
1196{
1197 int err;
1198 u16 cmd;
1199 u8 pin;
1200
1201 err = pci_set_power_state(dev, PCI_D0);
1202 if (err < 0 && err != -EIO)
1203 return err;
1204 err = pcibios_enable_device(dev, bars);
1205 if (err < 0)
1206 return err;
1207 pci_fixup_device(pci_fixup_enable, dev);
1208
1209 if (dev->msi_enabled || dev->msix_enabled)
1210 return 0;
1211
1212 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1213 if (pin) {
1214 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1215 if (cmd & PCI_COMMAND_INTX_DISABLE)
1216 pci_write_config_word(dev, PCI_COMMAND,
1217 cmd & ~PCI_COMMAND_INTX_DISABLE);
1218 }
1219
1220 return 0;
1221}
1222
1223/**
1224 * pci_reenable_device - Resume abandoned device
1225 * @dev: PCI device to be resumed
1226 *
1227 * Note this function is a backend of pci_default_resume and is not supposed
1228 * to be called by normal code, write proper resume handler and use it instead.
1229 */
1230int pci_reenable_device(struct pci_dev *dev)
1231{
1232 if (pci_is_enabled(dev))
1233 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1234 return 0;
1235}
1236EXPORT_SYMBOL(pci_reenable_device);
1237
1238static void pci_enable_bridge(struct pci_dev *dev)
1239{
1240 struct pci_dev *bridge;
1241 int retval;
1242
1243 bridge = pci_upstream_bridge(dev);
1244 if (bridge)
1245 pci_enable_bridge(bridge);
1246
1247 if (pci_is_enabled(dev)) {
1248 if (!dev->is_busmaster)
1249 pci_set_master(dev);
1250 return;
1251 }
1252
1253 retval = pci_enable_device(dev);
1254 if (retval)
1255 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1256 retval);
1257 pci_set_master(dev);
1258}
1259
1260static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1261{
1262 struct pci_dev *bridge;
1263 int err;
1264 int i, bars = 0;
1265
1266 /*
1267 * Power state could be unknown at this point, either due to a fresh
1268 * boot or a device removal call. So get the current power state
1269 * so that things like MSI message writing will behave as expected
1270 * (e.g. if the device really is in D0 at enable time).
1271 */
1272 if (dev->pm_cap) {
1273 u16 pmcsr;
1274 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1275 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1276 }
1277
1278 if (atomic_inc_return(&dev->enable_cnt) > 1)
1279 return 0; /* already enabled */
1280
1281 bridge = pci_upstream_bridge(dev);
1282 if (bridge)
1283 pci_enable_bridge(bridge);
1284
1285 /* only skip sriov related */
1286 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1287 if (dev->resource[i].flags & flags)
1288 bars |= (1 << i);
1289 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1290 if (dev->resource[i].flags & flags)
1291 bars |= (1 << i);
1292
1293 err = do_pci_enable_device(dev, bars);
1294 if (err < 0)
1295 atomic_dec(&dev->enable_cnt);
1296 return err;
1297}
1298
1299/**
1300 * pci_enable_device_io - Initialize a device for use with IO space
1301 * @dev: PCI device to be initialized
1302 *
1303 * Initialize device before it's used by a driver. Ask low-level code
1304 * to enable I/O resources. Wake up the device if it was suspended.
1305 * Beware, this function can fail.
1306 */
1307int pci_enable_device_io(struct pci_dev *dev)
1308{
1309 return pci_enable_device_flags(dev, IORESOURCE_IO);
1310}
1311EXPORT_SYMBOL(pci_enable_device_io);
1312
1313/**
1314 * pci_enable_device_mem - Initialize a device for use with Memory space
1315 * @dev: PCI device to be initialized
1316 *
1317 * Initialize device before it's used by a driver. Ask low-level code
1318 * to enable Memory resources. Wake up the device if it was suspended.
1319 * Beware, this function can fail.
1320 */
1321int pci_enable_device_mem(struct pci_dev *dev)
1322{
1323 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1324}
1325EXPORT_SYMBOL(pci_enable_device_mem);
1326
1327/**
1328 * pci_enable_device - Initialize device before it's used by a driver.
1329 * @dev: PCI device to be initialized
1330 *
1331 * Initialize device before it's used by a driver. Ask low-level code
1332 * to enable I/O and memory. Wake up the device if it was suspended.
1333 * Beware, this function can fail.
1334 *
1335 * Note we don't actually enable the device many times if we call
1336 * this function repeatedly (we just increment the count).
1337 */
1338int pci_enable_device(struct pci_dev *dev)
1339{
1340 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1341}
1342EXPORT_SYMBOL(pci_enable_device);
1343
1344/*
1345 * Managed PCI resources. This manages device on/off, intx/msi/msix
1346 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1347 * there's no need to track it separately. pci_devres is initialized
1348 * when a device is enabled using managed PCI device enable interface.
1349 */
1350struct pci_devres {
1351 unsigned int enabled:1;
1352 unsigned int pinned:1;
1353 unsigned int orig_intx:1;
1354 unsigned int restore_intx:1;
1355 u32 region_mask;
1356};
1357
1358static void pcim_release(struct device *gendev, void *res)
1359{
1360 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1361 struct pci_devres *this = res;
1362 int i;
1363
1364 if (dev->msi_enabled)
1365 pci_disable_msi(dev);
1366 if (dev->msix_enabled)
1367 pci_disable_msix(dev);
1368
1369 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1370 if (this->region_mask & (1 << i))
1371 pci_release_region(dev, i);
1372
1373 if (this->restore_intx)
1374 pci_intx(dev, this->orig_intx);
1375
1376 if (this->enabled && !this->pinned)
1377 pci_disable_device(dev);
1378}
1379
1380static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1381{
1382 struct pci_devres *dr, *new_dr;
1383
1384 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1385 if (dr)
1386 return dr;
1387
1388 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1389 if (!new_dr)
1390 return NULL;
1391 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1392}
1393
1394static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1395{
1396 if (pci_is_managed(pdev))
1397 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1398 return NULL;
1399}
1400
1401/**
1402 * pcim_enable_device - Managed pci_enable_device()
1403 * @pdev: PCI device to be initialized
1404 *
1405 * Managed pci_enable_device().
1406 */
1407int pcim_enable_device(struct pci_dev *pdev)
1408{
1409 struct pci_devres *dr;
1410 int rc;
1411
1412 dr = get_pci_dr(pdev);
1413 if (unlikely(!dr))
1414 return -ENOMEM;
1415 if (dr->enabled)
1416 return 0;
1417
1418 rc = pci_enable_device(pdev);
1419 if (!rc) {
1420 pdev->is_managed = 1;
1421 dr->enabled = 1;
1422 }
1423 return rc;
1424}
1425EXPORT_SYMBOL(pcim_enable_device);
1426
1427/**
1428 * pcim_pin_device - Pin managed PCI device
1429 * @pdev: PCI device to pin
1430 *
1431 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1432 * driver detach. @pdev must have been enabled with
1433 * pcim_enable_device().
1434 */
1435void pcim_pin_device(struct pci_dev *pdev)
1436{
1437 struct pci_devres *dr;
1438
1439 dr = find_pci_dr(pdev);
1440 WARN_ON(!dr || !dr->enabled);
1441 if (dr)
1442 dr->pinned = 1;
1443}
1444EXPORT_SYMBOL(pcim_pin_device);
1445
1446/*
1447 * pcibios_add_device - provide arch specific hooks when adding device dev
1448 * @dev: the PCI device being added
1449 *
1450 * Permits the platform to provide architecture specific functionality when
1451 * devices are added. This is the default implementation. Architecture
1452 * implementations can override this.
1453 */
1454int __weak pcibios_add_device(struct pci_dev *dev)
1455{
1456 return 0;
1457}
1458
1459/**
1460 * pcibios_release_device - provide arch specific hooks when releasing device dev
1461 * @dev: the PCI device being released
1462 *
1463 * Permits the platform to provide architecture specific functionality when
1464 * devices are released. This is the default implementation. Architecture
1465 * implementations can override this.
1466 */
1467void __weak pcibios_release_device(struct pci_dev *dev) {}
1468
1469/**
1470 * pcibios_disable_device - disable arch specific PCI resources for device dev
1471 * @dev: the PCI device to disable
1472 *
1473 * Disables architecture specific PCI resources for the device. This
1474 * is the default implementation. Architecture implementations can
1475 * override this.
1476 */
1477void __weak pcibios_disable_device (struct pci_dev *dev) {}
1478
1479/**
1480 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1481 * @irq: ISA IRQ to penalize
1482 * @active: IRQ active or not
1483 *
1484 * Permits the platform to provide architecture-specific functionality when
1485 * penalizing ISA IRQs. This is the default implementation. Architecture
1486 * implementations can override this.
1487 */
1488void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1489
1490static void do_pci_disable_device(struct pci_dev *dev)
1491{
1492 u16 pci_command;
1493
1494 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1495 if (pci_command & PCI_COMMAND_MASTER) {
1496 pci_command &= ~PCI_COMMAND_MASTER;
1497 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1498 }
1499
1500 pcibios_disable_device(dev);
1501}
1502
1503/**
1504 * pci_disable_enabled_device - Disable device without updating enable_cnt
1505 * @dev: PCI device to disable
1506 *
1507 * NOTE: This function is a backend of PCI power management routines and is
1508 * not supposed to be called drivers.
1509 */
1510void pci_disable_enabled_device(struct pci_dev *dev)
1511{
1512 if (pci_is_enabled(dev))
1513 do_pci_disable_device(dev);
1514}
1515
1516/**
1517 * pci_disable_device - Disable PCI device after use
1518 * @dev: PCI device to be disabled
1519 *
1520 * Signal to the system that the PCI device is not in use by the system
1521 * anymore. This only involves disabling PCI bus-mastering, if active.
1522 *
1523 * Note we don't actually disable the device until all callers of
1524 * pci_enable_device() have called pci_disable_device().
1525 */
1526void pci_disable_device(struct pci_dev *dev)
1527{
1528 struct pci_devres *dr;
1529
1530 dr = find_pci_dr(dev);
1531 if (dr)
1532 dr->enabled = 0;
1533
1534 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1535 "disabling already-disabled device");
1536
1537 if (atomic_dec_return(&dev->enable_cnt) != 0)
1538 return;
1539
1540 do_pci_disable_device(dev);
1541
1542 dev->is_busmaster = 0;
1543}
1544EXPORT_SYMBOL(pci_disable_device);
1545
1546/**
1547 * pcibios_set_pcie_reset_state - set reset state for device dev
1548 * @dev: the PCIe device reset
1549 * @state: Reset state to enter into
1550 *
1551 *
1552 * Sets the PCIe reset state for the device. This is the default
1553 * implementation. Architecture implementations can override this.
1554 */
1555int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1556 enum pcie_reset_state state)
1557{
1558 return -EINVAL;
1559}
1560
1561/**
1562 * pci_set_pcie_reset_state - set reset state for device dev
1563 * @dev: the PCIe device reset
1564 * @state: Reset state to enter into
1565 *
1566 *
1567 * Sets the PCI reset state for the device.
1568 */
1569int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1570{
1571 return pcibios_set_pcie_reset_state(dev, state);
1572}
1573EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1574
1575/**
1576 * pci_check_pme_status - Check if given device has generated PME.
1577 * @dev: Device to check.
1578 *
1579 * Check the PME status of the device and if set, clear it and clear PME enable
1580 * (if set). Return 'true' if PME status and PME enable were both set or
1581 * 'false' otherwise.
1582 */
1583bool pci_check_pme_status(struct pci_dev *dev)
1584{
1585 int pmcsr_pos;
1586 u16 pmcsr;
1587 bool ret = false;
1588
1589 if (!dev->pm_cap)
1590 return false;
1591
1592 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1593 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1594 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1595 return false;
1596
1597 /* Clear PME status. */
1598 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1599 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1600 /* Disable PME to avoid interrupt flood. */
1601 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1602 ret = true;
1603 }
1604
1605 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1606
1607 return ret;
1608}
1609
1610/**
1611 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1612 * @dev: Device to handle.
1613 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1614 *
1615 * Check if @dev has generated PME and queue a resume request for it in that
1616 * case.
1617 */
1618static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1619{
1620 if (pme_poll_reset && dev->pme_poll)
1621 dev->pme_poll = false;
1622
1623 if (pci_check_pme_status(dev)) {
1624 pci_wakeup_event(dev);
1625 pm_request_resume(&dev->dev);
1626 }
1627 return 0;
1628}
1629
1630/**
1631 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1632 * @bus: Top bus of the subtree to walk.
1633 */
1634void pci_pme_wakeup_bus(struct pci_bus *bus)
1635{
1636 if (bus)
1637 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1638}
1639
1640
1641/**
1642 * pci_pme_capable - check the capability of PCI device to generate PME#
1643 * @dev: PCI device to handle.
1644 * @state: PCI state from which device will issue PME#.
1645 */
1646bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1647{
1648 if (!dev->pm_cap)
1649 return false;
1650
1651 return !!(dev->pme_support & (1 << state));
1652}
1653EXPORT_SYMBOL(pci_pme_capable);
1654
1655static void pci_pme_list_scan(struct work_struct *work)
1656{
1657 struct pci_pme_device *pme_dev, *n;
1658
1659 mutex_lock(&pci_pme_list_mutex);
1660 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1661 if (pme_dev->dev->pme_poll) {
1662 struct pci_dev *bridge;
1663
1664 bridge = pme_dev->dev->bus->self;
1665 /*
1666 * If bridge is in low power state, the
1667 * configuration space of subordinate devices
1668 * may be not accessible
1669 */
1670 if (bridge && bridge->current_state != PCI_D0)
1671 continue;
1672 pci_pme_wakeup(pme_dev->dev, NULL);
1673 } else {
1674 list_del(&pme_dev->list);
1675 kfree(pme_dev);
1676 }
1677 }
1678 if (!list_empty(&pci_pme_list))
1679 schedule_delayed_work(&pci_pme_work,
1680 msecs_to_jiffies(PME_TIMEOUT));
1681 mutex_unlock(&pci_pme_list_mutex);
1682}
1683
1684/**
1685 * pci_pme_active - enable or disable PCI device's PME# function
1686 * @dev: PCI device to handle.
1687 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1688 *
1689 * The caller must verify that the device is capable of generating PME# before
1690 * calling this function with @enable equal to 'true'.
1691 */
1692void pci_pme_active(struct pci_dev *dev, bool enable)
1693{
1694 u16 pmcsr;
1695
1696 if (!dev->pme_support)
1697 return;
1698
1699 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1700 /* Clear PME_Status by writing 1 to it and enable PME# */
1701 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1702 if (!enable)
1703 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1704
1705 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1706
1707 /*
1708 * PCI (as opposed to PCIe) PME requires that the device have
1709 * its PME# line hooked up correctly. Not all hardware vendors
1710 * do this, so the PME never gets delivered and the device
1711 * remains asleep. The easiest way around this is to
1712 * periodically walk the list of suspended devices and check
1713 * whether any have their PME flag set. The assumption is that
1714 * we'll wake up often enough anyway that this won't be a huge
1715 * hit, and the power savings from the devices will still be a
1716 * win.
1717 *
1718 * Although PCIe uses in-band PME message instead of PME# line
1719 * to report PME, PME does not work for some PCIe devices in
1720 * reality. For example, there are devices that set their PME
1721 * status bits, but don't really bother to send a PME message;
1722 * there are PCI Express Root Ports that don't bother to
1723 * trigger interrupts when they receive PME messages from the
1724 * devices below. So PME poll is used for PCIe devices too.
1725 */
1726
1727 if (dev->pme_poll) {
1728 struct pci_pme_device *pme_dev;
1729 if (enable) {
1730 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1731 GFP_KERNEL);
1732 if (!pme_dev) {
1733 dev_warn(&dev->dev, "can't enable PME#\n");
1734 return;
1735 }
1736 pme_dev->dev = dev;
1737 mutex_lock(&pci_pme_list_mutex);
1738 list_add(&pme_dev->list, &pci_pme_list);
1739 if (list_is_singular(&pci_pme_list))
1740 schedule_delayed_work(&pci_pme_work,
1741 msecs_to_jiffies(PME_TIMEOUT));
1742 mutex_unlock(&pci_pme_list_mutex);
1743 } else {
1744 mutex_lock(&pci_pme_list_mutex);
1745 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1746 if (pme_dev->dev == dev) {
1747 list_del(&pme_dev->list);
1748 kfree(pme_dev);
1749 break;
1750 }
1751 }
1752 mutex_unlock(&pci_pme_list_mutex);
1753 }
1754 }
1755
1756 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1757}
1758EXPORT_SYMBOL(pci_pme_active);
1759
1760/**
1761 * __pci_enable_wake - enable PCI device as wakeup event source
1762 * @dev: PCI device affected
1763 * @state: PCI state from which device will issue wakeup events
1764 * @runtime: True if the events are to be generated at run time
1765 * @enable: True to enable event generation; false to disable
1766 *
1767 * This enables the device as a wakeup event source, or disables it.
1768 * When such events involves platform-specific hooks, those hooks are
1769 * called automatically by this routine.
1770 *
1771 * Devices with legacy power management (no standard PCI PM capabilities)
1772 * always require such platform hooks.
1773 *
1774 * RETURN VALUE:
1775 * 0 is returned on success
1776 * -EINVAL is returned if device is not supposed to wake up the system
1777 * Error code depending on the platform is returned if both the platform and
1778 * the native mechanism fail to enable the generation of wake-up events
1779 */
1780int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1781 bool runtime, bool enable)
1782{
1783 int ret = 0;
1784
1785 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1786 return -EINVAL;
1787
1788 /* Don't do the same thing twice in a row for one device. */
1789 if (!!enable == !!dev->wakeup_prepared)
1790 return 0;
1791
1792 /*
1793 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1794 * Anderson we should be doing PME# wake enable followed by ACPI wake
1795 * enable. To disable wake-up we call the platform first, for symmetry.
1796 */
1797
1798 if (enable) {
1799 int error;
1800
1801 if (pci_pme_capable(dev, state))
1802 pci_pme_active(dev, true);
1803 else
1804 ret = 1;
1805 error = runtime ? platform_pci_run_wake(dev, true) :
1806 platform_pci_sleep_wake(dev, true);
1807 if (ret)
1808 ret = error;
1809 if (!ret)
1810 dev->wakeup_prepared = true;
1811 } else {
1812 if (runtime)
1813 platform_pci_run_wake(dev, false);
1814 else
1815 platform_pci_sleep_wake(dev, false);
1816 pci_pme_active(dev, false);
1817 dev->wakeup_prepared = false;
1818 }
1819
1820 return ret;
1821}
1822EXPORT_SYMBOL(__pci_enable_wake);
1823
1824/**
1825 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1826 * @dev: PCI device to prepare
1827 * @enable: True to enable wake-up event generation; false to disable
1828 *
1829 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1830 * and this function allows them to set that up cleanly - pci_enable_wake()
1831 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1832 * ordering constraints.
1833 *
1834 * This function only returns error code if the device is not capable of
1835 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1836 * enable wake-up power for it.
1837 */
1838int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1839{
1840 return pci_pme_capable(dev, PCI_D3cold) ?
1841 pci_enable_wake(dev, PCI_D3cold, enable) :
1842 pci_enable_wake(dev, PCI_D3hot, enable);
1843}
1844EXPORT_SYMBOL(pci_wake_from_d3);
1845
1846/**
1847 * pci_target_state - find an appropriate low power state for a given PCI dev
1848 * @dev: PCI device
1849 *
1850 * Use underlying platform code to find a supported low power state for @dev.
1851 * If the platform can't manage @dev, return the deepest state from which it
1852 * can generate wake events, based on any available PME info.
1853 */
1854static pci_power_t pci_target_state(struct pci_dev *dev)
1855{
1856 pci_power_t target_state = PCI_D3hot;
1857
1858 if (platform_pci_power_manageable(dev)) {
1859 /*
1860 * Call the platform to choose the target state of the device
1861 * and enable wake-up from this state if supported.
1862 */
1863 pci_power_t state = platform_pci_choose_state(dev);
1864
1865 switch (state) {
1866 case PCI_POWER_ERROR:
1867 case PCI_UNKNOWN:
1868 break;
1869 case PCI_D1:
1870 case PCI_D2:
1871 if (pci_no_d1d2(dev))
1872 break;
1873 default:
1874 target_state = state;
1875 }
1876 } else if (!dev->pm_cap) {
1877 target_state = PCI_D0;
1878 } else if (device_may_wakeup(&dev->dev)) {
1879 /*
1880 * Find the deepest state from which the device can generate
1881 * wake-up events, make it the target state and enable device
1882 * to generate PME#.
1883 */
1884 if (dev->pme_support) {
1885 while (target_state
1886 && !(dev->pme_support & (1 << target_state)))
1887 target_state--;
1888 }
1889 }
1890
1891 return target_state;
1892}
1893
1894/**
1895 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1896 * @dev: Device to handle.
1897 *
1898 * Choose the power state appropriate for the device depending on whether
1899 * it can wake up the system and/or is power manageable by the platform
1900 * (PCI_D3hot is the default) and put the device into that state.
1901 */
1902int pci_prepare_to_sleep(struct pci_dev *dev)
1903{
1904 pci_power_t target_state = pci_target_state(dev);
1905 int error;
1906
1907 if (target_state == PCI_POWER_ERROR)
1908 return -EIO;
1909
1910 /* D3cold during system suspend/hibernate is not supported */
1911 if (target_state > PCI_D3hot)
1912 target_state = PCI_D3hot;
1913
1914 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1915
1916 error = pci_set_power_state(dev, target_state);
1917
1918 if (error)
1919 pci_enable_wake(dev, target_state, false);
1920
1921 return error;
1922}
1923EXPORT_SYMBOL(pci_prepare_to_sleep);
1924
1925/**
1926 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1927 * @dev: Device to handle.
1928 *
1929 * Disable device's system wake-up capability and put it into D0.
1930 */
1931int pci_back_from_sleep(struct pci_dev *dev)
1932{
1933 pci_enable_wake(dev, PCI_D0, false);
1934 return pci_set_power_state(dev, PCI_D0);
1935}
1936EXPORT_SYMBOL(pci_back_from_sleep);
1937
1938/**
1939 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1940 * @dev: PCI device being suspended.
1941 *
1942 * Prepare @dev to generate wake-up events at run time and put it into a low
1943 * power state.
1944 */
1945int pci_finish_runtime_suspend(struct pci_dev *dev)
1946{
1947 pci_power_t target_state = pci_target_state(dev);
1948 int error;
1949
1950 if (target_state == PCI_POWER_ERROR)
1951 return -EIO;
1952
1953 dev->runtime_d3cold = target_state == PCI_D3cold;
1954
1955 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1956
1957 error = pci_set_power_state(dev, target_state);
1958
1959 if (error) {
1960 __pci_enable_wake(dev, target_state, true, false);
1961 dev->runtime_d3cold = false;
1962 }
1963
1964 return error;
1965}
1966
1967/**
1968 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1969 * @dev: Device to check.
1970 *
1971 * Return true if the device itself is capable of generating wake-up events
1972 * (through the platform or using the native PCIe PME) or if the device supports
1973 * PME and one of its upstream bridges can generate wake-up events.
1974 */
1975bool pci_dev_run_wake(struct pci_dev *dev)
1976{
1977 struct pci_bus *bus = dev->bus;
1978
1979 if (device_run_wake(&dev->dev))
1980 return true;
1981
1982 if (!dev->pme_support)
1983 return false;
1984
1985 while (bus->parent) {
1986 struct pci_dev *bridge = bus->self;
1987
1988 if (device_run_wake(&bridge->dev))
1989 return true;
1990
1991 bus = bus->parent;
1992 }
1993
1994 /* We have reached the root bus. */
1995 if (bus->bridge)
1996 return device_run_wake(bus->bridge);
1997
1998 return false;
1999}
2000EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2001
2002void pci_config_pm_runtime_get(struct pci_dev *pdev)
2003{
2004 struct device *dev = &pdev->dev;
2005 struct device *parent = dev->parent;
2006
2007 if (parent)
2008 pm_runtime_get_sync(parent);
2009 pm_runtime_get_noresume(dev);
2010 /*
2011 * pdev->current_state is set to PCI_D3cold during suspending,
2012 * so wait until suspending completes
2013 */
2014 pm_runtime_barrier(dev);
2015 /*
2016 * Only need to resume devices in D3cold, because config
2017 * registers are still accessible for devices suspended but
2018 * not in D3cold.
2019 */
2020 if (pdev->current_state == PCI_D3cold)
2021 pm_runtime_resume(dev);
2022}
2023
2024void pci_config_pm_runtime_put(struct pci_dev *pdev)
2025{
2026 struct device *dev = &pdev->dev;
2027 struct device *parent = dev->parent;
2028
2029 pm_runtime_put(dev);
2030 if (parent)
2031 pm_runtime_put_sync(parent);
2032}
2033
2034/**
2035 * pci_pm_init - Initialize PM functions of given PCI device
2036 * @dev: PCI device to handle.
2037 */
2038void pci_pm_init(struct pci_dev *dev)
2039{
2040 int pm;
2041 u16 pmc;
2042
2043 pm_runtime_forbid(&dev->dev);
2044 pm_runtime_set_active(&dev->dev);
2045 pm_runtime_enable(&dev->dev);
2046 device_enable_async_suspend(&dev->dev);
2047 dev->wakeup_prepared = false;
2048
2049 dev->pm_cap = 0;
2050 dev->pme_support = 0;
2051
2052 /* find PCI PM capability in list */
2053 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2054 if (!pm)
2055 return;
2056 /* Check device's ability to generate PME# */
2057 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2058
2059 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2060 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2061 pmc & PCI_PM_CAP_VER_MASK);
2062 return;
2063 }
2064
2065 dev->pm_cap = pm;
2066 dev->d3_delay = PCI_PM_D3_WAIT;
2067 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2068 dev->d3cold_allowed = true;
2069
2070 dev->d1_support = false;
2071 dev->d2_support = false;
2072 if (!pci_no_d1d2(dev)) {
2073 if (pmc & PCI_PM_CAP_D1)
2074 dev->d1_support = true;
2075 if (pmc & PCI_PM_CAP_D2)
2076 dev->d2_support = true;
2077
2078 if (dev->d1_support || dev->d2_support)
2079 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2080 dev->d1_support ? " D1" : "",
2081 dev->d2_support ? " D2" : "");
2082 }
2083
2084 pmc &= PCI_PM_CAP_PME_MASK;
2085 if (pmc) {
2086 dev_printk(KERN_DEBUG, &dev->dev,
2087 "PME# supported from%s%s%s%s%s\n",
2088 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2089 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2090 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2091 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2092 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2093 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2094 dev->pme_poll = true;
2095 /*
2096 * Make device's PM flags reflect the wake-up capability, but
2097 * let the user space enable it to wake up the system as needed.
2098 */
2099 device_set_wakeup_capable(&dev->dev, true);
2100 /* Disable the PME# generation functionality */
2101 pci_pme_active(dev, false);
2102 }
2103}
2104
2105static void pci_add_saved_cap(struct pci_dev *pci_dev,
2106 struct pci_cap_saved_state *new_cap)
2107{
2108 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2109}
2110
2111/**
2112 * _pci_add_cap_save_buffer - allocate buffer for saving given
2113 * capability registers
2114 * @dev: the PCI device
2115 * @cap: the capability to allocate the buffer for
2116 * @extended: Standard or Extended capability ID
2117 * @size: requested size of the buffer
2118 */
2119static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2120 bool extended, unsigned int size)
2121{
2122 int pos;
2123 struct pci_cap_saved_state *save_state;
2124
2125 if (extended)
2126 pos = pci_find_ext_capability(dev, cap);
2127 else
2128 pos = pci_find_capability(dev, cap);
2129
2130 if (pos <= 0)
2131 return 0;
2132
2133 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2134 if (!save_state)
2135 return -ENOMEM;
2136
2137 save_state->cap.cap_nr = cap;
2138 save_state->cap.cap_extended = extended;
2139 save_state->cap.size = size;
2140 pci_add_saved_cap(dev, save_state);
2141
2142 return 0;
2143}
2144
2145int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2146{
2147 return _pci_add_cap_save_buffer(dev, cap, false, size);
2148}
2149
2150int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2151{
2152 return _pci_add_cap_save_buffer(dev, cap, true, size);
2153}
2154
2155/**
2156 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2157 * @dev: the PCI device
2158 */
2159void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2160{
2161 int error;
2162
2163 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2164 PCI_EXP_SAVE_REGS * sizeof(u16));
2165 if (error)
2166 dev_err(&dev->dev,
2167 "unable to preallocate PCI Express save buffer\n");
2168
2169 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2170 if (error)
2171 dev_err(&dev->dev,
2172 "unable to preallocate PCI-X save buffer\n");
2173
2174 pci_allocate_vc_save_buffers(dev);
2175}
2176
2177void pci_free_cap_save_buffers(struct pci_dev *dev)
2178{
2179 struct pci_cap_saved_state *tmp;
2180 struct hlist_node *n;
2181
2182 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2183 kfree(tmp);
2184}
2185
2186/**
2187 * pci_configure_ari - enable or disable ARI forwarding
2188 * @dev: the PCI device
2189 *
2190 * If @dev and its upstream bridge both support ARI, enable ARI in the
2191 * bridge. Otherwise, disable ARI in the bridge.
2192 */
2193void pci_configure_ari(struct pci_dev *dev)
2194{
2195 u32 cap;
2196 struct pci_dev *bridge;
2197
2198 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2199 return;
2200
2201 bridge = dev->bus->self;
2202 if (!bridge)
2203 return;
2204
2205 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2206 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2207 return;
2208
2209 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2210 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2211 PCI_EXP_DEVCTL2_ARI);
2212 bridge->ari_enabled = 1;
2213 } else {
2214 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2215 PCI_EXP_DEVCTL2_ARI);
2216 bridge->ari_enabled = 0;
2217 }
2218}
2219
2220static int pci_acs_enable;
2221
2222/**
2223 * pci_request_acs - ask for ACS to be enabled if supported
2224 */
2225void pci_request_acs(void)
2226{
2227 pci_acs_enable = 1;
2228}
2229
2230/**
2231 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2232 * @dev: the PCI device
2233 */
2234static int pci_std_enable_acs(struct pci_dev *dev)
2235{
2236 int pos;
2237 u16 cap;
2238 u16 ctrl;
2239
2240 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2241 if (!pos)
2242 return -ENODEV;
2243
2244 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2245 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2246
2247 /* Source Validation */
2248 ctrl |= (cap & PCI_ACS_SV);
2249
2250 /* P2P Request Redirect */
2251 ctrl |= (cap & PCI_ACS_RR);
2252
2253 /* P2P Completion Redirect */
2254 ctrl |= (cap & PCI_ACS_CR);
2255
2256 /* Upstream Forwarding */
2257 ctrl |= (cap & PCI_ACS_UF);
2258
2259 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2260
2261 return 0;
2262}
2263
2264/**
2265 * pci_enable_acs - enable ACS if hardware support it
2266 * @dev: the PCI device
2267 */
2268void pci_enable_acs(struct pci_dev *dev)
2269{
2270 if (!pci_acs_enable)
2271 return;
2272
2273 if (!pci_std_enable_acs(dev))
2274 return;
2275
2276 pci_dev_specific_enable_acs(dev);
2277}
2278
2279static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2280{
2281 int pos;
2282 u16 cap, ctrl;
2283
2284 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2285 if (!pos)
2286 return false;
2287
2288 /*
2289 * Except for egress control, capabilities are either required
2290 * or only required if controllable. Features missing from the
2291 * capability field can therefore be assumed as hard-wired enabled.
2292 */
2293 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2294 acs_flags &= (cap | PCI_ACS_EC);
2295
2296 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2297 return (ctrl & acs_flags) == acs_flags;
2298}
2299
2300/**
2301 * pci_acs_enabled - test ACS against required flags for a given device
2302 * @pdev: device to test
2303 * @acs_flags: required PCI ACS flags
2304 *
2305 * Return true if the device supports the provided flags. Automatically
2306 * filters out flags that are not implemented on multifunction devices.
2307 *
2308 * Note that this interface checks the effective ACS capabilities of the
2309 * device rather than the actual capabilities. For instance, most single
2310 * function endpoints are not required to support ACS because they have no
2311 * opportunity for peer-to-peer access. We therefore return 'true'
2312 * regardless of whether the device exposes an ACS capability. This makes
2313 * it much easier for callers of this function to ignore the actual type
2314 * or topology of the device when testing ACS support.
2315 */
2316bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2317{
2318 int ret;
2319
2320 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2321 if (ret >= 0)
2322 return ret > 0;
2323
2324 /*
2325 * Conventional PCI and PCI-X devices never support ACS, either
2326 * effectively or actually. The shared bus topology implies that
2327 * any device on the bus can receive or snoop DMA.
2328 */
2329 if (!pci_is_pcie(pdev))
2330 return false;
2331
2332 switch (pci_pcie_type(pdev)) {
2333 /*
2334 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2335 * but since their primary interface is PCI/X, we conservatively
2336 * handle them as we would a non-PCIe device.
2337 */
2338 case PCI_EXP_TYPE_PCIE_BRIDGE:
2339 /*
2340 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2341 * applicable... must never implement an ACS Extended Capability...".
2342 * This seems arbitrary, but we take a conservative interpretation
2343 * of this statement.
2344 */
2345 case PCI_EXP_TYPE_PCI_BRIDGE:
2346 case PCI_EXP_TYPE_RC_EC:
2347 return false;
2348 /*
2349 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2350 * implement ACS in order to indicate their peer-to-peer capabilities,
2351 * regardless of whether they are single- or multi-function devices.
2352 */
2353 case PCI_EXP_TYPE_DOWNSTREAM:
2354 case PCI_EXP_TYPE_ROOT_PORT:
2355 return pci_acs_flags_enabled(pdev, acs_flags);
2356 /*
2357 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2358 * implemented by the remaining PCIe types to indicate peer-to-peer
2359 * capabilities, but only when they are part of a multifunction
2360 * device. The footnote for section 6.12 indicates the specific
2361 * PCIe types included here.
2362 */
2363 case PCI_EXP_TYPE_ENDPOINT:
2364 case PCI_EXP_TYPE_UPSTREAM:
2365 case PCI_EXP_TYPE_LEG_END:
2366 case PCI_EXP_TYPE_RC_END:
2367 if (!pdev->multifunction)
2368 break;
2369
2370 return pci_acs_flags_enabled(pdev, acs_flags);
2371 }
2372
2373 /*
2374 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2375 * to single function devices with the exception of downstream ports.
2376 */
2377 return true;
2378}
2379
2380/**
2381 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2382 * @start: starting downstream device
2383 * @end: ending upstream device or NULL to search to the root bus
2384 * @acs_flags: required flags
2385 *
2386 * Walk up a device tree from start to end testing PCI ACS support. If
2387 * any step along the way does not support the required flags, return false.
2388 */
2389bool pci_acs_path_enabled(struct pci_dev *start,
2390 struct pci_dev *end, u16 acs_flags)
2391{
2392 struct pci_dev *pdev, *parent = start;
2393
2394 do {
2395 pdev = parent;
2396
2397 if (!pci_acs_enabled(pdev, acs_flags))
2398 return false;
2399
2400 if (pci_is_root_bus(pdev->bus))
2401 return (end == NULL);
2402
2403 parent = pdev->bus->self;
2404 } while (pdev != end);
2405
2406 return true;
2407}
2408
2409/**
2410 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2411 * @dev: the PCI device
2412 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2413 *
2414 * Perform INTx swizzling for a device behind one level of bridge. This is
2415 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2416 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2417 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2418 * the PCI Express Base Specification, Revision 2.1)
2419 */
2420u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2421{
2422 int slot;
2423
2424 if (pci_ari_enabled(dev->bus))
2425 slot = 0;
2426 else
2427 slot = PCI_SLOT(dev->devfn);
2428
2429 return (((pin - 1) + slot) % 4) + 1;
2430}
2431
2432int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2433{
2434 u8 pin;
2435
2436 pin = dev->pin;
2437 if (!pin)
2438 return -1;
2439
2440 while (!pci_is_root_bus(dev->bus)) {
2441 pin = pci_swizzle_interrupt_pin(dev, pin);
2442 dev = dev->bus->self;
2443 }
2444 *bridge = dev;
2445 return pin;
2446}
2447
2448/**
2449 * pci_common_swizzle - swizzle INTx all the way to root bridge
2450 * @dev: the PCI device
2451 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2452 *
2453 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2454 * bridges all the way up to a PCI root bus.
2455 */
2456u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2457{
2458 u8 pin = *pinp;
2459
2460 while (!pci_is_root_bus(dev->bus)) {
2461 pin = pci_swizzle_interrupt_pin(dev, pin);
2462 dev = dev->bus->self;
2463 }
2464 *pinp = pin;
2465 return PCI_SLOT(dev->devfn);
2466}
2467
2468/**
2469 * pci_release_region - Release a PCI bar
2470 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2471 * @bar: BAR to release
2472 *
2473 * Releases the PCI I/O and memory resources previously reserved by a
2474 * successful call to pci_request_region. Call this function only
2475 * after all use of the PCI regions has ceased.
2476 */
2477void pci_release_region(struct pci_dev *pdev, int bar)
2478{
2479 struct pci_devres *dr;
2480
2481 if (pci_resource_len(pdev, bar) == 0)
2482 return;
2483 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2484 release_region(pci_resource_start(pdev, bar),
2485 pci_resource_len(pdev, bar));
2486 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2487 release_mem_region(pci_resource_start(pdev, bar),
2488 pci_resource_len(pdev, bar));
2489
2490 dr = find_pci_dr(pdev);
2491 if (dr)
2492 dr->region_mask &= ~(1 << bar);
2493}
2494EXPORT_SYMBOL(pci_release_region);
2495
2496/**
2497 * __pci_request_region - Reserved PCI I/O and memory resource
2498 * @pdev: PCI device whose resources are to be reserved
2499 * @bar: BAR to be reserved
2500 * @res_name: Name to be associated with resource.
2501 * @exclusive: whether the region access is exclusive or not
2502 *
2503 * Mark the PCI region associated with PCI device @pdev BR @bar as
2504 * being reserved by owner @res_name. Do not access any
2505 * address inside the PCI regions unless this call returns
2506 * successfully.
2507 *
2508 * If @exclusive is set, then the region is marked so that userspace
2509 * is explicitly not allowed to map the resource via /dev/mem or
2510 * sysfs MMIO access.
2511 *
2512 * Returns 0 on success, or %EBUSY on error. A warning
2513 * message is also printed on failure.
2514 */
2515static int __pci_request_region(struct pci_dev *pdev, int bar,
2516 const char *res_name, int exclusive)
2517{
2518 struct pci_devres *dr;
2519
2520 if (pci_resource_len(pdev, bar) == 0)
2521 return 0;
2522
2523 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2524 if (!request_region(pci_resource_start(pdev, bar),
2525 pci_resource_len(pdev, bar), res_name))
2526 goto err_out;
2527 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2528 if (!__request_mem_region(pci_resource_start(pdev, bar),
2529 pci_resource_len(pdev, bar), res_name,
2530 exclusive))
2531 goto err_out;
2532 }
2533
2534 dr = find_pci_dr(pdev);
2535 if (dr)
2536 dr->region_mask |= 1 << bar;
2537
2538 return 0;
2539
2540err_out:
2541 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2542 &pdev->resource[bar]);
2543 return -EBUSY;
2544}
2545
2546/**
2547 * pci_request_region - Reserve PCI I/O and memory resource
2548 * @pdev: PCI device whose resources are to be reserved
2549 * @bar: BAR to be reserved
2550 * @res_name: Name to be associated with resource
2551 *
2552 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2553 * being reserved by owner @res_name. Do not access any
2554 * address inside the PCI regions unless this call returns
2555 * successfully.
2556 *
2557 * Returns 0 on success, or %EBUSY on error. A warning
2558 * message is also printed on failure.
2559 */
2560int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2561{
2562 return __pci_request_region(pdev, bar, res_name, 0);
2563}
2564EXPORT_SYMBOL(pci_request_region);
2565
2566/**
2567 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2568 * @pdev: PCI device whose resources are to be reserved
2569 * @bar: BAR to be reserved
2570 * @res_name: Name to be associated with resource.
2571 *
2572 * Mark the PCI region associated with PCI device @pdev BR @bar as
2573 * being reserved by owner @res_name. Do not access any
2574 * address inside the PCI regions unless this call returns
2575 * successfully.
2576 *
2577 * Returns 0 on success, or %EBUSY on error. A warning
2578 * message is also printed on failure.
2579 *
2580 * The key difference that _exclusive makes it that userspace is
2581 * explicitly not allowed to map the resource via /dev/mem or
2582 * sysfs.
2583 */
2584int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2585 const char *res_name)
2586{
2587 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2588}
2589EXPORT_SYMBOL(pci_request_region_exclusive);
2590
2591/**
2592 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2593 * @pdev: PCI device whose resources were previously reserved
2594 * @bars: Bitmask of BARs to be released
2595 *
2596 * Release selected PCI I/O and memory resources previously reserved.
2597 * Call this function only after all use of the PCI regions has ceased.
2598 */
2599void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2600{
2601 int i;
2602
2603 for (i = 0; i < 6; i++)
2604 if (bars & (1 << i))
2605 pci_release_region(pdev, i);
2606}
2607EXPORT_SYMBOL(pci_release_selected_regions);
2608
2609static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2610 const char *res_name, int excl)
2611{
2612 int i;
2613
2614 for (i = 0; i < 6; i++)
2615 if (bars & (1 << i))
2616 if (__pci_request_region(pdev, i, res_name, excl))
2617 goto err_out;
2618 return 0;
2619
2620err_out:
2621 while (--i >= 0)
2622 if (bars & (1 << i))
2623 pci_release_region(pdev, i);
2624
2625 return -EBUSY;
2626}
2627
2628
2629/**
2630 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2631 * @pdev: PCI device whose resources are to be reserved
2632 * @bars: Bitmask of BARs to be requested
2633 * @res_name: Name to be associated with resource
2634 */
2635int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2636 const char *res_name)
2637{
2638 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2639}
2640EXPORT_SYMBOL(pci_request_selected_regions);
2641
2642int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2643 const char *res_name)
2644{
2645 return __pci_request_selected_regions(pdev, bars, res_name,
2646 IORESOURCE_EXCLUSIVE);
2647}
2648EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2649
2650/**
2651 * pci_release_regions - Release reserved PCI I/O and memory resources
2652 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2653 *
2654 * Releases all PCI I/O and memory resources previously reserved by a
2655 * successful call to pci_request_regions. Call this function only
2656 * after all use of the PCI regions has ceased.
2657 */
2658
2659void pci_release_regions(struct pci_dev *pdev)
2660{
2661 pci_release_selected_regions(pdev, (1 << 6) - 1);
2662}
2663EXPORT_SYMBOL(pci_release_regions);
2664
2665/**
2666 * pci_request_regions - Reserved PCI I/O and memory resources
2667 * @pdev: PCI device whose resources are to be reserved
2668 * @res_name: Name to be associated with resource.
2669 *
2670 * Mark all PCI regions associated with PCI device @pdev as
2671 * being reserved by owner @res_name. Do not access any
2672 * address inside the PCI regions unless this call returns
2673 * successfully.
2674 *
2675 * Returns 0 on success, or %EBUSY on error. A warning
2676 * message is also printed on failure.
2677 */
2678int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2679{
2680 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2681}
2682EXPORT_SYMBOL(pci_request_regions);
2683
2684/**
2685 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2686 * @pdev: PCI device whose resources are to be reserved
2687 * @res_name: Name to be associated with resource.
2688 *
2689 * Mark all PCI regions associated with PCI device @pdev as
2690 * being reserved by owner @res_name. Do not access any
2691 * address inside the PCI regions unless this call returns
2692 * successfully.
2693 *
2694 * pci_request_regions_exclusive() will mark the region so that
2695 * /dev/mem and the sysfs MMIO access will not be allowed.
2696 *
2697 * Returns 0 on success, or %EBUSY on error. A warning
2698 * message is also printed on failure.
2699 */
2700int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2701{
2702 return pci_request_selected_regions_exclusive(pdev,
2703 ((1 << 6) - 1), res_name);
2704}
2705EXPORT_SYMBOL(pci_request_regions_exclusive);
2706
2707static void __pci_set_master(struct pci_dev *dev, bool enable)
2708{
2709 u16 old_cmd, cmd;
2710
2711 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2712 if (enable)
2713 cmd = old_cmd | PCI_COMMAND_MASTER;
2714 else
2715 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2716 if (cmd != old_cmd) {
2717 dev_dbg(&dev->dev, "%s bus mastering\n",
2718 enable ? "enabling" : "disabling");
2719 pci_write_config_word(dev, PCI_COMMAND, cmd);
2720 }
2721 dev->is_busmaster = enable;
2722}
2723
2724/**
2725 * pcibios_setup - process "pci=" kernel boot arguments
2726 * @str: string used to pass in "pci=" kernel boot arguments
2727 *
2728 * Process kernel boot arguments. This is the default implementation.
2729 * Architecture specific implementations can override this as necessary.
2730 */
2731char * __weak __init pcibios_setup(char *str)
2732{
2733 return str;
2734}
2735
2736/**
2737 * pcibios_set_master - enable PCI bus-mastering for device dev
2738 * @dev: the PCI device to enable
2739 *
2740 * Enables PCI bus-mastering for the device. This is the default
2741 * implementation. Architecture specific implementations can override
2742 * this if necessary.
2743 */
2744void __weak pcibios_set_master(struct pci_dev *dev)
2745{
2746 u8 lat;
2747
2748 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2749 if (pci_is_pcie(dev))
2750 return;
2751
2752 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2753 if (lat < 16)
2754 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2755 else if (lat > pcibios_max_latency)
2756 lat = pcibios_max_latency;
2757 else
2758 return;
2759
2760 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2761}
2762
2763/**
2764 * pci_set_master - enables bus-mastering for device dev
2765 * @dev: the PCI device to enable
2766 *
2767 * Enables bus-mastering on the device and calls pcibios_set_master()
2768 * to do the needed arch specific settings.
2769 */
2770void pci_set_master(struct pci_dev *dev)
2771{
2772 __pci_set_master(dev, true);
2773 pcibios_set_master(dev);
2774}
2775EXPORT_SYMBOL(pci_set_master);
2776
2777/**
2778 * pci_clear_master - disables bus-mastering for device dev
2779 * @dev: the PCI device to disable
2780 */
2781void pci_clear_master(struct pci_dev *dev)
2782{
2783 __pci_set_master(dev, false);
2784}
2785EXPORT_SYMBOL(pci_clear_master);
2786
2787/**
2788 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2789 * @dev: the PCI device for which MWI is to be enabled
2790 *
2791 * Helper function for pci_set_mwi.
2792 * Originally copied from drivers/net/acenic.c.
2793 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2794 *
2795 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2796 */
2797int pci_set_cacheline_size(struct pci_dev *dev)
2798{
2799 u8 cacheline_size;
2800
2801 if (!pci_cache_line_size)
2802 return -EINVAL;
2803
2804 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2805 equal to or multiple of the right value. */
2806 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2807 if (cacheline_size >= pci_cache_line_size &&
2808 (cacheline_size % pci_cache_line_size) == 0)
2809 return 0;
2810
2811 /* Write the correct value. */
2812 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2813 /* Read it back. */
2814 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2815 if (cacheline_size == pci_cache_line_size)
2816 return 0;
2817
2818 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2819 pci_cache_line_size << 2);
2820
2821 return -EINVAL;
2822}
2823EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2824
2825/**
2826 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2827 * @dev: the PCI device for which MWI is enabled
2828 *
2829 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2830 *
2831 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2832 */
2833int pci_set_mwi(struct pci_dev *dev)
2834{
2835#ifdef PCI_DISABLE_MWI
2836 return 0;
2837#else
2838 int rc;
2839 u16 cmd;
2840
2841 rc = pci_set_cacheline_size(dev);
2842 if (rc)
2843 return rc;
2844
2845 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2846 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2847 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2848 cmd |= PCI_COMMAND_INVALIDATE;
2849 pci_write_config_word(dev, PCI_COMMAND, cmd);
2850 }
2851 return 0;
2852#endif
2853}
2854EXPORT_SYMBOL(pci_set_mwi);
2855
2856/**
2857 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2858 * @dev: the PCI device for which MWI is enabled
2859 *
2860 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2861 * Callers are not required to check the return value.
2862 *
2863 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2864 */
2865int pci_try_set_mwi(struct pci_dev *dev)
2866{
2867#ifdef PCI_DISABLE_MWI
2868 return 0;
2869#else
2870 return pci_set_mwi(dev);
2871#endif
2872}
2873EXPORT_SYMBOL(pci_try_set_mwi);
2874
2875/**
2876 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2877 * @dev: the PCI device to disable
2878 *
2879 * Disables PCI Memory-Write-Invalidate transaction on the device
2880 */
2881void pci_clear_mwi(struct pci_dev *dev)
2882{
2883#ifndef PCI_DISABLE_MWI
2884 u16 cmd;
2885
2886 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2887 if (cmd & PCI_COMMAND_INVALIDATE) {
2888 cmd &= ~PCI_COMMAND_INVALIDATE;
2889 pci_write_config_word(dev, PCI_COMMAND, cmd);
2890 }
2891#endif
2892}
2893EXPORT_SYMBOL(pci_clear_mwi);
2894
2895/**
2896 * pci_intx - enables/disables PCI INTx for device dev
2897 * @pdev: the PCI device to operate on
2898 * @enable: boolean: whether to enable or disable PCI INTx
2899 *
2900 * Enables/disables PCI INTx for device dev
2901 */
2902void pci_intx(struct pci_dev *pdev, int enable)
2903{
2904 u16 pci_command, new;
2905
2906 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2907
2908 if (enable)
2909 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2910 else
2911 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2912
2913 if (new != pci_command) {
2914 struct pci_devres *dr;
2915
2916 pci_write_config_word(pdev, PCI_COMMAND, new);
2917
2918 dr = find_pci_dr(pdev);
2919 if (dr && !dr->restore_intx) {
2920 dr->restore_intx = 1;
2921 dr->orig_intx = !enable;
2922 }
2923 }
2924}
2925EXPORT_SYMBOL_GPL(pci_intx);
2926
2927/**
2928 * pci_intx_mask_supported - probe for INTx masking support
2929 * @dev: the PCI device to operate on
2930 *
2931 * Check if the device dev support INTx masking via the config space
2932 * command word.
2933 */
2934bool pci_intx_mask_supported(struct pci_dev *dev)
2935{
2936 bool mask_supported = false;
2937 u16 orig, new;
2938
2939 if (dev->broken_intx_masking)
2940 return false;
2941
2942 pci_cfg_access_lock(dev);
2943
2944 pci_read_config_word(dev, PCI_COMMAND, &orig);
2945 pci_write_config_word(dev, PCI_COMMAND,
2946 orig ^ PCI_COMMAND_INTX_DISABLE);
2947 pci_read_config_word(dev, PCI_COMMAND, &new);
2948
2949 /*
2950 * There's no way to protect against hardware bugs or detect them
2951 * reliably, but as long as we know what the value should be, let's
2952 * go ahead and check it.
2953 */
2954 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2955 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
2956 orig, new);
2957 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2958 mask_supported = true;
2959 pci_write_config_word(dev, PCI_COMMAND, orig);
2960 }
2961
2962 pci_cfg_access_unlock(dev);
2963 return mask_supported;
2964}
2965EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2966
2967static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2968{
2969 struct pci_bus *bus = dev->bus;
2970 bool mask_updated = true;
2971 u32 cmd_status_dword;
2972 u16 origcmd, newcmd;
2973 unsigned long flags;
2974 bool irq_pending;
2975
2976 /*
2977 * We do a single dword read to retrieve both command and status.
2978 * Document assumptions that make this possible.
2979 */
2980 BUILD_BUG_ON(PCI_COMMAND % 4);
2981 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2982
2983 raw_spin_lock_irqsave(&pci_lock, flags);
2984
2985 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2986
2987 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2988
2989 /*
2990 * Check interrupt status register to see whether our device
2991 * triggered the interrupt (when masking) or the next IRQ is
2992 * already pending (when unmasking).
2993 */
2994 if (mask != irq_pending) {
2995 mask_updated = false;
2996 goto done;
2997 }
2998
2999 origcmd = cmd_status_dword;
3000 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3001 if (mask)
3002 newcmd |= PCI_COMMAND_INTX_DISABLE;
3003 if (newcmd != origcmd)
3004 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3005
3006done:
3007 raw_spin_unlock_irqrestore(&pci_lock, flags);
3008
3009 return mask_updated;
3010}
3011
3012/**
3013 * pci_check_and_mask_intx - mask INTx on pending interrupt
3014 * @dev: the PCI device to operate on
3015 *
3016 * Check if the device dev has its INTx line asserted, mask it and
3017 * return true in that case. False is returned if not interrupt was
3018 * pending.
3019 */
3020bool pci_check_and_mask_intx(struct pci_dev *dev)
3021{
3022 return pci_check_and_set_intx_mask(dev, true);
3023}
3024EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3025
3026/**
3027 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3028 * @dev: the PCI device to operate on
3029 *
3030 * Check if the device dev has its INTx line asserted, unmask it if not
3031 * and return true. False is returned and the mask remains active if
3032 * there was still an interrupt pending.
3033 */
3034bool pci_check_and_unmask_intx(struct pci_dev *dev)
3035{
3036 return pci_check_and_set_intx_mask(dev, false);
3037}
3038EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3039
3040/**
3041 * pci_msi_off - disables any MSI or MSI-X capabilities
3042 * @dev: the PCI device to operate on
3043 *
3044 * If you want to use MSI, see pci_enable_msi() and friends.
3045 * This is a lower-level primitive that allows us to disable
3046 * MSI operation at the device level.
3047 */
3048void pci_msi_off(struct pci_dev *dev)
3049{
3050 int pos;
3051 u16 control;
3052
3053 /*
3054 * This looks like it could go in msi.c, but we need it even when
3055 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3056 * dev->msi_cap or dev->msix_cap here.
3057 */
3058 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3059 if (pos) {
3060 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3061 control &= ~PCI_MSI_FLAGS_ENABLE;
3062 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3063 }
3064 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3065 if (pos) {
3066 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3067 control &= ~PCI_MSIX_FLAGS_ENABLE;
3068 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3069 }
3070}
3071EXPORT_SYMBOL_GPL(pci_msi_off);
3072
3073int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3074{
3075 return dma_set_max_seg_size(&dev->dev, size);
3076}
3077EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3078
3079int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3080{
3081 return dma_set_seg_boundary(&dev->dev, mask);
3082}
3083EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3084
3085/**
3086 * pci_wait_for_pending_transaction - waits for pending transaction
3087 * @dev: the PCI device to operate on
3088 *
3089 * Return 0 if transaction is pending 1 otherwise.
3090 */
3091int pci_wait_for_pending_transaction(struct pci_dev *dev)
3092{
3093 if (!pci_is_pcie(dev))
3094 return 1;
3095
3096 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3097 PCI_EXP_DEVSTA_TRPND);
3098}
3099EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3100
3101static int pcie_flr(struct pci_dev *dev, int probe)
3102{
3103 u32 cap;
3104
3105 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3106 if (!(cap & PCI_EXP_DEVCAP_FLR))
3107 return -ENOTTY;
3108
3109 if (probe)
3110 return 0;
3111
3112 if (!pci_wait_for_pending_transaction(dev))
3113 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3114
3115 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3116
3117 msleep(100);
3118
3119 return 0;
3120}
3121
3122static int pci_af_flr(struct pci_dev *dev, int probe)
3123{
3124 int pos;
3125 u8 cap;
3126
3127 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3128 if (!pos)
3129 return -ENOTTY;
3130
3131 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3132 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3133 return -ENOTTY;
3134
3135 if (probe)
3136 return 0;
3137
3138 /* Wait for Transaction Pending bit clean */
3139 if (pci_wait_for_pending(dev, pos + PCI_AF_STATUS, PCI_AF_STATUS_TP))
3140 goto clear;
3141
3142 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3143
3144clear:
3145 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3146 msleep(100);
3147
3148 return 0;
3149}
3150
3151/**
3152 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3153 * @dev: Device to reset.
3154 * @probe: If set, only check if the device can be reset this way.
3155 *
3156 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3157 * unset, it will be reinitialized internally when going from PCI_D3hot to
3158 * PCI_D0. If that's the case and the device is not in a low-power state
3159 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3160 *
3161 * NOTE: This causes the caller to sleep for twice the device power transition
3162 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3163 * by default (i.e. unless the @dev's d3_delay field has a different value).
3164 * Moreover, only devices in D0 can be reset by this function.
3165 */
3166static int pci_pm_reset(struct pci_dev *dev, int probe)
3167{
3168 u16 csr;
3169
3170 if (!dev->pm_cap)
3171 return -ENOTTY;
3172
3173 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3174 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3175 return -ENOTTY;
3176
3177 if (probe)
3178 return 0;
3179
3180 if (dev->current_state != PCI_D0)
3181 return -EINVAL;
3182
3183 csr &= ~PCI_PM_CTRL_STATE_MASK;
3184 csr |= PCI_D3hot;
3185 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3186 pci_dev_d3_sleep(dev);
3187
3188 csr &= ~PCI_PM_CTRL_STATE_MASK;
3189 csr |= PCI_D0;
3190 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3191 pci_dev_d3_sleep(dev);
3192
3193 return 0;
3194}
3195
3196void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3197{
3198 u16 ctrl;
3199
3200 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3201 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3202 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3203 /*
3204 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3205 * this to 2ms to ensure that we meet the minimum requirement.
3206 */
3207 msleep(2);
3208
3209 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3210 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3211
3212 /*
3213 * Trhfa for conventional PCI is 2^25 clock cycles.
3214 * Assuming a minimum 33MHz clock this results in a 1s
3215 * delay before we can consider subordinate devices to
3216 * be re-initialized. PCIe has some ways to shorten this,
3217 * but we don't make use of them yet.
3218 */
3219 ssleep(1);
3220}
3221
3222/**
3223 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3224 * @dev: Bridge device
3225 *
3226 * Use the bridge control register to assert reset on the secondary bus.
3227 * Devices on the secondary bus are left in power-on state.
3228 */
3229void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3230{
3231 pcibios_reset_secondary_bus(dev);
3232}
3233EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3234
3235static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3236{
3237 struct pci_dev *pdev;
3238
3239 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3240 return -ENOTTY;
3241
3242 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3243 if (pdev != dev)
3244 return -ENOTTY;
3245
3246 if (probe)
3247 return 0;
3248
3249 pci_reset_bridge_secondary_bus(dev->bus->self);
3250
3251 return 0;
3252}
3253
3254static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3255{
3256 int rc = -ENOTTY;
3257
3258 if (!hotplug || !try_module_get(hotplug->ops->owner))
3259 return rc;
3260
3261 if (hotplug->ops->reset_slot)
3262 rc = hotplug->ops->reset_slot(hotplug, probe);
3263
3264 module_put(hotplug->ops->owner);
3265
3266 return rc;
3267}
3268
3269static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3270{
3271 struct pci_dev *pdev;
3272
3273 if (dev->subordinate || !dev->slot)
3274 return -ENOTTY;
3275
3276 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3277 if (pdev != dev && pdev->slot == dev->slot)
3278 return -ENOTTY;
3279
3280 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3281}
3282
3283static int __pci_dev_reset(struct pci_dev *dev, int probe)
3284{
3285 int rc;
3286
3287 might_sleep();
3288
3289 rc = pci_dev_specific_reset(dev, probe);
3290 if (rc != -ENOTTY)
3291 goto done;
3292
3293 rc = pcie_flr(dev, probe);
3294 if (rc != -ENOTTY)
3295 goto done;
3296
3297 rc = pci_af_flr(dev, probe);
3298 if (rc != -ENOTTY)
3299 goto done;
3300
3301 rc = pci_pm_reset(dev, probe);
3302 if (rc != -ENOTTY)
3303 goto done;
3304
3305 rc = pci_dev_reset_slot_function(dev, probe);
3306 if (rc != -ENOTTY)
3307 goto done;
3308
3309 rc = pci_parent_bus_reset(dev, probe);
3310done:
3311 return rc;
3312}
3313
3314static void pci_dev_lock(struct pci_dev *dev)
3315{
3316 pci_cfg_access_lock(dev);
3317 /* block PM suspend, driver probe, etc. */
3318 device_lock(&dev->dev);
3319}
3320
3321/* Return 1 on successful lock, 0 on contention */
3322static int pci_dev_trylock(struct pci_dev *dev)
3323{
3324 if (pci_cfg_access_trylock(dev)) {
3325 if (device_trylock(&dev->dev))
3326 return 1;
3327 pci_cfg_access_unlock(dev);
3328 }
3329
3330 return 0;
3331}
3332
3333static void pci_dev_unlock(struct pci_dev *dev)
3334{
3335 device_unlock(&dev->dev);
3336 pci_cfg_access_unlock(dev);
3337}
3338
3339/**
3340 * pci_reset_notify - notify device driver of reset
3341 * @dev: device to be notified of reset
3342 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3343 * completed
3344 *
3345 * Must be called prior to device access being disabled and after device
3346 * access is restored.
3347 */
3348static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3349{
3350 const struct pci_error_handlers *err_handler =
3351 dev->driver ? dev->driver->err_handler : NULL;
3352 if (err_handler && err_handler->reset_notify)
3353 err_handler->reset_notify(dev, prepare);
3354}
3355
3356static void pci_dev_save_and_disable(struct pci_dev *dev)
3357{
3358 pci_reset_notify(dev, true);
3359
3360 /*
3361 * Wake-up device prior to save. PM registers default to D0 after
3362 * reset and a simple register restore doesn't reliably return
3363 * to a non-D0 state anyway.
3364 */
3365 pci_set_power_state(dev, PCI_D0);
3366
3367 pci_save_state(dev);
3368 /*
3369 * Disable the device by clearing the Command register, except for
3370 * INTx-disable which is set. This not only disables MMIO and I/O port
3371 * BARs, but also prevents the device from being Bus Master, preventing
3372 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3373 * compliant devices, INTx-disable prevents legacy interrupts.
3374 */
3375 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3376}
3377
3378static void pci_dev_restore(struct pci_dev *dev)
3379{
3380 pci_restore_state(dev);
3381 pci_reset_notify(dev, false);
3382}
3383
3384static int pci_dev_reset(struct pci_dev *dev, int probe)
3385{
3386 int rc;
3387
3388 if (!probe)
3389 pci_dev_lock(dev);
3390
3391 rc = __pci_dev_reset(dev, probe);
3392
3393 if (!probe)
3394 pci_dev_unlock(dev);
3395
3396 return rc;
3397}
3398
3399/**
3400 * __pci_reset_function - reset a PCI device function
3401 * @dev: PCI device to reset
3402 *
3403 * Some devices allow an individual function to be reset without affecting
3404 * other functions in the same device. The PCI device must be responsive
3405 * to PCI config space in order to use this function.
3406 *
3407 * The device function is presumed to be unused when this function is called.
3408 * Resetting the device will make the contents of PCI configuration space
3409 * random, so any caller of this must be prepared to reinitialise the
3410 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3411 * etc.
3412 *
3413 * Returns 0 if the device function was successfully reset or negative if the
3414 * device doesn't support resetting a single function.
3415 */
3416int __pci_reset_function(struct pci_dev *dev)
3417{
3418 return pci_dev_reset(dev, 0);
3419}
3420EXPORT_SYMBOL_GPL(__pci_reset_function);
3421
3422/**
3423 * __pci_reset_function_locked - reset a PCI device function while holding
3424 * the @dev mutex lock.
3425 * @dev: PCI device to reset
3426 *
3427 * Some devices allow an individual function to be reset without affecting
3428 * other functions in the same device. The PCI device must be responsive
3429 * to PCI config space in order to use this function.
3430 *
3431 * The device function is presumed to be unused and the caller is holding
3432 * the device mutex lock when this function is called.
3433 * Resetting the device will make the contents of PCI configuration space
3434 * random, so any caller of this must be prepared to reinitialise the
3435 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3436 * etc.
3437 *
3438 * Returns 0 if the device function was successfully reset or negative if the
3439 * device doesn't support resetting a single function.
3440 */
3441int __pci_reset_function_locked(struct pci_dev *dev)
3442{
3443 return __pci_dev_reset(dev, 0);
3444}
3445EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3446
3447/**
3448 * pci_probe_reset_function - check whether the device can be safely reset
3449 * @dev: PCI device to reset
3450 *
3451 * Some devices allow an individual function to be reset without affecting
3452 * other functions in the same device. The PCI device must be responsive
3453 * to PCI config space in order to use this function.
3454 *
3455 * Returns 0 if the device function can be reset or negative if the
3456 * device doesn't support resetting a single function.
3457 */
3458int pci_probe_reset_function(struct pci_dev *dev)
3459{
3460 return pci_dev_reset(dev, 1);
3461}
3462
3463/**
3464 * pci_reset_function - quiesce and reset a PCI device function
3465 * @dev: PCI device to reset
3466 *
3467 * Some devices allow an individual function to be reset without affecting
3468 * other functions in the same device. The PCI device must be responsive
3469 * to PCI config space in order to use this function.
3470 *
3471 * This function does not just reset the PCI portion of a device, but
3472 * clears all the state associated with the device. This function differs
3473 * from __pci_reset_function in that it saves and restores device state
3474 * over the reset.
3475 *
3476 * Returns 0 if the device function was successfully reset or negative if the
3477 * device doesn't support resetting a single function.
3478 */
3479int pci_reset_function(struct pci_dev *dev)
3480{
3481 int rc;
3482
3483 rc = pci_dev_reset(dev, 1);
3484 if (rc)
3485 return rc;
3486
3487 pci_dev_save_and_disable(dev);
3488
3489 rc = pci_dev_reset(dev, 0);
3490
3491 pci_dev_restore(dev);
3492
3493 return rc;
3494}
3495EXPORT_SYMBOL_GPL(pci_reset_function);
3496
3497/**
3498 * pci_try_reset_function - quiesce and reset a PCI device function
3499 * @dev: PCI device to reset
3500 *
3501 * Same as above, except return -EAGAIN if unable to lock device.
3502 */
3503int pci_try_reset_function(struct pci_dev *dev)
3504{
3505 int rc;
3506
3507 rc = pci_dev_reset(dev, 1);
3508 if (rc)
3509 return rc;
3510
3511 pci_dev_save_and_disable(dev);
3512
3513 if (pci_dev_trylock(dev)) {
3514 rc = __pci_dev_reset(dev, 0);
3515 pci_dev_unlock(dev);
3516 } else
3517 rc = -EAGAIN;
3518
3519 pci_dev_restore(dev);
3520
3521 return rc;
3522}
3523EXPORT_SYMBOL_GPL(pci_try_reset_function);
3524
3525/* Lock devices from the top of the tree down */
3526static void pci_bus_lock(struct pci_bus *bus)
3527{
3528 struct pci_dev *dev;
3529
3530 list_for_each_entry(dev, &bus->devices, bus_list) {
3531 pci_dev_lock(dev);
3532 if (dev->subordinate)
3533 pci_bus_lock(dev->subordinate);
3534 }
3535}
3536
3537/* Unlock devices from the bottom of the tree up */
3538static void pci_bus_unlock(struct pci_bus *bus)
3539{
3540 struct pci_dev *dev;
3541
3542 list_for_each_entry(dev, &bus->devices, bus_list) {
3543 if (dev->subordinate)
3544 pci_bus_unlock(dev->subordinate);
3545 pci_dev_unlock(dev);
3546 }
3547}
3548
3549/* Return 1 on successful lock, 0 on contention */
3550static int pci_bus_trylock(struct pci_bus *bus)
3551{
3552 struct pci_dev *dev;
3553
3554 list_for_each_entry(dev, &bus->devices, bus_list) {
3555 if (!pci_dev_trylock(dev))
3556 goto unlock;
3557 if (dev->subordinate) {
3558 if (!pci_bus_trylock(dev->subordinate)) {
3559 pci_dev_unlock(dev);
3560 goto unlock;
3561 }
3562 }
3563 }
3564 return 1;
3565
3566unlock:
3567 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3568 if (dev->subordinate)
3569 pci_bus_unlock(dev->subordinate);
3570 pci_dev_unlock(dev);
3571 }
3572 return 0;
3573}
3574
3575/* Lock devices from the top of the tree down */
3576static void pci_slot_lock(struct pci_slot *slot)
3577{
3578 struct pci_dev *dev;
3579
3580 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3581 if (!dev->slot || dev->slot != slot)
3582 continue;
3583 pci_dev_lock(dev);
3584 if (dev->subordinate)
3585 pci_bus_lock(dev->subordinate);
3586 }
3587}
3588
3589/* Unlock devices from the bottom of the tree up */
3590static void pci_slot_unlock(struct pci_slot *slot)
3591{
3592 struct pci_dev *dev;
3593
3594 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3595 if (!dev->slot || dev->slot != slot)
3596 continue;
3597 if (dev->subordinate)
3598 pci_bus_unlock(dev->subordinate);
3599 pci_dev_unlock(dev);
3600 }
3601}
3602
3603/* Return 1 on successful lock, 0 on contention */
3604static int pci_slot_trylock(struct pci_slot *slot)
3605{
3606 struct pci_dev *dev;
3607
3608 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3609 if (!dev->slot || dev->slot != slot)
3610 continue;
3611 if (!pci_dev_trylock(dev))
3612 goto unlock;
3613 if (dev->subordinate) {
3614 if (!pci_bus_trylock(dev->subordinate)) {
3615 pci_dev_unlock(dev);
3616 goto unlock;
3617 }
3618 }
3619 }
3620 return 1;
3621
3622unlock:
3623 list_for_each_entry_continue_reverse(dev,
3624 &slot->bus->devices, bus_list) {
3625 if (!dev->slot || dev->slot != slot)
3626 continue;
3627 if (dev->subordinate)
3628 pci_bus_unlock(dev->subordinate);
3629 pci_dev_unlock(dev);
3630 }
3631 return 0;
3632}
3633
3634/* Save and disable devices from the top of the tree down */
3635static void pci_bus_save_and_disable(struct pci_bus *bus)
3636{
3637 struct pci_dev *dev;
3638
3639 list_for_each_entry(dev, &bus->devices, bus_list) {
3640 pci_dev_save_and_disable(dev);
3641 if (dev->subordinate)
3642 pci_bus_save_and_disable(dev->subordinate);
3643 }
3644}
3645
3646/*
3647 * Restore devices from top of the tree down - parent bridges need to be
3648 * restored before we can get to subordinate devices.
3649 */
3650static void pci_bus_restore(struct pci_bus *bus)
3651{
3652 struct pci_dev *dev;
3653
3654 list_for_each_entry(dev, &bus->devices, bus_list) {
3655 pci_dev_restore(dev);
3656 if (dev->subordinate)
3657 pci_bus_restore(dev->subordinate);
3658 }
3659}
3660
3661/* Save and disable devices from the top of the tree down */
3662static void pci_slot_save_and_disable(struct pci_slot *slot)
3663{
3664 struct pci_dev *dev;
3665
3666 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3667 if (!dev->slot || dev->slot != slot)
3668 continue;
3669 pci_dev_save_and_disable(dev);
3670 if (dev->subordinate)
3671 pci_bus_save_and_disable(dev->subordinate);
3672 }
3673}
3674
3675/*
3676 * Restore devices from top of the tree down - parent bridges need to be
3677 * restored before we can get to subordinate devices.
3678 */
3679static void pci_slot_restore(struct pci_slot *slot)
3680{
3681 struct pci_dev *dev;
3682
3683 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3684 if (!dev->slot || dev->slot != slot)
3685 continue;
3686 pci_dev_restore(dev);
3687 if (dev->subordinate)
3688 pci_bus_restore(dev->subordinate);
3689 }
3690}
3691
3692static int pci_slot_reset(struct pci_slot *slot, int probe)
3693{
3694 int rc;
3695
3696 if (!slot)
3697 return -ENOTTY;
3698
3699 if (!probe)
3700 pci_slot_lock(slot);
3701
3702 might_sleep();
3703
3704 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3705
3706 if (!probe)
3707 pci_slot_unlock(slot);
3708
3709 return rc;
3710}
3711
3712/**
3713 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3714 * @slot: PCI slot to probe
3715 *
3716 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3717 */
3718int pci_probe_reset_slot(struct pci_slot *slot)
3719{
3720 return pci_slot_reset(slot, 1);
3721}
3722EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3723
3724/**
3725 * pci_reset_slot - reset a PCI slot
3726 * @slot: PCI slot to reset
3727 *
3728 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3729 * independent of other slots. For instance, some slots may support slot power
3730 * control. In the case of a 1:1 bus to slot architecture, this function may
3731 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3732 * Generally a slot reset should be attempted before a bus reset. All of the
3733 * function of the slot and any subordinate buses behind the slot are reset
3734 * through this function. PCI config space of all devices in the slot and
3735 * behind the slot is saved before and restored after reset.
3736 *
3737 * Return 0 on success, non-zero on error.
3738 */
3739int pci_reset_slot(struct pci_slot *slot)
3740{
3741 int rc;
3742
3743 rc = pci_slot_reset(slot, 1);
3744 if (rc)
3745 return rc;
3746
3747 pci_slot_save_and_disable(slot);
3748
3749 rc = pci_slot_reset(slot, 0);
3750
3751 pci_slot_restore(slot);
3752
3753 return rc;
3754}
3755EXPORT_SYMBOL_GPL(pci_reset_slot);
3756
3757/**
3758 * pci_try_reset_slot - Try to reset a PCI slot
3759 * @slot: PCI slot to reset
3760 *
3761 * Same as above except return -EAGAIN if the slot cannot be locked
3762 */
3763int pci_try_reset_slot(struct pci_slot *slot)
3764{
3765 int rc;
3766
3767 rc = pci_slot_reset(slot, 1);
3768 if (rc)
3769 return rc;
3770
3771 pci_slot_save_and_disable(slot);
3772
3773 if (pci_slot_trylock(slot)) {
3774 might_sleep();
3775 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3776 pci_slot_unlock(slot);
3777 } else
3778 rc = -EAGAIN;
3779
3780 pci_slot_restore(slot);
3781
3782 return rc;
3783}
3784EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3785
3786static int pci_bus_reset(struct pci_bus *bus, int probe)
3787{
3788 if (!bus->self)
3789 return -ENOTTY;
3790
3791 if (probe)
3792 return 0;
3793
3794 pci_bus_lock(bus);
3795
3796 might_sleep();
3797
3798 pci_reset_bridge_secondary_bus(bus->self);
3799
3800 pci_bus_unlock(bus);
3801
3802 return 0;
3803}
3804
3805/**
3806 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3807 * @bus: PCI bus to probe
3808 *
3809 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3810 */
3811int pci_probe_reset_bus(struct pci_bus *bus)
3812{
3813 return pci_bus_reset(bus, 1);
3814}
3815EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3816
3817/**
3818 * pci_reset_bus - reset a PCI bus
3819 * @bus: top level PCI bus to reset
3820 *
3821 * Do a bus reset on the given bus and any subordinate buses, saving
3822 * and restoring state of all devices.
3823 *
3824 * Return 0 on success, non-zero on error.
3825 */
3826int pci_reset_bus(struct pci_bus *bus)
3827{
3828 int rc;
3829
3830 rc = pci_bus_reset(bus, 1);
3831 if (rc)
3832 return rc;
3833
3834 pci_bus_save_and_disable(bus);
3835
3836 rc = pci_bus_reset(bus, 0);
3837
3838 pci_bus_restore(bus);
3839
3840 return rc;
3841}
3842EXPORT_SYMBOL_GPL(pci_reset_bus);
3843
3844/**
3845 * pci_try_reset_bus - Try to reset a PCI bus
3846 * @bus: top level PCI bus to reset
3847 *
3848 * Same as above except return -EAGAIN if the bus cannot be locked
3849 */
3850int pci_try_reset_bus(struct pci_bus *bus)
3851{
3852 int rc;
3853
3854 rc = pci_bus_reset(bus, 1);
3855 if (rc)
3856 return rc;
3857
3858 pci_bus_save_and_disable(bus);
3859
3860 if (pci_bus_trylock(bus)) {
3861 might_sleep();
3862 pci_reset_bridge_secondary_bus(bus->self);
3863 pci_bus_unlock(bus);
3864 } else
3865 rc = -EAGAIN;
3866
3867 pci_bus_restore(bus);
3868
3869 return rc;
3870}
3871EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3872
3873/**
3874 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3875 * @dev: PCI device to query
3876 *
3877 * Returns mmrbc: maximum designed memory read count in bytes
3878 * or appropriate error value.
3879 */
3880int pcix_get_max_mmrbc(struct pci_dev *dev)
3881{
3882 int cap;
3883 u32 stat;
3884
3885 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3886 if (!cap)
3887 return -EINVAL;
3888
3889 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3890 return -EINVAL;
3891
3892 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3893}
3894EXPORT_SYMBOL(pcix_get_max_mmrbc);
3895
3896/**
3897 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3898 * @dev: PCI device to query
3899 *
3900 * Returns mmrbc: maximum memory read count in bytes
3901 * or appropriate error value.
3902 */
3903int pcix_get_mmrbc(struct pci_dev *dev)
3904{
3905 int cap;
3906 u16 cmd;
3907
3908 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3909 if (!cap)
3910 return -EINVAL;
3911
3912 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3913 return -EINVAL;
3914
3915 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3916}
3917EXPORT_SYMBOL(pcix_get_mmrbc);
3918
3919/**
3920 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3921 * @dev: PCI device to query
3922 * @mmrbc: maximum memory read count in bytes
3923 * valid values are 512, 1024, 2048, 4096
3924 *
3925 * If possible sets maximum memory read byte count, some bridges have erratas
3926 * that prevent this.
3927 */
3928int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3929{
3930 int cap;
3931 u32 stat, v, o;
3932 u16 cmd;
3933
3934 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3935 return -EINVAL;
3936
3937 v = ffs(mmrbc) - 10;
3938
3939 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3940 if (!cap)
3941 return -EINVAL;
3942
3943 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3944 return -EINVAL;
3945
3946 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3947 return -E2BIG;
3948
3949 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3950 return -EINVAL;
3951
3952 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3953 if (o != v) {
3954 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3955 return -EIO;
3956
3957 cmd &= ~PCI_X_CMD_MAX_READ;
3958 cmd |= v << 2;
3959 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3960 return -EIO;
3961 }
3962 return 0;
3963}
3964EXPORT_SYMBOL(pcix_set_mmrbc);
3965
3966/**
3967 * pcie_get_readrq - get PCI Express read request size
3968 * @dev: PCI device to query
3969 *
3970 * Returns maximum memory read request in bytes
3971 * or appropriate error value.
3972 */
3973int pcie_get_readrq(struct pci_dev *dev)
3974{
3975 u16 ctl;
3976
3977 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3978
3979 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3980}
3981EXPORT_SYMBOL(pcie_get_readrq);
3982
3983/**
3984 * pcie_set_readrq - set PCI Express maximum memory read request
3985 * @dev: PCI device to query
3986 * @rq: maximum memory read count in bytes
3987 * valid values are 128, 256, 512, 1024, 2048, 4096
3988 *
3989 * If possible sets maximum memory read request in bytes
3990 */
3991int pcie_set_readrq(struct pci_dev *dev, int rq)
3992{
3993 u16 v;
3994
3995 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3996 return -EINVAL;
3997
3998 /*
3999 * If using the "performance" PCIe config, we clamp the
4000 * read rq size to the max packet size to prevent the
4001 * host bridge generating requests larger than we can
4002 * cope with
4003 */
4004 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4005 int mps = pcie_get_mps(dev);
4006
4007 if (mps < rq)
4008 rq = mps;
4009 }
4010
4011 v = (ffs(rq) - 8) << 12;
4012
4013 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4014 PCI_EXP_DEVCTL_READRQ, v);
4015}
4016EXPORT_SYMBOL(pcie_set_readrq);
4017
4018/**
4019 * pcie_get_mps - get PCI Express maximum payload size
4020 * @dev: PCI device to query
4021 *
4022 * Returns maximum payload size in bytes
4023 */
4024int pcie_get_mps(struct pci_dev *dev)
4025{
4026 u16 ctl;
4027
4028 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4029
4030 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4031}
4032EXPORT_SYMBOL(pcie_get_mps);
4033
4034/**
4035 * pcie_set_mps - set PCI Express maximum payload size
4036 * @dev: PCI device to query
4037 * @mps: maximum payload size in bytes
4038 * valid values are 128, 256, 512, 1024, 2048, 4096
4039 *
4040 * If possible sets maximum payload size
4041 */
4042int pcie_set_mps(struct pci_dev *dev, int mps)
4043{
4044 u16 v;
4045
4046 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4047 return -EINVAL;
4048
4049 v = ffs(mps) - 8;
4050 if (v > dev->pcie_mpss)
4051 return -EINVAL;
4052 v <<= 5;
4053
4054 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4055 PCI_EXP_DEVCTL_PAYLOAD, v);
4056}
4057EXPORT_SYMBOL(pcie_set_mps);
4058
4059/**
4060 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4061 * @dev: PCI device to query
4062 * @speed: storage for minimum speed
4063 * @width: storage for minimum width
4064 *
4065 * This function will walk up the PCI device chain and determine the minimum
4066 * link width and speed of the device.
4067 */
4068int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4069 enum pcie_link_width *width)
4070{
4071 int ret;
4072
4073 *speed = PCI_SPEED_UNKNOWN;
4074 *width = PCIE_LNK_WIDTH_UNKNOWN;
4075
4076 while (dev) {
4077 u16 lnksta;
4078 enum pci_bus_speed next_speed;
4079 enum pcie_link_width next_width;
4080
4081 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4082 if (ret)
4083 return ret;
4084
4085 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4086 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4087 PCI_EXP_LNKSTA_NLW_SHIFT;
4088
4089 if (next_speed < *speed)
4090 *speed = next_speed;
4091
4092 if (next_width < *width)
4093 *width = next_width;
4094
4095 dev = dev->bus->self;
4096 }
4097
4098 return 0;
4099}
4100EXPORT_SYMBOL(pcie_get_minimum_link);
4101
4102/**
4103 * pci_select_bars - Make BAR mask from the type of resource
4104 * @dev: the PCI device for which BAR mask is made
4105 * @flags: resource type mask to be selected
4106 *
4107 * This helper routine makes bar mask from the type of resource.
4108 */
4109int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4110{
4111 int i, bars = 0;
4112 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4113 if (pci_resource_flags(dev, i) & flags)
4114 bars |= (1 << i);
4115 return bars;
4116}
4117EXPORT_SYMBOL(pci_select_bars);
4118
4119/**
4120 * pci_resource_bar - get position of the BAR associated with a resource
4121 * @dev: the PCI device
4122 * @resno: the resource number
4123 * @type: the BAR type to be filled in
4124 *
4125 * Returns BAR position in config space, or 0 if the BAR is invalid.
4126 */
4127int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4128{
4129 int reg;
4130
4131 if (resno < PCI_ROM_RESOURCE) {
4132 *type = pci_bar_unknown;
4133 return PCI_BASE_ADDRESS_0 + 4 * resno;
4134 } else if (resno == PCI_ROM_RESOURCE) {
4135 *type = pci_bar_mem32;
4136 return dev->rom_base_reg;
4137 } else if (resno < PCI_BRIDGE_RESOURCES) {
4138 /* device specific resource */
4139 reg = pci_iov_resource_bar(dev, resno, type);
4140 if (reg)
4141 return reg;
4142 }
4143
4144 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4145 return 0;
4146}
4147
4148/* Some architectures require additional programming to enable VGA */
4149static arch_set_vga_state_t arch_set_vga_state;
4150
4151void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4152{
4153 arch_set_vga_state = func; /* NULL disables */
4154}
4155
4156static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4157 unsigned int command_bits, u32 flags)
4158{
4159 if (arch_set_vga_state)
4160 return arch_set_vga_state(dev, decode, command_bits,
4161 flags);
4162 return 0;
4163}
4164
4165/**
4166 * pci_set_vga_state - set VGA decode state on device and parents if requested
4167 * @dev: the PCI device
4168 * @decode: true = enable decoding, false = disable decoding
4169 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4170 * @flags: traverse ancestors and change bridges
4171 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4172 */
4173int pci_set_vga_state(struct pci_dev *dev, bool decode,
4174 unsigned int command_bits, u32 flags)
4175{
4176 struct pci_bus *bus;
4177 struct pci_dev *bridge;
4178 u16 cmd;
4179 int rc;
4180
4181 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4182
4183 /* ARCH specific VGA enables */
4184 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4185 if (rc)
4186 return rc;
4187
4188 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4189 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4190 if (decode == true)
4191 cmd |= command_bits;
4192 else
4193 cmd &= ~command_bits;
4194 pci_write_config_word(dev, PCI_COMMAND, cmd);
4195 }
4196
4197 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4198 return 0;
4199
4200 bus = dev->bus;
4201 while (bus) {
4202 bridge = bus->self;
4203 if (bridge) {
4204 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4205 &cmd);
4206 if (decode == true)
4207 cmd |= PCI_BRIDGE_CTL_VGA;
4208 else
4209 cmd &= ~PCI_BRIDGE_CTL_VGA;
4210 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4211 cmd);
4212 }
4213 bus = bus->parent;
4214 }
4215 return 0;
4216}
4217
4218bool pci_device_is_present(struct pci_dev *pdev)
4219{
4220 u32 v;
4221
4222 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4223}
4224EXPORT_SYMBOL_GPL(pci_device_is_present);
4225
4226#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4227static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4228static DEFINE_SPINLOCK(resource_alignment_lock);
4229
4230/**
4231 * pci_specified_resource_alignment - get resource alignment specified by user.
4232 * @dev: the PCI device to get
4233 *
4234 * RETURNS: Resource alignment if it is specified.
4235 * Zero if it is not specified.
4236 */
4237static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4238{
4239 int seg, bus, slot, func, align_order, count;
4240 resource_size_t align = 0;
4241 char *p;
4242
4243 spin_lock(&resource_alignment_lock);
4244 p = resource_alignment_param;
4245 while (*p) {
4246 count = 0;
4247 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4248 p[count] == '@') {
4249 p += count + 1;
4250 } else {
4251 align_order = -1;
4252 }
4253 if (sscanf(p, "%x:%x:%x.%x%n",
4254 &seg, &bus, &slot, &func, &count) != 4) {
4255 seg = 0;
4256 if (sscanf(p, "%x:%x.%x%n",
4257 &bus, &slot, &func, &count) != 3) {
4258 /* Invalid format */
4259 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4260 p);
4261 break;
4262 }
4263 }
4264 p += count;
4265 if (seg == pci_domain_nr(dev->bus) &&
4266 bus == dev->bus->number &&
4267 slot == PCI_SLOT(dev->devfn) &&
4268 func == PCI_FUNC(dev->devfn)) {
4269 if (align_order == -1)
4270 align = PAGE_SIZE;
4271 else
4272 align = 1 << align_order;
4273 /* Found */
4274 break;
4275 }
4276 if (*p != ';' && *p != ',') {
4277 /* End of param or invalid format */
4278 break;
4279 }
4280 p++;
4281 }
4282 spin_unlock(&resource_alignment_lock);
4283 return align;
4284}
4285
4286/*
4287 * This function disables memory decoding and releases memory resources
4288 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4289 * It also rounds up size to specified alignment.
4290 * Later on, the kernel will assign page-aligned memory resource back
4291 * to the device.
4292 */
4293void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4294{
4295 int i;
4296 struct resource *r;
4297 resource_size_t align, size;
4298 u16 command;
4299
4300 /* check if specified PCI is target device to reassign */
4301 align = pci_specified_resource_alignment(dev);
4302 if (!align)
4303 return;
4304
4305 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4306 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4307 dev_warn(&dev->dev,
4308 "Can't reassign resources to host bridge.\n");
4309 return;
4310 }
4311
4312 dev_info(&dev->dev,
4313 "Disabling memory decoding and releasing memory resources.\n");
4314 pci_read_config_word(dev, PCI_COMMAND, &command);
4315 command &= ~PCI_COMMAND_MEMORY;
4316 pci_write_config_word(dev, PCI_COMMAND, command);
4317
4318 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4319 r = &dev->resource[i];
4320 if (!(r->flags & IORESOURCE_MEM))
4321 continue;
4322 size = resource_size(r);
4323 if (size < align) {
4324 size = align;
4325 dev_info(&dev->dev,
4326 "Rounding up size of resource #%d to %#llx.\n",
4327 i, (unsigned long long)size);
4328 }
4329 r->flags |= IORESOURCE_UNSET;
4330 r->end = size - 1;
4331 r->start = 0;
4332 }
4333 /* Need to disable bridge's resource window,
4334 * to enable the kernel to reassign new resource
4335 * window later on.
4336 */
4337 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4338 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4339 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4340 r = &dev->resource[i];
4341 if (!(r->flags & IORESOURCE_MEM))
4342 continue;
4343 r->flags |= IORESOURCE_UNSET;
4344 r->end = resource_size(r) - 1;
4345 r->start = 0;
4346 }
4347 pci_disable_bridge_window(dev);
4348 }
4349}
4350
4351static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4352{
4353 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4354 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4355 spin_lock(&resource_alignment_lock);
4356 strncpy(resource_alignment_param, buf, count);
4357 resource_alignment_param[count] = '\0';
4358 spin_unlock(&resource_alignment_lock);
4359 return count;
4360}
4361
4362static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4363{
4364 size_t count;
4365 spin_lock(&resource_alignment_lock);
4366 count = snprintf(buf, size, "%s", resource_alignment_param);
4367 spin_unlock(&resource_alignment_lock);
4368 return count;
4369}
4370
4371static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4372{
4373 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4374}
4375
4376static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4377 const char *buf, size_t count)
4378{
4379 return pci_set_resource_alignment_param(buf, count);
4380}
4381
4382BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4383 pci_resource_alignment_store);
4384
4385static int __init pci_resource_alignment_sysfs_init(void)
4386{
4387 return bus_create_file(&pci_bus_type,
4388 &bus_attr_resource_alignment);
4389}
4390late_initcall(pci_resource_alignment_sysfs_init);
4391
4392static void pci_no_domains(void)
4393{
4394#ifdef CONFIG_PCI_DOMAINS
4395 pci_domains_supported = 0;
4396#endif
4397}
4398
4399/**
4400 * pci_ext_cfg_avail - can we access extended PCI config space?
4401 *
4402 * Returns 1 if we can access PCI extended config space (offsets
4403 * greater than 0xff). This is the default implementation. Architecture
4404 * implementations can override this.
4405 */
4406int __weak pci_ext_cfg_avail(void)
4407{
4408 return 1;
4409}
4410
4411void __weak pci_fixup_cardbus(struct pci_bus *bus)
4412{
4413}
4414EXPORT_SYMBOL(pci_fixup_cardbus);
4415
4416static int __init pci_setup(char *str)
4417{
4418 while (str) {
4419 char *k = strchr(str, ',');
4420 if (k)
4421 *k++ = 0;
4422 if (*str && (str = pcibios_setup(str)) && *str) {
4423 if (!strcmp(str, "nomsi")) {
4424 pci_no_msi();
4425 } else if (!strcmp(str, "noaer")) {
4426 pci_no_aer();
4427 } else if (!strncmp(str, "realloc=", 8)) {
4428 pci_realloc_get_opt(str + 8);
4429 } else if (!strncmp(str, "realloc", 7)) {
4430 pci_realloc_get_opt("on");
4431 } else if (!strcmp(str, "nodomains")) {
4432 pci_no_domains();
4433 } else if (!strncmp(str, "noari", 5)) {
4434 pcie_ari_disabled = true;
4435 } else if (!strncmp(str, "cbiosize=", 9)) {
4436 pci_cardbus_io_size = memparse(str + 9, &str);
4437 } else if (!strncmp(str, "cbmemsize=", 10)) {
4438 pci_cardbus_mem_size = memparse(str + 10, &str);
4439 } else if (!strncmp(str, "resource_alignment=", 19)) {
4440 pci_set_resource_alignment_param(str + 19,
4441 strlen(str + 19));
4442 } else if (!strncmp(str, "ecrc=", 5)) {
4443 pcie_ecrc_get_policy(str + 5);
4444 } else if (!strncmp(str, "hpiosize=", 9)) {
4445 pci_hotplug_io_size = memparse(str + 9, &str);
4446 } else if (!strncmp(str, "hpmemsize=", 10)) {
4447 pci_hotplug_mem_size = memparse(str + 10, &str);
4448 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4449 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4450 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4451 pcie_bus_config = PCIE_BUS_SAFE;
4452 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4453 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4454 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4455 pcie_bus_config = PCIE_BUS_PEER2PEER;
4456 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4457 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4458 } else {
4459 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4460 str);
4461 }
4462 }
4463 str = k;
4464 }
4465 return 0;
4466}
4467early_param("pci", pci_setup);
This page took 0.036611 seconds and 5 git commands to generate.