TTY: extract driver lookup from tty_open
[deliverable/linux.git] / drivers / tty / tty_io.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5/*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67#include <linux/types.h>
68#include <linux/major.h>
69#include <linux/errno.h>
70#include <linux/signal.h>
71#include <linux/fcntl.h>
72#include <linux/sched.h>
73#include <linux/interrupt.h>
74#include <linux/tty.h>
75#include <linux/tty_driver.h>
76#include <linux/tty_flip.h>
77#include <linux/devpts_fs.h>
78#include <linux/file.h>
79#include <linux/fdtable.h>
80#include <linux/console.h>
81#include <linux/timer.h>
82#include <linux/ctype.h>
83#include <linux/kd.h>
84#include <linux/mm.h>
85#include <linux/string.h>
86#include <linux/slab.h>
87#include <linux/poll.h>
88#include <linux/proc_fs.h>
89#include <linux/init.h>
90#include <linux/module.h>
91#include <linux/device.h>
92#include <linux/wait.h>
93#include <linux/bitops.h>
94#include <linux/delay.h>
95#include <linux/seq_file.h>
96#include <linux/serial.h>
97#include <linux/ratelimit.h>
98
99#include <linux/uaccess.h>
100#include <asm/system.h>
101
102#include <linux/kbd_kern.h>
103#include <linux/vt_kern.h>
104#include <linux/selection.h>
105
106#include <linux/kmod.h>
107#include <linux/nsproxy.h>
108
109#undef TTY_DEBUG_HANGUP
110
111#define TTY_PARANOIA_CHECK 1
112#define CHECK_TTY_COUNT 1
113
114struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
115 .c_iflag = ICRNL | IXON,
116 .c_oflag = OPOST | ONLCR,
117 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119 ECHOCTL | ECHOKE | IEXTEN,
120 .c_cc = INIT_C_CC,
121 .c_ispeed = 38400,
122 .c_ospeed = 38400
123};
124
125EXPORT_SYMBOL(tty_std_termios);
126
127/* This list gets poked at by procfs and various bits of boot up code. This
128 could do with some rationalisation such as pulling the tty proc function
129 into this file */
130
131LIST_HEAD(tty_drivers); /* linked list of tty drivers */
132
133/* Mutex to protect creating and releasing a tty. This is shared with
134 vt.c for deeply disgusting hack reasons */
135DEFINE_MUTEX(tty_mutex);
136EXPORT_SYMBOL(tty_mutex);
137
138/* Spinlock to protect the tty->tty_files list */
139DEFINE_SPINLOCK(tty_files_lock);
140
141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143ssize_t redirected_tty_write(struct file *, const char __user *,
144 size_t, loff_t *);
145static unsigned int tty_poll(struct file *, poll_table *);
146static int tty_open(struct inode *, struct file *);
147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148#ifdef CONFIG_COMPAT
149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 unsigned long arg);
151#else
152#define tty_compat_ioctl NULL
153#endif
154static int __tty_fasync(int fd, struct file *filp, int on);
155static int tty_fasync(int fd, struct file *filp, int on);
156static void release_tty(struct tty_struct *tty, int idx);
157static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160/**
161 * alloc_tty_struct - allocate a tty object
162 *
163 * Return a new empty tty structure. The data fields have not
164 * been initialized in any way but has been zeroed
165 *
166 * Locking: none
167 */
168
169struct tty_struct *alloc_tty_struct(void)
170{
171 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172}
173
174/**
175 * free_tty_struct - free a disused tty
176 * @tty: tty struct to free
177 *
178 * Free the write buffers, tty queue and tty memory itself.
179 *
180 * Locking: none. Must be called after tty is definitely unused
181 */
182
183void free_tty_struct(struct tty_struct *tty)
184{
185 if (tty->dev)
186 put_device(tty->dev);
187 kfree(tty->write_buf);
188 tty_buffer_free_all(tty);
189 kfree(tty);
190}
191
192static inline struct tty_struct *file_tty(struct file *file)
193{
194 return ((struct tty_file_private *)file->private_data)->tty;
195}
196
197int tty_alloc_file(struct file *file)
198{
199 struct tty_file_private *priv;
200
201 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202 if (!priv)
203 return -ENOMEM;
204
205 file->private_data = priv;
206
207 return 0;
208}
209
210/* Associate a new file with the tty structure */
211void tty_add_file(struct tty_struct *tty, struct file *file)
212{
213 struct tty_file_private *priv = file->private_data;
214
215 priv->tty = tty;
216 priv->file = file;
217
218 spin_lock(&tty_files_lock);
219 list_add(&priv->list, &tty->tty_files);
220 spin_unlock(&tty_files_lock);
221}
222
223/**
224 * tty_free_file - free file->private_data
225 *
226 * This shall be used only for fail path handling when tty_add_file was not
227 * called yet.
228 */
229void tty_free_file(struct file *file)
230{
231 struct tty_file_private *priv = file->private_data;
232
233 file->private_data = NULL;
234 kfree(priv);
235}
236
237/* Delete file from its tty */
238void tty_del_file(struct file *file)
239{
240 struct tty_file_private *priv = file->private_data;
241
242 spin_lock(&tty_files_lock);
243 list_del(&priv->list);
244 spin_unlock(&tty_files_lock);
245 tty_free_file(file);
246}
247
248
249#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251/**
252 * tty_name - return tty naming
253 * @tty: tty structure
254 * @buf: buffer for output
255 *
256 * Convert a tty structure into a name. The name reflects the kernel
257 * naming policy and if udev is in use may not reflect user space
258 *
259 * Locking: none
260 */
261
262char *tty_name(struct tty_struct *tty, char *buf)
263{
264 if (!tty) /* Hmm. NULL pointer. That's fun. */
265 strcpy(buf, "NULL tty");
266 else
267 strcpy(buf, tty->name);
268 return buf;
269}
270
271EXPORT_SYMBOL(tty_name);
272
273int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274 const char *routine)
275{
276#ifdef TTY_PARANOIA_CHECK
277 if (!tty) {
278 printk(KERN_WARNING
279 "null TTY for (%d:%d) in %s\n",
280 imajor(inode), iminor(inode), routine);
281 return 1;
282 }
283 if (tty->magic != TTY_MAGIC) {
284 printk(KERN_WARNING
285 "bad magic number for tty struct (%d:%d) in %s\n",
286 imajor(inode), iminor(inode), routine);
287 return 1;
288 }
289#endif
290 return 0;
291}
292
293static int check_tty_count(struct tty_struct *tty, const char *routine)
294{
295#ifdef CHECK_TTY_COUNT
296 struct list_head *p;
297 int count = 0;
298
299 spin_lock(&tty_files_lock);
300 list_for_each(p, &tty->tty_files) {
301 count++;
302 }
303 spin_unlock(&tty_files_lock);
304 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305 tty->driver->subtype == PTY_TYPE_SLAVE &&
306 tty->link && tty->link->count)
307 count++;
308 if (tty->count != count) {
309 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310 "!= #fd's(%d) in %s\n",
311 tty->name, tty->count, count, routine);
312 return count;
313 }
314#endif
315 return 0;
316}
317
318/**
319 * get_tty_driver - find device of a tty
320 * @dev_t: device identifier
321 * @index: returns the index of the tty
322 *
323 * This routine returns a tty driver structure, given a device number
324 * and also passes back the index number.
325 *
326 * Locking: caller must hold tty_mutex
327 */
328
329static struct tty_driver *get_tty_driver(dev_t device, int *index)
330{
331 struct tty_driver *p;
332
333 list_for_each_entry(p, &tty_drivers, tty_drivers) {
334 dev_t base = MKDEV(p->major, p->minor_start);
335 if (device < base || device >= base + p->num)
336 continue;
337 *index = device - base;
338 return tty_driver_kref_get(p);
339 }
340 return NULL;
341}
342
343#ifdef CONFIG_CONSOLE_POLL
344
345/**
346 * tty_find_polling_driver - find device of a polled tty
347 * @name: name string to match
348 * @line: pointer to resulting tty line nr
349 *
350 * This routine returns a tty driver structure, given a name
351 * and the condition that the tty driver is capable of polled
352 * operation.
353 */
354struct tty_driver *tty_find_polling_driver(char *name, int *line)
355{
356 struct tty_driver *p, *res = NULL;
357 int tty_line = 0;
358 int len;
359 char *str, *stp;
360
361 for (str = name; *str; str++)
362 if ((*str >= '0' && *str <= '9') || *str == ',')
363 break;
364 if (!*str)
365 return NULL;
366
367 len = str - name;
368 tty_line = simple_strtoul(str, &str, 10);
369
370 mutex_lock(&tty_mutex);
371 /* Search through the tty devices to look for a match */
372 list_for_each_entry(p, &tty_drivers, tty_drivers) {
373 if (strncmp(name, p->name, len) != 0)
374 continue;
375 stp = str;
376 if (*stp == ',')
377 stp++;
378 if (*stp == '\0')
379 stp = NULL;
380
381 if (tty_line >= 0 && tty_line < p->num && p->ops &&
382 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383 res = tty_driver_kref_get(p);
384 *line = tty_line;
385 break;
386 }
387 }
388 mutex_unlock(&tty_mutex);
389
390 return res;
391}
392EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393#endif
394
395/**
396 * tty_check_change - check for POSIX terminal changes
397 * @tty: tty to check
398 *
399 * If we try to write to, or set the state of, a terminal and we're
400 * not in the foreground, send a SIGTTOU. If the signal is blocked or
401 * ignored, go ahead and perform the operation. (POSIX 7.2)
402 *
403 * Locking: ctrl_lock
404 */
405
406int tty_check_change(struct tty_struct *tty)
407{
408 unsigned long flags;
409 int ret = 0;
410
411 if (current->signal->tty != tty)
412 return 0;
413
414 spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416 if (!tty->pgrp) {
417 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418 goto out_unlock;
419 }
420 if (task_pgrp(current) == tty->pgrp)
421 goto out_unlock;
422 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423 if (is_ignored(SIGTTOU))
424 goto out;
425 if (is_current_pgrp_orphaned()) {
426 ret = -EIO;
427 goto out;
428 }
429 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430 set_thread_flag(TIF_SIGPENDING);
431 ret = -ERESTARTSYS;
432out:
433 return ret;
434out_unlock:
435 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436 return ret;
437}
438
439EXPORT_SYMBOL(tty_check_change);
440
441static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442 size_t count, loff_t *ppos)
443{
444 return 0;
445}
446
447static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448 size_t count, loff_t *ppos)
449{
450 return -EIO;
451}
452
453/* No kernel lock held - none needed ;) */
454static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455{
456 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457}
458
459static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460 unsigned long arg)
461{
462 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463}
464
465static long hung_up_tty_compat_ioctl(struct file *file,
466 unsigned int cmd, unsigned long arg)
467{
468 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469}
470
471static const struct file_operations tty_fops = {
472 .llseek = no_llseek,
473 .read = tty_read,
474 .write = tty_write,
475 .poll = tty_poll,
476 .unlocked_ioctl = tty_ioctl,
477 .compat_ioctl = tty_compat_ioctl,
478 .open = tty_open,
479 .release = tty_release,
480 .fasync = tty_fasync,
481};
482
483static const struct file_operations console_fops = {
484 .llseek = no_llseek,
485 .read = tty_read,
486 .write = redirected_tty_write,
487 .poll = tty_poll,
488 .unlocked_ioctl = tty_ioctl,
489 .compat_ioctl = tty_compat_ioctl,
490 .open = tty_open,
491 .release = tty_release,
492 .fasync = tty_fasync,
493};
494
495static const struct file_operations hung_up_tty_fops = {
496 .llseek = no_llseek,
497 .read = hung_up_tty_read,
498 .write = hung_up_tty_write,
499 .poll = hung_up_tty_poll,
500 .unlocked_ioctl = hung_up_tty_ioctl,
501 .compat_ioctl = hung_up_tty_compat_ioctl,
502 .release = tty_release,
503};
504
505static DEFINE_SPINLOCK(redirect_lock);
506static struct file *redirect;
507
508/**
509 * tty_wakeup - request more data
510 * @tty: terminal
511 *
512 * Internal and external helper for wakeups of tty. This function
513 * informs the line discipline if present that the driver is ready
514 * to receive more output data.
515 */
516
517void tty_wakeup(struct tty_struct *tty)
518{
519 struct tty_ldisc *ld;
520
521 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522 ld = tty_ldisc_ref(tty);
523 if (ld) {
524 if (ld->ops->write_wakeup)
525 ld->ops->write_wakeup(tty);
526 tty_ldisc_deref(ld);
527 }
528 }
529 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530}
531
532EXPORT_SYMBOL_GPL(tty_wakeup);
533
534/**
535 * __tty_hangup - actual handler for hangup events
536 * @work: tty device
537 *
538 * This can be called by the "eventd" kernel thread. That is process
539 * synchronous but doesn't hold any locks, so we need to make sure we
540 * have the appropriate locks for what we're doing.
541 *
542 * The hangup event clears any pending redirections onto the hung up
543 * device. It ensures future writes will error and it does the needed
544 * line discipline hangup and signal delivery. The tty object itself
545 * remains intact.
546 *
547 * Locking:
548 * BTM
549 * redirect lock for undoing redirection
550 * file list lock for manipulating list of ttys
551 * tty_ldisc_lock from called functions
552 * termios_mutex resetting termios data
553 * tasklist_lock to walk task list for hangup event
554 * ->siglock to protect ->signal/->sighand
555 */
556void __tty_hangup(struct tty_struct *tty)
557{
558 struct file *cons_filp = NULL;
559 struct file *filp, *f = NULL;
560 struct task_struct *p;
561 struct tty_file_private *priv;
562 int closecount = 0, n;
563 unsigned long flags;
564 int refs = 0;
565
566 if (!tty)
567 return;
568
569
570 spin_lock(&redirect_lock);
571 if (redirect && file_tty(redirect) == tty) {
572 f = redirect;
573 redirect = NULL;
574 }
575 spin_unlock(&redirect_lock);
576
577 tty_lock();
578
579 /* some functions below drop BTM, so we need this bit */
580 set_bit(TTY_HUPPING, &tty->flags);
581
582 /* inuse_filps is protected by the single tty lock,
583 this really needs to change if we want to flush the
584 workqueue with the lock held */
585 check_tty_count(tty, "tty_hangup");
586
587 spin_lock(&tty_files_lock);
588 /* This breaks for file handles being sent over AF_UNIX sockets ? */
589 list_for_each_entry(priv, &tty->tty_files, list) {
590 filp = priv->file;
591 if (filp->f_op->write == redirected_tty_write)
592 cons_filp = filp;
593 if (filp->f_op->write != tty_write)
594 continue;
595 closecount++;
596 __tty_fasync(-1, filp, 0); /* can't block */
597 filp->f_op = &hung_up_tty_fops;
598 }
599 spin_unlock(&tty_files_lock);
600
601 /*
602 * it drops BTM and thus races with reopen
603 * we protect the race by TTY_HUPPING
604 */
605 tty_ldisc_hangup(tty);
606
607 read_lock(&tasklist_lock);
608 if (tty->session) {
609 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610 spin_lock_irq(&p->sighand->siglock);
611 if (p->signal->tty == tty) {
612 p->signal->tty = NULL;
613 /* We defer the dereferences outside fo
614 the tasklist lock */
615 refs++;
616 }
617 if (!p->signal->leader) {
618 spin_unlock_irq(&p->sighand->siglock);
619 continue;
620 }
621 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623 put_pid(p->signal->tty_old_pgrp); /* A noop */
624 spin_lock_irqsave(&tty->ctrl_lock, flags);
625 if (tty->pgrp)
626 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628 spin_unlock_irq(&p->sighand->siglock);
629 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630 }
631 read_unlock(&tasklist_lock);
632
633 spin_lock_irqsave(&tty->ctrl_lock, flags);
634 clear_bit(TTY_THROTTLED, &tty->flags);
635 clear_bit(TTY_PUSH, &tty->flags);
636 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637 put_pid(tty->session);
638 put_pid(tty->pgrp);
639 tty->session = NULL;
640 tty->pgrp = NULL;
641 tty->ctrl_status = 0;
642 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644 /* Account for the p->signal references we killed */
645 while (refs--)
646 tty_kref_put(tty);
647
648 /*
649 * If one of the devices matches a console pointer, we
650 * cannot just call hangup() because that will cause
651 * tty->count and state->count to go out of sync.
652 * So we just call close() the right number of times.
653 */
654 if (cons_filp) {
655 if (tty->ops->close)
656 for (n = 0; n < closecount; n++)
657 tty->ops->close(tty, cons_filp);
658 } else if (tty->ops->hangup)
659 (tty->ops->hangup)(tty);
660 /*
661 * We don't want to have driver/ldisc interactions beyond
662 * the ones we did here. The driver layer expects no
663 * calls after ->hangup() from the ldisc side. However we
664 * can't yet guarantee all that.
665 */
666 set_bit(TTY_HUPPED, &tty->flags);
667 clear_bit(TTY_HUPPING, &tty->flags);
668 tty_ldisc_enable(tty);
669
670 tty_unlock();
671
672 if (f)
673 fput(f);
674}
675
676static void do_tty_hangup(struct work_struct *work)
677{
678 struct tty_struct *tty =
679 container_of(work, struct tty_struct, hangup_work);
680
681 __tty_hangup(tty);
682}
683
684/**
685 * tty_hangup - trigger a hangup event
686 * @tty: tty to hangup
687 *
688 * A carrier loss (virtual or otherwise) has occurred on this like
689 * schedule a hangup sequence to run after this event.
690 */
691
692void tty_hangup(struct tty_struct *tty)
693{
694#ifdef TTY_DEBUG_HANGUP
695 char buf[64];
696 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697#endif
698 schedule_work(&tty->hangup_work);
699}
700
701EXPORT_SYMBOL(tty_hangup);
702
703/**
704 * tty_vhangup - process vhangup
705 * @tty: tty to hangup
706 *
707 * The user has asked via system call for the terminal to be hung up.
708 * We do this synchronously so that when the syscall returns the process
709 * is complete. That guarantee is necessary for security reasons.
710 */
711
712void tty_vhangup(struct tty_struct *tty)
713{
714#ifdef TTY_DEBUG_HANGUP
715 char buf[64];
716
717 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718#endif
719 __tty_hangup(tty);
720}
721
722EXPORT_SYMBOL(tty_vhangup);
723
724
725/**
726 * tty_vhangup_self - process vhangup for own ctty
727 *
728 * Perform a vhangup on the current controlling tty
729 */
730
731void tty_vhangup_self(void)
732{
733 struct tty_struct *tty;
734
735 tty = get_current_tty();
736 if (tty) {
737 tty_vhangup(tty);
738 tty_kref_put(tty);
739 }
740}
741
742/**
743 * tty_hung_up_p - was tty hung up
744 * @filp: file pointer of tty
745 *
746 * Return true if the tty has been subject to a vhangup or a carrier
747 * loss
748 */
749
750int tty_hung_up_p(struct file *filp)
751{
752 return (filp->f_op == &hung_up_tty_fops);
753}
754
755EXPORT_SYMBOL(tty_hung_up_p);
756
757static void session_clear_tty(struct pid *session)
758{
759 struct task_struct *p;
760 do_each_pid_task(session, PIDTYPE_SID, p) {
761 proc_clear_tty(p);
762 } while_each_pid_task(session, PIDTYPE_SID, p);
763}
764
765/**
766 * disassociate_ctty - disconnect controlling tty
767 * @on_exit: true if exiting so need to "hang up" the session
768 *
769 * This function is typically called only by the session leader, when
770 * it wants to disassociate itself from its controlling tty.
771 *
772 * It performs the following functions:
773 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
774 * (2) Clears the tty from being controlling the session
775 * (3) Clears the controlling tty for all processes in the
776 * session group.
777 *
778 * The argument on_exit is set to 1 if called when a process is
779 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
780 *
781 * Locking:
782 * BTM is taken for hysterical raisins, and held when
783 * called from no_tty().
784 * tty_mutex is taken to protect tty
785 * ->siglock is taken to protect ->signal/->sighand
786 * tasklist_lock is taken to walk process list for sessions
787 * ->siglock is taken to protect ->signal/->sighand
788 */
789
790void disassociate_ctty(int on_exit)
791{
792 struct tty_struct *tty;
793
794 if (!current->signal->leader)
795 return;
796
797 tty = get_current_tty();
798 if (tty) {
799 struct pid *tty_pgrp = get_pid(tty->pgrp);
800 if (on_exit) {
801 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802 tty_vhangup(tty);
803 }
804 tty_kref_put(tty);
805 if (tty_pgrp) {
806 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807 if (!on_exit)
808 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
809 put_pid(tty_pgrp);
810 }
811 } else if (on_exit) {
812 struct pid *old_pgrp;
813 spin_lock_irq(&current->sighand->siglock);
814 old_pgrp = current->signal->tty_old_pgrp;
815 current->signal->tty_old_pgrp = NULL;
816 spin_unlock_irq(&current->sighand->siglock);
817 if (old_pgrp) {
818 kill_pgrp(old_pgrp, SIGHUP, on_exit);
819 kill_pgrp(old_pgrp, SIGCONT, on_exit);
820 put_pid(old_pgrp);
821 }
822 return;
823 }
824
825 spin_lock_irq(&current->sighand->siglock);
826 put_pid(current->signal->tty_old_pgrp);
827 current->signal->tty_old_pgrp = NULL;
828 spin_unlock_irq(&current->sighand->siglock);
829
830 tty = get_current_tty();
831 if (tty) {
832 unsigned long flags;
833 spin_lock_irqsave(&tty->ctrl_lock, flags);
834 put_pid(tty->session);
835 put_pid(tty->pgrp);
836 tty->session = NULL;
837 tty->pgrp = NULL;
838 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839 tty_kref_put(tty);
840 } else {
841#ifdef TTY_DEBUG_HANGUP
842 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843 " = NULL", tty);
844#endif
845 }
846
847 /* Now clear signal->tty under the lock */
848 read_lock(&tasklist_lock);
849 session_clear_tty(task_session(current));
850 read_unlock(&tasklist_lock);
851}
852
853/**
854 *
855 * no_tty - Ensure the current process does not have a controlling tty
856 */
857void no_tty(void)
858{
859 struct task_struct *tsk = current;
860 tty_lock();
861 disassociate_ctty(0);
862 tty_unlock();
863 proc_clear_tty(tsk);
864}
865
866
867/**
868 * stop_tty - propagate flow control
869 * @tty: tty to stop
870 *
871 * Perform flow control to the driver. For PTY/TTY pairs we
872 * must also propagate the TIOCKPKT status. May be called
873 * on an already stopped device and will not re-call the driver
874 * method.
875 *
876 * This functionality is used by both the line disciplines for
877 * halting incoming flow and by the driver. It may therefore be
878 * called from any context, may be under the tty atomic_write_lock
879 * but not always.
880 *
881 * Locking:
882 * Uses the tty control lock internally
883 */
884
885void stop_tty(struct tty_struct *tty)
886{
887 unsigned long flags;
888 spin_lock_irqsave(&tty->ctrl_lock, flags);
889 if (tty->stopped) {
890 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891 return;
892 }
893 tty->stopped = 1;
894 if (tty->link && tty->link->packet) {
895 tty->ctrl_status &= ~TIOCPKT_START;
896 tty->ctrl_status |= TIOCPKT_STOP;
897 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898 }
899 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900 if (tty->ops->stop)
901 (tty->ops->stop)(tty);
902}
903
904EXPORT_SYMBOL(stop_tty);
905
906/**
907 * start_tty - propagate flow control
908 * @tty: tty to start
909 *
910 * Start a tty that has been stopped if at all possible. Perform
911 * any necessary wakeups and propagate the TIOCPKT status. If this
912 * is the tty was previous stopped and is being started then the
913 * driver start method is invoked and the line discipline woken.
914 *
915 * Locking:
916 * ctrl_lock
917 */
918
919void start_tty(struct tty_struct *tty)
920{
921 unsigned long flags;
922 spin_lock_irqsave(&tty->ctrl_lock, flags);
923 if (!tty->stopped || tty->flow_stopped) {
924 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925 return;
926 }
927 tty->stopped = 0;
928 if (tty->link && tty->link->packet) {
929 tty->ctrl_status &= ~TIOCPKT_STOP;
930 tty->ctrl_status |= TIOCPKT_START;
931 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932 }
933 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934 if (tty->ops->start)
935 (tty->ops->start)(tty);
936 /* If we have a running line discipline it may need kicking */
937 tty_wakeup(tty);
938}
939
940EXPORT_SYMBOL(start_tty);
941
942/**
943 * tty_read - read method for tty device files
944 * @file: pointer to tty file
945 * @buf: user buffer
946 * @count: size of user buffer
947 * @ppos: unused
948 *
949 * Perform the read system call function on this terminal device. Checks
950 * for hung up devices before calling the line discipline method.
951 *
952 * Locking:
953 * Locks the line discipline internally while needed. Multiple
954 * read calls may be outstanding in parallel.
955 */
956
957static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958 loff_t *ppos)
959{
960 int i;
961 struct inode *inode = file->f_path.dentry->d_inode;
962 struct tty_struct *tty = file_tty(file);
963 struct tty_ldisc *ld;
964
965 if (tty_paranoia_check(tty, inode, "tty_read"))
966 return -EIO;
967 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968 return -EIO;
969
970 /* We want to wait for the line discipline to sort out in this
971 situation */
972 ld = tty_ldisc_ref_wait(tty);
973 if (ld->ops->read)
974 i = (ld->ops->read)(tty, file, buf, count);
975 else
976 i = -EIO;
977 tty_ldisc_deref(ld);
978 if (i > 0)
979 inode->i_atime = current_fs_time(inode->i_sb);
980 return i;
981}
982
983void tty_write_unlock(struct tty_struct *tty)
984 __releases(&tty->atomic_write_lock)
985{
986 mutex_unlock(&tty->atomic_write_lock);
987 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988}
989
990int tty_write_lock(struct tty_struct *tty, int ndelay)
991 __acquires(&tty->atomic_write_lock)
992{
993 if (!mutex_trylock(&tty->atomic_write_lock)) {
994 if (ndelay)
995 return -EAGAIN;
996 if (mutex_lock_interruptible(&tty->atomic_write_lock))
997 return -ERESTARTSYS;
998 }
999 return 0;
1000}
1001
1002/*
1003 * Split writes up in sane blocksizes to avoid
1004 * denial-of-service type attacks
1005 */
1006static inline ssize_t do_tty_write(
1007 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008 struct tty_struct *tty,
1009 struct file *file,
1010 const char __user *buf,
1011 size_t count)
1012{
1013 ssize_t ret, written = 0;
1014 unsigned int chunk;
1015
1016 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017 if (ret < 0)
1018 return ret;
1019
1020 /*
1021 * We chunk up writes into a temporary buffer. This
1022 * simplifies low-level drivers immensely, since they
1023 * don't have locking issues and user mode accesses.
1024 *
1025 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026 * big chunk-size..
1027 *
1028 * The default chunk-size is 2kB, because the NTTY
1029 * layer has problems with bigger chunks. It will
1030 * claim to be able to handle more characters than
1031 * it actually does.
1032 *
1033 * FIXME: This can probably go away now except that 64K chunks
1034 * are too likely to fail unless switched to vmalloc...
1035 */
1036 chunk = 2048;
1037 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038 chunk = 65536;
1039 if (count < chunk)
1040 chunk = count;
1041
1042 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043 if (tty->write_cnt < chunk) {
1044 unsigned char *buf_chunk;
1045
1046 if (chunk < 1024)
1047 chunk = 1024;
1048
1049 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050 if (!buf_chunk) {
1051 ret = -ENOMEM;
1052 goto out;
1053 }
1054 kfree(tty->write_buf);
1055 tty->write_cnt = chunk;
1056 tty->write_buf = buf_chunk;
1057 }
1058
1059 /* Do the write .. */
1060 for (;;) {
1061 size_t size = count;
1062 if (size > chunk)
1063 size = chunk;
1064 ret = -EFAULT;
1065 if (copy_from_user(tty->write_buf, buf, size))
1066 break;
1067 ret = write(tty, file, tty->write_buf, size);
1068 if (ret <= 0)
1069 break;
1070 written += ret;
1071 buf += ret;
1072 count -= ret;
1073 if (!count)
1074 break;
1075 ret = -ERESTARTSYS;
1076 if (signal_pending(current))
1077 break;
1078 cond_resched();
1079 }
1080 if (written) {
1081 struct inode *inode = file->f_path.dentry->d_inode;
1082 inode->i_mtime = current_fs_time(inode->i_sb);
1083 ret = written;
1084 }
1085out:
1086 tty_write_unlock(tty);
1087 return ret;
1088}
1089
1090/**
1091 * tty_write_message - write a message to a certain tty, not just the console.
1092 * @tty: the destination tty_struct
1093 * @msg: the message to write
1094 *
1095 * This is used for messages that need to be redirected to a specific tty.
1096 * We don't put it into the syslog queue right now maybe in the future if
1097 * really needed.
1098 *
1099 * We must still hold the BTM and test the CLOSING flag for the moment.
1100 */
1101
1102void tty_write_message(struct tty_struct *tty, char *msg)
1103{
1104 if (tty) {
1105 mutex_lock(&tty->atomic_write_lock);
1106 tty_lock();
1107 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108 tty_unlock();
1109 tty->ops->write(tty, msg, strlen(msg));
1110 } else
1111 tty_unlock();
1112 tty_write_unlock(tty);
1113 }
1114 return;
1115}
1116
1117
1118/**
1119 * tty_write - write method for tty device file
1120 * @file: tty file pointer
1121 * @buf: user data to write
1122 * @count: bytes to write
1123 * @ppos: unused
1124 *
1125 * Write data to a tty device via the line discipline.
1126 *
1127 * Locking:
1128 * Locks the line discipline as required
1129 * Writes to the tty driver are serialized by the atomic_write_lock
1130 * and are then processed in chunks to the device. The line discipline
1131 * write method will not be invoked in parallel for each device.
1132 */
1133
1134static ssize_t tty_write(struct file *file, const char __user *buf,
1135 size_t count, loff_t *ppos)
1136{
1137 struct inode *inode = file->f_path.dentry->d_inode;
1138 struct tty_struct *tty = file_tty(file);
1139 struct tty_ldisc *ld;
1140 ssize_t ret;
1141
1142 if (tty_paranoia_check(tty, inode, "tty_write"))
1143 return -EIO;
1144 if (!tty || !tty->ops->write ||
1145 (test_bit(TTY_IO_ERROR, &tty->flags)))
1146 return -EIO;
1147 /* Short term debug to catch buggy drivers */
1148 if (tty->ops->write_room == NULL)
1149 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150 tty->driver->name);
1151 ld = tty_ldisc_ref_wait(tty);
1152 if (!ld->ops->write)
1153 ret = -EIO;
1154 else
1155 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156 tty_ldisc_deref(ld);
1157 return ret;
1158}
1159
1160ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161 size_t count, loff_t *ppos)
1162{
1163 struct file *p = NULL;
1164
1165 spin_lock(&redirect_lock);
1166 if (redirect) {
1167 get_file(redirect);
1168 p = redirect;
1169 }
1170 spin_unlock(&redirect_lock);
1171
1172 if (p) {
1173 ssize_t res;
1174 res = vfs_write(p, buf, count, &p->f_pos);
1175 fput(p);
1176 return res;
1177 }
1178 return tty_write(file, buf, count, ppos);
1179}
1180
1181static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183/**
1184 * pty_line_name - generate name for a pty
1185 * @driver: the tty driver in use
1186 * @index: the minor number
1187 * @p: output buffer of at least 6 bytes
1188 *
1189 * Generate a name from a driver reference and write it to the output
1190 * buffer.
1191 *
1192 * Locking: None
1193 */
1194static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195{
1196 int i = index + driver->name_base;
1197 /* ->name is initialized to "ttyp", but "tty" is expected */
1198 sprintf(p, "%s%c%x",
1199 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200 ptychar[i >> 4 & 0xf], i & 0xf);
1201}
1202
1203/**
1204 * tty_line_name - generate name for a tty
1205 * @driver: the tty driver in use
1206 * @index: the minor number
1207 * @p: output buffer of at least 7 bytes
1208 *
1209 * Generate a name from a driver reference and write it to the output
1210 * buffer.
1211 *
1212 * Locking: None
1213 */
1214static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215{
1216 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217}
1218
1219/**
1220 * tty_driver_lookup_tty() - find an existing tty, if any
1221 * @driver: the driver for the tty
1222 * @idx: the minor number
1223 *
1224 * Return the tty, if found or ERR_PTR() otherwise.
1225 *
1226 * Locking: tty_mutex must be held. If tty is found, the mutex must
1227 * be held until the 'fast-open' is also done. Will change once we
1228 * have refcounting in the driver and per driver locking
1229 */
1230static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231 struct inode *inode, int idx)
1232{
1233 struct tty_struct *tty;
1234
1235 if (driver->ops->lookup)
1236 return driver->ops->lookup(driver, inode, idx);
1237
1238 tty = driver->ttys[idx];
1239 return tty;
1240}
1241
1242/**
1243 * tty_init_termios - helper for termios setup
1244 * @tty: the tty to set up
1245 *
1246 * Initialise the termios structures for this tty. Thus runs under
1247 * the tty_mutex currently so we can be relaxed about ordering.
1248 */
1249
1250int tty_init_termios(struct tty_struct *tty)
1251{
1252 struct ktermios *tp;
1253 int idx = tty->index;
1254
1255 tp = tty->driver->termios[idx];
1256 if (tp == NULL) {
1257 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1258 if (tp == NULL)
1259 return -ENOMEM;
1260 memcpy(tp, &tty->driver->init_termios,
1261 sizeof(struct ktermios));
1262 tty->driver->termios[idx] = tp;
1263 }
1264 tty->termios = tp;
1265 tty->termios_locked = tp + 1;
1266
1267 /* Compatibility until drivers always set this */
1268 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1269 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1270 return 0;
1271}
1272EXPORT_SYMBOL_GPL(tty_init_termios);
1273
1274/**
1275 * tty_driver_install_tty() - install a tty entry in the driver
1276 * @driver: the driver for the tty
1277 * @tty: the tty
1278 *
1279 * Install a tty object into the driver tables. The tty->index field
1280 * will be set by the time this is called. This method is responsible
1281 * for ensuring any need additional structures are allocated and
1282 * configured.
1283 *
1284 * Locking: tty_mutex for now
1285 */
1286static int tty_driver_install_tty(struct tty_driver *driver,
1287 struct tty_struct *tty)
1288{
1289 int idx = tty->index;
1290 int ret;
1291
1292 if (driver->ops->install) {
1293 ret = driver->ops->install(driver, tty);
1294 return ret;
1295 }
1296
1297 if (tty_init_termios(tty) == 0) {
1298 tty_driver_kref_get(driver);
1299 tty->count++;
1300 driver->ttys[idx] = tty;
1301 return 0;
1302 }
1303 return -ENOMEM;
1304}
1305
1306/**
1307 * tty_driver_remove_tty() - remove a tty from the driver tables
1308 * @driver: the driver for the tty
1309 * @idx: the minor number
1310 *
1311 * Remvoe a tty object from the driver tables. The tty->index field
1312 * will be set by the time this is called.
1313 *
1314 * Locking: tty_mutex for now
1315 */
1316void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1317{
1318 if (driver->ops->remove)
1319 driver->ops->remove(driver, tty);
1320 else
1321 driver->ttys[tty->index] = NULL;
1322}
1323
1324/*
1325 * tty_reopen() - fast re-open of an open tty
1326 * @tty - the tty to open
1327 *
1328 * Return 0 on success, -errno on error.
1329 *
1330 * Locking: tty_mutex must be held from the time the tty was found
1331 * till this open completes.
1332 */
1333static int tty_reopen(struct tty_struct *tty)
1334{
1335 struct tty_driver *driver = tty->driver;
1336
1337 if (test_bit(TTY_CLOSING, &tty->flags) ||
1338 test_bit(TTY_HUPPING, &tty->flags) ||
1339 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1340 return -EIO;
1341
1342 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1343 driver->subtype == PTY_TYPE_MASTER) {
1344 /*
1345 * special case for PTY masters: only one open permitted,
1346 * and the slave side open count is incremented as well.
1347 */
1348 if (tty->count)
1349 return -EIO;
1350
1351 tty->link->count++;
1352 }
1353 tty->count++;
1354 tty->driver = driver; /* N.B. why do this every time?? */
1355
1356 mutex_lock(&tty->ldisc_mutex);
1357 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1358 mutex_unlock(&tty->ldisc_mutex);
1359
1360 return 0;
1361}
1362
1363/**
1364 * tty_init_dev - initialise a tty device
1365 * @driver: tty driver we are opening a device on
1366 * @idx: device index
1367 * @ret_tty: returned tty structure
1368 * @first_ok: ok to open a new device (used by ptmx)
1369 *
1370 * Prepare a tty device. This may not be a "new" clean device but
1371 * could also be an active device. The pty drivers require special
1372 * handling because of this.
1373 *
1374 * Locking:
1375 * The function is called under the tty_mutex, which
1376 * protects us from the tty struct or driver itself going away.
1377 *
1378 * On exit the tty device has the line discipline attached and
1379 * a reference count of 1. If a pair was created for pty/tty use
1380 * and the other was a pty master then it too has a reference count of 1.
1381 *
1382 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1383 * failed open. The new code protects the open with a mutex, so it's
1384 * really quite straightforward. The mutex locking can probably be
1385 * relaxed for the (most common) case of reopening a tty.
1386 */
1387
1388struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1389 int first_ok)
1390{
1391 struct tty_struct *tty;
1392 int retval;
1393
1394 /* Check if pty master is being opened multiple times */
1395 if (driver->subtype == PTY_TYPE_MASTER &&
1396 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1397 return ERR_PTR(-EIO);
1398 }
1399
1400 /*
1401 * First time open is complex, especially for PTY devices.
1402 * This code guarantees that either everything succeeds and the
1403 * TTY is ready for operation, or else the table slots are vacated
1404 * and the allocated memory released. (Except that the termios
1405 * and locked termios may be retained.)
1406 */
1407
1408 if (!try_module_get(driver->owner))
1409 return ERR_PTR(-ENODEV);
1410
1411 tty = alloc_tty_struct();
1412 if (!tty) {
1413 retval = -ENOMEM;
1414 goto err_module_put;
1415 }
1416 initialize_tty_struct(tty, driver, idx);
1417
1418 retval = tty_driver_install_tty(driver, tty);
1419 if (retval < 0)
1420 goto err_deinit_tty;
1421
1422 /*
1423 * Structures all installed ... call the ldisc open routines.
1424 * If we fail here just call release_tty to clean up. No need
1425 * to decrement the use counts, as release_tty doesn't care.
1426 */
1427 retval = tty_ldisc_setup(tty, tty->link);
1428 if (retval)
1429 goto err_release_tty;
1430 return tty;
1431
1432err_deinit_tty:
1433 deinitialize_tty_struct(tty);
1434 free_tty_struct(tty);
1435err_module_put:
1436 module_put(driver->owner);
1437 return ERR_PTR(retval);
1438
1439 /* call the tty release_tty routine to clean out this slot */
1440err_release_tty:
1441 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1442 "clearing slot %d\n", idx);
1443 release_tty(tty, idx);
1444 return ERR_PTR(retval);
1445}
1446
1447void tty_free_termios(struct tty_struct *tty)
1448{
1449 struct ktermios *tp;
1450 int idx = tty->index;
1451 /* Kill this flag and push into drivers for locking etc */
1452 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1453 /* FIXME: Locking on ->termios array */
1454 tp = tty->termios;
1455 tty->driver->termios[idx] = NULL;
1456 kfree(tp);
1457 }
1458}
1459EXPORT_SYMBOL(tty_free_termios);
1460
1461void tty_shutdown(struct tty_struct *tty)
1462{
1463 tty_driver_remove_tty(tty->driver, tty);
1464 tty_free_termios(tty);
1465}
1466EXPORT_SYMBOL(tty_shutdown);
1467
1468/**
1469 * release_one_tty - release tty structure memory
1470 * @kref: kref of tty we are obliterating
1471 *
1472 * Releases memory associated with a tty structure, and clears out the
1473 * driver table slots. This function is called when a device is no longer
1474 * in use. It also gets called when setup of a device fails.
1475 *
1476 * Locking:
1477 * tty_mutex - sometimes only
1478 * takes the file list lock internally when working on the list
1479 * of ttys that the driver keeps.
1480 *
1481 * This method gets called from a work queue so that the driver private
1482 * cleanup ops can sleep (needed for USB at least)
1483 */
1484static void release_one_tty(struct work_struct *work)
1485{
1486 struct tty_struct *tty =
1487 container_of(work, struct tty_struct, hangup_work);
1488 struct tty_driver *driver = tty->driver;
1489
1490 if (tty->ops->cleanup)
1491 tty->ops->cleanup(tty);
1492
1493 tty->magic = 0;
1494 tty_driver_kref_put(driver);
1495 module_put(driver->owner);
1496
1497 spin_lock(&tty_files_lock);
1498 list_del_init(&tty->tty_files);
1499 spin_unlock(&tty_files_lock);
1500
1501 put_pid(tty->pgrp);
1502 put_pid(tty->session);
1503 free_tty_struct(tty);
1504}
1505
1506static void queue_release_one_tty(struct kref *kref)
1507{
1508 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1509
1510 if (tty->ops->shutdown)
1511 tty->ops->shutdown(tty);
1512 else
1513 tty_shutdown(tty);
1514
1515 /* The hangup queue is now free so we can reuse it rather than
1516 waste a chunk of memory for each port */
1517 INIT_WORK(&tty->hangup_work, release_one_tty);
1518 schedule_work(&tty->hangup_work);
1519}
1520
1521/**
1522 * tty_kref_put - release a tty kref
1523 * @tty: tty device
1524 *
1525 * Release a reference to a tty device and if need be let the kref
1526 * layer destruct the object for us
1527 */
1528
1529void tty_kref_put(struct tty_struct *tty)
1530{
1531 if (tty)
1532 kref_put(&tty->kref, queue_release_one_tty);
1533}
1534EXPORT_SYMBOL(tty_kref_put);
1535
1536/**
1537 * release_tty - release tty structure memory
1538 *
1539 * Release both @tty and a possible linked partner (think pty pair),
1540 * and decrement the refcount of the backing module.
1541 *
1542 * Locking:
1543 * tty_mutex - sometimes only
1544 * takes the file list lock internally when working on the list
1545 * of ttys that the driver keeps.
1546 * FIXME: should we require tty_mutex is held here ??
1547 *
1548 */
1549static void release_tty(struct tty_struct *tty, int idx)
1550{
1551 /* This should always be true but check for the moment */
1552 WARN_ON(tty->index != idx);
1553
1554 if (tty->link)
1555 tty_kref_put(tty->link);
1556 tty_kref_put(tty);
1557}
1558
1559/**
1560 * tty_release - vfs callback for close
1561 * @inode: inode of tty
1562 * @filp: file pointer for handle to tty
1563 *
1564 * Called the last time each file handle is closed that references
1565 * this tty. There may however be several such references.
1566 *
1567 * Locking:
1568 * Takes bkl. See tty_release_dev
1569 *
1570 * Even releasing the tty structures is a tricky business.. We have
1571 * to be very careful that the structures are all released at the
1572 * same time, as interrupts might otherwise get the wrong pointers.
1573 *
1574 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1575 * lead to double frees or releasing memory still in use.
1576 */
1577
1578int tty_release(struct inode *inode, struct file *filp)
1579{
1580 struct tty_struct *tty = file_tty(filp);
1581 struct tty_struct *o_tty;
1582 int pty_master, tty_closing, o_tty_closing, do_sleep;
1583 int devpts;
1584 int idx;
1585 char buf[64];
1586
1587 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1588 return 0;
1589
1590 tty_lock();
1591 check_tty_count(tty, "tty_release_dev");
1592
1593 __tty_fasync(-1, filp, 0);
1594
1595 idx = tty->index;
1596 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1597 tty->driver->subtype == PTY_TYPE_MASTER);
1598 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1599 o_tty = tty->link;
1600
1601#ifdef TTY_PARANOIA_CHECK
1602 if (idx < 0 || idx >= tty->driver->num) {
1603 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1604 "free (%s)\n", tty->name);
1605 tty_unlock();
1606 return 0;
1607 }
1608 if (!devpts) {
1609 if (tty != tty->driver->ttys[idx]) {
1610 tty_unlock();
1611 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1612 "for (%s)\n", idx, tty->name);
1613 return 0;
1614 }
1615 if (tty->termios != tty->driver->termios[idx]) {
1616 tty_unlock();
1617 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1618 "for (%s)\n",
1619 idx, tty->name);
1620 return 0;
1621 }
1622 }
1623#endif
1624
1625#ifdef TTY_DEBUG_HANGUP
1626 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1627 tty_name(tty, buf), tty->count);
1628#endif
1629
1630#ifdef TTY_PARANOIA_CHECK
1631 if (tty->driver->other &&
1632 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1633 if (o_tty != tty->driver->other->ttys[idx]) {
1634 tty_unlock();
1635 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1636 "not o_tty for (%s)\n",
1637 idx, tty->name);
1638 return 0 ;
1639 }
1640 if (o_tty->termios != tty->driver->other->termios[idx]) {
1641 tty_unlock();
1642 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1643 "not o_termios for (%s)\n",
1644 idx, tty->name);
1645 return 0;
1646 }
1647 if (o_tty->link != tty) {
1648 tty_unlock();
1649 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1650 return 0;
1651 }
1652 }
1653#endif
1654 if (tty->ops->close)
1655 tty->ops->close(tty, filp);
1656
1657 tty_unlock();
1658 /*
1659 * Sanity check: if tty->count is going to zero, there shouldn't be
1660 * any waiters on tty->read_wait or tty->write_wait. We test the
1661 * wait queues and kick everyone out _before_ actually starting to
1662 * close. This ensures that we won't block while releasing the tty
1663 * structure.
1664 *
1665 * The test for the o_tty closing is necessary, since the master and
1666 * slave sides may close in any order. If the slave side closes out
1667 * first, its count will be one, since the master side holds an open.
1668 * Thus this test wouldn't be triggered at the time the slave closes,
1669 * so we do it now.
1670 *
1671 * Note that it's possible for the tty to be opened again while we're
1672 * flushing out waiters. By recalculating the closing flags before
1673 * each iteration we avoid any problems.
1674 */
1675 while (1) {
1676 /* Guard against races with tty->count changes elsewhere and
1677 opens on /dev/tty */
1678
1679 mutex_lock(&tty_mutex);
1680 tty_lock();
1681 tty_closing = tty->count <= 1;
1682 o_tty_closing = o_tty &&
1683 (o_tty->count <= (pty_master ? 1 : 0));
1684 do_sleep = 0;
1685
1686 if (tty_closing) {
1687 if (waitqueue_active(&tty->read_wait)) {
1688 wake_up_poll(&tty->read_wait, POLLIN);
1689 do_sleep++;
1690 }
1691 if (waitqueue_active(&tty->write_wait)) {
1692 wake_up_poll(&tty->write_wait, POLLOUT);
1693 do_sleep++;
1694 }
1695 }
1696 if (o_tty_closing) {
1697 if (waitqueue_active(&o_tty->read_wait)) {
1698 wake_up_poll(&o_tty->read_wait, POLLIN);
1699 do_sleep++;
1700 }
1701 if (waitqueue_active(&o_tty->write_wait)) {
1702 wake_up_poll(&o_tty->write_wait, POLLOUT);
1703 do_sleep++;
1704 }
1705 }
1706 if (!do_sleep)
1707 break;
1708
1709 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1710 "active!\n", tty_name(tty, buf));
1711 tty_unlock();
1712 mutex_unlock(&tty_mutex);
1713 schedule();
1714 }
1715
1716 /*
1717 * The closing flags are now consistent with the open counts on
1718 * both sides, and we've completed the last operation that could
1719 * block, so it's safe to proceed with closing.
1720 */
1721 if (pty_master) {
1722 if (--o_tty->count < 0) {
1723 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1724 "(%d) for %s\n",
1725 o_tty->count, tty_name(o_tty, buf));
1726 o_tty->count = 0;
1727 }
1728 }
1729 if (--tty->count < 0) {
1730 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1731 tty->count, tty_name(tty, buf));
1732 tty->count = 0;
1733 }
1734
1735 /*
1736 * We've decremented tty->count, so we need to remove this file
1737 * descriptor off the tty->tty_files list; this serves two
1738 * purposes:
1739 * - check_tty_count sees the correct number of file descriptors
1740 * associated with this tty.
1741 * - do_tty_hangup no longer sees this file descriptor as
1742 * something that needs to be handled for hangups.
1743 */
1744 tty_del_file(filp);
1745
1746 /*
1747 * Perform some housekeeping before deciding whether to return.
1748 *
1749 * Set the TTY_CLOSING flag if this was the last open. In the
1750 * case of a pty we may have to wait around for the other side
1751 * to close, and TTY_CLOSING makes sure we can't be reopened.
1752 */
1753 if (tty_closing)
1754 set_bit(TTY_CLOSING, &tty->flags);
1755 if (o_tty_closing)
1756 set_bit(TTY_CLOSING, &o_tty->flags);
1757
1758 /*
1759 * If _either_ side is closing, make sure there aren't any
1760 * processes that still think tty or o_tty is their controlling
1761 * tty.
1762 */
1763 if (tty_closing || o_tty_closing) {
1764 read_lock(&tasklist_lock);
1765 session_clear_tty(tty->session);
1766 if (o_tty)
1767 session_clear_tty(o_tty->session);
1768 read_unlock(&tasklist_lock);
1769 }
1770
1771 mutex_unlock(&tty_mutex);
1772
1773 /* check whether both sides are closing ... */
1774 if (!tty_closing || (o_tty && !o_tty_closing)) {
1775 tty_unlock();
1776 return 0;
1777 }
1778
1779#ifdef TTY_DEBUG_HANGUP
1780 printk(KERN_DEBUG "freeing tty structure...");
1781#endif
1782 /*
1783 * Ask the line discipline code to release its structures
1784 */
1785 tty_ldisc_release(tty, o_tty);
1786 /*
1787 * The release_tty function takes care of the details of clearing
1788 * the slots and preserving the termios structure.
1789 */
1790 release_tty(tty, idx);
1791
1792 /* Make this pty number available for reallocation */
1793 if (devpts)
1794 devpts_kill_index(inode, idx);
1795 tty_unlock();
1796 return 0;
1797}
1798
1799/**
1800 * tty_open_current_tty - get tty of current task for open
1801 * @device: device number
1802 * @filp: file pointer to tty
1803 * @return: tty of the current task iff @device is /dev/tty
1804 *
1805 * We cannot return driver and index like for the other nodes because
1806 * devpts will not work then. It expects inodes to be from devpts FS.
1807 */
1808static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1809{
1810 struct tty_struct *tty;
1811
1812 if (device != MKDEV(TTYAUX_MAJOR, 0))
1813 return NULL;
1814
1815 tty = get_current_tty();
1816 if (!tty)
1817 return ERR_PTR(-ENXIO);
1818
1819 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1820 /* noctty = 1; */
1821 tty_kref_put(tty);
1822 /* FIXME: we put a reference and return a TTY! */
1823 return tty;
1824}
1825
1826/**
1827 * tty_lookup_driver - lookup a tty driver for a given device file
1828 * @device: device number
1829 * @filp: file pointer to tty
1830 * @noctty: set if the device should not become a controlling tty
1831 * @index: index for the device in the @return driver
1832 * @return: driver for this inode (with increased refcount)
1833 *
1834 * If @return is not erroneous, the caller is responsible to decrement the
1835 * refcount by tty_driver_kref_put.
1836 *
1837 * Locking: tty_mutex protects get_tty_driver
1838 */
1839static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1840 int *noctty, int *index)
1841{
1842 struct tty_driver *driver;
1843
1844#ifdef CONFIG_VT
1845 if (device == MKDEV(TTY_MAJOR, 0)) {
1846 extern struct tty_driver *console_driver;
1847 driver = tty_driver_kref_get(console_driver);
1848 *index = fg_console;
1849 *noctty = 1;
1850 return driver;
1851 }
1852#endif
1853 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1854 struct tty_driver *console_driver = console_device(index);
1855 if (console_driver) {
1856 driver = tty_driver_kref_get(console_driver);
1857 if (driver) {
1858 /* Don't let /dev/console block */
1859 filp->f_flags |= O_NONBLOCK;
1860 *noctty = 1;
1861 return driver;
1862 }
1863 }
1864 return ERR_PTR(-ENODEV);
1865 }
1866
1867 driver = get_tty_driver(device, index);
1868 if (!driver)
1869 return ERR_PTR(-ENODEV);
1870 return driver;
1871}
1872
1873/**
1874 * tty_open - open a tty device
1875 * @inode: inode of device file
1876 * @filp: file pointer to tty
1877 *
1878 * tty_open and tty_release keep up the tty count that contains the
1879 * number of opens done on a tty. We cannot use the inode-count, as
1880 * different inodes might point to the same tty.
1881 *
1882 * Open-counting is needed for pty masters, as well as for keeping
1883 * track of serial lines: DTR is dropped when the last close happens.
1884 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1885 *
1886 * The termios state of a pty is reset on first open so that
1887 * settings don't persist across reuse.
1888 *
1889 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1890 * tty->count should protect the rest.
1891 * ->siglock protects ->signal/->sighand
1892 */
1893
1894static int tty_open(struct inode *inode, struct file *filp)
1895{
1896 struct tty_struct *tty;
1897 int noctty, retval;
1898 struct tty_driver *driver = NULL;
1899 int index;
1900 dev_t device = inode->i_rdev;
1901 unsigned saved_flags = filp->f_flags;
1902
1903 nonseekable_open(inode, filp);
1904
1905retry_open:
1906 retval = tty_alloc_file(filp);
1907 if (retval)
1908 return -ENOMEM;
1909
1910 noctty = filp->f_flags & O_NOCTTY;
1911 index = -1;
1912 retval = 0;
1913
1914 mutex_lock(&tty_mutex);
1915 tty_lock();
1916
1917 tty = tty_open_current_tty(device, filp);
1918 if (IS_ERR(tty)) {
1919 tty_unlock();
1920 mutex_unlock(&tty_mutex);
1921 tty_free_file(filp);
1922 return PTR_ERR(tty);
1923 } else if (!tty) {
1924 driver = tty_lookup_driver(device, filp, &noctty, &index);
1925 if (IS_ERR(driver)) {
1926 tty_unlock();
1927 mutex_unlock(&tty_mutex);
1928 tty_free_file(filp);
1929 return PTR_ERR(driver);
1930 }
1931
1932 /* check whether we're reopening an existing tty */
1933 tty = tty_driver_lookup_tty(driver, inode, index);
1934 if (IS_ERR(tty)) {
1935 tty_unlock();
1936 mutex_unlock(&tty_mutex);
1937 tty_driver_kref_put(driver);
1938 tty_free_file(filp);
1939 return PTR_ERR(tty);
1940 }
1941 }
1942
1943 if (tty) {
1944 retval = tty_reopen(tty);
1945 if (retval)
1946 tty = ERR_PTR(retval);
1947 } else
1948 tty = tty_init_dev(driver, index, 0);
1949
1950 mutex_unlock(&tty_mutex);
1951 if (driver)
1952 tty_driver_kref_put(driver);
1953 if (IS_ERR(tty)) {
1954 tty_unlock();
1955 tty_free_file(filp);
1956 return PTR_ERR(tty);
1957 }
1958
1959 tty_add_file(tty, filp);
1960
1961 check_tty_count(tty, "tty_open");
1962 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1963 tty->driver->subtype == PTY_TYPE_MASTER)
1964 noctty = 1;
1965#ifdef TTY_DEBUG_HANGUP
1966 printk(KERN_DEBUG "opening %s...", tty->name);
1967#endif
1968 if (tty->ops->open)
1969 retval = tty->ops->open(tty, filp);
1970 else
1971 retval = -ENODEV;
1972 filp->f_flags = saved_flags;
1973
1974 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1975 !capable(CAP_SYS_ADMIN))
1976 retval = -EBUSY;
1977
1978 if (retval) {
1979#ifdef TTY_DEBUG_HANGUP
1980 printk(KERN_DEBUG "error %d in opening %s...", retval,
1981 tty->name);
1982#endif
1983 tty_unlock(); /* need to call tty_release without BTM */
1984 tty_release(inode, filp);
1985 if (retval != -ERESTARTSYS)
1986 return retval;
1987
1988 if (signal_pending(current))
1989 return retval;
1990
1991 schedule();
1992 /*
1993 * Need to reset f_op in case a hangup happened.
1994 */
1995 tty_lock();
1996 if (filp->f_op == &hung_up_tty_fops)
1997 filp->f_op = &tty_fops;
1998 tty_unlock();
1999 goto retry_open;
2000 }
2001 tty_unlock();
2002
2003
2004 mutex_lock(&tty_mutex);
2005 tty_lock();
2006 spin_lock_irq(&current->sighand->siglock);
2007 if (!noctty &&
2008 current->signal->leader &&
2009 !current->signal->tty &&
2010 tty->session == NULL)
2011 __proc_set_tty(current, tty);
2012 spin_unlock_irq(&current->sighand->siglock);
2013 tty_unlock();
2014 mutex_unlock(&tty_mutex);
2015 return 0;
2016}
2017
2018
2019
2020/**
2021 * tty_poll - check tty status
2022 * @filp: file being polled
2023 * @wait: poll wait structures to update
2024 *
2025 * Call the line discipline polling method to obtain the poll
2026 * status of the device.
2027 *
2028 * Locking: locks called line discipline but ldisc poll method
2029 * may be re-entered freely by other callers.
2030 */
2031
2032static unsigned int tty_poll(struct file *filp, poll_table *wait)
2033{
2034 struct tty_struct *tty = file_tty(filp);
2035 struct tty_ldisc *ld;
2036 int ret = 0;
2037
2038 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2039 return 0;
2040
2041 ld = tty_ldisc_ref_wait(tty);
2042 if (ld->ops->poll)
2043 ret = (ld->ops->poll)(tty, filp, wait);
2044 tty_ldisc_deref(ld);
2045 return ret;
2046}
2047
2048static int __tty_fasync(int fd, struct file *filp, int on)
2049{
2050 struct tty_struct *tty = file_tty(filp);
2051 unsigned long flags;
2052 int retval = 0;
2053
2054 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2055 goto out;
2056
2057 retval = fasync_helper(fd, filp, on, &tty->fasync);
2058 if (retval <= 0)
2059 goto out;
2060
2061 if (on) {
2062 enum pid_type type;
2063 struct pid *pid;
2064 if (!waitqueue_active(&tty->read_wait))
2065 tty->minimum_to_wake = 1;
2066 spin_lock_irqsave(&tty->ctrl_lock, flags);
2067 if (tty->pgrp) {
2068 pid = tty->pgrp;
2069 type = PIDTYPE_PGID;
2070 } else {
2071 pid = task_pid(current);
2072 type = PIDTYPE_PID;
2073 }
2074 get_pid(pid);
2075 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2076 retval = __f_setown(filp, pid, type, 0);
2077 put_pid(pid);
2078 if (retval)
2079 goto out;
2080 } else {
2081 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2082 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2083 }
2084 retval = 0;
2085out:
2086 return retval;
2087}
2088
2089static int tty_fasync(int fd, struct file *filp, int on)
2090{
2091 int retval;
2092 tty_lock();
2093 retval = __tty_fasync(fd, filp, on);
2094 tty_unlock();
2095 return retval;
2096}
2097
2098/**
2099 * tiocsti - fake input character
2100 * @tty: tty to fake input into
2101 * @p: pointer to character
2102 *
2103 * Fake input to a tty device. Does the necessary locking and
2104 * input management.
2105 *
2106 * FIXME: does not honour flow control ??
2107 *
2108 * Locking:
2109 * Called functions take tty_ldisc_lock
2110 * current->signal->tty check is safe without locks
2111 *
2112 * FIXME: may race normal receive processing
2113 */
2114
2115static int tiocsti(struct tty_struct *tty, char __user *p)
2116{
2117 char ch, mbz = 0;
2118 struct tty_ldisc *ld;
2119
2120 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2121 return -EPERM;
2122 if (get_user(ch, p))
2123 return -EFAULT;
2124 tty_audit_tiocsti(tty, ch);
2125 ld = tty_ldisc_ref_wait(tty);
2126 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2127 tty_ldisc_deref(ld);
2128 return 0;
2129}
2130
2131/**
2132 * tiocgwinsz - implement window query ioctl
2133 * @tty; tty
2134 * @arg: user buffer for result
2135 *
2136 * Copies the kernel idea of the window size into the user buffer.
2137 *
2138 * Locking: tty->termios_mutex is taken to ensure the winsize data
2139 * is consistent.
2140 */
2141
2142static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2143{
2144 int err;
2145
2146 mutex_lock(&tty->termios_mutex);
2147 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2148 mutex_unlock(&tty->termios_mutex);
2149
2150 return err ? -EFAULT: 0;
2151}
2152
2153/**
2154 * tty_do_resize - resize event
2155 * @tty: tty being resized
2156 * @rows: rows (character)
2157 * @cols: cols (character)
2158 *
2159 * Update the termios variables and send the necessary signals to
2160 * peform a terminal resize correctly
2161 */
2162
2163int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2164{
2165 struct pid *pgrp;
2166 unsigned long flags;
2167
2168 /* Lock the tty */
2169 mutex_lock(&tty->termios_mutex);
2170 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2171 goto done;
2172 /* Get the PID values and reference them so we can
2173 avoid holding the tty ctrl lock while sending signals */
2174 spin_lock_irqsave(&tty->ctrl_lock, flags);
2175 pgrp = get_pid(tty->pgrp);
2176 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2177
2178 if (pgrp)
2179 kill_pgrp(pgrp, SIGWINCH, 1);
2180 put_pid(pgrp);
2181
2182 tty->winsize = *ws;
2183done:
2184 mutex_unlock(&tty->termios_mutex);
2185 return 0;
2186}
2187
2188/**
2189 * tiocswinsz - implement window size set ioctl
2190 * @tty; tty side of tty
2191 * @arg: user buffer for result
2192 *
2193 * Copies the user idea of the window size to the kernel. Traditionally
2194 * this is just advisory information but for the Linux console it
2195 * actually has driver level meaning and triggers a VC resize.
2196 *
2197 * Locking:
2198 * Driver dependent. The default do_resize method takes the
2199 * tty termios mutex and ctrl_lock. The console takes its own lock
2200 * then calls into the default method.
2201 */
2202
2203static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2204{
2205 struct winsize tmp_ws;
2206 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2207 return -EFAULT;
2208
2209 if (tty->ops->resize)
2210 return tty->ops->resize(tty, &tmp_ws);
2211 else
2212 return tty_do_resize(tty, &tmp_ws);
2213}
2214
2215/**
2216 * tioccons - allow admin to move logical console
2217 * @file: the file to become console
2218 *
2219 * Allow the administrator to move the redirected console device
2220 *
2221 * Locking: uses redirect_lock to guard the redirect information
2222 */
2223
2224static int tioccons(struct file *file)
2225{
2226 if (!capable(CAP_SYS_ADMIN))
2227 return -EPERM;
2228 if (file->f_op->write == redirected_tty_write) {
2229 struct file *f;
2230 spin_lock(&redirect_lock);
2231 f = redirect;
2232 redirect = NULL;
2233 spin_unlock(&redirect_lock);
2234 if (f)
2235 fput(f);
2236 return 0;
2237 }
2238 spin_lock(&redirect_lock);
2239 if (redirect) {
2240 spin_unlock(&redirect_lock);
2241 return -EBUSY;
2242 }
2243 get_file(file);
2244 redirect = file;
2245 spin_unlock(&redirect_lock);
2246 return 0;
2247}
2248
2249/**
2250 * fionbio - non blocking ioctl
2251 * @file: file to set blocking value
2252 * @p: user parameter
2253 *
2254 * Historical tty interfaces had a blocking control ioctl before
2255 * the generic functionality existed. This piece of history is preserved
2256 * in the expected tty API of posix OS's.
2257 *
2258 * Locking: none, the open file handle ensures it won't go away.
2259 */
2260
2261static int fionbio(struct file *file, int __user *p)
2262{
2263 int nonblock;
2264
2265 if (get_user(nonblock, p))
2266 return -EFAULT;
2267
2268 spin_lock(&file->f_lock);
2269 if (nonblock)
2270 file->f_flags |= O_NONBLOCK;
2271 else
2272 file->f_flags &= ~O_NONBLOCK;
2273 spin_unlock(&file->f_lock);
2274 return 0;
2275}
2276
2277/**
2278 * tiocsctty - set controlling tty
2279 * @tty: tty structure
2280 * @arg: user argument
2281 *
2282 * This ioctl is used to manage job control. It permits a session
2283 * leader to set this tty as the controlling tty for the session.
2284 *
2285 * Locking:
2286 * Takes tty_mutex() to protect tty instance
2287 * Takes tasklist_lock internally to walk sessions
2288 * Takes ->siglock() when updating signal->tty
2289 */
2290
2291static int tiocsctty(struct tty_struct *tty, int arg)
2292{
2293 int ret = 0;
2294 if (current->signal->leader && (task_session(current) == tty->session))
2295 return ret;
2296
2297 mutex_lock(&tty_mutex);
2298 /*
2299 * The process must be a session leader and
2300 * not have a controlling tty already.
2301 */
2302 if (!current->signal->leader || current->signal->tty) {
2303 ret = -EPERM;
2304 goto unlock;
2305 }
2306
2307 if (tty->session) {
2308 /*
2309 * This tty is already the controlling
2310 * tty for another session group!
2311 */
2312 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2313 /*
2314 * Steal it away
2315 */
2316 read_lock(&tasklist_lock);
2317 session_clear_tty(tty->session);
2318 read_unlock(&tasklist_lock);
2319 } else {
2320 ret = -EPERM;
2321 goto unlock;
2322 }
2323 }
2324 proc_set_tty(current, tty);
2325unlock:
2326 mutex_unlock(&tty_mutex);
2327 return ret;
2328}
2329
2330/**
2331 * tty_get_pgrp - return a ref counted pgrp pid
2332 * @tty: tty to read
2333 *
2334 * Returns a refcounted instance of the pid struct for the process
2335 * group controlling the tty.
2336 */
2337
2338struct pid *tty_get_pgrp(struct tty_struct *tty)
2339{
2340 unsigned long flags;
2341 struct pid *pgrp;
2342
2343 spin_lock_irqsave(&tty->ctrl_lock, flags);
2344 pgrp = get_pid(tty->pgrp);
2345 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2346
2347 return pgrp;
2348}
2349EXPORT_SYMBOL_GPL(tty_get_pgrp);
2350
2351/**
2352 * tiocgpgrp - get process group
2353 * @tty: tty passed by user
2354 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2355 * @p: returned pid
2356 *
2357 * Obtain the process group of the tty. If there is no process group
2358 * return an error.
2359 *
2360 * Locking: none. Reference to current->signal->tty is safe.
2361 */
2362
2363static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2364{
2365 struct pid *pid;
2366 int ret;
2367 /*
2368 * (tty == real_tty) is a cheap way of
2369 * testing if the tty is NOT a master pty.
2370 */
2371 if (tty == real_tty && current->signal->tty != real_tty)
2372 return -ENOTTY;
2373 pid = tty_get_pgrp(real_tty);
2374 ret = put_user(pid_vnr(pid), p);
2375 put_pid(pid);
2376 return ret;
2377}
2378
2379/**
2380 * tiocspgrp - attempt to set process group
2381 * @tty: tty passed by user
2382 * @real_tty: tty side device matching tty passed by user
2383 * @p: pid pointer
2384 *
2385 * Set the process group of the tty to the session passed. Only
2386 * permitted where the tty session is our session.
2387 *
2388 * Locking: RCU, ctrl lock
2389 */
2390
2391static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2392{
2393 struct pid *pgrp;
2394 pid_t pgrp_nr;
2395 int retval = tty_check_change(real_tty);
2396 unsigned long flags;
2397
2398 if (retval == -EIO)
2399 return -ENOTTY;
2400 if (retval)
2401 return retval;
2402 if (!current->signal->tty ||
2403 (current->signal->tty != real_tty) ||
2404 (real_tty->session != task_session(current)))
2405 return -ENOTTY;
2406 if (get_user(pgrp_nr, p))
2407 return -EFAULT;
2408 if (pgrp_nr < 0)
2409 return -EINVAL;
2410 rcu_read_lock();
2411 pgrp = find_vpid(pgrp_nr);
2412 retval = -ESRCH;
2413 if (!pgrp)
2414 goto out_unlock;
2415 retval = -EPERM;
2416 if (session_of_pgrp(pgrp) != task_session(current))
2417 goto out_unlock;
2418 retval = 0;
2419 spin_lock_irqsave(&tty->ctrl_lock, flags);
2420 put_pid(real_tty->pgrp);
2421 real_tty->pgrp = get_pid(pgrp);
2422 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2423out_unlock:
2424 rcu_read_unlock();
2425 return retval;
2426}
2427
2428/**
2429 * tiocgsid - get session id
2430 * @tty: tty passed by user
2431 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2432 * @p: pointer to returned session id
2433 *
2434 * Obtain the session id of the tty. If there is no session
2435 * return an error.
2436 *
2437 * Locking: none. Reference to current->signal->tty is safe.
2438 */
2439
2440static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2441{
2442 /*
2443 * (tty == real_tty) is a cheap way of
2444 * testing if the tty is NOT a master pty.
2445 */
2446 if (tty == real_tty && current->signal->tty != real_tty)
2447 return -ENOTTY;
2448 if (!real_tty->session)
2449 return -ENOTTY;
2450 return put_user(pid_vnr(real_tty->session), p);
2451}
2452
2453/**
2454 * tiocsetd - set line discipline
2455 * @tty: tty device
2456 * @p: pointer to user data
2457 *
2458 * Set the line discipline according to user request.
2459 *
2460 * Locking: see tty_set_ldisc, this function is just a helper
2461 */
2462
2463static int tiocsetd(struct tty_struct *tty, int __user *p)
2464{
2465 int ldisc;
2466 int ret;
2467
2468 if (get_user(ldisc, p))
2469 return -EFAULT;
2470
2471 ret = tty_set_ldisc(tty, ldisc);
2472
2473 return ret;
2474}
2475
2476/**
2477 * send_break - performed time break
2478 * @tty: device to break on
2479 * @duration: timeout in mS
2480 *
2481 * Perform a timed break on hardware that lacks its own driver level
2482 * timed break functionality.
2483 *
2484 * Locking:
2485 * atomic_write_lock serializes
2486 *
2487 */
2488
2489static int send_break(struct tty_struct *tty, unsigned int duration)
2490{
2491 int retval;
2492
2493 if (tty->ops->break_ctl == NULL)
2494 return 0;
2495
2496 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2497 retval = tty->ops->break_ctl(tty, duration);
2498 else {
2499 /* Do the work ourselves */
2500 if (tty_write_lock(tty, 0) < 0)
2501 return -EINTR;
2502 retval = tty->ops->break_ctl(tty, -1);
2503 if (retval)
2504 goto out;
2505 if (!signal_pending(current))
2506 msleep_interruptible(duration);
2507 retval = tty->ops->break_ctl(tty, 0);
2508out:
2509 tty_write_unlock(tty);
2510 if (signal_pending(current))
2511 retval = -EINTR;
2512 }
2513 return retval;
2514}
2515
2516/**
2517 * tty_tiocmget - get modem status
2518 * @tty: tty device
2519 * @file: user file pointer
2520 * @p: pointer to result
2521 *
2522 * Obtain the modem status bits from the tty driver if the feature
2523 * is supported. Return -EINVAL if it is not available.
2524 *
2525 * Locking: none (up to the driver)
2526 */
2527
2528static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2529{
2530 int retval = -EINVAL;
2531
2532 if (tty->ops->tiocmget) {
2533 retval = tty->ops->tiocmget(tty);
2534
2535 if (retval >= 0)
2536 retval = put_user(retval, p);
2537 }
2538 return retval;
2539}
2540
2541/**
2542 * tty_tiocmset - set modem status
2543 * @tty: tty device
2544 * @cmd: command - clear bits, set bits or set all
2545 * @p: pointer to desired bits
2546 *
2547 * Set the modem status bits from the tty driver if the feature
2548 * is supported. Return -EINVAL if it is not available.
2549 *
2550 * Locking: none (up to the driver)
2551 */
2552
2553static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2554 unsigned __user *p)
2555{
2556 int retval;
2557 unsigned int set, clear, val;
2558
2559 if (tty->ops->tiocmset == NULL)
2560 return -EINVAL;
2561
2562 retval = get_user(val, p);
2563 if (retval)
2564 return retval;
2565 set = clear = 0;
2566 switch (cmd) {
2567 case TIOCMBIS:
2568 set = val;
2569 break;
2570 case TIOCMBIC:
2571 clear = val;
2572 break;
2573 case TIOCMSET:
2574 set = val;
2575 clear = ~val;
2576 break;
2577 }
2578 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2579 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2580 return tty->ops->tiocmset(tty, set, clear);
2581}
2582
2583static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2584{
2585 int retval = -EINVAL;
2586 struct serial_icounter_struct icount;
2587 memset(&icount, 0, sizeof(icount));
2588 if (tty->ops->get_icount)
2589 retval = tty->ops->get_icount(tty, &icount);
2590 if (retval != 0)
2591 return retval;
2592 if (copy_to_user(arg, &icount, sizeof(icount)))
2593 return -EFAULT;
2594 return 0;
2595}
2596
2597struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2598{
2599 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2600 tty->driver->subtype == PTY_TYPE_MASTER)
2601 tty = tty->link;
2602 return tty;
2603}
2604EXPORT_SYMBOL(tty_pair_get_tty);
2605
2606struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2607{
2608 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2609 tty->driver->subtype == PTY_TYPE_MASTER)
2610 return tty;
2611 return tty->link;
2612}
2613EXPORT_SYMBOL(tty_pair_get_pty);
2614
2615/*
2616 * Split this up, as gcc can choke on it otherwise..
2617 */
2618long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2619{
2620 struct tty_struct *tty = file_tty(file);
2621 struct tty_struct *real_tty;
2622 void __user *p = (void __user *)arg;
2623 int retval;
2624 struct tty_ldisc *ld;
2625 struct inode *inode = file->f_dentry->d_inode;
2626
2627 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2628 return -EINVAL;
2629
2630 real_tty = tty_pair_get_tty(tty);
2631
2632 /*
2633 * Factor out some common prep work
2634 */
2635 switch (cmd) {
2636 case TIOCSETD:
2637 case TIOCSBRK:
2638 case TIOCCBRK:
2639 case TCSBRK:
2640 case TCSBRKP:
2641 retval = tty_check_change(tty);
2642 if (retval)
2643 return retval;
2644 if (cmd != TIOCCBRK) {
2645 tty_wait_until_sent(tty, 0);
2646 if (signal_pending(current))
2647 return -EINTR;
2648 }
2649 break;
2650 }
2651
2652 /*
2653 * Now do the stuff.
2654 */
2655 switch (cmd) {
2656 case TIOCSTI:
2657 return tiocsti(tty, p);
2658 case TIOCGWINSZ:
2659 return tiocgwinsz(real_tty, p);
2660 case TIOCSWINSZ:
2661 return tiocswinsz(real_tty, p);
2662 case TIOCCONS:
2663 return real_tty != tty ? -EINVAL : tioccons(file);
2664 case FIONBIO:
2665 return fionbio(file, p);
2666 case TIOCEXCL:
2667 set_bit(TTY_EXCLUSIVE, &tty->flags);
2668 return 0;
2669 case TIOCNXCL:
2670 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2671 return 0;
2672 case TIOCNOTTY:
2673 if (current->signal->tty != tty)
2674 return -ENOTTY;
2675 no_tty();
2676 return 0;
2677 case TIOCSCTTY:
2678 return tiocsctty(tty, arg);
2679 case TIOCGPGRP:
2680 return tiocgpgrp(tty, real_tty, p);
2681 case TIOCSPGRP:
2682 return tiocspgrp(tty, real_tty, p);
2683 case TIOCGSID:
2684 return tiocgsid(tty, real_tty, p);
2685 case TIOCGETD:
2686 return put_user(tty->ldisc->ops->num, (int __user *)p);
2687 case TIOCSETD:
2688 return tiocsetd(tty, p);
2689 case TIOCVHANGUP:
2690 if (!capable(CAP_SYS_ADMIN))
2691 return -EPERM;
2692 tty_vhangup(tty);
2693 return 0;
2694 case TIOCGDEV:
2695 {
2696 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2697 return put_user(ret, (unsigned int __user *)p);
2698 }
2699 /*
2700 * Break handling
2701 */
2702 case TIOCSBRK: /* Turn break on, unconditionally */
2703 if (tty->ops->break_ctl)
2704 return tty->ops->break_ctl(tty, -1);
2705 return 0;
2706 case TIOCCBRK: /* Turn break off, unconditionally */
2707 if (tty->ops->break_ctl)
2708 return tty->ops->break_ctl(tty, 0);
2709 return 0;
2710 case TCSBRK: /* SVID version: non-zero arg --> no break */
2711 /* non-zero arg means wait for all output data
2712 * to be sent (performed above) but don't send break.
2713 * This is used by the tcdrain() termios function.
2714 */
2715 if (!arg)
2716 return send_break(tty, 250);
2717 return 0;
2718 case TCSBRKP: /* support for POSIX tcsendbreak() */
2719 return send_break(tty, arg ? arg*100 : 250);
2720
2721 case TIOCMGET:
2722 return tty_tiocmget(tty, p);
2723 case TIOCMSET:
2724 case TIOCMBIC:
2725 case TIOCMBIS:
2726 return tty_tiocmset(tty, cmd, p);
2727 case TIOCGICOUNT:
2728 retval = tty_tiocgicount(tty, p);
2729 /* For the moment allow fall through to the old method */
2730 if (retval != -EINVAL)
2731 return retval;
2732 break;
2733 case TCFLSH:
2734 switch (arg) {
2735 case TCIFLUSH:
2736 case TCIOFLUSH:
2737 /* flush tty buffer and allow ldisc to process ioctl */
2738 tty_buffer_flush(tty);
2739 break;
2740 }
2741 break;
2742 }
2743 if (tty->ops->ioctl) {
2744 retval = (tty->ops->ioctl)(tty, cmd, arg);
2745 if (retval != -ENOIOCTLCMD)
2746 return retval;
2747 }
2748 ld = tty_ldisc_ref_wait(tty);
2749 retval = -EINVAL;
2750 if (ld->ops->ioctl) {
2751 retval = ld->ops->ioctl(tty, file, cmd, arg);
2752 if (retval == -ENOIOCTLCMD)
2753 retval = -EINVAL;
2754 }
2755 tty_ldisc_deref(ld);
2756 return retval;
2757}
2758
2759#ifdef CONFIG_COMPAT
2760static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2761 unsigned long arg)
2762{
2763 struct inode *inode = file->f_dentry->d_inode;
2764 struct tty_struct *tty = file_tty(file);
2765 struct tty_ldisc *ld;
2766 int retval = -ENOIOCTLCMD;
2767
2768 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2769 return -EINVAL;
2770
2771 if (tty->ops->compat_ioctl) {
2772 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2773 if (retval != -ENOIOCTLCMD)
2774 return retval;
2775 }
2776
2777 ld = tty_ldisc_ref_wait(tty);
2778 if (ld->ops->compat_ioctl)
2779 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2780 else
2781 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2782 tty_ldisc_deref(ld);
2783
2784 return retval;
2785}
2786#endif
2787
2788/*
2789 * This implements the "Secure Attention Key" --- the idea is to
2790 * prevent trojan horses by killing all processes associated with this
2791 * tty when the user hits the "Secure Attention Key". Required for
2792 * super-paranoid applications --- see the Orange Book for more details.
2793 *
2794 * This code could be nicer; ideally it should send a HUP, wait a few
2795 * seconds, then send a INT, and then a KILL signal. But you then
2796 * have to coordinate with the init process, since all processes associated
2797 * with the current tty must be dead before the new getty is allowed
2798 * to spawn.
2799 *
2800 * Now, if it would be correct ;-/ The current code has a nasty hole -
2801 * it doesn't catch files in flight. We may send the descriptor to ourselves
2802 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2803 *
2804 * Nasty bug: do_SAK is being called in interrupt context. This can
2805 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2806 */
2807void __do_SAK(struct tty_struct *tty)
2808{
2809#ifdef TTY_SOFT_SAK
2810 tty_hangup(tty);
2811#else
2812 struct task_struct *g, *p;
2813 struct pid *session;
2814 int i;
2815 struct file *filp;
2816 struct fdtable *fdt;
2817
2818 if (!tty)
2819 return;
2820 session = tty->session;
2821
2822 tty_ldisc_flush(tty);
2823
2824 tty_driver_flush_buffer(tty);
2825
2826 read_lock(&tasklist_lock);
2827 /* Kill the entire session */
2828 do_each_pid_task(session, PIDTYPE_SID, p) {
2829 printk(KERN_NOTICE "SAK: killed process %d"
2830 " (%s): task_session(p)==tty->session\n",
2831 task_pid_nr(p), p->comm);
2832 send_sig(SIGKILL, p, 1);
2833 } while_each_pid_task(session, PIDTYPE_SID, p);
2834 /* Now kill any processes that happen to have the
2835 * tty open.
2836 */
2837 do_each_thread(g, p) {
2838 if (p->signal->tty == tty) {
2839 printk(KERN_NOTICE "SAK: killed process %d"
2840 " (%s): task_session(p)==tty->session\n",
2841 task_pid_nr(p), p->comm);
2842 send_sig(SIGKILL, p, 1);
2843 continue;
2844 }
2845 task_lock(p);
2846 if (p->files) {
2847 /*
2848 * We don't take a ref to the file, so we must
2849 * hold ->file_lock instead.
2850 */
2851 spin_lock(&p->files->file_lock);
2852 fdt = files_fdtable(p->files);
2853 for (i = 0; i < fdt->max_fds; i++) {
2854 filp = fcheck_files(p->files, i);
2855 if (!filp)
2856 continue;
2857 if (filp->f_op->read == tty_read &&
2858 file_tty(filp) == tty) {
2859 printk(KERN_NOTICE "SAK: killed process %d"
2860 " (%s): fd#%d opened to the tty\n",
2861 task_pid_nr(p), p->comm, i);
2862 force_sig(SIGKILL, p);
2863 break;
2864 }
2865 }
2866 spin_unlock(&p->files->file_lock);
2867 }
2868 task_unlock(p);
2869 } while_each_thread(g, p);
2870 read_unlock(&tasklist_lock);
2871#endif
2872}
2873
2874static void do_SAK_work(struct work_struct *work)
2875{
2876 struct tty_struct *tty =
2877 container_of(work, struct tty_struct, SAK_work);
2878 __do_SAK(tty);
2879}
2880
2881/*
2882 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2883 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2884 * the values which we write to it will be identical to the values which it
2885 * already has. --akpm
2886 */
2887void do_SAK(struct tty_struct *tty)
2888{
2889 if (!tty)
2890 return;
2891 schedule_work(&tty->SAK_work);
2892}
2893
2894EXPORT_SYMBOL(do_SAK);
2895
2896static int dev_match_devt(struct device *dev, void *data)
2897{
2898 dev_t *devt = data;
2899 return dev->devt == *devt;
2900}
2901
2902/* Must put_device() after it's unused! */
2903static struct device *tty_get_device(struct tty_struct *tty)
2904{
2905 dev_t devt = tty_devnum(tty);
2906 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2907}
2908
2909
2910/**
2911 * initialize_tty_struct
2912 * @tty: tty to initialize
2913 *
2914 * This subroutine initializes a tty structure that has been newly
2915 * allocated.
2916 *
2917 * Locking: none - tty in question must not be exposed at this point
2918 */
2919
2920void initialize_tty_struct(struct tty_struct *tty,
2921 struct tty_driver *driver, int idx)
2922{
2923 memset(tty, 0, sizeof(struct tty_struct));
2924 kref_init(&tty->kref);
2925 tty->magic = TTY_MAGIC;
2926 tty_ldisc_init(tty);
2927 tty->session = NULL;
2928 tty->pgrp = NULL;
2929 tty->overrun_time = jiffies;
2930 tty->buf.head = tty->buf.tail = NULL;
2931 tty_buffer_init(tty);
2932 mutex_init(&tty->termios_mutex);
2933 mutex_init(&tty->ldisc_mutex);
2934 init_waitqueue_head(&tty->write_wait);
2935 init_waitqueue_head(&tty->read_wait);
2936 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2937 mutex_init(&tty->atomic_read_lock);
2938 mutex_init(&tty->atomic_write_lock);
2939 mutex_init(&tty->output_lock);
2940 mutex_init(&tty->echo_lock);
2941 spin_lock_init(&tty->read_lock);
2942 spin_lock_init(&tty->ctrl_lock);
2943 INIT_LIST_HEAD(&tty->tty_files);
2944 INIT_WORK(&tty->SAK_work, do_SAK_work);
2945
2946 tty->driver = driver;
2947 tty->ops = driver->ops;
2948 tty->index = idx;
2949 tty_line_name(driver, idx, tty->name);
2950 tty->dev = tty_get_device(tty);
2951}
2952
2953/**
2954 * deinitialize_tty_struct
2955 * @tty: tty to deinitialize
2956 *
2957 * This subroutine deinitializes a tty structure that has been newly
2958 * allocated but tty_release cannot be called on that yet.
2959 *
2960 * Locking: none - tty in question must not be exposed at this point
2961 */
2962void deinitialize_tty_struct(struct tty_struct *tty)
2963{
2964 tty_ldisc_deinit(tty);
2965}
2966
2967/**
2968 * tty_put_char - write one character to a tty
2969 * @tty: tty
2970 * @ch: character
2971 *
2972 * Write one byte to the tty using the provided put_char method
2973 * if present. Returns the number of characters successfully output.
2974 *
2975 * Note: the specific put_char operation in the driver layer may go
2976 * away soon. Don't call it directly, use this method
2977 */
2978
2979int tty_put_char(struct tty_struct *tty, unsigned char ch)
2980{
2981 if (tty->ops->put_char)
2982 return tty->ops->put_char(tty, ch);
2983 return tty->ops->write(tty, &ch, 1);
2984}
2985EXPORT_SYMBOL_GPL(tty_put_char);
2986
2987struct class *tty_class;
2988
2989/**
2990 * tty_register_device - register a tty device
2991 * @driver: the tty driver that describes the tty device
2992 * @index: the index in the tty driver for this tty device
2993 * @device: a struct device that is associated with this tty device.
2994 * This field is optional, if there is no known struct device
2995 * for this tty device it can be set to NULL safely.
2996 *
2997 * Returns a pointer to the struct device for this tty device
2998 * (or ERR_PTR(-EFOO) on error).
2999 *
3000 * This call is required to be made to register an individual tty device
3001 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3002 * that bit is not set, this function should not be called by a tty
3003 * driver.
3004 *
3005 * Locking: ??
3006 */
3007
3008struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3009 struct device *device)
3010{
3011 char name[64];
3012 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3013
3014 if (index >= driver->num) {
3015 printk(KERN_ERR "Attempt to register invalid tty line number "
3016 " (%d).\n", index);
3017 return ERR_PTR(-EINVAL);
3018 }
3019
3020 if (driver->type == TTY_DRIVER_TYPE_PTY)
3021 pty_line_name(driver, index, name);
3022 else
3023 tty_line_name(driver, index, name);
3024
3025 return device_create(tty_class, device, dev, NULL, name);
3026}
3027EXPORT_SYMBOL(tty_register_device);
3028
3029/**
3030 * tty_unregister_device - unregister a tty device
3031 * @driver: the tty driver that describes the tty device
3032 * @index: the index in the tty driver for this tty device
3033 *
3034 * If a tty device is registered with a call to tty_register_device() then
3035 * this function must be called when the tty device is gone.
3036 *
3037 * Locking: ??
3038 */
3039
3040void tty_unregister_device(struct tty_driver *driver, unsigned index)
3041{
3042 device_destroy(tty_class,
3043 MKDEV(driver->major, driver->minor_start) + index);
3044}
3045EXPORT_SYMBOL(tty_unregister_device);
3046
3047struct tty_driver *alloc_tty_driver(int lines)
3048{
3049 struct tty_driver *driver;
3050
3051 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3052 if (driver) {
3053 kref_init(&driver->kref);
3054 driver->magic = TTY_DRIVER_MAGIC;
3055 driver->num = lines;
3056 /* later we'll move allocation of tables here */
3057 }
3058 return driver;
3059}
3060EXPORT_SYMBOL(alloc_tty_driver);
3061
3062static void destruct_tty_driver(struct kref *kref)
3063{
3064 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3065 int i;
3066 struct ktermios *tp;
3067 void *p;
3068
3069 if (driver->flags & TTY_DRIVER_INSTALLED) {
3070 /*
3071 * Free the termios and termios_locked structures because
3072 * we don't want to get memory leaks when modular tty
3073 * drivers are removed from the kernel.
3074 */
3075 for (i = 0; i < driver->num; i++) {
3076 tp = driver->termios[i];
3077 if (tp) {
3078 driver->termios[i] = NULL;
3079 kfree(tp);
3080 }
3081 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3082 tty_unregister_device(driver, i);
3083 }
3084 p = driver->ttys;
3085 proc_tty_unregister_driver(driver);
3086 driver->ttys = NULL;
3087 driver->termios = NULL;
3088 kfree(p);
3089 cdev_del(&driver->cdev);
3090 }
3091 kfree(driver);
3092}
3093
3094void tty_driver_kref_put(struct tty_driver *driver)
3095{
3096 kref_put(&driver->kref, destruct_tty_driver);
3097}
3098EXPORT_SYMBOL(tty_driver_kref_put);
3099
3100void tty_set_operations(struct tty_driver *driver,
3101 const struct tty_operations *op)
3102{
3103 driver->ops = op;
3104};
3105EXPORT_SYMBOL(tty_set_operations);
3106
3107void put_tty_driver(struct tty_driver *d)
3108{
3109 tty_driver_kref_put(d);
3110}
3111EXPORT_SYMBOL(put_tty_driver);
3112
3113/*
3114 * Called by a tty driver to register itself.
3115 */
3116int tty_register_driver(struct tty_driver *driver)
3117{
3118 int error;
3119 int i;
3120 dev_t dev;
3121 void **p = NULL;
3122 struct device *d;
3123
3124 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3125 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3126 if (!p)
3127 return -ENOMEM;
3128 }
3129
3130 if (!driver->major) {
3131 error = alloc_chrdev_region(&dev, driver->minor_start,
3132 driver->num, driver->name);
3133 if (!error) {
3134 driver->major = MAJOR(dev);
3135 driver->minor_start = MINOR(dev);
3136 }
3137 } else {
3138 dev = MKDEV(driver->major, driver->minor_start);
3139 error = register_chrdev_region(dev, driver->num, driver->name);
3140 }
3141 if (error < 0) {
3142 kfree(p);
3143 return error;
3144 }
3145
3146 if (p) {
3147 driver->ttys = (struct tty_struct **)p;
3148 driver->termios = (struct ktermios **)(p + driver->num);
3149 } else {
3150 driver->ttys = NULL;
3151 driver->termios = NULL;
3152 }
3153
3154 cdev_init(&driver->cdev, &tty_fops);
3155 driver->cdev.owner = driver->owner;
3156 error = cdev_add(&driver->cdev, dev, driver->num);
3157 if (error) {
3158 unregister_chrdev_region(dev, driver->num);
3159 driver->ttys = NULL;
3160 driver->termios = NULL;
3161 kfree(p);
3162 return error;
3163 }
3164
3165 mutex_lock(&tty_mutex);
3166 list_add(&driver->tty_drivers, &tty_drivers);
3167 mutex_unlock(&tty_mutex);
3168
3169 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3170 for (i = 0; i < driver->num; i++) {
3171 d = tty_register_device(driver, i, NULL);
3172 if (IS_ERR(d)) {
3173 error = PTR_ERR(d);
3174 goto err;
3175 }
3176 }
3177 }
3178 proc_tty_register_driver(driver);
3179 driver->flags |= TTY_DRIVER_INSTALLED;
3180 return 0;
3181
3182err:
3183 for (i--; i >= 0; i--)
3184 tty_unregister_device(driver, i);
3185
3186 mutex_lock(&tty_mutex);
3187 list_del(&driver->tty_drivers);
3188 mutex_unlock(&tty_mutex);
3189
3190 unregister_chrdev_region(dev, driver->num);
3191 driver->ttys = NULL;
3192 driver->termios = NULL;
3193 kfree(p);
3194 return error;
3195}
3196
3197EXPORT_SYMBOL(tty_register_driver);
3198
3199/*
3200 * Called by a tty driver to unregister itself.
3201 */
3202int tty_unregister_driver(struct tty_driver *driver)
3203{
3204#if 0
3205 /* FIXME */
3206 if (driver->refcount)
3207 return -EBUSY;
3208#endif
3209 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3210 driver->num);
3211 mutex_lock(&tty_mutex);
3212 list_del(&driver->tty_drivers);
3213 mutex_unlock(&tty_mutex);
3214 return 0;
3215}
3216
3217EXPORT_SYMBOL(tty_unregister_driver);
3218
3219dev_t tty_devnum(struct tty_struct *tty)
3220{
3221 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3222}
3223EXPORT_SYMBOL(tty_devnum);
3224
3225void proc_clear_tty(struct task_struct *p)
3226{
3227 unsigned long flags;
3228 struct tty_struct *tty;
3229 spin_lock_irqsave(&p->sighand->siglock, flags);
3230 tty = p->signal->tty;
3231 p->signal->tty = NULL;
3232 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3233 tty_kref_put(tty);
3234}
3235
3236/* Called under the sighand lock */
3237
3238static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3239{
3240 if (tty) {
3241 unsigned long flags;
3242 /* We should not have a session or pgrp to put here but.... */
3243 spin_lock_irqsave(&tty->ctrl_lock, flags);
3244 put_pid(tty->session);
3245 put_pid(tty->pgrp);
3246 tty->pgrp = get_pid(task_pgrp(tsk));
3247 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3248 tty->session = get_pid(task_session(tsk));
3249 if (tsk->signal->tty) {
3250 printk(KERN_DEBUG "tty not NULL!!\n");
3251 tty_kref_put(tsk->signal->tty);
3252 }
3253 }
3254 put_pid(tsk->signal->tty_old_pgrp);
3255 tsk->signal->tty = tty_kref_get(tty);
3256 tsk->signal->tty_old_pgrp = NULL;
3257}
3258
3259static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3260{
3261 spin_lock_irq(&tsk->sighand->siglock);
3262 __proc_set_tty(tsk, tty);
3263 spin_unlock_irq(&tsk->sighand->siglock);
3264}
3265
3266struct tty_struct *get_current_tty(void)
3267{
3268 struct tty_struct *tty;
3269 unsigned long flags;
3270
3271 spin_lock_irqsave(&current->sighand->siglock, flags);
3272 tty = tty_kref_get(current->signal->tty);
3273 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3274 return tty;
3275}
3276EXPORT_SYMBOL_GPL(get_current_tty);
3277
3278void tty_default_fops(struct file_operations *fops)
3279{
3280 *fops = tty_fops;
3281}
3282
3283/*
3284 * Initialize the console device. This is called *early*, so
3285 * we can't necessarily depend on lots of kernel help here.
3286 * Just do some early initializations, and do the complex setup
3287 * later.
3288 */
3289void __init console_init(void)
3290{
3291 initcall_t *call;
3292
3293 /* Setup the default TTY line discipline. */
3294 tty_ldisc_begin();
3295
3296 /*
3297 * set up the console device so that later boot sequences can
3298 * inform about problems etc..
3299 */
3300 call = __con_initcall_start;
3301 while (call < __con_initcall_end) {
3302 (*call)();
3303 call++;
3304 }
3305}
3306
3307static char *tty_devnode(struct device *dev, mode_t *mode)
3308{
3309 if (!mode)
3310 return NULL;
3311 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3312 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3313 *mode = 0666;
3314 return NULL;
3315}
3316
3317static int __init tty_class_init(void)
3318{
3319 tty_class = class_create(THIS_MODULE, "tty");
3320 if (IS_ERR(tty_class))
3321 return PTR_ERR(tty_class);
3322 tty_class->devnode = tty_devnode;
3323 return 0;
3324}
3325
3326postcore_initcall(tty_class_init);
3327
3328/* 3/2004 jmc: why do these devices exist? */
3329static struct cdev tty_cdev, console_cdev;
3330
3331static ssize_t show_cons_active(struct device *dev,
3332 struct device_attribute *attr, char *buf)
3333{
3334 struct console *cs[16];
3335 int i = 0;
3336 struct console *c;
3337 ssize_t count = 0;
3338
3339 console_lock();
3340 for_each_console(c) {
3341 if (!c->device)
3342 continue;
3343 if (!c->write)
3344 continue;
3345 if ((c->flags & CON_ENABLED) == 0)
3346 continue;
3347 cs[i++] = c;
3348 if (i >= ARRAY_SIZE(cs))
3349 break;
3350 }
3351 while (i--)
3352 count += sprintf(buf + count, "%s%d%c",
3353 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3354 console_unlock();
3355
3356 return count;
3357}
3358static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3359
3360static struct device *consdev;
3361
3362void console_sysfs_notify(void)
3363{
3364 if (consdev)
3365 sysfs_notify(&consdev->kobj, NULL, "active");
3366}
3367
3368/*
3369 * Ok, now we can initialize the rest of the tty devices and can count
3370 * on memory allocations, interrupts etc..
3371 */
3372int __init tty_init(void)
3373{
3374 cdev_init(&tty_cdev, &tty_fops);
3375 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3376 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3377 panic("Couldn't register /dev/tty driver\n");
3378 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3379
3380 cdev_init(&console_cdev, &console_fops);
3381 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3382 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3383 panic("Couldn't register /dev/console driver\n");
3384 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3385 "console");
3386 if (IS_ERR(consdev))
3387 consdev = NULL;
3388 else
3389 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3390
3391#ifdef CONFIG_VT
3392 vty_init(&console_fops);
3393#endif
3394 return 0;
3395}
3396
This page took 0.035305 seconds and 5 git commands to generate.