Btrfs: fix race between fsync and direct IO writes for prealloc extents
[deliverable/linux.git] / fs / btrfs / extent-tree.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/pagemap.h>
20#include <linux/writeback.h>
21#include <linux/blkdev.h>
22#include <linux/sort.h>
23#include <linux/rcupdate.h>
24#include <linux/kthread.h>
25#include <linux/slab.h>
26#include <linux/ratelimit.h>
27#include <linux/percpu_counter.h>
28#include "hash.h"
29#include "tree-log.h"
30#include "disk-io.h"
31#include "print-tree.h"
32#include "volumes.h"
33#include "raid56.h"
34#include "locking.h"
35#include "free-space-cache.h"
36#include "free-space-tree.h"
37#include "math.h"
38#include "sysfs.h"
39#include "qgroup.h"
40
41#undef SCRAMBLE_DELAYED_REFS
42
43/*
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
61};
62
63/*
64 * Control how reservations are dealt with.
65 *
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * ENOSPC accounting
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 */
72enum {
73 RESERVE_FREE = 0,
74 RESERVE_ALLOC = 1,
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
76};
77
78static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
81static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
83 struct btrfs_delayed_ref_node *node, u64 parent,
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
86 struct btrfs_delayed_extent_op *extra_op);
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins);
100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121}
122
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
128void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141}
142
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231{
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
239
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252}
253
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256{
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310}
311
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
335#ifdef CONFIG_BTRFS_DEBUG
336static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338{
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353}
354#endif
355
356/*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
361u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
363{
364 u64 extent_start, extent_end, size, total_added = 0;
365 int ret;
366
367 while (start < end) {
368 ret = find_first_extent_bit(info->pinned_extents, start,
369 &extent_start, &extent_end,
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
372 if (ret)
373 break;
374
375 if (extent_start <= start) {
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
379 total_added += size;
380 ret = btrfs_add_free_space(block_group, start,
381 size);
382 BUG_ON(ret); /* -ENOMEM or logic error */
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
391 total_added += size;
392 ret = btrfs_add_free_space(block_group, start, size);
393 BUG_ON(ret); /* -ENOMEM or logic error */
394 }
395
396 return total_added;
397}
398
399static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
400{
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
403 struct btrfs_root *extent_root;
404 struct btrfs_path *path;
405 struct extent_buffer *leaf;
406 struct btrfs_key key;
407 u64 total_found = 0;
408 u64 last = 0;
409 u32 nritems;
410 int ret;
411 bool wakeup = true;
412
413 block_group = caching_ctl->block_group;
414 fs_info = block_group->fs_info;
415 extent_root = fs_info->extent_root;
416
417 path = btrfs_alloc_path();
418 if (!path)
419 return -ENOMEM;
420
421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
422
423#ifdef CONFIG_BTRFS_DEBUG
424 /*
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
427 * the free space.
428 */
429 if (btrfs_should_fragment_free_space(extent_root, block_group))
430 wakeup = false;
431#endif
432 /*
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
437 */
438 path->skip_locking = 1;
439 path->search_commit_root = 1;
440 path->reada = READA_FORWARD;
441
442 key.objectid = last;
443 key.offset = 0;
444 key.type = BTRFS_EXTENT_ITEM_KEY;
445
446next:
447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
448 if (ret < 0)
449 goto out;
450
451 leaf = path->nodes[0];
452 nritems = btrfs_header_nritems(leaf);
453
454 while (1) {
455 if (btrfs_fs_closing(fs_info) > 1) {
456 last = (u64)-1;
457 break;
458 }
459
460 if (path->slots[0] < nritems) {
461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 } else {
463 ret = find_next_key(path, 0, &key);
464 if (ret)
465 break;
466
467 if (need_resched() ||
468 rwsem_is_contended(&fs_info->commit_root_sem)) {
469 if (wakeup)
470 caching_ctl->progress = last;
471 btrfs_release_path(path);
472 up_read(&fs_info->commit_root_sem);
473 mutex_unlock(&caching_ctl->mutex);
474 cond_resched();
475 mutex_lock(&caching_ctl->mutex);
476 down_read(&fs_info->commit_root_sem);
477 goto next;
478 }
479
480 ret = btrfs_next_leaf(extent_root, path);
481 if (ret < 0)
482 goto out;
483 if (ret)
484 break;
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(leaf);
487 continue;
488 }
489
490 if (key.objectid < last) {
491 key.objectid = last;
492 key.offset = 0;
493 key.type = BTRFS_EXTENT_ITEM_KEY;
494
495 if (wakeup)
496 caching_ctl->progress = last;
497 btrfs_release_path(path);
498 goto next;
499 }
500
501 if (key.objectid < block_group->key.objectid) {
502 path->slots[0]++;
503 continue;
504 }
505
506 if (key.objectid >= block_group->key.objectid +
507 block_group->key.offset)
508 break;
509
510 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 key.type == BTRFS_METADATA_ITEM_KEY) {
512 total_found += add_new_free_space(block_group,
513 fs_info, last,
514 key.objectid);
515 if (key.type == BTRFS_METADATA_ITEM_KEY)
516 last = key.objectid +
517 fs_info->tree_root->nodesize;
518 else
519 last = key.objectid + key.offset;
520
521 if (total_found > CACHING_CTL_WAKE_UP) {
522 total_found = 0;
523 if (wakeup)
524 wake_up(&caching_ctl->wait);
525 }
526 }
527 path->slots[0]++;
528 }
529 ret = 0;
530
531 total_found += add_new_free_space(block_group, fs_info, last,
532 block_group->key.objectid +
533 block_group->key.offset);
534 caching_ctl->progress = (u64)-1;
535
536out:
537 btrfs_free_path(path);
538 return ret;
539}
540
541static noinline void caching_thread(struct btrfs_work *work)
542{
543 struct btrfs_block_group_cache *block_group;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_caching_control *caching_ctl;
546 struct btrfs_root *extent_root;
547 int ret;
548
549 caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 block_group = caching_ctl->block_group;
551 fs_info = block_group->fs_info;
552 extent_root = fs_info->extent_root;
553
554 mutex_lock(&caching_ctl->mutex);
555 down_read(&fs_info->commit_root_sem);
556
557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 ret = load_free_space_tree(caching_ctl);
559 else
560 ret = load_extent_tree_free(caching_ctl);
561
562 spin_lock(&block_group->lock);
563 block_group->caching_ctl = NULL;
564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
565 spin_unlock(&block_group->lock);
566
567#ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 u64 bytes_used;
570
571 spin_lock(&block_group->space_info->lock);
572 spin_lock(&block_group->lock);
573 bytes_used = block_group->key.offset -
574 btrfs_block_group_used(&block_group->item);
575 block_group->space_info->bytes_used += bytes_used >> 1;
576 spin_unlock(&block_group->lock);
577 spin_unlock(&block_group->space_info->lock);
578 fragment_free_space(extent_root, block_group);
579 }
580#endif
581
582 caching_ctl->progress = (u64)-1;
583
584 up_read(&fs_info->commit_root_sem);
585 free_excluded_extents(fs_info->extent_root, block_group);
586 mutex_unlock(&caching_ctl->mutex);
587
588 wake_up(&caching_ctl->wait);
589
590 put_caching_control(caching_ctl);
591 btrfs_put_block_group(block_group);
592}
593
594static int cache_block_group(struct btrfs_block_group_cache *cache,
595 int load_cache_only)
596{
597 DEFINE_WAIT(wait);
598 struct btrfs_fs_info *fs_info = cache->fs_info;
599 struct btrfs_caching_control *caching_ctl;
600 int ret = 0;
601
602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
603 if (!caching_ctl)
604 return -ENOMEM;
605
606 INIT_LIST_HEAD(&caching_ctl->list);
607 mutex_init(&caching_ctl->mutex);
608 init_waitqueue_head(&caching_ctl->wait);
609 caching_ctl->block_group = cache;
610 caching_ctl->progress = cache->key.objectid;
611 atomic_set(&caching_ctl->count, 1);
612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 caching_thread, NULL, NULL);
614
615 spin_lock(&cache->lock);
616 /*
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
626 * another.
627 */
628 while (cache->cached == BTRFS_CACHE_FAST) {
629 struct btrfs_caching_control *ctl;
630
631 ctl = cache->caching_ctl;
632 atomic_inc(&ctl->count);
633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&cache->lock);
635
636 schedule();
637
638 finish_wait(&ctl->wait, &wait);
639 put_caching_control(ctl);
640 spin_lock(&cache->lock);
641 }
642
643 if (cache->cached != BTRFS_CACHE_NO) {
644 spin_unlock(&cache->lock);
645 kfree(caching_ctl);
646 return 0;
647 }
648 WARN_ON(cache->caching_ctl);
649 cache->caching_ctl = caching_ctl;
650 cache->cached = BTRFS_CACHE_FAST;
651 spin_unlock(&cache->lock);
652
653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
654 mutex_lock(&caching_ctl->mutex);
655 ret = load_free_space_cache(fs_info, cache);
656
657 spin_lock(&cache->lock);
658 if (ret == 1) {
659 cache->caching_ctl = NULL;
660 cache->cached = BTRFS_CACHE_FINISHED;
661 cache->last_byte_to_unpin = (u64)-1;
662 caching_ctl->progress = (u64)-1;
663 } else {
664 if (load_cache_only) {
665 cache->caching_ctl = NULL;
666 cache->cached = BTRFS_CACHE_NO;
667 } else {
668 cache->cached = BTRFS_CACHE_STARTED;
669 cache->has_caching_ctl = 1;
670 }
671 }
672 spin_unlock(&cache->lock);
673#ifdef CONFIG_BTRFS_DEBUG
674 if (ret == 1 &&
675 btrfs_should_fragment_free_space(fs_info->extent_root,
676 cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(fs_info->extent_root, cache);
687 }
688#endif
689 mutex_unlock(&caching_ctl->mutex);
690
691 wake_up(&caching_ctl->wait);
692 if (ret == 1) {
693 put_caching_control(caching_ctl);
694 free_excluded_extents(fs_info->extent_root, cache);
695 return 0;
696 }
697 } else {
698 /*
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
708 cache->has_caching_ctl = 1;
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
712 }
713
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
716 return 0;
717 }
718
719 down_write(&fs_info->commit_root_sem);
720 atomic_inc(&caching_ctl->count);
721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 up_write(&fs_info->commit_root_sem);
723
724 btrfs_get_block_group(cache);
725
726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727
728 return ret;
729}
730
731/*
732 * return the block group that starts at or after bytenr
733 */
734static struct btrfs_block_group_cache *
735btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736{
737 struct btrfs_block_group_cache *cache;
738
739 cache = block_group_cache_tree_search(info, bytenr, 0);
740
741 return cache;
742}
743
744/*
745 * return the block group that contains the given bytenr
746 */
747struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 struct btrfs_fs_info *info,
749 u64 bytenr)
750{
751 struct btrfs_block_group_cache *cache;
752
753 cache = block_group_cache_tree_search(info, bytenr, 1);
754
755 return cache;
756}
757
758static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 u64 flags)
760{
761 struct list_head *head = &info->space_info;
762 struct btrfs_space_info *found;
763
764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
765
766 rcu_read_lock();
767 list_for_each_entry_rcu(found, head, list) {
768 if (found->flags & flags) {
769 rcu_read_unlock();
770 return found;
771 }
772 }
773 rcu_read_unlock();
774 return NULL;
775}
776
777/*
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
780 */
781void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782{
783 struct list_head *head = &info->space_info;
784 struct btrfs_space_info *found;
785
786 rcu_read_lock();
787 list_for_each_entry_rcu(found, head, list)
788 found->full = 0;
789 rcu_read_unlock();
790}
791
792/* simple helper to search for an existing data extent at a given offset */
793int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
794{
795 int ret;
796 struct btrfs_key key;
797 struct btrfs_path *path;
798
799 path = btrfs_alloc_path();
800 if (!path)
801 return -ENOMEM;
802
803 key.objectid = start;
804 key.offset = len;
805 key.type = BTRFS_EXTENT_ITEM_KEY;
806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 0, 0);
808 btrfs_free_path(path);
809 return ret;
810}
811
812/*
813 * helper function to lookup reference count and flags of a tree block.
814 *
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
820 */
821int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root, u64 bytenr,
823 u64 offset, int metadata, u64 *refs, u64 *flags)
824{
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
831 u32 item_size;
832 u64 num_refs;
833 u64 extent_flags;
834 int ret;
835
836 /*
837 * If we don't have skinny metadata, don't bother doing anything
838 * different
839 */
840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
841 offset = root->nodesize;
842 metadata = 0;
843 }
844
845 path = btrfs_alloc_path();
846 if (!path)
847 return -ENOMEM;
848
849 if (!trans) {
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
852 }
853
854search_again:
855 key.objectid = bytenr;
856 key.offset = offset;
857 if (metadata)
858 key.type = BTRFS_METADATA_ITEM_KEY;
859 else
860 key.type = BTRFS_EXTENT_ITEM_KEY;
861
862 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 &key, path, 0, 0);
864 if (ret < 0)
865 goto out_free;
866
867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
868 if (path->slots[0]) {
869 path->slots[0]--;
870 btrfs_item_key_to_cpu(path->nodes[0], &key,
871 path->slots[0]);
872 if (key.objectid == bytenr &&
873 key.type == BTRFS_EXTENT_ITEM_KEY &&
874 key.offset == root->nodesize)
875 ret = 0;
876 }
877 }
878
879 if (ret == 0) {
880 leaf = path->nodes[0];
881 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 if (item_size >= sizeof(*ei)) {
883 ei = btrfs_item_ptr(leaf, path->slots[0],
884 struct btrfs_extent_item);
885 num_refs = btrfs_extent_refs(leaf, ei);
886 extent_flags = btrfs_extent_flags(leaf, ei);
887 } else {
888#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0 *ei0;
890 BUG_ON(item_size != sizeof(*ei0));
891 ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 struct btrfs_extent_item_v0);
893 num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 /* FIXME: this isn't correct for data */
895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896#else
897 BUG();
898#endif
899 }
900 BUG_ON(num_refs == 0);
901 } else {
902 num_refs = 0;
903 extent_flags = 0;
904 ret = 0;
905 }
906
907 if (!trans)
908 goto out;
909
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
912 head = btrfs_find_delayed_ref_head(trans, bytenr);
913 if (head) {
914 if (!mutex_trylock(&head->mutex)) {
915 atomic_inc(&head->node.refs);
916 spin_unlock(&delayed_refs->lock);
917
918 btrfs_release_path(path);
919
920 /*
921 * Mutex was contended, block until it's released and try
922 * again
923 */
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
926 btrfs_put_delayed_ref(&head->node);
927 goto search_again;
928 }
929 spin_lock(&head->lock);
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
932 else
933 BUG_ON(num_refs == 0);
934
935 num_refs += head->node.ref_mod;
936 spin_unlock(&head->lock);
937 mutex_unlock(&head->mutex);
938 }
939 spin_unlock(&delayed_refs->lock);
940out:
941 WARN_ON(num_refs == 0);
942 if (refs)
943 *refs = num_refs;
944 if (flags)
945 *flags = extent_flags;
946out_free:
947 btrfs_free_path(path);
948 return ret;
949}
950
951/*
952 * Back reference rules. Back refs have three main goals:
953 *
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
957 *
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
960 *
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
964 *
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
975 *
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
982 *
983 * When a tree block is COW'd through a tree, there are four cases:
984 *
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
987 *
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
992 *
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
998 *
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
1013 * - different files inside a single subvolume
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
1016 * The extent ref structure for the implicit back refs has fields for:
1017 *
1018 * - Objectid of the subvolume root
1019 * - objectid of the file holding the reference
1020 * - original offset in the file
1021 * - how many bookend extents
1022 *
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
1025 *
1026 * The extent ref structure for the full back refs has field for:
1027 *
1028 * - number of pointers in the tree leaf
1029 *
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
1032 *
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
1035 *
1036 * (root_key.objectid, inode objectid, offset in file, 1)
1037 *
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
1040 *
1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1042 *
1043 * Btree extents can be referenced by:
1044 *
1045 * - Different subvolumes
1046 *
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
1051 *
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
1055 */
1056
1057#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 struct btrfs_root *root,
1060 struct btrfs_path *path,
1061 u64 owner, u32 extra_size)
1062{
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
1068 struct btrfs_key key;
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1071 u64 refs;
1072 int ret;
1073
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082 if (owner == (u64)-1) {
1083 while (1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1086 if (ret < 0)
1087 return ret;
1088 BUG_ON(ret > 0); /* Corruption */
1089 leaf = path->nodes[0];
1090 }
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1092 path->slots[0]);
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 path->slots[0]++;
1096 continue;
1097 }
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 break;
1102 }
1103 }
1104 btrfs_release_path(path);
1105
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1108
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1112 if (ret < 0)
1113 return ret;
1114 BUG_ON(ret); /* Corruption */
1115
1116 btrfs_extend_item(root, path, new_size);
1117
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 } else {
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 }
1134 btrfs_mark_buffer_dirty(leaf);
1135 return 0;
1136}
1137#endif
1138
1139static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140{
1141 u32 high_crc = ~(u32)0;
1142 u32 low_crc = ~(u32)0;
1143 __le64 lenum;
1144
1145 lenum = cpu_to_le64(root_objectid);
1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1147 lenum = cpu_to_le64(owner);
1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1149 lenum = cpu_to_le64(offset);
1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1151
1152 return ((u64)high_crc << 31) ^ (u64)low_crc;
1153}
1154
1155static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref)
1157{
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 btrfs_extent_data_ref_objectid(leaf, ref),
1160 btrfs_extent_data_ref_offset(leaf, ref));
1161}
1162
1163static int match_extent_data_ref(struct extent_buffer *leaf,
1164 struct btrfs_extent_data_ref *ref,
1165 u64 root_objectid, u64 owner, u64 offset)
1166{
1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 return 0;
1171 return 1;
1172}
1173
1174static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 u64 bytenr, u64 parent,
1178 u64 root_objectid,
1179 u64 owner, u64 offset)
1180{
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref;
1183 struct extent_buffer *leaf;
1184 u32 nritems;
1185 int ret;
1186 int recow;
1187 int err = -ENOENT;
1188
1189 key.objectid = bytenr;
1190 if (parent) {
1191 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 key.offset = parent;
1193 } else {
1194 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 key.offset = hash_extent_data_ref(root_objectid,
1196 owner, offset);
1197 }
1198again:
1199 recow = 0;
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
1205
1206 if (parent) {
1207 if (!ret)
1208 return 0;
1209#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key.type = BTRFS_EXTENT_REF_V0_KEY;
1211 btrfs_release_path(path);
1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 if (ret < 0) {
1214 err = ret;
1215 goto fail;
1216 }
1217 if (!ret)
1218 return 0;
1219#endif
1220 goto fail;
1221 }
1222
1223 leaf = path->nodes[0];
1224 nritems = btrfs_header_nritems(leaf);
1225 while (1) {
1226 if (path->slots[0] >= nritems) {
1227 ret = btrfs_next_leaf(root, path);
1228 if (ret < 0)
1229 err = ret;
1230 if (ret)
1231 goto fail;
1232
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1235 recow = 1;
1236 }
1237
1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 if (key.objectid != bytenr ||
1240 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 goto fail;
1242
1243 ref = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_data_ref);
1245
1246 if (match_extent_data_ref(leaf, ref, root_objectid,
1247 owner, offset)) {
1248 if (recow) {
1249 btrfs_release_path(path);
1250 goto again;
1251 }
1252 err = 0;
1253 break;
1254 }
1255 path->slots[0]++;
1256 }
1257fail:
1258 return err;
1259}
1260
1261static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 u64 bytenr, u64 parent,
1265 u64 root_objectid, u64 owner,
1266 u64 offset, int refs_to_add)
1267{
1268 struct btrfs_key key;
1269 struct extent_buffer *leaf;
1270 u32 size;
1271 u32 num_refs;
1272 int ret;
1273
1274 key.objectid = bytenr;
1275 if (parent) {
1276 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 key.offset = parent;
1278 size = sizeof(struct btrfs_shared_data_ref);
1279 } else {
1280 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 key.offset = hash_extent_data_ref(root_objectid,
1282 owner, offset);
1283 size = sizeof(struct btrfs_extent_data_ref);
1284 }
1285
1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 if (ret && ret != -EEXIST)
1288 goto fail;
1289
1290 leaf = path->nodes[0];
1291 if (parent) {
1292 struct btrfs_shared_data_ref *ref;
1293 ref = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_shared_data_ref);
1295 if (ret == 0) {
1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 } else {
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 num_refs += refs_to_add;
1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1301 }
1302 } else {
1303 struct btrfs_extent_data_ref *ref;
1304 while (ret == -EEXIST) {
1305 ref = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset))
1309 break;
1310 btrfs_release_path(path);
1311 key.offset++;
1312 ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 size);
1314 if (ret && ret != -EEXIST)
1315 goto fail;
1316
1317 leaf = path->nodes[0];
1318 }
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (ret == 0) {
1322 btrfs_set_extent_data_ref_root(leaf, ref,
1323 root_objectid);
1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 } else {
1328 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 num_refs += refs_to_add;
1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1331 }
1332 }
1333 btrfs_mark_buffer_dirty(leaf);
1334 ret = 0;
1335fail:
1336 btrfs_release_path(path);
1337 return ret;
1338}
1339
1340static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct btrfs_path *path,
1343 int refs_to_drop, int *last_ref)
1344{
1345 struct btrfs_key key;
1346 struct btrfs_extent_data_ref *ref1 = NULL;
1347 struct btrfs_shared_data_ref *ref2 = NULL;
1348 struct extent_buffer *leaf;
1349 u32 num_refs = 0;
1350 int ret = 0;
1351
1352 leaf = path->nodes[0];
1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_data_ref);
1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_shared_data_ref);
1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 struct btrfs_extent_ref_v0 *ref0;
1366 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_ref_v0);
1368 num_refs = btrfs_ref_count_v0(leaf, ref0);
1369#endif
1370 } else {
1371 BUG();
1372 }
1373
1374 BUG_ON(num_refs < refs_to_drop);
1375 num_refs -= refs_to_drop;
1376
1377 if (num_refs == 0) {
1378 ret = btrfs_del_item(trans, root, path);
1379 *last_ref = 1;
1380 } else {
1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 else {
1387 struct btrfs_extent_ref_v0 *ref0;
1388 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_extent_ref_v0);
1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 }
1392#endif
1393 btrfs_mark_buffer_dirty(leaf);
1394 }
1395 return ret;
1396}
1397
1398static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1399 struct btrfs_extent_inline_ref *iref)
1400{
1401 struct btrfs_key key;
1402 struct extent_buffer *leaf;
1403 struct btrfs_extent_data_ref *ref1;
1404 struct btrfs_shared_data_ref *ref2;
1405 u32 num_refs = 0;
1406
1407 leaf = path->nodes[0];
1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 if (iref) {
1410 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 } else {
1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 }
1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_extent_data_ref);
1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_shared_data_ref);
1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 num_refs = btrfs_ref_count_v0(leaf, ref0);
1432#endif
1433 } else {
1434 WARN_ON(1);
1435 }
1436 return num_refs;
1437}
1438
1439static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root,
1441 struct btrfs_path *path,
1442 u64 bytenr, u64 parent,
1443 u64 root_objectid)
1444{
1445 struct btrfs_key key;
1446 int ret;
1447
1448 key.objectid = bytenr;
1449 if (parent) {
1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 key.offset = parent;
1452 } else {
1453 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 key.offset = root_objectid;
1455 }
1456
1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 if (ret > 0)
1459 ret = -ENOENT;
1460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret == -ENOENT && parent) {
1462 btrfs_release_path(path);
1463 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 if (ret > 0)
1466 ret = -ENOENT;
1467 }
1468#endif
1469 return ret;
1470}
1471
1472static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct btrfs_path *path,
1475 u64 bytenr, u64 parent,
1476 u64 root_objectid)
1477{
1478 struct btrfs_key key;
1479 int ret;
1480
1481 key.objectid = bytenr;
1482 if (parent) {
1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 key.offset = parent;
1485 } else {
1486 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 key.offset = root_objectid;
1488 }
1489
1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1491 btrfs_release_path(path);
1492 return ret;
1493}
1494
1495static inline int extent_ref_type(u64 parent, u64 owner)
1496{
1497 int type;
1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 else
1502 type = BTRFS_TREE_BLOCK_REF_KEY;
1503 } else {
1504 if (parent > 0)
1505 type = BTRFS_SHARED_DATA_REF_KEY;
1506 else
1507 type = BTRFS_EXTENT_DATA_REF_KEY;
1508 }
1509 return type;
1510}
1511
1512static int find_next_key(struct btrfs_path *path, int level,
1513 struct btrfs_key *key)
1514
1515{
1516 for (; level < BTRFS_MAX_LEVEL; level++) {
1517 if (!path->nodes[level])
1518 break;
1519 if (path->slots[level] + 1 >=
1520 btrfs_header_nritems(path->nodes[level]))
1521 continue;
1522 if (level == 0)
1523 btrfs_item_key_to_cpu(path->nodes[level], key,
1524 path->slots[level] + 1);
1525 else
1526 btrfs_node_key_to_cpu(path->nodes[level], key,
1527 path->slots[level] + 1);
1528 return 0;
1529 }
1530 return 1;
1531}
1532
1533/*
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1536 *
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1539 *
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1542 *
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1545 */
1546static noinline_for_stack
1547int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 struct btrfs_path *path,
1550 struct btrfs_extent_inline_ref **ref_ret,
1551 u64 bytenr, u64 num_bytes,
1552 u64 parent, u64 root_objectid,
1553 u64 owner, u64 offset, int insert)
1554{
1555 struct btrfs_key key;
1556 struct extent_buffer *leaf;
1557 struct btrfs_extent_item *ei;
1558 struct btrfs_extent_inline_ref *iref;
1559 u64 flags;
1560 u64 item_size;
1561 unsigned long ptr;
1562 unsigned long end;
1563 int extra_size;
1564 int type;
1565 int want;
1566 int ret;
1567 int err = 0;
1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 SKINNY_METADATA);
1570
1571 key.objectid = bytenr;
1572 key.type = BTRFS_EXTENT_ITEM_KEY;
1573 key.offset = num_bytes;
1574
1575 want = extent_ref_type(parent, owner);
1576 if (insert) {
1577 extra_size = btrfs_extent_inline_ref_size(want);
1578 path->keep_locks = 1;
1579 } else
1580 extra_size = -1;
1581
1582 /*
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1585 */
1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 key.type = BTRFS_METADATA_ITEM_KEY;
1588 key.offset = owner;
1589 }
1590
1591again:
1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1593 if (ret < 0) {
1594 err = ret;
1595 goto out;
1596 }
1597
1598 /*
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1601 */
1602 if (ret > 0 && skinny_metadata) {
1603 skinny_metadata = false;
1604 if (path->slots[0]) {
1605 path->slots[0]--;
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 path->slots[0]);
1608 if (key.objectid == bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == num_bytes)
1611 ret = 0;
1612 }
1613 if (ret) {
1614 key.objectid = bytenr;
1615 key.type = BTRFS_EXTENT_ITEM_KEY;
1616 key.offset = num_bytes;
1617 btrfs_release_path(path);
1618 goto again;
1619 }
1620 }
1621
1622 if (ret && !insert) {
1623 err = -ENOENT;
1624 goto out;
1625 } else if (WARN_ON(ret)) {
1626 err = -EIO;
1627 goto out;
1628 }
1629
1630 leaf = path->nodes[0];
1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size < sizeof(*ei)) {
1634 if (!insert) {
1635 err = -ENOENT;
1636 goto out;
1637 }
1638 ret = convert_extent_item_v0(trans, root, path, owner,
1639 extra_size);
1640 if (ret < 0) {
1641 err = ret;
1642 goto out;
1643 }
1644 leaf = path->nodes[0];
1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 }
1647#endif
1648 BUG_ON(item_size < sizeof(*ei));
1649
1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 flags = btrfs_extent_flags(leaf, ei);
1652
1653 ptr = (unsigned long)(ei + 1);
1654 end = (unsigned long)ei + item_size;
1655
1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1657 ptr += sizeof(struct btrfs_tree_block_info);
1658 BUG_ON(ptr > end);
1659 }
1660
1661 err = -ENOENT;
1662 while (1) {
1663 if (ptr >= end) {
1664 WARN_ON(ptr > end);
1665 break;
1666 }
1667 iref = (struct btrfs_extent_inline_ref *)ptr;
1668 type = btrfs_extent_inline_ref_type(leaf, iref);
1669 if (want < type)
1670 break;
1671 if (want > type) {
1672 ptr += btrfs_extent_inline_ref_size(type);
1673 continue;
1674 }
1675
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 struct btrfs_extent_data_ref *dref;
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 if (match_extent_data_ref(leaf, dref, root_objectid,
1680 owner, offset)) {
1681 err = 0;
1682 break;
1683 }
1684 if (hash_extent_data_ref_item(leaf, dref) <
1685 hash_extent_data_ref(root_objectid, owner, offset))
1686 break;
1687 } else {
1688 u64 ref_offset;
1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 if (parent > 0) {
1691 if (parent == ref_offset) {
1692 err = 0;
1693 break;
1694 }
1695 if (ref_offset < parent)
1696 break;
1697 } else {
1698 if (root_objectid == ref_offset) {
1699 err = 0;
1700 break;
1701 }
1702 if (ref_offset < root_objectid)
1703 break;
1704 }
1705 }
1706 ptr += btrfs_extent_inline_ref_size(type);
1707 }
1708 if (err == -ENOENT && insert) {
1709 if (item_size + extra_size >=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 /*
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1719 */
1720 if (find_next_key(path, 0, &key) == 0 &&
1721 key.objectid == bytenr &&
1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1723 err = -EAGAIN;
1724 goto out;
1725 }
1726 }
1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728out:
1729 if (insert) {
1730 path->keep_locks = 0;
1731 btrfs_unlock_up_safe(path, 1);
1732 }
1733 return err;
1734}
1735
1736/*
1737 * helper to add new inline back ref
1738 */
1739static noinline_for_stack
1740void setup_inline_extent_backref(struct btrfs_root *root,
1741 struct btrfs_path *path,
1742 struct btrfs_extent_inline_ref *iref,
1743 u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add,
1745 struct btrfs_delayed_extent_op *extent_op)
1746{
1747 struct extent_buffer *leaf;
1748 struct btrfs_extent_item *ei;
1749 unsigned long ptr;
1750 unsigned long end;
1751 unsigned long item_offset;
1752 u64 refs;
1753 int size;
1754 int type;
1755
1756 leaf = path->nodes[0];
1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760 type = extent_ref_type(parent, owner);
1761 size = btrfs_extent_inline_ref_size(type);
1762
1763 btrfs_extend_item(root, path, size);
1764
1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 refs = btrfs_extent_refs(leaf, ei);
1767 refs += refs_to_add;
1768 btrfs_set_extent_refs(leaf, ei, refs);
1769 if (extent_op)
1770 __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772 ptr = (unsigned long)ei + item_offset;
1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 if (ptr < end - size)
1775 memmove_extent_buffer(leaf, ptr + size, ptr,
1776 end - size - ptr);
1777
1778 iref = (struct btrfs_extent_inline_ref *)ptr;
1779 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 struct btrfs_extent_data_ref *dref;
1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 struct btrfs_shared_data_ref *sref;
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 } else {
1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 }
1797 btrfs_mark_buffer_dirty(leaf);
1798}
1799
1800static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref **ref_ret,
1804 u64 bytenr, u64 num_bytes, u64 parent,
1805 u64 root_objectid, u64 owner, u64 offset)
1806{
1807 int ret;
1808
1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 bytenr, num_bytes, parent,
1811 root_objectid, owner, offset, 0);
1812 if (ret != -ENOENT)
1813 return ret;
1814
1815 btrfs_release_path(path);
1816 *ref_ret = NULL;
1817
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 root_objectid);
1821 } else {
1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 root_objectid, owner, offset);
1824 }
1825 return ret;
1826}
1827
1828/*
1829 * helper to update/remove inline back ref
1830 */
1831static noinline_for_stack
1832void update_inline_extent_backref(struct btrfs_root *root,
1833 struct btrfs_path *path,
1834 struct btrfs_extent_inline_ref *iref,
1835 int refs_to_mod,
1836 struct btrfs_delayed_extent_op *extent_op,
1837 int *last_ref)
1838{
1839 struct extent_buffer *leaf;
1840 struct btrfs_extent_item *ei;
1841 struct btrfs_extent_data_ref *dref = NULL;
1842 struct btrfs_shared_data_ref *sref = NULL;
1843 unsigned long ptr;
1844 unsigned long end;
1845 u32 item_size;
1846 int size;
1847 int type;
1848 u64 refs;
1849
1850 leaf = path->nodes[0];
1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 refs = btrfs_extent_refs(leaf, ei);
1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 refs += refs_to_mod;
1855 btrfs_set_extent_refs(leaf, ei, refs);
1856 if (extent_op)
1857 __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859 type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 refs = btrfs_extent_data_ref_count(leaf, dref);
1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 refs = btrfs_shared_data_ref_count(leaf, sref);
1867 } else {
1868 refs = 1;
1869 BUG_ON(refs_to_mod != -1);
1870 }
1871
1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 refs += refs_to_mod;
1874
1875 if (refs > 0) {
1876 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 else
1879 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 } else {
1881 *last_ref = 1;
1882 size = btrfs_extent_inline_ref_size(type);
1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 ptr = (unsigned long)iref;
1885 end = (unsigned long)ei + item_size;
1886 if (ptr + size < end)
1887 memmove_extent_buffer(leaf, ptr, ptr + size,
1888 end - ptr - size);
1889 item_size -= size;
1890 btrfs_truncate_item(root, path, item_size, 1);
1891 }
1892 btrfs_mark_buffer_dirty(leaf);
1893}
1894
1895static noinline_for_stack
1896int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path,
1899 u64 bytenr, u64 num_bytes, u64 parent,
1900 u64 root_objectid, u64 owner,
1901 u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1903{
1904 struct btrfs_extent_inline_ref *iref;
1905 int ret;
1906
1907 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 bytenr, num_bytes, parent,
1909 root_objectid, owner, offset, 1);
1910 if (ret == 0) {
1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1912 update_inline_extent_backref(root, path, iref,
1913 refs_to_add, extent_op, NULL);
1914 } else if (ret == -ENOENT) {
1915 setup_inline_extent_backref(root, path, iref, parent,
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1918 ret = 0;
1919 }
1920 return ret;
1921}
1922
1923static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 u64 bytenr, u64 parent, u64 root_objectid,
1927 u64 owner, u64 offset, int refs_to_add)
1928{
1929 int ret;
1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 BUG_ON(refs_to_add != 1);
1932 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 parent, root_objectid);
1934 } else {
1935 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 parent, root_objectid,
1937 owner, offset, refs_to_add);
1938 }
1939 return ret;
1940}
1941
1942static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 struct btrfs_path *path,
1945 struct btrfs_extent_inline_ref *iref,
1946 int refs_to_drop, int is_data, int *last_ref)
1947{
1948 int ret = 0;
1949
1950 BUG_ON(!is_data && refs_to_drop != 1);
1951 if (iref) {
1952 update_inline_extent_backref(root, path, iref,
1953 -refs_to_drop, NULL, last_ref);
1954 } else if (is_data) {
1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 last_ref);
1957 } else {
1958 *last_ref = 1;
1959 ret = btrfs_del_item(trans, root, path);
1960 }
1961 return ret;
1962}
1963
1964#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1965static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 u64 *discarded_bytes)
1967{
1968 int j, ret = 0;
1969 u64 bytes_left, end;
1970 u64 aligned_start = ALIGN(start, 1 << 9);
1971
1972 if (WARN_ON(start != aligned_start)) {
1973 len -= aligned_start - start;
1974 len = round_down(len, 1 << 9);
1975 start = aligned_start;
1976 }
1977
1978 *discarded_bytes = 0;
1979
1980 if (!len)
1981 return 0;
1982
1983 end = start + len;
1984 bytes_left = len;
1985
1986 /* Skip any superblocks on this device. */
1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 u64 sb_start = btrfs_sb_offset(j);
1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 u64 size = sb_start - start;
1991
1992 if (!in_range(sb_start, start, bytes_left) &&
1993 !in_range(sb_end, start, bytes_left) &&
1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 continue;
1996
1997 /*
1998 * Superblock spans beginning of range. Adjust start and
1999 * try again.
2000 */
2001 if (sb_start <= start) {
2002 start += sb_end - start;
2003 if (start > end) {
2004 bytes_left = 0;
2005 break;
2006 }
2007 bytes_left = end - start;
2008 continue;
2009 }
2010
2011 if (size) {
2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 GFP_NOFS, 0);
2014 if (!ret)
2015 *discarded_bytes += size;
2016 else if (ret != -EOPNOTSUPP)
2017 return ret;
2018 }
2019
2020 start = sb_end;
2021 if (start > end) {
2022 bytes_left = 0;
2023 break;
2024 }
2025 bytes_left = end - start;
2026 }
2027
2028 if (bytes_left) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2030 GFP_NOFS, 0);
2031 if (!ret)
2032 *discarded_bytes += bytes_left;
2033 }
2034 return ret;
2035}
2036
2037int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 u64 num_bytes, u64 *actual_bytes)
2039{
2040 int ret;
2041 u64 discarded_bytes = 0;
2042 struct btrfs_bio *bbio = NULL;
2043
2044
2045 /* Tell the block device(s) that the sectors can be discarded */
2046 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2047 bytenr, &num_bytes, &bbio, 0);
2048 /* Error condition is -ENOMEM */
2049 if (!ret) {
2050 struct btrfs_bio_stripe *stripe = bbio->stripes;
2051 int i;
2052
2053
2054 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2055 u64 bytes;
2056 if (!stripe->dev->can_discard)
2057 continue;
2058
2059 ret = btrfs_issue_discard(stripe->dev->bdev,
2060 stripe->physical,
2061 stripe->length,
2062 &bytes);
2063 if (!ret)
2064 discarded_bytes += bytes;
2065 else if (ret != -EOPNOTSUPP)
2066 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2067
2068 /*
2069 * Just in case we get back EOPNOTSUPP for some reason,
2070 * just ignore the return value so we don't screw up
2071 * people calling discard_extent.
2072 */
2073 ret = 0;
2074 }
2075 btrfs_put_bbio(bbio);
2076 }
2077
2078 if (actual_bytes)
2079 *actual_bytes = discarded_bytes;
2080
2081
2082 if (ret == -EOPNOTSUPP)
2083 ret = 0;
2084 return ret;
2085}
2086
2087/* Can return -ENOMEM */
2088int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2089 struct btrfs_root *root,
2090 u64 bytenr, u64 num_bytes, u64 parent,
2091 u64 root_objectid, u64 owner, u64 offset)
2092{
2093 int ret;
2094 struct btrfs_fs_info *fs_info = root->fs_info;
2095
2096 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2097 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2098
2099 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2100 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2101 num_bytes,
2102 parent, root_objectid, (int)owner,
2103 BTRFS_ADD_DELAYED_REF, NULL);
2104 } else {
2105 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2106 num_bytes, parent, root_objectid,
2107 owner, offset, 0,
2108 BTRFS_ADD_DELAYED_REF, NULL);
2109 }
2110 return ret;
2111}
2112
2113static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2114 struct btrfs_root *root,
2115 struct btrfs_delayed_ref_node *node,
2116 u64 parent, u64 root_objectid,
2117 u64 owner, u64 offset, int refs_to_add,
2118 struct btrfs_delayed_extent_op *extent_op)
2119{
2120 struct btrfs_fs_info *fs_info = root->fs_info;
2121 struct btrfs_path *path;
2122 struct extent_buffer *leaf;
2123 struct btrfs_extent_item *item;
2124 struct btrfs_key key;
2125 u64 bytenr = node->bytenr;
2126 u64 num_bytes = node->num_bytes;
2127 u64 refs;
2128 int ret;
2129
2130 path = btrfs_alloc_path();
2131 if (!path)
2132 return -ENOMEM;
2133
2134 path->reada = READA_FORWARD;
2135 path->leave_spinning = 1;
2136 /* this will setup the path even if it fails to insert the back ref */
2137 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2138 bytenr, num_bytes, parent,
2139 root_objectid, owner, offset,
2140 refs_to_add, extent_op);
2141 if ((ret < 0 && ret != -EAGAIN) || !ret)
2142 goto out;
2143
2144 /*
2145 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 * inline extent ref, so just update the reference count and add a
2147 * normal backref.
2148 */
2149 leaf = path->nodes[0];
2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 refs = btrfs_extent_refs(leaf, item);
2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154 if (extent_op)
2155 __run_delayed_extent_op(extent_op, leaf, item);
2156
2157 btrfs_mark_buffer_dirty(leaf);
2158 btrfs_release_path(path);
2159
2160 path->reada = READA_FORWARD;
2161 path->leave_spinning = 1;
2162 /* now insert the actual backref */
2163 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2164 path, bytenr, parent, root_objectid,
2165 owner, offset, refs_to_add);
2166 if (ret)
2167 btrfs_abort_transaction(trans, root, ret);
2168out:
2169 btrfs_free_path(path);
2170 return ret;
2171}
2172
2173static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2174 struct btrfs_root *root,
2175 struct btrfs_delayed_ref_node *node,
2176 struct btrfs_delayed_extent_op *extent_op,
2177 int insert_reserved)
2178{
2179 int ret = 0;
2180 struct btrfs_delayed_data_ref *ref;
2181 struct btrfs_key ins;
2182 u64 parent = 0;
2183 u64 ref_root = 0;
2184 u64 flags = 0;
2185
2186 ins.objectid = node->bytenr;
2187 ins.offset = node->num_bytes;
2188 ins.type = BTRFS_EXTENT_ITEM_KEY;
2189
2190 ref = btrfs_delayed_node_to_data_ref(node);
2191 trace_run_delayed_data_ref(node, ref, node->action);
2192
2193 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2194 parent = ref->parent;
2195 ref_root = ref->root;
2196
2197 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2198 if (extent_op)
2199 flags |= extent_op->flags_to_set;
2200 ret = alloc_reserved_file_extent(trans, root,
2201 parent, ref_root, flags,
2202 ref->objectid, ref->offset,
2203 &ins, node->ref_mod);
2204 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2205 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2206 ref_root, ref->objectid,
2207 ref->offset, node->ref_mod,
2208 extent_op);
2209 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2210 ret = __btrfs_free_extent(trans, root, node, parent,
2211 ref_root, ref->objectid,
2212 ref->offset, node->ref_mod,
2213 extent_op);
2214 } else {
2215 BUG();
2216 }
2217 return ret;
2218}
2219
2220static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2221 struct extent_buffer *leaf,
2222 struct btrfs_extent_item *ei)
2223{
2224 u64 flags = btrfs_extent_flags(leaf, ei);
2225 if (extent_op->update_flags) {
2226 flags |= extent_op->flags_to_set;
2227 btrfs_set_extent_flags(leaf, ei, flags);
2228 }
2229
2230 if (extent_op->update_key) {
2231 struct btrfs_tree_block_info *bi;
2232 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2233 bi = (struct btrfs_tree_block_info *)(ei + 1);
2234 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2235 }
2236}
2237
2238static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2239 struct btrfs_root *root,
2240 struct btrfs_delayed_ref_node *node,
2241 struct btrfs_delayed_extent_op *extent_op)
2242{
2243 struct btrfs_key key;
2244 struct btrfs_path *path;
2245 struct btrfs_extent_item *ei;
2246 struct extent_buffer *leaf;
2247 u32 item_size;
2248 int ret;
2249 int err = 0;
2250 int metadata = !extent_op->is_data;
2251
2252 if (trans->aborted)
2253 return 0;
2254
2255 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2256 metadata = 0;
2257
2258 path = btrfs_alloc_path();
2259 if (!path)
2260 return -ENOMEM;
2261
2262 key.objectid = node->bytenr;
2263
2264 if (metadata) {
2265 key.type = BTRFS_METADATA_ITEM_KEY;
2266 key.offset = extent_op->level;
2267 } else {
2268 key.type = BTRFS_EXTENT_ITEM_KEY;
2269 key.offset = node->num_bytes;
2270 }
2271
2272again:
2273 path->reada = READA_FORWARD;
2274 path->leave_spinning = 1;
2275 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2276 path, 0, 1);
2277 if (ret < 0) {
2278 err = ret;
2279 goto out;
2280 }
2281 if (ret > 0) {
2282 if (metadata) {
2283 if (path->slots[0] > 0) {
2284 path->slots[0]--;
2285 btrfs_item_key_to_cpu(path->nodes[0], &key,
2286 path->slots[0]);
2287 if (key.objectid == node->bytenr &&
2288 key.type == BTRFS_EXTENT_ITEM_KEY &&
2289 key.offset == node->num_bytes)
2290 ret = 0;
2291 }
2292 if (ret > 0) {
2293 btrfs_release_path(path);
2294 metadata = 0;
2295
2296 key.objectid = node->bytenr;
2297 key.offset = node->num_bytes;
2298 key.type = BTRFS_EXTENT_ITEM_KEY;
2299 goto again;
2300 }
2301 } else {
2302 err = -EIO;
2303 goto out;
2304 }
2305 }
2306
2307 leaf = path->nodes[0];
2308 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2309#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2310 if (item_size < sizeof(*ei)) {
2311 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2312 path, (u64)-1, 0);
2313 if (ret < 0) {
2314 err = ret;
2315 goto out;
2316 }
2317 leaf = path->nodes[0];
2318 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2319 }
2320#endif
2321 BUG_ON(item_size < sizeof(*ei));
2322 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2323 __run_delayed_extent_op(extent_op, leaf, ei);
2324
2325 btrfs_mark_buffer_dirty(leaf);
2326out:
2327 btrfs_free_path(path);
2328 return err;
2329}
2330
2331static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2332 struct btrfs_root *root,
2333 struct btrfs_delayed_ref_node *node,
2334 struct btrfs_delayed_extent_op *extent_op,
2335 int insert_reserved)
2336{
2337 int ret = 0;
2338 struct btrfs_delayed_tree_ref *ref;
2339 struct btrfs_key ins;
2340 u64 parent = 0;
2341 u64 ref_root = 0;
2342 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2343 SKINNY_METADATA);
2344
2345 ref = btrfs_delayed_node_to_tree_ref(node);
2346 trace_run_delayed_tree_ref(node, ref, node->action);
2347
2348 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2349 parent = ref->parent;
2350 ref_root = ref->root;
2351
2352 ins.objectid = node->bytenr;
2353 if (skinny_metadata) {
2354 ins.offset = ref->level;
2355 ins.type = BTRFS_METADATA_ITEM_KEY;
2356 } else {
2357 ins.offset = node->num_bytes;
2358 ins.type = BTRFS_EXTENT_ITEM_KEY;
2359 }
2360
2361 BUG_ON(node->ref_mod != 1);
2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2363 BUG_ON(!extent_op || !extent_op->update_flags);
2364 ret = alloc_reserved_tree_block(trans, root,
2365 parent, ref_root,
2366 extent_op->flags_to_set,
2367 &extent_op->key,
2368 ref->level, &ins);
2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2370 ret = __btrfs_inc_extent_ref(trans, root, node,
2371 parent, ref_root,
2372 ref->level, 0, 1,
2373 extent_op);
2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2375 ret = __btrfs_free_extent(trans, root, node,
2376 parent, ref_root,
2377 ref->level, 0, 1, extent_op);
2378 } else {
2379 BUG();
2380 }
2381 return ret;
2382}
2383
2384/* helper function to actually process a single delayed ref entry */
2385static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root,
2387 struct btrfs_delayed_ref_node *node,
2388 struct btrfs_delayed_extent_op *extent_op,
2389 int insert_reserved)
2390{
2391 int ret = 0;
2392
2393 if (trans->aborted) {
2394 if (insert_reserved)
2395 btrfs_pin_extent(root, node->bytenr,
2396 node->num_bytes, 1);
2397 return 0;
2398 }
2399
2400 if (btrfs_delayed_ref_is_head(node)) {
2401 struct btrfs_delayed_ref_head *head;
2402 /*
2403 * we've hit the end of the chain and we were supposed
2404 * to insert this extent into the tree. But, it got
2405 * deleted before we ever needed to insert it, so all
2406 * we have to do is clean up the accounting
2407 */
2408 BUG_ON(extent_op);
2409 head = btrfs_delayed_node_to_head(node);
2410 trace_run_delayed_ref_head(node, head, node->action);
2411
2412 if (insert_reserved) {
2413 btrfs_pin_extent(root, node->bytenr,
2414 node->num_bytes, 1);
2415 if (head->is_data) {
2416 ret = btrfs_del_csums(trans, root,
2417 node->bytenr,
2418 node->num_bytes);
2419 }
2420 }
2421
2422 /* Also free its reserved qgroup space */
2423 btrfs_qgroup_free_delayed_ref(root->fs_info,
2424 head->qgroup_ref_root,
2425 head->qgroup_reserved);
2426 return ret;
2427 }
2428
2429 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2430 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2431 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2432 insert_reserved);
2433 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2434 node->type == BTRFS_SHARED_DATA_REF_KEY)
2435 ret = run_delayed_data_ref(trans, root, node, extent_op,
2436 insert_reserved);
2437 else
2438 BUG();
2439 return ret;
2440}
2441
2442static inline struct btrfs_delayed_ref_node *
2443select_delayed_ref(struct btrfs_delayed_ref_head *head)
2444{
2445 struct btrfs_delayed_ref_node *ref;
2446
2447 if (list_empty(&head->ref_list))
2448 return NULL;
2449
2450 /*
2451 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2452 * This is to prevent a ref count from going down to zero, which deletes
2453 * the extent item from the extent tree, when there still are references
2454 * to add, which would fail because they would not find the extent item.
2455 */
2456 list_for_each_entry(ref, &head->ref_list, list) {
2457 if (ref->action == BTRFS_ADD_DELAYED_REF)
2458 return ref;
2459 }
2460
2461 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2462 list);
2463}
2464
2465/*
2466 * Returns 0 on success or if called with an already aborted transaction.
2467 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2468 */
2469static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root,
2471 unsigned long nr)
2472{
2473 struct btrfs_delayed_ref_root *delayed_refs;
2474 struct btrfs_delayed_ref_node *ref;
2475 struct btrfs_delayed_ref_head *locked_ref = NULL;
2476 struct btrfs_delayed_extent_op *extent_op;
2477 struct btrfs_fs_info *fs_info = root->fs_info;
2478 ktime_t start = ktime_get();
2479 int ret;
2480 unsigned long count = 0;
2481 unsigned long actual_count = 0;
2482 int must_insert_reserved = 0;
2483
2484 delayed_refs = &trans->transaction->delayed_refs;
2485 while (1) {
2486 if (!locked_ref) {
2487 if (count >= nr)
2488 break;
2489
2490 spin_lock(&delayed_refs->lock);
2491 locked_ref = btrfs_select_ref_head(trans);
2492 if (!locked_ref) {
2493 spin_unlock(&delayed_refs->lock);
2494 break;
2495 }
2496
2497 /* grab the lock that says we are going to process
2498 * all the refs for this head */
2499 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2500 spin_unlock(&delayed_refs->lock);
2501 /*
2502 * we may have dropped the spin lock to get the head
2503 * mutex lock, and that might have given someone else
2504 * time to free the head. If that's true, it has been
2505 * removed from our list and we can move on.
2506 */
2507 if (ret == -EAGAIN) {
2508 locked_ref = NULL;
2509 count++;
2510 continue;
2511 }
2512 }
2513
2514 /*
2515 * We need to try and merge add/drops of the same ref since we
2516 * can run into issues with relocate dropping the implicit ref
2517 * and then it being added back again before the drop can
2518 * finish. If we merged anything we need to re-loop so we can
2519 * get a good ref.
2520 * Or we can get node references of the same type that weren't
2521 * merged when created due to bumps in the tree mod seq, and
2522 * we need to merge them to prevent adding an inline extent
2523 * backref before dropping it (triggering a BUG_ON at
2524 * insert_inline_extent_backref()).
2525 */
2526 spin_lock(&locked_ref->lock);
2527 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2528 locked_ref);
2529
2530 /*
2531 * locked_ref is the head node, so we have to go one
2532 * node back for any delayed ref updates
2533 */
2534 ref = select_delayed_ref(locked_ref);
2535
2536 if (ref && ref->seq &&
2537 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2538 spin_unlock(&locked_ref->lock);
2539 btrfs_delayed_ref_unlock(locked_ref);
2540 spin_lock(&delayed_refs->lock);
2541 locked_ref->processing = 0;
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
2544 locked_ref = NULL;
2545 cond_resched();
2546 count++;
2547 continue;
2548 }
2549
2550 /*
2551 * record the must insert reserved flag before we
2552 * drop the spin lock.
2553 */
2554 must_insert_reserved = locked_ref->must_insert_reserved;
2555 locked_ref->must_insert_reserved = 0;
2556
2557 extent_op = locked_ref->extent_op;
2558 locked_ref->extent_op = NULL;
2559
2560 if (!ref) {
2561
2562
2563 /* All delayed refs have been processed, Go ahead
2564 * and send the head node to run_one_delayed_ref,
2565 * so that any accounting fixes can happen
2566 */
2567 ref = &locked_ref->node;
2568
2569 if (extent_op && must_insert_reserved) {
2570 btrfs_free_delayed_extent_op(extent_op);
2571 extent_op = NULL;
2572 }
2573
2574 if (extent_op) {
2575 spin_unlock(&locked_ref->lock);
2576 ret = run_delayed_extent_op(trans, root,
2577 ref, extent_op);
2578 btrfs_free_delayed_extent_op(extent_op);
2579
2580 if (ret) {
2581 /*
2582 * Need to reset must_insert_reserved if
2583 * there was an error so the abort stuff
2584 * can cleanup the reserved space
2585 * properly.
2586 */
2587 if (must_insert_reserved)
2588 locked_ref->must_insert_reserved = 1;
2589 locked_ref->processing = 0;
2590 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2591 btrfs_delayed_ref_unlock(locked_ref);
2592 return ret;
2593 }
2594 continue;
2595 }
2596
2597 /*
2598 * Need to drop our head ref lock and re-aqcuire the
2599 * delayed ref lock and then re-check to make sure
2600 * nobody got added.
2601 */
2602 spin_unlock(&locked_ref->lock);
2603 spin_lock(&delayed_refs->lock);
2604 spin_lock(&locked_ref->lock);
2605 if (!list_empty(&locked_ref->ref_list) ||
2606 locked_ref->extent_op) {
2607 spin_unlock(&locked_ref->lock);
2608 spin_unlock(&delayed_refs->lock);
2609 continue;
2610 }
2611 ref->in_tree = 0;
2612 delayed_refs->num_heads--;
2613 rb_erase(&locked_ref->href_node,
2614 &delayed_refs->href_root);
2615 spin_unlock(&delayed_refs->lock);
2616 } else {
2617 actual_count++;
2618 ref->in_tree = 0;
2619 list_del(&ref->list);
2620 }
2621 atomic_dec(&delayed_refs->num_entries);
2622
2623 if (!btrfs_delayed_ref_is_head(ref)) {
2624 /*
2625 * when we play the delayed ref, also correct the
2626 * ref_mod on head
2627 */
2628 switch (ref->action) {
2629 case BTRFS_ADD_DELAYED_REF:
2630 case BTRFS_ADD_DELAYED_EXTENT:
2631 locked_ref->node.ref_mod -= ref->ref_mod;
2632 break;
2633 case BTRFS_DROP_DELAYED_REF:
2634 locked_ref->node.ref_mod += ref->ref_mod;
2635 break;
2636 default:
2637 WARN_ON(1);
2638 }
2639 }
2640 spin_unlock(&locked_ref->lock);
2641
2642 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2643 must_insert_reserved);
2644
2645 btrfs_free_delayed_extent_op(extent_op);
2646 if (ret) {
2647 locked_ref->processing = 0;
2648 btrfs_delayed_ref_unlock(locked_ref);
2649 btrfs_put_delayed_ref(ref);
2650 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2651 return ret;
2652 }
2653
2654 /*
2655 * If this node is a head, that means all the refs in this head
2656 * have been dealt with, and we will pick the next head to deal
2657 * with, so we must unlock the head and drop it from the cluster
2658 * list before we release it.
2659 */
2660 if (btrfs_delayed_ref_is_head(ref)) {
2661 if (locked_ref->is_data &&
2662 locked_ref->total_ref_mod < 0) {
2663 spin_lock(&delayed_refs->lock);
2664 delayed_refs->pending_csums -= ref->num_bytes;
2665 spin_unlock(&delayed_refs->lock);
2666 }
2667 btrfs_delayed_ref_unlock(locked_ref);
2668 locked_ref = NULL;
2669 }
2670 btrfs_put_delayed_ref(ref);
2671 count++;
2672 cond_resched();
2673 }
2674
2675 /*
2676 * We don't want to include ref heads since we can have empty ref heads
2677 * and those will drastically skew our runtime down since we just do
2678 * accounting, no actual extent tree updates.
2679 */
2680 if (actual_count > 0) {
2681 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2682 u64 avg;
2683
2684 /*
2685 * We weigh the current average higher than our current runtime
2686 * to avoid large swings in the average.
2687 */
2688 spin_lock(&delayed_refs->lock);
2689 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2690 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2691 spin_unlock(&delayed_refs->lock);
2692 }
2693 return 0;
2694}
2695
2696#ifdef SCRAMBLE_DELAYED_REFS
2697/*
2698 * Normally delayed refs get processed in ascending bytenr order. This
2699 * correlates in most cases to the order added. To expose dependencies on this
2700 * order, we start to process the tree in the middle instead of the beginning
2701 */
2702static u64 find_middle(struct rb_root *root)
2703{
2704 struct rb_node *n = root->rb_node;
2705 struct btrfs_delayed_ref_node *entry;
2706 int alt = 1;
2707 u64 middle;
2708 u64 first = 0, last = 0;
2709
2710 n = rb_first(root);
2711 if (n) {
2712 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2713 first = entry->bytenr;
2714 }
2715 n = rb_last(root);
2716 if (n) {
2717 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2718 last = entry->bytenr;
2719 }
2720 n = root->rb_node;
2721
2722 while (n) {
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 WARN_ON(!entry->in_tree);
2725
2726 middle = entry->bytenr;
2727
2728 if (alt)
2729 n = n->rb_left;
2730 else
2731 n = n->rb_right;
2732
2733 alt = 1 - alt;
2734 }
2735 return middle;
2736}
2737#endif
2738
2739static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2740{
2741 u64 num_bytes;
2742
2743 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2744 sizeof(struct btrfs_extent_inline_ref));
2745 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2746 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2747
2748 /*
2749 * We don't ever fill up leaves all the way so multiply by 2 just to be
2750 * closer to what we're really going to want to ouse.
2751 */
2752 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2753}
2754
2755/*
2756 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2757 * would require to store the csums for that many bytes.
2758 */
2759u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2760{
2761 u64 csum_size;
2762 u64 num_csums_per_leaf;
2763 u64 num_csums;
2764
2765 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2766 num_csums_per_leaf = div64_u64(csum_size,
2767 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2768 num_csums = div64_u64(csum_bytes, root->sectorsize);
2769 num_csums += num_csums_per_leaf - 1;
2770 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2771 return num_csums;
2772}
2773
2774int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2775 struct btrfs_root *root)
2776{
2777 struct btrfs_block_rsv *global_rsv;
2778 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2779 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2780 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2781 u64 num_bytes, num_dirty_bgs_bytes;
2782 int ret = 0;
2783
2784 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2785 num_heads = heads_to_leaves(root, num_heads);
2786 if (num_heads > 1)
2787 num_bytes += (num_heads - 1) * root->nodesize;
2788 num_bytes <<= 1;
2789 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2790 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2791 num_dirty_bgs);
2792 global_rsv = &root->fs_info->global_block_rsv;
2793
2794 /*
2795 * If we can't allocate any more chunks lets make sure we have _lots_ of
2796 * wiggle room since running delayed refs can create more delayed refs.
2797 */
2798 if (global_rsv->space_info->full) {
2799 num_dirty_bgs_bytes <<= 1;
2800 num_bytes <<= 1;
2801 }
2802
2803 spin_lock(&global_rsv->lock);
2804 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2805 ret = 1;
2806 spin_unlock(&global_rsv->lock);
2807 return ret;
2808}
2809
2810int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2811 struct btrfs_root *root)
2812{
2813 struct btrfs_fs_info *fs_info = root->fs_info;
2814 u64 num_entries =
2815 atomic_read(&trans->transaction->delayed_refs.num_entries);
2816 u64 avg_runtime;
2817 u64 val;
2818
2819 smp_mb();
2820 avg_runtime = fs_info->avg_delayed_ref_runtime;
2821 val = num_entries * avg_runtime;
2822 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2823 return 1;
2824 if (val >= NSEC_PER_SEC / 2)
2825 return 2;
2826
2827 return btrfs_check_space_for_delayed_refs(trans, root);
2828}
2829
2830struct async_delayed_refs {
2831 struct btrfs_root *root;
2832 int count;
2833 int error;
2834 int sync;
2835 struct completion wait;
2836 struct btrfs_work work;
2837};
2838
2839static void delayed_ref_async_start(struct btrfs_work *work)
2840{
2841 struct async_delayed_refs *async;
2842 struct btrfs_trans_handle *trans;
2843 int ret;
2844
2845 async = container_of(work, struct async_delayed_refs, work);
2846
2847 trans = btrfs_join_transaction(async->root);
2848 if (IS_ERR(trans)) {
2849 async->error = PTR_ERR(trans);
2850 goto done;
2851 }
2852
2853 /*
2854 * trans->sync means that when we call end_transaciton, we won't
2855 * wait on delayed refs
2856 */
2857 trans->sync = true;
2858 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2859 if (ret)
2860 async->error = ret;
2861
2862 ret = btrfs_end_transaction(trans, async->root);
2863 if (ret && !async->error)
2864 async->error = ret;
2865done:
2866 if (async->sync)
2867 complete(&async->wait);
2868 else
2869 kfree(async);
2870}
2871
2872int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2873 unsigned long count, int wait)
2874{
2875 struct async_delayed_refs *async;
2876 int ret;
2877
2878 async = kmalloc(sizeof(*async), GFP_NOFS);
2879 if (!async)
2880 return -ENOMEM;
2881
2882 async->root = root->fs_info->tree_root;
2883 async->count = count;
2884 async->error = 0;
2885 if (wait)
2886 async->sync = 1;
2887 else
2888 async->sync = 0;
2889 init_completion(&async->wait);
2890
2891 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2892 delayed_ref_async_start, NULL, NULL);
2893
2894 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2895
2896 if (wait) {
2897 wait_for_completion(&async->wait);
2898 ret = async->error;
2899 kfree(async);
2900 return ret;
2901 }
2902 return 0;
2903}
2904
2905/*
2906 * this starts processing the delayed reference count updates and
2907 * extent insertions we have queued up so far. count can be
2908 * 0, which means to process everything in the tree at the start
2909 * of the run (but not newly added entries), or it can be some target
2910 * number you'd like to process.
2911 *
2912 * Returns 0 on success or if called with an aborted transaction
2913 * Returns <0 on error and aborts the transaction
2914 */
2915int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2916 struct btrfs_root *root, unsigned long count)
2917{
2918 struct rb_node *node;
2919 struct btrfs_delayed_ref_root *delayed_refs;
2920 struct btrfs_delayed_ref_head *head;
2921 int ret;
2922 int run_all = count == (unsigned long)-1;
2923 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2924
2925 /* We'll clean this up in btrfs_cleanup_transaction */
2926 if (trans->aborted)
2927 return 0;
2928
2929 if (root->fs_info->creating_free_space_tree)
2930 return 0;
2931
2932 if (root == root->fs_info->extent_root)
2933 root = root->fs_info->tree_root;
2934
2935 delayed_refs = &trans->transaction->delayed_refs;
2936 if (count == 0)
2937 count = atomic_read(&delayed_refs->num_entries) * 2;
2938
2939again:
2940#ifdef SCRAMBLE_DELAYED_REFS
2941 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2942#endif
2943 trans->can_flush_pending_bgs = false;
2944 ret = __btrfs_run_delayed_refs(trans, root, count);
2945 if (ret < 0) {
2946 btrfs_abort_transaction(trans, root, ret);
2947 return ret;
2948 }
2949
2950 if (run_all) {
2951 if (!list_empty(&trans->new_bgs))
2952 btrfs_create_pending_block_groups(trans, root);
2953
2954 spin_lock(&delayed_refs->lock);
2955 node = rb_first(&delayed_refs->href_root);
2956 if (!node) {
2957 spin_unlock(&delayed_refs->lock);
2958 goto out;
2959 }
2960 count = (unsigned long)-1;
2961
2962 while (node) {
2963 head = rb_entry(node, struct btrfs_delayed_ref_head,
2964 href_node);
2965 if (btrfs_delayed_ref_is_head(&head->node)) {
2966 struct btrfs_delayed_ref_node *ref;
2967
2968 ref = &head->node;
2969 atomic_inc(&ref->refs);
2970
2971 spin_unlock(&delayed_refs->lock);
2972 /*
2973 * Mutex was contended, block until it's
2974 * released and try again
2975 */
2976 mutex_lock(&head->mutex);
2977 mutex_unlock(&head->mutex);
2978
2979 btrfs_put_delayed_ref(ref);
2980 cond_resched();
2981 goto again;
2982 } else {
2983 WARN_ON(1);
2984 }
2985 node = rb_next(node);
2986 }
2987 spin_unlock(&delayed_refs->lock);
2988 cond_resched();
2989 goto again;
2990 }
2991out:
2992 assert_qgroups_uptodate(trans);
2993 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2994 return 0;
2995}
2996
2997int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2998 struct btrfs_root *root,
2999 u64 bytenr, u64 num_bytes, u64 flags,
3000 int level, int is_data)
3001{
3002 struct btrfs_delayed_extent_op *extent_op;
3003 int ret;
3004
3005 extent_op = btrfs_alloc_delayed_extent_op();
3006 if (!extent_op)
3007 return -ENOMEM;
3008
3009 extent_op->flags_to_set = flags;
3010 extent_op->update_flags = true;
3011 extent_op->update_key = false;
3012 extent_op->is_data = is_data ? true : false;
3013 extent_op->level = level;
3014
3015 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3016 num_bytes, extent_op);
3017 if (ret)
3018 btrfs_free_delayed_extent_op(extent_op);
3019 return ret;
3020}
3021
3022static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *root,
3024 struct btrfs_path *path,
3025 u64 objectid, u64 offset, u64 bytenr)
3026{
3027 struct btrfs_delayed_ref_head *head;
3028 struct btrfs_delayed_ref_node *ref;
3029 struct btrfs_delayed_data_ref *data_ref;
3030 struct btrfs_delayed_ref_root *delayed_refs;
3031 int ret = 0;
3032
3033 delayed_refs = &trans->transaction->delayed_refs;
3034 spin_lock(&delayed_refs->lock);
3035 head = btrfs_find_delayed_ref_head(trans, bytenr);
3036 if (!head) {
3037 spin_unlock(&delayed_refs->lock);
3038 return 0;
3039 }
3040
3041 if (!mutex_trylock(&head->mutex)) {
3042 atomic_inc(&head->node.refs);
3043 spin_unlock(&delayed_refs->lock);
3044
3045 btrfs_release_path(path);
3046
3047 /*
3048 * Mutex was contended, block until it's released and let
3049 * caller try again
3050 */
3051 mutex_lock(&head->mutex);
3052 mutex_unlock(&head->mutex);
3053 btrfs_put_delayed_ref(&head->node);
3054 return -EAGAIN;
3055 }
3056 spin_unlock(&delayed_refs->lock);
3057
3058 spin_lock(&head->lock);
3059 list_for_each_entry(ref, &head->ref_list, list) {
3060 /* If it's a shared ref we know a cross reference exists */
3061 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3062 ret = 1;
3063 break;
3064 }
3065
3066 data_ref = btrfs_delayed_node_to_data_ref(ref);
3067
3068 /*
3069 * If our ref doesn't match the one we're currently looking at
3070 * then we have a cross reference.
3071 */
3072 if (data_ref->root != root->root_key.objectid ||
3073 data_ref->objectid != objectid ||
3074 data_ref->offset != offset) {
3075 ret = 1;
3076 break;
3077 }
3078 }
3079 spin_unlock(&head->lock);
3080 mutex_unlock(&head->mutex);
3081 return ret;
3082}
3083
3084static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3085 struct btrfs_root *root,
3086 struct btrfs_path *path,
3087 u64 objectid, u64 offset, u64 bytenr)
3088{
3089 struct btrfs_root *extent_root = root->fs_info->extent_root;
3090 struct extent_buffer *leaf;
3091 struct btrfs_extent_data_ref *ref;
3092 struct btrfs_extent_inline_ref *iref;
3093 struct btrfs_extent_item *ei;
3094 struct btrfs_key key;
3095 u32 item_size;
3096 int ret;
3097
3098 key.objectid = bytenr;
3099 key.offset = (u64)-1;
3100 key.type = BTRFS_EXTENT_ITEM_KEY;
3101
3102 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3103 if (ret < 0)
3104 goto out;
3105 BUG_ON(ret == 0); /* Corruption */
3106
3107 ret = -ENOENT;
3108 if (path->slots[0] == 0)
3109 goto out;
3110
3111 path->slots[0]--;
3112 leaf = path->nodes[0];
3113 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3114
3115 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3116 goto out;
3117
3118 ret = 1;
3119 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3120#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3121 if (item_size < sizeof(*ei)) {
3122 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3123 goto out;
3124 }
3125#endif
3126 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3127
3128 if (item_size != sizeof(*ei) +
3129 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3130 goto out;
3131
3132 if (btrfs_extent_generation(leaf, ei) <=
3133 btrfs_root_last_snapshot(&root->root_item))
3134 goto out;
3135
3136 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3137 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3138 BTRFS_EXTENT_DATA_REF_KEY)
3139 goto out;
3140
3141 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3142 if (btrfs_extent_refs(leaf, ei) !=
3143 btrfs_extent_data_ref_count(leaf, ref) ||
3144 btrfs_extent_data_ref_root(leaf, ref) !=
3145 root->root_key.objectid ||
3146 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3147 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3148 goto out;
3149
3150 ret = 0;
3151out:
3152 return ret;
3153}
3154
3155int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3156 struct btrfs_root *root,
3157 u64 objectid, u64 offset, u64 bytenr)
3158{
3159 struct btrfs_path *path;
3160 int ret;
3161 int ret2;
3162
3163 path = btrfs_alloc_path();
3164 if (!path)
3165 return -ENOENT;
3166
3167 do {
3168 ret = check_committed_ref(trans, root, path, objectid,
3169 offset, bytenr);
3170 if (ret && ret != -ENOENT)
3171 goto out;
3172
3173 ret2 = check_delayed_ref(trans, root, path, objectid,
3174 offset, bytenr);
3175 } while (ret2 == -EAGAIN);
3176
3177 if (ret2 && ret2 != -ENOENT) {
3178 ret = ret2;
3179 goto out;
3180 }
3181
3182 if (ret != -ENOENT || ret2 != -ENOENT)
3183 ret = 0;
3184out:
3185 btrfs_free_path(path);
3186 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3187 WARN_ON(ret > 0);
3188 return ret;
3189}
3190
3191static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3192 struct btrfs_root *root,
3193 struct extent_buffer *buf,
3194 int full_backref, int inc)
3195{
3196 u64 bytenr;
3197 u64 num_bytes;
3198 u64 parent;
3199 u64 ref_root;
3200 u32 nritems;
3201 struct btrfs_key key;
3202 struct btrfs_file_extent_item *fi;
3203 int i;
3204 int level;
3205 int ret = 0;
3206 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3207 u64, u64, u64, u64, u64, u64);
3208
3209
3210 if (btrfs_test_is_dummy_root(root))
3211 return 0;
3212
3213 ref_root = btrfs_header_owner(buf);
3214 nritems = btrfs_header_nritems(buf);
3215 level = btrfs_header_level(buf);
3216
3217 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3218 return 0;
3219
3220 if (inc)
3221 process_func = btrfs_inc_extent_ref;
3222 else
3223 process_func = btrfs_free_extent;
3224
3225 if (full_backref)
3226 parent = buf->start;
3227 else
3228 parent = 0;
3229
3230 for (i = 0; i < nritems; i++) {
3231 if (level == 0) {
3232 btrfs_item_key_to_cpu(buf, &key, i);
3233 if (key.type != BTRFS_EXTENT_DATA_KEY)
3234 continue;
3235 fi = btrfs_item_ptr(buf, i,
3236 struct btrfs_file_extent_item);
3237 if (btrfs_file_extent_type(buf, fi) ==
3238 BTRFS_FILE_EXTENT_INLINE)
3239 continue;
3240 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3241 if (bytenr == 0)
3242 continue;
3243
3244 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3245 key.offset -= btrfs_file_extent_offset(buf, fi);
3246 ret = process_func(trans, root, bytenr, num_bytes,
3247 parent, ref_root, key.objectid,
3248 key.offset);
3249 if (ret)
3250 goto fail;
3251 } else {
3252 bytenr = btrfs_node_blockptr(buf, i);
3253 num_bytes = root->nodesize;
3254 ret = process_func(trans, root, bytenr, num_bytes,
3255 parent, ref_root, level - 1, 0);
3256 if (ret)
3257 goto fail;
3258 }
3259 }
3260 return 0;
3261fail:
3262 return ret;
3263}
3264
3265int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3266 struct extent_buffer *buf, int full_backref)
3267{
3268 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3269}
3270
3271int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3272 struct extent_buffer *buf, int full_backref)
3273{
3274 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3275}
3276
3277static int write_one_cache_group(struct btrfs_trans_handle *trans,
3278 struct btrfs_root *root,
3279 struct btrfs_path *path,
3280 struct btrfs_block_group_cache *cache)
3281{
3282 int ret;
3283 struct btrfs_root *extent_root = root->fs_info->extent_root;
3284 unsigned long bi;
3285 struct extent_buffer *leaf;
3286
3287 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3288 if (ret) {
3289 if (ret > 0)
3290 ret = -ENOENT;
3291 goto fail;
3292 }
3293
3294 leaf = path->nodes[0];
3295 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3296 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3297 btrfs_mark_buffer_dirty(leaf);
3298fail:
3299 btrfs_release_path(path);
3300 return ret;
3301
3302}
3303
3304static struct btrfs_block_group_cache *
3305next_block_group(struct btrfs_root *root,
3306 struct btrfs_block_group_cache *cache)
3307{
3308 struct rb_node *node;
3309
3310 spin_lock(&root->fs_info->block_group_cache_lock);
3311
3312 /* If our block group was removed, we need a full search. */
3313 if (RB_EMPTY_NODE(&cache->cache_node)) {
3314 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3315
3316 spin_unlock(&root->fs_info->block_group_cache_lock);
3317 btrfs_put_block_group(cache);
3318 cache = btrfs_lookup_first_block_group(root->fs_info,
3319 next_bytenr);
3320 return cache;
3321 }
3322 node = rb_next(&cache->cache_node);
3323 btrfs_put_block_group(cache);
3324 if (node) {
3325 cache = rb_entry(node, struct btrfs_block_group_cache,
3326 cache_node);
3327 btrfs_get_block_group(cache);
3328 } else
3329 cache = NULL;
3330 spin_unlock(&root->fs_info->block_group_cache_lock);
3331 return cache;
3332}
3333
3334static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3335 struct btrfs_trans_handle *trans,
3336 struct btrfs_path *path)
3337{
3338 struct btrfs_root *root = block_group->fs_info->tree_root;
3339 struct inode *inode = NULL;
3340 u64 alloc_hint = 0;
3341 int dcs = BTRFS_DC_ERROR;
3342 u64 num_pages = 0;
3343 int retries = 0;
3344 int ret = 0;
3345
3346 /*
3347 * If this block group is smaller than 100 megs don't bother caching the
3348 * block group.
3349 */
3350 if (block_group->key.offset < (100 * SZ_1M)) {
3351 spin_lock(&block_group->lock);
3352 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3353 spin_unlock(&block_group->lock);
3354 return 0;
3355 }
3356
3357 if (trans->aborted)
3358 return 0;
3359again:
3360 inode = lookup_free_space_inode(root, block_group, path);
3361 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3362 ret = PTR_ERR(inode);
3363 btrfs_release_path(path);
3364 goto out;
3365 }
3366
3367 if (IS_ERR(inode)) {
3368 BUG_ON(retries);
3369 retries++;
3370
3371 if (block_group->ro)
3372 goto out_free;
3373
3374 ret = create_free_space_inode(root, trans, block_group, path);
3375 if (ret)
3376 goto out_free;
3377 goto again;
3378 }
3379
3380 /* We've already setup this transaction, go ahead and exit */
3381 if (block_group->cache_generation == trans->transid &&
3382 i_size_read(inode)) {
3383 dcs = BTRFS_DC_SETUP;
3384 goto out_put;
3385 }
3386
3387 /*
3388 * We want to set the generation to 0, that way if anything goes wrong
3389 * from here on out we know not to trust this cache when we load up next
3390 * time.
3391 */
3392 BTRFS_I(inode)->generation = 0;
3393 ret = btrfs_update_inode(trans, root, inode);
3394 if (ret) {
3395 /*
3396 * So theoretically we could recover from this, simply set the
3397 * super cache generation to 0 so we know to invalidate the
3398 * cache, but then we'd have to keep track of the block groups
3399 * that fail this way so we know we _have_ to reset this cache
3400 * before the next commit or risk reading stale cache. So to
3401 * limit our exposure to horrible edge cases lets just abort the
3402 * transaction, this only happens in really bad situations
3403 * anyway.
3404 */
3405 btrfs_abort_transaction(trans, root, ret);
3406 goto out_put;
3407 }
3408 WARN_ON(ret);
3409
3410 if (i_size_read(inode) > 0) {
3411 ret = btrfs_check_trunc_cache_free_space(root,
3412 &root->fs_info->global_block_rsv);
3413 if (ret)
3414 goto out_put;
3415
3416 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3417 if (ret)
3418 goto out_put;
3419 }
3420
3421 spin_lock(&block_group->lock);
3422 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3423 !btrfs_test_opt(root, SPACE_CACHE)) {
3424 /*
3425 * don't bother trying to write stuff out _if_
3426 * a) we're not cached,
3427 * b) we're with nospace_cache mount option.
3428 */
3429 dcs = BTRFS_DC_WRITTEN;
3430 spin_unlock(&block_group->lock);
3431 goto out_put;
3432 }
3433 spin_unlock(&block_group->lock);
3434
3435 /*
3436 * We hit an ENOSPC when setting up the cache in this transaction, just
3437 * skip doing the setup, we've already cleared the cache so we're safe.
3438 */
3439 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3440 ret = -ENOSPC;
3441 goto out_put;
3442 }
3443
3444 /*
3445 * Try to preallocate enough space based on how big the block group is.
3446 * Keep in mind this has to include any pinned space which could end up
3447 * taking up quite a bit since it's not folded into the other space
3448 * cache.
3449 */
3450 num_pages = div_u64(block_group->key.offset, SZ_256M);
3451 if (!num_pages)
3452 num_pages = 1;
3453
3454 num_pages *= 16;
3455 num_pages *= PAGE_SIZE;
3456
3457 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3458 if (ret)
3459 goto out_put;
3460
3461 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3462 num_pages, num_pages,
3463 &alloc_hint);
3464 /*
3465 * Our cache requires contiguous chunks so that we don't modify a bunch
3466 * of metadata or split extents when writing the cache out, which means
3467 * we can enospc if we are heavily fragmented in addition to just normal
3468 * out of space conditions. So if we hit this just skip setting up any
3469 * other block groups for this transaction, maybe we'll unpin enough
3470 * space the next time around.
3471 */
3472 if (!ret)
3473 dcs = BTRFS_DC_SETUP;
3474 else if (ret == -ENOSPC)
3475 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3476 btrfs_free_reserved_data_space(inode, 0, num_pages);
3477
3478out_put:
3479 iput(inode);
3480out_free:
3481 btrfs_release_path(path);
3482out:
3483 spin_lock(&block_group->lock);
3484 if (!ret && dcs == BTRFS_DC_SETUP)
3485 block_group->cache_generation = trans->transid;
3486 block_group->disk_cache_state = dcs;
3487 spin_unlock(&block_group->lock);
3488
3489 return ret;
3490}
3491
3492int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3493 struct btrfs_root *root)
3494{
3495 struct btrfs_block_group_cache *cache, *tmp;
3496 struct btrfs_transaction *cur_trans = trans->transaction;
3497 struct btrfs_path *path;
3498
3499 if (list_empty(&cur_trans->dirty_bgs) ||
3500 !btrfs_test_opt(root, SPACE_CACHE))
3501 return 0;
3502
3503 path = btrfs_alloc_path();
3504 if (!path)
3505 return -ENOMEM;
3506
3507 /* Could add new block groups, use _safe just in case */
3508 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3509 dirty_list) {
3510 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3511 cache_save_setup(cache, trans, path);
3512 }
3513
3514 btrfs_free_path(path);
3515 return 0;
3516}
3517
3518/*
3519 * transaction commit does final block group cache writeback during a
3520 * critical section where nothing is allowed to change the FS. This is
3521 * required in order for the cache to actually match the block group,
3522 * but can introduce a lot of latency into the commit.
3523 *
3524 * So, btrfs_start_dirty_block_groups is here to kick off block group
3525 * cache IO. There's a chance we'll have to redo some of it if the
3526 * block group changes again during the commit, but it greatly reduces
3527 * the commit latency by getting rid of the easy block groups while
3528 * we're still allowing others to join the commit.
3529 */
3530int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3531 struct btrfs_root *root)
3532{
3533 struct btrfs_block_group_cache *cache;
3534 struct btrfs_transaction *cur_trans = trans->transaction;
3535 int ret = 0;
3536 int should_put;
3537 struct btrfs_path *path = NULL;
3538 LIST_HEAD(dirty);
3539 struct list_head *io = &cur_trans->io_bgs;
3540 int num_started = 0;
3541 int loops = 0;
3542
3543 spin_lock(&cur_trans->dirty_bgs_lock);
3544 if (list_empty(&cur_trans->dirty_bgs)) {
3545 spin_unlock(&cur_trans->dirty_bgs_lock);
3546 return 0;
3547 }
3548 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3549 spin_unlock(&cur_trans->dirty_bgs_lock);
3550
3551again:
3552 /*
3553 * make sure all the block groups on our dirty list actually
3554 * exist
3555 */
3556 btrfs_create_pending_block_groups(trans, root);
3557
3558 if (!path) {
3559 path = btrfs_alloc_path();
3560 if (!path)
3561 return -ENOMEM;
3562 }
3563
3564 /*
3565 * cache_write_mutex is here only to save us from balance or automatic
3566 * removal of empty block groups deleting this block group while we are
3567 * writing out the cache
3568 */
3569 mutex_lock(&trans->transaction->cache_write_mutex);
3570 while (!list_empty(&dirty)) {
3571 cache = list_first_entry(&dirty,
3572 struct btrfs_block_group_cache,
3573 dirty_list);
3574 /*
3575 * this can happen if something re-dirties a block
3576 * group that is already under IO. Just wait for it to
3577 * finish and then do it all again
3578 */
3579 if (!list_empty(&cache->io_list)) {
3580 list_del_init(&cache->io_list);
3581 btrfs_wait_cache_io(root, trans, cache,
3582 &cache->io_ctl, path,
3583 cache->key.objectid);
3584 btrfs_put_block_group(cache);
3585 }
3586
3587
3588 /*
3589 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3590 * if it should update the cache_state. Don't delete
3591 * until after we wait.
3592 *
3593 * Since we're not running in the commit critical section
3594 * we need the dirty_bgs_lock to protect from update_block_group
3595 */
3596 spin_lock(&cur_trans->dirty_bgs_lock);
3597 list_del_init(&cache->dirty_list);
3598 spin_unlock(&cur_trans->dirty_bgs_lock);
3599
3600 should_put = 1;
3601
3602 cache_save_setup(cache, trans, path);
3603
3604 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3605 cache->io_ctl.inode = NULL;
3606 ret = btrfs_write_out_cache(root, trans, cache, path);
3607 if (ret == 0 && cache->io_ctl.inode) {
3608 num_started++;
3609 should_put = 0;
3610
3611 /*
3612 * the cache_write_mutex is protecting
3613 * the io_list
3614 */
3615 list_add_tail(&cache->io_list, io);
3616 } else {
3617 /*
3618 * if we failed to write the cache, the
3619 * generation will be bad and life goes on
3620 */
3621 ret = 0;
3622 }
3623 }
3624 if (!ret) {
3625 ret = write_one_cache_group(trans, root, path, cache);
3626 /*
3627 * Our block group might still be attached to the list
3628 * of new block groups in the transaction handle of some
3629 * other task (struct btrfs_trans_handle->new_bgs). This
3630 * means its block group item isn't yet in the extent
3631 * tree. If this happens ignore the error, as we will
3632 * try again later in the critical section of the
3633 * transaction commit.
3634 */
3635 if (ret == -ENOENT) {
3636 ret = 0;
3637 spin_lock(&cur_trans->dirty_bgs_lock);
3638 if (list_empty(&cache->dirty_list)) {
3639 list_add_tail(&cache->dirty_list,
3640 &cur_trans->dirty_bgs);
3641 btrfs_get_block_group(cache);
3642 }
3643 spin_unlock(&cur_trans->dirty_bgs_lock);
3644 } else if (ret) {
3645 btrfs_abort_transaction(trans, root, ret);
3646 }
3647 }
3648
3649 /* if its not on the io list, we need to put the block group */
3650 if (should_put)
3651 btrfs_put_block_group(cache);
3652
3653 if (ret)
3654 break;
3655
3656 /*
3657 * Avoid blocking other tasks for too long. It might even save
3658 * us from writing caches for block groups that are going to be
3659 * removed.
3660 */
3661 mutex_unlock(&trans->transaction->cache_write_mutex);
3662 mutex_lock(&trans->transaction->cache_write_mutex);
3663 }
3664 mutex_unlock(&trans->transaction->cache_write_mutex);
3665
3666 /*
3667 * go through delayed refs for all the stuff we've just kicked off
3668 * and then loop back (just once)
3669 */
3670 ret = btrfs_run_delayed_refs(trans, root, 0);
3671 if (!ret && loops == 0) {
3672 loops++;
3673 spin_lock(&cur_trans->dirty_bgs_lock);
3674 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3675 /*
3676 * dirty_bgs_lock protects us from concurrent block group
3677 * deletes too (not just cache_write_mutex).
3678 */
3679 if (!list_empty(&dirty)) {
3680 spin_unlock(&cur_trans->dirty_bgs_lock);
3681 goto again;
3682 }
3683 spin_unlock(&cur_trans->dirty_bgs_lock);
3684 }
3685
3686 btrfs_free_path(path);
3687 return ret;
3688}
3689
3690int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3691 struct btrfs_root *root)
3692{
3693 struct btrfs_block_group_cache *cache;
3694 struct btrfs_transaction *cur_trans = trans->transaction;
3695 int ret = 0;
3696 int should_put;
3697 struct btrfs_path *path;
3698 struct list_head *io = &cur_trans->io_bgs;
3699 int num_started = 0;
3700
3701 path = btrfs_alloc_path();
3702 if (!path)
3703 return -ENOMEM;
3704
3705 /*
3706 * Even though we are in the critical section of the transaction commit,
3707 * we can still have concurrent tasks adding elements to this
3708 * transaction's list of dirty block groups. These tasks correspond to
3709 * endio free space workers started when writeback finishes for a
3710 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3711 * allocate new block groups as a result of COWing nodes of the root
3712 * tree when updating the free space inode. The writeback for the space
3713 * caches is triggered by an earlier call to
3714 * btrfs_start_dirty_block_groups() and iterations of the following
3715 * loop.
3716 * Also we want to do the cache_save_setup first and then run the
3717 * delayed refs to make sure we have the best chance at doing this all
3718 * in one shot.
3719 */
3720 spin_lock(&cur_trans->dirty_bgs_lock);
3721 while (!list_empty(&cur_trans->dirty_bgs)) {
3722 cache = list_first_entry(&cur_trans->dirty_bgs,
3723 struct btrfs_block_group_cache,
3724 dirty_list);
3725
3726 /*
3727 * this can happen if cache_save_setup re-dirties a block
3728 * group that is already under IO. Just wait for it to
3729 * finish and then do it all again
3730 */
3731 if (!list_empty(&cache->io_list)) {
3732 spin_unlock(&cur_trans->dirty_bgs_lock);
3733 list_del_init(&cache->io_list);
3734 btrfs_wait_cache_io(root, trans, cache,
3735 &cache->io_ctl, path,
3736 cache->key.objectid);
3737 btrfs_put_block_group(cache);
3738 spin_lock(&cur_trans->dirty_bgs_lock);
3739 }
3740
3741 /*
3742 * don't remove from the dirty list until after we've waited
3743 * on any pending IO
3744 */
3745 list_del_init(&cache->dirty_list);
3746 spin_unlock(&cur_trans->dirty_bgs_lock);
3747 should_put = 1;
3748
3749 cache_save_setup(cache, trans, path);
3750
3751 if (!ret)
3752 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3753
3754 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3755 cache->io_ctl.inode = NULL;
3756 ret = btrfs_write_out_cache(root, trans, cache, path);
3757 if (ret == 0 && cache->io_ctl.inode) {
3758 num_started++;
3759 should_put = 0;
3760 list_add_tail(&cache->io_list, io);
3761 } else {
3762 /*
3763 * if we failed to write the cache, the
3764 * generation will be bad and life goes on
3765 */
3766 ret = 0;
3767 }
3768 }
3769 if (!ret) {
3770 ret = write_one_cache_group(trans, root, path, cache);
3771 /*
3772 * One of the free space endio workers might have
3773 * created a new block group while updating a free space
3774 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3775 * and hasn't released its transaction handle yet, in
3776 * which case the new block group is still attached to
3777 * its transaction handle and its creation has not
3778 * finished yet (no block group item in the extent tree
3779 * yet, etc). If this is the case, wait for all free
3780 * space endio workers to finish and retry. This is a
3781 * a very rare case so no need for a more efficient and
3782 * complex approach.
3783 */
3784 if (ret == -ENOENT) {
3785 wait_event(cur_trans->writer_wait,
3786 atomic_read(&cur_trans->num_writers) == 1);
3787 ret = write_one_cache_group(trans, root, path,
3788 cache);
3789 }
3790 if (ret)
3791 btrfs_abort_transaction(trans, root, ret);
3792 }
3793
3794 /* if its not on the io list, we need to put the block group */
3795 if (should_put)
3796 btrfs_put_block_group(cache);
3797 spin_lock(&cur_trans->dirty_bgs_lock);
3798 }
3799 spin_unlock(&cur_trans->dirty_bgs_lock);
3800
3801 while (!list_empty(io)) {
3802 cache = list_first_entry(io, struct btrfs_block_group_cache,
3803 io_list);
3804 list_del_init(&cache->io_list);
3805 btrfs_wait_cache_io(root, trans, cache,
3806 &cache->io_ctl, path, cache->key.objectid);
3807 btrfs_put_block_group(cache);
3808 }
3809
3810 btrfs_free_path(path);
3811 return ret;
3812}
3813
3814int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3815{
3816 struct btrfs_block_group_cache *block_group;
3817 int readonly = 0;
3818
3819 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3820 if (!block_group || block_group->ro)
3821 readonly = 1;
3822 if (block_group)
3823 btrfs_put_block_group(block_group);
3824 return readonly;
3825}
3826
3827static const char *alloc_name(u64 flags)
3828{
3829 switch (flags) {
3830 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3831 return "mixed";
3832 case BTRFS_BLOCK_GROUP_METADATA:
3833 return "metadata";
3834 case BTRFS_BLOCK_GROUP_DATA:
3835 return "data";
3836 case BTRFS_BLOCK_GROUP_SYSTEM:
3837 return "system";
3838 default:
3839 WARN_ON(1);
3840 return "invalid-combination";
3841 };
3842}
3843
3844static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3845 u64 total_bytes, u64 bytes_used,
3846 struct btrfs_space_info **space_info)
3847{
3848 struct btrfs_space_info *found;
3849 int i;
3850 int factor;
3851 int ret;
3852
3853 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3854 BTRFS_BLOCK_GROUP_RAID10))
3855 factor = 2;
3856 else
3857 factor = 1;
3858
3859 found = __find_space_info(info, flags);
3860 if (found) {
3861 spin_lock(&found->lock);
3862 found->total_bytes += total_bytes;
3863 found->disk_total += total_bytes * factor;
3864 found->bytes_used += bytes_used;
3865 found->disk_used += bytes_used * factor;
3866 if (total_bytes > 0)
3867 found->full = 0;
3868 spin_unlock(&found->lock);
3869 *space_info = found;
3870 return 0;
3871 }
3872 found = kzalloc(sizeof(*found), GFP_NOFS);
3873 if (!found)
3874 return -ENOMEM;
3875
3876 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3877 if (ret) {
3878 kfree(found);
3879 return ret;
3880 }
3881
3882 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3883 INIT_LIST_HEAD(&found->block_groups[i]);
3884 init_rwsem(&found->groups_sem);
3885 spin_lock_init(&found->lock);
3886 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3887 found->total_bytes = total_bytes;
3888 found->disk_total = total_bytes * factor;
3889 found->bytes_used = bytes_used;
3890 found->disk_used = bytes_used * factor;
3891 found->bytes_pinned = 0;
3892 found->bytes_reserved = 0;
3893 found->bytes_readonly = 0;
3894 found->bytes_may_use = 0;
3895 found->full = 0;
3896 found->max_extent_size = 0;
3897 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3898 found->chunk_alloc = 0;
3899 found->flush = 0;
3900 init_waitqueue_head(&found->wait);
3901 INIT_LIST_HEAD(&found->ro_bgs);
3902
3903 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3904 info->space_info_kobj, "%s",
3905 alloc_name(found->flags));
3906 if (ret) {
3907 kfree(found);
3908 return ret;
3909 }
3910
3911 *space_info = found;
3912 list_add_rcu(&found->list, &info->space_info);
3913 if (flags & BTRFS_BLOCK_GROUP_DATA)
3914 info->data_sinfo = found;
3915
3916 return ret;
3917}
3918
3919static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3920{
3921 u64 extra_flags = chunk_to_extended(flags) &
3922 BTRFS_EXTENDED_PROFILE_MASK;
3923
3924 write_seqlock(&fs_info->profiles_lock);
3925 if (flags & BTRFS_BLOCK_GROUP_DATA)
3926 fs_info->avail_data_alloc_bits |= extra_flags;
3927 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3928 fs_info->avail_metadata_alloc_bits |= extra_flags;
3929 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3930 fs_info->avail_system_alloc_bits |= extra_flags;
3931 write_sequnlock(&fs_info->profiles_lock);
3932}
3933
3934/*
3935 * returns target flags in extended format or 0 if restripe for this
3936 * chunk_type is not in progress
3937 *
3938 * should be called with either volume_mutex or balance_lock held
3939 */
3940static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3941{
3942 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3943 u64 target = 0;
3944
3945 if (!bctl)
3946 return 0;
3947
3948 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3949 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3950 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3951 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3952 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3953 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3954 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3955 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3956 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3957 }
3958
3959 return target;
3960}
3961
3962/*
3963 * @flags: available profiles in extended format (see ctree.h)
3964 *
3965 * Returns reduced profile in chunk format. If profile changing is in
3966 * progress (either running or paused) picks the target profile (if it's
3967 * already available), otherwise falls back to plain reducing.
3968 */
3969static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3970{
3971 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3972 u64 target;
3973 u64 raid_type;
3974 u64 allowed = 0;
3975
3976 /*
3977 * see if restripe for this chunk_type is in progress, if so
3978 * try to reduce to the target profile
3979 */
3980 spin_lock(&root->fs_info->balance_lock);
3981 target = get_restripe_target(root->fs_info, flags);
3982 if (target) {
3983 /* pick target profile only if it's already available */
3984 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3985 spin_unlock(&root->fs_info->balance_lock);
3986 return extended_to_chunk(target);
3987 }
3988 }
3989 spin_unlock(&root->fs_info->balance_lock);
3990
3991 /* First, mask out the RAID levels which aren't possible */
3992 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3993 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3994 allowed |= btrfs_raid_group[raid_type];
3995 }
3996 allowed &= flags;
3997
3998 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3999 allowed = BTRFS_BLOCK_GROUP_RAID6;
4000 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4001 allowed = BTRFS_BLOCK_GROUP_RAID5;
4002 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4003 allowed = BTRFS_BLOCK_GROUP_RAID10;
4004 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4005 allowed = BTRFS_BLOCK_GROUP_RAID1;
4006 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4007 allowed = BTRFS_BLOCK_GROUP_RAID0;
4008
4009 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4010
4011 return extended_to_chunk(flags | allowed);
4012}
4013
4014static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4015{
4016 unsigned seq;
4017 u64 flags;
4018
4019 do {
4020 flags = orig_flags;
4021 seq = read_seqbegin(&root->fs_info->profiles_lock);
4022
4023 if (flags & BTRFS_BLOCK_GROUP_DATA)
4024 flags |= root->fs_info->avail_data_alloc_bits;
4025 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4026 flags |= root->fs_info->avail_system_alloc_bits;
4027 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4028 flags |= root->fs_info->avail_metadata_alloc_bits;
4029 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4030
4031 return btrfs_reduce_alloc_profile(root, flags);
4032}
4033
4034u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4035{
4036 u64 flags;
4037 u64 ret;
4038
4039 if (data)
4040 flags = BTRFS_BLOCK_GROUP_DATA;
4041 else if (root == root->fs_info->chunk_root)
4042 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4043 else
4044 flags = BTRFS_BLOCK_GROUP_METADATA;
4045
4046 ret = get_alloc_profile(root, flags);
4047 return ret;
4048}
4049
4050int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4051{
4052 struct btrfs_space_info *data_sinfo;
4053 struct btrfs_root *root = BTRFS_I(inode)->root;
4054 struct btrfs_fs_info *fs_info = root->fs_info;
4055 u64 used;
4056 int ret = 0;
4057 int need_commit = 2;
4058 int have_pinned_space;
4059
4060 /* make sure bytes are sectorsize aligned */
4061 bytes = ALIGN(bytes, root->sectorsize);
4062
4063 if (btrfs_is_free_space_inode(inode)) {
4064 need_commit = 0;
4065 ASSERT(current->journal_info);
4066 }
4067
4068 data_sinfo = fs_info->data_sinfo;
4069 if (!data_sinfo)
4070 goto alloc;
4071
4072again:
4073 /* make sure we have enough space to handle the data first */
4074 spin_lock(&data_sinfo->lock);
4075 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4076 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4077 data_sinfo->bytes_may_use;
4078
4079 if (used + bytes > data_sinfo->total_bytes) {
4080 struct btrfs_trans_handle *trans;
4081
4082 /*
4083 * if we don't have enough free bytes in this space then we need
4084 * to alloc a new chunk.
4085 */
4086 if (!data_sinfo->full) {
4087 u64 alloc_target;
4088
4089 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4090 spin_unlock(&data_sinfo->lock);
4091alloc:
4092 alloc_target = btrfs_get_alloc_profile(root, 1);
4093 /*
4094 * It is ugly that we don't call nolock join
4095 * transaction for the free space inode case here.
4096 * But it is safe because we only do the data space
4097 * reservation for the free space cache in the
4098 * transaction context, the common join transaction
4099 * just increase the counter of the current transaction
4100 * handler, doesn't try to acquire the trans_lock of
4101 * the fs.
4102 */
4103 trans = btrfs_join_transaction(root);
4104 if (IS_ERR(trans))
4105 return PTR_ERR(trans);
4106
4107 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4108 alloc_target,
4109 CHUNK_ALLOC_NO_FORCE);
4110 btrfs_end_transaction(trans, root);
4111 if (ret < 0) {
4112 if (ret != -ENOSPC)
4113 return ret;
4114 else {
4115 have_pinned_space = 1;
4116 goto commit_trans;
4117 }
4118 }
4119
4120 if (!data_sinfo)
4121 data_sinfo = fs_info->data_sinfo;
4122
4123 goto again;
4124 }
4125
4126 /*
4127 * If we don't have enough pinned space to deal with this
4128 * allocation, and no removed chunk in current transaction,
4129 * don't bother committing the transaction.
4130 */
4131 have_pinned_space = percpu_counter_compare(
4132 &data_sinfo->total_bytes_pinned,
4133 used + bytes - data_sinfo->total_bytes);
4134 spin_unlock(&data_sinfo->lock);
4135
4136 /* commit the current transaction and try again */
4137commit_trans:
4138 if (need_commit &&
4139 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4140 need_commit--;
4141
4142 if (need_commit > 0) {
4143 btrfs_start_delalloc_roots(fs_info, 0, -1);
4144 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4145 }
4146
4147 trans = btrfs_join_transaction(root);
4148 if (IS_ERR(trans))
4149 return PTR_ERR(trans);
4150 if (have_pinned_space >= 0 ||
4151 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4152 &trans->transaction->flags) ||
4153 need_commit > 0) {
4154 ret = btrfs_commit_transaction(trans, root);
4155 if (ret)
4156 return ret;
4157 /*
4158 * The cleaner kthread might still be doing iput
4159 * operations. Wait for it to finish so that
4160 * more space is released.
4161 */
4162 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4163 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4164 goto again;
4165 } else {
4166 btrfs_end_transaction(trans, root);
4167 }
4168 }
4169
4170 trace_btrfs_space_reservation(root->fs_info,
4171 "space_info:enospc",
4172 data_sinfo->flags, bytes, 1);
4173 return -ENOSPC;
4174 }
4175 data_sinfo->bytes_may_use += bytes;
4176 trace_btrfs_space_reservation(root->fs_info, "space_info",
4177 data_sinfo->flags, bytes, 1);
4178 spin_unlock(&data_sinfo->lock);
4179
4180 return ret;
4181}
4182
4183/*
4184 * New check_data_free_space() with ability for precious data reservation
4185 * Will replace old btrfs_check_data_free_space(), but for patch split,
4186 * add a new function first and then replace it.
4187 */
4188int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4189{
4190 struct btrfs_root *root = BTRFS_I(inode)->root;
4191 int ret;
4192
4193 /* align the range */
4194 len = round_up(start + len, root->sectorsize) -
4195 round_down(start, root->sectorsize);
4196 start = round_down(start, root->sectorsize);
4197
4198 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4199 if (ret < 0)
4200 return ret;
4201
4202 /*
4203 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4204 *
4205 * TODO: Find a good method to avoid reserve data space for NOCOW
4206 * range, but don't impact performance on quota disable case.
4207 */
4208 ret = btrfs_qgroup_reserve_data(inode, start, len);
4209 return ret;
4210}
4211
4212/*
4213 * Called if we need to clear a data reservation for this inode
4214 * Normally in a error case.
4215 *
4216 * This one will *NOT* use accurate qgroup reserved space API, just for case
4217 * which we can't sleep and is sure it won't affect qgroup reserved space.
4218 * Like clear_bit_hook().
4219 */
4220void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4221 u64 len)
4222{
4223 struct btrfs_root *root = BTRFS_I(inode)->root;
4224 struct btrfs_space_info *data_sinfo;
4225
4226 /* Make sure the range is aligned to sectorsize */
4227 len = round_up(start + len, root->sectorsize) -
4228 round_down(start, root->sectorsize);
4229 start = round_down(start, root->sectorsize);
4230
4231 data_sinfo = root->fs_info->data_sinfo;
4232 spin_lock(&data_sinfo->lock);
4233 if (WARN_ON(data_sinfo->bytes_may_use < len))
4234 data_sinfo->bytes_may_use = 0;
4235 else
4236 data_sinfo->bytes_may_use -= len;
4237 trace_btrfs_space_reservation(root->fs_info, "space_info",
4238 data_sinfo->flags, len, 0);
4239 spin_unlock(&data_sinfo->lock);
4240}
4241
4242/*
4243 * Called if we need to clear a data reservation for this inode
4244 * Normally in a error case.
4245 *
4246 * This one will handle the per-indoe data rsv map for accurate reserved
4247 * space framework.
4248 */
4249void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4250{
4251 btrfs_free_reserved_data_space_noquota(inode, start, len);
4252 btrfs_qgroup_free_data(inode, start, len);
4253}
4254
4255static void force_metadata_allocation(struct btrfs_fs_info *info)
4256{
4257 struct list_head *head = &info->space_info;
4258 struct btrfs_space_info *found;
4259
4260 rcu_read_lock();
4261 list_for_each_entry_rcu(found, head, list) {
4262 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4263 found->force_alloc = CHUNK_ALLOC_FORCE;
4264 }
4265 rcu_read_unlock();
4266}
4267
4268static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4269{
4270 return (global->size << 1);
4271}
4272
4273static int should_alloc_chunk(struct btrfs_root *root,
4274 struct btrfs_space_info *sinfo, int force)
4275{
4276 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4277 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4278 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4279 u64 thresh;
4280
4281 if (force == CHUNK_ALLOC_FORCE)
4282 return 1;
4283
4284 /*
4285 * We need to take into account the global rsv because for all intents
4286 * and purposes it's used space. Don't worry about locking the
4287 * global_rsv, it doesn't change except when the transaction commits.
4288 */
4289 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4290 num_allocated += calc_global_rsv_need_space(global_rsv);
4291
4292 /*
4293 * in limited mode, we want to have some free space up to
4294 * about 1% of the FS size.
4295 */
4296 if (force == CHUNK_ALLOC_LIMITED) {
4297 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4298 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4299
4300 if (num_bytes - num_allocated < thresh)
4301 return 1;
4302 }
4303
4304 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4305 return 0;
4306 return 1;
4307}
4308
4309static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4310{
4311 u64 num_dev;
4312
4313 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4314 BTRFS_BLOCK_GROUP_RAID0 |
4315 BTRFS_BLOCK_GROUP_RAID5 |
4316 BTRFS_BLOCK_GROUP_RAID6))
4317 num_dev = root->fs_info->fs_devices->rw_devices;
4318 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4319 num_dev = 2;
4320 else
4321 num_dev = 1; /* DUP or single */
4322
4323 return num_dev;
4324}
4325
4326/*
4327 * If @is_allocation is true, reserve space in the system space info necessary
4328 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4329 * removing a chunk.
4330 */
4331void check_system_chunk(struct btrfs_trans_handle *trans,
4332 struct btrfs_root *root,
4333 u64 type)
4334{
4335 struct btrfs_space_info *info;
4336 u64 left;
4337 u64 thresh;
4338 int ret = 0;
4339 u64 num_devs;
4340
4341 /*
4342 * Needed because we can end up allocating a system chunk and for an
4343 * atomic and race free space reservation in the chunk block reserve.
4344 */
4345 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4346
4347 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4348 spin_lock(&info->lock);
4349 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4350 info->bytes_reserved - info->bytes_readonly -
4351 info->bytes_may_use;
4352 spin_unlock(&info->lock);
4353
4354 num_devs = get_profile_num_devs(root, type);
4355
4356 /* num_devs device items to update and 1 chunk item to add or remove */
4357 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4358 btrfs_calc_trans_metadata_size(root, 1);
4359
4360 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4361 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4362 left, thresh, type);
4363 dump_space_info(info, 0, 0);
4364 }
4365
4366 if (left < thresh) {
4367 u64 flags;
4368
4369 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4370 /*
4371 * Ignore failure to create system chunk. We might end up not
4372 * needing it, as we might not need to COW all nodes/leafs from
4373 * the paths we visit in the chunk tree (they were already COWed
4374 * or created in the current transaction for example).
4375 */
4376 ret = btrfs_alloc_chunk(trans, root, flags);
4377 }
4378
4379 if (!ret) {
4380 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4381 &root->fs_info->chunk_block_rsv,
4382 thresh, BTRFS_RESERVE_NO_FLUSH);
4383 if (!ret)
4384 trans->chunk_bytes_reserved += thresh;
4385 }
4386}
4387
4388static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4389 struct btrfs_root *extent_root, u64 flags, int force)
4390{
4391 struct btrfs_space_info *space_info;
4392 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4393 int wait_for_alloc = 0;
4394 int ret = 0;
4395
4396 /* Don't re-enter if we're already allocating a chunk */
4397 if (trans->allocating_chunk)
4398 return -ENOSPC;
4399
4400 space_info = __find_space_info(extent_root->fs_info, flags);
4401 if (!space_info) {
4402 ret = update_space_info(extent_root->fs_info, flags,
4403 0, 0, &space_info);
4404 BUG_ON(ret); /* -ENOMEM */
4405 }
4406 BUG_ON(!space_info); /* Logic error */
4407
4408again:
4409 spin_lock(&space_info->lock);
4410 if (force < space_info->force_alloc)
4411 force = space_info->force_alloc;
4412 if (space_info->full) {
4413 if (should_alloc_chunk(extent_root, space_info, force))
4414 ret = -ENOSPC;
4415 else
4416 ret = 0;
4417 spin_unlock(&space_info->lock);
4418 return ret;
4419 }
4420
4421 if (!should_alloc_chunk(extent_root, space_info, force)) {
4422 spin_unlock(&space_info->lock);
4423 return 0;
4424 } else if (space_info->chunk_alloc) {
4425 wait_for_alloc = 1;
4426 } else {
4427 space_info->chunk_alloc = 1;
4428 }
4429
4430 spin_unlock(&space_info->lock);
4431
4432 mutex_lock(&fs_info->chunk_mutex);
4433
4434 /*
4435 * The chunk_mutex is held throughout the entirety of a chunk
4436 * allocation, so once we've acquired the chunk_mutex we know that the
4437 * other guy is done and we need to recheck and see if we should
4438 * allocate.
4439 */
4440 if (wait_for_alloc) {
4441 mutex_unlock(&fs_info->chunk_mutex);
4442 wait_for_alloc = 0;
4443 goto again;
4444 }
4445
4446 trans->allocating_chunk = true;
4447
4448 /*
4449 * If we have mixed data/metadata chunks we want to make sure we keep
4450 * allocating mixed chunks instead of individual chunks.
4451 */
4452 if (btrfs_mixed_space_info(space_info))
4453 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4454
4455 /*
4456 * if we're doing a data chunk, go ahead and make sure that
4457 * we keep a reasonable number of metadata chunks allocated in the
4458 * FS as well.
4459 */
4460 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4461 fs_info->data_chunk_allocations++;
4462 if (!(fs_info->data_chunk_allocations %
4463 fs_info->metadata_ratio))
4464 force_metadata_allocation(fs_info);
4465 }
4466
4467 /*
4468 * Check if we have enough space in SYSTEM chunk because we may need
4469 * to update devices.
4470 */
4471 check_system_chunk(trans, extent_root, flags);
4472
4473 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4474 trans->allocating_chunk = false;
4475
4476 spin_lock(&space_info->lock);
4477 if (ret < 0 && ret != -ENOSPC)
4478 goto out;
4479 if (ret)
4480 space_info->full = 1;
4481 else
4482 ret = 1;
4483
4484 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4485out:
4486 space_info->chunk_alloc = 0;
4487 spin_unlock(&space_info->lock);
4488 mutex_unlock(&fs_info->chunk_mutex);
4489 /*
4490 * When we allocate a new chunk we reserve space in the chunk block
4491 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4492 * add new nodes/leafs to it if we end up needing to do it when
4493 * inserting the chunk item and updating device items as part of the
4494 * second phase of chunk allocation, performed by
4495 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4496 * large number of new block groups to create in our transaction
4497 * handle's new_bgs list to avoid exhausting the chunk block reserve
4498 * in extreme cases - like having a single transaction create many new
4499 * block groups when starting to write out the free space caches of all
4500 * the block groups that were made dirty during the lifetime of the
4501 * transaction.
4502 */
4503 if (trans->can_flush_pending_bgs &&
4504 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4505 btrfs_create_pending_block_groups(trans, trans->root);
4506 btrfs_trans_release_chunk_metadata(trans);
4507 }
4508 return ret;
4509}
4510
4511static int can_overcommit(struct btrfs_root *root,
4512 struct btrfs_space_info *space_info, u64 bytes,
4513 enum btrfs_reserve_flush_enum flush)
4514{
4515 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4516 u64 profile = btrfs_get_alloc_profile(root, 0);
4517 u64 space_size;
4518 u64 avail;
4519 u64 used;
4520
4521 used = space_info->bytes_used + space_info->bytes_reserved +
4522 space_info->bytes_pinned + space_info->bytes_readonly;
4523
4524 /*
4525 * We only want to allow over committing if we have lots of actual space
4526 * free, but if we don't have enough space to handle the global reserve
4527 * space then we could end up having a real enospc problem when trying
4528 * to allocate a chunk or some other such important allocation.
4529 */
4530 spin_lock(&global_rsv->lock);
4531 space_size = calc_global_rsv_need_space(global_rsv);
4532 spin_unlock(&global_rsv->lock);
4533 if (used + space_size >= space_info->total_bytes)
4534 return 0;
4535
4536 used += space_info->bytes_may_use;
4537
4538 spin_lock(&root->fs_info->free_chunk_lock);
4539 avail = root->fs_info->free_chunk_space;
4540 spin_unlock(&root->fs_info->free_chunk_lock);
4541
4542 /*
4543 * If we have dup, raid1 or raid10 then only half of the free
4544 * space is actually useable. For raid56, the space info used
4545 * doesn't include the parity drive, so we don't have to
4546 * change the math
4547 */
4548 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4549 BTRFS_BLOCK_GROUP_RAID1 |
4550 BTRFS_BLOCK_GROUP_RAID10))
4551 avail >>= 1;
4552
4553 /*
4554 * If we aren't flushing all things, let us overcommit up to
4555 * 1/2th of the space. If we can flush, don't let us overcommit
4556 * too much, let it overcommit up to 1/8 of the space.
4557 */
4558 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4559 avail >>= 3;
4560 else
4561 avail >>= 1;
4562
4563 if (used + bytes < space_info->total_bytes + avail)
4564 return 1;
4565 return 0;
4566}
4567
4568static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4569 unsigned long nr_pages, int nr_items)
4570{
4571 struct super_block *sb = root->fs_info->sb;
4572
4573 if (down_read_trylock(&sb->s_umount)) {
4574 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4575 up_read(&sb->s_umount);
4576 } else {
4577 /*
4578 * We needn't worry the filesystem going from r/w to r/o though
4579 * we don't acquire ->s_umount mutex, because the filesystem
4580 * should guarantee the delalloc inodes list be empty after
4581 * the filesystem is readonly(all dirty pages are written to
4582 * the disk).
4583 */
4584 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4585 if (!current->journal_info)
4586 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4587 0, (u64)-1);
4588 }
4589}
4590
4591static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4592{
4593 u64 bytes;
4594 int nr;
4595
4596 bytes = btrfs_calc_trans_metadata_size(root, 1);
4597 nr = (int)div64_u64(to_reclaim, bytes);
4598 if (!nr)
4599 nr = 1;
4600 return nr;
4601}
4602
4603#define EXTENT_SIZE_PER_ITEM SZ_256K
4604
4605/*
4606 * shrink metadata reservation for delalloc
4607 */
4608static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4609 bool wait_ordered)
4610{
4611 struct btrfs_block_rsv *block_rsv;
4612 struct btrfs_space_info *space_info;
4613 struct btrfs_trans_handle *trans;
4614 u64 delalloc_bytes;
4615 u64 max_reclaim;
4616 long time_left;
4617 unsigned long nr_pages;
4618 int loops;
4619 int items;
4620 enum btrfs_reserve_flush_enum flush;
4621
4622 /* Calc the number of the pages we need flush for space reservation */
4623 items = calc_reclaim_items_nr(root, to_reclaim);
4624 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4625
4626 trans = (struct btrfs_trans_handle *)current->journal_info;
4627 block_rsv = &root->fs_info->delalloc_block_rsv;
4628 space_info = block_rsv->space_info;
4629
4630 delalloc_bytes = percpu_counter_sum_positive(
4631 &root->fs_info->delalloc_bytes);
4632 if (delalloc_bytes == 0) {
4633 if (trans)
4634 return;
4635 if (wait_ordered)
4636 btrfs_wait_ordered_roots(root->fs_info, items,
4637 0, (u64)-1);
4638 return;
4639 }
4640
4641 loops = 0;
4642 while (delalloc_bytes && loops < 3) {
4643 max_reclaim = min(delalloc_bytes, to_reclaim);
4644 nr_pages = max_reclaim >> PAGE_SHIFT;
4645 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4646 /*
4647 * We need to wait for the async pages to actually start before
4648 * we do anything.
4649 */
4650 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4651 if (!max_reclaim)
4652 goto skip_async;
4653
4654 if (max_reclaim <= nr_pages)
4655 max_reclaim = 0;
4656 else
4657 max_reclaim -= nr_pages;
4658
4659 wait_event(root->fs_info->async_submit_wait,
4660 atomic_read(&root->fs_info->async_delalloc_pages) <=
4661 (int)max_reclaim);
4662skip_async:
4663 if (!trans)
4664 flush = BTRFS_RESERVE_FLUSH_ALL;
4665 else
4666 flush = BTRFS_RESERVE_NO_FLUSH;
4667 spin_lock(&space_info->lock);
4668 if (can_overcommit(root, space_info, orig, flush)) {
4669 spin_unlock(&space_info->lock);
4670 break;
4671 }
4672 spin_unlock(&space_info->lock);
4673
4674 loops++;
4675 if (wait_ordered && !trans) {
4676 btrfs_wait_ordered_roots(root->fs_info, items,
4677 0, (u64)-1);
4678 } else {
4679 time_left = schedule_timeout_killable(1);
4680 if (time_left)
4681 break;
4682 }
4683 delalloc_bytes = percpu_counter_sum_positive(
4684 &root->fs_info->delalloc_bytes);
4685 }
4686}
4687
4688/**
4689 * maybe_commit_transaction - possibly commit the transaction if its ok to
4690 * @root - the root we're allocating for
4691 * @bytes - the number of bytes we want to reserve
4692 * @force - force the commit
4693 *
4694 * This will check to make sure that committing the transaction will actually
4695 * get us somewhere and then commit the transaction if it does. Otherwise it
4696 * will return -ENOSPC.
4697 */
4698static int may_commit_transaction(struct btrfs_root *root,
4699 struct btrfs_space_info *space_info,
4700 u64 bytes, int force)
4701{
4702 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4703 struct btrfs_trans_handle *trans;
4704
4705 trans = (struct btrfs_trans_handle *)current->journal_info;
4706 if (trans)
4707 return -EAGAIN;
4708
4709 if (force)
4710 goto commit;
4711
4712 /* See if there is enough pinned space to make this reservation */
4713 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4714 bytes) >= 0)
4715 goto commit;
4716
4717 /*
4718 * See if there is some space in the delayed insertion reservation for
4719 * this reservation.
4720 */
4721 if (space_info != delayed_rsv->space_info)
4722 return -ENOSPC;
4723
4724 spin_lock(&delayed_rsv->lock);
4725 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4726 bytes - delayed_rsv->size) >= 0) {
4727 spin_unlock(&delayed_rsv->lock);
4728 return -ENOSPC;
4729 }
4730 spin_unlock(&delayed_rsv->lock);
4731
4732commit:
4733 trans = btrfs_join_transaction(root);
4734 if (IS_ERR(trans))
4735 return -ENOSPC;
4736
4737 return btrfs_commit_transaction(trans, root);
4738}
4739
4740enum flush_state {
4741 FLUSH_DELAYED_ITEMS_NR = 1,
4742 FLUSH_DELAYED_ITEMS = 2,
4743 FLUSH_DELALLOC = 3,
4744 FLUSH_DELALLOC_WAIT = 4,
4745 ALLOC_CHUNK = 5,
4746 COMMIT_TRANS = 6,
4747};
4748
4749static int flush_space(struct btrfs_root *root,
4750 struct btrfs_space_info *space_info, u64 num_bytes,
4751 u64 orig_bytes, int state)
4752{
4753 struct btrfs_trans_handle *trans;
4754 int nr;
4755 int ret = 0;
4756
4757 switch (state) {
4758 case FLUSH_DELAYED_ITEMS_NR:
4759 case FLUSH_DELAYED_ITEMS:
4760 if (state == FLUSH_DELAYED_ITEMS_NR)
4761 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4762 else
4763 nr = -1;
4764
4765 trans = btrfs_join_transaction(root);
4766 if (IS_ERR(trans)) {
4767 ret = PTR_ERR(trans);
4768 break;
4769 }
4770 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4771 btrfs_end_transaction(trans, root);
4772 break;
4773 case FLUSH_DELALLOC:
4774 case FLUSH_DELALLOC_WAIT:
4775 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4776 state == FLUSH_DELALLOC_WAIT);
4777 break;
4778 case ALLOC_CHUNK:
4779 trans = btrfs_join_transaction(root);
4780 if (IS_ERR(trans)) {
4781 ret = PTR_ERR(trans);
4782 break;
4783 }
4784 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4785 btrfs_get_alloc_profile(root, 0),
4786 CHUNK_ALLOC_NO_FORCE);
4787 btrfs_end_transaction(trans, root);
4788 if (ret == -ENOSPC)
4789 ret = 0;
4790 break;
4791 case COMMIT_TRANS:
4792 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4793 break;
4794 default:
4795 ret = -ENOSPC;
4796 break;
4797 }
4798
4799 return ret;
4800}
4801
4802static inline u64
4803btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4804 struct btrfs_space_info *space_info)
4805{
4806 u64 used;
4807 u64 expected;
4808 u64 to_reclaim;
4809
4810 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4811 spin_lock(&space_info->lock);
4812 if (can_overcommit(root, space_info, to_reclaim,
4813 BTRFS_RESERVE_FLUSH_ALL)) {
4814 to_reclaim = 0;
4815 goto out;
4816 }
4817
4818 used = space_info->bytes_used + space_info->bytes_reserved +
4819 space_info->bytes_pinned + space_info->bytes_readonly +
4820 space_info->bytes_may_use;
4821 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4822 expected = div_factor_fine(space_info->total_bytes, 95);
4823 else
4824 expected = div_factor_fine(space_info->total_bytes, 90);
4825
4826 if (used > expected)
4827 to_reclaim = used - expected;
4828 else
4829 to_reclaim = 0;
4830 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4831 space_info->bytes_reserved);
4832out:
4833 spin_unlock(&space_info->lock);
4834
4835 return to_reclaim;
4836}
4837
4838static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4839 struct btrfs_fs_info *fs_info, u64 used)
4840{
4841 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4842
4843 /* If we're just plain full then async reclaim just slows us down. */
4844 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4845 return 0;
4846
4847 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4848 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4849}
4850
4851static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4852 struct btrfs_fs_info *fs_info,
4853 int flush_state)
4854{
4855 u64 used;
4856
4857 spin_lock(&space_info->lock);
4858 /*
4859 * We run out of space and have not got any free space via flush_space,
4860 * so don't bother doing async reclaim.
4861 */
4862 if (flush_state > COMMIT_TRANS && space_info->full) {
4863 spin_unlock(&space_info->lock);
4864 return 0;
4865 }
4866
4867 used = space_info->bytes_used + space_info->bytes_reserved +
4868 space_info->bytes_pinned + space_info->bytes_readonly +
4869 space_info->bytes_may_use;
4870 if (need_do_async_reclaim(space_info, fs_info, used)) {
4871 spin_unlock(&space_info->lock);
4872 return 1;
4873 }
4874 spin_unlock(&space_info->lock);
4875
4876 return 0;
4877}
4878
4879static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4880{
4881 struct btrfs_fs_info *fs_info;
4882 struct btrfs_space_info *space_info;
4883 u64 to_reclaim;
4884 int flush_state;
4885
4886 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4887 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4888
4889 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4890 space_info);
4891 if (!to_reclaim)
4892 return;
4893
4894 flush_state = FLUSH_DELAYED_ITEMS_NR;
4895 do {
4896 flush_space(fs_info->fs_root, space_info, to_reclaim,
4897 to_reclaim, flush_state);
4898 flush_state++;
4899 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4900 flush_state))
4901 return;
4902 } while (flush_state < COMMIT_TRANS);
4903}
4904
4905void btrfs_init_async_reclaim_work(struct work_struct *work)
4906{
4907 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4908}
4909
4910/**
4911 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4912 * @root - the root we're allocating for
4913 * @block_rsv - the block_rsv we're allocating for
4914 * @orig_bytes - the number of bytes we want
4915 * @flush - whether or not we can flush to make our reservation
4916 *
4917 * This will reserve orgi_bytes number of bytes from the space info associated
4918 * with the block_rsv. If there is not enough space it will make an attempt to
4919 * flush out space to make room. It will do this by flushing delalloc if
4920 * possible or committing the transaction. If flush is 0 then no attempts to
4921 * regain reservations will be made and this will fail if there is not enough
4922 * space already.
4923 */
4924static int reserve_metadata_bytes(struct btrfs_root *root,
4925 struct btrfs_block_rsv *block_rsv,
4926 u64 orig_bytes,
4927 enum btrfs_reserve_flush_enum flush)
4928{
4929 struct btrfs_space_info *space_info = block_rsv->space_info;
4930 u64 used;
4931 u64 num_bytes = orig_bytes;
4932 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4933 int ret = 0;
4934 bool flushing = false;
4935
4936again:
4937 ret = 0;
4938 spin_lock(&space_info->lock);
4939 /*
4940 * We only want to wait if somebody other than us is flushing and we
4941 * are actually allowed to flush all things.
4942 */
4943 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4944 space_info->flush) {
4945 spin_unlock(&space_info->lock);
4946 /*
4947 * If we have a trans handle we can't wait because the flusher
4948 * may have to commit the transaction, which would mean we would
4949 * deadlock since we are waiting for the flusher to finish, but
4950 * hold the current transaction open.
4951 */
4952 if (current->journal_info)
4953 return -EAGAIN;
4954 ret = wait_event_killable(space_info->wait, !space_info->flush);
4955 /* Must have been killed, return */
4956 if (ret)
4957 return -EINTR;
4958
4959 spin_lock(&space_info->lock);
4960 }
4961
4962 ret = -ENOSPC;
4963 used = space_info->bytes_used + space_info->bytes_reserved +
4964 space_info->bytes_pinned + space_info->bytes_readonly +
4965 space_info->bytes_may_use;
4966
4967 /*
4968 * The idea here is that we've not already over-reserved the block group
4969 * then we can go ahead and save our reservation first and then start
4970 * flushing if we need to. Otherwise if we've already overcommitted
4971 * lets start flushing stuff first and then come back and try to make
4972 * our reservation.
4973 */
4974 if (used <= space_info->total_bytes) {
4975 if (used + orig_bytes <= space_info->total_bytes) {
4976 space_info->bytes_may_use += orig_bytes;
4977 trace_btrfs_space_reservation(root->fs_info,
4978 "space_info", space_info->flags, orig_bytes, 1);
4979 ret = 0;
4980 } else {
4981 /*
4982 * Ok set num_bytes to orig_bytes since we aren't
4983 * overocmmitted, this way we only try and reclaim what
4984 * we need.
4985 */
4986 num_bytes = orig_bytes;
4987 }
4988 } else {
4989 /*
4990 * Ok we're over committed, set num_bytes to the overcommitted
4991 * amount plus the amount of bytes that we need for this
4992 * reservation.
4993 */
4994 num_bytes = used - space_info->total_bytes +
4995 (orig_bytes * 2);
4996 }
4997
4998 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4999 space_info->bytes_may_use += orig_bytes;
5000 trace_btrfs_space_reservation(root->fs_info, "space_info",
5001 space_info->flags, orig_bytes,
5002 1);
5003 ret = 0;
5004 }
5005
5006 /*
5007 * Couldn't make our reservation, save our place so while we're trying
5008 * to reclaim space we can actually use it instead of somebody else
5009 * stealing it from us.
5010 *
5011 * We make the other tasks wait for the flush only when we can flush
5012 * all things.
5013 */
5014 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5015 flushing = true;
5016 space_info->flush = 1;
5017 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5018 used += orig_bytes;
5019 /*
5020 * We will do the space reservation dance during log replay,
5021 * which means we won't have fs_info->fs_root set, so don't do
5022 * the async reclaim as we will panic.
5023 */
5024 if (!root->fs_info->log_root_recovering &&
5025 need_do_async_reclaim(space_info, root->fs_info, used) &&
5026 !work_busy(&root->fs_info->async_reclaim_work))
5027 queue_work(system_unbound_wq,
5028 &root->fs_info->async_reclaim_work);
5029 }
5030 spin_unlock(&space_info->lock);
5031
5032 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5033 goto out;
5034
5035 ret = flush_space(root, space_info, num_bytes, orig_bytes,
5036 flush_state);
5037 flush_state++;
5038
5039 /*
5040 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5041 * would happen. So skip delalloc flush.
5042 */
5043 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5044 (flush_state == FLUSH_DELALLOC ||
5045 flush_state == FLUSH_DELALLOC_WAIT))
5046 flush_state = ALLOC_CHUNK;
5047
5048 if (!ret)
5049 goto again;
5050 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5051 flush_state < COMMIT_TRANS)
5052 goto again;
5053 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5054 flush_state <= COMMIT_TRANS)
5055 goto again;
5056
5057out:
5058 if (ret == -ENOSPC &&
5059 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5060 struct btrfs_block_rsv *global_rsv =
5061 &root->fs_info->global_block_rsv;
5062
5063 if (block_rsv != global_rsv &&
5064 !block_rsv_use_bytes(global_rsv, orig_bytes))
5065 ret = 0;
5066 }
5067 if (ret == -ENOSPC)
5068 trace_btrfs_space_reservation(root->fs_info,
5069 "space_info:enospc",
5070 space_info->flags, orig_bytes, 1);
5071 if (flushing) {
5072 spin_lock(&space_info->lock);
5073 space_info->flush = 0;
5074 wake_up_all(&space_info->wait);
5075 spin_unlock(&space_info->lock);
5076 }
5077 return ret;
5078}
5079
5080static struct btrfs_block_rsv *get_block_rsv(
5081 const struct btrfs_trans_handle *trans,
5082 const struct btrfs_root *root)
5083{
5084 struct btrfs_block_rsv *block_rsv = NULL;
5085
5086 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5087 (root == root->fs_info->csum_root && trans->adding_csums) ||
5088 (root == root->fs_info->uuid_root))
5089 block_rsv = trans->block_rsv;
5090
5091 if (!block_rsv)
5092 block_rsv = root->block_rsv;
5093
5094 if (!block_rsv)
5095 block_rsv = &root->fs_info->empty_block_rsv;
5096
5097 return block_rsv;
5098}
5099
5100static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5101 u64 num_bytes)
5102{
5103 int ret = -ENOSPC;
5104 spin_lock(&block_rsv->lock);
5105 if (block_rsv->reserved >= num_bytes) {
5106 block_rsv->reserved -= num_bytes;
5107 if (block_rsv->reserved < block_rsv->size)
5108 block_rsv->full = 0;
5109 ret = 0;
5110 }
5111 spin_unlock(&block_rsv->lock);
5112 return ret;
5113}
5114
5115static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5116 u64 num_bytes, int update_size)
5117{
5118 spin_lock(&block_rsv->lock);
5119 block_rsv->reserved += num_bytes;
5120 if (update_size)
5121 block_rsv->size += num_bytes;
5122 else if (block_rsv->reserved >= block_rsv->size)
5123 block_rsv->full = 1;
5124 spin_unlock(&block_rsv->lock);
5125}
5126
5127int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5128 struct btrfs_block_rsv *dest, u64 num_bytes,
5129 int min_factor)
5130{
5131 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5132 u64 min_bytes;
5133
5134 if (global_rsv->space_info != dest->space_info)
5135 return -ENOSPC;
5136
5137 spin_lock(&global_rsv->lock);
5138 min_bytes = div_factor(global_rsv->size, min_factor);
5139 if (global_rsv->reserved < min_bytes + num_bytes) {
5140 spin_unlock(&global_rsv->lock);
5141 return -ENOSPC;
5142 }
5143 global_rsv->reserved -= num_bytes;
5144 if (global_rsv->reserved < global_rsv->size)
5145 global_rsv->full = 0;
5146 spin_unlock(&global_rsv->lock);
5147
5148 block_rsv_add_bytes(dest, num_bytes, 1);
5149 return 0;
5150}
5151
5152static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5153 struct btrfs_block_rsv *block_rsv,
5154 struct btrfs_block_rsv *dest, u64 num_bytes)
5155{
5156 struct btrfs_space_info *space_info = block_rsv->space_info;
5157
5158 spin_lock(&block_rsv->lock);
5159 if (num_bytes == (u64)-1)
5160 num_bytes = block_rsv->size;
5161 block_rsv->size -= num_bytes;
5162 if (block_rsv->reserved >= block_rsv->size) {
5163 num_bytes = block_rsv->reserved - block_rsv->size;
5164 block_rsv->reserved = block_rsv->size;
5165 block_rsv->full = 1;
5166 } else {
5167 num_bytes = 0;
5168 }
5169 spin_unlock(&block_rsv->lock);
5170
5171 if (num_bytes > 0) {
5172 if (dest) {
5173 spin_lock(&dest->lock);
5174 if (!dest->full) {
5175 u64 bytes_to_add;
5176
5177 bytes_to_add = dest->size - dest->reserved;
5178 bytes_to_add = min(num_bytes, bytes_to_add);
5179 dest->reserved += bytes_to_add;
5180 if (dest->reserved >= dest->size)
5181 dest->full = 1;
5182 num_bytes -= bytes_to_add;
5183 }
5184 spin_unlock(&dest->lock);
5185 }
5186 if (num_bytes) {
5187 spin_lock(&space_info->lock);
5188 space_info->bytes_may_use -= num_bytes;
5189 trace_btrfs_space_reservation(fs_info, "space_info",
5190 space_info->flags, num_bytes, 0);
5191 spin_unlock(&space_info->lock);
5192 }
5193 }
5194}
5195
5196static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5197 struct btrfs_block_rsv *dst, u64 num_bytes)
5198{
5199 int ret;
5200
5201 ret = block_rsv_use_bytes(src, num_bytes);
5202 if (ret)
5203 return ret;
5204
5205 block_rsv_add_bytes(dst, num_bytes, 1);
5206 return 0;
5207}
5208
5209void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5210{
5211 memset(rsv, 0, sizeof(*rsv));
5212 spin_lock_init(&rsv->lock);
5213 rsv->type = type;
5214}
5215
5216struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5217 unsigned short type)
5218{
5219 struct btrfs_block_rsv *block_rsv;
5220 struct btrfs_fs_info *fs_info = root->fs_info;
5221
5222 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5223 if (!block_rsv)
5224 return NULL;
5225
5226 btrfs_init_block_rsv(block_rsv, type);
5227 block_rsv->space_info = __find_space_info(fs_info,
5228 BTRFS_BLOCK_GROUP_METADATA);
5229 return block_rsv;
5230}
5231
5232void btrfs_free_block_rsv(struct btrfs_root *root,
5233 struct btrfs_block_rsv *rsv)
5234{
5235 if (!rsv)
5236 return;
5237 btrfs_block_rsv_release(root, rsv, (u64)-1);
5238 kfree(rsv);
5239}
5240
5241void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5242{
5243 kfree(rsv);
5244}
5245
5246int btrfs_block_rsv_add(struct btrfs_root *root,
5247 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5248 enum btrfs_reserve_flush_enum flush)
5249{
5250 int ret;
5251
5252 if (num_bytes == 0)
5253 return 0;
5254
5255 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5256 if (!ret) {
5257 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5258 return 0;
5259 }
5260
5261 return ret;
5262}
5263
5264int btrfs_block_rsv_check(struct btrfs_root *root,
5265 struct btrfs_block_rsv *block_rsv, int min_factor)
5266{
5267 u64 num_bytes = 0;
5268 int ret = -ENOSPC;
5269
5270 if (!block_rsv)
5271 return 0;
5272
5273 spin_lock(&block_rsv->lock);
5274 num_bytes = div_factor(block_rsv->size, min_factor);
5275 if (block_rsv->reserved >= num_bytes)
5276 ret = 0;
5277 spin_unlock(&block_rsv->lock);
5278
5279 return ret;
5280}
5281
5282int btrfs_block_rsv_refill(struct btrfs_root *root,
5283 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5284 enum btrfs_reserve_flush_enum flush)
5285{
5286 u64 num_bytes = 0;
5287 int ret = -ENOSPC;
5288
5289 if (!block_rsv)
5290 return 0;
5291
5292 spin_lock(&block_rsv->lock);
5293 num_bytes = min_reserved;
5294 if (block_rsv->reserved >= num_bytes)
5295 ret = 0;
5296 else
5297 num_bytes -= block_rsv->reserved;
5298 spin_unlock(&block_rsv->lock);
5299
5300 if (!ret)
5301 return 0;
5302
5303 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5304 if (!ret) {
5305 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5306 return 0;
5307 }
5308
5309 return ret;
5310}
5311
5312int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5313 struct btrfs_block_rsv *dst_rsv,
5314 u64 num_bytes)
5315{
5316 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5317}
5318
5319void btrfs_block_rsv_release(struct btrfs_root *root,
5320 struct btrfs_block_rsv *block_rsv,
5321 u64 num_bytes)
5322{
5323 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5324 if (global_rsv == block_rsv ||
5325 block_rsv->space_info != global_rsv->space_info)
5326 global_rsv = NULL;
5327 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5328 num_bytes);
5329}
5330
5331/*
5332 * helper to calculate size of global block reservation.
5333 * the desired value is sum of space used by extent tree,
5334 * checksum tree and root tree
5335 */
5336static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5337{
5338 struct btrfs_space_info *sinfo;
5339 u64 num_bytes;
5340 u64 meta_used;
5341 u64 data_used;
5342 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5343
5344 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5345 spin_lock(&sinfo->lock);
5346 data_used = sinfo->bytes_used;
5347 spin_unlock(&sinfo->lock);
5348
5349 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5350 spin_lock(&sinfo->lock);
5351 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5352 data_used = 0;
5353 meta_used = sinfo->bytes_used;
5354 spin_unlock(&sinfo->lock);
5355
5356 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5357 csum_size * 2;
5358 num_bytes += div_u64(data_used + meta_used, 50);
5359
5360 if (num_bytes * 3 > meta_used)
5361 num_bytes = div_u64(meta_used, 3);
5362
5363 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5364}
5365
5366static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5367{
5368 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5369 struct btrfs_space_info *sinfo = block_rsv->space_info;
5370 u64 num_bytes;
5371
5372 num_bytes = calc_global_metadata_size(fs_info);
5373
5374 spin_lock(&sinfo->lock);
5375 spin_lock(&block_rsv->lock);
5376
5377 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5378
5379 if (block_rsv->reserved < block_rsv->size) {
5380 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5381 sinfo->bytes_reserved + sinfo->bytes_readonly +
5382 sinfo->bytes_may_use;
5383 if (sinfo->total_bytes > num_bytes) {
5384 num_bytes = sinfo->total_bytes - num_bytes;
5385 num_bytes = min(num_bytes,
5386 block_rsv->size - block_rsv->reserved);
5387 block_rsv->reserved += num_bytes;
5388 sinfo->bytes_may_use += num_bytes;
5389 trace_btrfs_space_reservation(fs_info, "space_info",
5390 sinfo->flags, num_bytes,
5391 1);
5392 }
5393 } else if (block_rsv->reserved > block_rsv->size) {
5394 num_bytes = block_rsv->reserved - block_rsv->size;
5395 sinfo->bytes_may_use -= num_bytes;
5396 trace_btrfs_space_reservation(fs_info, "space_info",
5397 sinfo->flags, num_bytes, 0);
5398 block_rsv->reserved = block_rsv->size;
5399 }
5400
5401 if (block_rsv->reserved == block_rsv->size)
5402 block_rsv->full = 1;
5403 else
5404 block_rsv->full = 0;
5405
5406 spin_unlock(&block_rsv->lock);
5407 spin_unlock(&sinfo->lock);
5408}
5409
5410static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5411{
5412 struct btrfs_space_info *space_info;
5413
5414 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5415 fs_info->chunk_block_rsv.space_info = space_info;
5416
5417 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5418 fs_info->global_block_rsv.space_info = space_info;
5419 fs_info->delalloc_block_rsv.space_info = space_info;
5420 fs_info->trans_block_rsv.space_info = space_info;
5421 fs_info->empty_block_rsv.space_info = space_info;
5422 fs_info->delayed_block_rsv.space_info = space_info;
5423
5424 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5425 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5426 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5427 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5428 if (fs_info->quota_root)
5429 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5430 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5431
5432 update_global_block_rsv(fs_info);
5433}
5434
5435static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5436{
5437 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5438 (u64)-1);
5439 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5440 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5441 WARN_ON(fs_info->trans_block_rsv.size > 0);
5442 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5443 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5444 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5445 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5446 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5447}
5448
5449void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5450 struct btrfs_root *root)
5451{
5452 if (!trans->block_rsv)
5453 return;
5454
5455 if (!trans->bytes_reserved)
5456 return;
5457
5458 trace_btrfs_space_reservation(root->fs_info, "transaction",
5459 trans->transid, trans->bytes_reserved, 0);
5460 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5461 trans->bytes_reserved = 0;
5462}
5463
5464/*
5465 * To be called after all the new block groups attached to the transaction
5466 * handle have been created (btrfs_create_pending_block_groups()).
5467 */
5468void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5469{
5470 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5471
5472 if (!trans->chunk_bytes_reserved)
5473 return;
5474
5475 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5476
5477 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5478 trans->chunk_bytes_reserved);
5479 trans->chunk_bytes_reserved = 0;
5480}
5481
5482/* Can only return 0 or -ENOSPC */
5483int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5484 struct inode *inode)
5485{
5486 struct btrfs_root *root = BTRFS_I(inode)->root;
5487 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5488 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5489
5490 /*
5491 * We need to hold space in order to delete our orphan item once we've
5492 * added it, so this takes the reservation so we can release it later
5493 * when we are truly done with the orphan item.
5494 */
5495 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5496 trace_btrfs_space_reservation(root->fs_info, "orphan",
5497 btrfs_ino(inode), num_bytes, 1);
5498 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5499}
5500
5501void btrfs_orphan_release_metadata(struct inode *inode)
5502{
5503 struct btrfs_root *root = BTRFS_I(inode)->root;
5504 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5505 trace_btrfs_space_reservation(root->fs_info, "orphan",
5506 btrfs_ino(inode), num_bytes, 0);
5507 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5508}
5509
5510/*
5511 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5512 * root: the root of the parent directory
5513 * rsv: block reservation
5514 * items: the number of items that we need do reservation
5515 * qgroup_reserved: used to return the reserved size in qgroup
5516 *
5517 * This function is used to reserve the space for snapshot/subvolume
5518 * creation and deletion. Those operations are different with the
5519 * common file/directory operations, they change two fs/file trees
5520 * and root tree, the number of items that the qgroup reserves is
5521 * different with the free space reservation. So we can not use
5522 * the space reseravtion mechanism in start_transaction().
5523 */
5524int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5525 struct btrfs_block_rsv *rsv,
5526 int items,
5527 u64 *qgroup_reserved,
5528 bool use_global_rsv)
5529{
5530 u64 num_bytes;
5531 int ret;
5532 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5533
5534 if (root->fs_info->quota_enabled) {
5535 /* One for parent inode, two for dir entries */
5536 num_bytes = 3 * root->nodesize;
5537 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5538 if (ret)
5539 return ret;
5540 } else {
5541 num_bytes = 0;
5542 }
5543
5544 *qgroup_reserved = num_bytes;
5545
5546 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5547 rsv->space_info = __find_space_info(root->fs_info,
5548 BTRFS_BLOCK_GROUP_METADATA);
5549 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5550 BTRFS_RESERVE_FLUSH_ALL);
5551
5552 if (ret == -ENOSPC && use_global_rsv)
5553 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5554
5555 if (ret && *qgroup_reserved)
5556 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5557
5558 return ret;
5559}
5560
5561void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5562 struct btrfs_block_rsv *rsv,
5563 u64 qgroup_reserved)
5564{
5565 btrfs_block_rsv_release(root, rsv, (u64)-1);
5566}
5567
5568/**
5569 * drop_outstanding_extent - drop an outstanding extent
5570 * @inode: the inode we're dropping the extent for
5571 * @num_bytes: the number of bytes we're relaseing.
5572 *
5573 * This is called when we are freeing up an outstanding extent, either called
5574 * after an error or after an extent is written. This will return the number of
5575 * reserved extents that need to be freed. This must be called with
5576 * BTRFS_I(inode)->lock held.
5577 */
5578static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5579{
5580 unsigned drop_inode_space = 0;
5581 unsigned dropped_extents = 0;
5582 unsigned num_extents = 0;
5583
5584 num_extents = (unsigned)div64_u64(num_bytes +
5585 BTRFS_MAX_EXTENT_SIZE - 1,
5586 BTRFS_MAX_EXTENT_SIZE);
5587 ASSERT(num_extents);
5588 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5589 BTRFS_I(inode)->outstanding_extents -= num_extents;
5590
5591 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5592 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5593 &BTRFS_I(inode)->runtime_flags))
5594 drop_inode_space = 1;
5595
5596 /*
5597 * If we have more or the same amount of outsanding extents than we have
5598 * reserved then we need to leave the reserved extents count alone.
5599 */
5600 if (BTRFS_I(inode)->outstanding_extents >=
5601 BTRFS_I(inode)->reserved_extents)
5602 return drop_inode_space;
5603
5604 dropped_extents = BTRFS_I(inode)->reserved_extents -
5605 BTRFS_I(inode)->outstanding_extents;
5606 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5607 return dropped_extents + drop_inode_space;
5608}
5609
5610/**
5611 * calc_csum_metadata_size - return the amount of metada space that must be
5612 * reserved/free'd for the given bytes.
5613 * @inode: the inode we're manipulating
5614 * @num_bytes: the number of bytes in question
5615 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5616 *
5617 * This adjusts the number of csum_bytes in the inode and then returns the
5618 * correct amount of metadata that must either be reserved or freed. We
5619 * calculate how many checksums we can fit into one leaf and then divide the
5620 * number of bytes that will need to be checksumed by this value to figure out
5621 * how many checksums will be required. If we are adding bytes then the number
5622 * may go up and we will return the number of additional bytes that must be
5623 * reserved. If it is going down we will return the number of bytes that must
5624 * be freed.
5625 *
5626 * This must be called with BTRFS_I(inode)->lock held.
5627 */
5628static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5629 int reserve)
5630{
5631 struct btrfs_root *root = BTRFS_I(inode)->root;
5632 u64 old_csums, num_csums;
5633
5634 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5635 BTRFS_I(inode)->csum_bytes == 0)
5636 return 0;
5637
5638 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5639 if (reserve)
5640 BTRFS_I(inode)->csum_bytes += num_bytes;
5641 else
5642 BTRFS_I(inode)->csum_bytes -= num_bytes;
5643 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5644
5645 /* No change, no need to reserve more */
5646 if (old_csums == num_csums)
5647 return 0;
5648
5649 if (reserve)
5650 return btrfs_calc_trans_metadata_size(root,
5651 num_csums - old_csums);
5652
5653 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5654}
5655
5656int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5657{
5658 struct btrfs_root *root = BTRFS_I(inode)->root;
5659 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5660 u64 to_reserve = 0;
5661 u64 csum_bytes;
5662 unsigned nr_extents = 0;
5663 int extra_reserve = 0;
5664 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5665 int ret = 0;
5666 bool delalloc_lock = true;
5667 u64 to_free = 0;
5668 unsigned dropped;
5669
5670 /* If we are a free space inode we need to not flush since we will be in
5671 * the middle of a transaction commit. We also don't need the delalloc
5672 * mutex since we won't race with anybody. We need this mostly to make
5673 * lockdep shut its filthy mouth.
5674 */
5675 if (btrfs_is_free_space_inode(inode)) {
5676 flush = BTRFS_RESERVE_NO_FLUSH;
5677 delalloc_lock = false;
5678 }
5679
5680 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5681 btrfs_transaction_in_commit(root->fs_info))
5682 schedule_timeout(1);
5683
5684 if (delalloc_lock)
5685 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5686
5687 num_bytes = ALIGN(num_bytes, root->sectorsize);
5688
5689 spin_lock(&BTRFS_I(inode)->lock);
5690 nr_extents = (unsigned)div64_u64(num_bytes +
5691 BTRFS_MAX_EXTENT_SIZE - 1,
5692 BTRFS_MAX_EXTENT_SIZE);
5693 BTRFS_I(inode)->outstanding_extents += nr_extents;
5694 nr_extents = 0;
5695
5696 if (BTRFS_I(inode)->outstanding_extents >
5697 BTRFS_I(inode)->reserved_extents)
5698 nr_extents = BTRFS_I(inode)->outstanding_extents -
5699 BTRFS_I(inode)->reserved_extents;
5700
5701 /*
5702 * Add an item to reserve for updating the inode when we complete the
5703 * delalloc io.
5704 */
5705 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5706 &BTRFS_I(inode)->runtime_flags)) {
5707 nr_extents++;
5708 extra_reserve = 1;
5709 }
5710
5711 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5712 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5713 csum_bytes = BTRFS_I(inode)->csum_bytes;
5714 spin_unlock(&BTRFS_I(inode)->lock);
5715
5716 if (root->fs_info->quota_enabled) {
5717 ret = btrfs_qgroup_reserve_meta(root,
5718 nr_extents * root->nodesize);
5719 if (ret)
5720 goto out_fail;
5721 }
5722
5723 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5724 if (unlikely(ret)) {
5725 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5726 goto out_fail;
5727 }
5728
5729 spin_lock(&BTRFS_I(inode)->lock);
5730 if (extra_reserve) {
5731 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5732 &BTRFS_I(inode)->runtime_flags);
5733 nr_extents--;
5734 }
5735 BTRFS_I(inode)->reserved_extents += nr_extents;
5736 spin_unlock(&BTRFS_I(inode)->lock);
5737
5738 if (delalloc_lock)
5739 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5740
5741 if (to_reserve)
5742 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5743 btrfs_ino(inode), to_reserve, 1);
5744 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5745
5746 return 0;
5747
5748out_fail:
5749 spin_lock(&BTRFS_I(inode)->lock);
5750 dropped = drop_outstanding_extent(inode, num_bytes);
5751 /*
5752 * If the inodes csum_bytes is the same as the original
5753 * csum_bytes then we know we haven't raced with any free()ers
5754 * so we can just reduce our inodes csum bytes and carry on.
5755 */
5756 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5757 calc_csum_metadata_size(inode, num_bytes, 0);
5758 } else {
5759 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5760 u64 bytes;
5761
5762 /*
5763 * This is tricky, but first we need to figure out how much we
5764 * free'd from any free-ers that occurred during this
5765 * reservation, so we reset ->csum_bytes to the csum_bytes
5766 * before we dropped our lock, and then call the free for the
5767 * number of bytes that were freed while we were trying our
5768 * reservation.
5769 */
5770 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5771 BTRFS_I(inode)->csum_bytes = csum_bytes;
5772 to_free = calc_csum_metadata_size(inode, bytes, 0);
5773
5774
5775 /*
5776 * Now we need to see how much we would have freed had we not
5777 * been making this reservation and our ->csum_bytes were not
5778 * artificially inflated.
5779 */
5780 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5781 bytes = csum_bytes - orig_csum_bytes;
5782 bytes = calc_csum_metadata_size(inode, bytes, 0);
5783
5784 /*
5785 * Now reset ->csum_bytes to what it should be. If bytes is
5786 * more than to_free then we would have free'd more space had we
5787 * not had an artificially high ->csum_bytes, so we need to free
5788 * the remainder. If bytes is the same or less then we don't
5789 * need to do anything, the other free-ers did the correct
5790 * thing.
5791 */
5792 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5793 if (bytes > to_free)
5794 to_free = bytes - to_free;
5795 else
5796 to_free = 0;
5797 }
5798 spin_unlock(&BTRFS_I(inode)->lock);
5799 if (dropped)
5800 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5801
5802 if (to_free) {
5803 btrfs_block_rsv_release(root, block_rsv, to_free);
5804 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5805 btrfs_ino(inode), to_free, 0);
5806 }
5807 if (delalloc_lock)
5808 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5809 return ret;
5810}
5811
5812/**
5813 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5814 * @inode: the inode to release the reservation for
5815 * @num_bytes: the number of bytes we're releasing
5816 *
5817 * This will release the metadata reservation for an inode. This can be called
5818 * once we complete IO for a given set of bytes to release their metadata
5819 * reservations.
5820 */
5821void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5822{
5823 struct btrfs_root *root = BTRFS_I(inode)->root;
5824 u64 to_free = 0;
5825 unsigned dropped;
5826
5827 num_bytes = ALIGN(num_bytes, root->sectorsize);
5828 spin_lock(&BTRFS_I(inode)->lock);
5829 dropped = drop_outstanding_extent(inode, num_bytes);
5830
5831 if (num_bytes)
5832 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5833 spin_unlock(&BTRFS_I(inode)->lock);
5834 if (dropped > 0)
5835 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5836
5837 if (btrfs_test_is_dummy_root(root))
5838 return;
5839
5840 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5841 btrfs_ino(inode), to_free, 0);
5842
5843 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5844 to_free);
5845}
5846
5847/**
5848 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5849 * delalloc
5850 * @inode: inode we're writing to
5851 * @start: start range we are writing to
5852 * @len: how long the range we are writing to
5853 *
5854 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5855 *
5856 * This will do the following things
5857 *
5858 * o reserve space in data space info for num bytes
5859 * and reserve precious corresponding qgroup space
5860 * (Done in check_data_free_space)
5861 *
5862 * o reserve space for metadata space, based on the number of outstanding
5863 * extents and how much csums will be needed
5864 * also reserve metadata space in a per root over-reserve method.
5865 * o add to the inodes->delalloc_bytes
5866 * o add it to the fs_info's delalloc inodes list.
5867 * (Above 3 all done in delalloc_reserve_metadata)
5868 *
5869 * Return 0 for success
5870 * Return <0 for error(-ENOSPC or -EQUOT)
5871 */
5872int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5873{
5874 int ret;
5875
5876 ret = btrfs_check_data_free_space(inode, start, len);
5877 if (ret < 0)
5878 return ret;
5879 ret = btrfs_delalloc_reserve_metadata(inode, len);
5880 if (ret < 0)
5881 btrfs_free_reserved_data_space(inode, start, len);
5882 return ret;
5883}
5884
5885/**
5886 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5887 * @inode: inode we're releasing space for
5888 * @start: start position of the space already reserved
5889 * @len: the len of the space already reserved
5890 *
5891 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5892 * called in the case that we don't need the metadata AND data reservations
5893 * anymore. So if there is an error or we insert an inline extent.
5894 *
5895 * This function will release the metadata space that was not used and will
5896 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5897 * list if there are no delalloc bytes left.
5898 * Also it will handle the qgroup reserved space.
5899 */
5900void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5901{
5902 btrfs_delalloc_release_metadata(inode, len);
5903 btrfs_free_reserved_data_space(inode, start, len);
5904}
5905
5906static int update_block_group(struct btrfs_trans_handle *trans,
5907 struct btrfs_root *root, u64 bytenr,
5908 u64 num_bytes, int alloc)
5909{
5910 struct btrfs_block_group_cache *cache = NULL;
5911 struct btrfs_fs_info *info = root->fs_info;
5912 u64 total = num_bytes;
5913 u64 old_val;
5914 u64 byte_in_group;
5915 int factor;
5916
5917 /* block accounting for super block */
5918 spin_lock(&info->delalloc_root_lock);
5919 old_val = btrfs_super_bytes_used(info->super_copy);
5920 if (alloc)
5921 old_val += num_bytes;
5922 else
5923 old_val -= num_bytes;
5924 btrfs_set_super_bytes_used(info->super_copy, old_val);
5925 spin_unlock(&info->delalloc_root_lock);
5926
5927 while (total) {
5928 cache = btrfs_lookup_block_group(info, bytenr);
5929 if (!cache)
5930 return -ENOENT;
5931 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5932 BTRFS_BLOCK_GROUP_RAID1 |
5933 BTRFS_BLOCK_GROUP_RAID10))
5934 factor = 2;
5935 else
5936 factor = 1;
5937 /*
5938 * If this block group has free space cache written out, we
5939 * need to make sure to load it if we are removing space. This
5940 * is because we need the unpinning stage to actually add the
5941 * space back to the block group, otherwise we will leak space.
5942 */
5943 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5944 cache_block_group(cache, 1);
5945
5946 byte_in_group = bytenr - cache->key.objectid;
5947 WARN_ON(byte_in_group > cache->key.offset);
5948
5949 spin_lock(&cache->space_info->lock);
5950 spin_lock(&cache->lock);
5951
5952 if (btrfs_test_opt(root, SPACE_CACHE) &&
5953 cache->disk_cache_state < BTRFS_DC_CLEAR)
5954 cache->disk_cache_state = BTRFS_DC_CLEAR;
5955
5956 old_val = btrfs_block_group_used(&cache->item);
5957 num_bytes = min(total, cache->key.offset - byte_in_group);
5958 if (alloc) {
5959 old_val += num_bytes;
5960 btrfs_set_block_group_used(&cache->item, old_val);
5961 cache->reserved -= num_bytes;
5962 cache->space_info->bytes_reserved -= num_bytes;
5963 cache->space_info->bytes_used += num_bytes;
5964 cache->space_info->disk_used += num_bytes * factor;
5965 spin_unlock(&cache->lock);
5966 spin_unlock(&cache->space_info->lock);
5967 } else {
5968 old_val -= num_bytes;
5969 btrfs_set_block_group_used(&cache->item, old_val);
5970 cache->pinned += num_bytes;
5971 cache->space_info->bytes_pinned += num_bytes;
5972 cache->space_info->bytes_used -= num_bytes;
5973 cache->space_info->disk_used -= num_bytes * factor;
5974 spin_unlock(&cache->lock);
5975 spin_unlock(&cache->space_info->lock);
5976
5977 set_extent_dirty(info->pinned_extents,
5978 bytenr, bytenr + num_bytes - 1,
5979 GFP_NOFS | __GFP_NOFAIL);
5980 }
5981
5982 spin_lock(&trans->transaction->dirty_bgs_lock);
5983 if (list_empty(&cache->dirty_list)) {
5984 list_add_tail(&cache->dirty_list,
5985 &trans->transaction->dirty_bgs);
5986 trans->transaction->num_dirty_bgs++;
5987 btrfs_get_block_group(cache);
5988 }
5989 spin_unlock(&trans->transaction->dirty_bgs_lock);
5990
5991 /*
5992 * No longer have used bytes in this block group, queue it for
5993 * deletion. We do this after adding the block group to the
5994 * dirty list to avoid races between cleaner kthread and space
5995 * cache writeout.
5996 */
5997 if (!alloc && old_val == 0) {
5998 spin_lock(&info->unused_bgs_lock);
5999 if (list_empty(&cache->bg_list)) {
6000 btrfs_get_block_group(cache);
6001 list_add_tail(&cache->bg_list,
6002 &info->unused_bgs);
6003 }
6004 spin_unlock(&info->unused_bgs_lock);
6005 }
6006
6007 btrfs_put_block_group(cache);
6008 total -= num_bytes;
6009 bytenr += num_bytes;
6010 }
6011 return 0;
6012}
6013
6014static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6015{
6016 struct btrfs_block_group_cache *cache;
6017 u64 bytenr;
6018
6019 spin_lock(&root->fs_info->block_group_cache_lock);
6020 bytenr = root->fs_info->first_logical_byte;
6021 spin_unlock(&root->fs_info->block_group_cache_lock);
6022
6023 if (bytenr < (u64)-1)
6024 return bytenr;
6025
6026 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6027 if (!cache)
6028 return 0;
6029
6030 bytenr = cache->key.objectid;
6031 btrfs_put_block_group(cache);
6032
6033 return bytenr;
6034}
6035
6036static int pin_down_extent(struct btrfs_root *root,
6037 struct btrfs_block_group_cache *cache,
6038 u64 bytenr, u64 num_bytes, int reserved)
6039{
6040 spin_lock(&cache->space_info->lock);
6041 spin_lock(&cache->lock);
6042 cache->pinned += num_bytes;
6043 cache->space_info->bytes_pinned += num_bytes;
6044 if (reserved) {
6045 cache->reserved -= num_bytes;
6046 cache->space_info->bytes_reserved -= num_bytes;
6047 }
6048 spin_unlock(&cache->lock);
6049 spin_unlock(&cache->space_info->lock);
6050
6051 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6052 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6053 if (reserved)
6054 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6055 return 0;
6056}
6057
6058/*
6059 * this function must be called within transaction
6060 */
6061int btrfs_pin_extent(struct btrfs_root *root,
6062 u64 bytenr, u64 num_bytes, int reserved)
6063{
6064 struct btrfs_block_group_cache *cache;
6065
6066 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6067 BUG_ON(!cache); /* Logic error */
6068
6069 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6070
6071 btrfs_put_block_group(cache);
6072 return 0;
6073}
6074
6075/*
6076 * this function must be called within transaction
6077 */
6078int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6079 u64 bytenr, u64 num_bytes)
6080{
6081 struct btrfs_block_group_cache *cache;
6082 int ret;
6083
6084 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6085 if (!cache)
6086 return -EINVAL;
6087
6088 /*
6089 * pull in the free space cache (if any) so that our pin
6090 * removes the free space from the cache. We have load_only set
6091 * to one because the slow code to read in the free extents does check
6092 * the pinned extents.
6093 */
6094 cache_block_group(cache, 1);
6095
6096 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6097
6098 /* remove us from the free space cache (if we're there at all) */
6099 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6100 btrfs_put_block_group(cache);
6101 return ret;
6102}
6103
6104static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6105{
6106 int ret;
6107 struct btrfs_block_group_cache *block_group;
6108 struct btrfs_caching_control *caching_ctl;
6109
6110 block_group = btrfs_lookup_block_group(root->fs_info, start);
6111 if (!block_group)
6112 return -EINVAL;
6113
6114 cache_block_group(block_group, 0);
6115 caching_ctl = get_caching_control(block_group);
6116
6117 if (!caching_ctl) {
6118 /* Logic error */
6119 BUG_ON(!block_group_cache_done(block_group));
6120 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6121 } else {
6122 mutex_lock(&caching_ctl->mutex);
6123
6124 if (start >= caching_ctl->progress) {
6125 ret = add_excluded_extent(root, start, num_bytes);
6126 } else if (start + num_bytes <= caching_ctl->progress) {
6127 ret = btrfs_remove_free_space(block_group,
6128 start, num_bytes);
6129 } else {
6130 num_bytes = caching_ctl->progress - start;
6131 ret = btrfs_remove_free_space(block_group,
6132 start, num_bytes);
6133 if (ret)
6134 goto out_lock;
6135
6136 num_bytes = (start + num_bytes) -
6137 caching_ctl->progress;
6138 start = caching_ctl->progress;
6139 ret = add_excluded_extent(root, start, num_bytes);
6140 }
6141out_lock:
6142 mutex_unlock(&caching_ctl->mutex);
6143 put_caching_control(caching_ctl);
6144 }
6145 btrfs_put_block_group(block_group);
6146 return ret;
6147}
6148
6149int btrfs_exclude_logged_extents(struct btrfs_root *log,
6150 struct extent_buffer *eb)
6151{
6152 struct btrfs_file_extent_item *item;
6153 struct btrfs_key key;
6154 int found_type;
6155 int i;
6156
6157 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6158 return 0;
6159
6160 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6161 btrfs_item_key_to_cpu(eb, &key, i);
6162 if (key.type != BTRFS_EXTENT_DATA_KEY)
6163 continue;
6164 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6165 found_type = btrfs_file_extent_type(eb, item);
6166 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6167 continue;
6168 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6169 continue;
6170 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6171 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6172 __exclude_logged_extent(log, key.objectid, key.offset);
6173 }
6174
6175 return 0;
6176}
6177
6178static void
6179btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6180{
6181 atomic_inc(&bg->reservations);
6182}
6183
6184void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6185 const u64 start)
6186{
6187 struct btrfs_block_group_cache *bg;
6188
6189 bg = btrfs_lookup_block_group(fs_info, start);
6190 ASSERT(bg);
6191 if (atomic_dec_and_test(&bg->reservations))
6192 wake_up_atomic_t(&bg->reservations);
6193 btrfs_put_block_group(bg);
6194}
6195
6196static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6197{
6198 schedule();
6199 return 0;
6200}
6201
6202void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6203{
6204 struct btrfs_space_info *space_info = bg->space_info;
6205
6206 ASSERT(bg->ro);
6207
6208 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6209 return;
6210
6211 /*
6212 * Our block group is read only but before we set it to read only,
6213 * some task might have had allocated an extent from it already, but it
6214 * has not yet created a respective ordered extent (and added it to a
6215 * root's list of ordered extents).
6216 * Therefore wait for any task currently allocating extents, since the
6217 * block group's reservations counter is incremented while a read lock
6218 * on the groups' semaphore is held and decremented after releasing
6219 * the read access on that semaphore and creating the ordered extent.
6220 */
6221 down_write(&space_info->groups_sem);
6222 up_write(&space_info->groups_sem);
6223
6224 wait_on_atomic_t(&bg->reservations,
6225 btrfs_wait_bg_reservations_atomic_t,
6226 TASK_UNINTERRUPTIBLE);
6227}
6228
6229/**
6230 * btrfs_update_reserved_bytes - update the block_group and space info counters
6231 * @cache: The cache we are manipulating
6232 * @num_bytes: The number of bytes in question
6233 * @reserve: One of the reservation enums
6234 * @delalloc: The blocks are allocated for the delalloc write
6235 *
6236 * This is called by the allocator when it reserves space, or by somebody who is
6237 * freeing space that was never actually used on disk. For example if you
6238 * reserve some space for a new leaf in transaction A and before transaction A
6239 * commits you free that leaf, you call this with reserve set to 0 in order to
6240 * clear the reservation.
6241 *
6242 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6243 * ENOSPC accounting. For data we handle the reservation through clearing the
6244 * delalloc bits in the io_tree. We have to do this since we could end up
6245 * allocating less disk space for the amount of data we have reserved in the
6246 * case of compression.
6247 *
6248 * If this is a reservation and the block group has become read only we cannot
6249 * make the reservation and return -EAGAIN, otherwise this function always
6250 * succeeds.
6251 */
6252static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6253 u64 num_bytes, int reserve, int delalloc)
6254{
6255 struct btrfs_space_info *space_info = cache->space_info;
6256 int ret = 0;
6257
6258 spin_lock(&space_info->lock);
6259 spin_lock(&cache->lock);
6260 if (reserve != RESERVE_FREE) {
6261 if (cache->ro) {
6262 ret = -EAGAIN;
6263 } else {
6264 cache->reserved += num_bytes;
6265 space_info->bytes_reserved += num_bytes;
6266 if (reserve == RESERVE_ALLOC) {
6267 trace_btrfs_space_reservation(cache->fs_info,
6268 "space_info", space_info->flags,
6269 num_bytes, 0);
6270 space_info->bytes_may_use -= num_bytes;
6271 }
6272
6273 if (delalloc)
6274 cache->delalloc_bytes += num_bytes;
6275 }
6276 } else {
6277 if (cache->ro)
6278 space_info->bytes_readonly += num_bytes;
6279 cache->reserved -= num_bytes;
6280 space_info->bytes_reserved -= num_bytes;
6281
6282 if (delalloc)
6283 cache->delalloc_bytes -= num_bytes;
6284 }
6285 spin_unlock(&cache->lock);
6286 spin_unlock(&space_info->lock);
6287 return ret;
6288}
6289
6290void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6291 struct btrfs_root *root)
6292{
6293 struct btrfs_fs_info *fs_info = root->fs_info;
6294 struct btrfs_caching_control *next;
6295 struct btrfs_caching_control *caching_ctl;
6296 struct btrfs_block_group_cache *cache;
6297
6298 down_write(&fs_info->commit_root_sem);
6299
6300 list_for_each_entry_safe(caching_ctl, next,
6301 &fs_info->caching_block_groups, list) {
6302 cache = caching_ctl->block_group;
6303 if (block_group_cache_done(cache)) {
6304 cache->last_byte_to_unpin = (u64)-1;
6305 list_del_init(&caching_ctl->list);
6306 put_caching_control(caching_ctl);
6307 } else {
6308 cache->last_byte_to_unpin = caching_ctl->progress;
6309 }
6310 }
6311
6312 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6313 fs_info->pinned_extents = &fs_info->freed_extents[1];
6314 else
6315 fs_info->pinned_extents = &fs_info->freed_extents[0];
6316
6317 up_write(&fs_info->commit_root_sem);
6318
6319 update_global_block_rsv(fs_info);
6320}
6321
6322/*
6323 * Returns the free cluster for the given space info and sets empty_cluster to
6324 * what it should be based on the mount options.
6325 */
6326static struct btrfs_free_cluster *
6327fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6328 u64 *empty_cluster)
6329{
6330 struct btrfs_free_cluster *ret = NULL;
6331 bool ssd = btrfs_test_opt(root, SSD);
6332
6333 *empty_cluster = 0;
6334 if (btrfs_mixed_space_info(space_info))
6335 return ret;
6336
6337 if (ssd)
6338 *empty_cluster = SZ_2M;
6339 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6340 ret = &root->fs_info->meta_alloc_cluster;
6341 if (!ssd)
6342 *empty_cluster = SZ_64K;
6343 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6344 ret = &root->fs_info->data_alloc_cluster;
6345 }
6346
6347 return ret;
6348}
6349
6350static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6351 const bool return_free_space)
6352{
6353 struct btrfs_fs_info *fs_info = root->fs_info;
6354 struct btrfs_block_group_cache *cache = NULL;
6355 struct btrfs_space_info *space_info;
6356 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6357 struct btrfs_free_cluster *cluster = NULL;
6358 u64 len;
6359 u64 total_unpinned = 0;
6360 u64 empty_cluster = 0;
6361 bool readonly;
6362
6363 while (start <= end) {
6364 readonly = false;
6365 if (!cache ||
6366 start >= cache->key.objectid + cache->key.offset) {
6367 if (cache)
6368 btrfs_put_block_group(cache);
6369 total_unpinned = 0;
6370 cache = btrfs_lookup_block_group(fs_info, start);
6371 BUG_ON(!cache); /* Logic error */
6372
6373 cluster = fetch_cluster_info(root,
6374 cache->space_info,
6375 &empty_cluster);
6376 empty_cluster <<= 1;
6377 }
6378
6379 len = cache->key.objectid + cache->key.offset - start;
6380 len = min(len, end + 1 - start);
6381
6382 if (start < cache->last_byte_to_unpin) {
6383 len = min(len, cache->last_byte_to_unpin - start);
6384 if (return_free_space)
6385 btrfs_add_free_space(cache, start, len);
6386 }
6387
6388 start += len;
6389 total_unpinned += len;
6390 space_info = cache->space_info;
6391
6392 /*
6393 * If this space cluster has been marked as fragmented and we've
6394 * unpinned enough in this block group to potentially allow a
6395 * cluster to be created inside of it go ahead and clear the
6396 * fragmented check.
6397 */
6398 if (cluster && cluster->fragmented &&
6399 total_unpinned > empty_cluster) {
6400 spin_lock(&cluster->lock);
6401 cluster->fragmented = 0;
6402 spin_unlock(&cluster->lock);
6403 }
6404
6405 spin_lock(&space_info->lock);
6406 spin_lock(&cache->lock);
6407 cache->pinned -= len;
6408 space_info->bytes_pinned -= len;
6409 space_info->max_extent_size = 0;
6410 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6411 if (cache->ro) {
6412 space_info->bytes_readonly += len;
6413 readonly = true;
6414 }
6415 spin_unlock(&cache->lock);
6416 if (!readonly && global_rsv->space_info == space_info) {
6417 spin_lock(&global_rsv->lock);
6418 if (!global_rsv->full) {
6419 len = min(len, global_rsv->size -
6420 global_rsv->reserved);
6421 global_rsv->reserved += len;
6422 space_info->bytes_may_use += len;
6423 if (global_rsv->reserved >= global_rsv->size)
6424 global_rsv->full = 1;
6425 }
6426 spin_unlock(&global_rsv->lock);
6427 }
6428 spin_unlock(&space_info->lock);
6429 }
6430
6431 if (cache)
6432 btrfs_put_block_group(cache);
6433 return 0;
6434}
6435
6436int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6437 struct btrfs_root *root)
6438{
6439 struct btrfs_fs_info *fs_info = root->fs_info;
6440 struct btrfs_block_group_cache *block_group, *tmp;
6441 struct list_head *deleted_bgs;
6442 struct extent_io_tree *unpin;
6443 u64 start;
6444 u64 end;
6445 int ret;
6446
6447 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6448 unpin = &fs_info->freed_extents[1];
6449 else
6450 unpin = &fs_info->freed_extents[0];
6451
6452 while (!trans->aborted) {
6453 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6454 ret = find_first_extent_bit(unpin, 0, &start, &end,
6455 EXTENT_DIRTY, NULL);
6456 if (ret) {
6457 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6458 break;
6459 }
6460
6461 if (btrfs_test_opt(root, DISCARD))
6462 ret = btrfs_discard_extent(root, start,
6463 end + 1 - start, NULL);
6464
6465 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6466 unpin_extent_range(root, start, end, true);
6467 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6468 cond_resched();
6469 }
6470
6471 /*
6472 * Transaction is finished. We don't need the lock anymore. We
6473 * do need to clean up the block groups in case of a transaction
6474 * abort.
6475 */
6476 deleted_bgs = &trans->transaction->deleted_bgs;
6477 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6478 u64 trimmed = 0;
6479
6480 ret = -EROFS;
6481 if (!trans->aborted)
6482 ret = btrfs_discard_extent(root,
6483 block_group->key.objectid,
6484 block_group->key.offset,
6485 &trimmed);
6486
6487 list_del_init(&block_group->bg_list);
6488 btrfs_put_block_group_trimming(block_group);
6489 btrfs_put_block_group(block_group);
6490
6491 if (ret) {
6492 const char *errstr = btrfs_decode_error(ret);
6493 btrfs_warn(fs_info,
6494 "Discard failed while removing blockgroup: errno=%d %s\n",
6495 ret, errstr);
6496 }
6497 }
6498
6499 return 0;
6500}
6501
6502static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6503 u64 owner, u64 root_objectid)
6504{
6505 struct btrfs_space_info *space_info;
6506 u64 flags;
6507
6508 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6509 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6510 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6511 else
6512 flags = BTRFS_BLOCK_GROUP_METADATA;
6513 } else {
6514 flags = BTRFS_BLOCK_GROUP_DATA;
6515 }
6516
6517 space_info = __find_space_info(fs_info, flags);
6518 BUG_ON(!space_info); /* Logic bug */
6519 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6520}
6521
6522
6523static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6524 struct btrfs_root *root,
6525 struct btrfs_delayed_ref_node *node, u64 parent,
6526 u64 root_objectid, u64 owner_objectid,
6527 u64 owner_offset, int refs_to_drop,
6528 struct btrfs_delayed_extent_op *extent_op)
6529{
6530 struct btrfs_key key;
6531 struct btrfs_path *path;
6532 struct btrfs_fs_info *info = root->fs_info;
6533 struct btrfs_root *extent_root = info->extent_root;
6534 struct extent_buffer *leaf;
6535 struct btrfs_extent_item *ei;
6536 struct btrfs_extent_inline_ref *iref;
6537 int ret;
6538 int is_data;
6539 int extent_slot = 0;
6540 int found_extent = 0;
6541 int num_to_del = 1;
6542 u32 item_size;
6543 u64 refs;
6544 u64 bytenr = node->bytenr;
6545 u64 num_bytes = node->num_bytes;
6546 int last_ref = 0;
6547 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6548 SKINNY_METADATA);
6549
6550 path = btrfs_alloc_path();
6551 if (!path)
6552 return -ENOMEM;
6553
6554 path->reada = READA_FORWARD;
6555 path->leave_spinning = 1;
6556
6557 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6558 BUG_ON(!is_data && refs_to_drop != 1);
6559
6560 if (is_data)
6561 skinny_metadata = 0;
6562
6563 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6564 bytenr, num_bytes, parent,
6565 root_objectid, owner_objectid,
6566 owner_offset);
6567 if (ret == 0) {
6568 extent_slot = path->slots[0];
6569 while (extent_slot >= 0) {
6570 btrfs_item_key_to_cpu(path->nodes[0], &key,
6571 extent_slot);
6572 if (key.objectid != bytenr)
6573 break;
6574 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6575 key.offset == num_bytes) {
6576 found_extent = 1;
6577 break;
6578 }
6579 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6580 key.offset == owner_objectid) {
6581 found_extent = 1;
6582 break;
6583 }
6584 if (path->slots[0] - extent_slot > 5)
6585 break;
6586 extent_slot--;
6587 }
6588#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6589 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6590 if (found_extent && item_size < sizeof(*ei))
6591 found_extent = 0;
6592#endif
6593 if (!found_extent) {
6594 BUG_ON(iref);
6595 ret = remove_extent_backref(trans, extent_root, path,
6596 NULL, refs_to_drop,
6597 is_data, &last_ref);
6598 if (ret) {
6599 btrfs_abort_transaction(trans, extent_root, ret);
6600 goto out;
6601 }
6602 btrfs_release_path(path);
6603 path->leave_spinning = 1;
6604
6605 key.objectid = bytenr;
6606 key.type = BTRFS_EXTENT_ITEM_KEY;
6607 key.offset = num_bytes;
6608
6609 if (!is_data && skinny_metadata) {
6610 key.type = BTRFS_METADATA_ITEM_KEY;
6611 key.offset = owner_objectid;
6612 }
6613
6614 ret = btrfs_search_slot(trans, extent_root,
6615 &key, path, -1, 1);
6616 if (ret > 0 && skinny_metadata && path->slots[0]) {
6617 /*
6618 * Couldn't find our skinny metadata item,
6619 * see if we have ye olde extent item.
6620 */
6621 path->slots[0]--;
6622 btrfs_item_key_to_cpu(path->nodes[0], &key,
6623 path->slots[0]);
6624 if (key.objectid == bytenr &&
6625 key.type == BTRFS_EXTENT_ITEM_KEY &&
6626 key.offset == num_bytes)
6627 ret = 0;
6628 }
6629
6630 if (ret > 0 && skinny_metadata) {
6631 skinny_metadata = false;
6632 key.objectid = bytenr;
6633 key.type = BTRFS_EXTENT_ITEM_KEY;
6634 key.offset = num_bytes;
6635 btrfs_release_path(path);
6636 ret = btrfs_search_slot(trans, extent_root,
6637 &key, path, -1, 1);
6638 }
6639
6640 if (ret) {
6641 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6642 ret, bytenr);
6643 if (ret > 0)
6644 btrfs_print_leaf(extent_root,
6645 path->nodes[0]);
6646 }
6647 if (ret < 0) {
6648 btrfs_abort_transaction(trans, extent_root, ret);
6649 goto out;
6650 }
6651 extent_slot = path->slots[0];
6652 }
6653 } else if (WARN_ON(ret == -ENOENT)) {
6654 btrfs_print_leaf(extent_root, path->nodes[0]);
6655 btrfs_err(info,
6656 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6657 bytenr, parent, root_objectid, owner_objectid,
6658 owner_offset);
6659 btrfs_abort_transaction(trans, extent_root, ret);
6660 goto out;
6661 } else {
6662 btrfs_abort_transaction(trans, extent_root, ret);
6663 goto out;
6664 }
6665
6666 leaf = path->nodes[0];
6667 item_size = btrfs_item_size_nr(leaf, extent_slot);
6668#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6669 if (item_size < sizeof(*ei)) {
6670 BUG_ON(found_extent || extent_slot != path->slots[0]);
6671 ret = convert_extent_item_v0(trans, extent_root, path,
6672 owner_objectid, 0);
6673 if (ret < 0) {
6674 btrfs_abort_transaction(trans, extent_root, ret);
6675 goto out;
6676 }
6677
6678 btrfs_release_path(path);
6679 path->leave_spinning = 1;
6680
6681 key.objectid = bytenr;
6682 key.type = BTRFS_EXTENT_ITEM_KEY;
6683 key.offset = num_bytes;
6684
6685 ret = btrfs_search_slot(trans, extent_root, &key, path,
6686 -1, 1);
6687 if (ret) {
6688 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6689 ret, bytenr);
6690 btrfs_print_leaf(extent_root, path->nodes[0]);
6691 }
6692 if (ret < 0) {
6693 btrfs_abort_transaction(trans, extent_root, ret);
6694 goto out;
6695 }
6696
6697 extent_slot = path->slots[0];
6698 leaf = path->nodes[0];
6699 item_size = btrfs_item_size_nr(leaf, extent_slot);
6700 }
6701#endif
6702 BUG_ON(item_size < sizeof(*ei));
6703 ei = btrfs_item_ptr(leaf, extent_slot,
6704 struct btrfs_extent_item);
6705 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6706 key.type == BTRFS_EXTENT_ITEM_KEY) {
6707 struct btrfs_tree_block_info *bi;
6708 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6709 bi = (struct btrfs_tree_block_info *)(ei + 1);
6710 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6711 }
6712
6713 refs = btrfs_extent_refs(leaf, ei);
6714 if (refs < refs_to_drop) {
6715 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6716 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6717 ret = -EINVAL;
6718 btrfs_abort_transaction(trans, extent_root, ret);
6719 goto out;
6720 }
6721 refs -= refs_to_drop;
6722
6723 if (refs > 0) {
6724 if (extent_op)
6725 __run_delayed_extent_op(extent_op, leaf, ei);
6726 /*
6727 * In the case of inline back ref, reference count will
6728 * be updated by remove_extent_backref
6729 */
6730 if (iref) {
6731 BUG_ON(!found_extent);
6732 } else {
6733 btrfs_set_extent_refs(leaf, ei, refs);
6734 btrfs_mark_buffer_dirty(leaf);
6735 }
6736 if (found_extent) {
6737 ret = remove_extent_backref(trans, extent_root, path,
6738 iref, refs_to_drop,
6739 is_data, &last_ref);
6740 if (ret) {
6741 btrfs_abort_transaction(trans, extent_root, ret);
6742 goto out;
6743 }
6744 }
6745 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6746 root_objectid);
6747 } else {
6748 if (found_extent) {
6749 BUG_ON(is_data && refs_to_drop !=
6750 extent_data_ref_count(path, iref));
6751 if (iref) {
6752 BUG_ON(path->slots[0] != extent_slot);
6753 } else {
6754 BUG_ON(path->slots[0] != extent_slot + 1);
6755 path->slots[0] = extent_slot;
6756 num_to_del = 2;
6757 }
6758 }
6759
6760 last_ref = 1;
6761 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6762 num_to_del);
6763 if (ret) {
6764 btrfs_abort_transaction(trans, extent_root, ret);
6765 goto out;
6766 }
6767 btrfs_release_path(path);
6768
6769 if (is_data) {
6770 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6771 if (ret) {
6772 btrfs_abort_transaction(trans, extent_root, ret);
6773 goto out;
6774 }
6775 }
6776
6777 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6778 num_bytes);
6779 if (ret) {
6780 btrfs_abort_transaction(trans, extent_root, ret);
6781 goto out;
6782 }
6783
6784 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6785 if (ret) {
6786 btrfs_abort_transaction(trans, extent_root, ret);
6787 goto out;
6788 }
6789 }
6790 btrfs_release_path(path);
6791
6792out:
6793 btrfs_free_path(path);
6794 return ret;
6795}
6796
6797/*
6798 * when we free an block, it is possible (and likely) that we free the last
6799 * delayed ref for that extent as well. This searches the delayed ref tree for
6800 * a given extent, and if there are no other delayed refs to be processed, it
6801 * removes it from the tree.
6802 */
6803static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6804 struct btrfs_root *root, u64 bytenr)
6805{
6806 struct btrfs_delayed_ref_head *head;
6807 struct btrfs_delayed_ref_root *delayed_refs;
6808 int ret = 0;
6809
6810 delayed_refs = &trans->transaction->delayed_refs;
6811 spin_lock(&delayed_refs->lock);
6812 head = btrfs_find_delayed_ref_head(trans, bytenr);
6813 if (!head)
6814 goto out_delayed_unlock;
6815
6816 spin_lock(&head->lock);
6817 if (!list_empty(&head->ref_list))
6818 goto out;
6819
6820 if (head->extent_op) {
6821 if (!head->must_insert_reserved)
6822 goto out;
6823 btrfs_free_delayed_extent_op(head->extent_op);
6824 head->extent_op = NULL;
6825 }
6826
6827 /*
6828 * waiting for the lock here would deadlock. If someone else has it
6829 * locked they are already in the process of dropping it anyway
6830 */
6831 if (!mutex_trylock(&head->mutex))
6832 goto out;
6833
6834 /*
6835 * at this point we have a head with no other entries. Go
6836 * ahead and process it.
6837 */
6838 head->node.in_tree = 0;
6839 rb_erase(&head->href_node, &delayed_refs->href_root);
6840
6841 atomic_dec(&delayed_refs->num_entries);
6842
6843 /*
6844 * we don't take a ref on the node because we're removing it from the
6845 * tree, so we just steal the ref the tree was holding.
6846 */
6847 delayed_refs->num_heads--;
6848 if (head->processing == 0)
6849 delayed_refs->num_heads_ready--;
6850 head->processing = 0;
6851 spin_unlock(&head->lock);
6852 spin_unlock(&delayed_refs->lock);
6853
6854 BUG_ON(head->extent_op);
6855 if (head->must_insert_reserved)
6856 ret = 1;
6857
6858 mutex_unlock(&head->mutex);
6859 btrfs_put_delayed_ref(&head->node);
6860 return ret;
6861out:
6862 spin_unlock(&head->lock);
6863
6864out_delayed_unlock:
6865 spin_unlock(&delayed_refs->lock);
6866 return 0;
6867}
6868
6869void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6870 struct btrfs_root *root,
6871 struct extent_buffer *buf,
6872 u64 parent, int last_ref)
6873{
6874 int pin = 1;
6875 int ret;
6876
6877 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6878 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6879 buf->start, buf->len,
6880 parent, root->root_key.objectid,
6881 btrfs_header_level(buf),
6882 BTRFS_DROP_DELAYED_REF, NULL);
6883 BUG_ON(ret); /* -ENOMEM */
6884 }
6885
6886 if (!last_ref)
6887 return;
6888
6889 if (btrfs_header_generation(buf) == trans->transid) {
6890 struct btrfs_block_group_cache *cache;
6891
6892 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6893 ret = check_ref_cleanup(trans, root, buf->start);
6894 if (!ret)
6895 goto out;
6896 }
6897
6898 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6899
6900 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6901 pin_down_extent(root, cache, buf->start, buf->len, 1);
6902 btrfs_put_block_group(cache);
6903 goto out;
6904 }
6905
6906 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6907
6908 btrfs_add_free_space(cache, buf->start, buf->len);
6909 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6910 btrfs_put_block_group(cache);
6911 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6912 pin = 0;
6913 }
6914out:
6915 if (pin)
6916 add_pinned_bytes(root->fs_info, buf->len,
6917 btrfs_header_level(buf),
6918 root->root_key.objectid);
6919
6920 /*
6921 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6922 * anymore.
6923 */
6924 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6925}
6926
6927/* Can return -ENOMEM */
6928int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6929 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6930 u64 owner, u64 offset)
6931{
6932 int ret;
6933 struct btrfs_fs_info *fs_info = root->fs_info;
6934
6935 if (btrfs_test_is_dummy_root(root))
6936 return 0;
6937
6938 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6939
6940 /*
6941 * tree log blocks never actually go into the extent allocation
6942 * tree, just update pinning info and exit early.
6943 */
6944 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6945 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6946 /* unlocks the pinned mutex */
6947 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6948 ret = 0;
6949 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6950 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6951 num_bytes,
6952 parent, root_objectid, (int)owner,
6953 BTRFS_DROP_DELAYED_REF, NULL);
6954 } else {
6955 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6956 num_bytes,
6957 parent, root_objectid, owner,
6958 offset, 0,
6959 BTRFS_DROP_DELAYED_REF, NULL);
6960 }
6961 return ret;
6962}
6963
6964/*
6965 * when we wait for progress in the block group caching, its because
6966 * our allocation attempt failed at least once. So, we must sleep
6967 * and let some progress happen before we try again.
6968 *
6969 * This function will sleep at least once waiting for new free space to
6970 * show up, and then it will check the block group free space numbers
6971 * for our min num_bytes. Another option is to have it go ahead
6972 * and look in the rbtree for a free extent of a given size, but this
6973 * is a good start.
6974 *
6975 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6976 * any of the information in this block group.
6977 */
6978static noinline void
6979wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6980 u64 num_bytes)
6981{
6982 struct btrfs_caching_control *caching_ctl;
6983
6984 caching_ctl = get_caching_control(cache);
6985 if (!caching_ctl)
6986 return;
6987
6988 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6989 (cache->free_space_ctl->free_space >= num_bytes));
6990
6991 put_caching_control(caching_ctl);
6992}
6993
6994static noinline int
6995wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6996{
6997 struct btrfs_caching_control *caching_ctl;
6998 int ret = 0;
6999
7000 caching_ctl = get_caching_control(cache);
7001 if (!caching_ctl)
7002 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7003
7004 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7005 if (cache->cached == BTRFS_CACHE_ERROR)
7006 ret = -EIO;
7007 put_caching_control(caching_ctl);
7008 return ret;
7009}
7010
7011int __get_raid_index(u64 flags)
7012{
7013 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7014 return BTRFS_RAID_RAID10;
7015 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7016 return BTRFS_RAID_RAID1;
7017 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7018 return BTRFS_RAID_DUP;
7019 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7020 return BTRFS_RAID_RAID0;
7021 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7022 return BTRFS_RAID_RAID5;
7023 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7024 return BTRFS_RAID_RAID6;
7025
7026 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7027}
7028
7029int get_block_group_index(struct btrfs_block_group_cache *cache)
7030{
7031 return __get_raid_index(cache->flags);
7032}
7033
7034static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7035 [BTRFS_RAID_RAID10] = "raid10",
7036 [BTRFS_RAID_RAID1] = "raid1",
7037 [BTRFS_RAID_DUP] = "dup",
7038 [BTRFS_RAID_RAID0] = "raid0",
7039 [BTRFS_RAID_SINGLE] = "single",
7040 [BTRFS_RAID_RAID5] = "raid5",
7041 [BTRFS_RAID_RAID6] = "raid6",
7042};
7043
7044static const char *get_raid_name(enum btrfs_raid_types type)
7045{
7046 if (type >= BTRFS_NR_RAID_TYPES)
7047 return NULL;
7048
7049 return btrfs_raid_type_names[type];
7050}
7051
7052enum btrfs_loop_type {
7053 LOOP_CACHING_NOWAIT = 0,
7054 LOOP_CACHING_WAIT = 1,
7055 LOOP_ALLOC_CHUNK = 2,
7056 LOOP_NO_EMPTY_SIZE = 3,
7057};
7058
7059static inline void
7060btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7061 int delalloc)
7062{
7063 if (delalloc)
7064 down_read(&cache->data_rwsem);
7065}
7066
7067static inline void
7068btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7069 int delalloc)
7070{
7071 btrfs_get_block_group(cache);
7072 if (delalloc)
7073 down_read(&cache->data_rwsem);
7074}
7075
7076static struct btrfs_block_group_cache *
7077btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7078 struct btrfs_free_cluster *cluster,
7079 int delalloc)
7080{
7081 struct btrfs_block_group_cache *used_bg = NULL;
7082 bool locked = false;
7083again:
7084 spin_lock(&cluster->refill_lock);
7085 if (locked) {
7086 if (used_bg == cluster->block_group)
7087 return used_bg;
7088
7089 up_read(&used_bg->data_rwsem);
7090 btrfs_put_block_group(used_bg);
7091 }
7092
7093 used_bg = cluster->block_group;
7094 if (!used_bg)
7095 return NULL;
7096
7097 if (used_bg == block_group)
7098 return used_bg;
7099
7100 btrfs_get_block_group(used_bg);
7101
7102 if (!delalloc)
7103 return used_bg;
7104
7105 if (down_read_trylock(&used_bg->data_rwsem))
7106 return used_bg;
7107
7108 spin_unlock(&cluster->refill_lock);
7109 down_read(&used_bg->data_rwsem);
7110 locked = true;
7111 goto again;
7112}
7113
7114static inline void
7115btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7116 int delalloc)
7117{
7118 if (delalloc)
7119 up_read(&cache->data_rwsem);
7120 btrfs_put_block_group(cache);
7121}
7122
7123/*
7124 * walks the btree of allocated extents and find a hole of a given size.
7125 * The key ins is changed to record the hole:
7126 * ins->objectid == start position
7127 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7128 * ins->offset == the size of the hole.
7129 * Any available blocks before search_start are skipped.
7130 *
7131 * If there is no suitable free space, we will record the max size of
7132 * the free space extent currently.
7133 */
7134static noinline int find_free_extent(struct btrfs_root *orig_root,
7135 u64 num_bytes, u64 empty_size,
7136 u64 hint_byte, struct btrfs_key *ins,
7137 u64 flags, int delalloc)
7138{
7139 int ret = 0;
7140 struct btrfs_root *root = orig_root->fs_info->extent_root;
7141 struct btrfs_free_cluster *last_ptr = NULL;
7142 struct btrfs_block_group_cache *block_group = NULL;
7143 u64 search_start = 0;
7144 u64 max_extent_size = 0;
7145 u64 empty_cluster = 0;
7146 struct btrfs_space_info *space_info;
7147 int loop = 0;
7148 int index = __get_raid_index(flags);
7149 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7150 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7151 bool failed_cluster_refill = false;
7152 bool failed_alloc = false;
7153 bool use_cluster = true;
7154 bool have_caching_bg = false;
7155 bool orig_have_caching_bg = false;
7156 bool full_search = false;
7157
7158 WARN_ON(num_bytes < root->sectorsize);
7159 ins->type = BTRFS_EXTENT_ITEM_KEY;
7160 ins->objectid = 0;
7161 ins->offset = 0;
7162
7163 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7164
7165 space_info = __find_space_info(root->fs_info, flags);
7166 if (!space_info) {
7167 btrfs_err(root->fs_info, "No space info for %llu", flags);
7168 return -ENOSPC;
7169 }
7170
7171 /*
7172 * If our free space is heavily fragmented we may not be able to make
7173 * big contiguous allocations, so instead of doing the expensive search
7174 * for free space, simply return ENOSPC with our max_extent_size so we
7175 * can go ahead and search for a more manageable chunk.
7176 *
7177 * If our max_extent_size is large enough for our allocation simply
7178 * disable clustering since we will likely not be able to find enough
7179 * space to create a cluster and induce latency trying.
7180 */
7181 if (unlikely(space_info->max_extent_size)) {
7182 spin_lock(&space_info->lock);
7183 if (space_info->max_extent_size &&
7184 num_bytes > space_info->max_extent_size) {
7185 ins->offset = space_info->max_extent_size;
7186 spin_unlock(&space_info->lock);
7187 return -ENOSPC;
7188 } else if (space_info->max_extent_size) {
7189 use_cluster = false;
7190 }
7191 spin_unlock(&space_info->lock);
7192 }
7193
7194 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7195 if (last_ptr) {
7196 spin_lock(&last_ptr->lock);
7197 if (last_ptr->block_group)
7198 hint_byte = last_ptr->window_start;
7199 if (last_ptr->fragmented) {
7200 /*
7201 * We still set window_start so we can keep track of the
7202 * last place we found an allocation to try and save
7203 * some time.
7204 */
7205 hint_byte = last_ptr->window_start;
7206 use_cluster = false;
7207 }
7208 spin_unlock(&last_ptr->lock);
7209 }
7210
7211 search_start = max(search_start, first_logical_byte(root, 0));
7212 search_start = max(search_start, hint_byte);
7213 if (search_start == hint_byte) {
7214 block_group = btrfs_lookup_block_group(root->fs_info,
7215 search_start);
7216 /*
7217 * we don't want to use the block group if it doesn't match our
7218 * allocation bits, or if its not cached.
7219 *
7220 * However if we are re-searching with an ideal block group
7221 * picked out then we don't care that the block group is cached.
7222 */
7223 if (block_group && block_group_bits(block_group, flags) &&
7224 block_group->cached != BTRFS_CACHE_NO) {
7225 down_read(&space_info->groups_sem);
7226 if (list_empty(&block_group->list) ||
7227 block_group->ro) {
7228 /*
7229 * someone is removing this block group,
7230 * we can't jump into the have_block_group
7231 * target because our list pointers are not
7232 * valid
7233 */
7234 btrfs_put_block_group(block_group);
7235 up_read(&space_info->groups_sem);
7236 } else {
7237 index = get_block_group_index(block_group);
7238 btrfs_lock_block_group(block_group, delalloc);
7239 goto have_block_group;
7240 }
7241 } else if (block_group) {
7242 btrfs_put_block_group(block_group);
7243 }
7244 }
7245search:
7246 have_caching_bg = false;
7247 if (index == 0 || index == __get_raid_index(flags))
7248 full_search = true;
7249 down_read(&space_info->groups_sem);
7250 list_for_each_entry(block_group, &space_info->block_groups[index],
7251 list) {
7252 u64 offset;
7253 int cached;
7254
7255 btrfs_grab_block_group(block_group, delalloc);
7256 search_start = block_group->key.objectid;
7257
7258 /*
7259 * this can happen if we end up cycling through all the
7260 * raid types, but we want to make sure we only allocate
7261 * for the proper type.
7262 */
7263 if (!block_group_bits(block_group, flags)) {
7264 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7265 BTRFS_BLOCK_GROUP_RAID1 |
7266 BTRFS_BLOCK_GROUP_RAID5 |
7267 BTRFS_BLOCK_GROUP_RAID6 |
7268 BTRFS_BLOCK_GROUP_RAID10;
7269
7270 /*
7271 * if they asked for extra copies and this block group
7272 * doesn't provide them, bail. This does allow us to
7273 * fill raid0 from raid1.
7274 */
7275 if ((flags & extra) && !(block_group->flags & extra))
7276 goto loop;
7277 }
7278
7279have_block_group:
7280 cached = block_group_cache_done(block_group);
7281 if (unlikely(!cached)) {
7282 have_caching_bg = true;
7283 ret = cache_block_group(block_group, 0);
7284 BUG_ON(ret < 0);
7285 ret = 0;
7286 }
7287
7288 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7289 goto loop;
7290 if (unlikely(block_group->ro))
7291 goto loop;
7292
7293 /*
7294 * Ok we want to try and use the cluster allocator, so
7295 * lets look there
7296 */
7297 if (last_ptr && use_cluster) {
7298 struct btrfs_block_group_cache *used_block_group;
7299 unsigned long aligned_cluster;
7300 /*
7301 * the refill lock keeps out other
7302 * people trying to start a new cluster
7303 */
7304 used_block_group = btrfs_lock_cluster(block_group,
7305 last_ptr,
7306 delalloc);
7307 if (!used_block_group)
7308 goto refill_cluster;
7309
7310 if (used_block_group != block_group &&
7311 (used_block_group->ro ||
7312 !block_group_bits(used_block_group, flags)))
7313 goto release_cluster;
7314
7315 offset = btrfs_alloc_from_cluster(used_block_group,
7316 last_ptr,
7317 num_bytes,
7318 used_block_group->key.objectid,
7319 &max_extent_size);
7320 if (offset) {
7321 /* we have a block, we're done */
7322 spin_unlock(&last_ptr->refill_lock);
7323 trace_btrfs_reserve_extent_cluster(root,
7324 used_block_group,
7325 search_start, num_bytes);
7326 if (used_block_group != block_group) {
7327 btrfs_release_block_group(block_group,
7328 delalloc);
7329 block_group = used_block_group;
7330 }
7331 goto checks;
7332 }
7333
7334 WARN_ON(last_ptr->block_group != used_block_group);
7335release_cluster:
7336 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7337 * set up a new clusters, so lets just skip it
7338 * and let the allocator find whatever block
7339 * it can find. If we reach this point, we
7340 * will have tried the cluster allocator
7341 * plenty of times and not have found
7342 * anything, so we are likely way too
7343 * fragmented for the clustering stuff to find
7344 * anything.
7345 *
7346 * However, if the cluster is taken from the
7347 * current block group, release the cluster
7348 * first, so that we stand a better chance of
7349 * succeeding in the unclustered
7350 * allocation. */
7351 if (loop >= LOOP_NO_EMPTY_SIZE &&
7352 used_block_group != block_group) {
7353 spin_unlock(&last_ptr->refill_lock);
7354 btrfs_release_block_group(used_block_group,
7355 delalloc);
7356 goto unclustered_alloc;
7357 }
7358
7359 /*
7360 * this cluster didn't work out, free it and
7361 * start over
7362 */
7363 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7364
7365 if (used_block_group != block_group)
7366 btrfs_release_block_group(used_block_group,
7367 delalloc);
7368refill_cluster:
7369 if (loop >= LOOP_NO_EMPTY_SIZE) {
7370 spin_unlock(&last_ptr->refill_lock);
7371 goto unclustered_alloc;
7372 }
7373
7374 aligned_cluster = max_t(unsigned long,
7375 empty_cluster + empty_size,
7376 block_group->full_stripe_len);
7377
7378 /* allocate a cluster in this block group */
7379 ret = btrfs_find_space_cluster(root, block_group,
7380 last_ptr, search_start,
7381 num_bytes,
7382 aligned_cluster);
7383 if (ret == 0) {
7384 /*
7385 * now pull our allocation out of this
7386 * cluster
7387 */
7388 offset = btrfs_alloc_from_cluster(block_group,
7389 last_ptr,
7390 num_bytes,
7391 search_start,
7392 &max_extent_size);
7393 if (offset) {
7394 /* we found one, proceed */
7395 spin_unlock(&last_ptr->refill_lock);
7396 trace_btrfs_reserve_extent_cluster(root,
7397 block_group, search_start,
7398 num_bytes);
7399 goto checks;
7400 }
7401 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7402 && !failed_cluster_refill) {
7403 spin_unlock(&last_ptr->refill_lock);
7404
7405 failed_cluster_refill = true;
7406 wait_block_group_cache_progress(block_group,
7407 num_bytes + empty_cluster + empty_size);
7408 goto have_block_group;
7409 }
7410
7411 /*
7412 * at this point we either didn't find a cluster
7413 * or we weren't able to allocate a block from our
7414 * cluster. Free the cluster we've been trying
7415 * to use, and go to the next block group
7416 */
7417 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7418 spin_unlock(&last_ptr->refill_lock);
7419 goto loop;
7420 }
7421
7422unclustered_alloc:
7423 /*
7424 * We are doing an unclustered alloc, set the fragmented flag so
7425 * we don't bother trying to setup a cluster again until we get
7426 * more space.
7427 */
7428 if (unlikely(last_ptr)) {
7429 spin_lock(&last_ptr->lock);
7430 last_ptr->fragmented = 1;
7431 spin_unlock(&last_ptr->lock);
7432 }
7433 spin_lock(&block_group->free_space_ctl->tree_lock);
7434 if (cached &&
7435 block_group->free_space_ctl->free_space <
7436 num_bytes + empty_cluster + empty_size) {
7437 if (block_group->free_space_ctl->free_space >
7438 max_extent_size)
7439 max_extent_size =
7440 block_group->free_space_ctl->free_space;
7441 spin_unlock(&block_group->free_space_ctl->tree_lock);
7442 goto loop;
7443 }
7444 spin_unlock(&block_group->free_space_ctl->tree_lock);
7445
7446 offset = btrfs_find_space_for_alloc(block_group, search_start,
7447 num_bytes, empty_size,
7448 &max_extent_size);
7449 /*
7450 * If we didn't find a chunk, and we haven't failed on this
7451 * block group before, and this block group is in the middle of
7452 * caching and we are ok with waiting, then go ahead and wait
7453 * for progress to be made, and set failed_alloc to true.
7454 *
7455 * If failed_alloc is true then we've already waited on this
7456 * block group once and should move on to the next block group.
7457 */
7458 if (!offset && !failed_alloc && !cached &&
7459 loop > LOOP_CACHING_NOWAIT) {
7460 wait_block_group_cache_progress(block_group,
7461 num_bytes + empty_size);
7462 failed_alloc = true;
7463 goto have_block_group;
7464 } else if (!offset) {
7465 goto loop;
7466 }
7467checks:
7468 search_start = ALIGN(offset, root->stripesize);
7469
7470 /* move on to the next group */
7471 if (search_start + num_bytes >
7472 block_group->key.objectid + block_group->key.offset) {
7473 btrfs_add_free_space(block_group, offset, num_bytes);
7474 goto loop;
7475 }
7476
7477 if (offset < search_start)
7478 btrfs_add_free_space(block_group, offset,
7479 search_start - offset);
7480 BUG_ON(offset > search_start);
7481
7482 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7483 alloc_type, delalloc);
7484 if (ret == -EAGAIN) {
7485 btrfs_add_free_space(block_group, offset, num_bytes);
7486 goto loop;
7487 }
7488 btrfs_inc_block_group_reservations(block_group);
7489
7490 /* we are all good, lets return */
7491 ins->objectid = search_start;
7492 ins->offset = num_bytes;
7493
7494 trace_btrfs_reserve_extent(orig_root, block_group,
7495 search_start, num_bytes);
7496 btrfs_release_block_group(block_group, delalloc);
7497 break;
7498loop:
7499 failed_cluster_refill = false;
7500 failed_alloc = false;
7501 BUG_ON(index != get_block_group_index(block_group));
7502 btrfs_release_block_group(block_group, delalloc);
7503 }
7504 up_read(&space_info->groups_sem);
7505
7506 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7507 && !orig_have_caching_bg)
7508 orig_have_caching_bg = true;
7509
7510 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7511 goto search;
7512
7513 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7514 goto search;
7515
7516 /*
7517 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7518 * caching kthreads as we move along
7519 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7520 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7521 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7522 * again
7523 */
7524 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7525 index = 0;
7526 if (loop == LOOP_CACHING_NOWAIT) {
7527 /*
7528 * We want to skip the LOOP_CACHING_WAIT step if we
7529 * don't have any unached bgs and we've alrelady done a
7530 * full search through.
7531 */
7532 if (orig_have_caching_bg || !full_search)
7533 loop = LOOP_CACHING_WAIT;
7534 else
7535 loop = LOOP_ALLOC_CHUNK;
7536 } else {
7537 loop++;
7538 }
7539
7540 if (loop == LOOP_ALLOC_CHUNK) {
7541 struct btrfs_trans_handle *trans;
7542 int exist = 0;
7543
7544 trans = current->journal_info;
7545 if (trans)
7546 exist = 1;
7547 else
7548 trans = btrfs_join_transaction(root);
7549
7550 if (IS_ERR(trans)) {
7551 ret = PTR_ERR(trans);
7552 goto out;
7553 }
7554
7555 ret = do_chunk_alloc(trans, root, flags,
7556 CHUNK_ALLOC_FORCE);
7557
7558 /*
7559 * If we can't allocate a new chunk we've already looped
7560 * through at least once, move on to the NO_EMPTY_SIZE
7561 * case.
7562 */
7563 if (ret == -ENOSPC)
7564 loop = LOOP_NO_EMPTY_SIZE;
7565
7566 /*
7567 * Do not bail out on ENOSPC since we
7568 * can do more things.
7569 */
7570 if (ret < 0 && ret != -ENOSPC)
7571 btrfs_abort_transaction(trans,
7572 root, ret);
7573 else
7574 ret = 0;
7575 if (!exist)
7576 btrfs_end_transaction(trans, root);
7577 if (ret)
7578 goto out;
7579 }
7580
7581 if (loop == LOOP_NO_EMPTY_SIZE) {
7582 /*
7583 * Don't loop again if we already have no empty_size and
7584 * no empty_cluster.
7585 */
7586 if (empty_size == 0 &&
7587 empty_cluster == 0) {
7588 ret = -ENOSPC;
7589 goto out;
7590 }
7591 empty_size = 0;
7592 empty_cluster = 0;
7593 }
7594
7595 goto search;
7596 } else if (!ins->objectid) {
7597 ret = -ENOSPC;
7598 } else if (ins->objectid) {
7599 if (!use_cluster && last_ptr) {
7600 spin_lock(&last_ptr->lock);
7601 last_ptr->window_start = ins->objectid;
7602 spin_unlock(&last_ptr->lock);
7603 }
7604 ret = 0;
7605 }
7606out:
7607 if (ret == -ENOSPC) {
7608 spin_lock(&space_info->lock);
7609 space_info->max_extent_size = max_extent_size;
7610 spin_unlock(&space_info->lock);
7611 ins->offset = max_extent_size;
7612 }
7613 return ret;
7614}
7615
7616static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7617 int dump_block_groups)
7618{
7619 struct btrfs_block_group_cache *cache;
7620 int index = 0;
7621
7622 spin_lock(&info->lock);
7623 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7624 info->flags,
7625 info->total_bytes - info->bytes_used - info->bytes_pinned -
7626 info->bytes_reserved - info->bytes_readonly,
7627 (info->full) ? "" : "not ");
7628 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7629 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7630 info->total_bytes, info->bytes_used, info->bytes_pinned,
7631 info->bytes_reserved, info->bytes_may_use,
7632 info->bytes_readonly);
7633 spin_unlock(&info->lock);
7634
7635 if (!dump_block_groups)
7636 return;
7637
7638 down_read(&info->groups_sem);
7639again:
7640 list_for_each_entry(cache, &info->block_groups[index], list) {
7641 spin_lock(&cache->lock);
7642 printk(KERN_INFO "BTRFS: "
7643 "block group %llu has %llu bytes, "
7644 "%llu used %llu pinned %llu reserved %s\n",
7645 cache->key.objectid, cache->key.offset,
7646 btrfs_block_group_used(&cache->item), cache->pinned,
7647 cache->reserved, cache->ro ? "[readonly]" : "");
7648 btrfs_dump_free_space(cache, bytes);
7649 spin_unlock(&cache->lock);
7650 }
7651 if (++index < BTRFS_NR_RAID_TYPES)
7652 goto again;
7653 up_read(&info->groups_sem);
7654}
7655
7656int btrfs_reserve_extent(struct btrfs_root *root,
7657 u64 num_bytes, u64 min_alloc_size,
7658 u64 empty_size, u64 hint_byte,
7659 struct btrfs_key *ins, int is_data, int delalloc)
7660{
7661 bool final_tried = num_bytes == min_alloc_size;
7662 u64 flags;
7663 int ret;
7664
7665 flags = btrfs_get_alloc_profile(root, is_data);
7666again:
7667 WARN_ON(num_bytes < root->sectorsize);
7668 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7669 flags, delalloc);
7670 if (!ret && !is_data) {
7671 btrfs_dec_block_group_reservations(root->fs_info,
7672 ins->objectid);
7673 } else if (ret == -ENOSPC) {
7674 if (!final_tried && ins->offset) {
7675 num_bytes = min(num_bytes >> 1, ins->offset);
7676 num_bytes = round_down(num_bytes, root->sectorsize);
7677 num_bytes = max(num_bytes, min_alloc_size);
7678 if (num_bytes == min_alloc_size)
7679 final_tried = true;
7680 goto again;
7681 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7682 struct btrfs_space_info *sinfo;
7683
7684 sinfo = __find_space_info(root->fs_info, flags);
7685 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7686 flags, num_bytes);
7687 if (sinfo)
7688 dump_space_info(sinfo, num_bytes, 1);
7689 }
7690 }
7691
7692 return ret;
7693}
7694
7695static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7696 u64 start, u64 len,
7697 int pin, int delalloc)
7698{
7699 struct btrfs_block_group_cache *cache;
7700 int ret = 0;
7701
7702 cache = btrfs_lookup_block_group(root->fs_info, start);
7703 if (!cache) {
7704 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7705 start);
7706 return -ENOSPC;
7707 }
7708
7709 if (pin)
7710 pin_down_extent(root, cache, start, len, 1);
7711 else {
7712 if (btrfs_test_opt(root, DISCARD))
7713 ret = btrfs_discard_extent(root, start, len, NULL);
7714 btrfs_add_free_space(cache, start, len);
7715 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7716 }
7717
7718 btrfs_put_block_group(cache);
7719
7720 trace_btrfs_reserved_extent_free(root, start, len);
7721
7722 return ret;
7723}
7724
7725int btrfs_free_reserved_extent(struct btrfs_root *root,
7726 u64 start, u64 len, int delalloc)
7727{
7728 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7729}
7730
7731int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7732 u64 start, u64 len)
7733{
7734 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7735}
7736
7737static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7738 struct btrfs_root *root,
7739 u64 parent, u64 root_objectid,
7740 u64 flags, u64 owner, u64 offset,
7741 struct btrfs_key *ins, int ref_mod)
7742{
7743 int ret;
7744 struct btrfs_fs_info *fs_info = root->fs_info;
7745 struct btrfs_extent_item *extent_item;
7746 struct btrfs_extent_inline_ref *iref;
7747 struct btrfs_path *path;
7748 struct extent_buffer *leaf;
7749 int type;
7750 u32 size;
7751
7752 if (parent > 0)
7753 type = BTRFS_SHARED_DATA_REF_KEY;
7754 else
7755 type = BTRFS_EXTENT_DATA_REF_KEY;
7756
7757 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7758
7759 path = btrfs_alloc_path();
7760 if (!path)
7761 return -ENOMEM;
7762
7763 path->leave_spinning = 1;
7764 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7765 ins, size);
7766 if (ret) {
7767 btrfs_free_path(path);
7768 return ret;
7769 }
7770
7771 leaf = path->nodes[0];
7772 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7773 struct btrfs_extent_item);
7774 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7775 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7776 btrfs_set_extent_flags(leaf, extent_item,
7777 flags | BTRFS_EXTENT_FLAG_DATA);
7778
7779 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7780 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7781 if (parent > 0) {
7782 struct btrfs_shared_data_ref *ref;
7783 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7784 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7785 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7786 } else {
7787 struct btrfs_extent_data_ref *ref;
7788 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7789 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7790 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7791 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7792 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7793 }
7794
7795 btrfs_mark_buffer_dirty(path->nodes[0]);
7796 btrfs_free_path(path);
7797
7798 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7799 ins->offset);
7800 if (ret)
7801 return ret;
7802
7803 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7804 if (ret) { /* -ENOENT, logic error */
7805 btrfs_err(fs_info, "update block group failed for %llu %llu",
7806 ins->objectid, ins->offset);
7807 BUG();
7808 }
7809 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7810 return ret;
7811}
7812
7813static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7814 struct btrfs_root *root,
7815 u64 parent, u64 root_objectid,
7816 u64 flags, struct btrfs_disk_key *key,
7817 int level, struct btrfs_key *ins)
7818{
7819 int ret;
7820 struct btrfs_fs_info *fs_info = root->fs_info;
7821 struct btrfs_extent_item *extent_item;
7822 struct btrfs_tree_block_info *block_info;
7823 struct btrfs_extent_inline_ref *iref;
7824 struct btrfs_path *path;
7825 struct extent_buffer *leaf;
7826 u32 size = sizeof(*extent_item) + sizeof(*iref);
7827 u64 num_bytes = ins->offset;
7828 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7829 SKINNY_METADATA);
7830
7831 if (!skinny_metadata)
7832 size += sizeof(*block_info);
7833
7834 path = btrfs_alloc_path();
7835 if (!path) {
7836 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7837 root->nodesize);
7838 return -ENOMEM;
7839 }
7840
7841 path->leave_spinning = 1;
7842 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7843 ins, size);
7844 if (ret) {
7845 btrfs_free_path(path);
7846 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7847 root->nodesize);
7848 return ret;
7849 }
7850
7851 leaf = path->nodes[0];
7852 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7853 struct btrfs_extent_item);
7854 btrfs_set_extent_refs(leaf, extent_item, 1);
7855 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7856 btrfs_set_extent_flags(leaf, extent_item,
7857 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7858
7859 if (skinny_metadata) {
7860 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7861 num_bytes = root->nodesize;
7862 } else {
7863 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7864 btrfs_set_tree_block_key(leaf, block_info, key);
7865 btrfs_set_tree_block_level(leaf, block_info, level);
7866 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7867 }
7868
7869 if (parent > 0) {
7870 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7871 btrfs_set_extent_inline_ref_type(leaf, iref,
7872 BTRFS_SHARED_BLOCK_REF_KEY);
7873 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7874 } else {
7875 btrfs_set_extent_inline_ref_type(leaf, iref,
7876 BTRFS_TREE_BLOCK_REF_KEY);
7877 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7878 }
7879
7880 btrfs_mark_buffer_dirty(leaf);
7881 btrfs_free_path(path);
7882
7883 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7884 num_bytes);
7885 if (ret)
7886 return ret;
7887
7888 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7889 1);
7890 if (ret) { /* -ENOENT, logic error */
7891 btrfs_err(fs_info, "update block group failed for %llu %llu",
7892 ins->objectid, ins->offset);
7893 BUG();
7894 }
7895
7896 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7897 return ret;
7898}
7899
7900int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7901 struct btrfs_root *root,
7902 u64 root_objectid, u64 owner,
7903 u64 offset, u64 ram_bytes,
7904 struct btrfs_key *ins)
7905{
7906 int ret;
7907
7908 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7909
7910 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7911 ins->offset, 0,
7912 root_objectid, owner, offset,
7913 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7914 NULL);
7915 return ret;
7916}
7917
7918/*
7919 * this is used by the tree logging recovery code. It records that
7920 * an extent has been allocated and makes sure to clear the free
7921 * space cache bits as well
7922 */
7923int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7924 struct btrfs_root *root,
7925 u64 root_objectid, u64 owner, u64 offset,
7926 struct btrfs_key *ins)
7927{
7928 int ret;
7929 struct btrfs_block_group_cache *block_group;
7930
7931 /*
7932 * Mixed block groups will exclude before processing the log so we only
7933 * need to do the exlude dance if this fs isn't mixed.
7934 */
7935 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7936 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7937 if (ret)
7938 return ret;
7939 }
7940
7941 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7942 if (!block_group)
7943 return -EINVAL;
7944
7945 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7946 RESERVE_ALLOC_NO_ACCOUNT, 0);
7947 BUG_ON(ret); /* logic error */
7948 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7949 0, owner, offset, ins, 1);
7950 btrfs_put_block_group(block_group);
7951 return ret;
7952}
7953
7954static struct extent_buffer *
7955btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7956 u64 bytenr, int level)
7957{
7958 struct extent_buffer *buf;
7959
7960 buf = btrfs_find_create_tree_block(root, bytenr);
7961 if (!buf)
7962 return ERR_PTR(-ENOMEM);
7963 btrfs_set_header_generation(buf, trans->transid);
7964 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7965 btrfs_tree_lock(buf);
7966 clean_tree_block(trans, root->fs_info, buf);
7967 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7968
7969 btrfs_set_lock_blocking(buf);
7970 set_extent_buffer_uptodate(buf);
7971
7972 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7973 buf->log_index = root->log_transid % 2;
7974 /*
7975 * we allow two log transactions at a time, use different
7976 * EXENT bit to differentiate dirty pages.
7977 */
7978 if (buf->log_index == 0)
7979 set_extent_dirty(&root->dirty_log_pages, buf->start,
7980 buf->start + buf->len - 1, GFP_NOFS);
7981 else
7982 set_extent_new(&root->dirty_log_pages, buf->start,
7983 buf->start + buf->len - 1, GFP_NOFS);
7984 } else {
7985 buf->log_index = -1;
7986 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7987 buf->start + buf->len - 1, GFP_NOFS);
7988 }
7989 trans->blocks_used++;
7990 /* this returns a buffer locked for blocking */
7991 return buf;
7992}
7993
7994static struct btrfs_block_rsv *
7995use_block_rsv(struct btrfs_trans_handle *trans,
7996 struct btrfs_root *root, u32 blocksize)
7997{
7998 struct btrfs_block_rsv *block_rsv;
7999 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8000 int ret;
8001 bool global_updated = false;
8002
8003 block_rsv = get_block_rsv(trans, root);
8004
8005 if (unlikely(block_rsv->size == 0))
8006 goto try_reserve;
8007again:
8008 ret = block_rsv_use_bytes(block_rsv, blocksize);
8009 if (!ret)
8010 return block_rsv;
8011
8012 if (block_rsv->failfast)
8013 return ERR_PTR(ret);
8014
8015 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8016 global_updated = true;
8017 update_global_block_rsv(root->fs_info);
8018 goto again;
8019 }
8020
8021 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8022 static DEFINE_RATELIMIT_STATE(_rs,
8023 DEFAULT_RATELIMIT_INTERVAL * 10,
8024 /*DEFAULT_RATELIMIT_BURST*/ 1);
8025 if (__ratelimit(&_rs))
8026 WARN(1, KERN_DEBUG
8027 "BTRFS: block rsv returned %d\n", ret);
8028 }
8029try_reserve:
8030 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8031 BTRFS_RESERVE_NO_FLUSH);
8032 if (!ret)
8033 return block_rsv;
8034 /*
8035 * If we couldn't reserve metadata bytes try and use some from
8036 * the global reserve if its space type is the same as the global
8037 * reservation.
8038 */
8039 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8040 block_rsv->space_info == global_rsv->space_info) {
8041 ret = block_rsv_use_bytes(global_rsv, blocksize);
8042 if (!ret)
8043 return global_rsv;
8044 }
8045 return ERR_PTR(ret);
8046}
8047
8048static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8049 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8050{
8051 block_rsv_add_bytes(block_rsv, blocksize, 0);
8052 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8053}
8054
8055/*
8056 * finds a free extent and does all the dirty work required for allocation
8057 * returns the tree buffer or an ERR_PTR on error.
8058 */
8059struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8060 struct btrfs_root *root,
8061 u64 parent, u64 root_objectid,
8062 struct btrfs_disk_key *key, int level,
8063 u64 hint, u64 empty_size)
8064{
8065 struct btrfs_key ins;
8066 struct btrfs_block_rsv *block_rsv;
8067 struct extent_buffer *buf;
8068 struct btrfs_delayed_extent_op *extent_op;
8069 u64 flags = 0;
8070 int ret;
8071 u32 blocksize = root->nodesize;
8072 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8073 SKINNY_METADATA);
8074
8075 if (btrfs_test_is_dummy_root(root)) {
8076 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8077 level);
8078 if (!IS_ERR(buf))
8079 root->alloc_bytenr += blocksize;
8080 return buf;
8081 }
8082
8083 block_rsv = use_block_rsv(trans, root, blocksize);
8084 if (IS_ERR(block_rsv))
8085 return ERR_CAST(block_rsv);
8086
8087 ret = btrfs_reserve_extent(root, blocksize, blocksize,
8088 empty_size, hint, &ins, 0, 0);
8089 if (ret)
8090 goto out_unuse;
8091
8092 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8093 if (IS_ERR(buf)) {
8094 ret = PTR_ERR(buf);
8095 goto out_free_reserved;
8096 }
8097
8098 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8099 if (parent == 0)
8100 parent = ins.objectid;
8101 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8102 } else
8103 BUG_ON(parent > 0);
8104
8105 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8106 extent_op = btrfs_alloc_delayed_extent_op();
8107 if (!extent_op) {
8108 ret = -ENOMEM;
8109 goto out_free_buf;
8110 }
8111 if (key)
8112 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8113 else
8114 memset(&extent_op->key, 0, sizeof(extent_op->key));
8115 extent_op->flags_to_set = flags;
8116 extent_op->update_key = skinny_metadata ? false : true;
8117 extent_op->update_flags = true;
8118 extent_op->is_data = false;
8119 extent_op->level = level;
8120
8121 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8122 ins.objectid, ins.offset,
8123 parent, root_objectid, level,
8124 BTRFS_ADD_DELAYED_EXTENT,
8125 extent_op);
8126 if (ret)
8127 goto out_free_delayed;
8128 }
8129 return buf;
8130
8131out_free_delayed:
8132 btrfs_free_delayed_extent_op(extent_op);
8133out_free_buf:
8134 free_extent_buffer(buf);
8135out_free_reserved:
8136 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8137out_unuse:
8138 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8139 return ERR_PTR(ret);
8140}
8141
8142struct walk_control {
8143 u64 refs[BTRFS_MAX_LEVEL];
8144 u64 flags[BTRFS_MAX_LEVEL];
8145 struct btrfs_key update_progress;
8146 int stage;
8147 int level;
8148 int shared_level;
8149 int update_ref;
8150 int keep_locks;
8151 int reada_slot;
8152 int reada_count;
8153 int for_reloc;
8154};
8155
8156#define DROP_REFERENCE 1
8157#define UPDATE_BACKREF 2
8158
8159static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8160 struct btrfs_root *root,
8161 struct walk_control *wc,
8162 struct btrfs_path *path)
8163{
8164 u64 bytenr;
8165 u64 generation;
8166 u64 refs;
8167 u64 flags;
8168 u32 nritems;
8169 u32 blocksize;
8170 struct btrfs_key key;
8171 struct extent_buffer *eb;
8172 int ret;
8173 int slot;
8174 int nread = 0;
8175
8176 if (path->slots[wc->level] < wc->reada_slot) {
8177 wc->reada_count = wc->reada_count * 2 / 3;
8178 wc->reada_count = max(wc->reada_count, 2);
8179 } else {
8180 wc->reada_count = wc->reada_count * 3 / 2;
8181 wc->reada_count = min_t(int, wc->reada_count,
8182 BTRFS_NODEPTRS_PER_BLOCK(root));
8183 }
8184
8185 eb = path->nodes[wc->level];
8186 nritems = btrfs_header_nritems(eb);
8187 blocksize = root->nodesize;
8188
8189 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8190 if (nread >= wc->reada_count)
8191 break;
8192
8193 cond_resched();
8194 bytenr = btrfs_node_blockptr(eb, slot);
8195 generation = btrfs_node_ptr_generation(eb, slot);
8196
8197 if (slot == path->slots[wc->level])
8198 goto reada;
8199
8200 if (wc->stage == UPDATE_BACKREF &&
8201 generation <= root->root_key.offset)
8202 continue;
8203
8204 /* We don't lock the tree block, it's OK to be racy here */
8205 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8206 wc->level - 1, 1, &refs,
8207 &flags);
8208 /* We don't care about errors in readahead. */
8209 if (ret < 0)
8210 continue;
8211 BUG_ON(refs == 0);
8212
8213 if (wc->stage == DROP_REFERENCE) {
8214 if (refs == 1)
8215 goto reada;
8216
8217 if (wc->level == 1 &&
8218 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8219 continue;
8220 if (!wc->update_ref ||
8221 generation <= root->root_key.offset)
8222 continue;
8223 btrfs_node_key_to_cpu(eb, &key, slot);
8224 ret = btrfs_comp_cpu_keys(&key,
8225 &wc->update_progress);
8226 if (ret < 0)
8227 continue;
8228 } else {
8229 if (wc->level == 1 &&
8230 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8231 continue;
8232 }
8233reada:
8234 readahead_tree_block(root, bytenr);
8235 nread++;
8236 }
8237 wc->reada_slot = slot;
8238}
8239
8240/*
8241 * These may not be seen by the usual inc/dec ref code so we have to
8242 * add them here.
8243 */
8244static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8245 struct btrfs_root *root, u64 bytenr,
8246 u64 num_bytes)
8247{
8248 struct btrfs_qgroup_extent_record *qrecord;
8249 struct btrfs_delayed_ref_root *delayed_refs;
8250
8251 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8252 if (!qrecord)
8253 return -ENOMEM;
8254
8255 qrecord->bytenr = bytenr;
8256 qrecord->num_bytes = num_bytes;
8257 qrecord->old_roots = NULL;
8258
8259 delayed_refs = &trans->transaction->delayed_refs;
8260 spin_lock(&delayed_refs->lock);
8261 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8262 kfree(qrecord);
8263 spin_unlock(&delayed_refs->lock);
8264
8265 return 0;
8266}
8267
8268static int account_leaf_items(struct btrfs_trans_handle *trans,
8269 struct btrfs_root *root,
8270 struct extent_buffer *eb)
8271{
8272 int nr = btrfs_header_nritems(eb);
8273 int i, extent_type, ret;
8274 struct btrfs_key key;
8275 struct btrfs_file_extent_item *fi;
8276 u64 bytenr, num_bytes;
8277
8278 /* We can be called directly from walk_up_proc() */
8279 if (!root->fs_info->quota_enabled)
8280 return 0;
8281
8282 for (i = 0; i < nr; i++) {
8283 btrfs_item_key_to_cpu(eb, &key, i);
8284
8285 if (key.type != BTRFS_EXTENT_DATA_KEY)
8286 continue;
8287
8288 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8289 /* filter out non qgroup-accountable extents */
8290 extent_type = btrfs_file_extent_type(eb, fi);
8291
8292 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8293 continue;
8294
8295 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8296 if (!bytenr)
8297 continue;
8298
8299 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8300
8301 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8302 if (ret)
8303 return ret;
8304 }
8305 return 0;
8306}
8307
8308/*
8309 * Walk up the tree from the bottom, freeing leaves and any interior
8310 * nodes which have had all slots visited. If a node (leaf or
8311 * interior) is freed, the node above it will have it's slot
8312 * incremented. The root node will never be freed.
8313 *
8314 * At the end of this function, we should have a path which has all
8315 * slots incremented to the next position for a search. If we need to
8316 * read a new node it will be NULL and the node above it will have the
8317 * correct slot selected for a later read.
8318 *
8319 * If we increment the root nodes slot counter past the number of
8320 * elements, 1 is returned to signal completion of the search.
8321 */
8322static int adjust_slots_upwards(struct btrfs_root *root,
8323 struct btrfs_path *path, int root_level)
8324{
8325 int level = 0;
8326 int nr, slot;
8327 struct extent_buffer *eb;
8328
8329 if (root_level == 0)
8330 return 1;
8331
8332 while (level <= root_level) {
8333 eb = path->nodes[level];
8334 nr = btrfs_header_nritems(eb);
8335 path->slots[level]++;
8336 slot = path->slots[level];
8337 if (slot >= nr || level == 0) {
8338 /*
8339 * Don't free the root - we will detect this
8340 * condition after our loop and return a
8341 * positive value for caller to stop walking the tree.
8342 */
8343 if (level != root_level) {
8344 btrfs_tree_unlock_rw(eb, path->locks[level]);
8345 path->locks[level] = 0;
8346
8347 free_extent_buffer(eb);
8348 path->nodes[level] = NULL;
8349 path->slots[level] = 0;
8350 }
8351 } else {
8352 /*
8353 * We have a valid slot to walk back down
8354 * from. Stop here so caller can process these
8355 * new nodes.
8356 */
8357 break;
8358 }
8359
8360 level++;
8361 }
8362
8363 eb = path->nodes[root_level];
8364 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8365 return 1;
8366
8367 return 0;
8368}
8369
8370/*
8371 * root_eb is the subtree root and is locked before this function is called.
8372 */
8373static int account_shared_subtree(struct btrfs_trans_handle *trans,
8374 struct btrfs_root *root,
8375 struct extent_buffer *root_eb,
8376 u64 root_gen,
8377 int root_level)
8378{
8379 int ret = 0;
8380 int level;
8381 struct extent_buffer *eb = root_eb;
8382 struct btrfs_path *path = NULL;
8383
8384 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8385 BUG_ON(root_eb == NULL);
8386
8387 if (!root->fs_info->quota_enabled)
8388 return 0;
8389
8390 if (!extent_buffer_uptodate(root_eb)) {
8391 ret = btrfs_read_buffer(root_eb, root_gen);
8392 if (ret)
8393 goto out;
8394 }
8395
8396 if (root_level == 0) {
8397 ret = account_leaf_items(trans, root, root_eb);
8398 goto out;
8399 }
8400
8401 path = btrfs_alloc_path();
8402 if (!path)
8403 return -ENOMEM;
8404
8405 /*
8406 * Walk down the tree. Missing extent blocks are filled in as
8407 * we go. Metadata is accounted every time we read a new
8408 * extent block.
8409 *
8410 * When we reach a leaf, we account for file extent items in it,
8411 * walk back up the tree (adjusting slot pointers as we go)
8412 * and restart the search process.
8413 */
8414 extent_buffer_get(root_eb); /* For path */
8415 path->nodes[root_level] = root_eb;
8416 path->slots[root_level] = 0;
8417 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8418walk_down:
8419 level = root_level;
8420 while (level >= 0) {
8421 if (path->nodes[level] == NULL) {
8422 int parent_slot;
8423 u64 child_gen;
8424 u64 child_bytenr;
8425
8426 /* We need to get child blockptr/gen from
8427 * parent before we can read it. */
8428 eb = path->nodes[level + 1];
8429 parent_slot = path->slots[level + 1];
8430 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8431 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8432
8433 eb = read_tree_block(root, child_bytenr, child_gen);
8434 if (IS_ERR(eb)) {
8435 ret = PTR_ERR(eb);
8436 goto out;
8437 } else if (!extent_buffer_uptodate(eb)) {
8438 free_extent_buffer(eb);
8439 ret = -EIO;
8440 goto out;
8441 }
8442
8443 path->nodes[level] = eb;
8444 path->slots[level] = 0;
8445
8446 btrfs_tree_read_lock(eb);
8447 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8448 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8449
8450 ret = record_one_subtree_extent(trans, root, child_bytenr,
8451 root->nodesize);
8452 if (ret)
8453 goto out;
8454 }
8455
8456 if (level == 0) {
8457 ret = account_leaf_items(trans, root, path->nodes[level]);
8458 if (ret)
8459 goto out;
8460
8461 /* Nonzero return here means we completed our search */
8462 ret = adjust_slots_upwards(root, path, root_level);
8463 if (ret)
8464 break;
8465
8466 /* Restart search with new slots */
8467 goto walk_down;
8468 }
8469
8470 level--;
8471 }
8472
8473 ret = 0;
8474out:
8475 btrfs_free_path(path);
8476
8477 return ret;
8478}
8479
8480/*
8481 * helper to process tree block while walking down the tree.
8482 *
8483 * when wc->stage == UPDATE_BACKREF, this function updates
8484 * back refs for pointers in the block.
8485 *
8486 * NOTE: return value 1 means we should stop walking down.
8487 */
8488static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8489 struct btrfs_root *root,
8490 struct btrfs_path *path,
8491 struct walk_control *wc, int lookup_info)
8492{
8493 int level = wc->level;
8494 struct extent_buffer *eb = path->nodes[level];
8495 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8496 int ret;
8497
8498 if (wc->stage == UPDATE_BACKREF &&
8499 btrfs_header_owner(eb) != root->root_key.objectid)
8500 return 1;
8501
8502 /*
8503 * when reference count of tree block is 1, it won't increase
8504 * again. once full backref flag is set, we never clear it.
8505 */
8506 if (lookup_info &&
8507 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8508 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8509 BUG_ON(!path->locks[level]);
8510 ret = btrfs_lookup_extent_info(trans, root,
8511 eb->start, level, 1,
8512 &wc->refs[level],
8513 &wc->flags[level]);
8514 BUG_ON(ret == -ENOMEM);
8515 if (ret)
8516 return ret;
8517 BUG_ON(wc->refs[level] == 0);
8518 }
8519
8520 if (wc->stage == DROP_REFERENCE) {
8521 if (wc->refs[level] > 1)
8522 return 1;
8523
8524 if (path->locks[level] && !wc->keep_locks) {
8525 btrfs_tree_unlock_rw(eb, path->locks[level]);
8526 path->locks[level] = 0;
8527 }
8528 return 0;
8529 }
8530
8531 /* wc->stage == UPDATE_BACKREF */
8532 if (!(wc->flags[level] & flag)) {
8533 BUG_ON(!path->locks[level]);
8534 ret = btrfs_inc_ref(trans, root, eb, 1);
8535 BUG_ON(ret); /* -ENOMEM */
8536 ret = btrfs_dec_ref(trans, root, eb, 0);
8537 BUG_ON(ret); /* -ENOMEM */
8538 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8539 eb->len, flag,
8540 btrfs_header_level(eb), 0);
8541 BUG_ON(ret); /* -ENOMEM */
8542 wc->flags[level] |= flag;
8543 }
8544
8545 /*
8546 * the block is shared by multiple trees, so it's not good to
8547 * keep the tree lock
8548 */
8549 if (path->locks[level] && level > 0) {
8550 btrfs_tree_unlock_rw(eb, path->locks[level]);
8551 path->locks[level] = 0;
8552 }
8553 return 0;
8554}
8555
8556/*
8557 * helper to process tree block pointer.
8558 *
8559 * when wc->stage == DROP_REFERENCE, this function checks
8560 * reference count of the block pointed to. if the block
8561 * is shared and we need update back refs for the subtree
8562 * rooted at the block, this function changes wc->stage to
8563 * UPDATE_BACKREF. if the block is shared and there is no
8564 * need to update back, this function drops the reference
8565 * to the block.
8566 *
8567 * NOTE: return value 1 means we should stop walking down.
8568 */
8569static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8570 struct btrfs_root *root,
8571 struct btrfs_path *path,
8572 struct walk_control *wc, int *lookup_info)
8573{
8574 u64 bytenr;
8575 u64 generation;
8576 u64 parent;
8577 u32 blocksize;
8578 struct btrfs_key key;
8579 struct extent_buffer *next;
8580 int level = wc->level;
8581 int reada = 0;
8582 int ret = 0;
8583 bool need_account = false;
8584
8585 generation = btrfs_node_ptr_generation(path->nodes[level],
8586 path->slots[level]);
8587 /*
8588 * if the lower level block was created before the snapshot
8589 * was created, we know there is no need to update back refs
8590 * for the subtree
8591 */
8592 if (wc->stage == UPDATE_BACKREF &&
8593 generation <= root->root_key.offset) {
8594 *lookup_info = 1;
8595 return 1;
8596 }
8597
8598 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8599 blocksize = root->nodesize;
8600
8601 next = btrfs_find_tree_block(root->fs_info, bytenr);
8602 if (!next) {
8603 next = btrfs_find_create_tree_block(root, bytenr);
8604 if (!next)
8605 return -ENOMEM;
8606 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8607 level - 1);
8608 reada = 1;
8609 }
8610 btrfs_tree_lock(next);
8611 btrfs_set_lock_blocking(next);
8612
8613 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8614 &wc->refs[level - 1],
8615 &wc->flags[level - 1]);
8616 if (ret < 0) {
8617 btrfs_tree_unlock(next);
8618 return ret;
8619 }
8620
8621 if (unlikely(wc->refs[level - 1] == 0)) {
8622 btrfs_err(root->fs_info, "Missing references.");
8623 BUG();
8624 }
8625 *lookup_info = 0;
8626
8627 if (wc->stage == DROP_REFERENCE) {
8628 if (wc->refs[level - 1] > 1) {
8629 need_account = true;
8630 if (level == 1 &&
8631 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8632 goto skip;
8633
8634 if (!wc->update_ref ||
8635 generation <= root->root_key.offset)
8636 goto skip;
8637
8638 btrfs_node_key_to_cpu(path->nodes[level], &key,
8639 path->slots[level]);
8640 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8641 if (ret < 0)
8642 goto skip;
8643
8644 wc->stage = UPDATE_BACKREF;
8645 wc->shared_level = level - 1;
8646 }
8647 } else {
8648 if (level == 1 &&
8649 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8650 goto skip;
8651 }
8652
8653 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8654 btrfs_tree_unlock(next);
8655 free_extent_buffer(next);
8656 next = NULL;
8657 *lookup_info = 1;
8658 }
8659
8660 if (!next) {
8661 if (reada && level == 1)
8662 reada_walk_down(trans, root, wc, path);
8663 next = read_tree_block(root, bytenr, generation);
8664 if (IS_ERR(next)) {
8665 return PTR_ERR(next);
8666 } else if (!extent_buffer_uptodate(next)) {
8667 free_extent_buffer(next);
8668 return -EIO;
8669 }
8670 btrfs_tree_lock(next);
8671 btrfs_set_lock_blocking(next);
8672 }
8673
8674 level--;
8675 BUG_ON(level != btrfs_header_level(next));
8676 path->nodes[level] = next;
8677 path->slots[level] = 0;
8678 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8679 wc->level = level;
8680 if (wc->level == 1)
8681 wc->reada_slot = 0;
8682 return 0;
8683skip:
8684 wc->refs[level - 1] = 0;
8685 wc->flags[level - 1] = 0;
8686 if (wc->stage == DROP_REFERENCE) {
8687 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8688 parent = path->nodes[level]->start;
8689 } else {
8690 BUG_ON(root->root_key.objectid !=
8691 btrfs_header_owner(path->nodes[level]));
8692 parent = 0;
8693 }
8694
8695 if (need_account) {
8696 ret = account_shared_subtree(trans, root, next,
8697 generation, level - 1);
8698 if (ret) {
8699 btrfs_err_rl(root->fs_info,
8700 "Error "
8701 "%d accounting shared subtree. Quota "
8702 "is out of sync, rescan required.",
8703 ret);
8704 }
8705 }
8706 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8707 root->root_key.objectid, level - 1, 0);
8708 BUG_ON(ret); /* -ENOMEM */
8709 }
8710 btrfs_tree_unlock(next);
8711 free_extent_buffer(next);
8712 *lookup_info = 1;
8713 return 1;
8714}
8715
8716/*
8717 * helper to process tree block while walking up the tree.
8718 *
8719 * when wc->stage == DROP_REFERENCE, this function drops
8720 * reference count on the block.
8721 *
8722 * when wc->stage == UPDATE_BACKREF, this function changes
8723 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8724 * to UPDATE_BACKREF previously while processing the block.
8725 *
8726 * NOTE: return value 1 means we should stop walking up.
8727 */
8728static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8729 struct btrfs_root *root,
8730 struct btrfs_path *path,
8731 struct walk_control *wc)
8732{
8733 int ret;
8734 int level = wc->level;
8735 struct extent_buffer *eb = path->nodes[level];
8736 u64 parent = 0;
8737
8738 if (wc->stage == UPDATE_BACKREF) {
8739 BUG_ON(wc->shared_level < level);
8740 if (level < wc->shared_level)
8741 goto out;
8742
8743 ret = find_next_key(path, level + 1, &wc->update_progress);
8744 if (ret > 0)
8745 wc->update_ref = 0;
8746
8747 wc->stage = DROP_REFERENCE;
8748 wc->shared_level = -1;
8749 path->slots[level] = 0;
8750
8751 /*
8752 * check reference count again if the block isn't locked.
8753 * we should start walking down the tree again if reference
8754 * count is one.
8755 */
8756 if (!path->locks[level]) {
8757 BUG_ON(level == 0);
8758 btrfs_tree_lock(eb);
8759 btrfs_set_lock_blocking(eb);
8760 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8761
8762 ret = btrfs_lookup_extent_info(trans, root,
8763 eb->start, level, 1,
8764 &wc->refs[level],
8765 &wc->flags[level]);
8766 if (ret < 0) {
8767 btrfs_tree_unlock_rw(eb, path->locks[level]);
8768 path->locks[level] = 0;
8769 return ret;
8770 }
8771 BUG_ON(wc->refs[level] == 0);
8772 if (wc->refs[level] == 1) {
8773 btrfs_tree_unlock_rw(eb, path->locks[level]);
8774 path->locks[level] = 0;
8775 return 1;
8776 }
8777 }
8778 }
8779
8780 /* wc->stage == DROP_REFERENCE */
8781 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8782
8783 if (wc->refs[level] == 1) {
8784 if (level == 0) {
8785 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8786 ret = btrfs_dec_ref(trans, root, eb, 1);
8787 else
8788 ret = btrfs_dec_ref(trans, root, eb, 0);
8789 BUG_ON(ret); /* -ENOMEM */
8790 ret = account_leaf_items(trans, root, eb);
8791 if (ret) {
8792 btrfs_err_rl(root->fs_info,
8793 "error "
8794 "%d accounting leaf items. Quota "
8795 "is out of sync, rescan required.",
8796 ret);
8797 }
8798 }
8799 /* make block locked assertion in clean_tree_block happy */
8800 if (!path->locks[level] &&
8801 btrfs_header_generation(eb) == trans->transid) {
8802 btrfs_tree_lock(eb);
8803 btrfs_set_lock_blocking(eb);
8804 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8805 }
8806 clean_tree_block(trans, root->fs_info, eb);
8807 }
8808
8809 if (eb == root->node) {
8810 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8811 parent = eb->start;
8812 else
8813 BUG_ON(root->root_key.objectid !=
8814 btrfs_header_owner(eb));
8815 } else {
8816 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8817 parent = path->nodes[level + 1]->start;
8818 else
8819 BUG_ON(root->root_key.objectid !=
8820 btrfs_header_owner(path->nodes[level + 1]));
8821 }
8822
8823 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8824out:
8825 wc->refs[level] = 0;
8826 wc->flags[level] = 0;
8827 return 0;
8828}
8829
8830static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8831 struct btrfs_root *root,
8832 struct btrfs_path *path,
8833 struct walk_control *wc)
8834{
8835 int level = wc->level;
8836 int lookup_info = 1;
8837 int ret;
8838
8839 while (level >= 0) {
8840 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8841 if (ret > 0)
8842 break;
8843
8844 if (level == 0)
8845 break;
8846
8847 if (path->slots[level] >=
8848 btrfs_header_nritems(path->nodes[level]))
8849 break;
8850
8851 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8852 if (ret > 0) {
8853 path->slots[level]++;
8854 continue;
8855 } else if (ret < 0)
8856 return ret;
8857 level = wc->level;
8858 }
8859 return 0;
8860}
8861
8862static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8863 struct btrfs_root *root,
8864 struct btrfs_path *path,
8865 struct walk_control *wc, int max_level)
8866{
8867 int level = wc->level;
8868 int ret;
8869
8870 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8871 while (level < max_level && path->nodes[level]) {
8872 wc->level = level;
8873 if (path->slots[level] + 1 <
8874 btrfs_header_nritems(path->nodes[level])) {
8875 path->slots[level]++;
8876 return 0;
8877 } else {
8878 ret = walk_up_proc(trans, root, path, wc);
8879 if (ret > 0)
8880 return 0;
8881
8882 if (path->locks[level]) {
8883 btrfs_tree_unlock_rw(path->nodes[level],
8884 path->locks[level]);
8885 path->locks[level] = 0;
8886 }
8887 free_extent_buffer(path->nodes[level]);
8888 path->nodes[level] = NULL;
8889 level++;
8890 }
8891 }
8892 return 1;
8893}
8894
8895/*
8896 * drop a subvolume tree.
8897 *
8898 * this function traverses the tree freeing any blocks that only
8899 * referenced by the tree.
8900 *
8901 * when a shared tree block is found. this function decreases its
8902 * reference count by one. if update_ref is true, this function
8903 * also make sure backrefs for the shared block and all lower level
8904 * blocks are properly updated.
8905 *
8906 * If called with for_reloc == 0, may exit early with -EAGAIN
8907 */
8908int btrfs_drop_snapshot(struct btrfs_root *root,
8909 struct btrfs_block_rsv *block_rsv, int update_ref,
8910 int for_reloc)
8911{
8912 struct btrfs_path *path;
8913 struct btrfs_trans_handle *trans;
8914 struct btrfs_root *tree_root = root->fs_info->tree_root;
8915 struct btrfs_root_item *root_item = &root->root_item;
8916 struct walk_control *wc;
8917 struct btrfs_key key;
8918 int err = 0;
8919 int ret;
8920 int level;
8921 bool root_dropped = false;
8922
8923 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8924
8925 path = btrfs_alloc_path();
8926 if (!path) {
8927 err = -ENOMEM;
8928 goto out;
8929 }
8930
8931 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8932 if (!wc) {
8933 btrfs_free_path(path);
8934 err = -ENOMEM;
8935 goto out;
8936 }
8937
8938 trans = btrfs_start_transaction(tree_root, 0);
8939 if (IS_ERR(trans)) {
8940 err = PTR_ERR(trans);
8941 goto out_free;
8942 }
8943
8944 if (block_rsv)
8945 trans->block_rsv = block_rsv;
8946
8947 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8948 level = btrfs_header_level(root->node);
8949 path->nodes[level] = btrfs_lock_root_node(root);
8950 btrfs_set_lock_blocking(path->nodes[level]);
8951 path->slots[level] = 0;
8952 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8953 memset(&wc->update_progress, 0,
8954 sizeof(wc->update_progress));
8955 } else {
8956 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8957 memcpy(&wc->update_progress, &key,
8958 sizeof(wc->update_progress));
8959
8960 level = root_item->drop_level;
8961 BUG_ON(level == 0);
8962 path->lowest_level = level;
8963 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8964 path->lowest_level = 0;
8965 if (ret < 0) {
8966 err = ret;
8967 goto out_end_trans;
8968 }
8969 WARN_ON(ret > 0);
8970
8971 /*
8972 * unlock our path, this is safe because only this
8973 * function is allowed to delete this snapshot
8974 */
8975 btrfs_unlock_up_safe(path, 0);
8976
8977 level = btrfs_header_level(root->node);
8978 while (1) {
8979 btrfs_tree_lock(path->nodes[level]);
8980 btrfs_set_lock_blocking(path->nodes[level]);
8981 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8982
8983 ret = btrfs_lookup_extent_info(trans, root,
8984 path->nodes[level]->start,
8985 level, 1, &wc->refs[level],
8986 &wc->flags[level]);
8987 if (ret < 0) {
8988 err = ret;
8989 goto out_end_trans;
8990 }
8991 BUG_ON(wc->refs[level] == 0);
8992
8993 if (level == root_item->drop_level)
8994 break;
8995
8996 btrfs_tree_unlock(path->nodes[level]);
8997 path->locks[level] = 0;
8998 WARN_ON(wc->refs[level] != 1);
8999 level--;
9000 }
9001 }
9002
9003 wc->level = level;
9004 wc->shared_level = -1;
9005 wc->stage = DROP_REFERENCE;
9006 wc->update_ref = update_ref;
9007 wc->keep_locks = 0;
9008 wc->for_reloc = for_reloc;
9009 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9010
9011 while (1) {
9012
9013 ret = walk_down_tree(trans, root, path, wc);
9014 if (ret < 0) {
9015 err = ret;
9016 break;
9017 }
9018
9019 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9020 if (ret < 0) {
9021 err = ret;
9022 break;
9023 }
9024
9025 if (ret > 0) {
9026 BUG_ON(wc->stage != DROP_REFERENCE);
9027 break;
9028 }
9029
9030 if (wc->stage == DROP_REFERENCE) {
9031 level = wc->level;
9032 btrfs_node_key(path->nodes[level],
9033 &root_item->drop_progress,
9034 path->slots[level]);
9035 root_item->drop_level = level;
9036 }
9037
9038 BUG_ON(wc->level == 0);
9039 if (btrfs_should_end_transaction(trans, tree_root) ||
9040 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9041 ret = btrfs_update_root(trans, tree_root,
9042 &root->root_key,
9043 root_item);
9044 if (ret) {
9045 btrfs_abort_transaction(trans, tree_root, ret);
9046 err = ret;
9047 goto out_end_trans;
9048 }
9049
9050 btrfs_end_transaction_throttle(trans, tree_root);
9051 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9052 pr_debug("BTRFS: drop snapshot early exit\n");
9053 err = -EAGAIN;
9054 goto out_free;
9055 }
9056
9057 trans = btrfs_start_transaction(tree_root, 0);
9058 if (IS_ERR(trans)) {
9059 err = PTR_ERR(trans);
9060 goto out_free;
9061 }
9062 if (block_rsv)
9063 trans->block_rsv = block_rsv;
9064 }
9065 }
9066 btrfs_release_path(path);
9067 if (err)
9068 goto out_end_trans;
9069
9070 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9071 if (ret) {
9072 btrfs_abort_transaction(trans, tree_root, ret);
9073 goto out_end_trans;
9074 }
9075
9076 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9077 ret = btrfs_find_root(tree_root, &root->root_key, path,
9078 NULL, NULL);
9079 if (ret < 0) {
9080 btrfs_abort_transaction(trans, tree_root, ret);
9081 err = ret;
9082 goto out_end_trans;
9083 } else if (ret > 0) {
9084 /* if we fail to delete the orphan item this time
9085 * around, it'll get picked up the next time.
9086 *
9087 * The most common failure here is just -ENOENT.
9088 */
9089 btrfs_del_orphan_item(trans, tree_root,
9090 root->root_key.objectid);
9091 }
9092 }
9093
9094 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9095 btrfs_add_dropped_root(trans, root);
9096 } else {
9097 free_extent_buffer(root->node);
9098 free_extent_buffer(root->commit_root);
9099 btrfs_put_fs_root(root);
9100 }
9101 root_dropped = true;
9102out_end_trans:
9103 btrfs_end_transaction_throttle(trans, tree_root);
9104out_free:
9105 kfree(wc);
9106 btrfs_free_path(path);
9107out:
9108 /*
9109 * So if we need to stop dropping the snapshot for whatever reason we
9110 * need to make sure to add it back to the dead root list so that we
9111 * keep trying to do the work later. This also cleans up roots if we
9112 * don't have it in the radix (like when we recover after a power fail
9113 * or unmount) so we don't leak memory.
9114 */
9115 if (!for_reloc && root_dropped == false)
9116 btrfs_add_dead_root(root);
9117 if (err && err != -EAGAIN)
9118 btrfs_std_error(root->fs_info, err, NULL);
9119 return err;
9120}
9121
9122/*
9123 * drop subtree rooted at tree block 'node'.
9124 *
9125 * NOTE: this function will unlock and release tree block 'node'
9126 * only used by relocation code
9127 */
9128int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9129 struct btrfs_root *root,
9130 struct extent_buffer *node,
9131 struct extent_buffer *parent)
9132{
9133 struct btrfs_path *path;
9134 struct walk_control *wc;
9135 int level;
9136 int parent_level;
9137 int ret = 0;
9138 int wret;
9139
9140 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9141
9142 path = btrfs_alloc_path();
9143 if (!path)
9144 return -ENOMEM;
9145
9146 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9147 if (!wc) {
9148 btrfs_free_path(path);
9149 return -ENOMEM;
9150 }
9151
9152 btrfs_assert_tree_locked(parent);
9153 parent_level = btrfs_header_level(parent);
9154 extent_buffer_get(parent);
9155 path->nodes[parent_level] = parent;
9156 path->slots[parent_level] = btrfs_header_nritems(parent);
9157
9158 btrfs_assert_tree_locked(node);
9159 level = btrfs_header_level(node);
9160 path->nodes[level] = node;
9161 path->slots[level] = 0;
9162 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9163
9164 wc->refs[parent_level] = 1;
9165 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9166 wc->level = level;
9167 wc->shared_level = -1;
9168 wc->stage = DROP_REFERENCE;
9169 wc->update_ref = 0;
9170 wc->keep_locks = 1;
9171 wc->for_reloc = 1;
9172 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9173
9174 while (1) {
9175 wret = walk_down_tree(trans, root, path, wc);
9176 if (wret < 0) {
9177 ret = wret;
9178 break;
9179 }
9180
9181 wret = walk_up_tree(trans, root, path, wc, parent_level);
9182 if (wret < 0)
9183 ret = wret;
9184 if (wret != 0)
9185 break;
9186 }
9187
9188 kfree(wc);
9189 btrfs_free_path(path);
9190 return ret;
9191}
9192
9193static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9194{
9195 u64 num_devices;
9196 u64 stripped;
9197
9198 /*
9199 * if restripe for this chunk_type is on pick target profile and
9200 * return, otherwise do the usual balance
9201 */
9202 stripped = get_restripe_target(root->fs_info, flags);
9203 if (stripped)
9204 return extended_to_chunk(stripped);
9205
9206 num_devices = root->fs_info->fs_devices->rw_devices;
9207
9208 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9209 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9210 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9211
9212 if (num_devices == 1) {
9213 stripped |= BTRFS_BLOCK_GROUP_DUP;
9214 stripped = flags & ~stripped;
9215
9216 /* turn raid0 into single device chunks */
9217 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9218 return stripped;
9219
9220 /* turn mirroring into duplication */
9221 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9222 BTRFS_BLOCK_GROUP_RAID10))
9223 return stripped | BTRFS_BLOCK_GROUP_DUP;
9224 } else {
9225 /* they already had raid on here, just return */
9226 if (flags & stripped)
9227 return flags;
9228
9229 stripped |= BTRFS_BLOCK_GROUP_DUP;
9230 stripped = flags & ~stripped;
9231
9232 /* switch duplicated blocks with raid1 */
9233 if (flags & BTRFS_BLOCK_GROUP_DUP)
9234 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9235
9236 /* this is drive concat, leave it alone */
9237 }
9238
9239 return flags;
9240}
9241
9242static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9243{
9244 struct btrfs_space_info *sinfo = cache->space_info;
9245 u64 num_bytes;
9246 u64 min_allocable_bytes;
9247 int ret = -ENOSPC;
9248
9249 /*
9250 * We need some metadata space and system metadata space for
9251 * allocating chunks in some corner cases until we force to set
9252 * it to be readonly.
9253 */
9254 if ((sinfo->flags &
9255 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9256 !force)
9257 min_allocable_bytes = SZ_1M;
9258 else
9259 min_allocable_bytes = 0;
9260
9261 spin_lock(&sinfo->lock);
9262 spin_lock(&cache->lock);
9263
9264 if (cache->ro) {
9265 cache->ro++;
9266 ret = 0;
9267 goto out;
9268 }
9269
9270 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9271 cache->bytes_super - btrfs_block_group_used(&cache->item);
9272
9273 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9274 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9275 min_allocable_bytes <= sinfo->total_bytes) {
9276 sinfo->bytes_readonly += num_bytes;
9277 cache->ro++;
9278 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9279 ret = 0;
9280 }
9281out:
9282 spin_unlock(&cache->lock);
9283 spin_unlock(&sinfo->lock);
9284 return ret;
9285}
9286
9287int btrfs_inc_block_group_ro(struct btrfs_root *root,
9288 struct btrfs_block_group_cache *cache)
9289
9290{
9291 struct btrfs_trans_handle *trans;
9292 u64 alloc_flags;
9293 int ret;
9294
9295again:
9296 trans = btrfs_join_transaction(root);
9297 if (IS_ERR(trans))
9298 return PTR_ERR(trans);
9299
9300 /*
9301 * we're not allowed to set block groups readonly after the dirty
9302 * block groups cache has started writing. If it already started,
9303 * back off and let this transaction commit
9304 */
9305 mutex_lock(&root->fs_info->ro_block_group_mutex);
9306 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9307 u64 transid = trans->transid;
9308
9309 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9310 btrfs_end_transaction(trans, root);
9311
9312 ret = btrfs_wait_for_commit(root, transid);
9313 if (ret)
9314 return ret;
9315 goto again;
9316 }
9317
9318 /*
9319 * if we are changing raid levels, try to allocate a corresponding
9320 * block group with the new raid level.
9321 */
9322 alloc_flags = update_block_group_flags(root, cache->flags);
9323 if (alloc_flags != cache->flags) {
9324 ret = do_chunk_alloc(trans, root, alloc_flags,
9325 CHUNK_ALLOC_FORCE);
9326 /*
9327 * ENOSPC is allowed here, we may have enough space
9328 * already allocated at the new raid level to
9329 * carry on
9330 */
9331 if (ret == -ENOSPC)
9332 ret = 0;
9333 if (ret < 0)
9334 goto out;
9335 }
9336
9337 ret = inc_block_group_ro(cache, 0);
9338 if (!ret)
9339 goto out;
9340 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9341 ret = do_chunk_alloc(trans, root, alloc_flags,
9342 CHUNK_ALLOC_FORCE);
9343 if (ret < 0)
9344 goto out;
9345 ret = inc_block_group_ro(cache, 0);
9346out:
9347 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9348 alloc_flags = update_block_group_flags(root, cache->flags);
9349 lock_chunks(root->fs_info->chunk_root);
9350 check_system_chunk(trans, root, alloc_flags);
9351 unlock_chunks(root->fs_info->chunk_root);
9352 }
9353 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9354
9355 btrfs_end_transaction(trans, root);
9356 return ret;
9357}
9358
9359int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9360 struct btrfs_root *root, u64 type)
9361{
9362 u64 alloc_flags = get_alloc_profile(root, type);
9363 return do_chunk_alloc(trans, root, alloc_flags,
9364 CHUNK_ALLOC_FORCE);
9365}
9366
9367/*
9368 * helper to account the unused space of all the readonly block group in the
9369 * space_info. takes mirrors into account.
9370 */
9371u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9372{
9373 struct btrfs_block_group_cache *block_group;
9374 u64 free_bytes = 0;
9375 int factor;
9376
9377 /* It's df, we don't care if it's racey */
9378 if (list_empty(&sinfo->ro_bgs))
9379 return 0;
9380
9381 spin_lock(&sinfo->lock);
9382 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9383 spin_lock(&block_group->lock);
9384
9385 if (!block_group->ro) {
9386 spin_unlock(&block_group->lock);
9387 continue;
9388 }
9389
9390 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9391 BTRFS_BLOCK_GROUP_RAID10 |
9392 BTRFS_BLOCK_GROUP_DUP))
9393 factor = 2;
9394 else
9395 factor = 1;
9396
9397 free_bytes += (block_group->key.offset -
9398 btrfs_block_group_used(&block_group->item)) *
9399 factor;
9400
9401 spin_unlock(&block_group->lock);
9402 }
9403 spin_unlock(&sinfo->lock);
9404
9405 return free_bytes;
9406}
9407
9408void btrfs_dec_block_group_ro(struct btrfs_root *root,
9409 struct btrfs_block_group_cache *cache)
9410{
9411 struct btrfs_space_info *sinfo = cache->space_info;
9412 u64 num_bytes;
9413
9414 BUG_ON(!cache->ro);
9415
9416 spin_lock(&sinfo->lock);
9417 spin_lock(&cache->lock);
9418 if (!--cache->ro) {
9419 num_bytes = cache->key.offset - cache->reserved -
9420 cache->pinned - cache->bytes_super -
9421 btrfs_block_group_used(&cache->item);
9422 sinfo->bytes_readonly -= num_bytes;
9423 list_del_init(&cache->ro_list);
9424 }
9425 spin_unlock(&cache->lock);
9426 spin_unlock(&sinfo->lock);
9427}
9428
9429/*
9430 * checks to see if its even possible to relocate this block group.
9431 *
9432 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9433 * ok to go ahead and try.
9434 */
9435int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9436{
9437 struct btrfs_block_group_cache *block_group;
9438 struct btrfs_space_info *space_info;
9439 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9440 struct btrfs_device *device;
9441 struct btrfs_trans_handle *trans;
9442 u64 min_free;
9443 u64 dev_min = 1;
9444 u64 dev_nr = 0;
9445 u64 target;
9446 int debug;
9447 int index;
9448 int full = 0;
9449 int ret = 0;
9450
9451 debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9452
9453 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9454
9455 /* odd, couldn't find the block group, leave it alone */
9456 if (!block_group) {
9457 if (debug)
9458 btrfs_warn(root->fs_info,
9459 "can't find block group for bytenr %llu",
9460 bytenr);
9461 return -1;
9462 }
9463
9464 min_free = btrfs_block_group_used(&block_group->item);
9465
9466 /* no bytes used, we're good */
9467 if (!min_free)
9468 goto out;
9469
9470 space_info = block_group->space_info;
9471 spin_lock(&space_info->lock);
9472
9473 full = space_info->full;
9474
9475 /*
9476 * if this is the last block group we have in this space, we can't
9477 * relocate it unless we're able to allocate a new chunk below.
9478 *
9479 * Otherwise, we need to make sure we have room in the space to handle
9480 * all of the extents from this block group. If we can, we're good
9481 */
9482 if ((space_info->total_bytes != block_group->key.offset) &&
9483 (space_info->bytes_used + space_info->bytes_reserved +
9484 space_info->bytes_pinned + space_info->bytes_readonly +
9485 min_free < space_info->total_bytes)) {
9486 spin_unlock(&space_info->lock);
9487 goto out;
9488 }
9489 spin_unlock(&space_info->lock);
9490
9491 /*
9492 * ok we don't have enough space, but maybe we have free space on our
9493 * devices to allocate new chunks for relocation, so loop through our
9494 * alloc devices and guess if we have enough space. if this block
9495 * group is going to be restriped, run checks against the target
9496 * profile instead of the current one.
9497 */
9498 ret = -1;
9499
9500 /*
9501 * index:
9502 * 0: raid10
9503 * 1: raid1
9504 * 2: dup
9505 * 3: raid0
9506 * 4: single
9507 */
9508 target = get_restripe_target(root->fs_info, block_group->flags);
9509 if (target) {
9510 index = __get_raid_index(extended_to_chunk(target));
9511 } else {
9512 /*
9513 * this is just a balance, so if we were marked as full
9514 * we know there is no space for a new chunk
9515 */
9516 if (full) {
9517 if (debug)
9518 btrfs_warn(root->fs_info,
9519 "no space to alloc new chunk for block group %llu",
9520 block_group->key.objectid);
9521 goto out;
9522 }
9523
9524 index = get_block_group_index(block_group);
9525 }
9526
9527 if (index == BTRFS_RAID_RAID10) {
9528 dev_min = 4;
9529 /* Divide by 2 */
9530 min_free >>= 1;
9531 } else if (index == BTRFS_RAID_RAID1) {
9532 dev_min = 2;
9533 } else if (index == BTRFS_RAID_DUP) {
9534 /* Multiply by 2 */
9535 min_free <<= 1;
9536 } else if (index == BTRFS_RAID_RAID0) {
9537 dev_min = fs_devices->rw_devices;
9538 min_free = div64_u64(min_free, dev_min);
9539 }
9540
9541 /* We need to do this so that we can look at pending chunks */
9542 trans = btrfs_join_transaction(root);
9543 if (IS_ERR(trans)) {
9544 ret = PTR_ERR(trans);
9545 goto out;
9546 }
9547
9548 mutex_lock(&root->fs_info->chunk_mutex);
9549 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9550 u64 dev_offset;
9551
9552 /*
9553 * check to make sure we can actually find a chunk with enough
9554 * space to fit our block group in.
9555 */
9556 if (device->total_bytes > device->bytes_used + min_free &&
9557 !device->is_tgtdev_for_dev_replace) {
9558 ret = find_free_dev_extent(trans, device, min_free,
9559 &dev_offset, NULL);
9560 if (!ret)
9561 dev_nr++;
9562
9563 if (dev_nr >= dev_min)
9564 break;
9565
9566 ret = -1;
9567 }
9568 }
9569 if (debug && ret == -1)
9570 btrfs_warn(root->fs_info,
9571 "no space to allocate a new chunk for block group %llu",
9572 block_group->key.objectid);
9573 mutex_unlock(&root->fs_info->chunk_mutex);
9574 btrfs_end_transaction(trans, root);
9575out:
9576 btrfs_put_block_group(block_group);
9577 return ret;
9578}
9579
9580static int find_first_block_group(struct btrfs_root *root,
9581 struct btrfs_path *path, struct btrfs_key *key)
9582{
9583 int ret = 0;
9584 struct btrfs_key found_key;
9585 struct extent_buffer *leaf;
9586 int slot;
9587
9588 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9589 if (ret < 0)
9590 goto out;
9591
9592 while (1) {
9593 slot = path->slots[0];
9594 leaf = path->nodes[0];
9595 if (slot >= btrfs_header_nritems(leaf)) {
9596 ret = btrfs_next_leaf(root, path);
9597 if (ret == 0)
9598 continue;
9599 if (ret < 0)
9600 goto out;
9601 break;
9602 }
9603 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9604
9605 if (found_key.objectid >= key->objectid &&
9606 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9607 ret = 0;
9608 goto out;
9609 }
9610 path->slots[0]++;
9611 }
9612out:
9613 return ret;
9614}
9615
9616void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9617{
9618 struct btrfs_block_group_cache *block_group;
9619 u64 last = 0;
9620
9621 while (1) {
9622 struct inode *inode;
9623
9624 block_group = btrfs_lookup_first_block_group(info, last);
9625 while (block_group) {
9626 spin_lock(&block_group->lock);
9627 if (block_group->iref)
9628 break;
9629 spin_unlock(&block_group->lock);
9630 block_group = next_block_group(info->tree_root,
9631 block_group);
9632 }
9633 if (!block_group) {
9634 if (last == 0)
9635 break;
9636 last = 0;
9637 continue;
9638 }
9639
9640 inode = block_group->inode;
9641 block_group->iref = 0;
9642 block_group->inode = NULL;
9643 spin_unlock(&block_group->lock);
9644 iput(inode);
9645 last = block_group->key.objectid + block_group->key.offset;
9646 btrfs_put_block_group(block_group);
9647 }
9648}
9649
9650int btrfs_free_block_groups(struct btrfs_fs_info *info)
9651{
9652 struct btrfs_block_group_cache *block_group;
9653 struct btrfs_space_info *space_info;
9654 struct btrfs_caching_control *caching_ctl;
9655 struct rb_node *n;
9656
9657 down_write(&info->commit_root_sem);
9658 while (!list_empty(&info->caching_block_groups)) {
9659 caching_ctl = list_entry(info->caching_block_groups.next,
9660 struct btrfs_caching_control, list);
9661 list_del(&caching_ctl->list);
9662 put_caching_control(caching_ctl);
9663 }
9664 up_write(&info->commit_root_sem);
9665
9666 spin_lock(&info->unused_bgs_lock);
9667 while (!list_empty(&info->unused_bgs)) {
9668 block_group = list_first_entry(&info->unused_bgs,
9669 struct btrfs_block_group_cache,
9670 bg_list);
9671 list_del_init(&block_group->bg_list);
9672 btrfs_put_block_group(block_group);
9673 }
9674 spin_unlock(&info->unused_bgs_lock);
9675
9676 spin_lock(&info->block_group_cache_lock);
9677 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9678 block_group = rb_entry(n, struct btrfs_block_group_cache,
9679 cache_node);
9680 rb_erase(&block_group->cache_node,
9681 &info->block_group_cache_tree);
9682 RB_CLEAR_NODE(&block_group->cache_node);
9683 spin_unlock(&info->block_group_cache_lock);
9684
9685 down_write(&block_group->space_info->groups_sem);
9686 list_del(&block_group->list);
9687 up_write(&block_group->space_info->groups_sem);
9688
9689 if (block_group->cached == BTRFS_CACHE_STARTED)
9690 wait_block_group_cache_done(block_group);
9691
9692 /*
9693 * We haven't cached this block group, which means we could
9694 * possibly have excluded extents on this block group.
9695 */
9696 if (block_group->cached == BTRFS_CACHE_NO ||
9697 block_group->cached == BTRFS_CACHE_ERROR)
9698 free_excluded_extents(info->extent_root, block_group);
9699
9700 btrfs_remove_free_space_cache(block_group);
9701 btrfs_put_block_group(block_group);
9702
9703 spin_lock(&info->block_group_cache_lock);
9704 }
9705 spin_unlock(&info->block_group_cache_lock);
9706
9707 /* now that all the block groups are freed, go through and
9708 * free all the space_info structs. This is only called during
9709 * the final stages of unmount, and so we know nobody is
9710 * using them. We call synchronize_rcu() once before we start,
9711 * just to be on the safe side.
9712 */
9713 synchronize_rcu();
9714
9715 release_global_block_rsv(info);
9716
9717 while (!list_empty(&info->space_info)) {
9718 int i;
9719
9720 space_info = list_entry(info->space_info.next,
9721 struct btrfs_space_info,
9722 list);
9723 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9724 if (WARN_ON(space_info->bytes_pinned > 0 ||
9725 space_info->bytes_reserved > 0 ||
9726 space_info->bytes_may_use > 0)) {
9727 dump_space_info(space_info, 0, 0);
9728 }
9729 }
9730 list_del(&space_info->list);
9731 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9732 struct kobject *kobj;
9733 kobj = space_info->block_group_kobjs[i];
9734 space_info->block_group_kobjs[i] = NULL;
9735 if (kobj) {
9736 kobject_del(kobj);
9737 kobject_put(kobj);
9738 }
9739 }
9740 kobject_del(&space_info->kobj);
9741 kobject_put(&space_info->kobj);
9742 }
9743 return 0;
9744}
9745
9746static void __link_block_group(struct btrfs_space_info *space_info,
9747 struct btrfs_block_group_cache *cache)
9748{
9749 int index = get_block_group_index(cache);
9750 bool first = false;
9751
9752 down_write(&space_info->groups_sem);
9753 if (list_empty(&space_info->block_groups[index]))
9754 first = true;
9755 list_add_tail(&cache->list, &space_info->block_groups[index]);
9756 up_write(&space_info->groups_sem);
9757
9758 if (first) {
9759 struct raid_kobject *rkobj;
9760 int ret;
9761
9762 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9763 if (!rkobj)
9764 goto out_err;
9765 rkobj->raid_type = index;
9766 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9767 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9768 "%s", get_raid_name(index));
9769 if (ret) {
9770 kobject_put(&rkobj->kobj);
9771 goto out_err;
9772 }
9773 space_info->block_group_kobjs[index] = &rkobj->kobj;
9774 }
9775
9776 return;
9777out_err:
9778 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9779}
9780
9781static struct btrfs_block_group_cache *
9782btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9783{
9784 struct btrfs_block_group_cache *cache;
9785
9786 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9787 if (!cache)
9788 return NULL;
9789
9790 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9791 GFP_NOFS);
9792 if (!cache->free_space_ctl) {
9793 kfree(cache);
9794 return NULL;
9795 }
9796
9797 cache->key.objectid = start;
9798 cache->key.offset = size;
9799 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9800
9801 cache->sectorsize = root->sectorsize;
9802 cache->fs_info = root->fs_info;
9803 cache->full_stripe_len = btrfs_full_stripe_len(root,
9804 &root->fs_info->mapping_tree,
9805 start);
9806 set_free_space_tree_thresholds(cache);
9807
9808 atomic_set(&cache->count, 1);
9809 spin_lock_init(&cache->lock);
9810 init_rwsem(&cache->data_rwsem);
9811 INIT_LIST_HEAD(&cache->list);
9812 INIT_LIST_HEAD(&cache->cluster_list);
9813 INIT_LIST_HEAD(&cache->bg_list);
9814 INIT_LIST_HEAD(&cache->ro_list);
9815 INIT_LIST_HEAD(&cache->dirty_list);
9816 INIT_LIST_HEAD(&cache->io_list);
9817 btrfs_init_free_space_ctl(cache);
9818 atomic_set(&cache->trimming, 0);
9819 mutex_init(&cache->free_space_lock);
9820
9821 return cache;
9822}
9823
9824int btrfs_read_block_groups(struct btrfs_root *root)
9825{
9826 struct btrfs_path *path;
9827 int ret;
9828 struct btrfs_block_group_cache *cache;
9829 struct btrfs_fs_info *info = root->fs_info;
9830 struct btrfs_space_info *space_info;
9831 struct btrfs_key key;
9832 struct btrfs_key found_key;
9833 struct extent_buffer *leaf;
9834 int need_clear = 0;
9835 u64 cache_gen;
9836
9837 root = info->extent_root;
9838 key.objectid = 0;
9839 key.offset = 0;
9840 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9841 path = btrfs_alloc_path();
9842 if (!path)
9843 return -ENOMEM;
9844 path->reada = READA_FORWARD;
9845
9846 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9847 if (btrfs_test_opt(root, SPACE_CACHE) &&
9848 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9849 need_clear = 1;
9850 if (btrfs_test_opt(root, CLEAR_CACHE))
9851 need_clear = 1;
9852
9853 while (1) {
9854 ret = find_first_block_group(root, path, &key);
9855 if (ret > 0)
9856 break;
9857 if (ret != 0)
9858 goto error;
9859
9860 leaf = path->nodes[0];
9861 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9862
9863 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9864 found_key.offset);
9865 if (!cache) {
9866 ret = -ENOMEM;
9867 goto error;
9868 }
9869
9870 if (need_clear) {
9871 /*
9872 * When we mount with old space cache, we need to
9873 * set BTRFS_DC_CLEAR and set dirty flag.
9874 *
9875 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9876 * truncate the old free space cache inode and
9877 * setup a new one.
9878 * b) Setting 'dirty flag' makes sure that we flush
9879 * the new space cache info onto disk.
9880 */
9881 if (btrfs_test_opt(root, SPACE_CACHE))
9882 cache->disk_cache_state = BTRFS_DC_CLEAR;
9883 }
9884
9885 read_extent_buffer(leaf, &cache->item,
9886 btrfs_item_ptr_offset(leaf, path->slots[0]),
9887 sizeof(cache->item));
9888 cache->flags = btrfs_block_group_flags(&cache->item);
9889
9890 key.objectid = found_key.objectid + found_key.offset;
9891 btrfs_release_path(path);
9892
9893 /*
9894 * We need to exclude the super stripes now so that the space
9895 * info has super bytes accounted for, otherwise we'll think
9896 * we have more space than we actually do.
9897 */
9898 ret = exclude_super_stripes(root, cache);
9899 if (ret) {
9900 /*
9901 * We may have excluded something, so call this just in
9902 * case.
9903 */
9904 free_excluded_extents(root, cache);
9905 btrfs_put_block_group(cache);
9906 goto error;
9907 }
9908
9909 /*
9910 * check for two cases, either we are full, and therefore
9911 * don't need to bother with the caching work since we won't
9912 * find any space, or we are empty, and we can just add all
9913 * the space in and be done with it. This saves us _alot_ of
9914 * time, particularly in the full case.
9915 */
9916 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9917 cache->last_byte_to_unpin = (u64)-1;
9918 cache->cached = BTRFS_CACHE_FINISHED;
9919 free_excluded_extents(root, cache);
9920 } else if (btrfs_block_group_used(&cache->item) == 0) {
9921 cache->last_byte_to_unpin = (u64)-1;
9922 cache->cached = BTRFS_CACHE_FINISHED;
9923 add_new_free_space(cache, root->fs_info,
9924 found_key.objectid,
9925 found_key.objectid +
9926 found_key.offset);
9927 free_excluded_extents(root, cache);
9928 }
9929
9930 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9931 if (ret) {
9932 btrfs_remove_free_space_cache(cache);
9933 btrfs_put_block_group(cache);
9934 goto error;
9935 }
9936
9937 ret = update_space_info(info, cache->flags, found_key.offset,
9938 btrfs_block_group_used(&cache->item),
9939 &space_info);
9940 if (ret) {
9941 btrfs_remove_free_space_cache(cache);
9942 spin_lock(&info->block_group_cache_lock);
9943 rb_erase(&cache->cache_node,
9944 &info->block_group_cache_tree);
9945 RB_CLEAR_NODE(&cache->cache_node);
9946 spin_unlock(&info->block_group_cache_lock);
9947 btrfs_put_block_group(cache);
9948 goto error;
9949 }
9950
9951 cache->space_info = space_info;
9952 spin_lock(&cache->space_info->lock);
9953 cache->space_info->bytes_readonly += cache->bytes_super;
9954 spin_unlock(&cache->space_info->lock);
9955
9956 __link_block_group(space_info, cache);
9957
9958 set_avail_alloc_bits(root->fs_info, cache->flags);
9959 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9960 inc_block_group_ro(cache, 1);
9961 } else if (btrfs_block_group_used(&cache->item) == 0) {
9962 spin_lock(&info->unused_bgs_lock);
9963 /* Should always be true but just in case. */
9964 if (list_empty(&cache->bg_list)) {
9965 btrfs_get_block_group(cache);
9966 list_add_tail(&cache->bg_list,
9967 &info->unused_bgs);
9968 }
9969 spin_unlock(&info->unused_bgs_lock);
9970 }
9971 }
9972
9973 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9974 if (!(get_alloc_profile(root, space_info->flags) &
9975 (BTRFS_BLOCK_GROUP_RAID10 |
9976 BTRFS_BLOCK_GROUP_RAID1 |
9977 BTRFS_BLOCK_GROUP_RAID5 |
9978 BTRFS_BLOCK_GROUP_RAID6 |
9979 BTRFS_BLOCK_GROUP_DUP)))
9980 continue;
9981 /*
9982 * avoid allocating from un-mirrored block group if there are
9983 * mirrored block groups.
9984 */
9985 list_for_each_entry(cache,
9986 &space_info->block_groups[BTRFS_RAID_RAID0],
9987 list)
9988 inc_block_group_ro(cache, 1);
9989 list_for_each_entry(cache,
9990 &space_info->block_groups[BTRFS_RAID_SINGLE],
9991 list)
9992 inc_block_group_ro(cache, 1);
9993 }
9994
9995 init_global_block_rsv(info);
9996 ret = 0;
9997error:
9998 btrfs_free_path(path);
9999 return ret;
10000}
10001
10002void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10003 struct btrfs_root *root)
10004{
10005 struct btrfs_block_group_cache *block_group, *tmp;
10006 struct btrfs_root *extent_root = root->fs_info->extent_root;
10007 struct btrfs_block_group_item item;
10008 struct btrfs_key key;
10009 int ret = 0;
10010 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10011
10012 trans->can_flush_pending_bgs = false;
10013 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10014 if (ret)
10015 goto next;
10016
10017 spin_lock(&block_group->lock);
10018 memcpy(&item, &block_group->item, sizeof(item));
10019 memcpy(&key, &block_group->key, sizeof(key));
10020 spin_unlock(&block_group->lock);
10021
10022 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10023 sizeof(item));
10024 if (ret)
10025 btrfs_abort_transaction(trans, extent_root, ret);
10026 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10027 key.objectid, key.offset);
10028 if (ret)
10029 btrfs_abort_transaction(trans, extent_root, ret);
10030 add_block_group_free_space(trans, root->fs_info, block_group);
10031 /* already aborted the transaction if it failed. */
10032next:
10033 list_del_init(&block_group->bg_list);
10034 }
10035 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10036}
10037
10038int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10039 struct btrfs_root *root, u64 bytes_used,
10040 u64 type, u64 chunk_objectid, u64 chunk_offset,
10041 u64 size)
10042{
10043 int ret;
10044 struct btrfs_root *extent_root;
10045 struct btrfs_block_group_cache *cache;
10046
10047 extent_root = root->fs_info->extent_root;
10048
10049 btrfs_set_log_full_commit(root->fs_info, trans);
10050
10051 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10052 if (!cache)
10053 return -ENOMEM;
10054
10055 btrfs_set_block_group_used(&cache->item, bytes_used);
10056 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10057 btrfs_set_block_group_flags(&cache->item, type);
10058
10059 cache->flags = type;
10060 cache->last_byte_to_unpin = (u64)-1;
10061 cache->cached = BTRFS_CACHE_FINISHED;
10062 cache->needs_free_space = 1;
10063 ret = exclude_super_stripes(root, cache);
10064 if (ret) {
10065 /*
10066 * We may have excluded something, so call this just in
10067 * case.
10068 */
10069 free_excluded_extents(root, cache);
10070 btrfs_put_block_group(cache);
10071 return ret;
10072 }
10073
10074 add_new_free_space(cache, root->fs_info, chunk_offset,
10075 chunk_offset + size);
10076
10077 free_excluded_extents(root, cache);
10078
10079#ifdef CONFIG_BTRFS_DEBUG
10080 if (btrfs_should_fragment_free_space(root, cache)) {
10081 u64 new_bytes_used = size - bytes_used;
10082
10083 bytes_used += new_bytes_used >> 1;
10084 fragment_free_space(root, cache);
10085 }
10086#endif
10087 /*
10088 * Call to ensure the corresponding space_info object is created and
10089 * assigned to our block group, but don't update its counters just yet.
10090 * We want our bg to be added to the rbtree with its ->space_info set.
10091 */
10092 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10093 &cache->space_info);
10094 if (ret) {
10095 btrfs_remove_free_space_cache(cache);
10096 btrfs_put_block_group(cache);
10097 return ret;
10098 }
10099
10100 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10101 if (ret) {
10102 btrfs_remove_free_space_cache(cache);
10103 btrfs_put_block_group(cache);
10104 return ret;
10105 }
10106
10107 /*
10108 * Now that our block group has its ->space_info set and is inserted in
10109 * the rbtree, update the space info's counters.
10110 */
10111 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10112 &cache->space_info);
10113 if (ret) {
10114 btrfs_remove_free_space_cache(cache);
10115 spin_lock(&root->fs_info->block_group_cache_lock);
10116 rb_erase(&cache->cache_node,
10117 &root->fs_info->block_group_cache_tree);
10118 RB_CLEAR_NODE(&cache->cache_node);
10119 spin_unlock(&root->fs_info->block_group_cache_lock);
10120 btrfs_put_block_group(cache);
10121 return ret;
10122 }
10123 update_global_block_rsv(root->fs_info);
10124
10125 spin_lock(&cache->space_info->lock);
10126 cache->space_info->bytes_readonly += cache->bytes_super;
10127 spin_unlock(&cache->space_info->lock);
10128
10129 __link_block_group(cache->space_info, cache);
10130
10131 list_add_tail(&cache->bg_list, &trans->new_bgs);
10132
10133 set_avail_alloc_bits(extent_root->fs_info, type);
10134
10135 return 0;
10136}
10137
10138static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10139{
10140 u64 extra_flags = chunk_to_extended(flags) &
10141 BTRFS_EXTENDED_PROFILE_MASK;
10142
10143 write_seqlock(&fs_info->profiles_lock);
10144 if (flags & BTRFS_BLOCK_GROUP_DATA)
10145 fs_info->avail_data_alloc_bits &= ~extra_flags;
10146 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10147 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10148 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10149 fs_info->avail_system_alloc_bits &= ~extra_flags;
10150 write_sequnlock(&fs_info->profiles_lock);
10151}
10152
10153int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10154 struct btrfs_root *root, u64 group_start,
10155 struct extent_map *em)
10156{
10157 struct btrfs_path *path;
10158 struct btrfs_block_group_cache *block_group;
10159 struct btrfs_free_cluster *cluster;
10160 struct btrfs_root *tree_root = root->fs_info->tree_root;
10161 struct btrfs_key key;
10162 struct inode *inode;
10163 struct kobject *kobj = NULL;
10164 int ret;
10165 int index;
10166 int factor;
10167 struct btrfs_caching_control *caching_ctl = NULL;
10168 bool remove_em;
10169
10170 root = root->fs_info->extent_root;
10171
10172 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10173 BUG_ON(!block_group);
10174 BUG_ON(!block_group->ro);
10175
10176 /*
10177 * Free the reserved super bytes from this block group before
10178 * remove it.
10179 */
10180 free_excluded_extents(root, block_group);
10181
10182 memcpy(&key, &block_group->key, sizeof(key));
10183 index = get_block_group_index(block_group);
10184 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10185 BTRFS_BLOCK_GROUP_RAID1 |
10186 BTRFS_BLOCK_GROUP_RAID10))
10187 factor = 2;
10188 else
10189 factor = 1;
10190
10191 /* make sure this block group isn't part of an allocation cluster */
10192 cluster = &root->fs_info->data_alloc_cluster;
10193 spin_lock(&cluster->refill_lock);
10194 btrfs_return_cluster_to_free_space(block_group, cluster);
10195 spin_unlock(&cluster->refill_lock);
10196
10197 /*
10198 * make sure this block group isn't part of a metadata
10199 * allocation cluster
10200 */
10201 cluster = &root->fs_info->meta_alloc_cluster;
10202 spin_lock(&cluster->refill_lock);
10203 btrfs_return_cluster_to_free_space(block_group, cluster);
10204 spin_unlock(&cluster->refill_lock);
10205
10206 path = btrfs_alloc_path();
10207 if (!path) {
10208 ret = -ENOMEM;
10209 goto out;
10210 }
10211
10212 /*
10213 * get the inode first so any iput calls done for the io_list
10214 * aren't the final iput (no unlinks allowed now)
10215 */
10216 inode = lookup_free_space_inode(tree_root, block_group, path);
10217
10218 mutex_lock(&trans->transaction->cache_write_mutex);
10219 /*
10220 * make sure our free spache cache IO is done before remove the
10221 * free space inode
10222 */
10223 spin_lock(&trans->transaction->dirty_bgs_lock);
10224 if (!list_empty(&block_group->io_list)) {
10225 list_del_init(&block_group->io_list);
10226
10227 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10228
10229 spin_unlock(&trans->transaction->dirty_bgs_lock);
10230 btrfs_wait_cache_io(root, trans, block_group,
10231 &block_group->io_ctl, path,
10232 block_group->key.objectid);
10233 btrfs_put_block_group(block_group);
10234 spin_lock(&trans->transaction->dirty_bgs_lock);
10235 }
10236
10237 if (!list_empty(&block_group->dirty_list)) {
10238 list_del_init(&block_group->dirty_list);
10239 btrfs_put_block_group(block_group);
10240 }
10241 spin_unlock(&trans->transaction->dirty_bgs_lock);
10242 mutex_unlock(&trans->transaction->cache_write_mutex);
10243
10244 if (!IS_ERR(inode)) {
10245 ret = btrfs_orphan_add(trans, inode);
10246 if (ret) {
10247 btrfs_add_delayed_iput(inode);
10248 goto out;
10249 }
10250 clear_nlink(inode);
10251 /* One for the block groups ref */
10252 spin_lock(&block_group->lock);
10253 if (block_group->iref) {
10254 block_group->iref = 0;
10255 block_group->inode = NULL;
10256 spin_unlock(&block_group->lock);
10257 iput(inode);
10258 } else {
10259 spin_unlock(&block_group->lock);
10260 }
10261 /* One for our lookup ref */
10262 btrfs_add_delayed_iput(inode);
10263 }
10264
10265 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10266 key.offset = block_group->key.objectid;
10267 key.type = 0;
10268
10269 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10270 if (ret < 0)
10271 goto out;
10272 if (ret > 0)
10273 btrfs_release_path(path);
10274 if (ret == 0) {
10275 ret = btrfs_del_item(trans, tree_root, path);
10276 if (ret)
10277 goto out;
10278 btrfs_release_path(path);
10279 }
10280
10281 spin_lock(&root->fs_info->block_group_cache_lock);
10282 rb_erase(&block_group->cache_node,
10283 &root->fs_info->block_group_cache_tree);
10284 RB_CLEAR_NODE(&block_group->cache_node);
10285
10286 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10287 root->fs_info->first_logical_byte = (u64)-1;
10288 spin_unlock(&root->fs_info->block_group_cache_lock);
10289
10290 down_write(&block_group->space_info->groups_sem);
10291 /*
10292 * we must use list_del_init so people can check to see if they
10293 * are still on the list after taking the semaphore
10294 */
10295 list_del_init(&block_group->list);
10296 if (list_empty(&block_group->space_info->block_groups[index])) {
10297 kobj = block_group->space_info->block_group_kobjs[index];
10298 block_group->space_info->block_group_kobjs[index] = NULL;
10299 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10300 }
10301 up_write(&block_group->space_info->groups_sem);
10302 if (kobj) {
10303 kobject_del(kobj);
10304 kobject_put(kobj);
10305 }
10306
10307 if (block_group->has_caching_ctl)
10308 caching_ctl = get_caching_control(block_group);
10309 if (block_group->cached == BTRFS_CACHE_STARTED)
10310 wait_block_group_cache_done(block_group);
10311 if (block_group->has_caching_ctl) {
10312 down_write(&root->fs_info->commit_root_sem);
10313 if (!caching_ctl) {
10314 struct btrfs_caching_control *ctl;
10315
10316 list_for_each_entry(ctl,
10317 &root->fs_info->caching_block_groups, list)
10318 if (ctl->block_group == block_group) {
10319 caching_ctl = ctl;
10320 atomic_inc(&caching_ctl->count);
10321 break;
10322 }
10323 }
10324 if (caching_ctl)
10325 list_del_init(&caching_ctl->list);
10326 up_write(&root->fs_info->commit_root_sem);
10327 if (caching_ctl) {
10328 /* Once for the caching bgs list and once for us. */
10329 put_caching_control(caching_ctl);
10330 put_caching_control(caching_ctl);
10331 }
10332 }
10333
10334 spin_lock(&trans->transaction->dirty_bgs_lock);
10335 if (!list_empty(&block_group->dirty_list)) {
10336 WARN_ON(1);
10337 }
10338 if (!list_empty(&block_group->io_list)) {
10339 WARN_ON(1);
10340 }
10341 spin_unlock(&trans->transaction->dirty_bgs_lock);
10342 btrfs_remove_free_space_cache(block_group);
10343
10344 spin_lock(&block_group->space_info->lock);
10345 list_del_init(&block_group->ro_list);
10346
10347 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10348 WARN_ON(block_group->space_info->total_bytes
10349 < block_group->key.offset);
10350 WARN_ON(block_group->space_info->bytes_readonly
10351 < block_group->key.offset);
10352 WARN_ON(block_group->space_info->disk_total
10353 < block_group->key.offset * factor);
10354 }
10355 block_group->space_info->total_bytes -= block_group->key.offset;
10356 block_group->space_info->bytes_readonly -= block_group->key.offset;
10357 block_group->space_info->disk_total -= block_group->key.offset * factor;
10358
10359 spin_unlock(&block_group->space_info->lock);
10360
10361 memcpy(&key, &block_group->key, sizeof(key));
10362
10363 lock_chunks(root);
10364 if (!list_empty(&em->list)) {
10365 /* We're in the transaction->pending_chunks list. */
10366 free_extent_map(em);
10367 }
10368 spin_lock(&block_group->lock);
10369 block_group->removed = 1;
10370 /*
10371 * At this point trimming can't start on this block group, because we
10372 * removed the block group from the tree fs_info->block_group_cache_tree
10373 * so no one can't find it anymore and even if someone already got this
10374 * block group before we removed it from the rbtree, they have already
10375 * incremented block_group->trimming - if they didn't, they won't find
10376 * any free space entries because we already removed them all when we
10377 * called btrfs_remove_free_space_cache().
10378 *
10379 * And we must not remove the extent map from the fs_info->mapping_tree
10380 * to prevent the same logical address range and physical device space
10381 * ranges from being reused for a new block group. This is because our
10382 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10383 * completely transactionless, so while it is trimming a range the
10384 * currently running transaction might finish and a new one start,
10385 * allowing for new block groups to be created that can reuse the same
10386 * physical device locations unless we take this special care.
10387 *
10388 * There may also be an implicit trim operation if the file system
10389 * is mounted with -odiscard. The same protections must remain
10390 * in place until the extents have been discarded completely when
10391 * the transaction commit has completed.
10392 */
10393 remove_em = (atomic_read(&block_group->trimming) == 0);
10394 /*
10395 * Make sure a trimmer task always sees the em in the pinned_chunks list
10396 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10397 * before checking block_group->removed).
10398 */
10399 if (!remove_em) {
10400 /*
10401 * Our em might be in trans->transaction->pending_chunks which
10402 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10403 * and so is the fs_info->pinned_chunks list.
10404 *
10405 * So at this point we must be holding the chunk_mutex to avoid
10406 * any races with chunk allocation (more specifically at
10407 * volumes.c:contains_pending_extent()), to ensure it always
10408 * sees the em, either in the pending_chunks list or in the
10409 * pinned_chunks list.
10410 */
10411 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10412 }
10413 spin_unlock(&block_group->lock);
10414
10415 if (remove_em) {
10416 struct extent_map_tree *em_tree;
10417
10418 em_tree = &root->fs_info->mapping_tree.map_tree;
10419 write_lock(&em_tree->lock);
10420 /*
10421 * The em might be in the pending_chunks list, so make sure the
10422 * chunk mutex is locked, since remove_extent_mapping() will
10423 * delete us from that list.
10424 */
10425 remove_extent_mapping(em_tree, em);
10426 write_unlock(&em_tree->lock);
10427 /* once for the tree */
10428 free_extent_map(em);
10429 }
10430
10431 unlock_chunks(root);
10432
10433 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10434 if (ret)
10435 goto out;
10436
10437 btrfs_put_block_group(block_group);
10438 btrfs_put_block_group(block_group);
10439
10440 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10441 if (ret > 0)
10442 ret = -EIO;
10443 if (ret < 0)
10444 goto out;
10445
10446 ret = btrfs_del_item(trans, root, path);
10447out:
10448 btrfs_free_path(path);
10449 return ret;
10450}
10451
10452struct btrfs_trans_handle *
10453btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10454 const u64 chunk_offset)
10455{
10456 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10457 struct extent_map *em;
10458 struct map_lookup *map;
10459 unsigned int num_items;
10460
10461 read_lock(&em_tree->lock);
10462 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10463 read_unlock(&em_tree->lock);
10464 ASSERT(em && em->start == chunk_offset);
10465
10466 /*
10467 * We need to reserve 3 + N units from the metadata space info in order
10468 * to remove a block group (done at btrfs_remove_chunk() and at
10469 * btrfs_remove_block_group()), which are used for:
10470 *
10471 * 1 unit for adding the free space inode's orphan (located in the tree
10472 * of tree roots).
10473 * 1 unit for deleting the block group item (located in the extent
10474 * tree).
10475 * 1 unit for deleting the free space item (located in tree of tree
10476 * roots).
10477 * N units for deleting N device extent items corresponding to each
10478 * stripe (located in the device tree).
10479 *
10480 * In order to remove a block group we also need to reserve units in the
10481 * system space info in order to update the chunk tree (update one or
10482 * more device items and remove one chunk item), but this is done at
10483 * btrfs_remove_chunk() through a call to check_system_chunk().
10484 */
10485 map = em->map_lookup;
10486 num_items = 3 + map->num_stripes;
10487 free_extent_map(em);
10488
10489 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10490 num_items, 1);
10491}
10492
10493/*
10494 * Process the unused_bgs list and remove any that don't have any allocated
10495 * space inside of them.
10496 */
10497void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10498{
10499 struct btrfs_block_group_cache *block_group;
10500 struct btrfs_space_info *space_info;
10501 struct btrfs_root *root = fs_info->extent_root;
10502 struct btrfs_trans_handle *trans;
10503 int ret = 0;
10504
10505 if (!fs_info->open)
10506 return;
10507
10508 spin_lock(&fs_info->unused_bgs_lock);
10509 while (!list_empty(&fs_info->unused_bgs)) {
10510 u64 start, end;
10511 int trimming;
10512
10513 block_group = list_first_entry(&fs_info->unused_bgs,
10514 struct btrfs_block_group_cache,
10515 bg_list);
10516 list_del_init(&block_group->bg_list);
10517
10518 space_info = block_group->space_info;
10519
10520 if (ret || btrfs_mixed_space_info(space_info)) {
10521 btrfs_put_block_group(block_group);
10522 continue;
10523 }
10524 spin_unlock(&fs_info->unused_bgs_lock);
10525
10526 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10527
10528 /* Don't want to race with allocators so take the groups_sem */
10529 down_write(&space_info->groups_sem);
10530 spin_lock(&block_group->lock);
10531 if (block_group->reserved ||
10532 btrfs_block_group_used(&block_group->item) ||
10533 block_group->ro ||
10534 list_is_singular(&block_group->list)) {
10535 /*
10536 * We want to bail if we made new allocations or have
10537 * outstanding allocations in this block group. We do
10538 * the ro check in case balance is currently acting on
10539 * this block group.
10540 */
10541 spin_unlock(&block_group->lock);
10542 up_write(&space_info->groups_sem);
10543 goto next;
10544 }
10545 spin_unlock(&block_group->lock);
10546
10547 /* We don't want to force the issue, only flip if it's ok. */
10548 ret = inc_block_group_ro(block_group, 0);
10549 up_write(&space_info->groups_sem);
10550 if (ret < 0) {
10551 ret = 0;
10552 goto next;
10553 }
10554
10555 /*
10556 * Want to do this before we do anything else so we can recover
10557 * properly if we fail to join the transaction.
10558 */
10559 trans = btrfs_start_trans_remove_block_group(fs_info,
10560 block_group->key.objectid);
10561 if (IS_ERR(trans)) {
10562 btrfs_dec_block_group_ro(root, block_group);
10563 ret = PTR_ERR(trans);
10564 goto next;
10565 }
10566
10567 /*
10568 * We could have pending pinned extents for this block group,
10569 * just delete them, we don't care about them anymore.
10570 */
10571 start = block_group->key.objectid;
10572 end = start + block_group->key.offset - 1;
10573 /*
10574 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10575 * btrfs_finish_extent_commit(). If we are at transaction N,
10576 * another task might be running finish_extent_commit() for the
10577 * previous transaction N - 1, and have seen a range belonging
10578 * to the block group in freed_extents[] before we were able to
10579 * clear the whole block group range from freed_extents[]. This
10580 * means that task can lookup for the block group after we
10581 * unpinned it from freed_extents[] and removed it, leading to
10582 * a BUG_ON() at btrfs_unpin_extent_range().
10583 */
10584 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10585 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10586 EXTENT_DIRTY, GFP_NOFS);
10587 if (ret) {
10588 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10589 btrfs_dec_block_group_ro(root, block_group);
10590 goto end_trans;
10591 }
10592 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10593 EXTENT_DIRTY, GFP_NOFS);
10594 if (ret) {
10595 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10596 btrfs_dec_block_group_ro(root, block_group);
10597 goto end_trans;
10598 }
10599 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10600
10601 /* Reset pinned so btrfs_put_block_group doesn't complain */
10602 spin_lock(&space_info->lock);
10603 spin_lock(&block_group->lock);
10604
10605 space_info->bytes_pinned -= block_group->pinned;
10606 space_info->bytes_readonly += block_group->pinned;
10607 percpu_counter_add(&space_info->total_bytes_pinned,
10608 -block_group->pinned);
10609 block_group->pinned = 0;
10610
10611 spin_unlock(&block_group->lock);
10612 spin_unlock(&space_info->lock);
10613
10614 /* DISCARD can flip during remount */
10615 trimming = btrfs_test_opt(root, DISCARD);
10616
10617 /* Implicit trim during transaction commit. */
10618 if (trimming)
10619 btrfs_get_block_group_trimming(block_group);
10620
10621 /*
10622 * Btrfs_remove_chunk will abort the transaction if things go
10623 * horribly wrong.
10624 */
10625 ret = btrfs_remove_chunk(trans, root,
10626 block_group->key.objectid);
10627
10628 if (ret) {
10629 if (trimming)
10630 btrfs_put_block_group_trimming(block_group);
10631 goto end_trans;
10632 }
10633
10634 /*
10635 * If we're not mounted with -odiscard, we can just forget
10636 * about this block group. Otherwise we'll need to wait
10637 * until transaction commit to do the actual discard.
10638 */
10639 if (trimming) {
10640 spin_lock(&fs_info->unused_bgs_lock);
10641 /*
10642 * A concurrent scrub might have added us to the list
10643 * fs_info->unused_bgs, so use a list_move operation
10644 * to add the block group to the deleted_bgs list.
10645 */
10646 list_move(&block_group->bg_list,
10647 &trans->transaction->deleted_bgs);
10648 spin_unlock(&fs_info->unused_bgs_lock);
10649 btrfs_get_block_group(block_group);
10650 }
10651end_trans:
10652 btrfs_end_transaction(trans, root);
10653next:
10654 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10655 btrfs_put_block_group(block_group);
10656 spin_lock(&fs_info->unused_bgs_lock);
10657 }
10658 spin_unlock(&fs_info->unused_bgs_lock);
10659}
10660
10661int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10662{
10663 struct btrfs_space_info *space_info;
10664 struct btrfs_super_block *disk_super;
10665 u64 features;
10666 u64 flags;
10667 int mixed = 0;
10668 int ret;
10669
10670 disk_super = fs_info->super_copy;
10671 if (!btrfs_super_root(disk_super))
10672 return -EINVAL;
10673
10674 features = btrfs_super_incompat_flags(disk_super);
10675 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10676 mixed = 1;
10677
10678 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10679 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10680 if (ret)
10681 goto out;
10682
10683 if (mixed) {
10684 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10685 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10686 } else {
10687 flags = BTRFS_BLOCK_GROUP_METADATA;
10688 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10689 if (ret)
10690 goto out;
10691
10692 flags = BTRFS_BLOCK_GROUP_DATA;
10693 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10694 }
10695out:
10696 return ret;
10697}
10698
10699int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10700{
10701 return unpin_extent_range(root, start, end, false);
10702}
10703
10704/*
10705 * It used to be that old block groups would be left around forever.
10706 * Iterating over them would be enough to trim unused space. Since we
10707 * now automatically remove them, we also need to iterate over unallocated
10708 * space.
10709 *
10710 * We don't want a transaction for this since the discard may take a
10711 * substantial amount of time. We don't require that a transaction be
10712 * running, but we do need to take a running transaction into account
10713 * to ensure that we're not discarding chunks that were released in
10714 * the current transaction.
10715 *
10716 * Holding the chunks lock will prevent other threads from allocating
10717 * or releasing chunks, but it won't prevent a running transaction
10718 * from committing and releasing the memory that the pending chunks
10719 * list head uses. For that, we need to take a reference to the
10720 * transaction.
10721 */
10722static int btrfs_trim_free_extents(struct btrfs_device *device,
10723 u64 minlen, u64 *trimmed)
10724{
10725 u64 start = 0, len = 0;
10726 int ret;
10727
10728 *trimmed = 0;
10729
10730 /* Not writeable = nothing to do. */
10731 if (!device->writeable)
10732 return 0;
10733
10734 /* No free space = nothing to do. */
10735 if (device->total_bytes <= device->bytes_used)
10736 return 0;
10737
10738 ret = 0;
10739
10740 while (1) {
10741 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10742 struct btrfs_transaction *trans;
10743 u64 bytes;
10744
10745 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10746 if (ret)
10747 return ret;
10748
10749 down_read(&fs_info->commit_root_sem);
10750
10751 spin_lock(&fs_info->trans_lock);
10752 trans = fs_info->running_transaction;
10753 if (trans)
10754 atomic_inc(&trans->use_count);
10755 spin_unlock(&fs_info->trans_lock);
10756
10757 ret = find_free_dev_extent_start(trans, device, minlen, start,
10758 &start, &len);
10759 if (trans)
10760 btrfs_put_transaction(trans);
10761
10762 if (ret) {
10763 up_read(&fs_info->commit_root_sem);
10764 mutex_unlock(&fs_info->chunk_mutex);
10765 if (ret == -ENOSPC)
10766 ret = 0;
10767 break;
10768 }
10769
10770 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10771 up_read(&fs_info->commit_root_sem);
10772 mutex_unlock(&fs_info->chunk_mutex);
10773
10774 if (ret)
10775 break;
10776
10777 start += len;
10778 *trimmed += bytes;
10779
10780 if (fatal_signal_pending(current)) {
10781 ret = -ERESTARTSYS;
10782 break;
10783 }
10784
10785 cond_resched();
10786 }
10787
10788 return ret;
10789}
10790
10791int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10792{
10793 struct btrfs_fs_info *fs_info = root->fs_info;
10794 struct btrfs_block_group_cache *cache = NULL;
10795 struct btrfs_device *device;
10796 struct list_head *devices;
10797 u64 group_trimmed;
10798 u64 start;
10799 u64 end;
10800 u64 trimmed = 0;
10801 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10802 int ret = 0;
10803
10804 /*
10805 * try to trim all FS space, our block group may start from non-zero.
10806 */
10807 if (range->len == total_bytes)
10808 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10809 else
10810 cache = btrfs_lookup_block_group(fs_info, range->start);
10811
10812 while (cache) {
10813 if (cache->key.objectid >= (range->start + range->len)) {
10814 btrfs_put_block_group(cache);
10815 break;
10816 }
10817
10818 start = max(range->start, cache->key.objectid);
10819 end = min(range->start + range->len,
10820 cache->key.objectid + cache->key.offset);
10821
10822 if (end - start >= range->minlen) {
10823 if (!block_group_cache_done(cache)) {
10824 ret = cache_block_group(cache, 0);
10825 if (ret) {
10826 btrfs_put_block_group(cache);
10827 break;
10828 }
10829 ret = wait_block_group_cache_done(cache);
10830 if (ret) {
10831 btrfs_put_block_group(cache);
10832 break;
10833 }
10834 }
10835 ret = btrfs_trim_block_group(cache,
10836 &group_trimmed,
10837 start,
10838 end,
10839 range->minlen);
10840
10841 trimmed += group_trimmed;
10842 if (ret) {
10843 btrfs_put_block_group(cache);
10844 break;
10845 }
10846 }
10847
10848 cache = next_block_group(fs_info->tree_root, cache);
10849 }
10850
10851 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10852 devices = &root->fs_info->fs_devices->alloc_list;
10853 list_for_each_entry(device, devices, dev_alloc_list) {
10854 ret = btrfs_trim_free_extents(device, range->minlen,
10855 &group_trimmed);
10856 if (ret)
10857 break;
10858
10859 trimmed += group_trimmed;
10860 }
10861 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10862
10863 range->len = trimmed;
10864 return ret;
10865}
10866
10867/*
10868 * btrfs_{start,end}_write_no_snapshoting() are similar to
10869 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10870 * data into the page cache through nocow before the subvolume is snapshoted,
10871 * but flush the data into disk after the snapshot creation, or to prevent
10872 * operations while snapshoting is ongoing and that cause the snapshot to be
10873 * inconsistent (writes followed by expanding truncates for example).
10874 */
10875void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10876{
10877 percpu_counter_dec(&root->subv_writers->counter);
10878 /*
10879 * Make sure counter is updated before we wake up waiters.
10880 */
10881 smp_mb();
10882 if (waitqueue_active(&root->subv_writers->wait))
10883 wake_up(&root->subv_writers->wait);
10884}
10885
10886int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10887{
10888 if (atomic_read(&root->will_be_snapshoted))
10889 return 0;
10890
10891 percpu_counter_inc(&root->subv_writers->counter);
10892 /*
10893 * Make sure counter is updated before we check for snapshot creation.
10894 */
10895 smp_mb();
10896 if (atomic_read(&root->will_be_snapshoted)) {
10897 btrfs_end_write_no_snapshoting(root);
10898 return 0;
10899 }
10900 return 1;
10901}
10902
10903static int wait_snapshoting_atomic_t(atomic_t *a)
10904{
10905 schedule();
10906 return 0;
10907}
10908
10909void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10910{
10911 while (true) {
10912 int ret;
10913
10914 ret = btrfs_start_write_no_snapshoting(root);
10915 if (ret)
10916 break;
10917 wait_on_atomic_t(&root->will_be_snapshoted,
10918 wait_snapshoting_atomic_t,
10919 TASK_UNINTERRUPTIBLE);
10920 }
10921}
This page took 0.085981 seconds and 5 git commands to generate.