Btrfs: fix how we deal with the pages array in the write path
[deliverable/linux.git] / fs / btrfs / extent-tree.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/pagemap.h>
20#include <linux/writeback.h>
21#include <linux/blkdev.h>
22#include <linux/sort.h>
23#include <linux/rcupdate.h>
24#include <linux/kthread.h>
25#include <linux/slab.h>
26#include "compat.h"
27#include "hash.h"
28#include "ctree.h"
29#include "disk-io.h"
30#include "print-tree.h"
31#include "transaction.h"
32#include "volumes.h"
33#include "locking.h"
34#include "free-space-cache.h"
35
36static int update_block_group(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 u64 bytenr, u64 num_bytes, int alloc);
39static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
40 u64 num_bytes, int reserve, int sinfo);
41static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root,
43 u64 bytenr, u64 num_bytes, u64 parent,
44 u64 root_objectid, u64 owner_objectid,
45 u64 owner_offset, int refs_to_drop,
46 struct btrfs_delayed_extent_op *extra_op);
47static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 struct extent_buffer *leaf,
49 struct btrfs_extent_item *ei);
50static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root,
52 u64 parent, u64 root_objectid,
53 u64 flags, u64 owner, u64 offset,
54 struct btrfs_key *ins, int ref_mod);
55static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 parent, u64 root_objectid,
58 u64 flags, struct btrfs_disk_key *key,
59 int level, struct btrfs_key *ins);
60static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 struct btrfs_root *extent_root, u64 alloc_bytes,
62 u64 flags, int force);
63static int find_next_key(struct btrfs_path *path, int level,
64 struct btrfs_key *key);
65static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
66 int dump_block_groups);
67
68static noinline int
69block_group_cache_done(struct btrfs_block_group_cache *cache)
70{
71 smp_mb();
72 return cache->cached == BTRFS_CACHE_FINISHED;
73}
74
75static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
76{
77 return (cache->flags & bits) == bits;
78}
79
80void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
81{
82 atomic_inc(&cache->count);
83}
84
85void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
86{
87 if (atomic_dec_and_test(&cache->count)) {
88 WARN_ON(cache->pinned > 0);
89 WARN_ON(cache->reserved > 0);
90 WARN_ON(cache->reserved_pinned > 0);
91 kfree(cache);
92 }
93}
94
95/*
96 * this adds the block group to the fs_info rb tree for the block group
97 * cache
98 */
99static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
100 struct btrfs_block_group_cache *block_group)
101{
102 struct rb_node **p;
103 struct rb_node *parent = NULL;
104 struct btrfs_block_group_cache *cache;
105
106 spin_lock(&info->block_group_cache_lock);
107 p = &info->block_group_cache_tree.rb_node;
108
109 while (*p) {
110 parent = *p;
111 cache = rb_entry(parent, struct btrfs_block_group_cache,
112 cache_node);
113 if (block_group->key.objectid < cache->key.objectid) {
114 p = &(*p)->rb_left;
115 } else if (block_group->key.objectid > cache->key.objectid) {
116 p = &(*p)->rb_right;
117 } else {
118 spin_unlock(&info->block_group_cache_lock);
119 return -EEXIST;
120 }
121 }
122
123 rb_link_node(&block_group->cache_node, parent, p);
124 rb_insert_color(&block_group->cache_node,
125 &info->block_group_cache_tree);
126 spin_unlock(&info->block_group_cache_lock);
127
128 return 0;
129}
130
131/*
132 * This will return the block group at or after bytenr if contains is 0, else
133 * it will return the block group that contains the bytenr
134 */
135static struct btrfs_block_group_cache *
136block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
137 int contains)
138{
139 struct btrfs_block_group_cache *cache, *ret = NULL;
140 struct rb_node *n;
141 u64 end, start;
142
143 spin_lock(&info->block_group_cache_lock);
144 n = info->block_group_cache_tree.rb_node;
145
146 while (n) {
147 cache = rb_entry(n, struct btrfs_block_group_cache,
148 cache_node);
149 end = cache->key.objectid + cache->key.offset - 1;
150 start = cache->key.objectid;
151
152 if (bytenr < start) {
153 if (!contains && (!ret || start < ret->key.objectid))
154 ret = cache;
155 n = n->rb_left;
156 } else if (bytenr > start) {
157 if (contains && bytenr <= end) {
158 ret = cache;
159 break;
160 }
161 n = n->rb_right;
162 } else {
163 ret = cache;
164 break;
165 }
166 }
167 if (ret)
168 btrfs_get_block_group(ret);
169 spin_unlock(&info->block_group_cache_lock);
170
171 return ret;
172}
173
174static int add_excluded_extent(struct btrfs_root *root,
175 u64 start, u64 num_bytes)
176{
177 u64 end = start + num_bytes - 1;
178 set_extent_bits(&root->fs_info->freed_extents[0],
179 start, end, EXTENT_UPTODATE, GFP_NOFS);
180 set_extent_bits(&root->fs_info->freed_extents[1],
181 start, end, EXTENT_UPTODATE, GFP_NOFS);
182 return 0;
183}
184
185static void free_excluded_extents(struct btrfs_root *root,
186 struct btrfs_block_group_cache *cache)
187{
188 u64 start, end;
189
190 start = cache->key.objectid;
191 end = start + cache->key.offset - 1;
192
193 clear_extent_bits(&root->fs_info->freed_extents[0],
194 start, end, EXTENT_UPTODATE, GFP_NOFS);
195 clear_extent_bits(&root->fs_info->freed_extents[1],
196 start, end, EXTENT_UPTODATE, GFP_NOFS);
197}
198
199static int exclude_super_stripes(struct btrfs_root *root,
200 struct btrfs_block_group_cache *cache)
201{
202 u64 bytenr;
203 u64 *logical;
204 int stripe_len;
205 int i, nr, ret;
206
207 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
208 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
209 cache->bytes_super += stripe_len;
210 ret = add_excluded_extent(root, cache->key.objectid,
211 stripe_len);
212 BUG_ON(ret);
213 }
214
215 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
216 bytenr = btrfs_sb_offset(i);
217 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
218 cache->key.objectid, bytenr,
219 0, &logical, &nr, &stripe_len);
220 BUG_ON(ret);
221
222 while (nr--) {
223 cache->bytes_super += stripe_len;
224 ret = add_excluded_extent(root, logical[nr],
225 stripe_len);
226 BUG_ON(ret);
227 }
228
229 kfree(logical);
230 }
231 return 0;
232}
233
234static struct btrfs_caching_control *
235get_caching_control(struct btrfs_block_group_cache *cache)
236{
237 struct btrfs_caching_control *ctl;
238
239 spin_lock(&cache->lock);
240 if (cache->cached != BTRFS_CACHE_STARTED) {
241 spin_unlock(&cache->lock);
242 return NULL;
243 }
244
245 /* We're loading it the fast way, so we don't have a caching_ctl. */
246 if (!cache->caching_ctl) {
247 spin_unlock(&cache->lock);
248 return NULL;
249 }
250
251 ctl = cache->caching_ctl;
252 atomic_inc(&ctl->count);
253 spin_unlock(&cache->lock);
254 return ctl;
255}
256
257static void put_caching_control(struct btrfs_caching_control *ctl)
258{
259 if (atomic_dec_and_test(&ctl->count))
260 kfree(ctl);
261}
262
263/*
264 * this is only called by cache_block_group, since we could have freed extents
265 * we need to check the pinned_extents for any extents that can't be used yet
266 * since their free space will be released as soon as the transaction commits.
267 */
268static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
269 struct btrfs_fs_info *info, u64 start, u64 end)
270{
271 u64 extent_start, extent_end, size, total_added = 0;
272 int ret;
273
274 while (start < end) {
275 ret = find_first_extent_bit(info->pinned_extents, start,
276 &extent_start, &extent_end,
277 EXTENT_DIRTY | EXTENT_UPTODATE);
278 if (ret)
279 break;
280
281 if (extent_start <= start) {
282 start = extent_end + 1;
283 } else if (extent_start > start && extent_start < end) {
284 size = extent_start - start;
285 total_added += size;
286 ret = btrfs_add_free_space(block_group, start,
287 size);
288 BUG_ON(ret);
289 start = extent_end + 1;
290 } else {
291 break;
292 }
293 }
294
295 if (start < end) {
296 size = end - start;
297 total_added += size;
298 ret = btrfs_add_free_space(block_group, start, size);
299 BUG_ON(ret);
300 }
301
302 return total_added;
303}
304
305static int caching_kthread(void *data)
306{
307 struct btrfs_block_group_cache *block_group = data;
308 struct btrfs_fs_info *fs_info = block_group->fs_info;
309 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
310 struct btrfs_root *extent_root = fs_info->extent_root;
311 struct btrfs_path *path;
312 struct extent_buffer *leaf;
313 struct btrfs_key key;
314 u64 total_found = 0;
315 u64 last = 0;
316 u32 nritems;
317 int ret = 0;
318
319 path = btrfs_alloc_path();
320 if (!path)
321 return -ENOMEM;
322
323 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
324
325 /*
326 * We don't want to deadlock with somebody trying to allocate a new
327 * extent for the extent root while also trying to search the extent
328 * root to add free space. So we skip locking and search the commit
329 * root, since its read-only
330 */
331 path->skip_locking = 1;
332 path->search_commit_root = 1;
333 path->reada = 2;
334
335 key.objectid = last;
336 key.offset = 0;
337 key.type = BTRFS_EXTENT_ITEM_KEY;
338again:
339 mutex_lock(&caching_ctl->mutex);
340 /* need to make sure the commit_root doesn't disappear */
341 down_read(&fs_info->extent_commit_sem);
342
343 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
344 if (ret < 0)
345 goto err;
346
347 leaf = path->nodes[0];
348 nritems = btrfs_header_nritems(leaf);
349
350 while (1) {
351 smp_mb();
352 if (fs_info->closing > 1) {
353 last = (u64)-1;
354 break;
355 }
356
357 if (path->slots[0] < nritems) {
358 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
359 } else {
360 ret = find_next_key(path, 0, &key);
361 if (ret)
362 break;
363
364 caching_ctl->progress = last;
365 btrfs_release_path(extent_root, path);
366 up_read(&fs_info->extent_commit_sem);
367 mutex_unlock(&caching_ctl->mutex);
368 if (btrfs_transaction_in_commit(fs_info))
369 schedule_timeout(1);
370 else
371 cond_resched();
372 goto again;
373 }
374
375 if (key.objectid < block_group->key.objectid) {
376 path->slots[0]++;
377 continue;
378 }
379
380 if (key.objectid >= block_group->key.objectid +
381 block_group->key.offset)
382 break;
383
384 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
385 total_found += add_new_free_space(block_group,
386 fs_info, last,
387 key.objectid);
388 last = key.objectid + key.offset;
389
390 if (total_found > (1024 * 1024 * 2)) {
391 total_found = 0;
392 wake_up(&caching_ctl->wait);
393 }
394 }
395 path->slots[0]++;
396 }
397 ret = 0;
398
399 total_found += add_new_free_space(block_group, fs_info, last,
400 block_group->key.objectid +
401 block_group->key.offset);
402 caching_ctl->progress = (u64)-1;
403
404 spin_lock(&block_group->lock);
405 block_group->caching_ctl = NULL;
406 block_group->cached = BTRFS_CACHE_FINISHED;
407 spin_unlock(&block_group->lock);
408
409err:
410 btrfs_free_path(path);
411 up_read(&fs_info->extent_commit_sem);
412
413 free_excluded_extents(extent_root, block_group);
414
415 mutex_unlock(&caching_ctl->mutex);
416 wake_up(&caching_ctl->wait);
417
418 put_caching_control(caching_ctl);
419 atomic_dec(&block_group->space_info->caching_threads);
420 btrfs_put_block_group(block_group);
421
422 return 0;
423}
424
425static int cache_block_group(struct btrfs_block_group_cache *cache,
426 struct btrfs_trans_handle *trans,
427 struct btrfs_root *root,
428 int load_cache_only)
429{
430 struct btrfs_fs_info *fs_info = cache->fs_info;
431 struct btrfs_caching_control *caching_ctl;
432 struct task_struct *tsk;
433 int ret = 0;
434
435 smp_mb();
436 if (cache->cached != BTRFS_CACHE_NO)
437 return 0;
438
439 /*
440 * We can't do the read from on-disk cache during a commit since we need
441 * to have the normal tree locking. Also if we are currently trying to
442 * allocate blocks for the tree root we can't do the fast caching since
443 * we likely hold important locks.
444 */
445 if (!trans->transaction->in_commit &&
446 (root && root != root->fs_info->tree_root)) {
447 spin_lock(&cache->lock);
448 if (cache->cached != BTRFS_CACHE_NO) {
449 spin_unlock(&cache->lock);
450 return 0;
451 }
452 cache->cached = BTRFS_CACHE_STARTED;
453 spin_unlock(&cache->lock);
454
455 ret = load_free_space_cache(fs_info, cache);
456
457 spin_lock(&cache->lock);
458 if (ret == 1) {
459 cache->cached = BTRFS_CACHE_FINISHED;
460 cache->last_byte_to_unpin = (u64)-1;
461 } else {
462 cache->cached = BTRFS_CACHE_NO;
463 }
464 spin_unlock(&cache->lock);
465 if (ret == 1) {
466 free_excluded_extents(fs_info->extent_root, cache);
467 return 0;
468 }
469 }
470
471 if (load_cache_only)
472 return 0;
473
474 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
475 BUG_ON(!caching_ctl);
476
477 INIT_LIST_HEAD(&caching_ctl->list);
478 mutex_init(&caching_ctl->mutex);
479 init_waitqueue_head(&caching_ctl->wait);
480 caching_ctl->block_group = cache;
481 caching_ctl->progress = cache->key.objectid;
482 /* one for caching kthread, one for caching block group list */
483 atomic_set(&caching_ctl->count, 2);
484
485 spin_lock(&cache->lock);
486 if (cache->cached != BTRFS_CACHE_NO) {
487 spin_unlock(&cache->lock);
488 kfree(caching_ctl);
489 return 0;
490 }
491 cache->caching_ctl = caching_ctl;
492 cache->cached = BTRFS_CACHE_STARTED;
493 spin_unlock(&cache->lock);
494
495 down_write(&fs_info->extent_commit_sem);
496 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
497 up_write(&fs_info->extent_commit_sem);
498
499 atomic_inc(&cache->space_info->caching_threads);
500 btrfs_get_block_group(cache);
501
502 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
503 cache->key.objectid);
504 if (IS_ERR(tsk)) {
505 ret = PTR_ERR(tsk);
506 printk(KERN_ERR "error running thread %d\n", ret);
507 BUG();
508 }
509
510 return ret;
511}
512
513/*
514 * return the block group that starts at or after bytenr
515 */
516static struct btrfs_block_group_cache *
517btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
518{
519 struct btrfs_block_group_cache *cache;
520
521 cache = block_group_cache_tree_search(info, bytenr, 0);
522
523 return cache;
524}
525
526/*
527 * return the block group that contains the given bytenr
528 */
529struct btrfs_block_group_cache *btrfs_lookup_block_group(
530 struct btrfs_fs_info *info,
531 u64 bytenr)
532{
533 struct btrfs_block_group_cache *cache;
534
535 cache = block_group_cache_tree_search(info, bytenr, 1);
536
537 return cache;
538}
539
540static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
541 u64 flags)
542{
543 struct list_head *head = &info->space_info;
544 struct btrfs_space_info *found;
545
546 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
547 BTRFS_BLOCK_GROUP_METADATA;
548
549 rcu_read_lock();
550 list_for_each_entry_rcu(found, head, list) {
551 if (found->flags & flags) {
552 rcu_read_unlock();
553 return found;
554 }
555 }
556 rcu_read_unlock();
557 return NULL;
558}
559
560/*
561 * after adding space to the filesystem, we need to clear the full flags
562 * on all the space infos.
563 */
564void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
565{
566 struct list_head *head = &info->space_info;
567 struct btrfs_space_info *found;
568
569 rcu_read_lock();
570 list_for_each_entry_rcu(found, head, list)
571 found->full = 0;
572 rcu_read_unlock();
573}
574
575static u64 div_factor(u64 num, int factor)
576{
577 if (factor == 10)
578 return num;
579 num *= factor;
580 do_div(num, 10);
581 return num;
582}
583
584static u64 div_factor_fine(u64 num, int factor)
585{
586 if (factor == 100)
587 return num;
588 num *= factor;
589 do_div(num, 100);
590 return num;
591}
592
593u64 btrfs_find_block_group(struct btrfs_root *root,
594 u64 search_start, u64 search_hint, int owner)
595{
596 struct btrfs_block_group_cache *cache;
597 u64 used;
598 u64 last = max(search_hint, search_start);
599 u64 group_start = 0;
600 int full_search = 0;
601 int factor = 9;
602 int wrapped = 0;
603again:
604 while (1) {
605 cache = btrfs_lookup_first_block_group(root->fs_info, last);
606 if (!cache)
607 break;
608
609 spin_lock(&cache->lock);
610 last = cache->key.objectid + cache->key.offset;
611 used = btrfs_block_group_used(&cache->item);
612
613 if ((full_search || !cache->ro) &&
614 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
615 if (used + cache->pinned + cache->reserved <
616 div_factor(cache->key.offset, factor)) {
617 group_start = cache->key.objectid;
618 spin_unlock(&cache->lock);
619 btrfs_put_block_group(cache);
620 goto found;
621 }
622 }
623 spin_unlock(&cache->lock);
624 btrfs_put_block_group(cache);
625 cond_resched();
626 }
627 if (!wrapped) {
628 last = search_start;
629 wrapped = 1;
630 goto again;
631 }
632 if (!full_search && factor < 10) {
633 last = search_start;
634 full_search = 1;
635 factor = 10;
636 goto again;
637 }
638found:
639 return group_start;
640}
641
642/* simple helper to search for an existing extent at a given offset */
643int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
644{
645 int ret;
646 struct btrfs_key key;
647 struct btrfs_path *path;
648
649 path = btrfs_alloc_path();
650 BUG_ON(!path);
651 key.objectid = start;
652 key.offset = len;
653 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
654 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
655 0, 0);
656 btrfs_free_path(path);
657 return ret;
658}
659
660/*
661 * helper function to lookup reference count and flags of extent.
662 *
663 * the head node for delayed ref is used to store the sum of all the
664 * reference count modifications queued up in the rbtree. the head
665 * node may also store the extent flags to set. This way you can check
666 * to see what the reference count and extent flags would be if all of
667 * the delayed refs are not processed.
668 */
669int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
670 struct btrfs_root *root, u64 bytenr,
671 u64 num_bytes, u64 *refs, u64 *flags)
672{
673 struct btrfs_delayed_ref_head *head;
674 struct btrfs_delayed_ref_root *delayed_refs;
675 struct btrfs_path *path;
676 struct btrfs_extent_item *ei;
677 struct extent_buffer *leaf;
678 struct btrfs_key key;
679 u32 item_size;
680 u64 num_refs;
681 u64 extent_flags;
682 int ret;
683
684 path = btrfs_alloc_path();
685 if (!path)
686 return -ENOMEM;
687
688 key.objectid = bytenr;
689 key.type = BTRFS_EXTENT_ITEM_KEY;
690 key.offset = num_bytes;
691 if (!trans) {
692 path->skip_locking = 1;
693 path->search_commit_root = 1;
694 }
695again:
696 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
697 &key, path, 0, 0);
698 if (ret < 0)
699 goto out_free;
700
701 if (ret == 0) {
702 leaf = path->nodes[0];
703 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
704 if (item_size >= sizeof(*ei)) {
705 ei = btrfs_item_ptr(leaf, path->slots[0],
706 struct btrfs_extent_item);
707 num_refs = btrfs_extent_refs(leaf, ei);
708 extent_flags = btrfs_extent_flags(leaf, ei);
709 } else {
710#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
711 struct btrfs_extent_item_v0 *ei0;
712 BUG_ON(item_size != sizeof(*ei0));
713 ei0 = btrfs_item_ptr(leaf, path->slots[0],
714 struct btrfs_extent_item_v0);
715 num_refs = btrfs_extent_refs_v0(leaf, ei0);
716 /* FIXME: this isn't correct for data */
717 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
718#else
719 BUG();
720#endif
721 }
722 BUG_ON(num_refs == 0);
723 } else {
724 num_refs = 0;
725 extent_flags = 0;
726 ret = 0;
727 }
728
729 if (!trans)
730 goto out;
731
732 delayed_refs = &trans->transaction->delayed_refs;
733 spin_lock(&delayed_refs->lock);
734 head = btrfs_find_delayed_ref_head(trans, bytenr);
735 if (head) {
736 if (!mutex_trylock(&head->mutex)) {
737 atomic_inc(&head->node.refs);
738 spin_unlock(&delayed_refs->lock);
739
740 btrfs_release_path(root->fs_info->extent_root, path);
741
742 mutex_lock(&head->mutex);
743 mutex_unlock(&head->mutex);
744 btrfs_put_delayed_ref(&head->node);
745 goto again;
746 }
747 if (head->extent_op && head->extent_op->update_flags)
748 extent_flags |= head->extent_op->flags_to_set;
749 else
750 BUG_ON(num_refs == 0);
751
752 num_refs += head->node.ref_mod;
753 mutex_unlock(&head->mutex);
754 }
755 spin_unlock(&delayed_refs->lock);
756out:
757 WARN_ON(num_refs == 0);
758 if (refs)
759 *refs = num_refs;
760 if (flags)
761 *flags = extent_flags;
762out_free:
763 btrfs_free_path(path);
764 return ret;
765}
766
767/*
768 * Back reference rules. Back refs have three main goals:
769 *
770 * 1) differentiate between all holders of references to an extent so that
771 * when a reference is dropped we can make sure it was a valid reference
772 * before freeing the extent.
773 *
774 * 2) Provide enough information to quickly find the holders of an extent
775 * if we notice a given block is corrupted or bad.
776 *
777 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
778 * maintenance. This is actually the same as #2, but with a slightly
779 * different use case.
780 *
781 * There are two kinds of back refs. The implicit back refs is optimized
782 * for pointers in non-shared tree blocks. For a given pointer in a block,
783 * back refs of this kind provide information about the block's owner tree
784 * and the pointer's key. These information allow us to find the block by
785 * b-tree searching. The full back refs is for pointers in tree blocks not
786 * referenced by their owner trees. The location of tree block is recorded
787 * in the back refs. Actually the full back refs is generic, and can be
788 * used in all cases the implicit back refs is used. The major shortcoming
789 * of the full back refs is its overhead. Every time a tree block gets
790 * COWed, we have to update back refs entry for all pointers in it.
791 *
792 * For a newly allocated tree block, we use implicit back refs for
793 * pointers in it. This means most tree related operations only involve
794 * implicit back refs. For a tree block created in old transaction, the
795 * only way to drop a reference to it is COW it. So we can detect the
796 * event that tree block loses its owner tree's reference and do the
797 * back refs conversion.
798 *
799 * When a tree block is COW'd through a tree, there are four cases:
800 *
801 * The reference count of the block is one and the tree is the block's
802 * owner tree. Nothing to do in this case.
803 *
804 * The reference count of the block is one and the tree is not the
805 * block's owner tree. In this case, full back refs is used for pointers
806 * in the block. Remove these full back refs, add implicit back refs for
807 * every pointers in the new block.
808 *
809 * The reference count of the block is greater than one and the tree is
810 * the block's owner tree. In this case, implicit back refs is used for
811 * pointers in the block. Add full back refs for every pointers in the
812 * block, increase lower level extents' reference counts. The original
813 * implicit back refs are entailed to the new block.
814 *
815 * The reference count of the block is greater than one and the tree is
816 * not the block's owner tree. Add implicit back refs for every pointer in
817 * the new block, increase lower level extents' reference count.
818 *
819 * Back Reference Key composing:
820 *
821 * The key objectid corresponds to the first byte in the extent,
822 * The key type is used to differentiate between types of back refs.
823 * There are different meanings of the key offset for different types
824 * of back refs.
825 *
826 * File extents can be referenced by:
827 *
828 * - multiple snapshots, subvolumes, or different generations in one subvol
829 * - different files inside a single subvolume
830 * - different offsets inside a file (bookend extents in file.c)
831 *
832 * The extent ref structure for the implicit back refs has fields for:
833 *
834 * - Objectid of the subvolume root
835 * - objectid of the file holding the reference
836 * - original offset in the file
837 * - how many bookend extents
838 *
839 * The key offset for the implicit back refs is hash of the first
840 * three fields.
841 *
842 * The extent ref structure for the full back refs has field for:
843 *
844 * - number of pointers in the tree leaf
845 *
846 * The key offset for the implicit back refs is the first byte of
847 * the tree leaf
848 *
849 * When a file extent is allocated, The implicit back refs is used.
850 * the fields are filled in:
851 *
852 * (root_key.objectid, inode objectid, offset in file, 1)
853 *
854 * When a file extent is removed file truncation, we find the
855 * corresponding implicit back refs and check the following fields:
856 *
857 * (btrfs_header_owner(leaf), inode objectid, offset in file)
858 *
859 * Btree extents can be referenced by:
860 *
861 * - Different subvolumes
862 *
863 * Both the implicit back refs and the full back refs for tree blocks
864 * only consist of key. The key offset for the implicit back refs is
865 * objectid of block's owner tree. The key offset for the full back refs
866 * is the first byte of parent block.
867 *
868 * When implicit back refs is used, information about the lowest key and
869 * level of the tree block are required. These information are stored in
870 * tree block info structure.
871 */
872
873#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
875 struct btrfs_root *root,
876 struct btrfs_path *path,
877 u64 owner, u32 extra_size)
878{
879 struct btrfs_extent_item *item;
880 struct btrfs_extent_item_v0 *ei0;
881 struct btrfs_extent_ref_v0 *ref0;
882 struct btrfs_tree_block_info *bi;
883 struct extent_buffer *leaf;
884 struct btrfs_key key;
885 struct btrfs_key found_key;
886 u32 new_size = sizeof(*item);
887 u64 refs;
888 int ret;
889
890 leaf = path->nodes[0];
891 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
892
893 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
894 ei0 = btrfs_item_ptr(leaf, path->slots[0],
895 struct btrfs_extent_item_v0);
896 refs = btrfs_extent_refs_v0(leaf, ei0);
897
898 if (owner == (u64)-1) {
899 while (1) {
900 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
901 ret = btrfs_next_leaf(root, path);
902 if (ret < 0)
903 return ret;
904 BUG_ON(ret > 0);
905 leaf = path->nodes[0];
906 }
907 btrfs_item_key_to_cpu(leaf, &found_key,
908 path->slots[0]);
909 BUG_ON(key.objectid != found_key.objectid);
910 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
911 path->slots[0]++;
912 continue;
913 }
914 ref0 = btrfs_item_ptr(leaf, path->slots[0],
915 struct btrfs_extent_ref_v0);
916 owner = btrfs_ref_objectid_v0(leaf, ref0);
917 break;
918 }
919 }
920 btrfs_release_path(root, path);
921
922 if (owner < BTRFS_FIRST_FREE_OBJECTID)
923 new_size += sizeof(*bi);
924
925 new_size -= sizeof(*ei0);
926 ret = btrfs_search_slot(trans, root, &key, path,
927 new_size + extra_size, 1);
928 if (ret < 0)
929 return ret;
930 BUG_ON(ret);
931
932 ret = btrfs_extend_item(trans, root, path, new_size);
933 BUG_ON(ret);
934
935 leaf = path->nodes[0];
936 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
937 btrfs_set_extent_refs(leaf, item, refs);
938 /* FIXME: get real generation */
939 btrfs_set_extent_generation(leaf, item, 0);
940 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
941 btrfs_set_extent_flags(leaf, item,
942 BTRFS_EXTENT_FLAG_TREE_BLOCK |
943 BTRFS_BLOCK_FLAG_FULL_BACKREF);
944 bi = (struct btrfs_tree_block_info *)(item + 1);
945 /* FIXME: get first key of the block */
946 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
947 btrfs_set_tree_block_level(leaf, bi, (int)owner);
948 } else {
949 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
950 }
951 btrfs_mark_buffer_dirty(leaf);
952 return 0;
953}
954#endif
955
956static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
957{
958 u32 high_crc = ~(u32)0;
959 u32 low_crc = ~(u32)0;
960 __le64 lenum;
961
962 lenum = cpu_to_le64(root_objectid);
963 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
964 lenum = cpu_to_le64(owner);
965 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
966 lenum = cpu_to_le64(offset);
967 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
968
969 return ((u64)high_crc << 31) ^ (u64)low_crc;
970}
971
972static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
973 struct btrfs_extent_data_ref *ref)
974{
975 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
976 btrfs_extent_data_ref_objectid(leaf, ref),
977 btrfs_extent_data_ref_offset(leaf, ref));
978}
979
980static int match_extent_data_ref(struct extent_buffer *leaf,
981 struct btrfs_extent_data_ref *ref,
982 u64 root_objectid, u64 owner, u64 offset)
983{
984 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
985 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
986 btrfs_extent_data_ref_offset(leaf, ref) != offset)
987 return 0;
988 return 1;
989}
990
991static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
992 struct btrfs_root *root,
993 struct btrfs_path *path,
994 u64 bytenr, u64 parent,
995 u64 root_objectid,
996 u64 owner, u64 offset)
997{
998 struct btrfs_key key;
999 struct btrfs_extent_data_ref *ref;
1000 struct extent_buffer *leaf;
1001 u32 nritems;
1002 int ret;
1003 int recow;
1004 int err = -ENOENT;
1005
1006 key.objectid = bytenr;
1007 if (parent) {
1008 key.type = BTRFS_SHARED_DATA_REF_KEY;
1009 key.offset = parent;
1010 } else {
1011 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1012 key.offset = hash_extent_data_ref(root_objectid,
1013 owner, offset);
1014 }
1015again:
1016 recow = 0;
1017 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1018 if (ret < 0) {
1019 err = ret;
1020 goto fail;
1021 }
1022
1023 if (parent) {
1024 if (!ret)
1025 return 0;
1026#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1027 key.type = BTRFS_EXTENT_REF_V0_KEY;
1028 btrfs_release_path(root, path);
1029 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1030 if (ret < 0) {
1031 err = ret;
1032 goto fail;
1033 }
1034 if (!ret)
1035 return 0;
1036#endif
1037 goto fail;
1038 }
1039
1040 leaf = path->nodes[0];
1041 nritems = btrfs_header_nritems(leaf);
1042 while (1) {
1043 if (path->slots[0] >= nritems) {
1044 ret = btrfs_next_leaf(root, path);
1045 if (ret < 0)
1046 err = ret;
1047 if (ret)
1048 goto fail;
1049
1050 leaf = path->nodes[0];
1051 nritems = btrfs_header_nritems(leaf);
1052 recow = 1;
1053 }
1054
1055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1056 if (key.objectid != bytenr ||
1057 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1058 goto fail;
1059
1060 ref = btrfs_item_ptr(leaf, path->slots[0],
1061 struct btrfs_extent_data_ref);
1062
1063 if (match_extent_data_ref(leaf, ref, root_objectid,
1064 owner, offset)) {
1065 if (recow) {
1066 btrfs_release_path(root, path);
1067 goto again;
1068 }
1069 err = 0;
1070 break;
1071 }
1072 path->slots[0]++;
1073 }
1074fail:
1075 return err;
1076}
1077
1078static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1079 struct btrfs_root *root,
1080 struct btrfs_path *path,
1081 u64 bytenr, u64 parent,
1082 u64 root_objectid, u64 owner,
1083 u64 offset, int refs_to_add)
1084{
1085 struct btrfs_key key;
1086 struct extent_buffer *leaf;
1087 u32 size;
1088 u32 num_refs;
1089 int ret;
1090
1091 key.objectid = bytenr;
1092 if (parent) {
1093 key.type = BTRFS_SHARED_DATA_REF_KEY;
1094 key.offset = parent;
1095 size = sizeof(struct btrfs_shared_data_ref);
1096 } else {
1097 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1098 key.offset = hash_extent_data_ref(root_objectid,
1099 owner, offset);
1100 size = sizeof(struct btrfs_extent_data_ref);
1101 }
1102
1103 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1104 if (ret && ret != -EEXIST)
1105 goto fail;
1106
1107 leaf = path->nodes[0];
1108 if (parent) {
1109 struct btrfs_shared_data_ref *ref;
1110 ref = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_shared_data_ref);
1112 if (ret == 0) {
1113 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1114 } else {
1115 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1116 num_refs += refs_to_add;
1117 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1118 }
1119 } else {
1120 struct btrfs_extent_data_ref *ref;
1121 while (ret == -EEXIST) {
1122 ref = btrfs_item_ptr(leaf, path->slots[0],
1123 struct btrfs_extent_data_ref);
1124 if (match_extent_data_ref(leaf, ref, root_objectid,
1125 owner, offset))
1126 break;
1127 btrfs_release_path(root, path);
1128 key.offset++;
1129 ret = btrfs_insert_empty_item(trans, root, path, &key,
1130 size);
1131 if (ret && ret != -EEXIST)
1132 goto fail;
1133
1134 leaf = path->nodes[0];
1135 }
1136 ref = btrfs_item_ptr(leaf, path->slots[0],
1137 struct btrfs_extent_data_ref);
1138 if (ret == 0) {
1139 btrfs_set_extent_data_ref_root(leaf, ref,
1140 root_objectid);
1141 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1142 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1143 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1144 } else {
1145 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1146 num_refs += refs_to_add;
1147 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1148 }
1149 }
1150 btrfs_mark_buffer_dirty(leaf);
1151 ret = 0;
1152fail:
1153 btrfs_release_path(root, path);
1154 return ret;
1155}
1156
1157static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root,
1159 struct btrfs_path *path,
1160 int refs_to_drop)
1161{
1162 struct btrfs_key key;
1163 struct btrfs_extent_data_ref *ref1 = NULL;
1164 struct btrfs_shared_data_ref *ref2 = NULL;
1165 struct extent_buffer *leaf;
1166 u32 num_refs = 0;
1167 int ret = 0;
1168
1169 leaf = path->nodes[0];
1170 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1171
1172 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1173 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1174 struct btrfs_extent_data_ref);
1175 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1176 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1177 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1178 struct btrfs_shared_data_ref);
1179 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1180#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1181 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1182 struct btrfs_extent_ref_v0 *ref0;
1183 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1184 struct btrfs_extent_ref_v0);
1185 num_refs = btrfs_ref_count_v0(leaf, ref0);
1186#endif
1187 } else {
1188 BUG();
1189 }
1190
1191 BUG_ON(num_refs < refs_to_drop);
1192 num_refs -= refs_to_drop;
1193
1194 if (num_refs == 0) {
1195 ret = btrfs_del_item(trans, root, path);
1196 } else {
1197 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1198 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1199 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1200 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1201#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 else {
1203 struct btrfs_extent_ref_v0 *ref0;
1204 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1205 struct btrfs_extent_ref_v0);
1206 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1207 }
1208#endif
1209 btrfs_mark_buffer_dirty(leaf);
1210 }
1211 return ret;
1212}
1213
1214static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1215 struct btrfs_path *path,
1216 struct btrfs_extent_inline_ref *iref)
1217{
1218 struct btrfs_key key;
1219 struct extent_buffer *leaf;
1220 struct btrfs_extent_data_ref *ref1;
1221 struct btrfs_shared_data_ref *ref2;
1222 u32 num_refs = 0;
1223
1224 leaf = path->nodes[0];
1225 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1226 if (iref) {
1227 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1228 BTRFS_EXTENT_DATA_REF_KEY) {
1229 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1230 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1231 } else {
1232 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1233 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1234 }
1235 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1236 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_extent_data_ref);
1238 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1239 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1240 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_shared_data_ref);
1242 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1243#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1244 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1245 struct btrfs_extent_ref_v0 *ref0;
1246 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1247 struct btrfs_extent_ref_v0);
1248 num_refs = btrfs_ref_count_v0(leaf, ref0);
1249#endif
1250 } else {
1251 WARN_ON(1);
1252 }
1253 return num_refs;
1254}
1255
1256static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1257 struct btrfs_root *root,
1258 struct btrfs_path *path,
1259 u64 bytenr, u64 parent,
1260 u64 root_objectid)
1261{
1262 struct btrfs_key key;
1263 int ret;
1264
1265 key.objectid = bytenr;
1266 if (parent) {
1267 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1268 key.offset = parent;
1269 } else {
1270 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1271 key.offset = root_objectid;
1272 }
1273
1274 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1275 if (ret > 0)
1276 ret = -ENOENT;
1277#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1278 if (ret == -ENOENT && parent) {
1279 btrfs_release_path(root, path);
1280 key.type = BTRFS_EXTENT_REF_V0_KEY;
1281 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1282 if (ret > 0)
1283 ret = -ENOENT;
1284 }
1285#endif
1286 return ret;
1287}
1288
1289static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1290 struct btrfs_root *root,
1291 struct btrfs_path *path,
1292 u64 bytenr, u64 parent,
1293 u64 root_objectid)
1294{
1295 struct btrfs_key key;
1296 int ret;
1297
1298 key.objectid = bytenr;
1299 if (parent) {
1300 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1301 key.offset = parent;
1302 } else {
1303 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1304 key.offset = root_objectid;
1305 }
1306
1307 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1308 btrfs_release_path(root, path);
1309 return ret;
1310}
1311
1312static inline int extent_ref_type(u64 parent, u64 owner)
1313{
1314 int type;
1315 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1316 if (parent > 0)
1317 type = BTRFS_SHARED_BLOCK_REF_KEY;
1318 else
1319 type = BTRFS_TREE_BLOCK_REF_KEY;
1320 } else {
1321 if (parent > 0)
1322 type = BTRFS_SHARED_DATA_REF_KEY;
1323 else
1324 type = BTRFS_EXTENT_DATA_REF_KEY;
1325 }
1326 return type;
1327}
1328
1329static int find_next_key(struct btrfs_path *path, int level,
1330 struct btrfs_key *key)
1331
1332{
1333 for (; level < BTRFS_MAX_LEVEL; level++) {
1334 if (!path->nodes[level])
1335 break;
1336 if (path->slots[level] + 1 >=
1337 btrfs_header_nritems(path->nodes[level]))
1338 continue;
1339 if (level == 0)
1340 btrfs_item_key_to_cpu(path->nodes[level], key,
1341 path->slots[level] + 1);
1342 else
1343 btrfs_node_key_to_cpu(path->nodes[level], key,
1344 path->slots[level] + 1);
1345 return 0;
1346 }
1347 return 1;
1348}
1349
1350/*
1351 * look for inline back ref. if back ref is found, *ref_ret is set
1352 * to the address of inline back ref, and 0 is returned.
1353 *
1354 * if back ref isn't found, *ref_ret is set to the address where it
1355 * should be inserted, and -ENOENT is returned.
1356 *
1357 * if insert is true and there are too many inline back refs, the path
1358 * points to the extent item, and -EAGAIN is returned.
1359 *
1360 * NOTE: inline back refs are ordered in the same way that back ref
1361 * items in the tree are ordered.
1362 */
1363static noinline_for_stack
1364int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1365 struct btrfs_root *root,
1366 struct btrfs_path *path,
1367 struct btrfs_extent_inline_ref **ref_ret,
1368 u64 bytenr, u64 num_bytes,
1369 u64 parent, u64 root_objectid,
1370 u64 owner, u64 offset, int insert)
1371{
1372 struct btrfs_key key;
1373 struct extent_buffer *leaf;
1374 struct btrfs_extent_item *ei;
1375 struct btrfs_extent_inline_ref *iref;
1376 u64 flags;
1377 u64 item_size;
1378 unsigned long ptr;
1379 unsigned long end;
1380 int extra_size;
1381 int type;
1382 int want;
1383 int ret;
1384 int err = 0;
1385
1386 key.objectid = bytenr;
1387 key.type = BTRFS_EXTENT_ITEM_KEY;
1388 key.offset = num_bytes;
1389
1390 want = extent_ref_type(parent, owner);
1391 if (insert) {
1392 extra_size = btrfs_extent_inline_ref_size(want);
1393 path->keep_locks = 1;
1394 } else
1395 extra_size = -1;
1396 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1397 if (ret < 0) {
1398 err = ret;
1399 goto out;
1400 }
1401 BUG_ON(ret);
1402
1403 leaf = path->nodes[0];
1404 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1405#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1406 if (item_size < sizeof(*ei)) {
1407 if (!insert) {
1408 err = -ENOENT;
1409 goto out;
1410 }
1411 ret = convert_extent_item_v0(trans, root, path, owner,
1412 extra_size);
1413 if (ret < 0) {
1414 err = ret;
1415 goto out;
1416 }
1417 leaf = path->nodes[0];
1418 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1419 }
1420#endif
1421 BUG_ON(item_size < sizeof(*ei));
1422
1423 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1424 flags = btrfs_extent_flags(leaf, ei);
1425
1426 ptr = (unsigned long)(ei + 1);
1427 end = (unsigned long)ei + item_size;
1428
1429 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1430 ptr += sizeof(struct btrfs_tree_block_info);
1431 BUG_ON(ptr > end);
1432 } else {
1433 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1434 }
1435
1436 err = -ENOENT;
1437 while (1) {
1438 if (ptr >= end) {
1439 WARN_ON(ptr > end);
1440 break;
1441 }
1442 iref = (struct btrfs_extent_inline_ref *)ptr;
1443 type = btrfs_extent_inline_ref_type(leaf, iref);
1444 if (want < type)
1445 break;
1446 if (want > type) {
1447 ptr += btrfs_extent_inline_ref_size(type);
1448 continue;
1449 }
1450
1451 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1452 struct btrfs_extent_data_ref *dref;
1453 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1454 if (match_extent_data_ref(leaf, dref, root_objectid,
1455 owner, offset)) {
1456 err = 0;
1457 break;
1458 }
1459 if (hash_extent_data_ref_item(leaf, dref) <
1460 hash_extent_data_ref(root_objectid, owner, offset))
1461 break;
1462 } else {
1463 u64 ref_offset;
1464 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1465 if (parent > 0) {
1466 if (parent == ref_offset) {
1467 err = 0;
1468 break;
1469 }
1470 if (ref_offset < parent)
1471 break;
1472 } else {
1473 if (root_objectid == ref_offset) {
1474 err = 0;
1475 break;
1476 }
1477 if (ref_offset < root_objectid)
1478 break;
1479 }
1480 }
1481 ptr += btrfs_extent_inline_ref_size(type);
1482 }
1483 if (err == -ENOENT && insert) {
1484 if (item_size + extra_size >=
1485 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1486 err = -EAGAIN;
1487 goto out;
1488 }
1489 /*
1490 * To add new inline back ref, we have to make sure
1491 * there is no corresponding back ref item.
1492 * For simplicity, we just do not add new inline back
1493 * ref if there is any kind of item for this block
1494 */
1495 if (find_next_key(path, 0, &key) == 0 &&
1496 key.objectid == bytenr &&
1497 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1498 err = -EAGAIN;
1499 goto out;
1500 }
1501 }
1502 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1503out:
1504 if (insert) {
1505 path->keep_locks = 0;
1506 btrfs_unlock_up_safe(path, 1);
1507 }
1508 return err;
1509}
1510
1511/*
1512 * helper to add new inline back ref
1513 */
1514static noinline_for_stack
1515int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1516 struct btrfs_root *root,
1517 struct btrfs_path *path,
1518 struct btrfs_extent_inline_ref *iref,
1519 u64 parent, u64 root_objectid,
1520 u64 owner, u64 offset, int refs_to_add,
1521 struct btrfs_delayed_extent_op *extent_op)
1522{
1523 struct extent_buffer *leaf;
1524 struct btrfs_extent_item *ei;
1525 unsigned long ptr;
1526 unsigned long end;
1527 unsigned long item_offset;
1528 u64 refs;
1529 int size;
1530 int type;
1531 int ret;
1532
1533 leaf = path->nodes[0];
1534 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1535 item_offset = (unsigned long)iref - (unsigned long)ei;
1536
1537 type = extent_ref_type(parent, owner);
1538 size = btrfs_extent_inline_ref_size(type);
1539
1540 ret = btrfs_extend_item(trans, root, path, size);
1541 BUG_ON(ret);
1542
1543 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1544 refs = btrfs_extent_refs(leaf, ei);
1545 refs += refs_to_add;
1546 btrfs_set_extent_refs(leaf, ei, refs);
1547 if (extent_op)
1548 __run_delayed_extent_op(extent_op, leaf, ei);
1549
1550 ptr = (unsigned long)ei + item_offset;
1551 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1552 if (ptr < end - size)
1553 memmove_extent_buffer(leaf, ptr + size, ptr,
1554 end - size - ptr);
1555
1556 iref = (struct btrfs_extent_inline_ref *)ptr;
1557 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1558 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1559 struct btrfs_extent_data_ref *dref;
1560 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1561 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1562 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1563 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1564 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1565 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1566 struct btrfs_shared_data_ref *sref;
1567 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1568 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1569 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1570 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1571 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1572 } else {
1573 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1574 }
1575 btrfs_mark_buffer_dirty(leaf);
1576 return 0;
1577}
1578
1579static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1580 struct btrfs_root *root,
1581 struct btrfs_path *path,
1582 struct btrfs_extent_inline_ref **ref_ret,
1583 u64 bytenr, u64 num_bytes, u64 parent,
1584 u64 root_objectid, u64 owner, u64 offset)
1585{
1586 int ret;
1587
1588 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1589 bytenr, num_bytes, parent,
1590 root_objectid, owner, offset, 0);
1591 if (ret != -ENOENT)
1592 return ret;
1593
1594 btrfs_release_path(root, path);
1595 *ref_ret = NULL;
1596
1597 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1598 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1599 root_objectid);
1600 } else {
1601 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1602 root_objectid, owner, offset);
1603 }
1604 return ret;
1605}
1606
1607/*
1608 * helper to update/remove inline back ref
1609 */
1610static noinline_for_stack
1611int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1612 struct btrfs_root *root,
1613 struct btrfs_path *path,
1614 struct btrfs_extent_inline_ref *iref,
1615 int refs_to_mod,
1616 struct btrfs_delayed_extent_op *extent_op)
1617{
1618 struct extent_buffer *leaf;
1619 struct btrfs_extent_item *ei;
1620 struct btrfs_extent_data_ref *dref = NULL;
1621 struct btrfs_shared_data_ref *sref = NULL;
1622 unsigned long ptr;
1623 unsigned long end;
1624 u32 item_size;
1625 int size;
1626 int type;
1627 int ret;
1628 u64 refs;
1629
1630 leaf = path->nodes[0];
1631 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1632 refs = btrfs_extent_refs(leaf, ei);
1633 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1634 refs += refs_to_mod;
1635 btrfs_set_extent_refs(leaf, ei, refs);
1636 if (extent_op)
1637 __run_delayed_extent_op(extent_op, leaf, ei);
1638
1639 type = btrfs_extent_inline_ref_type(leaf, iref);
1640
1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1642 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1643 refs = btrfs_extent_data_ref_count(leaf, dref);
1644 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1645 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1646 refs = btrfs_shared_data_ref_count(leaf, sref);
1647 } else {
1648 refs = 1;
1649 BUG_ON(refs_to_mod != -1);
1650 }
1651
1652 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1653 refs += refs_to_mod;
1654
1655 if (refs > 0) {
1656 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1657 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1658 else
1659 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1660 } else {
1661 size = btrfs_extent_inline_ref_size(type);
1662 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1663 ptr = (unsigned long)iref;
1664 end = (unsigned long)ei + item_size;
1665 if (ptr + size < end)
1666 memmove_extent_buffer(leaf, ptr, ptr + size,
1667 end - ptr - size);
1668 item_size -= size;
1669 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1670 BUG_ON(ret);
1671 }
1672 btrfs_mark_buffer_dirty(leaf);
1673 return 0;
1674}
1675
1676static noinline_for_stack
1677int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1678 struct btrfs_root *root,
1679 struct btrfs_path *path,
1680 u64 bytenr, u64 num_bytes, u64 parent,
1681 u64 root_objectid, u64 owner,
1682 u64 offset, int refs_to_add,
1683 struct btrfs_delayed_extent_op *extent_op)
1684{
1685 struct btrfs_extent_inline_ref *iref;
1686 int ret;
1687
1688 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1689 bytenr, num_bytes, parent,
1690 root_objectid, owner, offset, 1);
1691 if (ret == 0) {
1692 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1693 ret = update_inline_extent_backref(trans, root, path, iref,
1694 refs_to_add, extent_op);
1695 } else if (ret == -ENOENT) {
1696 ret = setup_inline_extent_backref(trans, root, path, iref,
1697 parent, root_objectid,
1698 owner, offset, refs_to_add,
1699 extent_op);
1700 }
1701 return ret;
1702}
1703
1704static int insert_extent_backref(struct btrfs_trans_handle *trans,
1705 struct btrfs_root *root,
1706 struct btrfs_path *path,
1707 u64 bytenr, u64 parent, u64 root_objectid,
1708 u64 owner, u64 offset, int refs_to_add)
1709{
1710 int ret;
1711 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1712 BUG_ON(refs_to_add != 1);
1713 ret = insert_tree_block_ref(trans, root, path, bytenr,
1714 parent, root_objectid);
1715 } else {
1716 ret = insert_extent_data_ref(trans, root, path, bytenr,
1717 parent, root_objectid,
1718 owner, offset, refs_to_add);
1719 }
1720 return ret;
1721}
1722
1723static int remove_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref *iref,
1727 int refs_to_drop, int is_data)
1728{
1729 int ret;
1730
1731 BUG_ON(!is_data && refs_to_drop != 1);
1732 if (iref) {
1733 ret = update_inline_extent_backref(trans, root, path, iref,
1734 -refs_to_drop, NULL);
1735 } else if (is_data) {
1736 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1737 } else {
1738 ret = btrfs_del_item(trans, root, path);
1739 }
1740 return ret;
1741}
1742
1743static void btrfs_issue_discard(struct block_device *bdev,
1744 u64 start, u64 len)
1745{
1746 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, 0);
1747}
1748
1749static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1750 u64 num_bytes)
1751{
1752 int ret;
1753 u64 map_length = num_bytes;
1754 struct btrfs_multi_bio *multi = NULL;
1755
1756 if (!btrfs_test_opt(root, DISCARD))
1757 return 0;
1758
1759 /* Tell the block device(s) that the sectors can be discarded */
1760 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1761 bytenr, &map_length, &multi, 0);
1762 if (!ret) {
1763 struct btrfs_bio_stripe *stripe = multi->stripes;
1764 int i;
1765
1766 if (map_length > num_bytes)
1767 map_length = num_bytes;
1768
1769 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1770 btrfs_issue_discard(stripe->dev->bdev,
1771 stripe->physical,
1772 map_length);
1773 }
1774 kfree(multi);
1775 }
1776
1777 return ret;
1778}
1779
1780int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1781 struct btrfs_root *root,
1782 u64 bytenr, u64 num_bytes, u64 parent,
1783 u64 root_objectid, u64 owner, u64 offset)
1784{
1785 int ret;
1786 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1787 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1788
1789 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1790 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1791 parent, root_objectid, (int)owner,
1792 BTRFS_ADD_DELAYED_REF, NULL);
1793 } else {
1794 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1795 parent, root_objectid, owner, offset,
1796 BTRFS_ADD_DELAYED_REF, NULL);
1797 }
1798 return ret;
1799}
1800
1801static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1802 struct btrfs_root *root,
1803 u64 bytenr, u64 num_bytes,
1804 u64 parent, u64 root_objectid,
1805 u64 owner, u64 offset, int refs_to_add,
1806 struct btrfs_delayed_extent_op *extent_op)
1807{
1808 struct btrfs_path *path;
1809 struct extent_buffer *leaf;
1810 struct btrfs_extent_item *item;
1811 u64 refs;
1812 int ret;
1813 int err = 0;
1814
1815 path = btrfs_alloc_path();
1816 if (!path)
1817 return -ENOMEM;
1818
1819 path->reada = 1;
1820 path->leave_spinning = 1;
1821 /* this will setup the path even if it fails to insert the back ref */
1822 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1823 path, bytenr, num_bytes, parent,
1824 root_objectid, owner, offset,
1825 refs_to_add, extent_op);
1826 if (ret == 0)
1827 goto out;
1828
1829 if (ret != -EAGAIN) {
1830 err = ret;
1831 goto out;
1832 }
1833
1834 leaf = path->nodes[0];
1835 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1836 refs = btrfs_extent_refs(leaf, item);
1837 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1838 if (extent_op)
1839 __run_delayed_extent_op(extent_op, leaf, item);
1840
1841 btrfs_mark_buffer_dirty(leaf);
1842 btrfs_release_path(root->fs_info->extent_root, path);
1843
1844 path->reada = 1;
1845 path->leave_spinning = 1;
1846
1847 /* now insert the actual backref */
1848 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1849 path, bytenr, parent, root_objectid,
1850 owner, offset, refs_to_add);
1851 BUG_ON(ret);
1852out:
1853 btrfs_free_path(path);
1854 return err;
1855}
1856
1857static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1858 struct btrfs_root *root,
1859 struct btrfs_delayed_ref_node *node,
1860 struct btrfs_delayed_extent_op *extent_op,
1861 int insert_reserved)
1862{
1863 int ret = 0;
1864 struct btrfs_delayed_data_ref *ref;
1865 struct btrfs_key ins;
1866 u64 parent = 0;
1867 u64 ref_root = 0;
1868 u64 flags = 0;
1869
1870 ins.objectid = node->bytenr;
1871 ins.offset = node->num_bytes;
1872 ins.type = BTRFS_EXTENT_ITEM_KEY;
1873
1874 ref = btrfs_delayed_node_to_data_ref(node);
1875 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1876 parent = ref->parent;
1877 else
1878 ref_root = ref->root;
1879
1880 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1881 if (extent_op) {
1882 BUG_ON(extent_op->update_key);
1883 flags |= extent_op->flags_to_set;
1884 }
1885 ret = alloc_reserved_file_extent(trans, root,
1886 parent, ref_root, flags,
1887 ref->objectid, ref->offset,
1888 &ins, node->ref_mod);
1889 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1890 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1891 node->num_bytes, parent,
1892 ref_root, ref->objectid,
1893 ref->offset, node->ref_mod,
1894 extent_op);
1895 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1896 ret = __btrfs_free_extent(trans, root, node->bytenr,
1897 node->num_bytes, parent,
1898 ref_root, ref->objectid,
1899 ref->offset, node->ref_mod,
1900 extent_op);
1901 } else {
1902 BUG();
1903 }
1904 return ret;
1905}
1906
1907static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1908 struct extent_buffer *leaf,
1909 struct btrfs_extent_item *ei)
1910{
1911 u64 flags = btrfs_extent_flags(leaf, ei);
1912 if (extent_op->update_flags) {
1913 flags |= extent_op->flags_to_set;
1914 btrfs_set_extent_flags(leaf, ei, flags);
1915 }
1916
1917 if (extent_op->update_key) {
1918 struct btrfs_tree_block_info *bi;
1919 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1920 bi = (struct btrfs_tree_block_info *)(ei + 1);
1921 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1922 }
1923}
1924
1925static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1926 struct btrfs_root *root,
1927 struct btrfs_delayed_ref_node *node,
1928 struct btrfs_delayed_extent_op *extent_op)
1929{
1930 struct btrfs_key key;
1931 struct btrfs_path *path;
1932 struct btrfs_extent_item *ei;
1933 struct extent_buffer *leaf;
1934 u32 item_size;
1935 int ret;
1936 int err = 0;
1937
1938 path = btrfs_alloc_path();
1939 if (!path)
1940 return -ENOMEM;
1941
1942 key.objectid = node->bytenr;
1943 key.type = BTRFS_EXTENT_ITEM_KEY;
1944 key.offset = node->num_bytes;
1945
1946 path->reada = 1;
1947 path->leave_spinning = 1;
1948 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1949 path, 0, 1);
1950 if (ret < 0) {
1951 err = ret;
1952 goto out;
1953 }
1954 if (ret > 0) {
1955 err = -EIO;
1956 goto out;
1957 }
1958
1959 leaf = path->nodes[0];
1960 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1961#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1962 if (item_size < sizeof(*ei)) {
1963 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1964 path, (u64)-1, 0);
1965 if (ret < 0) {
1966 err = ret;
1967 goto out;
1968 }
1969 leaf = path->nodes[0];
1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 }
1972#endif
1973 BUG_ON(item_size < sizeof(*ei));
1974 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1975 __run_delayed_extent_op(extent_op, leaf, ei);
1976
1977 btrfs_mark_buffer_dirty(leaf);
1978out:
1979 btrfs_free_path(path);
1980 return err;
1981}
1982
1983static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1984 struct btrfs_root *root,
1985 struct btrfs_delayed_ref_node *node,
1986 struct btrfs_delayed_extent_op *extent_op,
1987 int insert_reserved)
1988{
1989 int ret = 0;
1990 struct btrfs_delayed_tree_ref *ref;
1991 struct btrfs_key ins;
1992 u64 parent = 0;
1993 u64 ref_root = 0;
1994
1995 ins.objectid = node->bytenr;
1996 ins.offset = node->num_bytes;
1997 ins.type = BTRFS_EXTENT_ITEM_KEY;
1998
1999 ref = btrfs_delayed_node_to_tree_ref(node);
2000 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2001 parent = ref->parent;
2002 else
2003 ref_root = ref->root;
2004
2005 BUG_ON(node->ref_mod != 1);
2006 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2007 BUG_ON(!extent_op || !extent_op->update_flags ||
2008 !extent_op->update_key);
2009 ret = alloc_reserved_tree_block(trans, root,
2010 parent, ref_root,
2011 extent_op->flags_to_set,
2012 &extent_op->key,
2013 ref->level, &ins);
2014 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2015 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2016 node->num_bytes, parent, ref_root,
2017 ref->level, 0, 1, extent_op);
2018 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2019 ret = __btrfs_free_extent(trans, root, node->bytenr,
2020 node->num_bytes, parent, ref_root,
2021 ref->level, 0, 1, extent_op);
2022 } else {
2023 BUG();
2024 }
2025 return ret;
2026}
2027
2028/* helper function to actually process a single delayed ref entry */
2029static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2030 struct btrfs_root *root,
2031 struct btrfs_delayed_ref_node *node,
2032 struct btrfs_delayed_extent_op *extent_op,
2033 int insert_reserved)
2034{
2035 int ret;
2036 if (btrfs_delayed_ref_is_head(node)) {
2037 struct btrfs_delayed_ref_head *head;
2038 /*
2039 * we've hit the end of the chain and we were supposed
2040 * to insert this extent into the tree. But, it got
2041 * deleted before we ever needed to insert it, so all
2042 * we have to do is clean up the accounting
2043 */
2044 BUG_ON(extent_op);
2045 head = btrfs_delayed_node_to_head(node);
2046 if (insert_reserved) {
2047 btrfs_pin_extent(root, node->bytenr,
2048 node->num_bytes, 1);
2049 if (head->is_data) {
2050 ret = btrfs_del_csums(trans, root,
2051 node->bytenr,
2052 node->num_bytes);
2053 BUG_ON(ret);
2054 }
2055 }
2056 mutex_unlock(&head->mutex);
2057 return 0;
2058 }
2059
2060 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2061 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2062 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2063 insert_reserved);
2064 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2065 node->type == BTRFS_SHARED_DATA_REF_KEY)
2066 ret = run_delayed_data_ref(trans, root, node, extent_op,
2067 insert_reserved);
2068 else
2069 BUG();
2070 return ret;
2071}
2072
2073static noinline struct btrfs_delayed_ref_node *
2074select_delayed_ref(struct btrfs_delayed_ref_head *head)
2075{
2076 struct rb_node *node;
2077 struct btrfs_delayed_ref_node *ref;
2078 int action = BTRFS_ADD_DELAYED_REF;
2079again:
2080 /*
2081 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2082 * this prevents ref count from going down to zero when
2083 * there still are pending delayed ref.
2084 */
2085 node = rb_prev(&head->node.rb_node);
2086 while (1) {
2087 if (!node)
2088 break;
2089 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2090 rb_node);
2091 if (ref->bytenr != head->node.bytenr)
2092 break;
2093 if (ref->action == action)
2094 return ref;
2095 node = rb_prev(node);
2096 }
2097 if (action == BTRFS_ADD_DELAYED_REF) {
2098 action = BTRFS_DROP_DELAYED_REF;
2099 goto again;
2100 }
2101 return NULL;
2102}
2103
2104static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2105 struct btrfs_root *root,
2106 struct list_head *cluster)
2107{
2108 struct btrfs_delayed_ref_root *delayed_refs;
2109 struct btrfs_delayed_ref_node *ref;
2110 struct btrfs_delayed_ref_head *locked_ref = NULL;
2111 struct btrfs_delayed_extent_op *extent_op;
2112 int ret;
2113 int count = 0;
2114 int must_insert_reserved = 0;
2115
2116 delayed_refs = &trans->transaction->delayed_refs;
2117 while (1) {
2118 if (!locked_ref) {
2119 /* pick a new head ref from the cluster list */
2120 if (list_empty(cluster))
2121 break;
2122
2123 locked_ref = list_entry(cluster->next,
2124 struct btrfs_delayed_ref_head, cluster);
2125
2126 /* grab the lock that says we are going to process
2127 * all the refs for this head */
2128 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2129
2130 /*
2131 * we may have dropped the spin lock to get the head
2132 * mutex lock, and that might have given someone else
2133 * time to free the head. If that's true, it has been
2134 * removed from our list and we can move on.
2135 */
2136 if (ret == -EAGAIN) {
2137 locked_ref = NULL;
2138 count++;
2139 continue;
2140 }
2141 }
2142
2143 /*
2144 * record the must insert reserved flag before we
2145 * drop the spin lock.
2146 */
2147 must_insert_reserved = locked_ref->must_insert_reserved;
2148 locked_ref->must_insert_reserved = 0;
2149
2150 extent_op = locked_ref->extent_op;
2151 locked_ref->extent_op = NULL;
2152
2153 /*
2154 * locked_ref is the head node, so we have to go one
2155 * node back for any delayed ref updates
2156 */
2157 ref = select_delayed_ref(locked_ref);
2158 if (!ref) {
2159 /* All delayed refs have been processed, Go ahead
2160 * and send the head node to run_one_delayed_ref,
2161 * so that any accounting fixes can happen
2162 */
2163 ref = &locked_ref->node;
2164
2165 if (extent_op && must_insert_reserved) {
2166 kfree(extent_op);
2167 extent_op = NULL;
2168 }
2169
2170 if (extent_op) {
2171 spin_unlock(&delayed_refs->lock);
2172
2173 ret = run_delayed_extent_op(trans, root,
2174 ref, extent_op);
2175 BUG_ON(ret);
2176 kfree(extent_op);
2177
2178 cond_resched();
2179 spin_lock(&delayed_refs->lock);
2180 continue;
2181 }
2182
2183 list_del_init(&locked_ref->cluster);
2184 locked_ref = NULL;
2185 }
2186
2187 ref->in_tree = 0;
2188 rb_erase(&ref->rb_node, &delayed_refs->root);
2189 delayed_refs->num_entries--;
2190
2191 spin_unlock(&delayed_refs->lock);
2192
2193 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2194 must_insert_reserved);
2195 BUG_ON(ret);
2196
2197 btrfs_put_delayed_ref(ref);
2198 kfree(extent_op);
2199 count++;
2200
2201 cond_resched();
2202 spin_lock(&delayed_refs->lock);
2203 }
2204 return count;
2205}
2206
2207/*
2208 * this starts processing the delayed reference count updates and
2209 * extent insertions we have queued up so far. count can be
2210 * 0, which means to process everything in the tree at the start
2211 * of the run (but not newly added entries), or it can be some target
2212 * number you'd like to process.
2213 */
2214int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root, unsigned long count)
2216{
2217 struct rb_node *node;
2218 struct btrfs_delayed_ref_root *delayed_refs;
2219 struct btrfs_delayed_ref_node *ref;
2220 struct list_head cluster;
2221 int ret;
2222 int run_all = count == (unsigned long)-1;
2223 int run_most = 0;
2224
2225 if (root == root->fs_info->extent_root)
2226 root = root->fs_info->tree_root;
2227
2228 delayed_refs = &trans->transaction->delayed_refs;
2229 INIT_LIST_HEAD(&cluster);
2230again:
2231 spin_lock(&delayed_refs->lock);
2232 if (count == 0) {
2233 count = delayed_refs->num_entries * 2;
2234 run_most = 1;
2235 }
2236 while (1) {
2237 if (!(run_all || run_most) &&
2238 delayed_refs->num_heads_ready < 64)
2239 break;
2240
2241 /*
2242 * go find something we can process in the rbtree. We start at
2243 * the beginning of the tree, and then build a cluster
2244 * of refs to process starting at the first one we are able to
2245 * lock
2246 */
2247 ret = btrfs_find_ref_cluster(trans, &cluster,
2248 delayed_refs->run_delayed_start);
2249 if (ret)
2250 break;
2251
2252 ret = run_clustered_refs(trans, root, &cluster);
2253 BUG_ON(ret < 0);
2254
2255 count -= min_t(unsigned long, ret, count);
2256
2257 if (count == 0)
2258 break;
2259 }
2260
2261 if (run_all) {
2262 node = rb_first(&delayed_refs->root);
2263 if (!node)
2264 goto out;
2265 count = (unsigned long)-1;
2266
2267 while (node) {
2268 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2269 rb_node);
2270 if (btrfs_delayed_ref_is_head(ref)) {
2271 struct btrfs_delayed_ref_head *head;
2272
2273 head = btrfs_delayed_node_to_head(ref);
2274 atomic_inc(&ref->refs);
2275
2276 spin_unlock(&delayed_refs->lock);
2277 mutex_lock(&head->mutex);
2278 mutex_unlock(&head->mutex);
2279
2280 btrfs_put_delayed_ref(ref);
2281 cond_resched();
2282 goto again;
2283 }
2284 node = rb_next(node);
2285 }
2286 spin_unlock(&delayed_refs->lock);
2287 schedule_timeout(1);
2288 goto again;
2289 }
2290out:
2291 spin_unlock(&delayed_refs->lock);
2292 return 0;
2293}
2294
2295int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2296 struct btrfs_root *root,
2297 u64 bytenr, u64 num_bytes, u64 flags,
2298 int is_data)
2299{
2300 struct btrfs_delayed_extent_op *extent_op;
2301 int ret;
2302
2303 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2304 if (!extent_op)
2305 return -ENOMEM;
2306
2307 extent_op->flags_to_set = flags;
2308 extent_op->update_flags = 1;
2309 extent_op->update_key = 0;
2310 extent_op->is_data = is_data ? 1 : 0;
2311
2312 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2313 if (ret)
2314 kfree(extent_op);
2315 return ret;
2316}
2317
2318static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2319 struct btrfs_root *root,
2320 struct btrfs_path *path,
2321 u64 objectid, u64 offset, u64 bytenr)
2322{
2323 struct btrfs_delayed_ref_head *head;
2324 struct btrfs_delayed_ref_node *ref;
2325 struct btrfs_delayed_data_ref *data_ref;
2326 struct btrfs_delayed_ref_root *delayed_refs;
2327 struct rb_node *node;
2328 int ret = 0;
2329
2330 ret = -ENOENT;
2331 delayed_refs = &trans->transaction->delayed_refs;
2332 spin_lock(&delayed_refs->lock);
2333 head = btrfs_find_delayed_ref_head(trans, bytenr);
2334 if (!head)
2335 goto out;
2336
2337 if (!mutex_trylock(&head->mutex)) {
2338 atomic_inc(&head->node.refs);
2339 spin_unlock(&delayed_refs->lock);
2340
2341 btrfs_release_path(root->fs_info->extent_root, path);
2342
2343 mutex_lock(&head->mutex);
2344 mutex_unlock(&head->mutex);
2345 btrfs_put_delayed_ref(&head->node);
2346 return -EAGAIN;
2347 }
2348
2349 node = rb_prev(&head->node.rb_node);
2350 if (!node)
2351 goto out_unlock;
2352
2353 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2354
2355 if (ref->bytenr != bytenr)
2356 goto out_unlock;
2357
2358 ret = 1;
2359 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2360 goto out_unlock;
2361
2362 data_ref = btrfs_delayed_node_to_data_ref(ref);
2363
2364 node = rb_prev(node);
2365 if (node) {
2366 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2367 if (ref->bytenr == bytenr)
2368 goto out_unlock;
2369 }
2370
2371 if (data_ref->root != root->root_key.objectid ||
2372 data_ref->objectid != objectid || data_ref->offset != offset)
2373 goto out_unlock;
2374
2375 ret = 0;
2376out_unlock:
2377 mutex_unlock(&head->mutex);
2378out:
2379 spin_unlock(&delayed_refs->lock);
2380 return ret;
2381}
2382
2383static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2384 struct btrfs_root *root,
2385 struct btrfs_path *path,
2386 u64 objectid, u64 offset, u64 bytenr)
2387{
2388 struct btrfs_root *extent_root = root->fs_info->extent_root;
2389 struct extent_buffer *leaf;
2390 struct btrfs_extent_data_ref *ref;
2391 struct btrfs_extent_inline_ref *iref;
2392 struct btrfs_extent_item *ei;
2393 struct btrfs_key key;
2394 u32 item_size;
2395 int ret;
2396
2397 key.objectid = bytenr;
2398 key.offset = (u64)-1;
2399 key.type = BTRFS_EXTENT_ITEM_KEY;
2400
2401 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2402 if (ret < 0)
2403 goto out;
2404 BUG_ON(ret == 0);
2405
2406 ret = -ENOENT;
2407 if (path->slots[0] == 0)
2408 goto out;
2409
2410 path->slots[0]--;
2411 leaf = path->nodes[0];
2412 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2413
2414 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2415 goto out;
2416
2417 ret = 1;
2418 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2419#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2420 if (item_size < sizeof(*ei)) {
2421 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2422 goto out;
2423 }
2424#endif
2425 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2426
2427 if (item_size != sizeof(*ei) +
2428 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2429 goto out;
2430
2431 if (btrfs_extent_generation(leaf, ei) <=
2432 btrfs_root_last_snapshot(&root->root_item))
2433 goto out;
2434
2435 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2436 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2437 BTRFS_EXTENT_DATA_REF_KEY)
2438 goto out;
2439
2440 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2441 if (btrfs_extent_refs(leaf, ei) !=
2442 btrfs_extent_data_ref_count(leaf, ref) ||
2443 btrfs_extent_data_ref_root(leaf, ref) !=
2444 root->root_key.objectid ||
2445 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2446 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2447 goto out;
2448
2449 ret = 0;
2450out:
2451 return ret;
2452}
2453
2454int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2455 struct btrfs_root *root,
2456 u64 objectid, u64 offset, u64 bytenr)
2457{
2458 struct btrfs_path *path;
2459 int ret;
2460 int ret2;
2461
2462 path = btrfs_alloc_path();
2463 if (!path)
2464 return -ENOENT;
2465
2466 do {
2467 ret = check_committed_ref(trans, root, path, objectid,
2468 offset, bytenr);
2469 if (ret && ret != -ENOENT)
2470 goto out;
2471
2472 ret2 = check_delayed_ref(trans, root, path, objectid,
2473 offset, bytenr);
2474 } while (ret2 == -EAGAIN);
2475
2476 if (ret2 && ret2 != -ENOENT) {
2477 ret = ret2;
2478 goto out;
2479 }
2480
2481 if (ret != -ENOENT || ret2 != -ENOENT)
2482 ret = 0;
2483out:
2484 btrfs_free_path(path);
2485 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2486 WARN_ON(ret > 0);
2487 return ret;
2488}
2489
2490#if 0
2491int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2492 struct extent_buffer *buf, u32 nr_extents)
2493{
2494 struct btrfs_key key;
2495 struct btrfs_file_extent_item *fi;
2496 u64 root_gen;
2497 u32 nritems;
2498 int i;
2499 int level;
2500 int ret = 0;
2501 int shared = 0;
2502
2503 if (!root->ref_cows)
2504 return 0;
2505
2506 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2507 shared = 0;
2508 root_gen = root->root_key.offset;
2509 } else {
2510 shared = 1;
2511 root_gen = trans->transid - 1;
2512 }
2513
2514 level = btrfs_header_level(buf);
2515 nritems = btrfs_header_nritems(buf);
2516
2517 if (level == 0) {
2518 struct btrfs_leaf_ref *ref;
2519 struct btrfs_extent_info *info;
2520
2521 ref = btrfs_alloc_leaf_ref(root, nr_extents);
2522 if (!ref) {
2523 ret = -ENOMEM;
2524 goto out;
2525 }
2526
2527 ref->root_gen = root_gen;
2528 ref->bytenr = buf->start;
2529 ref->owner = btrfs_header_owner(buf);
2530 ref->generation = btrfs_header_generation(buf);
2531 ref->nritems = nr_extents;
2532 info = ref->extents;
2533
2534 for (i = 0; nr_extents > 0 && i < nritems; i++) {
2535 u64 disk_bytenr;
2536 btrfs_item_key_to_cpu(buf, &key, i);
2537 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2538 continue;
2539 fi = btrfs_item_ptr(buf, i,
2540 struct btrfs_file_extent_item);
2541 if (btrfs_file_extent_type(buf, fi) ==
2542 BTRFS_FILE_EXTENT_INLINE)
2543 continue;
2544 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2545 if (disk_bytenr == 0)
2546 continue;
2547
2548 info->bytenr = disk_bytenr;
2549 info->num_bytes =
2550 btrfs_file_extent_disk_num_bytes(buf, fi);
2551 info->objectid = key.objectid;
2552 info->offset = key.offset;
2553 info++;
2554 }
2555
2556 ret = btrfs_add_leaf_ref(root, ref, shared);
2557 if (ret == -EEXIST && shared) {
2558 struct btrfs_leaf_ref *old;
2559 old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2560 BUG_ON(!old);
2561 btrfs_remove_leaf_ref(root, old);
2562 btrfs_free_leaf_ref(root, old);
2563 ret = btrfs_add_leaf_ref(root, ref, shared);
2564 }
2565 WARN_ON(ret);
2566 btrfs_free_leaf_ref(root, ref);
2567 }
2568out:
2569 return ret;
2570}
2571
2572/* when a block goes through cow, we update the reference counts of
2573 * everything that block points to. The internal pointers of the block
2574 * can be in just about any order, and it is likely to have clusters of
2575 * things that are close together and clusters of things that are not.
2576 *
2577 * To help reduce the seeks that come with updating all of these reference
2578 * counts, sort them by byte number before actual updates are done.
2579 *
2580 * struct refsort is used to match byte number to slot in the btree block.
2581 * we sort based on the byte number and then use the slot to actually
2582 * find the item.
2583 *
2584 * struct refsort is smaller than strcut btrfs_item and smaller than
2585 * struct btrfs_key_ptr. Since we're currently limited to the page size
2586 * for a btree block, there's no way for a kmalloc of refsorts for a
2587 * single node to be bigger than a page.
2588 */
2589struct refsort {
2590 u64 bytenr;
2591 u32 slot;
2592};
2593
2594/*
2595 * for passing into sort()
2596 */
2597static int refsort_cmp(const void *a_void, const void *b_void)
2598{
2599 const struct refsort *a = a_void;
2600 const struct refsort *b = b_void;
2601
2602 if (a->bytenr < b->bytenr)
2603 return -1;
2604 if (a->bytenr > b->bytenr)
2605 return 1;
2606 return 0;
2607}
2608#endif
2609
2610static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2611 struct btrfs_root *root,
2612 struct extent_buffer *buf,
2613 int full_backref, int inc)
2614{
2615 u64 bytenr;
2616 u64 num_bytes;
2617 u64 parent;
2618 u64 ref_root;
2619 u32 nritems;
2620 struct btrfs_key key;
2621 struct btrfs_file_extent_item *fi;
2622 int i;
2623 int level;
2624 int ret = 0;
2625 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2626 u64, u64, u64, u64, u64, u64);
2627
2628 ref_root = btrfs_header_owner(buf);
2629 nritems = btrfs_header_nritems(buf);
2630 level = btrfs_header_level(buf);
2631
2632 if (!root->ref_cows && level == 0)
2633 return 0;
2634
2635 if (inc)
2636 process_func = btrfs_inc_extent_ref;
2637 else
2638 process_func = btrfs_free_extent;
2639
2640 if (full_backref)
2641 parent = buf->start;
2642 else
2643 parent = 0;
2644
2645 for (i = 0; i < nritems; i++) {
2646 if (level == 0) {
2647 btrfs_item_key_to_cpu(buf, &key, i);
2648 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2649 continue;
2650 fi = btrfs_item_ptr(buf, i,
2651 struct btrfs_file_extent_item);
2652 if (btrfs_file_extent_type(buf, fi) ==
2653 BTRFS_FILE_EXTENT_INLINE)
2654 continue;
2655 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2656 if (bytenr == 0)
2657 continue;
2658
2659 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2660 key.offset -= btrfs_file_extent_offset(buf, fi);
2661 ret = process_func(trans, root, bytenr, num_bytes,
2662 parent, ref_root, key.objectid,
2663 key.offset);
2664 if (ret)
2665 goto fail;
2666 } else {
2667 bytenr = btrfs_node_blockptr(buf, i);
2668 num_bytes = btrfs_level_size(root, level - 1);
2669 ret = process_func(trans, root, bytenr, num_bytes,
2670 parent, ref_root, level - 1, 0);
2671 if (ret)
2672 goto fail;
2673 }
2674 }
2675 return 0;
2676fail:
2677 BUG();
2678 return ret;
2679}
2680
2681int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2682 struct extent_buffer *buf, int full_backref)
2683{
2684 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2685}
2686
2687int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2688 struct extent_buffer *buf, int full_backref)
2689{
2690 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2691}
2692
2693static int write_one_cache_group(struct btrfs_trans_handle *trans,
2694 struct btrfs_root *root,
2695 struct btrfs_path *path,
2696 struct btrfs_block_group_cache *cache)
2697{
2698 int ret;
2699 struct btrfs_root *extent_root = root->fs_info->extent_root;
2700 unsigned long bi;
2701 struct extent_buffer *leaf;
2702
2703 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2704 if (ret < 0)
2705 goto fail;
2706 BUG_ON(ret);
2707
2708 leaf = path->nodes[0];
2709 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2710 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2711 btrfs_mark_buffer_dirty(leaf);
2712 btrfs_release_path(extent_root, path);
2713fail:
2714 if (ret)
2715 return ret;
2716 return 0;
2717
2718}
2719
2720static struct btrfs_block_group_cache *
2721next_block_group(struct btrfs_root *root,
2722 struct btrfs_block_group_cache *cache)
2723{
2724 struct rb_node *node;
2725 spin_lock(&root->fs_info->block_group_cache_lock);
2726 node = rb_next(&cache->cache_node);
2727 btrfs_put_block_group(cache);
2728 if (node) {
2729 cache = rb_entry(node, struct btrfs_block_group_cache,
2730 cache_node);
2731 btrfs_get_block_group(cache);
2732 } else
2733 cache = NULL;
2734 spin_unlock(&root->fs_info->block_group_cache_lock);
2735 return cache;
2736}
2737
2738static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2739 struct btrfs_trans_handle *trans,
2740 struct btrfs_path *path)
2741{
2742 struct btrfs_root *root = block_group->fs_info->tree_root;
2743 struct inode *inode = NULL;
2744 u64 alloc_hint = 0;
2745 int dcs = BTRFS_DC_ERROR;
2746 int num_pages = 0;
2747 int retries = 0;
2748 int ret = 0;
2749
2750 /*
2751 * If this block group is smaller than 100 megs don't bother caching the
2752 * block group.
2753 */
2754 if (block_group->key.offset < (100 * 1024 * 1024)) {
2755 spin_lock(&block_group->lock);
2756 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2757 spin_unlock(&block_group->lock);
2758 return 0;
2759 }
2760
2761again:
2762 inode = lookup_free_space_inode(root, block_group, path);
2763 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2764 ret = PTR_ERR(inode);
2765 btrfs_release_path(root, path);
2766 goto out;
2767 }
2768
2769 if (IS_ERR(inode)) {
2770 BUG_ON(retries);
2771 retries++;
2772
2773 if (block_group->ro)
2774 goto out_free;
2775
2776 ret = create_free_space_inode(root, trans, block_group, path);
2777 if (ret)
2778 goto out_free;
2779 goto again;
2780 }
2781
2782 /*
2783 * We want to set the generation to 0, that way if anything goes wrong
2784 * from here on out we know not to trust this cache when we load up next
2785 * time.
2786 */
2787 BTRFS_I(inode)->generation = 0;
2788 ret = btrfs_update_inode(trans, root, inode);
2789 WARN_ON(ret);
2790
2791 if (i_size_read(inode) > 0) {
2792 ret = btrfs_truncate_free_space_cache(root, trans, path,
2793 inode);
2794 if (ret)
2795 goto out_put;
2796 }
2797
2798 spin_lock(&block_group->lock);
2799 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2800 /* We're not cached, don't bother trying to write stuff out */
2801 dcs = BTRFS_DC_WRITTEN;
2802 spin_unlock(&block_group->lock);
2803 goto out_put;
2804 }
2805 spin_unlock(&block_group->lock);
2806
2807 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2808 if (!num_pages)
2809 num_pages = 1;
2810
2811 /*
2812 * Just to make absolutely sure we have enough space, we're going to
2813 * preallocate 12 pages worth of space for each block group. In
2814 * practice we ought to use at most 8, but we need extra space so we can
2815 * add our header and have a terminator between the extents and the
2816 * bitmaps.
2817 */
2818 num_pages *= 16;
2819 num_pages *= PAGE_CACHE_SIZE;
2820
2821 ret = btrfs_check_data_free_space(inode, num_pages);
2822 if (ret)
2823 goto out_put;
2824
2825 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2826 num_pages, num_pages,
2827 &alloc_hint);
2828 if (!ret)
2829 dcs = BTRFS_DC_SETUP;
2830 btrfs_free_reserved_data_space(inode, num_pages);
2831out_put:
2832 iput(inode);
2833out_free:
2834 btrfs_release_path(root, path);
2835out:
2836 spin_lock(&block_group->lock);
2837 block_group->disk_cache_state = dcs;
2838 spin_unlock(&block_group->lock);
2839
2840 return ret;
2841}
2842
2843int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *root)
2845{
2846 struct btrfs_block_group_cache *cache;
2847 int err = 0;
2848 struct btrfs_path *path;
2849 u64 last = 0;
2850
2851 path = btrfs_alloc_path();
2852 if (!path)
2853 return -ENOMEM;
2854
2855again:
2856 while (1) {
2857 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2858 while (cache) {
2859 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2860 break;
2861 cache = next_block_group(root, cache);
2862 }
2863 if (!cache) {
2864 if (last == 0)
2865 break;
2866 last = 0;
2867 continue;
2868 }
2869 err = cache_save_setup(cache, trans, path);
2870 last = cache->key.objectid + cache->key.offset;
2871 btrfs_put_block_group(cache);
2872 }
2873
2874 while (1) {
2875 if (last == 0) {
2876 err = btrfs_run_delayed_refs(trans, root,
2877 (unsigned long)-1);
2878 BUG_ON(err);
2879 }
2880
2881 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2882 while (cache) {
2883 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2884 btrfs_put_block_group(cache);
2885 goto again;
2886 }
2887
2888 if (cache->dirty)
2889 break;
2890 cache = next_block_group(root, cache);
2891 }
2892 if (!cache) {
2893 if (last == 0)
2894 break;
2895 last = 0;
2896 continue;
2897 }
2898
2899 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2900 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2901 cache->dirty = 0;
2902 last = cache->key.objectid + cache->key.offset;
2903
2904 err = write_one_cache_group(trans, root, path, cache);
2905 BUG_ON(err);
2906 btrfs_put_block_group(cache);
2907 }
2908
2909 while (1) {
2910 /*
2911 * I don't think this is needed since we're just marking our
2912 * preallocated extent as written, but just in case it can't
2913 * hurt.
2914 */
2915 if (last == 0) {
2916 err = btrfs_run_delayed_refs(trans, root,
2917 (unsigned long)-1);
2918 BUG_ON(err);
2919 }
2920
2921 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2922 while (cache) {
2923 /*
2924 * Really this shouldn't happen, but it could if we
2925 * couldn't write the entire preallocated extent and
2926 * splitting the extent resulted in a new block.
2927 */
2928 if (cache->dirty) {
2929 btrfs_put_block_group(cache);
2930 goto again;
2931 }
2932 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2933 break;
2934 cache = next_block_group(root, cache);
2935 }
2936 if (!cache) {
2937 if (last == 0)
2938 break;
2939 last = 0;
2940 continue;
2941 }
2942
2943 btrfs_write_out_cache(root, trans, cache, path);
2944
2945 /*
2946 * If we didn't have an error then the cache state is still
2947 * NEED_WRITE, so we can set it to WRITTEN.
2948 */
2949 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2950 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2951 last = cache->key.objectid + cache->key.offset;
2952 btrfs_put_block_group(cache);
2953 }
2954
2955 btrfs_free_path(path);
2956 return 0;
2957}
2958
2959int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2960{
2961 struct btrfs_block_group_cache *block_group;
2962 int readonly = 0;
2963
2964 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2965 if (!block_group || block_group->ro)
2966 readonly = 1;
2967 if (block_group)
2968 btrfs_put_block_group(block_group);
2969 return readonly;
2970}
2971
2972static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2973 u64 total_bytes, u64 bytes_used,
2974 struct btrfs_space_info **space_info)
2975{
2976 struct btrfs_space_info *found;
2977 int i;
2978 int factor;
2979
2980 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2981 BTRFS_BLOCK_GROUP_RAID10))
2982 factor = 2;
2983 else
2984 factor = 1;
2985
2986 found = __find_space_info(info, flags);
2987 if (found) {
2988 spin_lock(&found->lock);
2989 found->total_bytes += total_bytes;
2990 found->disk_total += total_bytes * factor;
2991 found->bytes_used += bytes_used;
2992 found->disk_used += bytes_used * factor;
2993 found->full = 0;
2994 spin_unlock(&found->lock);
2995 *space_info = found;
2996 return 0;
2997 }
2998 found = kzalloc(sizeof(*found), GFP_NOFS);
2999 if (!found)
3000 return -ENOMEM;
3001
3002 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3003 INIT_LIST_HEAD(&found->block_groups[i]);
3004 init_rwsem(&found->groups_sem);
3005 spin_lock_init(&found->lock);
3006 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
3007 BTRFS_BLOCK_GROUP_SYSTEM |
3008 BTRFS_BLOCK_GROUP_METADATA);
3009 found->total_bytes = total_bytes;
3010 found->disk_total = total_bytes * factor;
3011 found->bytes_used = bytes_used;
3012 found->disk_used = bytes_used * factor;
3013 found->bytes_pinned = 0;
3014 found->bytes_reserved = 0;
3015 found->bytes_readonly = 0;
3016 found->bytes_may_use = 0;
3017 found->full = 0;
3018 found->force_alloc = 0;
3019 *space_info = found;
3020 list_add_rcu(&found->list, &info->space_info);
3021 atomic_set(&found->caching_threads, 0);
3022 return 0;
3023}
3024
3025static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3026{
3027 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
3028 BTRFS_BLOCK_GROUP_RAID1 |
3029 BTRFS_BLOCK_GROUP_RAID10 |
3030 BTRFS_BLOCK_GROUP_DUP);
3031 if (extra_flags) {
3032 if (flags & BTRFS_BLOCK_GROUP_DATA)
3033 fs_info->avail_data_alloc_bits |= extra_flags;
3034 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3035 fs_info->avail_metadata_alloc_bits |= extra_flags;
3036 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3037 fs_info->avail_system_alloc_bits |= extra_flags;
3038 }
3039}
3040
3041u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3042{
3043 /*
3044 * we add in the count of missing devices because we want
3045 * to make sure that any RAID levels on a degraded FS
3046 * continue to be honored.
3047 */
3048 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3049 root->fs_info->fs_devices->missing_devices;
3050
3051 if (num_devices == 1)
3052 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3053 if (num_devices < 4)
3054 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3055
3056 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3057 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3058 BTRFS_BLOCK_GROUP_RAID10))) {
3059 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3060 }
3061
3062 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3063 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3064 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3065 }
3066
3067 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3068 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3069 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3070 (flags & BTRFS_BLOCK_GROUP_DUP)))
3071 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3072 return flags;
3073}
3074
3075static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3076{
3077 if (flags & BTRFS_BLOCK_GROUP_DATA)
3078 flags |= root->fs_info->avail_data_alloc_bits &
3079 root->fs_info->data_alloc_profile;
3080 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3081 flags |= root->fs_info->avail_system_alloc_bits &
3082 root->fs_info->system_alloc_profile;
3083 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3084 flags |= root->fs_info->avail_metadata_alloc_bits &
3085 root->fs_info->metadata_alloc_profile;
3086 return btrfs_reduce_alloc_profile(root, flags);
3087}
3088
3089u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3090{
3091 u64 flags;
3092
3093 if (data)
3094 flags = BTRFS_BLOCK_GROUP_DATA;
3095 else if (root == root->fs_info->chunk_root)
3096 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3097 else
3098 flags = BTRFS_BLOCK_GROUP_METADATA;
3099
3100 return get_alloc_profile(root, flags);
3101}
3102
3103void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3104{
3105 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3106 BTRFS_BLOCK_GROUP_DATA);
3107}
3108
3109/*
3110 * This will check the space that the inode allocates from to make sure we have
3111 * enough space for bytes.
3112 */
3113int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3114{
3115 struct btrfs_space_info *data_sinfo;
3116 struct btrfs_root *root = BTRFS_I(inode)->root;
3117 u64 used;
3118 int ret = 0, committed = 0, alloc_chunk = 1;
3119
3120 /* make sure bytes are sectorsize aligned */
3121 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3122
3123 if (root == root->fs_info->tree_root) {
3124 alloc_chunk = 0;
3125 committed = 1;
3126 }
3127
3128 data_sinfo = BTRFS_I(inode)->space_info;
3129 if (!data_sinfo)
3130 goto alloc;
3131
3132again:
3133 /* make sure we have enough space to handle the data first */
3134 spin_lock(&data_sinfo->lock);
3135 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3136 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3137 data_sinfo->bytes_may_use;
3138
3139 if (used + bytes > data_sinfo->total_bytes) {
3140 struct btrfs_trans_handle *trans;
3141
3142 /*
3143 * if we don't have enough free bytes in this space then we need
3144 * to alloc a new chunk.
3145 */
3146 if (!data_sinfo->full && alloc_chunk) {
3147 u64 alloc_target;
3148
3149 data_sinfo->force_alloc = 1;
3150 spin_unlock(&data_sinfo->lock);
3151alloc:
3152 alloc_target = btrfs_get_alloc_profile(root, 1);
3153 trans = btrfs_join_transaction(root, 1);
3154 if (IS_ERR(trans))
3155 return PTR_ERR(trans);
3156
3157 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3158 bytes + 2 * 1024 * 1024,
3159 alloc_target, 0);
3160 btrfs_end_transaction(trans, root);
3161 if (ret < 0) {
3162 if (ret != -ENOSPC)
3163 return ret;
3164 else
3165 goto commit_trans;
3166 }
3167
3168 if (!data_sinfo) {
3169 btrfs_set_inode_space_info(root, inode);
3170 data_sinfo = BTRFS_I(inode)->space_info;
3171 }
3172 goto again;
3173 }
3174 spin_unlock(&data_sinfo->lock);
3175
3176 /* commit the current transaction and try again */
3177commit_trans:
3178 if (!committed && !root->fs_info->open_ioctl_trans) {
3179 committed = 1;
3180 trans = btrfs_join_transaction(root, 1);
3181 if (IS_ERR(trans))
3182 return PTR_ERR(trans);
3183 ret = btrfs_commit_transaction(trans, root);
3184 if (ret)
3185 return ret;
3186 goto again;
3187 }
3188
3189#if 0 /* I hope we never need this code again, just in case */
3190 printk(KERN_ERR "no space left, need %llu, %llu bytes_used, "
3191 "%llu bytes_reserved, " "%llu bytes_pinned, "
3192 "%llu bytes_readonly, %llu may use %llu total\n",
3193 (unsigned long long)bytes,
3194 (unsigned long long)data_sinfo->bytes_used,
3195 (unsigned long long)data_sinfo->bytes_reserved,
3196 (unsigned long long)data_sinfo->bytes_pinned,
3197 (unsigned long long)data_sinfo->bytes_readonly,
3198 (unsigned long long)data_sinfo->bytes_may_use,
3199 (unsigned long long)data_sinfo->total_bytes);
3200#endif
3201 return -ENOSPC;
3202 }
3203 data_sinfo->bytes_may_use += bytes;
3204 BTRFS_I(inode)->reserved_bytes += bytes;
3205 spin_unlock(&data_sinfo->lock);
3206
3207 return 0;
3208}
3209
3210/*
3211 * called when we are clearing an delalloc extent from the
3212 * inode's io_tree or there was an error for whatever reason
3213 * after calling btrfs_check_data_free_space
3214 */
3215void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3216{
3217 struct btrfs_root *root = BTRFS_I(inode)->root;
3218 struct btrfs_space_info *data_sinfo;
3219
3220 /* make sure bytes are sectorsize aligned */
3221 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3222
3223 data_sinfo = BTRFS_I(inode)->space_info;
3224 spin_lock(&data_sinfo->lock);
3225 data_sinfo->bytes_may_use -= bytes;
3226 BTRFS_I(inode)->reserved_bytes -= bytes;
3227 spin_unlock(&data_sinfo->lock);
3228}
3229
3230static void force_metadata_allocation(struct btrfs_fs_info *info)
3231{
3232 struct list_head *head = &info->space_info;
3233 struct btrfs_space_info *found;
3234
3235 rcu_read_lock();
3236 list_for_each_entry_rcu(found, head, list) {
3237 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3238 found->force_alloc = 1;
3239 }
3240 rcu_read_unlock();
3241}
3242
3243static int should_alloc_chunk(struct btrfs_root *root,
3244 struct btrfs_space_info *sinfo, u64 alloc_bytes)
3245{
3246 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3247 u64 thresh;
3248
3249 if (sinfo->bytes_used + sinfo->bytes_reserved +
3250 alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3251 return 0;
3252
3253 if (sinfo->bytes_used + sinfo->bytes_reserved +
3254 alloc_bytes < div_factor(num_bytes, 8))
3255 return 0;
3256
3257 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3258 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3259
3260 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3261 return 0;
3262
3263 return 1;
3264}
3265
3266static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3267 struct btrfs_root *extent_root, u64 alloc_bytes,
3268 u64 flags, int force)
3269{
3270 struct btrfs_space_info *space_info;
3271 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3272 int ret = 0;
3273
3274 mutex_lock(&fs_info->chunk_mutex);
3275
3276 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3277
3278 space_info = __find_space_info(extent_root->fs_info, flags);
3279 if (!space_info) {
3280 ret = update_space_info(extent_root->fs_info, flags,
3281 0, 0, &space_info);
3282 BUG_ON(ret);
3283 }
3284 BUG_ON(!space_info);
3285
3286 spin_lock(&space_info->lock);
3287 if (space_info->force_alloc)
3288 force = 1;
3289 if (space_info->full) {
3290 spin_unlock(&space_info->lock);
3291 goto out;
3292 }
3293
3294 if (!force && !should_alloc_chunk(extent_root, space_info,
3295 alloc_bytes)) {
3296 spin_unlock(&space_info->lock);
3297 goto out;
3298 }
3299 spin_unlock(&space_info->lock);
3300
3301 /*
3302 * If we have mixed data/metadata chunks we want to make sure we keep
3303 * allocating mixed chunks instead of individual chunks.
3304 */
3305 if (btrfs_mixed_space_info(space_info))
3306 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3307
3308 /*
3309 * if we're doing a data chunk, go ahead and make sure that
3310 * we keep a reasonable number of metadata chunks allocated in the
3311 * FS as well.
3312 */
3313 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3314 fs_info->data_chunk_allocations++;
3315 if (!(fs_info->data_chunk_allocations %
3316 fs_info->metadata_ratio))
3317 force_metadata_allocation(fs_info);
3318 }
3319
3320 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3321 spin_lock(&space_info->lock);
3322 if (ret)
3323 space_info->full = 1;
3324 else
3325 ret = 1;
3326 space_info->force_alloc = 0;
3327 spin_unlock(&space_info->lock);
3328out:
3329 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3330 return ret;
3331}
3332
3333/*
3334 * shrink metadata reservation for delalloc
3335 */
3336static int shrink_delalloc(struct btrfs_trans_handle *trans,
3337 struct btrfs_root *root, u64 to_reclaim, int sync)
3338{
3339 struct btrfs_block_rsv *block_rsv;
3340 struct btrfs_space_info *space_info;
3341 u64 reserved;
3342 u64 max_reclaim;
3343 u64 reclaimed = 0;
3344 long time_left;
3345 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3346 int loops = 0;
3347 unsigned long progress;
3348
3349 block_rsv = &root->fs_info->delalloc_block_rsv;
3350 space_info = block_rsv->space_info;
3351
3352 smp_mb();
3353 reserved = space_info->bytes_reserved;
3354 progress = space_info->reservation_progress;
3355
3356 if (reserved == 0)
3357 return 0;
3358
3359 max_reclaim = min(reserved, to_reclaim);
3360
3361 while (loops < 1024) {
3362 /* have the flusher threads jump in and do some IO */
3363 smp_mb();
3364 nr_pages = min_t(unsigned long, nr_pages,
3365 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3366 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3367
3368 spin_lock(&space_info->lock);
3369 if (reserved > space_info->bytes_reserved)
3370 reclaimed += reserved - space_info->bytes_reserved;
3371 reserved = space_info->bytes_reserved;
3372 spin_unlock(&space_info->lock);
3373
3374 loops++;
3375
3376 if (reserved == 0 || reclaimed >= max_reclaim)
3377 break;
3378
3379 if (trans && trans->transaction->blocked)
3380 return -EAGAIN;
3381
3382 time_left = schedule_timeout_interruptible(1);
3383
3384 /* We were interrupted, exit */
3385 if (time_left)
3386 break;
3387
3388 /* we've kicked the IO a few times, if anything has been freed,
3389 * exit. There is no sense in looping here for a long time
3390 * when we really need to commit the transaction, or there are
3391 * just too many writers without enough free space
3392 */
3393
3394 if (loops > 3) {
3395 smp_mb();
3396 if (progress != space_info->reservation_progress)
3397 break;
3398 }
3399
3400 }
3401 return reclaimed >= to_reclaim;
3402}
3403
3404/*
3405 * Retries tells us how many times we've called reserve_metadata_bytes. The
3406 * idea is if this is the first call (retries == 0) then we will add to our
3407 * reserved count if we can't make the allocation in order to hold our place
3408 * while we go and try and free up space. That way for retries > 1 we don't try
3409 * and add space, we just check to see if the amount of unused space is >= the
3410 * total space, meaning that our reservation is valid.
3411 *
3412 * However if we don't intend to retry this reservation, pass -1 as retries so
3413 * that it short circuits this logic.
3414 */
3415static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3416 struct btrfs_root *root,
3417 struct btrfs_block_rsv *block_rsv,
3418 u64 orig_bytes, int flush)
3419{
3420 struct btrfs_space_info *space_info = block_rsv->space_info;
3421 u64 unused;
3422 u64 num_bytes = orig_bytes;
3423 int retries = 0;
3424 int ret = 0;
3425 bool reserved = false;
3426 bool committed = false;
3427
3428again:
3429 ret = -ENOSPC;
3430 if (reserved)
3431 num_bytes = 0;
3432
3433 spin_lock(&space_info->lock);
3434 unused = space_info->bytes_used + space_info->bytes_reserved +
3435 space_info->bytes_pinned + space_info->bytes_readonly +
3436 space_info->bytes_may_use;
3437
3438 /*
3439 * The idea here is that we've not already over-reserved the block group
3440 * then we can go ahead and save our reservation first and then start
3441 * flushing if we need to. Otherwise if we've already overcommitted
3442 * lets start flushing stuff first and then come back and try to make
3443 * our reservation.
3444 */
3445 if (unused <= space_info->total_bytes) {
3446 unused = space_info->total_bytes - unused;
3447 if (unused >= num_bytes) {
3448 if (!reserved)
3449 space_info->bytes_reserved += orig_bytes;
3450 ret = 0;
3451 } else {
3452 /*
3453 * Ok set num_bytes to orig_bytes since we aren't
3454 * overocmmitted, this way we only try and reclaim what
3455 * we need.
3456 */
3457 num_bytes = orig_bytes;
3458 }
3459 } else {
3460 /*
3461 * Ok we're over committed, set num_bytes to the overcommitted
3462 * amount plus the amount of bytes that we need for this
3463 * reservation.
3464 */
3465 num_bytes = unused - space_info->total_bytes +
3466 (orig_bytes * (retries + 1));
3467 }
3468
3469 /*
3470 * Couldn't make our reservation, save our place so while we're trying
3471 * to reclaim space we can actually use it instead of somebody else
3472 * stealing it from us.
3473 */
3474 if (ret && !reserved) {
3475 space_info->bytes_reserved += orig_bytes;
3476 reserved = true;
3477 }
3478
3479 spin_unlock(&space_info->lock);
3480
3481 if (!ret)
3482 return 0;
3483
3484 if (!flush)
3485 goto out;
3486
3487 /*
3488 * We do synchronous shrinking since we don't actually unreserve
3489 * metadata until after the IO is completed.
3490 */
3491 ret = shrink_delalloc(trans, root, num_bytes, 1);
3492 if (ret > 0)
3493 return 0;
3494 else if (ret < 0)
3495 goto out;
3496
3497 /*
3498 * So if we were overcommitted it's possible that somebody else flushed
3499 * out enough space and we simply didn't have enough space to reclaim,
3500 * so go back around and try again.
3501 */
3502 if (retries < 2) {
3503 retries++;
3504 goto again;
3505 }
3506
3507 spin_lock(&space_info->lock);
3508 /*
3509 * Not enough space to be reclaimed, don't bother committing the
3510 * transaction.
3511 */
3512 if (space_info->bytes_pinned < orig_bytes)
3513 ret = -ENOSPC;
3514 spin_unlock(&space_info->lock);
3515 if (ret)
3516 goto out;
3517
3518 ret = -EAGAIN;
3519 if (trans || committed)
3520 goto out;
3521
3522 ret = -ENOSPC;
3523 trans = btrfs_join_transaction(root, 1);
3524 if (IS_ERR(trans))
3525 goto out;
3526 ret = btrfs_commit_transaction(trans, root);
3527 if (!ret) {
3528 trans = NULL;
3529 committed = true;
3530 goto again;
3531 }
3532
3533out:
3534 if (reserved) {
3535 spin_lock(&space_info->lock);
3536 space_info->bytes_reserved -= orig_bytes;
3537 spin_unlock(&space_info->lock);
3538 }
3539
3540 return ret;
3541}
3542
3543static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3544 struct btrfs_root *root)
3545{
3546 struct btrfs_block_rsv *block_rsv;
3547 if (root->ref_cows)
3548 block_rsv = trans->block_rsv;
3549 else
3550 block_rsv = root->block_rsv;
3551
3552 if (!block_rsv)
3553 block_rsv = &root->fs_info->empty_block_rsv;
3554
3555 return block_rsv;
3556}
3557
3558static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3559 u64 num_bytes)
3560{
3561 int ret = -ENOSPC;
3562 spin_lock(&block_rsv->lock);
3563 if (block_rsv->reserved >= num_bytes) {
3564 block_rsv->reserved -= num_bytes;
3565 if (block_rsv->reserved < block_rsv->size)
3566 block_rsv->full = 0;
3567 ret = 0;
3568 }
3569 spin_unlock(&block_rsv->lock);
3570 return ret;
3571}
3572
3573static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3574 u64 num_bytes, int update_size)
3575{
3576 spin_lock(&block_rsv->lock);
3577 block_rsv->reserved += num_bytes;
3578 if (update_size)
3579 block_rsv->size += num_bytes;
3580 else if (block_rsv->reserved >= block_rsv->size)
3581 block_rsv->full = 1;
3582 spin_unlock(&block_rsv->lock);
3583}
3584
3585void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3586 struct btrfs_block_rsv *dest, u64 num_bytes)
3587{
3588 struct btrfs_space_info *space_info = block_rsv->space_info;
3589
3590 spin_lock(&block_rsv->lock);
3591 if (num_bytes == (u64)-1)
3592 num_bytes = block_rsv->size;
3593 block_rsv->size -= num_bytes;
3594 if (block_rsv->reserved >= block_rsv->size) {
3595 num_bytes = block_rsv->reserved - block_rsv->size;
3596 block_rsv->reserved = block_rsv->size;
3597 block_rsv->full = 1;
3598 } else {
3599 num_bytes = 0;
3600 }
3601 spin_unlock(&block_rsv->lock);
3602
3603 if (num_bytes > 0) {
3604 if (dest) {
3605 spin_lock(&dest->lock);
3606 if (!dest->full) {
3607 u64 bytes_to_add;
3608
3609 bytes_to_add = dest->size - dest->reserved;
3610 bytes_to_add = min(num_bytes, bytes_to_add);
3611 dest->reserved += bytes_to_add;
3612 if (dest->reserved >= dest->size)
3613 dest->full = 1;
3614 num_bytes -= bytes_to_add;
3615 }
3616 spin_unlock(&dest->lock);
3617 }
3618 if (num_bytes) {
3619 spin_lock(&space_info->lock);
3620 space_info->bytes_reserved -= num_bytes;
3621 space_info->reservation_progress++;
3622 spin_unlock(&space_info->lock);
3623 }
3624 }
3625}
3626
3627static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3628 struct btrfs_block_rsv *dst, u64 num_bytes)
3629{
3630 int ret;
3631
3632 ret = block_rsv_use_bytes(src, num_bytes);
3633 if (ret)
3634 return ret;
3635
3636 block_rsv_add_bytes(dst, num_bytes, 1);
3637 return 0;
3638}
3639
3640void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3641{
3642 memset(rsv, 0, sizeof(*rsv));
3643 spin_lock_init(&rsv->lock);
3644 atomic_set(&rsv->usage, 1);
3645 rsv->priority = 6;
3646 INIT_LIST_HEAD(&rsv->list);
3647}
3648
3649struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3650{
3651 struct btrfs_block_rsv *block_rsv;
3652 struct btrfs_fs_info *fs_info = root->fs_info;
3653
3654 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3655 if (!block_rsv)
3656 return NULL;
3657
3658 btrfs_init_block_rsv(block_rsv);
3659 block_rsv->space_info = __find_space_info(fs_info,
3660 BTRFS_BLOCK_GROUP_METADATA);
3661 return block_rsv;
3662}
3663
3664void btrfs_free_block_rsv(struct btrfs_root *root,
3665 struct btrfs_block_rsv *rsv)
3666{
3667 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3668 btrfs_block_rsv_release(root, rsv, (u64)-1);
3669 if (!rsv->durable)
3670 kfree(rsv);
3671 }
3672}
3673
3674/*
3675 * make the block_rsv struct be able to capture freed space.
3676 * the captured space will re-add to the the block_rsv struct
3677 * after transaction commit
3678 */
3679void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3680 struct btrfs_block_rsv *block_rsv)
3681{
3682 block_rsv->durable = 1;
3683 mutex_lock(&fs_info->durable_block_rsv_mutex);
3684 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3685 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3686}
3687
3688int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3689 struct btrfs_root *root,
3690 struct btrfs_block_rsv *block_rsv,
3691 u64 num_bytes)
3692{
3693 int ret;
3694
3695 if (num_bytes == 0)
3696 return 0;
3697
3698 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3699 if (!ret) {
3700 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3701 return 0;
3702 }
3703
3704 return ret;
3705}
3706
3707int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3708 struct btrfs_root *root,
3709 struct btrfs_block_rsv *block_rsv,
3710 u64 min_reserved, int min_factor)
3711{
3712 u64 num_bytes = 0;
3713 int commit_trans = 0;
3714 int ret = -ENOSPC;
3715
3716 if (!block_rsv)
3717 return 0;
3718
3719 spin_lock(&block_rsv->lock);
3720 if (min_factor > 0)
3721 num_bytes = div_factor(block_rsv->size, min_factor);
3722 if (min_reserved > num_bytes)
3723 num_bytes = min_reserved;
3724
3725 if (block_rsv->reserved >= num_bytes) {
3726 ret = 0;
3727 } else {
3728 num_bytes -= block_rsv->reserved;
3729 if (block_rsv->durable &&
3730 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3731 commit_trans = 1;
3732 }
3733 spin_unlock(&block_rsv->lock);
3734 if (!ret)
3735 return 0;
3736
3737 if (block_rsv->refill_used) {
3738 ret = reserve_metadata_bytes(trans, root, block_rsv,
3739 num_bytes, 0);
3740 if (!ret) {
3741 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3742 return 0;
3743 }
3744 }
3745
3746 if (commit_trans) {
3747 if (trans)
3748 return -EAGAIN;
3749
3750 trans = btrfs_join_transaction(root, 1);
3751 BUG_ON(IS_ERR(trans));
3752 ret = btrfs_commit_transaction(trans, root);
3753 return 0;
3754 }
3755
3756 return -ENOSPC;
3757}
3758
3759int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3760 struct btrfs_block_rsv *dst_rsv,
3761 u64 num_bytes)
3762{
3763 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3764}
3765
3766void btrfs_block_rsv_release(struct btrfs_root *root,
3767 struct btrfs_block_rsv *block_rsv,
3768 u64 num_bytes)
3769{
3770 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3771 if (global_rsv->full || global_rsv == block_rsv ||
3772 block_rsv->space_info != global_rsv->space_info)
3773 global_rsv = NULL;
3774 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3775}
3776
3777/*
3778 * helper to calculate size of global block reservation.
3779 * the desired value is sum of space used by extent tree,
3780 * checksum tree and root tree
3781 */
3782static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3783{
3784 struct btrfs_space_info *sinfo;
3785 u64 num_bytes;
3786 u64 meta_used;
3787 u64 data_used;
3788 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3789#if 0
3790 /*
3791 * per tree used space accounting can be inaccuracy, so we
3792 * can't rely on it.
3793 */
3794 spin_lock(&fs_info->extent_root->accounting_lock);
3795 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item);
3796 spin_unlock(&fs_info->extent_root->accounting_lock);
3797
3798 spin_lock(&fs_info->csum_root->accounting_lock);
3799 num_bytes += btrfs_root_used(&fs_info->csum_root->root_item);
3800 spin_unlock(&fs_info->csum_root->accounting_lock);
3801
3802 spin_lock(&fs_info->tree_root->accounting_lock);
3803 num_bytes += btrfs_root_used(&fs_info->tree_root->root_item);
3804 spin_unlock(&fs_info->tree_root->accounting_lock);
3805#endif
3806 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3807 spin_lock(&sinfo->lock);
3808 data_used = sinfo->bytes_used;
3809 spin_unlock(&sinfo->lock);
3810
3811 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3812 spin_lock(&sinfo->lock);
3813 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3814 data_used = 0;
3815 meta_used = sinfo->bytes_used;
3816 spin_unlock(&sinfo->lock);
3817
3818 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3819 csum_size * 2;
3820 num_bytes += div64_u64(data_used + meta_used, 50);
3821
3822 if (num_bytes * 3 > meta_used)
3823 num_bytes = div64_u64(meta_used, 3);
3824
3825 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3826}
3827
3828static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3829{
3830 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3831 struct btrfs_space_info *sinfo = block_rsv->space_info;
3832 u64 num_bytes;
3833
3834 num_bytes = calc_global_metadata_size(fs_info);
3835
3836 spin_lock(&block_rsv->lock);
3837 spin_lock(&sinfo->lock);
3838
3839 block_rsv->size = num_bytes;
3840
3841 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3842 sinfo->bytes_reserved + sinfo->bytes_readonly +
3843 sinfo->bytes_may_use;
3844
3845 if (sinfo->total_bytes > num_bytes) {
3846 num_bytes = sinfo->total_bytes - num_bytes;
3847 block_rsv->reserved += num_bytes;
3848 sinfo->bytes_reserved += num_bytes;
3849 }
3850
3851 if (block_rsv->reserved >= block_rsv->size) {
3852 num_bytes = block_rsv->reserved - block_rsv->size;
3853 sinfo->bytes_reserved -= num_bytes;
3854 sinfo->reservation_progress++;
3855 block_rsv->reserved = block_rsv->size;
3856 block_rsv->full = 1;
3857 }
3858#if 0
3859 printk(KERN_INFO"global block rsv size %llu reserved %llu\n",
3860 block_rsv->size, block_rsv->reserved);
3861#endif
3862 spin_unlock(&sinfo->lock);
3863 spin_unlock(&block_rsv->lock);
3864}
3865
3866static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3867{
3868 struct btrfs_space_info *space_info;
3869
3870 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3871 fs_info->chunk_block_rsv.space_info = space_info;
3872 fs_info->chunk_block_rsv.priority = 10;
3873
3874 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3875 fs_info->global_block_rsv.space_info = space_info;
3876 fs_info->global_block_rsv.priority = 10;
3877 fs_info->global_block_rsv.refill_used = 1;
3878 fs_info->delalloc_block_rsv.space_info = space_info;
3879 fs_info->trans_block_rsv.space_info = space_info;
3880 fs_info->empty_block_rsv.space_info = space_info;
3881 fs_info->empty_block_rsv.priority = 10;
3882
3883 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3884 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3885 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3886 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3887 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3888
3889 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3890
3891 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3892
3893 update_global_block_rsv(fs_info);
3894}
3895
3896static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3897{
3898 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3899 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3900 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3901 WARN_ON(fs_info->trans_block_rsv.size > 0);
3902 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3903 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3904 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3905}
3906
3907static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items)
3908{
3909 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3910 3 * num_items;
3911}
3912
3913int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3914 struct btrfs_root *root,
3915 int num_items)
3916{
3917 u64 num_bytes;
3918 int ret;
3919
3920 if (num_items == 0 || root->fs_info->chunk_root == root)
3921 return 0;
3922
3923 num_bytes = calc_trans_metadata_size(root, num_items);
3924 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3925 num_bytes);
3926 if (!ret) {
3927 trans->bytes_reserved += num_bytes;
3928 trans->block_rsv = &root->fs_info->trans_block_rsv;
3929 }
3930 return ret;
3931}
3932
3933void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3934 struct btrfs_root *root)
3935{
3936 if (!trans->bytes_reserved)
3937 return;
3938
3939 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3940 btrfs_block_rsv_release(root, trans->block_rsv,
3941 trans->bytes_reserved);
3942 trans->bytes_reserved = 0;
3943}
3944
3945int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3946 struct inode *inode)
3947{
3948 struct btrfs_root *root = BTRFS_I(inode)->root;
3949 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3950 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3951
3952 /*
3953 * one for deleting orphan item, one for updating inode and
3954 * two for calling btrfs_truncate_inode_items.
3955 *
3956 * btrfs_truncate_inode_items is a delete operation, it frees
3957 * more space than it uses in most cases. So two units of
3958 * metadata space should be enough for calling it many times.
3959 * If all of the metadata space is used, we can commit
3960 * transaction and use space it freed.
3961 */
3962 u64 num_bytes = calc_trans_metadata_size(root, 4);
3963 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3964}
3965
3966void btrfs_orphan_release_metadata(struct inode *inode)
3967{
3968 struct btrfs_root *root = BTRFS_I(inode)->root;
3969 u64 num_bytes = calc_trans_metadata_size(root, 4);
3970 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3971}
3972
3973int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3974 struct btrfs_pending_snapshot *pending)
3975{
3976 struct btrfs_root *root = pending->root;
3977 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3978 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3979 /*
3980 * two for root back/forward refs, two for directory entries
3981 * and one for root of the snapshot.
3982 */
3983 u64 num_bytes = calc_trans_metadata_size(root, 5);
3984 dst_rsv->space_info = src_rsv->space_info;
3985 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3986}
3987
3988static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3989{
3990 return num_bytes >>= 3;
3991}
3992
3993int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3994{
3995 struct btrfs_root *root = BTRFS_I(inode)->root;
3996 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3997 u64 to_reserve;
3998 int nr_extents;
3999 int ret;
4000
4001 if (btrfs_transaction_in_commit(root->fs_info))
4002 schedule_timeout(1);
4003
4004 num_bytes = ALIGN(num_bytes, root->sectorsize);
4005
4006 spin_lock(&BTRFS_I(inode)->accounting_lock);
4007 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
4008 if (nr_extents > BTRFS_I(inode)->reserved_extents) {
4009 nr_extents -= BTRFS_I(inode)->reserved_extents;
4010 to_reserve = calc_trans_metadata_size(root, nr_extents);
4011 } else {
4012 nr_extents = 0;
4013 to_reserve = 0;
4014 }
4015 spin_unlock(&BTRFS_I(inode)->accounting_lock);
4016 to_reserve += calc_csum_metadata_size(inode, num_bytes);
4017 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
4018 if (ret)
4019 return ret;
4020
4021 spin_lock(&BTRFS_I(inode)->accounting_lock);
4022 BTRFS_I(inode)->reserved_extents += nr_extents;
4023 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
4024 spin_unlock(&BTRFS_I(inode)->accounting_lock);
4025
4026 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4027
4028 if (block_rsv->size > 512 * 1024 * 1024)
4029 shrink_delalloc(NULL, root, to_reserve, 0);
4030
4031 return 0;
4032}
4033
4034void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4035{
4036 struct btrfs_root *root = BTRFS_I(inode)->root;
4037 u64 to_free;
4038 int nr_extents;
4039
4040 num_bytes = ALIGN(num_bytes, root->sectorsize);
4041 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
4042 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents) < 0);
4043
4044 spin_lock(&BTRFS_I(inode)->accounting_lock);
4045 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
4046 if (nr_extents < BTRFS_I(inode)->reserved_extents) {
4047 nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents;
4048 BTRFS_I(inode)->reserved_extents -= nr_extents;
4049 } else {
4050 nr_extents = 0;
4051 }
4052 spin_unlock(&BTRFS_I(inode)->accounting_lock);
4053
4054 to_free = calc_csum_metadata_size(inode, num_bytes);
4055 if (nr_extents > 0)
4056 to_free += calc_trans_metadata_size(root, nr_extents);
4057
4058 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4059 to_free);
4060}
4061
4062int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4063{
4064 int ret;
4065
4066 ret = btrfs_check_data_free_space(inode, num_bytes);
4067 if (ret)
4068 return ret;
4069
4070 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4071 if (ret) {
4072 btrfs_free_reserved_data_space(inode, num_bytes);
4073 return ret;
4074 }
4075
4076 return 0;
4077}
4078
4079void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4080{
4081 btrfs_delalloc_release_metadata(inode, num_bytes);
4082 btrfs_free_reserved_data_space(inode, num_bytes);
4083}
4084
4085static int update_block_group(struct btrfs_trans_handle *trans,
4086 struct btrfs_root *root,
4087 u64 bytenr, u64 num_bytes, int alloc)
4088{
4089 struct btrfs_block_group_cache *cache = NULL;
4090 struct btrfs_fs_info *info = root->fs_info;
4091 u64 total = num_bytes;
4092 u64 old_val;
4093 u64 byte_in_group;
4094 int factor;
4095
4096 /* block accounting for super block */
4097 spin_lock(&info->delalloc_lock);
4098 old_val = btrfs_super_bytes_used(&info->super_copy);
4099 if (alloc)
4100 old_val += num_bytes;
4101 else
4102 old_val -= num_bytes;
4103 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4104 spin_unlock(&info->delalloc_lock);
4105
4106 while (total) {
4107 cache = btrfs_lookup_block_group(info, bytenr);
4108 if (!cache)
4109 return -1;
4110 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4111 BTRFS_BLOCK_GROUP_RAID1 |
4112 BTRFS_BLOCK_GROUP_RAID10))
4113 factor = 2;
4114 else
4115 factor = 1;
4116 /*
4117 * If this block group has free space cache written out, we
4118 * need to make sure to load it if we are removing space. This
4119 * is because we need the unpinning stage to actually add the
4120 * space back to the block group, otherwise we will leak space.
4121 */
4122 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4123 cache_block_group(cache, trans, NULL, 1);
4124
4125 byte_in_group = bytenr - cache->key.objectid;
4126 WARN_ON(byte_in_group > cache->key.offset);
4127
4128 spin_lock(&cache->space_info->lock);
4129 spin_lock(&cache->lock);
4130
4131 if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4132 cache->disk_cache_state < BTRFS_DC_CLEAR)
4133 cache->disk_cache_state = BTRFS_DC_CLEAR;
4134
4135 cache->dirty = 1;
4136 old_val = btrfs_block_group_used(&cache->item);
4137 num_bytes = min(total, cache->key.offset - byte_in_group);
4138 if (alloc) {
4139 old_val += num_bytes;
4140 btrfs_set_block_group_used(&cache->item, old_val);
4141 cache->reserved -= num_bytes;
4142 cache->space_info->bytes_reserved -= num_bytes;
4143 cache->space_info->reservation_progress++;
4144 cache->space_info->bytes_used += num_bytes;
4145 cache->space_info->disk_used += num_bytes * factor;
4146 spin_unlock(&cache->lock);
4147 spin_unlock(&cache->space_info->lock);
4148 } else {
4149 old_val -= num_bytes;
4150 btrfs_set_block_group_used(&cache->item, old_val);
4151 cache->pinned += num_bytes;
4152 cache->space_info->bytes_pinned += num_bytes;
4153 cache->space_info->bytes_used -= num_bytes;
4154 cache->space_info->disk_used -= num_bytes * factor;
4155 spin_unlock(&cache->lock);
4156 spin_unlock(&cache->space_info->lock);
4157
4158 set_extent_dirty(info->pinned_extents,
4159 bytenr, bytenr + num_bytes - 1,
4160 GFP_NOFS | __GFP_NOFAIL);
4161 }
4162 btrfs_put_block_group(cache);
4163 total -= num_bytes;
4164 bytenr += num_bytes;
4165 }
4166 return 0;
4167}
4168
4169static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4170{
4171 struct btrfs_block_group_cache *cache;
4172 u64 bytenr;
4173
4174 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4175 if (!cache)
4176 return 0;
4177
4178 bytenr = cache->key.objectid;
4179 btrfs_put_block_group(cache);
4180
4181 return bytenr;
4182}
4183
4184static int pin_down_extent(struct btrfs_root *root,
4185 struct btrfs_block_group_cache *cache,
4186 u64 bytenr, u64 num_bytes, int reserved)
4187{
4188 spin_lock(&cache->space_info->lock);
4189 spin_lock(&cache->lock);
4190 cache->pinned += num_bytes;
4191 cache->space_info->bytes_pinned += num_bytes;
4192 if (reserved) {
4193 cache->reserved -= num_bytes;
4194 cache->space_info->bytes_reserved -= num_bytes;
4195 cache->space_info->reservation_progress++;
4196 }
4197 spin_unlock(&cache->lock);
4198 spin_unlock(&cache->space_info->lock);
4199
4200 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4201 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4202 return 0;
4203}
4204
4205/*
4206 * this function must be called within transaction
4207 */
4208int btrfs_pin_extent(struct btrfs_root *root,
4209 u64 bytenr, u64 num_bytes, int reserved)
4210{
4211 struct btrfs_block_group_cache *cache;
4212
4213 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4214 BUG_ON(!cache);
4215
4216 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4217
4218 btrfs_put_block_group(cache);
4219 return 0;
4220}
4221
4222/*
4223 * update size of reserved extents. this function may return -EAGAIN
4224 * if 'reserve' is true or 'sinfo' is false.
4225 */
4226static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
4227 u64 num_bytes, int reserve, int sinfo)
4228{
4229 int ret = 0;
4230 if (sinfo) {
4231 struct btrfs_space_info *space_info = cache->space_info;
4232 spin_lock(&space_info->lock);
4233 spin_lock(&cache->lock);
4234 if (reserve) {
4235 if (cache->ro) {
4236 ret = -EAGAIN;
4237 } else {
4238 cache->reserved += num_bytes;
4239 space_info->bytes_reserved += num_bytes;
4240 }
4241 } else {
4242 if (cache->ro)
4243 space_info->bytes_readonly += num_bytes;
4244 cache->reserved -= num_bytes;
4245 space_info->bytes_reserved -= num_bytes;
4246 space_info->reservation_progress++;
4247 }
4248 spin_unlock(&cache->lock);
4249 spin_unlock(&space_info->lock);
4250 } else {
4251 spin_lock(&cache->lock);
4252 if (cache->ro) {
4253 ret = -EAGAIN;
4254 } else {
4255 if (reserve)
4256 cache->reserved += num_bytes;
4257 else
4258 cache->reserved -= num_bytes;
4259 }
4260 spin_unlock(&cache->lock);
4261 }
4262 return ret;
4263}
4264
4265int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4266 struct btrfs_root *root)
4267{
4268 struct btrfs_fs_info *fs_info = root->fs_info;
4269 struct btrfs_caching_control *next;
4270 struct btrfs_caching_control *caching_ctl;
4271 struct btrfs_block_group_cache *cache;
4272
4273 down_write(&fs_info->extent_commit_sem);
4274
4275 list_for_each_entry_safe(caching_ctl, next,
4276 &fs_info->caching_block_groups, list) {
4277 cache = caching_ctl->block_group;
4278 if (block_group_cache_done(cache)) {
4279 cache->last_byte_to_unpin = (u64)-1;
4280 list_del_init(&caching_ctl->list);
4281 put_caching_control(caching_ctl);
4282 } else {
4283 cache->last_byte_to_unpin = caching_ctl->progress;
4284 }
4285 }
4286
4287 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4288 fs_info->pinned_extents = &fs_info->freed_extents[1];
4289 else
4290 fs_info->pinned_extents = &fs_info->freed_extents[0];
4291
4292 up_write(&fs_info->extent_commit_sem);
4293
4294 update_global_block_rsv(fs_info);
4295 return 0;
4296}
4297
4298static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4299{
4300 struct btrfs_fs_info *fs_info = root->fs_info;
4301 struct btrfs_block_group_cache *cache = NULL;
4302 u64 len;
4303
4304 while (start <= end) {
4305 if (!cache ||
4306 start >= cache->key.objectid + cache->key.offset) {
4307 if (cache)
4308 btrfs_put_block_group(cache);
4309 cache = btrfs_lookup_block_group(fs_info, start);
4310 BUG_ON(!cache);
4311 }
4312
4313 len = cache->key.objectid + cache->key.offset - start;
4314 len = min(len, end + 1 - start);
4315
4316 if (start < cache->last_byte_to_unpin) {
4317 len = min(len, cache->last_byte_to_unpin - start);
4318 btrfs_add_free_space(cache, start, len);
4319 }
4320
4321 start += len;
4322
4323 spin_lock(&cache->space_info->lock);
4324 spin_lock(&cache->lock);
4325 cache->pinned -= len;
4326 cache->space_info->bytes_pinned -= len;
4327 if (cache->ro) {
4328 cache->space_info->bytes_readonly += len;
4329 } else if (cache->reserved_pinned > 0) {
4330 len = min(len, cache->reserved_pinned);
4331 cache->reserved_pinned -= len;
4332 cache->space_info->bytes_reserved += len;
4333 }
4334 spin_unlock(&cache->lock);
4335 spin_unlock(&cache->space_info->lock);
4336 }
4337
4338 if (cache)
4339 btrfs_put_block_group(cache);
4340 return 0;
4341}
4342
4343int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4344 struct btrfs_root *root)
4345{
4346 struct btrfs_fs_info *fs_info = root->fs_info;
4347 struct extent_io_tree *unpin;
4348 struct btrfs_block_rsv *block_rsv;
4349 struct btrfs_block_rsv *next_rsv;
4350 u64 start;
4351 u64 end;
4352 int idx;
4353 int ret;
4354
4355 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4356 unpin = &fs_info->freed_extents[1];
4357 else
4358 unpin = &fs_info->freed_extents[0];
4359
4360 while (1) {
4361 ret = find_first_extent_bit(unpin, 0, &start, &end,
4362 EXTENT_DIRTY);
4363 if (ret)
4364 break;
4365
4366 ret = btrfs_discard_extent(root, start, end + 1 - start);
4367
4368 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4369 unpin_extent_range(root, start, end);
4370 cond_resched();
4371 }
4372
4373 mutex_lock(&fs_info->durable_block_rsv_mutex);
4374 list_for_each_entry_safe(block_rsv, next_rsv,
4375 &fs_info->durable_block_rsv_list, list) {
4376
4377 idx = trans->transid & 0x1;
4378 if (block_rsv->freed[idx] > 0) {
4379 block_rsv_add_bytes(block_rsv,
4380 block_rsv->freed[idx], 0);
4381 block_rsv->freed[idx] = 0;
4382 }
4383 if (atomic_read(&block_rsv->usage) == 0) {
4384 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4385
4386 if (block_rsv->freed[0] == 0 &&
4387 block_rsv->freed[1] == 0) {
4388 list_del_init(&block_rsv->list);
4389 kfree(block_rsv);
4390 }
4391 } else {
4392 btrfs_block_rsv_release(root, block_rsv, 0);
4393 }
4394 }
4395 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4396
4397 return 0;
4398}
4399
4400static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4401 struct btrfs_root *root,
4402 u64 bytenr, u64 num_bytes, u64 parent,
4403 u64 root_objectid, u64 owner_objectid,
4404 u64 owner_offset, int refs_to_drop,
4405 struct btrfs_delayed_extent_op *extent_op)
4406{
4407 struct btrfs_key key;
4408 struct btrfs_path *path;
4409 struct btrfs_fs_info *info = root->fs_info;
4410 struct btrfs_root *extent_root = info->extent_root;
4411 struct extent_buffer *leaf;
4412 struct btrfs_extent_item *ei;
4413 struct btrfs_extent_inline_ref *iref;
4414 int ret;
4415 int is_data;
4416 int extent_slot = 0;
4417 int found_extent = 0;
4418 int num_to_del = 1;
4419 u32 item_size;
4420 u64 refs;
4421
4422 path = btrfs_alloc_path();
4423 if (!path)
4424 return -ENOMEM;
4425
4426 path->reada = 1;
4427 path->leave_spinning = 1;
4428
4429 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4430 BUG_ON(!is_data && refs_to_drop != 1);
4431
4432 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4433 bytenr, num_bytes, parent,
4434 root_objectid, owner_objectid,
4435 owner_offset);
4436 if (ret == 0) {
4437 extent_slot = path->slots[0];
4438 while (extent_slot >= 0) {
4439 btrfs_item_key_to_cpu(path->nodes[0], &key,
4440 extent_slot);
4441 if (key.objectid != bytenr)
4442 break;
4443 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4444 key.offset == num_bytes) {
4445 found_extent = 1;
4446 break;
4447 }
4448 if (path->slots[0] - extent_slot > 5)
4449 break;
4450 extent_slot--;
4451 }
4452#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4453 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4454 if (found_extent && item_size < sizeof(*ei))
4455 found_extent = 0;
4456#endif
4457 if (!found_extent) {
4458 BUG_ON(iref);
4459 ret = remove_extent_backref(trans, extent_root, path,
4460 NULL, refs_to_drop,
4461 is_data);
4462 BUG_ON(ret);
4463 btrfs_release_path(extent_root, path);
4464 path->leave_spinning = 1;
4465
4466 key.objectid = bytenr;
4467 key.type = BTRFS_EXTENT_ITEM_KEY;
4468 key.offset = num_bytes;
4469
4470 ret = btrfs_search_slot(trans, extent_root,
4471 &key, path, -1, 1);
4472 if (ret) {
4473 printk(KERN_ERR "umm, got %d back from search"
4474 ", was looking for %llu\n", ret,
4475 (unsigned long long)bytenr);
4476 btrfs_print_leaf(extent_root, path->nodes[0]);
4477 }
4478 BUG_ON(ret);
4479 extent_slot = path->slots[0];
4480 }
4481 } else {
4482 btrfs_print_leaf(extent_root, path->nodes[0]);
4483 WARN_ON(1);
4484 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4485 "parent %llu root %llu owner %llu offset %llu\n",
4486 (unsigned long long)bytenr,
4487 (unsigned long long)parent,
4488 (unsigned long long)root_objectid,
4489 (unsigned long long)owner_objectid,
4490 (unsigned long long)owner_offset);
4491 }
4492
4493 leaf = path->nodes[0];
4494 item_size = btrfs_item_size_nr(leaf, extent_slot);
4495#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4496 if (item_size < sizeof(*ei)) {
4497 BUG_ON(found_extent || extent_slot != path->slots[0]);
4498 ret = convert_extent_item_v0(trans, extent_root, path,
4499 owner_objectid, 0);
4500 BUG_ON(ret < 0);
4501
4502 btrfs_release_path(extent_root, path);
4503 path->leave_spinning = 1;
4504
4505 key.objectid = bytenr;
4506 key.type = BTRFS_EXTENT_ITEM_KEY;
4507 key.offset = num_bytes;
4508
4509 ret = btrfs_search_slot(trans, extent_root, &key, path,
4510 -1, 1);
4511 if (ret) {
4512 printk(KERN_ERR "umm, got %d back from search"
4513 ", was looking for %llu\n", ret,
4514 (unsigned long long)bytenr);
4515 btrfs_print_leaf(extent_root, path->nodes[0]);
4516 }
4517 BUG_ON(ret);
4518 extent_slot = path->slots[0];
4519 leaf = path->nodes[0];
4520 item_size = btrfs_item_size_nr(leaf, extent_slot);
4521 }
4522#endif
4523 BUG_ON(item_size < sizeof(*ei));
4524 ei = btrfs_item_ptr(leaf, extent_slot,
4525 struct btrfs_extent_item);
4526 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4527 struct btrfs_tree_block_info *bi;
4528 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4529 bi = (struct btrfs_tree_block_info *)(ei + 1);
4530 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4531 }
4532
4533 refs = btrfs_extent_refs(leaf, ei);
4534 BUG_ON(refs < refs_to_drop);
4535 refs -= refs_to_drop;
4536
4537 if (refs > 0) {
4538 if (extent_op)
4539 __run_delayed_extent_op(extent_op, leaf, ei);
4540 /*
4541 * In the case of inline back ref, reference count will
4542 * be updated by remove_extent_backref
4543 */
4544 if (iref) {
4545 BUG_ON(!found_extent);
4546 } else {
4547 btrfs_set_extent_refs(leaf, ei, refs);
4548 btrfs_mark_buffer_dirty(leaf);
4549 }
4550 if (found_extent) {
4551 ret = remove_extent_backref(trans, extent_root, path,
4552 iref, refs_to_drop,
4553 is_data);
4554 BUG_ON(ret);
4555 }
4556 } else {
4557 if (found_extent) {
4558 BUG_ON(is_data && refs_to_drop !=
4559 extent_data_ref_count(root, path, iref));
4560 if (iref) {
4561 BUG_ON(path->slots[0] != extent_slot);
4562 } else {
4563 BUG_ON(path->slots[0] != extent_slot + 1);
4564 path->slots[0] = extent_slot;
4565 num_to_del = 2;
4566 }
4567 }
4568
4569 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4570 num_to_del);
4571 BUG_ON(ret);
4572 btrfs_release_path(extent_root, path);
4573
4574 if (is_data) {
4575 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4576 BUG_ON(ret);
4577 } else {
4578 invalidate_mapping_pages(info->btree_inode->i_mapping,
4579 bytenr >> PAGE_CACHE_SHIFT,
4580 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4581 }
4582
4583 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4584 BUG_ON(ret);
4585 }
4586 btrfs_free_path(path);
4587 return ret;
4588}
4589
4590/*
4591 * when we free an block, it is possible (and likely) that we free the last
4592 * delayed ref for that extent as well. This searches the delayed ref tree for
4593 * a given extent, and if there are no other delayed refs to be processed, it
4594 * removes it from the tree.
4595 */
4596static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4597 struct btrfs_root *root, u64 bytenr)
4598{
4599 struct btrfs_delayed_ref_head *head;
4600 struct btrfs_delayed_ref_root *delayed_refs;
4601 struct btrfs_delayed_ref_node *ref;
4602 struct rb_node *node;
4603 int ret = 0;
4604
4605 delayed_refs = &trans->transaction->delayed_refs;
4606 spin_lock(&delayed_refs->lock);
4607 head = btrfs_find_delayed_ref_head(trans, bytenr);
4608 if (!head)
4609 goto out;
4610
4611 node = rb_prev(&head->node.rb_node);
4612 if (!node)
4613 goto out;
4614
4615 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4616
4617 /* there are still entries for this ref, we can't drop it */
4618 if (ref->bytenr == bytenr)
4619 goto out;
4620
4621 if (head->extent_op) {
4622 if (!head->must_insert_reserved)
4623 goto out;
4624 kfree(head->extent_op);
4625 head->extent_op = NULL;
4626 }
4627
4628 /*
4629 * waiting for the lock here would deadlock. If someone else has it
4630 * locked they are already in the process of dropping it anyway
4631 */
4632 if (!mutex_trylock(&head->mutex))
4633 goto out;
4634
4635 /*
4636 * at this point we have a head with no other entries. Go
4637 * ahead and process it.
4638 */
4639 head->node.in_tree = 0;
4640 rb_erase(&head->node.rb_node, &delayed_refs->root);
4641
4642 delayed_refs->num_entries--;
4643
4644 /*
4645 * we don't take a ref on the node because we're removing it from the
4646 * tree, so we just steal the ref the tree was holding.
4647 */
4648 delayed_refs->num_heads--;
4649 if (list_empty(&head->cluster))
4650 delayed_refs->num_heads_ready--;
4651
4652 list_del_init(&head->cluster);
4653 spin_unlock(&delayed_refs->lock);
4654
4655 BUG_ON(head->extent_op);
4656 if (head->must_insert_reserved)
4657 ret = 1;
4658
4659 mutex_unlock(&head->mutex);
4660 btrfs_put_delayed_ref(&head->node);
4661 return ret;
4662out:
4663 spin_unlock(&delayed_refs->lock);
4664 return 0;
4665}
4666
4667void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4668 struct btrfs_root *root,
4669 struct extent_buffer *buf,
4670 u64 parent, int last_ref)
4671{
4672 struct btrfs_block_rsv *block_rsv;
4673 struct btrfs_block_group_cache *cache = NULL;
4674 int ret;
4675
4676 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4677 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4678 parent, root->root_key.objectid,
4679 btrfs_header_level(buf),
4680 BTRFS_DROP_DELAYED_REF, NULL);
4681 BUG_ON(ret);
4682 }
4683
4684 if (!last_ref)
4685 return;
4686
4687 block_rsv = get_block_rsv(trans, root);
4688 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4689 if (block_rsv->space_info != cache->space_info)
4690 goto out;
4691
4692 if (btrfs_header_generation(buf) == trans->transid) {
4693 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4694 ret = check_ref_cleanup(trans, root, buf->start);
4695 if (!ret)
4696 goto pin;
4697 }
4698
4699 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4700 pin_down_extent(root, cache, buf->start, buf->len, 1);
4701 goto pin;
4702 }
4703
4704 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4705
4706 btrfs_add_free_space(cache, buf->start, buf->len);
4707 ret = update_reserved_bytes(cache, buf->len, 0, 0);
4708 if (ret == -EAGAIN) {
4709 /* block group became read-only */
4710 update_reserved_bytes(cache, buf->len, 0, 1);
4711 goto out;
4712 }
4713
4714 ret = 1;
4715 spin_lock(&block_rsv->lock);
4716 if (block_rsv->reserved < block_rsv->size) {
4717 block_rsv->reserved += buf->len;
4718 ret = 0;
4719 }
4720 spin_unlock(&block_rsv->lock);
4721
4722 if (ret) {
4723 spin_lock(&cache->space_info->lock);
4724 cache->space_info->bytes_reserved -= buf->len;
4725 cache->space_info->reservation_progress++;
4726 spin_unlock(&cache->space_info->lock);
4727 }
4728 goto out;
4729 }
4730pin:
4731 if (block_rsv->durable && !cache->ro) {
4732 ret = 0;
4733 spin_lock(&cache->lock);
4734 if (!cache->ro) {
4735 cache->reserved_pinned += buf->len;
4736 ret = 1;
4737 }
4738 spin_unlock(&cache->lock);
4739
4740 if (ret) {
4741 spin_lock(&block_rsv->lock);
4742 block_rsv->freed[trans->transid & 0x1] += buf->len;
4743 spin_unlock(&block_rsv->lock);
4744 }
4745 }
4746out:
4747 btrfs_put_block_group(cache);
4748}
4749
4750int btrfs_free_extent(struct btrfs_trans_handle *trans,
4751 struct btrfs_root *root,
4752 u64 bytenr, u64 num_bytes, u64 parent,
4753 u64 root_objectid, u64 owner, u64 offset)
4754{
4755 int ret;
4756
4757 /*
4758 * tree log blocks never actually go into the extent allocation
4759 * tree, just update pinning info and exit early.
4760 */
4761 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4762 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4763 /* unlocks the pinned mutex */
4764 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4765 ret = 0;
4766 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4767 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4768 parent, root_objectid, (int)owner,
4769 BTRFS_DROP_DELAYED_REF, NULL);
4770 BUG_ON(ret);
4771 } else {
4772 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4773 parent, root_objectid, owner,
4774 offset, BTRFS_DROP_DELAYED_REF, NULL);
4775 BUG_ON(ret);
4776 }
4777 return ret;
4778}
4779
4780static u64 stripe_align(struct btrfs_root *root, u64 val)
4781{
4782 u64 mask = ((u64)root->stripesize - 1);
4783 u64 ret = (val + mask) & ~mask;
4784 return ret;
4785}
4786
4787/*
4788 * when we wait for progress in the block group caching, its because
4789 * our allocation attempt failed at least once. So, we must sleep
4790 * and let some progress happen before we try again.
4791 *
4792 * This function will sleep at least once waiting for new free space to
4793 * show up, and then it will check the block group free space numbers
4794 * for our min num_bytes. Another option is to have it go ahead
4795 * and look in the rbtree for a free extent of a given size, but this
4796 * is a good start.
4797 */
4798static noinline int
4799wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4800 u64 num_bytes)
4801{
4802 struct btrfs_caching_control *caching_ctl;
4803 DEFINE_WAIT(wait);
4804
4805 caching_ctl = get_caching_control(cache);
4806 if (!caching_ctl)
4807 return 0;
4808
4809 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4810 (cache->free_space >= num_bytes));
4811
4812 put_caching_control(caching_ctl);
4813 return 0;
4814}
4815
4816static noinline int
4817wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4818{
4819 struct btrfs_caching_control *caching_ctl;
4820 DEFINE_WAIT(wait);
4821
4822 caching_ctl = get_caching_control(cache);
4823 if (!caching_ctl)
4824 return 0;
4825
4826 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4827
4828 put_caching_control(caching_ctl);
4829 return 0;
4830}
4831
4832static int get_block_group_index(struct btrfs_block_group_cache *cache)
4833{
4834 int index;
4835 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4836 index = 0;
4837 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4838 index = 1;
4839 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4840 index = 2;
4841 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4842 index = 3;
4843 else
4844 index = 4;
4845 return index;
4846}
4847
4848enum btrfs_loop_type {
4849 LOOP_FIND_IDEAL = 0,
4850 LOOP_CACHING_NOWAIT = 1,
4851 LOOP_CACHING_WAIT = 2,
4852 LOOP_ALLOC_CHUNK = 3,
4853 LOOP_NO_EMPTY_SIZE = 4,
4854};
4855
4856/*
4857 * walks the btree of allocated extents and find a hole of a given size.
4858 * The key ins is changed to record the hole:
4859 * ins->objectid == block start
4860 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4861 * ins->offset == number of blocks
4862 * Any available blocks before search_start are skipped.
4863 */
4864static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4865 struct btrfs_root *orig_root,
4866 u64 num_bytes, u64 empty_size,
4867 u64 search_start, u64 search_end,
4868 u64 hint_byte, struct btrfs_key *ins,
4869 int data)
4870{
4871 int ret = 0;
4872 struct btrfs_root *root = orig_root->fs_info->extent_root;
4873 struct btrfs_free_cluster *last_ptr = NULL;
4874 struct btrfs_block_group_cache *block_group = NULL;
4875 int empty_cluster = 2 * 1024 * 1024;
4876 int allowed_chunk_alloc = 0;
4877 int done_chunk_alloc = 0;
4878 struct btrfs_space_info *space_info;
4879 int last_ptr_loop = 0;
4880 int loop = 0;
4881 int index = 0;
4882 bool found_uncached_bg = false;
4883 bool failed_cluster_refill = false;
4884 bool failed_alloc = false;
4885 bool use_cluster = true;
4886 u64 ideal_cache_percent = 0;
4887 u64 ideal_cache_offset = 0;
4888
4889 WARN_ON(num_bytes < root->sectorsize);
4890 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4891 ins->objectid = 0;
4892 ins->offset = 0;
4893
4894 space_info = __find_space_info(root->fs_info, data);
4895 if (!space_info) {
4896 printk(KERN_ERR "No space info for %d\n", data);
4897 return -ENOSPC;
4898 }
4899
4900 /*
4901 * If the space info is for both data and metadata it means we have a
4902 * small filesystem and we can't use the clustering stuff.
4903 */
4904 if (btrfs_mixed_space_info(space_info))
4905 use_cluster = false;
4906
4907 if (orig_root->ref_cows || empty_size)
4908 allowed_chunk_alloc = 1;
4909
4910 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4911 last_ptr = &root->fs_info->meta_alloc_cluster;
4912 if (!btrfs_test_opt(root, SSD))
4913 empty_cluster = 64 * 1024;
4914 }
4915
4916 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4917 btrfs_test_opt(root, SSD)) {
4918 last_ptr = &root->fs_info->data_alloc_cluster;
4919 }
4920
4921 if (last_ptr) {
4922 spin_lock(&last_ptr->lock);
4923 if (last_ptr->block_group)
4924 hint_byte = last_ptr->window_start;
4925 spin_unlock(&last_ptr->lock);
4926 }
4927
4928 search_start = max(search_start, first_logical_byte(root, 0));
4929 search_start = max(search_start, hint_byte);
4930
4931 if (!last_ptr)
4932 empty_cluster = 0;
4933
4934 if (search_start == hint_byte) {
4935ideal_cache:
4936 block_group = btrfs_lookup_block_group(root->fs_info,
4937 search_start);
4938 /*
4939 * we don't want to use the block group if it doesn't match our
4940 * allocation bits, or if its not cached.
4941 *
4942 * However if we are re-searching with an ideal block group
4943 * picked out then we don't care that the block group is cached.
4944 */
4945 if (block_group && block_group_bits(block_group, data) &&
4946 (block_group->cached != BTRFS_CACHE_NO ||
4947 search_start == ideal_cache_offset)) {
4948 down_read(&space_info->groups_sem);
4949 if (list_empty(&block_group->list) ||
4950 block_group->ro) {
4951 /*
4952 * someone is removing this block group,
4953 * we can't jump into the have_block_group
4954 * target because our list pointers are not
4955 * valid
4956 */
4957 btrfs_put_block_group(block_group);
4958 up_read(&space_info->groups_sem);
4959 } else {
4960 index = get_block_group_index(block_group);
4961 goto have_block_group;
4962 }
4963 } else if (block_group) {
4964 btrfs_put_block_group(block_group);
4965 }
4966 }
4967search:
4968 down_read(&space_info->groups_sem);
4969 list_for_each_entry(block_group, &space_info->block_groups[index],
4970 list) {
4971 u64 offset;
4972 int cached;
4973
4974 btrfs_get_block_group(block_group);
4975 search_start = block_group->key.objectid;
4976
4977 /*
4978 * this can happen if we end up cycling through all the
4979 * raid types, but we want to make sure we only allocate
4980 * for the proper type.
4981 */
4982 if (!block_group_bits(block_group, data)) {
4983 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4984 BTRFS_BLOCK_GROUP_RAID1 |
4985 BTRFS_BLOCK_GROUP_RAID10;
4986
4987 /*
4988 * if they asked for extra copies and this block group
4989 * doesn't provide them, bail. This does allow us to
4990 * fill raid0 from raid1.
4991 */
4992 if ((data & extra) && !(block_group->flags & extra))
4993 goto loop;
4994 }
4995
4996have_block_group:
4997 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4998 u64 free_percent;
4999
5000 ret = cache_block_group(block_group, trans,
5001 orig_root, 1);
5002 if (block_group->cached == BTRFS_CACHE_FINISHED)
5003 goto have_block_group;
5004
5005 free_percent = btrfs_block_group_used(&block_group->item);
5006 free_percent *= 100;
5007 free_percent = div64_u64(free_percent,
5008 block_group->key.offset);
5009 free_percent = 100 - free_percent;
5010 if (free_percent > ideal_cache_percent &&
5011 likely(!block_group->ro)) {
5012 ideal_cache_offset = block_group->key.objectid;
5013 ideal_cache_percent = free_percent;
5014 }
5015
5016 /*
5017 * We only want to start kthread caching if we are at
5018 * the point where we will wait for caching to make
5019 * progress, or if our ideal search is over and we've
5020 * found somebody to start caching.
5021 */
5022 if (loop > LOOP_CACHING_NOWAIT ||
5023 (loop > LOOP_FIND_IDEAL &&
5024 atomic_read(&space_info->caching_threads) < 2)) {
5025 ret = cache_block_group(block_group, trans,
5026 orig_root, 0);
5027 BUG_ON(ret);
5028 }
5029 found_uncached_bg = true;
5030
5031 /*
5032 * If loop is set for cached only, try the next block
5033 * group.
5034 */
5035 if (loop == LOOP_FIND_IDEAL)
5036 goto loop;
5037 }
5038
5039 cached = block_group_cache_done(block_group);
5040 if (unlikely(!cached))
5041 found_uncached_bg = true;
5042
5043 if (unlikely(block_group->ro))
5044 goto loop;
5045
5046 /*
5047 * Ok we want to try and use the cluster allocator, so lets look
5048 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5049 * have tried the cluster allocator plenty of times at this
5050 * point and not have found anything, so we are likely way too
5051 * fragmented for the clustering stuff to find anything, so lets
5052 * just skip it and let the allocator find whatever block it can
5053 * find
5054 */
5055 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5056 /*
5057 * the refill lock keeps out other
5058 * people trying to start a new cluster
5059 */
5060 spin_lock(&last_ptr->refill_lock);
5061 if (last_ptr->block_group &&
5062 (last_ptr->block_group->ro ||
5063 !block_group_bits(last_ptr->block_group, data))) {
5064 offset = 0;
5065 goto refill_cluster;
5066 }
5067
5068 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5069 num_bytes, search_start);
5070 if (offset) {
5071 /* we have a block, we're done */
5072 spin_unlock(&last_ptr->refill_lock);
5073 goto checks;
5074 }
5075
5076 spin_lock(&last_ptr->lock);
5077 /*
5078 * whoops, this cluster doesn't actually point to
5079 * this block group. Get a ref on the block
5080 * group is does point to and try again
5081 */
5082 if (!last_ptr_loop && last_ptr->block_group &&
5083 last_ptr->block_group != block_group) {
5084
5085 btrfs_put_block_group(block_group);
5086 block_group = last_ptr->block_group;
5087 btrfs_get_block_group(block_group);
5088 spin_unlock(&last_ptr->lock);
5089 spin_unlock(&last_ptr->refill_lock);
5090
5091 last_ptr_loop = 1;
5092 search_start = block_group->key.objectid;
5093 /*
5094 * we know this block group is properly
5095 * in the list because
5096 * btrfs_remove_block_group, drops the
5097 * cluster before it removes the block
5098 * group from the list
5099 */
5100 goto have_block_group;
5101 }
5102 spin_unlock(&last_ptr->lock);
5103refill_cluster:
5104 /*
5105 * this cluster didn't work out, free it and
5106 * start over
5107 */
5108 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5109
5110 last_ptr_loop = 0;
5111
5112 /* allocate a cluster in this block group */
5113 ret = btrfs_find_space_cluster(trans, root,
5114 block_group, last_ptr,
5115 offset, num_bytes,
5116 empty_cluster + empty_size);
5117 if (ret == 0) {
5118 /*
5119 * now pull our allocation out of this
5120 * cluster
5121 */
5122 offset = btrfs_alloc_from_cluster(block_group,
5123 last_ptr, num_bytes,
5124 search_start);
5125 if (offset) {
5126 /* we found one, proceed */
5127 spin_unlock(&last_ptr->refill_lock);
5128 goto checks;
5129 }
5130 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5131 && !failed_cluster_refill) {
5132 spin_unlock(&last_ptr->refill_lock);
5133
5134 failed_cluster_refill = true;
5135 wait_block_group_cache_progress(block_group,
5136 num_bytes + empty_cluster + empty_size);
5137 goto have_block_group;
5138 }
5139
5140 /*
5141 * at this point we either didn't find a cluster
5142 * or we weren't able to allocate a block from our
5143 * cluster. Free the cluster we've been trying
5144 * to use, and go to the next block group
5145 */
5146 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5147 spin_unlock(&last_ptr->refill_lock);
5148 goto loop;
5149 }
5150
5151 offset = btrfs_find_space_for_alloc(block_group, search_start,
5152 num_bytes, empty_size);
5153 /*
5154 * If we didn't find a chunk, and we haven't failed on this
5155 * block group before, and this block group is in the middle of
5156 * caching and we are ok with waiting, then go ahead and wait
5157 * for progress to be made, and set failed_alloc to true.
5158 *
5159 * If failed_alloc is true then we've already waited on this
5160 * block group once and should move on to the next block group.
5161 */
5162 if (!offset && !failed_alloc && !cached &&
5163 loop > LOOP_CACHING_NOWAIT) {
5164 wait_block_group_cache_progress(block_group,
5165 num_bytes + empty_size);
5166 failed_alloc = true;
5167 goto have_block_group;
5168 } else if (!offset) {
5169 goto loop;
5170 }
5171checks:
5172 search_start = stripe_align(root, offset);
5173 /* move on to the next group */
5174 if (search_start + num_bytes >= search_end) {
5175 btrfs_add_free_space(block_group, offset, num_bytes);
5176 goto loop;
5177 }
5178
5179 /* move on to the next group */
5180 if (search_start + num_bytes >
5181 block_group->key.objectid + block_group->key.offset) {
5182 btrfs_add_free_space(block_group, offset, num_bytes);
5183 goto loop;
5184 }
5185
5186 ins->objectid = search_start;
5187 ins->offset = num_bytes;
5188
5189 if (offset < search_start)
5190 btrfs_add_free_space(block_group, offset,
5191 search_start - offset);
5192 BUG_ON(offset > search_start);
5193
5194 ret = update_reserved_bytes(block_group, num_bytes, 1,
5195 (data & BTRFS_BLOCK_GROUP_DATA));
5196 if (ret == -EAGAIN) {
5197 btrfs_add_free_space(block_group, offset, num_bytes);
5198 goto loop;
5199 }
5200
5201 /* we are all good, lets return */
5202 ins->objectid = search_start;
5203 ins->offset = num_bytes;
5204
5205 if (offset < search_start)
5206 btrfs_add_free_space(block_group, offset,
5207 search_start - offset);
5208 BUG_ON(offset > search_start);
5209 break;
5210loop:
5211 failed_cluster_refill = false;
5212 failed_alloc = false;
5213 BUG_ON(index != get_block_group_index(block_group));
5214 btrfs_put_block_group(block_group);
5215 }
5216 up_read(&space_info->groups_sem);
5217
5218 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5219 goto search;
5220
5221 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5222 * for them to make caching progress. Also
5223 * determine the best possible bg to cache
5224 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5225 * caching kthreads as we move along
5226 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5227 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5228 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5229 * again
5230 */
5231 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
5232 (found_uncached_bg || empty_size || empty_cluster ||
5233 allowed_chunk_alloc)) {
5234 index = 0;
5235 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5236 found_uncached_bg = false;
5237 loop++;
5238 if (!ideal_cache_percent &&
5239 atomic_read(&space_info->caching_threads))
5240 goto search;
5241
5242 /*
5243 * 1 of the following 2 things have happened so far
5244 *
5245 * 1) We found an ideal block group for caching that
5246 * is mostly full and will cache quickly, so we might
5247 * as well wait for it.
5248 *
5249 * 2) We searched for cached only and we didn't find
5250 * anything, and we didn't start any caching kthreads
5251 * either, so chances are we will loop through and
5252 * start a couple caching kthreads, and then come back
5253 * around and just wait for them. This will be slower
5254 * because we will have 2 caching kthreads reading at
5255 * the same time when we could have just started one
5256 * and waited for it to get far enough to give us an
5257 * allocation, so go ahead and go to the wait caching
5258 * loop.
5259 */
5260 loop = LOOP_CACHING_WAIT;
5261 search_start = ideal_cache_offset;
5262 ideal_cache_percent = 0;
5263 goto ideal_cache;
5264 } else if (loop == LOOP_FIND_IDEAL) {
5265 /*
5266 * Didn't find a uncached bg, wait on anything we find
5267 * next.
5268 */
5269 loop = LOOP_CACHING_WAIT;
5270 goto search;
5271 }
5272
5273 if (loop < LOOP_CACHING_WAIT) {
5274 loop++;
5275 goto search;
5276 }
5277
5278 if (loop == LOOP_ALLOC_CHUNK) {
5279 empty_size = 0;
5280 empty_cluster = 0;
5281 }
5282
5283 if (allowed_chunk_alloc) {
5284 ret = do_chunk_alloc(trans, root, num_bytes +
5285 2 * 1024 * 1024, data, 1);
5286 allowed_chunk_alloc = 0;
5287 done_chunk_alloc = 1;
5288 } else if (!done_chunk_alloc) {
5289 space_info->force_alloc = 1;
5290 }
5291
5292 if (loop < LOOP_NO_EMPTY_SIZE) {
5293 loop++;
5294 goto search;
5295 }
5296 ret = -ENOSPC;
5297 } else if (!ins->objectid) {
5298 ret = -ENOSPC;
5299 }
5300
5301 /* we found what we needed */
5302 if (ins->objectid) {
5303 if (!(data & BTRFS_BLOCK_GROUP_DATA))
5304 trans->block_group = block_group->key.objectid;
5305
5306 btrfs_put_block_group(block_group);
5307 ret = 0;
5308 }
5309
5310 return ret;
5311}
5312
5313static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5314 int dump_block_groups)
5315{
5316 struct btrfs_block_group_cache *cache;
5317 int index = 0;
5318
5319 spin_lock(&info->lock);
5320 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5321 (unsigned long long)(info->total_bytes - info->bytes_used -
5322 info->bytes_pinned - info->bytes_reserved -
5323 info->bytes_readonly),
5324 (info->full) ? "" : "not ");
5325 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5326 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5327 (unsigned long long)info->total_bytes,
5328 (unsigned long long)info->bytes_used,
5329 (unsigned long long)info->bytes_pinned,
5330 (unsigned long long)info->bytes_reserved,
5331 (unsigned long long)info->bytes_may_use,
5332 (unsigned long long)info->bytes_readonly);
5333 spin_unlock(&info->lock);
5334
5335 if (!dump_block_groups)
5336 return;
5337
5338 down_read(&info->groups_sem);
5339again:
5340 list_for_each_entry(cache, &info->block_groups[index], list) {
5341 spin_lock(&cache->lock);
5342 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5343 "%llu pinned %llu reserved\n",
5344 (unsigned long long)cache->key.objectid,
5345 (unsigned long long)cache->key.offset,
5346 (unsigned long long)btrfs_block_group_used(&cache->item),
5347 (unsigned long long)cache->pinned,
5348 (unsigned long long)cache->reserved);
5349 btrfs_dump_free_space(cache, bytes);
5350 spin_unlock(&cache->lock);
5351 }
5352 if (++index < BTRFS_NR_RAID_TYPES)
5353 goto again;
5354 up_read(&info->groups_sem);
5355}
5356
5357int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5358 struct btrfs_root *root,
5359 u64 num_bytes, u64 min_alloc_size,
5360 u64 empty_size, u64 hint_byte,
5361 u64 search_end, struct btrfs_key *ins,
5362 u64 data)
5363{
5364 int ret;
5365 u64 search_start = 0;
5366
5367 data = btrfs_get_alloc_profile(root, data);
5368again:
5369 /*
5370 * the only place that sets empty_size is btrfs_realloc_node, which
5371 * is not called recursively on allocations
5372 */
5373 if (empty_size || root->ref_cows)
5374 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5375 num_bytes + 2 * 1024 * 1024, data, 0);
5376
5377 WARN_ON(num_bytes < root->sectorsize);
5378 ret = find_free_extent(trans, root, num_bytes, empty_size,
5379 search_start, search_end, hint_byte,
5380 ins, data);
5381
5382 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5383 num_bytes = num_bytes >> 1;
5384 num_bytes = num_bytes & ~(root->sectorsize - 1);
5385 num_bytes = max(num_bytes, min_alloc_size);
5386 do_chunk_alloc(trans, root->fs_info->extent_root,
5387 num_bytes, data, 1);
5388 goto again;
5389 }
5390 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5391 struct btrfs_space_info *sinfo;
5392
5393 sinfo = __find_space_info(root->fs_info, data);
5394 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5395 "wanted %llu\n", (unsigned long long)data,
5396 (unsigned long long)num_bytes);
5397 dump_space_info(sinfo, num_bytes, 1);
5398 }
5399
5400 return ret;
5401}
5402
5403int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5404{
5405 struct btrfs_block_group_cache *cache;
5406 int ret = 0;
5407
5408 cache = btrfs_lookup_block_group(root->fs_info, start);
5409 if (!cache) {
5410 printk(KERN_ERR "Unable to find block group for %llu\n",
5411 (unsigned long long)start);
5412 return -ENOSPC;
5413 }
5414
5415 ret = btrfs_discard_extent(root, start, len);
5416
5417 btrfs_add_free_space(cache, start, len);
5418 update_reserved_bytes(cache, len, 0, 1);
5419 btrfs_put_block_group(cache);
5420
5421 return ret;
5422}
5423
5424static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5425 struct btrfs_root *root,
5426 u64 parent, u64 root_objectid,
5427 u64 flags, u64 owner, u64 offset,
5428 struct btrfs_key *ins, int ref_mod)
5429{
5430 int ret;
5431 struct btrfs_fs_info *fs_info = root->fs_info;
5432 struct btrfs_extent_item *extent_item;
5433 struct btrfs_extent_inline_ref *iref;
5434 struct btrfs_path *path;
5435 struct extent_buffer *leaf;
5436 int type;
5437 u32 size;
5438
5439 if (parent > 0)
5440 type = BTRFS_SHARED_DATA_REF_KEY;
5441 else
5442 type = BTRFS_EXTENT_DATA_REF_KEY;
5443
5444 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5445
5446 path = btrfs_alloc_path();
5447 BUG_ON(!path);
5448
5449 path->leave_spinning = 1;
5450 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5451 ins, size);
5452 BUG_ON(ret);
5453
5454 leaf = path->nodes[0];
5455 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5456 struct btrfs_extent_item);
5457 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5458 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5459 btrfs_set_extent_flags(leaf, extent_item,
5460 flags | BTRFS_EXTENT_FLAG_DATA);
5461
5462 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5463 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5464 if (parent > 0) {
5465 struct btrfs_shared_data_ref *ref;
5466 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5467 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5468 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5469 } else {
5470 struct btrfs_extent_data_ref *ref;
5471 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5472 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5473 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5474 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5475 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5476 }
5477
5478 btrfs_mark_buffer_dirty(path->nodes[0]);
5479 btrfs_free_path(path);
5480
5481 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5482 if (ret) {
5483 printk(KERN_ERR "btrfs update block group failed for %llu "
5484 "%llu\n", (unsigned long long)ins->objectid,
5485 (unsigned long long)ins->offset);
5486 BUG();
5487 }
5488 return ret;
5489}
5490
5491static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5492 struct btrfs_root *root,
5493 u64 parent, u64 root_objectid,
5494 u64 flags, struct btrfs_disk_key *key,
5495 int level, struct btrfs_key *ins)
5496{
5497 int ret;
5498 struct btrfs_fs_info *fs_info = root->fs_info;
5499 struct btrfs_extent_item *extent_item;
5500 struct btrfs_tree_block_info *block_info;
5501 struct btrfs_extent_inline_ref *iref;
5502 struct btrfs_path *path;
5503 struct extent_buffer *leaf;
5504 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5505
5506 path = btrfs_alloc_path();
5507 BUG_ON(!path);
5508
5509 path->leave_spinning = 1;
5510 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5511 ins, size);
5512 BUG_ON(ret);
5513
5514 leaf = path->nodes[0];
5515 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5516 struct btrfs_extent_item);
5517 btrfs_set_extent_refs(leaf, extent_item, 1);
5518 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5519 btrfs_set_extent_flags(leaf, extent_item,
5520 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5521 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5522
5523 btrfs_set_tree_block_key(leaf, block_info, key);
5524 btrfs_set_tree_block_level(leaf, block_info, level);
5525
5526 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5527 if (parent > 0) {
5528 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5529 btrfs_set_extent_inline_ref_type(leaf, iref,
5530 BTRFS_SHARED_BLOCK_REF_KEY);
5531 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5532 } else {
5533 btrfs_set_extent_inline_ref_type(leaf, iref,
5534 BTRFS_TREE_BLOCK_REF_KEY);
5535 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5536 }
5537
5538 btrfs_mark_buffer_dirty(leaf);
5539 btrfs_free_path(path);
5540
5541 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5542 if (ret) {
5543 printk(KERN_ERR "btrfs update block group failed for %llu "
5544 "%llu\n", (unsigned long long)ins->objectid,
5545 (unsigned long long)ins->offset);
5546 BUG();
5547 }
5548 return ret;
5549}
5550
5551int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5552 struct btrfs_root *root,
5553 u64 root_objectid, u64 owner,
5554 u64 offset, struct btrfs_key *ins)
5555{
5556 int ret;
5557
5558 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5559
5560 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5561 0, root_objectid, owner, offset,
5562 BTRFS_ADD_DELAYED_EXTENT, NULL);
5563 return ret;
5564}
5565
5566/*
5567 * this is used by the tree logging recovery code. It records that
5568 * an extent has been allocated and makes sure to clear the free
5569 * space cache bits as well
5570 */
5571int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5572 struct btrfs_root *root,
5573 u64 root_objectid, u64 owner, u64 offset,
5574 struct btrfs_key *ins)
5575{
5576 int ret;
5577 struct btrfs_block_group_cache *block_group;
5578 struct btrfs_caching_control *caching_ctl;
5579 u64 start = ins->objectid;
5580 u64 num_bytes = ins->offset;
5581
5582 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5583 cache_block_group(block_group, trans, NULL, 0);
5584 caching_ctl = get_caching_control(block_group);
5585
5586 if (!caching_ctl) {
5587 BUG_ON(!block_group_cache_done(block_group));
5588 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5589 BUG_ON(ret);
5590 } else {
5591 mutex_lock(&caching_ctl->mutex);
5592
5593 if (start >= caching_ctl->progress) {
5594 ret = add_excluded_extent(root, start, num_bytes);
5595 BUG_ON(ret);
5596 } else if (start + num_bytes <= caching_ctl->progress) {
5597 ret = btrfs_remove_free_space(block_group,
5598 start, num_bytes);
5599 BUG_ON(ret);
5600 } else {
5601 num_bytes = caching_ctl->progress - start;
5602 ret = btrfs_remove_free_space(block_group,
5603 start, num_bytes);
5604 BUG_ON(ret);
5605
5606 start = caching_ctl->progress;
5607 num_bytes = ins->objectid + ins->offset -
5608 caching_ctl->progress;
5609 ret = add_excluded_extent(root, start, num_bytes);
5610 BUG_ON(ret);
5611 }
5612
5613 mutex_unlock(&caching_ctl->mutex);
5614 put_caching_control(caching_ctl);
5615 }
5616
5617 ret = update_reserved_bytes(block_group, ins->offset, 1, 1);
5618 BUG_ON(ret);
5619 btrfs_put_block_group(block_group);
5620 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5621 0, owner, offset, ins, 1);
5622 return ret;
5623}
5624
5625struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5626 struct btrfs_root *root,
5627 u64 bytenr, u32 blocksize,
5628 int level)
5629{
5630 struct extent_buffer *buf;
5631
5632 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5633 if (!buf)
5634 return ERR_PTR(-ENOMEM);
5635 btrfs_set_header_generation(buf, trans->transid);
5636 btrfs_set_buffer_lockdep_class(buf, level);
5637 btrfs_tree_lock(buf);
5638 clean_tree_block(trans, root, buf);
5639
5640 btrfs_set_lock_blocking(buf);
5641 btrfs_set_buffer_uptodate(buf);
5642
5643 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5644 /*
5645 * we allow two log transactions at a time, use different
5646 * EXENT bit to differentiate dirty pages.
5647 */
5648 if (root->log_transid % 2 == 0)
5649 set_extent_dirty(&root->dirty_log_pages, buf->start,
5650 buf->start + buf->len - 1, GFP_NOFS);
5651 else
5652 set_extent_new(&root->dirty_log_pages, buf->start,
5653 buf->start + buf->len - 1, GFP_NOFS);
5654 } else {
5655 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5656 buf->start + buf->len - 1, GFP_NOFS);
5657 }
5658 trans->blocks_used++;
5659 /* this returns a buffer locked for blocking */
5660 return buf;
5661}
5662
5663static struct btrfs_block_rsv *
5664use_block_rsv(struct btrfs_trans_handle *trans,
5665 struct btrfs_root *root, u32 blocksize)
5666{
5667 struct btrfs_block_rsv *block_rsv;
5668 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5669 int ret;
5670
5671 block_rsv = get_block_rsv(trans, root);
5672
5673 if (block_rsv->size == 0) {
5674 ret = reserve_metadata_bytes(trans, root, block_rsv,
5675 blocksize, 0);
5676 /*
5677 * If we couldn't reserve metadata bytes try and use some from
5678 * the global reserve.
5679 */
5680 if (ret && block_rsv != global_rsv) {
5681 ret = block_rsv_use_bytes(global_rsv, blocksize);
5682 if (!ret)
5683 return global_rsv;
5684 return ERR_PTR(ret);
5685 } else if (ret) {
5686 return ERR_PTR(ret);
5687 }
5688 return block_rsv;
5689 }
5690
5691 ret = block_rsv_use_bytes(block_rsv, blocksize);
5692 if (!ret)
5693 return block_rsv;
5694 if (ret) {
5695 WARN_ON(1);
5696 ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5697 0);
5698 if (!ret) {
5699 spin_lock(&block_rsv->lock);
5700 block_rsv->size += blocksize;
5701 spin_unlock(&block_rsv->lock);
5702 return block_rsv;
5703 } else if (ret && block_rsv != global_rsv) {
5704 ret = block_rsv_use_bytes(global_rsv, blocksize);
5705 if (!ret)
5706 return global_rsv;
5707 }
5708 }
5709
5710 return ERR_PTR(-ENOSPC);
5711}
5712
5713static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5714{
5715 block_rsv_add_bytes(block_rsv, blocksize, 0);
5716 block_rsv_release_bytes(block_rsv, NULL, 0);
5717}
5718
5719/*
5720 * finds a free extent and does all the dirty work required for allocation
5721 * returns the key for the extent through ins, and a tree buffer for
5722 * the first block of the extent through buf.
5723 *
5724 * returns the tree buffer or NULL.
5725 */
5726struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5727 struct btrfs_root *root, u32 blocksize,
5728 u64 parent, u64 root_objectid,
5729 struct btrfs_disk_key *key, int level,
5730 u64 hint, u64 empty_size)
5731{
5732 struct btrfs_key ins;
5733 struct btrfs_block_rsv *block_rsv;
5734 struct extent_buffer *buf;
5735 u64 flags = 0;
5736 int ret;
5737
5738
5739 block_rsv = use_block_rsv(trans, root, blocksize);
5740 if (IS_ERR(block_rsv))
5741 return ERR_CAST(block_rsv);
5742
5743 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5744 empty_size, hint, (u64)-1, &ins, 0);
5745 if (ret) {
5746 unuse_block_rsv(block_rsv, blocksize);
5747 return ERR_PTR(ret);
5748 }
5749
5750 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5751 blocksize, level);
5752 BUG_ON(IS_ERR(buf));
5753
5754 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5755 if (parent == 0)
5756 parent = ins.objectid;
5757 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5758 } else
5759 BUG_ON(parent > 0);
5760
5761 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5762 struct btrfs_delayed_extent_op *extent_op;
5763 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5764 BUG_ON(!extent_op);
5765 if (key)
5766 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5767 else
5768 memset(&extent_op->key, 0, sizeof(extent_op->key));
5769 extent_op->flags_to_set = flags;
5770 extent_op->update_key = 1;
5771 extent_op->update_flags = 1;
5772 extent_op->is_data = 0;
5773
5774 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5775 ins.offset, parent, root_objectid,
5776 level, BTRFS_ADD_DELAYED_EXTENT,
5777 extent_op);
5778 BUG_ON(ret);
5779 }
5780 return buf;
5781}
5782
5783struct walk_control {
5784 u64 refs[BTRFS_MAX_LEVEL];
5785 u64 flags[BTRFS_MAX_LEVEL];
5786 struct btrfs_key update_progress;
5787 int stage;
5788 int level;
5789 int shared_level;
5790 int update_ref;
5791 int keep_locks;
5792 int reada_slot;
5793 int reada_count;
5794};
5795
5796#define DROP_REFERENCE 1
5797#define UPDATE_BACKREF 2
5798
5799static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5800 struct btrfs_root *root,
5801 struct walk_control *wc,
5802 struct btrfs_path *path)
5803{
5804 u64 bytenr;
5805 u64 generation;
5806 u64 refs;
5807 u64 flags;
5808 u32 nritems;
5809 u32 blocksize;
5810 struct btrfs_key key;
5811 struct extent_buffer *eb;
5812 int ret;
5813 int slot;
5814 int nread = 0;
5815
5816 if (path->slots[wc->level] < wc->reada_slot) {
5817 wc->reada_count = wc->reada_count * 2 / 3;
5818 wc->reada_count = max(wc->reada_count, 2);
5819 } else {
5820 wc->reada_count = wc->reada_count * 3 / 2;
5821 wc->reada_count = min_t(int, wc->reada_count,
5822 BTRFS_NODEPTRS_PER_BLOCK(root));
5823 }
5824
5825 eb = path->nodes[wc->level];
5826 nritems = btrfs_header_nritems(eb);
5827 blocksize = btrfs_level_size(root, wc->level - 1);
5828
5829 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5830 if (nread >= wc->reada_count)
5831 break;
5832
5833 cond_resched();
5834 bytenr = btrfs_node_blockptr(eb, slot);
5835 generation = btrfs_node_ptr_generation(eb, slot);
5836
5837 if (slot == path->slots[wc->level])
5838 goto reada;
5839
5840 if (wc->stage == UPDATE_BACKREF &&
5841 generation <= root->root_key.offset)
5842 continue;
5843
5844 /* We don't lock the tree block, it's OK to be racy here */
5845 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5846 &refs, &flags);
5847 BUG_ON(ret);
5848 BUG_ON(refs == 0);
5849
5850 if (wc->stage == DROP_REFERENCE) {
5851 if (refs == 1)
5852 goto reada;
5853
5854 if (wc->level == 1 &&
5855 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5856 continue;
5857 if (!wc->update_ref ||
5858 generation <= root->root_key.offset)
5859 continue;
5860 btrfs_node_key_to_cpu(eb, &key, slot);
5861 ret = btrfs_comp_cpu_keys(&key,
5862 &wc->update_progress);
5863 if (ret < 0)
5864 continue;
5865 } else {
5866 if (wc->level == 1 &&
5867 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5868 continue;
5869 }
5870reada:
5871 ret = readahead_tree_block(root, bytenr, blocksize,
5872 generation);
5873 if (ret)
5874 break;
5875 nread++;
5876 }
5877 wc->reada_slot = slot;
5878}
5879
5880/*
5881 * hepler to process tree block while walking down the tree.
5882 *
5883 * when wc->stage == UPDATE_BACKREF, this function updates
5884 * back refs for pointers in the block.
5885 *
5886 * NOTE: return value 1 means we should stop walking down.
5887 */
5888static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5889 struct btrfs_root *root,
5890 struct btrfs_path *path,
5891 struct walk_control *wc, int lookup_info)
5892{
5893 int level = wc->level;
5894 struct extent_buffer *eb = path->nodes[level];
5895 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5896 int ret;
5897
5898 if (wc->stage == UPDATE_BACKREF &&
5899 btrfs_header_owner(eb) != root->root_key.objectid)
5900 return 1;
5901
5902 /*
5903 * when reference count of tree block is 1, it won't increase
5904 * again. once full backref flag is set, we never clear it.
5905 */
5906 if (lookup_info &&
5907 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5908 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5909 BUG_ON(!path->locks[level]);
5910 ret = btrfs_lookup_extent_info(trans, root,
5911 eb->start, eb->len,
5912 &wc->refs[level],
5913 &wc->flags[level]);
5914 BUG_ON(ret);
5915 BUG_ON(wc->refs[level] == 0);
5916 }
5917
5918 if (wc->stage == DROP_REFERENCE) {
5919 if (wc->refs[level] > 1)
5920 return 1;
5921
5922 if (path->locks[level] && !wc->keep_locks) {
5923 btrfs_tree_unlock(eb);
5924 path->locks[level] = 0;
5925 }
5926 return 0;
5927 }
5928
5929 /* wc->stage == UPDATE_BACKREF */
5930 if (!(wc->flags[level] & flag)) {
5931 BUG_ON(!path->locks[level]);
5932 ret = btrfs_inc_ref(trans, root, eb, 1);
5933 BUG_ON(ret);
5934 ret = btrfs_dec_ref(trans, root, eb, 0);
5935 BUG_ON(ret);
5936 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5937 eb->len, flag, 0);
5938 BUG_ON(ret);
5939 wc->flags[level] |= flag;
5940 }
5941
5942 /*
5943 * the block is shared by multiple trees, so it's not good to
5944 * keep the tree lock
5945 */
5946 if (path->locks[level] && level > 0) {
5947 btrfs_tree_unlock(eb);
5948 path->locks[level] = 0;
5949 }
5950 return 0;
5951}
5952
5953/*
5954 * hepler to process tree block pointer.
5955 *
5956 * when wc->stage == DROP_REFERENCE, this function checks
5957 * reference count of the block pointed to. if the block
5958 * is shared and we need update back refs for the subtree
5959 * rooted at the block, this function changes wc->stage to
5960 * UPDATE_BACKREF. if the block is shared and there is no
5961 * need to update back, this function drops the reference
5962 * to the block.
5963 *
5964 * NOTE: return value 1 means we should stop walking down.
5965 */
5966static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5967 struct btrfs_root *root,
5968 struct btrfs_path *path,
5969 struct walk_control *wc, int *lookup_info)
5970{
5971 u64 bytenr;
5972 u64 generation;
5973 u64 parent;
5974 u32 blocksize;
5975 struct btrfs_key key;
5976 struct extent_buffer *next;
5977 int level = wc->level;
5978 int reada = 0;
5979 int ret = 0;
5980
5981 generation = btrfs_node_ptr_generation(path->nodes[level],
5982 path->slots[level]);
5983 /*
5984 * if the lower level block was created before the snapshot
5985 * was created, we know there is no need to update back refs
5986 * for the subtree
5987 */
5988 if (wc->stage == UPDATE_BACKREF &&
5989 generation <= root->root_key.offset) {
5990 *lookup_info = 1;
5991 return 1;
5992 }
5993
5994 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5995 blocksize = btrfs_level_size(root, level - 1);
5996
5997 next = btrfs_find_tree_block(root, bytenr, blocksize);
5998 if (!next) {
5999 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6000 if (!next)
6001 return -ENOMEM;
6002 reada = 1;
6003 }
6004 btrfs_tree_lock(next);
6005 btrfs_set_lock_blocking(next);
6006
6007 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6008 &wc->refs[level - 1],
6009 &wc->flags[level - 1]);
6010 BUG_ON(ret);
6011 BUG_ON(wc->refs[level - 1] == 0);
6012 *lookup_info = 0;
6013
6014 if (wc->stage == DROP_REFERENCE) {
6015 if (wc->refs[level - 1] > 1) {
6016 if (level == 1 &&
6017 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6018 goto skip;
6019
6020 if (!wc->update_ref ||
6021 generation <= root->root_key.offset)
6022 goto skip;
6023
6024 btrfs_node_key_to_cpu(path->nodes[level], &key,
6025 path->slots[level]);
6026 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6027 if (ret < 0)
6028 goto skip;
6029
6030 wc->stage = UPDATE_BACKREF;
6031 wc->shared_level = level - 1;
6032 }
6033 } else {
6034 if (level == 1 &&
6035 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6036 goto skip;
6037 }
6038
6039 if (!btrfs_buffer_uptodate(next, generation)) {
6040 btrfs_tree_unlock(next);
6041 free_extent_buffer(next);
6042 next = NULL;
6043 *lookup_info = 1;
6044 }
6045
6046 if (!next) {
6047 if (reada && level == 1)
6048 reada_walk_down(trans, root, wc, path);
6049 next = read_tree_block(root, bytenr, blocksize, generation);
6050 btrfs_tree_lock(next);
6051 btrfs_set_lock_blocking(next);
6052 }
6053
6054 level--;
6055 BUG_ON(level != btrfs_header_level(next));
6056 path->nodes[level] = next;
6057 path->slots[level] = 0;
6058 path->locks[level] = 1;
6059 wc->level = level;
6060 if (wc->level == 1)
6061 wc->reada_slot = 0;
6062 return 0;
6063skip:
6064 wc->refs[level - 1] = 0;
6065 wc->flags[level - 1] = 0;
6066 if (wc->stage == DROP_REFERENCE) {
6067 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6068 parent = path->nodes[level]->start;
6069 } else {
6070 BUG_ON(root->root_key.objectid !=
6071 btrfs_header_owner(path->nodes[level]));
6072 parent = 0;
6073 }
6074
6075 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6076 root->root_key.objectid, level - 1, 0);
6077 BUG_ON(ret);
6078 }
6079 btrfs_tree_unlock(next);
6080 free_extent_buffer(next);
6081 *lookup_info = 1;
6082 return 1;
6083}
6084
6085/*
6086 * hepler to process tree block while walking up the tree.
6087 *
6088 * when wc->stage == DROP_REFERENCE, this function drops
6089 * reference count on the block.
6090 *
6091 * when wc->stage == UPDATE_BACKREF, this function changes
6092 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6093 * to UPDATE_BACKREF previously while processing the block.
6094 *
6095 * NOTE: return value 1 means we should stop walking up.
6096 */
6097static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6098 struct btrfs_root *root,
6099 struct btrfs_path *path,
6100 struct walk_control *wc)
6101{
6102 int ret;
6103 int level = wc->level;
6104 struct extent_buffer *eb = path->nodes[level];
6105 u64 parent = 0;
6106
6107 if (wc->stage == UPDATE_BACKREF) {
6108 BUG_ON(wc->shared_level < level);
6109 if (level < wc->shared_level)
6110 goto out;
6111
6112 ret = find_next_key(path, level + 1, &wc->update_progress);
6113 if (ret > 0)
6114 wc->update_ref = 0;
6115
6116 wc->stage = DROP_REFERENCE;
6117 wc->shared_level = -1;
6118 path->slots[level] = 0;
6119
6120 /*
6121 * check reference count again if the block isn't locked.
6122 * we should start walking down the tree again if reference
6123 * count is one.
6124 */
6125 if (!path->locks[level]) {
6126 BUG_ON(level == 0);
6127 btrfs_tree_lock(eb);
6128 btrfs_set_lock_blocking(eb);
6129 path->locks[level] = 1;
6130
6131 ret = btrfs_lookup_extent_info(trans, root,
6132 eb->start, eb->len,
6133 &wc->refs[level],
6134 &wc->flags[level]);
6135 BUG_ON(ret);
6136 BUG_ON(wc->refs[level] == 0);
6137 if (wc->refs[level] == 1) {
6138 btrfs_tree_unlock(eb);
6139 path->locks[level] = 0;
6140 return 1;
6141 }
6142 }
6143 }
6144
6145 /* wc->stage == DROP_REFERENCE */
6146 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6147
6148 if (wc->refs[level] == 1) {
6149 if (level == 0) {
6150 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6151 ret = btrfs_dec_ref(trans, root, eb, 1);
6152 else
6153 ret = btrfs_dec_ref(trans, root, eb, 0);
6154 BUG_ON(ret);
6155 }
6156 /* make block locked assertion in clean_tree_block happy */
6157 if (!path->locks[level] &&
6158 btrfs_header_generation(eb) == trans->transid) {
6159 btrfs_tree_lock(eb);
6160 btrfs_set_lock_blocking(eb);
6161 path->locks[level] = 1;
6162 }
6163 clean_tree_block(trans, root, eb);
6164 }
6165
6166 if (eb == root->node) {
6167 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6168 parent = eb->start;
6169 else
6170 BUG_ON(root->root_key.objectid !=
6171 btrfs_header_owner(eb));
6172 } else {
6173 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6174 parent = path->nodes[level + 1]->start;
6175 else
6176 BUG_ON(root->root_key.objectid !=
6177 btrfs_header_owner(path->nodes[level + 1]));
6178 }
6179
6180 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6181out:
6182 wc->refs[level] = 0;
6183 wc->flags[level] = 0;
6184 return 0;
6185}
6186
6187static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6188 struct btrfs_root *root,
6189 struct btrfs_path *path,
6190 struct walk_control *wc)
6191{
6192 int level = wc->level;
6193 int lookup_info = 1;
6194 int ret;
6195
6196 while (level >= 0) {
6197 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6198 if (ret > 0)
6199 break;
6200
6201 if (level == 0)
6202 break;
6203
6204 if (path->slots[level] >=
6205 btrfs_header_nritems(path->nodes[level]))
6206 break;
6207
6208 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6209 if (ret > 0) {
6210 path->slots[level]++;
6211 continue;
6212 } else if (ret < 0)
6213 return ret;
6214 level = wc->level;
6215 }
6216 return 0;
6217}
6218
6219static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6220 struct btrfs_root *root,
6221 struct btrfs_path *path,
6222 struct walk_control *wc, int max_level)
6223{
6224 int level = wc->level;
6225 int ret;
6226
6227 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6228 while (level < max_level && path->nodes[level]) {
6229 wc->level = level;
6230 if (path->slots[level] + 1 <
6231 btrfs_header_nritems(path->nodes[level])) {
6232 path->slots[level]++;
6233 return 0;
6234 } else {
6235 ret = walk_up_proc(trans, root, path, wc);
6236 if (ret > 0)
6237 return 0;
6238
6239 if (path->locks[level]) {
6240 btrfs_tree_unlock(path->nodes[level]);
6241 path->locks[level] = 0;
6242 }
6243 free_extent_buffer(path->nodes[level]);
6244 path->nodes[level] = NULL;
6245 level++;
6246 }
6247 }
6248 return 1;
6249}
6250
6251/*
6252 * drop a subvolume tree.
6253 *
6254 * this function traverses the tree freeing any blocks that only
6255 * referenced by the tree.
6256 *
6257 * when a shared tree block is found. this function decreases its
6258 * reference count by one. if update_ref is true, this function
6259 * also make sure backrefs for the shared block and all lower level
6260 * blocks are properly updated.
6261 */
6262int btrfs_drop_snapshot(struct btrfs_root *root,
6263 struct btrfs_block_rsv *block_rsv, int update_ref)
6264{
6265 struct btrfs_path *path;
6266 struct btrfs_trans_handle *trans;
6267 struct btrfs_root *tree_root = root->fs_info->tree_root;
6268 struct btrfs_root_item *root_item = &root->root_item;
6269 struct walk_control *wc;
6270 struct btrfs_key key;
6271 int err = 0;
6272 int ret;
6273 int level;
6274
6275 path = btrfs_alloc_path();
6276 BUG_ON(!path);
6277
6278 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6279 BUG_ON(!wc);
6280
6281 trans = btrfs_start_transaction(tree_root, 0);
6282 BUG_ON(IS_ERR(trans));
6283
6284 if (block_rsv)
6285 trans->block_rsv = block_rsv;
6286
6287 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6288 level = btrfs_header_level(root->node);
6289 path->nodes[level] = btrfs_lock_root_node(root);
6290 btrfs_set_lock_blocking(path->nodes[level]);
6291 path->slots[level] = 0;
6292 path->locks[level] = 1;
6293 memset(&wc->update_progress, 0,
6294 sizeof(wc->update_progress));
6295 } else {
6296 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6297 memcpy(&wc->update_progress, &key,
6298 sizeof(wc->update_progress));
6299
6300 level = root_item->drop_level;
6301 BUG_ON(level == 0);
6302 path->lowest_level = level;
6303 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6304 path->lowest_level = 0;
6305 if (ret < 0) {
6306 err = ret;
6307 goto out;
6308 }
6309 WARN_ON(ret > 0);
6310
6311 /*
6312 * unlock our path, this is safe because only this
6313 * function is allowed to delete this snapshot
6314 */
6315 btrfs_unlock_up_safe(path, 0);
6316
6317 level = btrfs_header_level(root->node);
6318 while (1) {
6319 btrfs_tree_lock(path->nodes[level]);
6320 btrfs_set_lock_blocking(path->nodes[level]);
6321
6322 ret = btrfs_lookup_extent_info(trans, root,
6323 path->nodes[level]->start,
6324 path->nodes[level]->len,
6325 &wc->refs[level],
6326 &wc->flags[level]);
6327 BUG_ON(ret);
6328 BUG_ON(wc->refs[level] == 0);
6329
6330 if (level == root_item->drop_level)
6331 break;
6332
6333 btrfs_tree_unlock(path->nodes[level]);
6334 WARN_ON(wc->refs[level] != 1);
6335 level--;
6336 }
6337 }
6338
6339 wc->level = level;
6340 wc->shared_level = -1;
6341 wc->stage = DROP_REFERENCE;
6342 wc->update_ref = update_ref;
6343 wc->keep_locks = 0;
6344 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6345
6346 while (1) {
6347 ret = walk_down_tree(trans, root, path, wc);
6348 if (ret < 0) {
6349 err = ret;
6350 break;
6351 }
6352
6353 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6354 if (ret < 0) {
6355 err = ret;
6356 break;
6357 }
6358
6359 if (ret > 0) {
6360 BUG_ON(wc->stage != DROP_REFERENCE);
6361 break;
6362 }
6363
6364 if (wc->stage == DROP_REFERENCE) {
6365 level = wc->level;
6366 btrfs_node_key(path->nodes[level],
6367 &root_item->drop_progress,
6368 path->slots[level]);
6369 root_item->drop_level = level;
6370 }
6371
6372 BUG_ON(wc->level == 0);
6373 if (btrfs_should_end_transaction(trans, tree_root)) {
6374 ret = btrfs_update_root(trans, tree_root,
6375 &root->root_key,
6376 root_item);
6377 BUG_ON(ret);
6378
6379 btrfs_end_transaction_throttle(trans, tree_root);
6380 trans = btrfs_start_transaction(tree_root, 0);
6381 BUG_ON(IS_ERR(trans));
6382 if (block_rsv)
6383 trans->block_rsv = block_rsv;
6384 }
6385 }
6386 btrfs_release_path(root, path);
6387 BUG_ON(err);
6388
6389 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6390 BUG_ON(ret);
6391
6392 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6393 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6394 NULL, NULL);
6395 BUG_ON(ret < 0);
6396 if (ret > 0) {
6397 /* if we fail to delete the orphan item this time
6398 * around, it'll get picked up the next time.
6399 *
6400 * The most common failure here is just -ENOENT.
6401 */
6402 btrfs_del_orphan_item(trans, tree_root,
6403 root->root_key.objectid);
6404 }
6405 }
6406
6407 if (root->in_radix) {
6408 btrfs_free_fs_root(tree_root->fs_info, root);
6409 } else {
6410 free_extent_buffer(root->node);
6411 free_extent_buffer(root->commit_root);
6412 kfree(root);
6413 }
6414out:
6415 btrfs_end_transaction_throttle(trans, tree_root);
6416 kfree(wc);
6417 btrfs_free_path(path);
6418 return err;
6419}
6420
6421/*
6422 * drop subtree rooted at tree block 'node'.
6423 *
6424 * NOTE: this function will unlock and release tree block 'node'
6425 */
6426int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6427 struct btrfs_root *root,
6428 struct extent_buffer *node,
6429 struct extent_buffer *parent)
6430{
6431 struct btrfs_path *path;
6432 struct walk_control *wc;
6433 int level;
6434 int parent_level;
6435 int ret = 0;
6436 int wret;
6437
6438 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6439
6440 path = btrfs_alloc_path();
6441 BUG_ON(!path);
6442
6443 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6444 BUG_ON(!wc);
6445
6446 btrfs_assert_tree_locked(parent);
6447 parent_level = btrfs_header_level(parent);
6448 extent_buffer_get(parent);
6449 path->nodes[parent_level] = parent;
6450 path->slots[parent_level] = btrfs_header_nritems(parent);
6451
6452 btrfs_assert_tree_locked(node);
6453 level = btrfs_header_level(node);
6454 path->nodes[level] = node;
6455 path->slots[level] = 0;
6456 path->locks[level] = 1;
6457
6458 wc->refs[parent_level] = 1;
6459 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6460 wc->level = level;
6461 wc->shared_level = -1;
6462 wc->stage = DROP_REFERENCE;
6463 wc->update_ref = 0;
6464 wc->keep_locks = 1;
6465 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6466
6467 while (1) {
6468 wret = walk_down_tree(trans, root, path, wc);
6469 if (wret < 0) {
6470 ret = wret;
6471 break;
6472 }
6473
6474 wret = walk_up_tree(trans, root, path, wc, parent_level);
6475 if (wret < 0)
6476 ret = wret;
6477 if (wret != 0)
6478 break;
6479 }
6480
6481 kfree(wc);
6482 btrfs_free_path(path);
6483 return ret;
6484}
6485
6486#if 0
6487static unsigned long calc_ra(unsigned long start, unsigned long last,
6488 unsigned long nr)
6489{
6490 return min(last, start + nr - 1);
6491}
6492
6493static noinline int relocate_inode_pages(struct inode *inode, u64 start,
6494 u64 len)
6495{
6496 u64 page_start;
6497 u64 page_end;
6498 unsigned long first_index;
6499 unsigned long last_index;
6500 unsigned long i;
6501 struct page *page;
6502 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6503 struct file_ra_state *ra;
6504 struct btrfs_ordered_extent *ordered;
6505 unsigned int total_read = 0;
6506 unsigned int total_dirty = 0;
6507 int ret = 0;
6508
6509 ra = kzalloc(sizeof(*ra), GFP_NOFS);
6510 if (!ra)
6511 return -ENOMEM;
6512
6513 mutex_lock(&inode->i_mutex);
6514 first_index = start >> PAGE_CACHE_SHIFT;
6515 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
6516
6517 /* make sure the dirty trick played by the caller work */
6518 ret = invalidate_inode_pages2_range(inode->i_mapping,
6519 first_index, last_index);
6520 if (ret)
6521 goto out_unlock;
6522
6523 file_ra_state_init(ra, inode->i_mapping);
6524
6525 for (i = first_index ; i <= last_index; i++) {
6526 if (total_read % ra->ra_pages == 0) {
6527 btrfs_force_ra(inode->i_mapping, ra, NULL, i,
6528 calc_ra(i, last_index, ra->ra_pages));
6529 }
6530 total_read++;
6531again:
6532 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
6533 BUG_ON(1);
6534 page = grab_cache_page(inode->i_mapping, i);
6535 if (!page) {
6536 ret = -ENOMEM;
6537 goto out_unlock;
6538 }
6539 if (!PageUptodate(page)) {
6540 btrfs_readpage(NULL, page);
6541 lock_page(page);
6542 if (!PageUptodate(page)) {
6543 unlock_page(page);
6544 page_cache_release(page);
6545 ret = -EIO;
6546 goto out_unlock;
6547 }
6548 }
6549 wait_on_page_writeback(page);
6550
6551 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
6552 page_end = page_start + PAGE_CACHE_SIZE - 1;
6553 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
6554
6555 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6556 if (ordered) {
6557 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6558 unlock_page(page);
6559 page_cache_release(page);
6560 btrfs_start_ordered_extent(inode, ordered, 1);
6561 btrfs_put_ordered_extent(ordered);
6562 goto again;
6563 }
6564 set_page_extent_mapped(page);
6565
6566 if (i == first_index)
6567 set_extent_bits(io_tree, page_start, page_end,
6568 EXTENT_BOUNDARY, GFP_NOFS);
6569 btrfs_set_extent_delalloc(inode, page_start, page_end);
6570
6571 set_page_dirty(page);
6572 total_dirty++;
6573
6574 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6575 unlock_page(page);
6576 page_cache_release(page);
6577 }
6578
6579out_unlock:
6580 kfree(ra);
6581 mutex_unlock(&inode->i_mutex);
6582 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
6583 return ret;
6584}
6585
6586static noinline int relocate_data_extent(struct inode *reloc_inode,
6587 struct btrfs_key *extent_key,
6588 u64 offset)
6589{
6590 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6591 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
6592 struct extent_map *em;
6593 u64 start = extent_key->objectid - offset;
6594 u64 end = start + extent_key->offset - 1;
6595
6596 em = alloc_extent_map(GFP_NOFS);
6597 BUG_ON(!em);
6598
6599 em->start = start;
6600 em->len = extent_key->offset;
6601 em->block_len = extent_key->offset;
6602 em->block_start = extent_key->objectid;
6603 em->bdev = root->fs_info->fs_devices->latest_bdev;
6604 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6605
6606 /* setup extent map to cheat btrfs_readpage */
6607 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6608 while (1) {
6609 int ret;
6610 write_lock(&em_tree->lock);
6611 ret = add_extent_mapping(em_tree, em);
6612 write_unlock(&em_tree->lock);
6613 if (ret != -EEXIST) {
6614 free_extent_map(em);
6615 break;
6616 }
6617 btrfs_drop_extent_cache(reloc_inode, start, end, 0);
6618 }
6619 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6620
6621 return relocate_inode_pages(reloc_inode, start, extent_key->offset);
6622}
6623
6624struct btrfs_ref_path {
6625 u64 extent_start;
6626 u64 nodes[BTRFS_MAX_LEVEL];
6627 u64 root_objectid;
6628 u64 root_generation;
6629 u64 owner_objectid;
6630 u32 num_refs;
6631 int lowest_level;
6632 int current_level;
6633 int shared_level;
6634
6635 struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
6636 u64 new_nodes[BTRFS_MAX_LEVEL];
6637};
6638
6639struct disk_extent {
6640 u64 ram_bytes;
6641 u64 disk_bytenr;
6642 u64 disk_num_bytes;
6643 u64 offset;
6644 u64 num_bytes;
6645 u8 compression;
6646 u8 encryption;
6647 u16 other_encoding;
6648};
6649
6650static int is_cowonly_root(u64 root_objectid)
6651{
6652 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
6653 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
6654 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
6655 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
6656 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
6657 root_objectid == BTRFS_CSUM_TREE_OBJECTID)
6658 return 1;
6659 return 0;
6660}
6661
6662static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
6663 struct btrfs_root *extent_root,
6664 struct btrfs_ref_path *ref_path,
6665 int first_time)
6666{
6667 struct extent_buffer *leaf;
6668 struct btrfs_path *path;
6669 struct btrfs_extent_ref *ref;
6670 struct btrfs_key key;
6671 struct btrfs_key found_key;
6672 u64 bytenr;
6673 u32 nritems;
6674 int level;
6675 int ret = 1;
6676
6677 path = btrfs_alloc_path();
6678 if (!path)
6679 return -ENOMEM;
6680
6681 if (first_time) {
6682 ref_path->lowest_level = -1;
6683 ref_path->current_level = -1;
6684 ref_path->shared_level = -1;
6685 goto walk_up;
6686 }
6687walk_down:
6688 level = ref_path->current_level - 1;
6689 while (level >= -1) {
6690 u64 parent;
6691 if (level < ref_path->lowest_level)
6692 break;
6693
6694 if (level >= 0)
6695 bytenr = ref_path->nodes[level];
6696 else
6697 bytenr = ref_path->extent_start;
6698 BUG_ON(bytenr == 0);
6699
6700 parent = ref_path->nodes[level + 1];
6701 ref_path->nodes[level + 1] = 0;
6702 ref_path->current_level = level;
6703 BUG_ON(parent == 0);
6704
6705 key.objectid = bytenr;
6706 key.offset = parent + 1;
6707 key.type = BTRFS_EXTENT_REF_KEY;
6708
6709 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6710 if (ret < 0)
6711 goto out;
6712 BUG_ON(ret == 0);
6713
6714 leaf = path->nodes[0];
6715 nritems = btrfs_header_nritems(leaf);
6716 if (path->slots[0] >= nritems) {
6717 ret = btrfs_next_leaf(extent_root, path);
6718 if (ret < 0)
6719 goto out;
6720 if (ret > 0)
6721 goto next;
6722 leaf = path->nodes[0];
6723 }
6724
6725 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6726 if (found_key.objectid == bytenr &&
6727 found_key.type == BTRFS_EXTENT_REF_KEY) {
6728 if (level < ref_path->shared_level)
6729 ref_path->shared_level = level;
6730 goto found;
6731 }
6732next:
6733 level--;
6734 btrfs_release_path(extent_root, path);
6735 cond_resched();
6736 }
6737 /* reached lowest level */
6738 ret = 1;
6739 goto out;
6740walk_up:
6741 level = ref_path->current_level;
6742 while (level < BTRFS_MAX_LEVEL - 1) {
6743 u64 ref_objectid;
6744
6745 if (level >= 0)
6746 bytenr = ref_path->nodes[level];
6747 else
6748 bytenr = ref_path->extent_start;
6749
6750 BUG_ON(bytenr == 0);
6751
6752 key.objectid = bytenr;
6753 key.offset = 0;
6754 key.type = BTRFS_EXTENT_REF_KEY;
6755
6756 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6757 if (ret < 0)
6758 goto out;
6759
6760 leaf = path->nodes[0];
6761 nritems = btrfs_header_nritems(leaf);
6762 if (path->slots[0] >= nritems) {
6763 ret = btrfs_next_leaf(extent_root, path);
6764 if (ret < 0)
6765 goto out;
6766 if (ret > 0) {
6767 /* the extent was freed by someone */
6768 if (ref_path->lowest_level == level)
6769 goto out;
6770 btrfs_release_path(extent_root, path);
6771 goto walk_down;
6772 }
6773 leaf = path->nodes[0];
6774 }
6775
6776 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6777 if (found_key.objectid != bytenr ||
6778 found_key.type != BTRFS_EXTENT_REF_KEY) {
6779 /* the extent was freed by someone */
6780 if (ref_path->lowest_level == level) {
6781 ret = 1;
6782 goto out;
6783 }
6784 btrfs_release_path(extent_root, path);
6785 goto walk_down;
6786 }
6787found:
6788 ref = btrfs_item_ptr(leaf, path->slots[0],
6789 struct btrfs_extent_ref);
6790 ref_objectid = btrfs_ref_objectid(leaf, ref);
6791 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
6792 if (first_time) {
6793 level = (int)ref_objectid;
6794 BUG_ON(level >= BTRFS_MAX_LEVEL);
6795 ref_path->lowest_level = level;
6796 ref_path->current_level = level;
6797 ref_path->nodes[level] = bytenr;
6798 } else {
6799 WARN_ON(ref_objectid != level);
6800 }
6801 } else {
6802 WARN_ON(level != -1);
6803 }
6804 first_time = 0;
6805
6806 if (ref_path->lowest_level == level) {
6807 ref_path->owner_objectid = ref_objectid;
6808 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
6809 }
6810
6811 /*
6812 * the block is tree root or the block isn't in reference
6813 * counted tree.
6814 */
6815 if (found_key.objectid == found_key.offset ||
6816 is_cowonly_root(btrfs_ref_root(leaf, ref))) {
6817 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6818 ref_path->root_generation =
6819 btrfs_ref_generation(leaf, ref);
6820 if (level < 0) {
6821 /* special reference from the tree log */
6822 ref_path->nodes[0] = found_key.offset;
6823 ref_path->current_level = 0;
6824 }
6825 ret = 0;
6826 goto out;
6827 }
6828
6829 level++;
6830 BUG_ON(ref_path->nodes[level] != 0);
6831 ref_path->nodes[level] = found_key.offset;
6832 ref_path->current_level = level;
6833
6834 /*
6835 * the reference was created in the running transaction,
6836 * no need to continue walking up.
6837 */
6838 if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6839 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6840 ref_path->root_generation =
6841 btrfs_ref_generation(leaf, ref);
6842 ret = 0;
6843 goto out;
6844 }
6845
6846 btrfs_release_path(extent_root, path);
6847 cond_resched();
6848 }
6849 /* reached max tree level, but no tree root found. */
6850 BUG();
6851out:
6852 btrfs_free_path(path);
6853 return ret;
6854}
6855
6856static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6857 struct btrfs_root *extent_root,
6858 struct btrfs_ref_path *ref_path,
6859 u64 extent_start)
6860{
6861 memset(ref_path, 0, sizeof(*ref_path));
6862 ref_path->extent_start = extent_start;
6863
6864 return __next_ref_path(trans, extent_root, ref_path, 1);
6865}
6866
6867static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6868 struct btrfs_root *extent_root,
6869 struct btrfs_ref_path *ref_path)
6870{
6871 return __next_ref_path(trans, extent_root, ref_path, 0);
6872}
6873
6874static noinline int get_new_locations(struct inode *reloc_inode,
6875 struct btrfs_key *extent_key,
6876 u64 offset, int no_fragment,
6877 struct disk_extent **extents,
6878 int *nr_extents)
6879{
6880 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6881 struct btrfs_path *path;
6882 struct btrfs_file_extent_item *fi;
6883 struct extent_buffer *leaf;
6884 struct disk_extent *exts = *extents;
6885 struct btrfs_key found_key;
6886 u64 cur_pos;
6887 u64 last_byte;
6888 u32 nritems;
6889 int nr = 0;
6890 int max = *nr_extents;
6891 int ret;
6892
6893 WARN_ON(!no_fragment && *extents);
6894 if (!exts) {
6895 max = 1;
6896 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6897 if (!exts)
6898 return -ENOMEM;
6899 }
6900
6901 path = btrfs_alloc_path();
6902 BUG_ON(!path);
6903
6904 cur_pos = extent_key->objectid - offset;
6905 last_byte = extent_key->objectid + extent_key->offset;
6906 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6907 cur_pos, 0);
6908 if (ret < 0)
6909 goto out;
6910 if (ret > 0) {
6911 ret = -ENOENT;
6912 goto out;
6913 }
6914
6915 while (1) {
6916 leaf = path->nodes[0];
6917 nritems = btrfs_header_nritems(leaf);
6918 if (path->slots[0] >= nritems) {
6919 ret = btrfs_next_leaf(root, path);
6920 if (ret < 0)
6921 goto out;
6922 if (ret > 0)
6923 break;
6924 leaf = path->nodes[0];
6925 }
6926
6927 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6928 if (found_key.offset != cur_pos ||
6929 found_key.type != BTRFS_EXTENT_DATA_KEY ||
6930 found_key.objectid != reloc_inode->i_ino)
6931 break;
6932
6933 fi = btrfs_item_ptr(leaf, path->slots[0],
6934 struct btrfs_file_extent_item);
6935 if (btrfs_file_extent_type(leaf, fi) !=
6936 BTRFS_FILE_EXTENT_REG ||
6937 btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6938 break;
6939
6940 if (nr == max) {
6941 struct disk_extent *old = exts;
6942 max *= 2;
6943 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6944 memcpy(exts, old, sizeof(*exts) * nr);
6945 if (old != *extents)
6946 kfree(old);
6947 }
6948
6949 exts[nr].disk_bytenr =
6950 btrfs_file_extent_disk_bytenr(leaf, fi);
6951 exts[nr].disk_num_bytes =
6952 btrfs_file_extent_disk_num_bytes(leaf, fi);
6953 exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6954 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6955 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6956 exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6957 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6958 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6959 fi);
6960 BUG_ON(exts[nr].offset > 0);
6961 BUG_ON(exts[nr].compression || exts[nr].encryption);
6962 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6963
6964 cur_pos += exts[nr].num_bytes;
6965 nr++;
6966
6967 if (cur_pos + offset >= last_byte)
6968 break;
6969
6970 if (no_fragment) {
6971 ret = 1;
6972 goto out;
6973 }
6974 path->slots[0]++;
6975 }
6976
6977 BUG_ON(cur_pos + offset > last_byte);
6978 if (cur_pos + offset < last_byte) {
6979 ret = -ENOENT;
6980 goto out;
6981 }
6982 ret = 0;
6983out:
6984 btrfs_free_path(path);
6985 if (ret) {
6986 if (exts != *extents)
6987 kfree(exts);
6988 } else {
6989 *extents = exts;
6990 *nr_extents = nr;
6991 }
6992 return ret;
6993}
6994
6995static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
6996 struct btrfs_root *root,
6997 struct btrfs_path *path,
6998 struct btrfs_key *extent_key,
6999 struct btrfs_key *leaf_key,
7000 struct btrfs_ref_path *ref_path,
7001 struct disk_extent *new_extents,
7002 int nr_extents)
7003{
7004 struct extent_buffer *leaf;
7005 struct btrfs_file_extent_item *fi;
7006 struct inode *inode = NULL;
7007 struct btrfs_key key;
7008 u64 lock_start = 0;
7009 u64 lock_end = 0;
7010 u64 num_bytes;
7011 u64 ext_offset;
7012 u64 search_end = (u64)-1;
7013 u32 nritems;
7014 int nr_scaned = 0;
7015 int extent_locked = 0;
7016 int extent_type;
7017 int ret;
7018
7019 memcpy(&key, leaf_key, sizeof(key));
7020 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
7021 if (key.objectid < ref_path->owner_objectid ||
7022 (key.objectid == ref_path->owner_objectid &&
7023 key.type < BTRFS_EXTENT_DATA_KEY)) {
7024 key.objectid = ref_path->owner_objectid;
7025 key.type = BTRFS_EXTENT_DATA_KEY;
7026 key.offset = 0;
7027 }
7028 }
7029
7030 while (1) {
7031 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
7032 if (ret < 0)
7033 goto out;
7034
7035 leaf = path->nodes[0];
7036 nritems = btrfs_header_nritems(leaf);
7037next:
7038 if (extent_locked && ret > 0) {
7039 /*
7040 * the file extent item was modified by someone
7041 * before the extent got locked.
7042 */
7043 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7044 lock_end, GFP_NOFS);
7045 extent_locked = 0;
7046 }
7047
7048 if (path->slots[0] >= nritems) {
7049 if (++nr_scaned > 2)
7050 break;
7051
7052 BUG_ON(extent_locked);
7053 ret = btrfs_next_leaf(root, path);
7054 if (ret < 0)
7055 goto out;
7056 if (ret > 0)
7057 break;
7058 leaf = path->nodes[0];
7059 nritems = btrfs_header_nritems(leaf);
7060 }
7061
7062 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7063
7064 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
7065 if ((key.objectid > ref_path->owner_objectid) ||
7066 (key.objectid == ref_path->owner_objectid &&
7067 key.type > BTRFS_EXTENT_DATA_KEY) ||
7068 key.offset >= search_end)
7069 break;
7070 }
7071
7072 if (inode && key.objectid != inode->i_ino) {
7073 BUG_ON(extent_locked);
7074 btrfs_release_path(root, path);
7075 mutex_unlock(&inode->i_mutex);
7076 iput(inode);
7077 inode = NULL;
7078 continue;
7079 }
7080
7081 if (key.type != BTRFS_EXTENT_DATA_KEY) {
7082 path->slots[0]++;
7083 ret = 1;
7084 goto next;
7085 }
7086 fi = btrfs_item_ptr(leaf, path->slots[0],
7087 struct btrfs_file_extent_item);
7088 extent_type = btrfs_file_extent_type(leaf, fi);
7089 if ((extent_type != BTRFS_FILE_EXTENT_REG &&
7090 extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
7091 (btrfs_file_extent_disk_bytenr(leaf, fi) !=
7092 extent_key->objectid)) {
7093 path->slots[0]++;
7094 ret = 1;
7095 goto next;
7096 }
7097
7098 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7099 ext_offset = btrfs_file_extent_offset(leaf, fi);
7100
7101 if (search_end == (u64)-1) {
7102 search_end = key.offset - ext_offset +
7103 btrfs_file_extent_ram_bytes(leaf, fi);
7104 }
7105
7106 if (!extent_locked) {
7107 lock_start = key.offset;
7108 lock_end = lock_start + num_bytes - 1;
7109 } else {
7110 if (lock_start > key.offset ||
7111 lock_end + 1 < key.offset + num_bytes) {
7112 unlock_extent(&BTRFS_I(inode)->io_tree,
7113 lock_start, lock_end, GFP_NOFS);
7114 extent_locked = 0;
7115 }
7116 }
7117
7118 if (!inode) {
7119 btrfs_release_path(root, path);
7120
7121 inode = btrfs_iget_locked(root->fs_info->sb,
7122 key.objectid, root);
7123 if (inode->i_state & I_NEW) {
7124 BTRFS_I(inode)->root = root;
7125 BTRFS_I(inode)->location.objectid =
7126 key.objectid;
7127 BTRFS_I(inode)->location.type =
7128 BTRFS_INODE_ITEM_KEY;
7129 BTRFS_I(inode)->location.offset = 0;
7130 btrfs_read_locked_inode(inode);
7131 unlock_new_inode(inode);
7132 }
7133 /*
7134 * some code call btrfs_commit_transaction while
7135 * holding the i_mutex, so we can't use mutex_lock
7136 * here.
7137 */
7138 if (is_bad_inode(inode) ||
7139 !mutex_trylock(&inode->i_mutex)) {
7140 iput(inode);
7141 inode = NULL;
7142 key.offset = (u64)-1;
7143 goto skip;
7144 }
7145 }
7146
7147 if (!extent_locked) {
7148 struct btrfs_ordered_extent *ordered;
7149
7150 btrfs_release_path(root, path);
7151
7152 lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7153 lock_end, GFP_NOFS);
7154 ordered = btrfs_lookup_first_ordered_extent(inode,
7155 lock_end);
7156 if (ordered &&
7157 ordered->file_offset <= lock_end &&
7158 ordered->file_offset + ordered->len > lock_start) {
7159 unlock_extent(&BTRFS_I(inode)->io_tree,
7160 lock_start, lock_end, GFP_NOFS);
7161 btrfs_start_ordered_extent(inode, ordered, 1);
7162 btrfs_put_ordered_extent(ordered);
7163 key.offset += num_bytes;
7164 goto skip;
7165 }
7166 if (ordered)
7167 btrfs_put_ordered_extent(ordered);
7168
7169 extent_locked = 1;
7170 continue;
7171 }
7172
7173 if (nr_extents == 1) {
7174 /* update extent pointer in place */
7175 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7176 new_extents[0].disk_bytenr);
7177 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7178 new_extents[0].disk_num_bytes);
7179 btrfs_mark_buffer_dirty(leaf);
7180
7181 btrfs_drop_extent_cache(inode, key.offset,
7182 key.offset + num_bytes - 1, 0);
7183
7184 ret = btrfs_inc_extent_ref(trans, root,
7185 new_extents[0].disk_bytenr,
7186 new_extents[0].disk_num_bytes,
7187 leaf->start,
7188 root->root_key.objectid,
7189 trans->transid,
7190 key.objectid);
7191 BUG_ON(ret);
7192
7193 ret = btrfs_free_extent(trans, root,
7194 extent_key->objectid,
7195 extent_key->offset,
7196 leaf->start,
7197 btrfs_header_owner(leaf),
7198 btrfs_header_generation(leaf),
7199 key.objectid, 0);
7200 BUG_ON(ret);
7201
7202 btrfs_release_path(root, path);
7203 key.offset += num_bytes;
7204 } else {
7205 BUG_ON(1);
7206#if 0
7207 u64 alloc_hint;
7208 u64 extent_len;
7209 int i;
7210 /*
7211 * drop old extent pointer at first, then insert the
7212 * new pointers one bye one
7213 */
7214 btrfs_release_path(root, path);
7215 ret = btrfs_drop_extents(trans, root, inode, key.offset,
7216 key.offset + num_bytes,
7217 key.offset, &alloc_hint);
7218 BUG_ON(ret);
7219
7220 for (i = 0; i < nr_extents; i++) {
7221 if (ext_offset >= new_extents[i].num_bytes) {
7222 ext_offset -= new_extents[i].num_bytes;
7223 continue;
7224 }
7225 extent_len = min(new_extents[i].num_bytes -
7226 ext_offset, num_bytes);
7227
7228 ret = btrfs_insert_empty_item(trans, root,
7229 path, &key,
7230 sizeof(*fi));
7231 BUG_ON(ret);
7232
7233 leaf = path->nodes[0];
7234 fi = btrfs_item_ptr(leaf, path->slots[0],
7235 struct btrfs_file_extent_item);
7236 btrfs_set_file_extent_generation(leaf, fi,
7237 trans->transid);
7238 btrfs_set_file_extent_type(leaf, fi,
7239 BTRFS_FILE_EXTENT_REG);
7240 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7241 new_extents[i].disk_bytenr);
7242 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7243 new_extents[i].disk_num_bytes);
7244 btrfs_set_file_extent_ram_bytes(leaf, fi,
7245 new_extents[i].ram_bytes);
7246
7247 btrfs_set_file_extent_compression(leaf, fi,
7248 new_extents[i].compression);
7249 btrfs_set_file_extent_encryption(leaf, fi,
7250 new_extents[i].encryption);
7251 btrfs_set_file_extent_other_encoding(leaf, fi,
7252 new_extents[i].other_encoding);
7253
7254 btrfs_set_file_extent_num_bytes(leaf, fi,
7255 extent_len);
7256 ext_offset += new_extents[i].offset;
7257 btrfs_set_file_extent_offset(leaf, fi,
7258 ext_offset);
7259 btrfs_mark_buffer_dirty(leaf);
7260
7261 btrfs_drop_extent_cache(inode, key.offset,
7262 key.offset + extent_len - 1, 0);
7263
7264 ret = btrfs_inc_extent_ref(trans, root,
7265 new_extents[i].disk_bytenr,
7266 new_extents[i].disk_num_bytes,
7267 leaf->start,
7268 root->root_key.objectid,
7269 trans->transid, key.objectid);
7270 BUG_ON(ret);
7271 btrfs_release_path(root, path);
7272
7273 inode_add_bytes(inode, extent_len);
7274
7275 ext_offset = 0;
7276 num_bytes -= extent_len;
7277 key.offset += extent_len;
7278
7279 if (num_bytes == 0)
7280 break;
7281 }
7282 BUG_ON(i >= nr_extents);
7283#endif
7284 }
7285
7286 if (extent_locked) {
7287 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7288 lock_end, GFP_NOFS);
7289 extent_locked = 0;
7290 }
7291skip:
7292 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
7293 key.offset >= search_end)
7294 break;
7295
7296 cond_resched();
7297 }
7298 ret = 0;
7299out:
7300 btrfs_release_path(root, path);
7301 if (inode) {
7302 mutex_unlock(&inode->i_mutex);
7303 if (extent_locked) {
7304 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7305 lock_end, GFP_NOFS);
7306 }
7307 iput(inode);
7308 }
7309 return ret;
7310}
7311
7312int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
7313 struct btrfs_root *root,
7314 struct extent_buffer *buf, u64 orig_start)
7315{
7316 int level;
7317 int ret;
7318
7319 BUG_ON(btrfs_header_generation(buf) != trans->transid);
7320 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7321
7322 level = btrfs_header_level(buf);
7323 if (level == 0) {
7324 struct btrfs_leaf_ref *ref;
7325 struct btrfs_leaf_ref *orig_ref;
7326
7327 orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
7328 if (!orig_ref)
7329 return -ENOENT;
7330
7331 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
7332 if (!ref) {
7333 btrfs_free_leaf_ref(root, orig_ref);
7334 return -ENOMEM;
7335 }
7336
7337 ref->nritems = orig_ref->nritems;
7338 memcpy(ref->extents, orig_ref->extents,
7339 sizeof(ref->extents[0]) * ref->nritems);
7340
7341 btrfs_free_leaf_ref(root, orig_ref);
7342
7343 ref->root_gen = trans->transid;
7344 ref->bytenr = buf->start;
7345 ref->owner = btrfs_header_owner(buf);
7346 ref->generation = btrfs_header_generation(buf);
7347
7348 ret = btrfs_add_leaf_ref(root, ref, 0);
7349 WARN_ON(ret);
7350 btrfs_free_leaf_ref(root, ref);
7351 }
7352 return 0;
7353}
7354
7355static noinline int invalidate_extent_cache(struct btrfs_root *root,
7356 struct extent_buffer *leaf,
7357 struct btrfs_block_group_cache *group,
7358 struct btrfs_root *target_root)
7359{
7360 struct btrfs_key key;
7361 struct inode *inode = NULL;
7362 struct btrfs_file_extent_item *fi;
7363 struct extent_state *cached_state = NULL;
7364 u64 num_bytes;
7365 u64 skip_objectid = 0;
7366 u32 nritems;
7367 u32 i;
7368
7369 nritems = btrfs_header_nritems(leaf);
7370 for (i = 0; i < nritems; i++) {
7371 btrfs_item_key_to_cpu(leaf, &key, i);
7372 if (key.objectid == skip_objectid ||
7373 key.type != BTRFS_EXTENT_DATA_KEY)
7374 continue;
7375 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7376 if (btrfs_file_extent_type(leaf, fi) ==
7377 BTRFS_FILE_EXTENT_INLINE)
7378 continue;
7379 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
7380 continue;
7381 if (!inode || inode->i_ino != key.objectid) {
7382 iput(inode);
7383 inode = btrfs_ilookup(target_root->fs_info->sb,
7384 key.objectid, target_root, 1);
7385 }
7386 if (!inode) {
7387 skip_objectid = key.objectid;
7388 continue;
7389 }
7390 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7391
7392 lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset,
7393 key.offset + num_bytes - 1, 0, &cached_state,
7394 GFP_NOFS);
7395 btrfs_drop_extent_cache(inode, key.offset,
7396 key.offset + num_bytes - 1, 1);
7397 unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset,
7398 key.offset + num_bytes - 1, &cached_state,
7399 GFP_NOFS);
7400 cond_resched();
7401 }
7402 iput(inode);
7403 return 0;
7404}
7405
7406static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
7407 struct btrfs_root *root,
7408 struct extent_buffer *leaf,
7409 struct btrfs_block_group_cache *group,
7410 struct inode *reloc_inode)
7411{
7412 struct btrfs_key key;
7413 struct btrfs_key extent_key;
7414 struct btrfs_file_extent_item *fi;
7415 struct btrfs_leaf_ref *ref;
7416 struct disk_extent *new_extent;
7417 u64 bytenr;
7418 u64 num_bytes;
7419 u32 nritems;
7420 u32 i;
7421 int ext_index;
7422 int nr_extent;
7423 int ret;
7424
7425 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
7426 BUG_ON(!new_extent);
7427
7428 ref = btrfs_lookup_leaf_ref(root, leaf->start);
7429 BUG_ON(!ref);
7430
7431 ext_index = -1;
7432 nritems = btrfs_header_nritems(leaf);
7433 for (i = 0; i < nritems; i++) {
7434 btrfs_item_key_to_cpu(leaf, &key, i);
7435 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
7436 continue;
7437 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7438 if (btrfs_file_extent_type(leaf, fi) ==
7439 BTRFS_FILE_EXTENT_INLINE)
7440 continue;
7441 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7442 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
7443 if (bytenr == 0)
7444 continue;
7445
7446 ext_index++;
7447 if (bytenr >= group->key.objectid + group->key.offset ||
7448 bytenr + num_bytes <= group->key.objectid)
7449 continue;
7450
7451 extent_key.objectid = bytenr;
7452 extent_key.offset = num_bytes;
7453 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7454 nr_extent = 1;
7455 ret = get_new_locations(reloc_inode, &extent_key,
7456 group->key.objectid, 1,
7457 &new_extent, &nr_extent);
7458 if (ret > 0)
7459 continue;
7460 BUG_ON(ret < 0);
7461
7462 BUG_ON(ref->extents[ext_index].bytenr != bytenr);
7463 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
7464 ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
7465 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
7466
7467 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7468 new_extent->disk_bytenr);
7469 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7470 new_extent->disk_num_bytes);
7471 btrfs_mark_buffer_dirty(leaf);
7472
7473 ret = btrfs_inc_extent_ref(trans, root,
7474 new_extent->disk_bytenr,
7475 new_extent->disk_num_bytes,
7476 leaf->start,
7477 root->root_key.objectid,
7478 trans->transid, key.objectid);
7479 BUG_ON(ret);
7480
7481 ret = btrfs_free_extent(trans, root,
7482 bytenr, num_bytes, leaf->start,
7483 btrfs_header_owner(leaf),
7484 btrfs_header_generation(leaf),
7485 key.objectid, 0);
7486 BUG_ON(ret);
7487 cond_resched();
7488 }
7489 kfree(new_extent);
7490 BUG_ON(ext_index + 1 != ref->nritems);
7491 btrfs_free_leaf_ref(root, ref);
7492 return 0;
7493}
7494
7495int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
7496 struct btrfs_root *root)
7497{
7498 struct btrfs_root *reloc_root;
7499 int ret;
7500
7501 if (root->reloc_root) {
7502 reloc_root = root->reloc_root;
7503 root->reloc_root = NULL;
7504 list_add(&reloc_root->dead_list,
7505 &root->fs_info->dead_reloc_roots);
7506
7507 btrfs_set_root_bytenr(&reloc_root->root_item,
7508 reloc_root->node->start);
7509 btrfs_set_root_level(&root->root_item,
7510 btrfs_header_level(reloc_root->node));
7511 memset(&reloc_root->root_item.drop_progress, 0,
7512 sizeof(struct btrfs_disk_key));
7513 reloc_root->root_item.drop_level = 0;
7514
7515 ret = btrfs_update_root(trans, root->fs_info->tree_root,
7516 &reloc_root->root_key,
7517 &reloc_root->root_item);
7518 BUG_ON(ret);
7519 }
7520 return 0;
7521}
7522
7523int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
7524{
7525 struct btrfs_trans_handle *trans;
7526 struct btrfs_root *reloc_root;
7527 struct btrfs_root *prev_root = NULL;
7528 struct list_head dead_roots;
7529 int ret;
7530 unsigned long nr;
7531
7532 INIT_LIST_HEAD(&dead_roots);
7533 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
7534
7535 while (!list_empty(&dead_roots)) {
7536 reloc_root = list_entry(dead_roots.prev,
7537 struct btrfs_root, dead_list);
7538 list_del_init(&reloc_root->dead_list);
7539
7540 BUG_ON(reloc_root->commit_root != NULL);
7541 while (1) {
7542 trans = btrfs_join_transaction(root, 1);
7543 BUG_ON(IS_ERR(trans));
7544
7545 mutex_lock(&root->fs_info->drop_mutex);
7546 ret = btrfs_drop_snapshot(trans, reloc_root);
7547 if (ret != -EAGAIN)
7548 break;
7549 mutex_unlock(&root->fs_info->drop_mutex);
7550
7551 nr = trans->blocks_used;
7552 ret = btrfs_end_transaction(trans, root);
7553 BUG_ON(ret);
7554 btrfs_btree_balance_dirty(root, nr);
7555 }
7556
7557 free_extent_buffer(reloc_root->node);
7558
7559 ret = btrfs_del_root(trans, root->fs_info->tree_root,
7560 &reloc_root->root_key);
7561 BUG_ON(ret);
7562 mutex_unlock(&root->fs_info->drop_mutex);
7563
7564 nr = trans->blocks_used;
7565 ret = btrfs_end_transaction(trans, root);
7566 BUG_ON(ret);
7567 btrfs_btree_balance_dirty(root, nr);
7568
7569 kfree(prev_root);
7570 prev_root = reloc_root;
7571 }
7572 if (prev_root) {
7573 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
7574 kfree(prev_root);
7575 }
7576 return 0;
7577}
7578
7579int btrfs_add_dead_reloc_root(struct btrfs_root *root)
7580{
7581 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
7582 return 0;
7583}
7584
7585int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
7586{
7587 struct btrfs_root *reloc_root;
7588 struct btrfs_trans_handle *trans;
7589 struct btrfs_key location;
7590 int found;
7591 int ret;
7592
7593 mutex_lock(&root->fs_info->tree_reloc_mutex);
7594 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
7595 BUG_ON(ret);
7596 found = !list_empty(&root->fs_info->dead_reloc_roots);
7597 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7598
7599 if (found) {
7600 trans = btrfs_start_transaction(root, 1);
7601 BUG_ON(IS_ERR(trans));
7602 ret = btrfs_commit_transaction(trans, root);
7603 BUG_ON(ret);
7604 }
7605
7606 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
7607 location.offset = (u64)-1;
7608 location.type = BTRFS_ROOT_ITEM_KEY;
7609
7610 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
7611 BUG_ON(!reloc_root);
7612 btrfs_orphan_cleanup(reloc_root);
7613 return 0;
7614}
7615
7616static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
7617 struct btrfs_root *root)
7618{
7619 struct btrfs_root *reloc_root;
7620 struct extent_buffer *eb;
7621 struct btrfs_root_item *root_item;
7622 struct btrfs_key root_key;
7623 int ret;
7624
7625 BUG_ON(!root->ref_cows);
7626 if (root->reloc_root)
7627 return 0;
7628
7629 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
7630 BUG_ON(!root_item);
7631
7632 ret = btrfs_copy_root(trans, root, root->commit_root,
7633 &eb, BTRFS_TREE_RELOC_OBJECTID);
7634 BUG_ON(ret);
7635
7636 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
7637 root_key.offset = root->root_key.objectid;
7638 root_key.type = BTRFS_ROOT_ITEM_KEY;
7639
7640 memcpy(root_item, &root->root_item, sizeof(root_item));
7641 btrfs_set_root_refs(root_item, 0);
7642 btrfs_set_root_bytenr(root_item, eb->start);
7643 btrfs_set_root_level(root_item, btrfs_header_level(eb));
7644 btrfs_set_root_generation(root_item, trans->transid);
7645
7646 btrfs_tree_unlock(eb);
7647 free_extent_buffer(eb);
7648
7649 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
7650 &root_key, root_item);
7651 BUG_ON(ret);
7652 kfree(root_item);
7653
7654 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
7655 &root_key);
7656 BUG_ON(!reloc_root);
7657 reloc_root->last_trans = trans->transid;
7658 reloc_root->commit_root = NULL;
7659 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
7660
7661 root->reloc_root = reloc_root;
7662 return 0;
7663}
7664
7665/*
7666 * Core function of space balance.
7667 *
7668 * The idea is using reloc trees to relocate tree blocks in reference
7669 * counted roots. There is one reloc tree for each subvol, and all
7670 * reloc trees share same root key objectid. Reloc trees are snapshots
7671 * of the latest committed roots of subvols (root->commit_root).
7672 *
7673 * To relocate a tree block referenced by a subvol, there are two steps.
7674 * COW the block through subvol's reloc tree, then update block pointer
7675 * in the subvol to point to the new block. Since all reloc trees share
7676 * same root key objectid, doing special handing for tree blocks owned
7677 * by them is easy. Once a tree block has been COWed in one reloc tree,
7678 * we can use the resulting new block directly when the same block is
7679 * required to COW again through other reloc trees. By this way, relocated
7680 * tree blocks are shared between reloc trees, so they are also shared
7681 * between subvols.
7682 */
7683static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
7684 struct btrfs_root *root,
7685 struct btrfs_path *path,
7686 struct btrfs_key *first_key,
7687 struct btrfs_ref_path *ref_path,
7688 struct btrfs_block_group_cache *group,
7689 struct inode *reloc_inode)
7690{
7691 struct btrfs_root *reloc_root;
7692 struct extent_buffer *eb = NULL;
7693 struct btrfs_key *keys;
7694 u64 *nodes;
7695 int level;
7696 int shared_level;
7697 int lowest_level = 0;
7698 int ret;
7699
7700 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
7701 lowest_level = ref_path->owner_objectid;
7702
7703 if (!root->ref_cows) {
7704 path->lowest_level = lowest_level;
7705 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
7706 BUG_ON(ret < 0);
7707 path->lowest_level = 0;
7708 btrfs_release_path(root, path);
7709 return 0;
7710 }
7711
7712 mutex_lock(&root->fs_info->tree_reloc_mutex);
7713 ret = init_reloc_tree(trans, root);
7714 BUG_ON(ret);
7715 reloc_root = root->reloc_root;
7716
7717 shared_level = ref_path->shared_level;
7718 ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
7719
7720 keys = ref_path->node_keys;
7721 nodes = ref_path->new_nodes;
7722 memset(&keys[shared_level + 1], 0,
7723 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
7724 memset(&nodes[shared_level + 1], 0,
7725 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
7726
7727 if (nodes[lowest_level] == 0) {
7728 path->lowest_level = lowest_level;
7729 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7730 0, 1);
7731 BUG_ON(ret);
7732 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
7733 eb = path->nodes[level];
7734 if (!eb || eb == reloc_root->node)
7735 break;
7736 nodes[level] = eb->start;
7737 if (level == 0)
7738 btrfs_item_key_to_cpu(eb, &keys[level], 0);
7739 else
7740 btrfs_node_key_to_cpu(eb, &keys[level], 0);
7741 }
7742 if (nodes[0] &&
7743 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7744 eb = path->nodes[0];
7745 ret = replace_extents_in_leaf(trans, reloc_root, eb,
7746 group, reloc_inode);
7747 BUG_ON(ret);
7748 }
7749 btrfs_release_path(reloc_root, path);
7750 } else {
7751 ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
7752 lowest_level);
7753 BUG_ON(ret);
7754 }
7755
7756 /*
7757 * replace tree blocks in the fs tree with tree blocks in
7758 * the reloc tree.
7759 */
7760 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
7761 BUG_ON(ret < 0);
7762
7763 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7764 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7765 0, 0);
7766 BUG_ON(ret);
7767 extent_buffer_get(path->nodes[0]);
7768 eb = path->nodes[0];
7769 btrfs_release_path(reloc_root, path);
7770 ret = invalidate_extent_cache(reloc_root, eb, group, root);
7771 BUG_ON(ret);
7772 free_extent_buffer(eb);
7773 }
7774
7775 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7776 path->lowest_level = 0;
7777 return 0;
7778}
7779
7780static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
7781 struct btrfs_root *root,
7782 struct btrfs_path *path,
7783 struct btrfs_key *first_key,
7784 struct btrfs_ref_path *ref_path)
7785{
7786 int ret;
7787
7788 ret = relocate_one_path(trans, root, path, first_key,
7789 ref_path, NULL, NULL);
7790 BUG_ON(ret);
7791
7792 return 0;
7793}
7794
7795static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
7796 struct btrfs_root *extent_root,
7797 struct btrfs_path *path,
7798 struct btrfs_key *extent_key)
7799{
7800 int ret;
7801
7802 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
7803 if (ret)
7804 goto out;
7805 ret = btrfs_del_item(trans, extent_root, path);
7806out:
7807 btrfs_release_path(extent_root, path);
7808 return ret;
7809}
7810
7811static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
7812 struct btrfs_ref_path *ref_path)
7813{
7814 struct btrfs_key root_key;
7815
7816 root_key.objectid = ref_path->root_objectid;
7817 root_key.type = BTRFS_ROOT_ITEM_KEY;
7818 if (is_cowonly_root(ref_path->root_objectid))
7819 root_key.offset = 0;
7820 else
7821 root_key.offset = (u64)-1;
7822
7823 return btrfs_read_fs_root_no_name(fs_info, &root_key);
7824}
7825
7826static noinline int relocate_one_extent(struct btrfs_root *extent_root,
7827 struct btrfs_path *path,
7828 struct btrfs_key *extent_key,
7829 struct btrfs_block_group_cache *group,
7830 struct inode *reloc_inode, int pass)
7831{
7832 struct btrfs_trans_handle *trans;
7833 struct btrfs_root *found_root;
7834 struct btrfs_ref_path *ref_path = NULL;
7835 struct disk_extent *new_extents = NULL;
7836 int nr_extents = 0;
7837 int loops;
7838 int ret;
7839 int level;
7840 struct btrfs_key first_key;
7841 u64 prev_block = 0;
7842
7843
7844 trans = btrfs_start_transaction(extent_root, 1);
7845 BUG_ON(IS_ERR(trans));
7846
7847 if (extent_key->objectid == 0) {
7848 ret = del_extent_zero(trans, extent_root, path, extent_key);
7849 goto out;
7850 }
7851
7852 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7853 if (!ref_path) {
7854 ret = -ENOMEM;
7855 goto out;
7856 }
7857
7858 for (loops = 0; ; loops++) {
7859 if (loops == 0) {
7860 ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7861 extent_key->objectid);
7862 } else {
7863 ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7864 }
7865 if (ret < 0)
7866 goto out;
7867 if (ret > 0)
7868 break;
7869
7870 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7871 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7872 continue;
7873
7874 found_root = read_ref_root(extent_root->fs_info, ref_path);
7875 BUG_ON(!found_root);
7876 /*
7877 * for reference counted tree, only process reference paths
7878 * rooted at the latest committed root.
7879 */
7880 if (found_root->ref_cows &&
7881 ref_path->root_generation != found_root->root_key.offset)
7882 continue;
7883
7884 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7885 if (pass == 0) {
7886 /*
7887 * copy data extents to new locations
7888 */
7889 u64 group_start = group->key.objectid;
7890 ret = relocate_data_extent(reloc_inode,
7891 extent_key,
7892 group_start);
7893 if (ret < 0)
7894 goto out;
7895 break;
7896 }
7897 level = 0;
7898 } else {
7899 level = ref_path->owner_objectid;
7900 }
7901
7902 if (prev_block != ref_path->nodes[level]) {
7903 struct extent_buffer *eb;
7904 u64 block_start = ref_path->nodes[level];
7905 u64 block_size = btrfs_level_size(found_root, level);
7906
7907 eb = read_tree_block(found_root, block_start,
7908 block_size, 0);
7909 btrfs_tree_lock(eb);
7910 BUG_ON(level != btrfs_header_level(eb));
7911
7912 if (level == 0)
7913 btrfs_item_key_to_cpu(eb, &first_key, 0);
7914 else
7915 btrfs_node_key_to_cpu(eb, &first_key, 0);
7916
7917 btrfs_tree_unlock(eb);
7918 free_extent_buffer(eb);
7919 prev_block = block_start;
7920 }
7921
7922 mutex_lock(&extent_root->fs_info->trans_mutex);
7923 btrfs_record_root_in_trans(found_root);
7924 mutex_unlock(&extent_root->fs_info->trans_mutex);
7925 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7926 /*
7927 * try to update data extent references while
7928 * keeping metadata shared between snapshots.
7929 */
7930 if (pass == 1) {
7931 ret = relocate_one_path(trans, found_root,
7932 path, &first_key, ref_path,
7933 group, reloc_inode);
7934 if (ret < 0)
7935 goto out;
7936 continue;
7937 }
7938 /*
7939 * use fallback method to process the remaining
7940 * references.
7941 */
7942 if (!new_extents) {
7943 u64 group_start = group->key.objectid;
7944 new_extents = kmalloc(sizeof(*new_extents),
7945 GFP_NOFS);
7946 nr_extents = 1;
7947 ret = get_new_locations(reloc_inode,
7948 extent_key,
7949 group_start, 1,
7950 &new_extents,
7951 &nr_extents);
7952 if (ret)
7953 goto out;
7954 }
7955 ret = replace_one_extent(trans, found_root,
7956 path, extent_key,
7957 &first_key, ref_path,
7958 new_extents, nr_extents);
7959 } else {
7960 ret = relocate_tree_block(trans, found_root, path,
7961 &first_key, ref_path);
7962 }
7963 if (ret < 0)
7964 goto out;
7965 }
7966 ret = 0;
7967out:
7968 btrfs_end_transaction(trans, extent_root);
7969 kfree(new_extents);
7970 kfree(ref_path);
7971 return ret;
7972}
7973#endif
7974
7975static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7976{
7977 u64 num_devices;
7978 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7979 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7980
7981 /*
7982 * we add in the count of missing devices because we want
7983 * to make sure that any RAID levels on a degraded FS
7984 * continue to be honored.
7985 */
7986 num_devices = root->fs_info->fs_devices->rw_devices +
7987 root->fs_info->fs_devices->missing_devices;
7988
7989 if (num_devices == 1) {
7990 stripped |= BTRFS_BLOCK_GROUP_DUP;
7991 stripped = flags & ~stripped;
7992
7993 /* turn raid0 into single device chunks */
7994 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7995 return stripped;
7996
7997 /* turn mirroring into duplication */
7998 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7999 BTRFS_BLOCK_GROUP_RAID10))
8000 return stripped | BTRFS_BLOCK_GROUP_DUP;
8001 return flags;
8002 } else {
8003 /* they already had raid on here, just return */
8004 if (flags & stripped)
8005 return flags;
8006
8007 stripped |= BTRFS_BLOCK_GROUP_DUP;
8008 stripped = flags & ~stripped;
8009
8010 /* switch duplicated blocks with raid1 */
8011 if (flags & BTRFS_BLOCK_GROUP_DUP)
8012 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8013
8014 /* turn single device chunks into raid0 */
8015 return stripped | BTRFS_BLOCK_GROUP_RAID0;
8016 }
8017 return flags;
8018}
8019
8020static int set_block_group_ro(struct btrfs_block_group_cache *cache)
8021{
8022 struct btrfs_space_info *sinfo = cache->space_info;
8023 u64 num_bytes;
8024 int ret = -ENOSPC;
8025
8026 if (cache->ro)
8027 return 0;
8028
8029 spin_lock(&sinfo->lock);
8030 spin_lock(&cache->lock);
8031 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8032 cache->bytes_super - btrfs_block_group_used(&cache->item);
8033
8034 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8035 sinfo->bytes_may_use + sinfo->bytes_readonly +
8036 cache->reserved_pinned + num_bytes <= sinfo->total_bytes) {
8037 sinfo->bytes_readonly += num_bytes;
8038 sinfo->bytes_reserved += cache->reserved_pinned;
8039 cache->reserved_pinned = 0;
8040 cache->ro = 1;
8041 ret = 0;
8042 }
8043
8044 spin_unlock(&cache->lock);
8045 spin_unlock(&sinfo->lock);
8046 return ret;
8047}
8048
8049int btrfs_set_block_group_ro(struct btrfs_root *root,
8050 struct btrfs_block_group_cache *cache)
8051
8052{
8053 struct btrfs_trans_handle *trans;
8054 u64 alloc_flags;
8055 int ret;
8056
8057 BUG_ON(cache->ro);
8058
8059 trans = btrfs_join_transaction(root, 1);
8060 BUG_ON(IS_ERR(trans));
8061
8062 alloc_flags = update_block_group_flags(root, cache->flags);
8063 if (alloc_flags != cache->flags)
8064 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8065
8066 ret = set_block_group_ro(cache);
8067 if (!ret)
8068 goto out;
8069 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8070 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8071 if (ret < 0)
8072 goto out;
8073 ret = set_block_group_ro(cache);
8074out:
8075 btrfs_end_transaction(trans, root);
8076 return ret;
8077}
8078
8079int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8080 struct btrfs_root *root, u64 type)
8081{
8082 u64 alloc_flags = get_alloc_profile(root, type);
8083 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8084}
8085
8086/*
8087 * helper to account the unused space of all the readonly block group in the
8088 * list. takes mirrors into account.
8089 */
8090static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8091{
8092 struct btrfs_block_group_cache *block_group;
8093 u64 free_bytes = 0;
8094 int factor;
8095
8096 list_for_each_entry(block_group, groups_list, list) {
8097 spin_lock(&block_group->lock);
8098
8099 if (!block_group->ro) {
8100 spin_unlock(&block_group->lock);
8101 continue;
8102 }
8103
8104 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8105 BTRFS_BLOCK_GROUP_RAID10 |
8106 BTRFS_BLOCK_GROUP_DUP))
8107 factor = 2;
8108 else
8109 factor = 1;
8110
8111 free_bytes += (block_group->key.offset -
8112 btrfs_block_group_used(&block_group->item)) *
8113 factor;
8114
8115 spin_unlock(&block_group->lock);
8116 }
8117
8118 return free_bytes;
8119}
8120
8121/*
8122 * helper to account the unused space of all the readonly block group in the
8123 * space_info. takes mirrors into account.
8124 */
8125u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8126{
8127 int i;
8128 u64 free_bytes = 0;
8129
8130 spin_lock(&sinfo->lock);
8131
8132 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8133 if (!list_empty(&sinfo->block_groups[i]))
8134 free_bytes += __btrfs_get_ro_block_group_free_space(
8135 &sinfo->block_groups[i]);
8136
8137 spin_unlock(&sinfo->lock);
8138
8139 return free_bytes;
8140}
8141
8142int btrfs_set_block_group_rw(struct btrfs_root *root,
8143 struct btrfs_block_group_cache *cache)
8144{
8145 struct btrfs_space_info *sinfo = cache->space_info;
8146 u64 num_bytes;
8147
8148 BUG_ON(!cache->ro);
8149
8150 spin_lock(&sinfo->lock);
8151 spin_lock(&cache->lock);
8152 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8153 cache->bytes_super - btrfs_block_group_used(&cache->item);
8154 sinfo->bytes_readonly -= num_bytes;
8155 cache->ro = 0;
8156 spin_unlock(&cache->lock);
8157 spin_unlock(&sinfo->lock);
8158 return 0;
8159}
8160
8161/*
8162 * checks to see if its even possible to relocate this block group.
8163 *
8164 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8165 * ok to go ahead and try.
8166 */
8167int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8168{
8169 struct btrfs_block_group_cache *block_group;
8170 struct btrfs_space_info *space_info;
8171 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8172 struct btrfs_device *device;
8173 int full = 0;
8174 int ret = 0;
8175
8176 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8177
8178 /* odd, couldn't find the block group, leave it alone */
8179 if (!block_group)
8180 return -1;
8181
8182 /* no bytes used, we're good */
8183 if (!btrfs_block_group_used(&block_group->item))
8184 goto out;
8185
8186 space_info = block_group->space_info;
8187 spin_lock(&space_info->lock);
8188
8189 full = space_info->full;
8190
8191 /*
8192 * if this is the last block group we have in this space, we can't
8193 * relocate it unless we're able to allocate a new chunk below.
8194 *
8195 * Otherwise, we need to make sure we have room in the space to handle
8196 * all of the extents from this block group. If we can, we're good
8197 */
8198 if ((space_info->total_bytes != block_group->key.offset) &&
8199 (space_info->bytes_used + space_info->bytes_reserved +
8200 space_info->bytes_pinned + space_info->bytes_readonly +
8201 btrfs_block_group_used(&block_group->item) <
8202 space_info->total_bytes)) {
8203 spin_unlock(&space_info->lock);
8204 goto out;
8205 }
8206 spin_unlock(&space_info->lock);
8207
8208 /*
8209 * ok we don't have enough space, but maybe we have free space on our
8210 * devices to allocate new chunks for relocation, so loop through our
8211 * alloc devices and guess if we have enough space. However, if we
8212 * were marked as full, then we know there aren't enough chunks, and we
8213 * can just return.
8214 */
8215 ret = -1;
8216 if (full)
8217 goto out;
8218
8219 mutex_lock(&root->fs_info->chunk_mutex);
8220 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8221 u64 min_free = btrfs_block_group_used(&block_group->item);
8222 u64 dev_offset;
8223
8224 /*
8225 * check to make sure we can actually find a chunk with enough
8226 * space to fit our block group in.
8227 */
8228 if (device->total_bytes > device->bytes_used + min_free) {
8229 ret = find_free_dev_extent(NULL, device, min_free,
8230 &dev_offset, NULL);
8231 if (!ret)
8232 break;
8233 ret = -1;
8234 }
8235 }
8236 mutex_unlock(&root->fs_info->chunk_mutex);
8237out:
8238 btrfs_put_block_group(block_group);
8239 return ret;
8240}
8241
8242static int find_first_block_group(struct btrfs_root *root,
8243 struct btrfs_path *path, struct btrfs_key *key)
8244{
8245 int ret = 0;
8246 struct btrfs_key found_key;
8247 struct extent_buffer *leaf;
8248 int slot;
8249
8250 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8251 if (ret < 0)
8252 goto out;
8253
8254 while (1) {
8255 slot = path->slots[0];
8256 leaf = path->nodes[0];
8257 if (slot >= btrfs_header_nritems(leaf)) {
8258 ret = btrfs_next_leaf(root, path);
8259 if (ret == 0)
8260 continue;
8261 if (ret < 0)
8262 goto out;
8263 break;
8264 }
8265 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8266
8267 if (found_key.objectid >= key->objectid &&
8268 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8269 ret = 0;
8270 goto out;
8271 }
8272 path->slots[0]++;
8273 }
8274out:
8275 return ret;
8276}
8277
8278void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8279{
8280 struct btrfs_block_group_cache *block_group;
8281 u64 last = 0;
8282
8283 while (1) {
8284 struct inode *inode;
8285
8286 block_group = btrfs_lookup_first_block_group(info, last);
8287 while (block_group) {
8288 spin_lock(&block_group->lock);
8289 if (block_group->iref)
8290 break;
8291 spin_unlock(&block_group->lock);
8292 block_group = next_block_group(info->tree_root,
8293 block_group);
8294 }
8295 if (!block_group) {
8296 if (last == 0)
8297 break;
8298 last = 0;
8299 continue;
8300 }
8301
8302 inode = block_group->inode;
8303 block_group->iref = 0;
8304 block_group->inode = NULL;
8305 spin_unlock(&block_group->lock);
8306 iput(inode);
8307 last = block_group->key.objectid + block_group->key.offset;
8308 btrfs_put_block_group(block_group);
8309 }
8310}
8311
8312int btrfs_free_block_groups(struct btrfs_fs_info *info)
8313{
8314 struct btrfs_block_group_cache *block_group;
8315 struct btrfs_space_info *space_info;
8316 struct btrfs_caching_control *caching_ctl;
8317 struct rb_node *n;
8318
8319 down_write(&info->extent_commit_sem);
8320 while (!list_empty(&info->caching_block_groups)) {
8321 caching_ctl = list_entry(info->caching_block_groups.next,
8322 struct btrfs_caching_control, list);
8323 list_del(&caching_ctl->list);
8324 put_caching_control(caching_ctl);
8325 }
8326 up_write(&info->extent_commit_sem);
8327
8328 spin_lock(&info->block_group_cache_lock);
8329 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8330 block_group = rb_entry(n, struct btrfs_block_group_cache,
8331 cache_node);
8332 rb_erase(&block_group->cache_node,
8333 &info->block_group_cache_tree);
8334 spin_unlock(&info->block_group_cache_lock);
8335
8336 down_write(&block_group->space_info->groups_sem);
8337 list_del(&block_group->list);
8338 up_write(&block_group->space_info->groups_sem);
8339
8340 if (block_group->cached == BTRFS_CACHE_STARTED)
8341 wait_block_group_cache_done(block_group);
8342
8343 /*
8344 * We haven't cached this block group, which means we could
8345 * possibly have excluded extents on this block group.
8346 */
8347 if (block_group->cached == BTRFS_CACHE_NO)
8348 free_excluded_extents(info->extent_root, block_group);
8349
8350 btrfs_remove_free_space_cache(block_group);
8351 btrfs_put_block_group(block_group);
8352
8353 spin_lock(&info->block_group_cache_lock);
8354 }
8355 spin_unlock(&info->block_group_cache_lock);
8356
8357 /* now that all the block groups are freed, go through and
8358 * free all the space_info structs. This is only called during
8359 * the final stages of unmount, and so we know nobody is
8360 * using them. We call synchronize_rcu() once before we start,
8361 * just to be on the safe side.
8362 */
8363 synchronize_rcu();
8364
8365 release_global_block_rsv(info);
8366
8367 while(!list_empty(&info->space_info)) {
8368 space_info = list_entry(info->space_info.next,
8369 struct btrfs_space_info,
8370 list);
8371 if (space_info->bytes_pinned > 0 ||
8372 space_info->bytes_reserved > 0) {
8373 WARN_ON(1);
8374 dump_space_info(space_info, 0, 0);
8375 }
8376 list_del(&space_info->list);
8377 kfree(space_info);
8378 }
8379 return 0;
8380}
8381
8382static void __link_block_group(struct btrfs_space_info *space_info,
8383 struct btrfs_block_group_cache *cache)
8384{
8385 int index = get_block_group_index(cache);
8386
8387 down_write(&space_info->groups_sem);
8388 list_add_tail(&cache->list, &space_info->block_groups[index]);
8389 up_write(&space_info->groups_sem);
8390}
8391
8392int btrfs_read_block_groups(struct btrfs_root *root)
8393{
8394 struct btrfs_path *path;
8395 int ret;
8396 struct btrfs_block_group_cache *cache;
8397 struct btrfs_fs_info *info = root->fs_info;
8398 struct btrfs_space_info *space_info;
8399 struct btrfs_key key;
8400 struct btrfs_key found_key;
8401 struct extent_buffer *leaf;
8402 int need_clear = 0;
8403 u64 cache_gen;
8404
8405 root = info->extent_root;
8406 key.objectid = 0;
8407 key.offset = 0;
8408 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8409 path = btrfs_alloc_path();
8410 if (!path)
8411 return -ENOMEM;
8412
8413 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
8414 if (cache_gen != 0 &&
8415 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
8416 need_clear = 1;
8417 if (btrfs_test_opt(root, CLEAR_CACHE))
8418 need_clear = 1;
8419 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
8420 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
8421
8422 while (1) {
8423 ret = find_first_block_group(root, path, &key);
8424 if (ret > 0)
8425 break;
8426 if (ret != 0)
8427 goto error;
8428 leaf = path->nodes[0];
8429 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8430 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8431 if (!cache) {
8432 ret = -ENOMEM;
8433 goto error;
8434 }
8435
8436 atomic_set(&cache->count, 1);
8437 spin_lock_init(&cache->lock);
8438 spin_lock_init(&cache->tree_lock);
8439 cache->fs_info = info;
8440 INIT_LIST_HEAD(&cache->list);
8441 INIT_LIST_HEAD(&cache->cluster_list);
8442
8443 if (need_clear)
8444 cache->disk_cache_state = BTRFS_DC_CLEAR;
8445
8446 /*
8447 * we only want to have 32k of ram per block group for keeping
8448 * track of free space, and if we pass 1/2 of that we want to
8449 * start converting things over to using bitmaps
8450 */
8451 cache->extents_thresh = ((1024 * 32) / 2) /
8452 sizeof(struct btrfs_free_space);
8453
8454 read_extent_buffer(leaf, &cache->item,
8455 btrfs_item_ptr_offset(leaf, path->slots[0]),
8456 sizeof(cache->item));
8457 memcpy(&cache->key, &found_key, sizeof(found_key));
8458
8459 key.objectid = found_key.objectid + found_key.offset;
8460 btrfs_release_path(root, path);
8461 cache->flags = btrfs_block_group_flags(&cache->item);
8462 cache->sectorsize = root->sectorsize;
8463
8464 /*
8465 * We need to exclude the super stripes now so that the space
8466 * info has super bytes accounted for, otherwise we'll think
8467 * we have more space than we actually do.
8468 */
8469 exclude_super_stripes(root, cache);
8470
8471 /*
8472 * check for two cases, either we are full, and therefore
8473 * don't need to bother with the caching work since we won't
8474 * find any space, or we are empty, and we can just add all
8475 * the space in and be done with it. This saves us _alot_ of
8476 * time, particularly in the full case.
8477 */
8478 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8479 cache->last_byte_to_unpin = (u64)-1;
8480 cache->cached = BTRFS_CACHE_FINISHED;
8481 free_excluded_extents(root, cache);
8482 } else if (btrfs_block_group_used(&cache->item) == 0) {
8483 cache->last_byte_to_unpin = (u64)-1;
8484 cache->cached = BTRFS_CACHE_FINISHED;
8485 add_new_free_space(cache, root->fs_info,
8486 found_key.objectid,
8487 found_key.objectid +
8488 found_key.offset);
8489 free_excluded_extents(root, cache);
8490 }
8491
8492 ret = update_space_info(info, cache->flags, found_key.offset,
8493 btrfs_block_group_used(&cache->item),
8494 &space_info);
8495 BUG_ON(ret);
8496 cache->space_info = space_info;
8497 spin_lock(&cache->space_info->lock);
8498 cache->space_info->bytes_readonly += cache->bytes_super;
8499 spin_unlock(&cache->space_info->lock);
8500
8501 __link_block_group(space_info, cache);
8502
8503 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8504 BUG_ON(ret);
8505
8506 set_avail_alloc_bits(root->fs_info, cache->flags);
8507 if (btrfs_chunk_readonly(root, cache->key.objectid))
8508 set_block_group_ro(cache);
8509 }
8510
8511 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8512 if (!(get_alloc_profile(root, space_info->flags) &
8513 (BTRFS_BLOCK_GROUP_RAID10 |
8514 BTRFS_BLOCK_GROUP_RAID1 |
8515 BTRFS_BLOCK_GROUP_DUP)))
8516 continue;
8517 /*
8518 * avoid allocating from un-mirrored block group if there are
8519 * mirrored block groups.
8520 */
8521 list_for_each_entry(cache, &space_info->block_groups[3], list)
8522 set_block_group_ro(cache);
8523 list_for_each_entry(cache, &space_info->block_groups[4], list)
8524 set_block_group_ro(cache);
8525 }
8526
8527 init_global_block_rsv(info);
8528 ret = 0;
8529error:
8530 btrfs_free_path(path);
8531 return ret;
8532}
8533
8534int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8535 struct btrfs_root *root, u64 bytes_used,
8536 u64 type, u64 chunk_objectid, u64 chunk_offset,
8537 u64 size)
8538{
8539 int ret;
8540 struct btrfs_root *extent_root;
8541 struct btrfs_block_group_cache *cache;
8542
8543 extent_root = root->fs_info->extent_root;
8544
8545 root->fs_info->last_trans_log_full_commit = trans->transid;
8546
8547 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8548 if (!cache)
8549 return -ENOMEM;
8550
8551 cache->key.objectid = chunk_offset;
8552 cache->key.offset = size;
8553 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8554 cache->sectorsize = root->sectorsize;
8555 cache->fs_info = root->fs_info;
8556
8557 /*
8558 * we only want to have 32k of ram per block group for keeping track
8559 * of free space, and if we pass 1/2 of that we want to start
8560 * converting things over to using bitmaps
8561 */
8562 cache->extents_thresh = ((1024 * 32) / 2) /
8563 sizeof(struct btrfs_free_space);
8564 atomic_set(&cache->count, 1);
8565 spin_lock_init(&cache->lock);
8566 spin_lock_init(&cache->tree_lock);
8567 INIT_LIST_HEAD(&cache->list);
8568 INIT_LIST_HEAD(&cache->cluster_list);
8569
8570 btrfs_set_block_group_used(&cache->item, bytes_used);
8571 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8572 cache->flags = type;
8573 btrfs_set_block_group_flags(&cache->item, type);
8574
8575 cache->last_byte_to_unpin = (u64)-1;
8576 cache->cached = BTRFS_CACHE_FINISHED;
8577 exclude_super_stripes(root, cache);
8578
8579 add_new_free_space(cache, root->fs_info, chunk_offset,
8580 chunk_offset + size);
8581
8582 free_excluded_extents(root, cache);
8583
8584 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8585 &cache->space_info);
8586 BUG_ON(ret);
8587
8588 spin_lock(&cache->space_info->lock);
8589 cache->space_info->bytes_readonly += cache->bytes_super;
8590 spin_unlock(&cache->space_info->lock);
8591
8592 __link_block_group(cache->space_info, cache);
8593
8594 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8595 BUG_ON(ret);
8596
8597 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
8598 sizeof(cache->item));
8599 BUG_ON(ret);
8600
8601 set_avail_alloc_bits(extent_root->fs_info, type);
8602
8603 return 0;
8604}
8605
8606int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8607 struct btrfs_root *root, u64 group_start)
8608{
8609 struct btrfs_path *path;
8610 struct btrfs_block_group_cache *block_group;
8611 struct btrfs_free_cluster *cluster;
8612 struct btrfs_root *tree_root = root->fs_info->tree_root;
8613 struct btrfs_key key;
8614 struct inode *inode;
8615 int ret;
8616 int factor;
8617
8618 root = root->fs_info->extent_root;
8619
8620 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8621 BUG_ON(!block_group);
8622 BUG_ON(!block_group->ro);
8623
8624 memcpy(&key, &block_group->key, sizeof(key));
8625 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8626 BTRFS_BLOCK_GROUP_RAID1 |
8627 BTRFS_BLOCK_GROUP_RAID10))
8628 factor = 2;
8629 else
8630 factor = 1;
8631
8632 /* make sure this block group isn't part of an allocation cluster */
8633 cluster = &root->fs_info->data_alloc_cluster;
8634 spin_lock(&cluster->refill_lock);
8635 btrfs_return_cluster_to_free_space(block_group, cluster);
8636 spin_unlock(&cluster->refill_lock);
8637
8638 /*
8639 * make sure this block group isn't part of a metadata
8640 * allocation cluster
8641 */
8642 cluster = &root->fs_info->meta_alloc_cluster;
8643 spin_lock(&cluster->refill_lock);
8644 btrfs_return_cluster_to_free_space(block_group, cluster);
8645 spin_unlock(&cluster->refill_lock);
8646
8647 path = btrfs_alloc_path();
8648 BUG_ON(!path);
8649
8650 inode = lookup_free_space_inode(root, block_group, path);
8651 if (!IS_ERR(inode)) {
8652 btrfs_orphan_add(trans, inode);
8653 clear_nlink(inode);
8654 /* One for the block groups ref */
8655 spin_lock(&block_group->lock);
8656 if (block_group->iref) {
8657 block_group->iref = 0;
8658 block_group->inode = NULL;
8659 spin_unlock(&block_group->lock);
8660 iput(inode);
8661 } else {
8662 spin_unlock(&block_group->lock);
8663 }
8664 /* One for our lookup ref */
8665 iput(inode);
8666 }
8667
8668 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8669 key.offset = block_group->key.objectid;
8670 key.type = 0;
8671
8672 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8673 if (ret < 0)
8674 goto out;
8675 if (ret > 0)
8676 btrfs_release_path(tree_root, path);
8677 if (ret == 0) {
8678 ret = btrfs_del_item(trans, tree_root, path);
8679 if (ret)
8680 goto out;
8681 btrfs_release_path(tree_root, path);
8682 }
8683
8684 spin_lock(&root->fs_info->block_group_cache_lock);
8685 rb_erase(&block_group->cache_node,
8686 &root->fs_info->block_group_cache_tree);
8687 spin_unlock(&root->fs_info->block_group_cache_lock);
8688
8689 down_write(&block_group->space_info->groups_sem);
8690 /*
8691 * we must use list_del_init so people can check to see if they
8692 * are still on the list after taking the semaphore
8693 */
8694 list_del_init(&block_group->list);
8695 up_write(&block_group->space_info->groups_sem);
8696
8697 if (block_group->cached == BTRFS_CACHE_STARTED)
8698 wait_block_group_cache_done(block_group);
8699
8700 btrfs_remove_free_space_cache(block_group);
8701
8702 spin_lock(&block_group->space_info->lock);
8703 block_group->space_info->total_bytes -= block_group->key.offset;
8704 block_group->space_info->bytes_readonly -= block_group->key.offset;
8705 block_group->space_info->disk_total -= block_group->key.offset * factor;
8706 spin_unlock(&block_group->space_info->lock);
8707
8708 memcpy(&key, &block_group->key, sizeof(key));
8709
8710 btrfs_clear_space_info_full(root->fs_info);
8711
8712 btrfs_put_block_group(block_group);
8713 btrfs_put_block_group(block_group);
8714
8715 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8716 if (ret > 0)
8717 ret = -EIO;
8718 if (ret < 0)
8719 goto out;
8720
8721 ret = btrfs_del_item(trans, root, path);
8722out:
8723 btrfs_free_path(path);
8724 return ret;
8725}
8726
8727int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8728{
8729 return unpin_extent_range(root, start, end);
8730}
8731
8732int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8733 u64 num_bytes)
8734{
8735 return btrfs_discard_extent(root, bytenr, num_bytes);
8736}
This page took 0.055375 seconds and 5 git commands to generate.