eisa: Fix spelling of "asynchronous".
[deliverable/linux.git] / fs / btrfs / extent-tree.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/pagemap.h>
20#include <linux/writeback.h>
21#include <linux/blkdev.h>
22#include <linux/sort.h>
23#include <linux/rcupdate.h>
24#include <linux/kthread.h>
25#include <linux/slab.h>
26#include <linux/ratelimit.h>
27#include "compat.h"
28#include "hash.h"
29#include "ctree.h"
30#include "disk-io.h"
31#include "print-tree.h"
32#include "transaction.h"
33#include "volumes.h"
34#include "locking.h"
35#include "free-space-cache.h"
36
37#undef SCRAMBLE_DELAYED_REFS
38
39/*
40 * control flags for do_chunk_alloc's force field
41 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
42 * if we really need one.
43 *
44 * CHUNK_ALLOC_LIMITED means to only try and allocate one
45 * if we have very few chunks already allocated. This is
46 * used as part of the clustering code to help make sure
47 * we have a good pool of storage to cluster in, without
48 * filling the FS with empty chunks
49 *
50 * CHUNK_ALLOC_FORCE means it must try to allocate one
51 *
52 */
53enum {
54 CHUNK_ALLOC_NO_FORCE = 0,
55 CHUNK_ALLOC_LIMITED = 1,
56 CHUNK_ALLOC_FORCE = 2,
57};
58
59/*
60 * Control how reservations are dealt with.
61 *
62 * RESERVE_FREE - freeing a reservation.
63 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
64 * ENOSPC accounting
65 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
66 * bytes_may_use as the ENOSPC accounting is done elsewhere
67 */
68enum {
69 RESERVE_FREE = 0,
70 RESERVE_ALLOC = 1,
71 RESERVE_ALLOC_NO_ACCOUNT = 2,
72};
73
74static int update_block_group(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, int alloc);
77static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root,
79 u64 bytenr, u64 num_bytes, u64 parent,
80 u64 root_objectid, u64 owner_objectid,
81 u64 owner_offset, int refs_to_drop,
82 struct btrfs_delayed_extent_op *extra_op);
83static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
84 struct extent_buffer *leaf,
85 struct btrfs_extent_item *ei);
86static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
87 struct btrfs_root *root,
88 u64 parent, u64 root_objectid,
89 u64 flags, u64 owner, u64 offset,
90 struct btrfs_key *ins, int ref_mod);
91static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
92 struct btrfs_root *root,
93 u64 parent, u64 root_objectid,
94 u64 flags, struct btrfs_disk_key *key,
95 int level, struct btrfs_key *ins);
96static int do_chunk_alloc(struct btrfs_trans_handle *trans,
97 struct btrfs_root *extent_root, u64 flags,
98 int force);
99static int find_next_key(struct btrfs_path *path, int level,
100 struct btrfs_key *key);
101static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
102 int dump_block_groups);
103static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
104 u64 num_bytes, int reserve);
105
106static noinline int
107block_group_cache_done(struct btrfs_block_group_cache *cache)
108{
109 smp_mb();
110 return cache->cached == BTRFS_CACHE_FINISHED;
111}
112
113static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
114{
115 return (cache->flags & bits) == bits;
116}
117
118static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
119{
120 atomic_inc(&cache->count);
121}
122
123void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
124{
125 if (atomic_dec_and_test(&cache->count)) {
126 WARN_ON(cache->pinned > 0);
127 WARN_ON(cache->reserved > 0);
128 kfree(cache->free_space_ctl);
129 kfree(cache);
130 }
131}
132
133/*
134 * this adds the block group to the fs_info rb tree for the block group
135 * cache
136 */
137static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
138 struct btrfs_block_group_cache *block_group)
139{
140 struct rb_node **p;
141 struct rb_node *parent = NULL;
142 struct btrfs_block_group_cache *cache;
143
144 spin_lock(&info->block_group_cache_lock);
145 p = &info->block_group_cache_tree.rb_node;
146
147 while (*p) {
148 parent = *p;
149 cache = rb_entry(parent, struct btrfs_block_group_cache,
150 cache_node);
151 if (block_group->key.objectid < cache->key.objectid) {
152 p = &(*p)->rb_left;
153 } else if (block_group->key.objectid > cache->key.objectid) {
154 p = &(*p)->rb_right;
155 } else {
156 spin_unlock(&info->block_group_cache_lock);
157 return -EEXIST;
158 }
159 }
160
161 rb_link_node(&block_group->cache_node, parent, p);
162 rb_insert_color(&block_group->cache_node,
163 &info->block_group_cache_tree);
164 spin_unlock(&info->block_group_cache_lock);
165
166 return 0;
167}
168
169/*
170 * This will return the block group at or after bytenr if contains is 0, else
171 * it will return the block group that contains the bytenr
172 */
173static struct btrfs_block_group_cache *
174block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
175 int contains)
176{
177 struct btrfs_block_group_cache *cache, *ret = NULL;
178 struct rb_node *n;
179 u64 end, start;
180
181 spin_lock(&info->block_group_cache_lock);
182 n = info->block_group_cache_tree.rb_node;
183
184 while (n) {
185 cache = rb_entry(n, struct btrfs_block_group_cache,
186 cache_node);
187 end = cache->key.objectid + cache->key.offset - 1;
188 start = cache->key.objectid;
189
190 if (bytenr < start) {
191 if (!contains && (!ret || start < ret->key.objectid))
192 ret = cache;
193 n = n->rb_left;
194 } else if (bytenr > start) {
195 if (contains && bytenr <= end) {
196 ret = cache;
197 break;
198 }
199 n = n->rb_right;
200 } else {
201 ret = cache;
202 break;
203 }
204 }
205 if (ret)
206 btrfs_get_block_group(ret);
207 spin_unlock(&info->block_group_cache_lock);
208
209 return ret;
210}
211
212static int add_excluded_extent(struct btrfs_root *root,
213 u64 start, u64 num_bytes)
214{
215 u64 end = start + num_bytes - 1;
216 set_extent_bits(&root->fs_info->freed_extents[0],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
218 set_extent_bits(&root->fs_info->freed_extents[1],
219 start, end, EXTENT_UPTODATE, GFP_NOFS);
220 return 0;
221}
222
223static void free_excluded_extents(struct btrfs_root *root,
224 struct btrfs_block_group_cache *cache)
225{
226 u64 start, end;
227
228 start = cache->key.objectid;
229 end = start + cache->key.offset - 1;
230
231 clear_extent_bits(&root->fs_info->freed_extents[0],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 clear_extent_bits(&root->fs_info->freed_extents[1],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235}
236
237static int exclude_super_stripes(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239{
240 u64 bytenr;
241 u64 *logical;
242 int stripe_len;
243 int i, nr, ret;
244
245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
247 cache->bytes_super += stripe_len;
248 ret = add_excluded_extent(root, cache->key.objectid,
249 stripe_len);
250 BUG_ON(ret); /* -ENOMEM */
251 }
252
253 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
254 bytenr = btrfs_sb_offset(i);
255 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
256 cache->key.objectid, bytenr,
257 0, &logical, &nr, &stripe_len);
258 BUG_ON(ret); /* -ENOMEM */
259
260 while (nr--) {
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, logical[nr],
263 stripe_len);
264 BUG_ON(ret); /* -ENOMEM */
265 }
266
267 kfree(logical);
268 }
269 return 0;
270}
271
272static struct btrfs_caching_control *
273get_caching_control(struct btrfs_block_group_cache *cache)
274{
275 struct btrfs_caching_control *ctl;
276
277 spin_lock(&cache->lock);
278 if (cache->cached != BTRFS_CACHE_STARTED) {
279 spin_unlock(&cache->lock);
280 return NULL;
281 }
282
283 /* We're loading it the fast way, so we don't have a caching_ctl. */
284 if (!cache->caching_ctl) {
285 spin_unlock(&cache->lock);
286 return NULL;
287 }
288
289 ctl = cache->caching_ctl;
290 atomic_inc(&ctl->count);
291 spin_unlock(&cache->lock);
292 return ctl;
293}
294
295static void put_caching_control(struct btrfs_caching_control *ctl)
296{
297 if (atomic_dec_and_test(&ctl->count))
298 kfree(ctl);
299}
300
301/*
302 * this is only called by cache_block_group, since we could have freed extents
303 * we need to check the pinned_extents for any extents that can't be used yet
304 * since their free space will be released as soon as the transaction commits.
305 */
306static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
307 struct btrfs_fs_info *info, u64 start, u64 end)
308{
309 u64 extent_start, extent_end, size, total_added = 0;
310 int ret;
311
312 while (start < end) {
313 ret = find_first_extent_bit(info->pinned_extents, start,
314 &extent_start, &extent_end,
315 EXTENT_DIRTY | EXTENT_UPTODATE,
316 NULL);
317 if (ret)
318 break;
319
320 if (extent_start <= start) {
321 start = extent_end + 1;
322 } else if (extent_start > start && extent_start < end) {
323 size = extent_start - start;
324 total_added += size;
325 ret = btrfs_add_free_space(block_group, start,
326 size);
327 BUG_ON(ret); /* -ENOMEM or logic error */
328 start = extent_end + 1;
329 } else {
330 break;
331 }
332 }
333
334 if (start < end) {
335 size = end - start;
336 total_added += size;
337 ret = btrfs_add_free_space(block_group, start, size);
338 BUG_ON(ret); /* -ENOMEM or logic error */
339 }
340
341 return total_added;
342}
343
344static noinline void caching_thread(struct btrfs_work *work)
345{
346 struct btrfs_block_group_cache *block_group;
347 struct btrfs_fs_info *fs_info;
348 struct btrfs_caching_control *caching_ctl;
349 struct btrfs_root *extent_root;
350 struct btrfs_path *path;
351 struct extent_buffer *leaf;
352 struct btrfs_key key;
353 u64 total_found = 0;
354 u64 last = 0;
355 u32 nritems;
356 int ret = 0;
357
358 caching_ctl = container_of(work, struct btrfs_caching_control, work);
359 block_group = caching_ctl->block_group;
360 fs_info = block_group->fs_info;
361 extent_root = fs_info->extent_root;
362
363 path = btrfs_alloc_path();
364 if (!path)
365 goto out;
366
367 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
368
369 /*
370 * We don't want to deadlock with somebody trying to allocate a new
371 * extent for the extent root while also trying to search the extent
372 * root to add free space. So we skip locking and search the commit
373 * root, since its read-only
374 */
375 path->skip_locking = 1;
376 path->search_commit_root = 1;
377 path->reada = 1;
378
379 key.objectid = last;
380 key.offset = 0;
381 key.type = BTRFS_EXTENT_ITEM_KEY;
382again:
383 mutex_lock(&caching_ctl->mutex);
384 /* need to make sure the commit_root doesn't disappear */
385 down_read(&fs_info->extent_commit_sem);
386
387 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
388 if (ret < 0)
389 goto err;
390
391 leaf = path->nodes[0];
392 nritems = btrfs_header_nritems(leaf);
393
394 while (1) {
395 if (btrfs_fs_closing(fs_info) > 1) {
396 last = (u64)-1;
397 break;
398 }
399
400 if (path->slots[0] < nritems) {
401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
402 } else {
403 ret = find_next_key(path, 0, &key);
404 if (ret)
405 break;
406
407 if (need_resched() ||
408 btrfs_next_leaf(extent_root, path)) {
409 caching_ctl->progress = last;
410 btrfs_release_path(path);
411 up_read(&fs_info->extent_commit_sem);
412 mutex_unlock(&caching_ctl->mutex);
413 cond_resched();
414 goto again;
415 }
416 leaf = path->nodes[0];
417 nritems = btrfs_header_nritems(leaf);
418 continue;
419 }
420
421 if (key.objectid < block_group->key.objectid) {
422 path->slots[0]++;
423 continue;
424 }
425
426 if (key.objectid >= block_group->key.objectid +
427 block_group->key.offset)
428 break;
429
430 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
431 total_found += add_new_free_space(block_group,
432 fs_info, last,
433 key.objectid);
434 last = key.objectid + key.offset;
435
436 if (total_found > (1024 * 1024 * 2)) {
437 total_found = 0;
438 wake_up(&caching_ctl->wait);
439 }
440 }
441 path->slots[0]++;
442 }
443 ret = 0;
444
445 total_found += add_new_free_space(block_group, fs_info, last,
446 block_group->key.objectid +
447 block_group->key.offset);
448 caching_ctl->progress = (u64)-1;
449
450 spin_lock(&block_group->lock);
451 block_group->caching_ctl = NULL;
452 block_group->cached = BTRFS_CACHE_FINISHED;
453 spin_unlock(&block_group->lock);
454
455err:
456 btrfs_free_path(path);
457 up_read(&fs_info->extent_commit_sem);
458
459 free_excluded_extents(extent_root, block_group);
460
461 mutex_unlock(&caching_ctl->mutex);
462out:
463 wake_up(&caching_ctl->wait);
464
465 put_caching_control(caching_ctl);
466 btrfs_put_block_group(block_group);
467}
468
469static int cache_block_group(struct btrfs_block_group_cache *cache,
470 struct btrfs_trans_handle *trans,
471 struct btrfs_root *root,
472 int load_cache_only)
473{
474 DEFINE_WAIT(wait);
475 struct btrfs_fs_info *fs_info = cache->fs_info;
476 struct btrfs_caching_control *caching_ctl;
477 int ret = 0;
478
479 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
480 if (!caching_ctl)
481 return -ENOMEM;
482
483 INIT_LIST_HEAD(&caching_ctl->list);
484 mutex_init(&caching_ctl->mutex);
485 init_waitqueue_head(&caching_ctl->wait);
486 caching_ctl->block_group = cache;
487 caching_ctl->progress = cache->key.objectid;
488 atomic_set(&caching_ctl->count, 1);
489 caching_ctl->work.func = caching_thread;
490
491 spin_lock(&cache->lock);
492 /*
493 * This should be a rare occasion, but this could happen I think in the
494 * case where one thread starts to load the space cache info, and then
495 * some other thread starts a transaction commit which tries to do an
496 * allocation while the other thread is still loading the space cache
497 * info. The previous loop should have kept us from choosing this block
498 * group, but if we've moved to the state where we will wait on caching
499 * block groups we need to first check if we're doing a fast load here,
500 * so we can wait for it to finish, otherwise we could end up allocating
501 * from a block group who's cache gets evicted for one reason or
502 * another.
503 */
504 while (cache->cached == BTRFS_CACHE_FAST) {
505 struct btrfs_caching_control *ctl;
506
507 ctl = cache->caching_ctl;
508 atomic_inc(&ctl->count);
509 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
510 spin_unlock(&cache->lock);
511
512 schedule();
513
514 finish_wait(&ctl->wait, &wait);
515 put_caching_control(ctl);
516 spin_lock(&cache->lock);
517 }
518
519 if (cache->cached != BTRFS_CACHE_NO) {
520 spin_unlock(&cache->lock);
521 kfree(caching_ctl);
522 return 0;
523 }
524 WARN_ON(cache->caching_ctl);
525 cache->caching_ctl = caching_ctl;
526 cache->cached = BTRFS_CACHE_FAST;
527 spin_unlock(&cache->lock);
528
529 /*
530 * We can't do the read from on-disk cache during a commit since we need
531 * to have the normal tree locking. Also if we are currently trying to
532 * allocate blocks for the tree root we can't do the fast caching since
533 * we likely hold important locks.
534 */
535 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
536 ret = load_free_space_cache(fs_info, cache);
537
538 spin_lock(&cache->lock);
539 if (ret == 1) {
540 cache->caching_ctl = NULL;
541 cache->cached = BTRFS_CACHE_FINISHED;
542 cache->last_byte_to_unpin = (u64)-1;
543 } else {
544 if (load_cache_only) {
545 cache->caching_ctl = NULL;
546 cache->cached = BTRFS_CACHE_NO;
547 } else {
548 cache->cached = BTRFS_CACHE_STARTED;
549 }
550 }
551 spin_unlock(&cache->lock);
552 wake_up(&caching_ctl->wait);
553 if (ret == 1) {
554 put_caching_control(caching_ctl);
555 free_excluded_extents(fs_info->extent_root, cache);
556 return 0;
557 }
558 } else {
559 /*
560 * We are not going to do the fast caching, set cached to the
561 * appropriate value and wakeup any waiters.
562 */
563 spin_lock(&cache->lock);
564 if (load_cache_only) {
565 cache->caching_ctl = NULL;
566 cache->cached = BTRFS_CACHE_NO;
567 } else {
568 cache->cached = BTRFS_CACHE_STARTED;
569 }
570 spin_unlock(&cache->lock);
571 wake_up(&caching_ctl->wait);
572 }
573
574 if (load_cache_only) {
575 put_caching_control(caching_ctl);
576 return 0;
577 }
578
579 down_write(&fs_info->extent_commit_sem);
580 atomic_inc(&caching_ctl->count);
581 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
582 up_write(&fs_info->extent_commit_sem);
583
584 btrfs_get_block_group(cache);
585
586 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
587
588 return ret;
589}
590
591/*
592 * return the block group that starts at or after bytenr
593 */
594static struct btrfs_block_group_cache *
595btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
596{
597 struct btrfs_block_group_cache *cache;
598
599 cache = block_group_cache_tree_search(info, bytenr, 0);
600
601 return cache;
602}
603
604/*
605 * return the block group that contains the given bytenr
606 */
607struct btrfs_block_group_cache *btrfs_lookup_block_group(
608 struct btrfs_fs_info *info,
609 u64 bytenr)
610{
611 struct btrfs_block_group_cache *cache;
612
613 cache = block_group_cache_tree_search(info, bytenr, 1);
614
615 return cache;
616}
617
618static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
619 u64 flags)
620{
621 struct list_head *head = &info->space_info;
622 struct btrfs_space_info *found;
623
624 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
625
626 rcu_read_lock();
627 list_for_each_entry_rcu(found, head, list) {
628 if (found->flags & flags) {
629 rcu_read_unlock();
630 return found;
631 }
632 }
633 rcu_read_unlock();
634 return NULL;
635}
636
637/*
638 * after adding space to the filesystem, we need to clear the full flags
639 * on all the space infos.
640 */
641void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
642{
643 struct list_head *head = &info->space_info;
644 struct btrfs_space_info *found;
645
646 rcu_read_lock();
647 list_for_each_entry_rcu(found, head, list)
648 found->full = 0;
649 rcu_read_unlock();
650}
651
652static u64 div_factor(u64 num, int factor)
653{
654 if (factor == 10)
655 return num;
656 num *= factor;
657 do_div(num, 10);
658 return num;
659}
660
661static u64 div_factor_fine(u64 num, int factor)
662{
663 if (factor == 100)
664 return num;
665 num *= factor;
666 do_div(num, 100);
667 return num;
668}
669
670u64 btrfs_find_block_group(struct btrfs_root *root,
671 u64 search_start, u64 search_hint, int owner)
672{
673 struct btrfs_block_group_cache *cache;
674 u64 used;
675 u64 last = max(search_hint, search_start);
676 u64 group_start = 0;
677 int full_search = 0;
678 int factor = 9;
679 int wrapped = 0;
680again:
681 while (1) {
682 cache = btrfs_lookup_first_block_group(root->fs_info, last);
683 if (!cache)
684 break;
685
686 spin_lock(&cache->lock);
687 last = cache->key.objectid + cache->key.offset;
688 used = btrfs_block_group_used(&cache->item);
689
690 if ((full_search || !cache->ro) &&
691 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
692 if (used + cache->pinned + cache->reserved <
693 div_factor(cache->key.offset, factor)) {
694 group_start = cache->key.objectid;
695 spin_unlock(&cache->lock);
696 btrfs_put_block_group(cache);
697 goto found;
698 }
699 }
700 spin_unlock(&cache->lock);
701 btrfs_put_block_group(cache);
702 cond_resched();
703 }
704 if (!wrapped) {
705 last = search_start;
706 wrapped = 1;
707 goto again;
708 }
709 if (!full_search && factor < 10) {
710 last = search_start;
711 full_search = 1;
712 factor = 10;
713 goto again;
714 }
715found:
716 return group_start;
717}
718
719/* simple helper to search for an existing extent at a given offset */
720int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
721{
722 int ret;
723 struct btrfs_key key;
724 struct btrfs_path *path;
725
726 path = btrfs_alloc_path();
727 if (!path)
728 return -ENOMEM;
729
730 key.objectid = start;
731 key.offset = len;
732 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
733 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
734 0, 0);
735 btrfs_free_path(path);
736 return ret;
737}
738
739/*
740 * helper function to lookup reference count and flags of extent.
741 *
742 * the head node for delayed ref is used to store the sum of all the
743 * reference count modifications queued up in the rbtree. the head
744 * node may also store the extent flags to set. This way you can check
745 * to see what the reference count and extent flags would be if all of
746 * the delayed refs are not processed.
747 */
748int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
749 struct btrfs_root *root, u64 bytenr,
750 u64 num_bytes, u64 *refs, u64 *flags)
751{
752 struct btrfs_delayed_ref_head *head;
753 struct btrfs_delayed_ref_root *delayed_refs;
754 struct btrfs_path *path;
755 struct btrfs_extent_item *ei;
756 struct extent_buffer *leaf;
757 struct btrfs_key key;
758 u32 item_size;
759 u64 num_refs;
760 u64 extent_flags;
761 int ret;
762
763 path = btrfs_alloc_path();
764 if (!path)
765 return -ENOMEM;
766
767 key.objectid = bytenr;
768 key.type = BTRFS_EXTENT_ITEM_KEY;
769 key.offset = num_bytes;
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
774again:
775 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
776 &key, path, 0, 0);
777 if (ret < 0)
778 goto out_free;
779
780 if (ret == 0) {
781 leaf = path->nodes[0];
782 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
783 if (item_size >= sizeof(*ei)) {
784 ei = btrfs_item_ptr(leaf, path->slots[0],
785 struct btrfs_extent_item);
786 num_refs = btrfs_extent_refs(leaf, ei);
787 extent_flags = btrfs_extent_flags(leaf, ei);
788 } else {
789#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
790 struct btrfs_extent_item_v0 *ei0;
791 BUG_ON(item_size != sizeof(*ei0));
792 ei0 = btrfs_item_ptr(leaf, path->slots[0],
793 struct btrfs_extent_item_v0);
794 num_refs = btrfs_extent_refs_v0(leaf, ei0);
795 /* FIXME: this isn't correct for data */
796 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
797#else
798 BUG();
799#endif
800 }
801 BUG_ON(num_refs == 0);
802 } else {
803 num_refs = 0;
804 extent_flags = 0;
805 ret = 0;
806 }
807
808 if (!trans)
809 goto out;
810
811 delayed_refs = &trans->transaction->delayed_refs;
812 spin_lock(&delayed_refs->lock);
813 head = btrfs_find_delayed_ref_head(trans, bytenr);
814 if (head) {
815 if (!mutex_trylock(&head->mutex)) {
816 atomic_inc(&head->node.refs);
817 spin_unlock(&delayed_refs->lock);
818
819 btrfs_release_path(path);
820
821 /*
822 * Mutex was contended, block until it's released and try
823 * again
824 */
825 mutex_lock(&head->mutex);
826 mutex_unlock(&head->mutex);
827 btrfs_put_delayed_ref(&head->node);
828 goto again;
829 }
830 if (head->extent_op && head->extent_op->update_flags)
831 extent_flags |= head->extent_op->flags_to_set;
832 else
833 BUG_ON(num_refs == 0);
834
835 num_refs += head->node.ref_mod;
836 mutex_unlock(&head->mutex);
837 }
838 spin_unlock(&delayed_refs->lock);
839out:
840 WARN_ON(num_refs == 0);
841 if (refs)
842 *refs = num_refs;
843 if (flags)
844 *flags = extent_flags;
845out_free:
846 btrfs_free_path(path);
847 return ret;
848}
849
850/*
851 * Back reference rules. Back refs have three main goals:
852 *
853 * 1) differentiate between all holders of references to an extent so that
854 * when a reference is dropped we can make sure it was a valid reference
855 * before freeing the extent.
856 *
857 * 2) Provide enough information to quickly find the holders of an extent
858 * if we notice a given block is corrupted or bad.
859 *
860 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
861 * maintenance. This is actually the same as #2, but with a slightly
862 * different use case.
863 *
864 * There are two kinds of back refs. The implicit back refs is optimized
865 * for pointers in non-shared tree blocks. For a given pointer in a block,
866 * back refs of this kind provide information about the block's owner tree
867 * and the pointer's key. These information allow us to find the block by
868 * b-tree searching. The full back refs is for pointers in tree blocks not
869 * referenced by their owner trees. The location of tree block is recorded
870 * in the back refs. Actually the full back refs is generic, and can be
871 * used in all cases the implicit back refs is used. The major shortcoming
872 * of the full back refs is its overhead. Every time a tree block gets
873 * COWed, we have to update back refs entry for all pointers in it.
874 *
875 * For a newly allocated tree block, we use implicit back refs for
876 * pointers in it. This means most tree related operations only involve
877 * implicit back refs. For a tree block created in old transaction, the
878 * only way to drop a reference to it is COW it. So we can detect the
879 * event that tree block loses its owner tree's reference and do the
880 * back refs conversion.
881 *
882 * When a tree block is COW'd through a tree, there are four cases:
883 *
884 * The reference count of the block is one and the tree is the block's
885 * owner tree. Nothing to do in this case.
886 *
887 * The reference count of the block is one and the tree is not the
888 * block's owner tree. In this case, full back refs is used for pointers
889 * in the block. Remove these full back refs, add implicit back refs for
890 * every pointers in the new block.
891 *
892 * The reference count of the block is greater than one and the tree is
893 * the block's owner tree. In this case, implicit back refs is used for
894 * pointers in the block. Add full back refs for every pointers in the
895 * block, increase lower level extents' reference counts. The original
896 * implicit back refs are entailed to the new block.
897 *
898 * The reference count of the block is greater than one and the tree is
899 * not the block's owner tree. Add implicit back refs for every pointer in
900 * the new block, increase lower level extents' reference count.
901 *
902 * Back Reference Key composing:
903 *
904 * The key objectid corresponds to the first byte in the extent,
905 * The key type is used to differentiate between types of back refs.
906 * There are different meanings of the key offset for different types
907 * of back refs.
908 *
909 * File extents can be referenced by:
910 *
911 * - multiple snapshots, subvolumes, or different generations in one subvol
912 * - different files inside a single subvolume
913 * - different offsets inside a file (bookend extents in file.c)
914 *
915 * The extent ref structure for the implicit back refs has fields for:
916 *
917 * - Objectid of the subvolume root
918 * - objectid of the file holding the reference
919 * - original offset in the file
920 * - how many bookend extents
921 *
922 * The key offset for the implicit back refs is hash of the first
923 * three fields.
924 *
925 * The extent ref structure for the full back refs has field for:
926 *
927 * - number of pointers in the tree leaf
928 *
929 * The key offset for the implicit back refs is the first byte of
930 * the tree leaf
931 *
932 * When a file extent is allocated, The implicit back refs is used.
933 * the fields are filled in:
934 *
935 * (root_key.objectid, inode objectid, offset in file, 1)
936 *
937 * When a file extent is removed file truncation, we find the
938 * corresponding implicit back refs and check the following fields:
939 *
940 * (btrfs_header_owner(leaf), inode objectid, offset in file)
941 *
942 * Btree extents can be referenced by:
943 *
944 * - Different subvolumes
945 *
946 * Both the implicit back refs and the full back refs for tree blocks
947 * only consist of key. The key offset for the implicit back refs is
948 * objectid of block's owner tree. The key offset for the full back refs
949 * is the first byte of parent block.
950 *
951 * When implicit back refs is used, information about the lowest key and
952 * level of the tree block are required. These information are stored in
953 * tree block info structure.
954 */
955
956#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
957static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
958 struct btrfs_root *root,
959 struct btrfs_path *path,
960 u64 owner, u32 extra_size)
961{
962 struct btrfs_extent_item *item;
963 struct btrfs_extent_item_v0 *ei0;
964 struct btrfs_extent_ref_v0 *ref0;
965 struct btrfs_tree_block_info *bi;
966 struct extent_buffer *leaf;
967 struct btrfs_key key;
968 struct btrfs_key found_key;
969 u32 new_size = sizeof(*item);
970 u64 refs;
971 int ret;
972
973 leaf = path->nodes[0];
974 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
975
976 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
977 ei0 = btrfs_item_ptr(leaf, path->slots[0],
978 struct btrfs_extent_item_v0);
979 refs = btrfs_extent_refs_v0(leaf, ei0);
980
981 if (owner == (u64)-1) {
982 while (1) {
983 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
984 ret = btrfs_next_leaf(root, path);
985 if (ret < 0)
986 return ret;
987 BUG_ON(ret > 0); /* Corruption */
988 leaf = path->nodes[0];
989 }
990 btrfs_item_key_to_cpu(leaf, &found_key,
991 path->slots[0]);
992 BUG_ON(key.objectid != found_key.objectid);
993 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
994 path->slots[0]++;
995 continue;
996 }
997 ref0 = btrfs_item_ptr(leaf, path->slots[0],
998 struct btrfs_extent_ref_v0);
999 owner = btrfs_ref_objectid_v0(leaf, ref0);
1000 break;
1001 }
1002 }
1003 btrfs_release_path(path);
1004
1005 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1006 new_size += sizeof(*bi);
1007
1008 new_size -= sizeof(*ei0);
1009 ret = btrfs_search_slot(trans, root, &key, path,
1010 new_size + extra_size, 1);
1011 if (ret < 0)
1012 return ret;
1013 BUG_ON(ret); /* Corruption */
1014
1015 btrfs_extend_item(trans, root, path, new_size);
1016
1017 leaf = path->nodes[0];
1018 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1019 btrfs_set_extent_refs(leaf, item, refs);
1020 /* FIXME: get real generation */
1021 btrfs_set_extent_generation(leaf, item, 0);
1022 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1023 btrfs_set_extent_flags(leaf, item,
1024 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1025 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1026 bi = (struct btrfs_tree_block_info *)(item + 1);
1027 /* FIXME: get first key of the block */
1028 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1029 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1030 } else {
1031 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1032 }
1033 btrfs_mark_buffer_dirty(leaf);
1034 return 0;
1035}
1036#endif
1037
1038static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1039{
1040 u32 high_crc = ~(u32)0;
1041 u32 low_crc = ~(u32)0;
1042 __le64 lenum;
1043
1044 lenum = cpu_to_le64(root_objectid);
1045 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1046 lenum = cpu_to_le64(owner);
1047 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1048 lenum = cpu_to_le64(offset);
1049 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1050
1051 return ((u64)high_crc << 31) ^ (u64)low_crc;
1052}
1053
1054static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1055 struct btrfs_extent_data_ref *ref)
1056{
1057 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1058 btrfs_extent_data_ref_objectid(leaf, ref),
1059 btrfs_extent_data_ref_offset(leaf, ref));
1060}
1061
1062static int match_extent_data_ref(struct extent_buffer *leaf,
1063 struct btrfs_extent_data_ref *ref,
1064 u64 root_objectid, u64 owner, u64 offset)
1065{
1066 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1067 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1068 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1069 return 0;
1070 return 1;
1071}
1072
1073static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1074 struct btrfs_root *root,
1075 struct btrfs_path *path,
1076 u64 bytenr, u64 parent,
1077 u64 root_objectid,
1078 u64 owner, u64 offset)
1079{
1080 struct btrfs_key key;
1081 struct btrfs_extent_data_ref *ref;
1082 struct extent_buffer *leaf;
1083 u32 nritems;
1084 int ret;
1085 int recow;
1086 int err = -ENOENT;
1087
1088 key.objectid = bytenr;
1089 if (parent) {
1090 key.type = BTRFS_SHARED_DATA_REF_KEY;
1091 key.offset = parent;
1092 } else {
1093 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1094 key.offset = hash_extent_data_ref(root_objectid,
1095 owner, offset);
1096 }
1097again:
1098 recow = 0;
1099 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1100 if (ret < 0) {
1101 err = ret;
1102 goto fail;
1103 }
1104
1105 if (parent) {
1106 if (!ret)
1107 return 0;
1108#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1109 key.type = BTRFS_EXTENT_REF_V0_KEY;
1110 btrfs_release_path(path);
1111 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1112 if (ret < 0) {
1113 err = ret;
1114 goto fail;
1115 }
1116 if (!ret)
1117 return 0;
1118#endif
1119 goto fail;
1120 }
1121
1122 leaf = path->nodes[0];
1123 nritems = btrfs_header_nritems(leaf);
1124 while (1) {
1125 if (path->slots[0] >= nritems) {
1126 ret = btrfs_next_leaf(root, path);
1127 if (ret < 0)
1128 err = ret;
1129 if (ret)
1130 goto fail;
1131
1132 leaf = path->nodes[0];
1133 nritems = btrfs_header_nritems(leaf);
1134 recow = 1;
1135 }
1136
1137 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1138 if (key.objectid != bytenr ||
1139 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1140 goto fail;
1141
1142 ref = btrfs_item_ptr(leaf, path->slots[0],
1143 struct btrfs_extent_data_ref);
1144
1145 if (match_extent_data_ref(leaf, ref, root_objectid,
1146 owner, offset)) {
1147 if (recow) {
1148 btrfs_release_path(path);
1149 goto again;
1150 }
1151 err = 0;
1152 break;
1153 }
1154 path->slots[0]++;
1155 }
1156fail:
1157 return err;
1158}
1159
1160static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1161 struct btrfs_root *root,
1162 struct btrfs_path *path,
1163 u64 bytenr, u64 parent,
1164 u64 root_objectid, u64 owner,
1165 u64 offset, int refs_to_add)
1166{
1167 struct btrfs_key key;
1168 struct extent_buffer *leaf;
1169 u32 size;
1170 u32 num_refs;
1171 int ret;
1172
1173 key.objectid = bytenr;
1174 if (parent) {
1175 key.type = BTRFS_SHARED_DATA_REF_KEY;
1176 key.offset = parent;
1177 size = sizeof(struct btrfs_shared_data_ref);
1178 } else {
1179 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1180 key.offset = hash_extent_data_ref(root_objectid,
1181 owner, offset);
1182 size = sizeof(struct btrfs_extent_data_ref);
1183 }
1184
1185 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1186 if (ret && ret != -EEXIST)
1187 goto fail;
1188
1189 leaf = path->nodes[0];
1190 if (parent) {
1191 struct btrfs_shared_data_ref *ref;
1192 ref = btrfs_item_ptr(leaf, path->slots[0],
1193 struct btrfs_shared_data_ref);
1194 if (ret == 0) {
1195 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1196 } else {
1197 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1198 num_refs += refs_to_add;
1199 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1200 }
1201 } else {
1202 struct btrfs_extent_data_ref *ref;
1203 while (ret == -EEXIST) {
1204 ref = btrfs_item_ptr(leaf, path->slots[0],
1205 struct btrfs_extent_data_ref);
1206 if (match_extent_data_ref(leaf, ref, root_objectid,
1207 owner, offset))
1208 break;
1209 btrfs_release_path(path);
1210 key.offset++;
1211 ret = btrfs_insert_empty_item(trans, root, path, &key,
1212 size);
1213 if (ret && ret != -EEXIST)
1214 goto fail;
1215
1216 leaf = path->nodes[0];
1217 }
1218 ref = btrfs_item_ptr(leaf, path->slots[0],
1219 struct btrfs_extent_data_ref);
1220 if (ret == 0) {
1221 btrfs_set_extent_data_ref_root(leaf, ref,
1222 root_objectid);
1223 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1224 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1225 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1226 } else {
1227 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1228 num_refs += refs_to_add;
1229 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1230 }
1231 }
1232 btrfs_mark_buffer_dirty(leaf);
1233 ret = 0;
1234fail:
1235 btrfs_release_path(path);
1236 return ret;
1237}
1238
1239static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1240 struct btrfs_root *root,
1241 struct btrfs_path *path,
1242 int refs_to_drop)
1243{
1244 struct btrfs_key key;
1245 struct btrfs_extent_data_ref *ref1 = NULL;
1246 struct btrfs_shared_data_ref *ref2 = NULL;
1247 struct extent_buffer *leaf;
1248 u32 num_refs = 0;
1249 int ret = 0;
1250
1251 leaf = path->nodes[0];
1252 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1253
1254 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1255 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1256 struct btrfs_extent_data_ref);
1257 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1258 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1259 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1260 struct btrfs_shared_data_ref);
1261 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1262#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1263 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1264 struct btrfs_extent_ref_v0 *ref0;
1265 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_extent_ref_v0);
1267 num_refs = btrfs_ref_count_v0(leaf, ref0);
1268#endif
1269 } else {
1270 BUG();
1271 }
1272
1273 BUG_ON(num_refs < refs_to_drop);
1274 num_refs -= refs_to_drop;
1275
1276 if (num_refs == 0) {
1277 ret = btrfs_del_item(trans, root, path);
1278 } else {
1279 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1280 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1281 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1282 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1283#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1284 else {
1285 struct btrfs_extent_ref_v0 *ref0;
1286 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1287 struct btrfs_extent_ref_v0);
1288 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1289 }
1290#endif
1291 btrfs_mark_buffer_dirty(leaf);
1292 }
1293 return ret;
1294}
1295
1296static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1297 struct btrfs_path *path,
1298 struct btrfs_extent_inline_ref *iref)
1299{
1300 struct btrfs_key key;
1301 struct extent_buffer *leaf;
1302 struct btrfs_extent_data_ref *ref1;
1303 struct btrfs_shared_data_ref *ref2;
1304 u32 num_refs = 0;
1305
1306 leaf = path->nodes[0];
1307 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1308 if (iref) {
1309 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1310 BTRFS_EXTENT_DATA_REF_KEY) {
1311 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1312 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1313 } else {
1314 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1315 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1316 }
1317 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1318 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1319 struct btrfs_extent_data_ref);
1320 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1321 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1322 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1323 struct btrfs_shared_data_ref);
1324 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1325#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1326 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1327 struct btrfs_extent_ref_v0 *ref0;
1328 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1329 struct btrfs_extent_ref_v0);
1330 num_refs = btrfs_ref_count_v0(leaf, ref0);
1331#endif
1332 } else {
1333 WARN_ON(1);
1334 }
1335 return num_refs;
1336}
1337
1338static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1339 struct btrfs_root *root,
1340 struct btrfs_path *path,
1341 u64 bytenr, u64 parent,
1342 u64 root_objectid)
1343{
1344 struct btrfs_key key;
1345 int ret;
1346
1347 key.objectid = bytenr;
1348 if (parent) {
1349 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1350 key.offset = parent;
1351 } else {
1352 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1353 key.offset = root_objectid;
1354 }
1355
1356 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1357 if (ret > 0)
1358 ret = -ENOENT;
1359#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1360 if (ret == -ENOENT && parent) {
1361 btrfs_release_path(path);
1362 key.type = BTRFS_EXTENT_REF_V0_KEY;
1363 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1364 if (ret > 0)
1365 ret = -ENOENT;
1366 }
1367#endif
1368 return ret;
1369}
1370
1371static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1372 struct btrfs_root *root,
1373 struct btrfs_path *path,
1374 u64 bytenr, u64 parent,
1375 u64 root_objectid)
1376{
1377 struct btrfs_key key;
1378 int ret;
1379
1380 key.objectid = bytenr;
1381 if (parent) {
1382 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1383 key.offset = parent;
1384 } else {
1385 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1386 key.offset = root_objectid;
1387 }
1388
1389 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1390 btrfs_release_path(path);
1391 return ret;
1392}
1393
1394static inline int extent_ref_type(u64 parent, u64 owner)
1395{
1396 int type;
1397 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1398 if (parent > 0)
1399 type = BTRFS_SHARED_BLOCK_REF_KEY;
1400 else
1401 type = BTRFS_TREE_BLOCK_REF_KEY;
1402 } else {
1403 if (parent > 0)
1404 type = BTRFS_SHARED_DATA_REF_KEY;
1405 else
1406 type = BTRFS_EXTENT_DATA_REF_KEY;
1407 }
1408 return type;
1409}
1410
1411static int find_next_key(struct btrfs_path *path, int level,
1412 struct btrfs_key *key)
1413
1414{
1415 for (; level < BTRFS_MAX_LEVEL; level++) {
1416 if (!path->nodes[level])
1417 break;
1418 if (path->slots[level] + 1 >=
1419 btrfs_header_nritems(path->nodes[level]))
1420 continue;
1421 if (level == 0)
1422 btrfs_item_key_to_cpu(path->nodes[level], key,
1423 path->slots[level] + 1);
1424 else
1425 btrfs_node_key_to_cpu(path->nodes[level], key,
1426 path->slots[level] + 1);
1427 return 0;
1428 }
1429 return 1;
1430}
1431
1432/*
1433 * look for inline back ref. if back ref is found, *ref_ret is set
1434 * to the address of inline back ref, and 0 is returned.
1435 *
1436 * if back ref isn't found, *ref_ret is set to the address where it
1437 * should be inserted, and -ENOENT is returned.
1438 *
1439 * if insert is true and there are too many inline back refs, the path
1440 * points to the extent item, and -EAGAIN is returned.
1441 *
1442 * NOTE: inline back refs are ordered in the same way that back ref
1443 * items in the tree are ordered.
1444 */
1445static noinline_for_stack
1446int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1447 struct btrfs_root *root,
1448 struct btrfs_path *path,
1449 struct btrfs_extent_inline_ref **ref_ret,
1450 u64 bytenr, u64 num_bytes,
1451 u64 parent, u64 root_objectid,
1452 u64 owner, u64 offset, int insert)
1453{
1454 struct btrfs_key key;
1455 struct extent_buffer *leaf;
1456 struct btrfs_extent_item *ei;
1457 struct btrfs_extent_inline_ref *iref;
1458 u64 flags;
1459 u64 item_size;
1460 unsigned long ptr;
1461 unsigned long end;
1462 int extra_size;
1463 int type;
1464 int want;
1465 int ret;
1466 int err = 0;
1467
1468 key.objectid = bytenr;
1469 key.type = BTRFS_EXTENT_ITEM_KEY;
1470 key.offset = num_bytes;
1471
1472 want = extent_ref_type(parent, owner);
1473 if (insert) {
1474 extra_size = btrfs_extent_inline_ref_size(want);
1475 path->keep_locks = 1;
1476 } else
1477 extra_size = -1;
1478 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1479 if (ret < 0) {
1480 err = ret;
1481 goto out;
1482 }
1483 if (ret && !insert) {
1484 err = -ENOENT;
1485 goto out;
1486 }
1487 BUG_ON(ret); /* Corruption */
1488
1489 leaf = path->nodes[0];
1490 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1491#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1492 if (item_size < sizeof(*ei)) {
1493 if (!insert) {
1494 err = -ENOENT;
1495 goto out;
1496 }
1497 ret = convert_extent_item_v0(trans, root, path, owner,
1498 extra_size);
1499 if (ret < 0) {
1500 err = ret;
1501 goto out;
1502 }
1503 leaf = path->nodes[0];
1504 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1505 }
1506#endif
1507 BUG_ON(item_size < sizeof(*ei));
1508
1509 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1510 flags = btrfs_extent_flags(leaf, ei);
1511
1512 ptr = (unsigned long)(ei + 1);
1513 end = (unsigned long)ei + item_size;
1514
1515 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1516 ptr += sizeof(struct btrfs_tree_block_info);
1517 BUG_ON(ptr > end);
1518 } else {
1519 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1520 }
1521
1522 err = -ENOENT;
1523 while (1) {
1524 if (ptr >= end) {
1525 WARN_ON(ptr > end);
1526 break;
1527 }
1528 iref = (struct btrfs_extent_inline_ref *)ptr;
1529 type = btrfs_extent_inline_ref_type(leaf, iref);
1530 if (want < type)
1531 break;
1532 if (want > type) {
1533 ptr += btrfs_extent_inline_ref_size(type);
1534 continue;
1535 }
1536
1537 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1538 struct btrfs_extent_data_ref *dref;
1539 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1540 if (match_extent_data_ref(leaf, dref, root_objectid,
1541 owner, offset)) {
1542 err = 0;
1543 break;
1544 }
1545 if (hash_extent_data_ref_item(leaf, dref) <
1546 hash_extent_data_ref(root_objectid, owner, offset))
1547 break;
1548 } else {
1549 u64 ref_offset;
1550 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1551 if (parent > 0) {
1552 if (parent == ref_offset) {
1553 err = 0;
1554 break;
1555 }
1556 if (ref_offset < parent)
1557 break;
1558 } else {
1559 if (root_objectid == ref_offset) {
1560 err = 0;
1561 break;
1562 }
1563 if (ref_offset < root_objectid)
1564 break;
1565 }
1566 }
1567 ptr += btrfs_extent_inline_ref_size(type);
1568 }
1569 if (err == -ENOENT && insert) {
1570 if (item_size + extra_size >=
1571 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1572 err = -EAGAIN;
1573 goto out;
1574 }
1575 /*
1576 * To add new inline back ref, we have to make sure
1577 * there is no corresponding back ref item.
1578 * For simplicity, we just do not add new inline back
1579 * ref if there is any kind of item for this block
1580 */
1581 if (find_next_key(path, 0, &key) == 0 &&
1582 key.objectid == bytenr &&
1583 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1584 err = -EAGAIN;
1585 goto out;
1586 }
1587 }
1588 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1589out:
1590 if (insert) {
1591 path->keep_locks = 0;
1592 btrfs_unlock_up_safe(path, 1);
1593 }
1594 return err;
1595}
1596
1597/*
1598 * helper to add new inline back ref
1599 */
1600static noinline_for_stack
1601void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1602 struct btrfs_root *root,
1603 struct btrfs_path *path,
1604 struct btrfs_extent_inline_ref *iref,
1605 u64 parent, u64 root_objectid,
1606 u64 owner, u64 offset, int refs_to_add,
1607 struct btrfs_delayed_extent_op *extent_op)
1608{
1609 struct extent_buffer *leaf;
1610 struct btrfs_extent_item *ei;
1611 unsigned long ptr;
1612 unsigned long end;
1613 unsigned long item_offset;
1614 u64 refs;
1615 int size;
1616 int type;
1617
1618 leaf = path->nodes[0];
1619 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1620 item_offset = (unsigned long)iref - (unsigned long)ei;
1621
1622 type = extent_ref_type(parent, owner);
1623 size = btrfs_extent_inline_ref_size(type);
1624
1625 btrfs_extend_item(trans, root, path, size);
1626
1627 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1628 refs = btrfs_extent_refs(leaf, ei);
1629 refs += refs_to_add;
1630 btrfs_set_extent_refs(leaf, ei, refs);
1631 if (extent_op)
1632 __run_delayed_extent_op(extent_op, leaf, ei);
1633
1634 ptr = (unsigned long)ei + item_offset;
1635 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1636 if (ptr < end - size)
1637 memmove_extent_buffer(leaf, ptr + size, ptr,
1638 end - size - ptr);
1639
1640 iref = (struct btrfs_extent_inline_ref *)ptr;
1641 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1642 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1643 struct btrfs_extent_data_ref *dref;
1644 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1645 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1646 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1647 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1648 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1649 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1650 struct btrfs_shared_data_ref *sref;
1651 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1652 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1653 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1654 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1655 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1656 } else {
1657 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1658 }
1659 btrfs_mark_buffer_dirty(leaf);
1660}
1661
1662static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1663 struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref **ref_ret,
1666 u64 bytenr, u64 num_bytes, u64 parent,
1667 u64 root_objectid, u64 owner, u64 offset)
1668{
1669 int ret;
1670
1671 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1672 bytenr, num_bytes, parent,
1673 root_objectid, owner, offset, 0);
1674 if (ret != -ENOENT)
1675 return ret;
1676
1677 btrfs_release_path(path);
1678 *ref_ret = NULL;
1679
1680 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1681 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1682 root_objectid);
1683 } else {
1684 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1685 root_objectid, owner, offset);
1686 }
1687 return ret;
1688}
1689
1690/*
1691 * helper to update/remove inline back ref
1692 */
1693static noinline_for_stack
1694void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1695 struct btrfs_root *root,
1696 struct btrfs_path *path,
1697 struct btrfs_extent_inline_ref *iref,
1698 int refs_to_mod,
1699 struct btrfs_delayed_extent_op *extent_op)
1700{
1701 struct extent_buffer *leaf;
1702 struct btrfs_extent_item *ei;
1703 struct btrfs_extent_data_ref *dref = NULL;
1704 struct btrfs_shared_data_ref *sref = NULL;
1705 unsigned long ptr;
1706 unsigned long end;
1707 u32 item_size;
1708 int size;
1709 int type;
1710 u64 refs;
1711
1712 leaf = path->nodes[0];
1713 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1714 refs = btrfs_extent_refs(leaf, ei);
1715 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1716 refs += refs_to_mod;
1717 btrfs_set_extent_refs(leaf, ei, refs);
1718 if (extent_op)
1719 __run_delayed_extent_op(extent_op, leaf, ei);
1720
1721 type = btrfs_extent_inline_ref_type(leaf, iref);
1722
1723 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1724 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1725 refs = btrfs_extent_data_ref_count(leaf, dref);
1726 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1727 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1728 refs = btrfs_shared_data_ref_count(leaf, sref);
1729 } else {
1730 refs = 1;
1731 BUG_ON(refs_to_mod != -1);
1732 }
1733
1734 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1735 refs += refs_to_mod;
1736
1737 if (refs > 0) {
1738 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1739 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1740 else
1741 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1742 } else {
1743 size = btrfs_extent_inline_ref_size(type);
1744 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1745 ptr = (unsigned long)iref;
1746 end = (unsigned long)ei + item_size;
1747 if (ptr + size < end)
1748 memmove_extent_buffer(leaf, ptr, ptr + size,
1749 end - ptr - size);
1750 item_size -= size;
1751 btrfs_truncate_item(trans, root, path, item_size, 1);
1752 }
1753 btrfs_mark_buffer_dirty(leaf);
1754}
1755
1756static noinline_for_stack
1757int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1758 struct btrfs_root *root,
1759 struct btrfs_path *path,
1760 u64 bytenr, u64 num_bytes, u64 parent,
1761 u64 root_objectid, u64 owner,
1762 u64 offset, int refs_to_add,
1763 struct btrfs_delayed_extent_op *extent_op)
1764{
1765 struct btrfs_extent_inline_ref *iref;
1766 int ret;
1767
1768 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1769 bytenr, num_bytes, parent,
1770 root_objectid, owner, offset, 1);
1771 if (ret == 0) {
1772 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1773 update_inline_extent_backref(trans, root, path, iref,
1774 refs_to_add, extent_op);
1775 } else if (ret == -ENOENT) {
1776 setup_inline_extent_backref(trans, root, path, iref, parent,
1777 root_objectid, owner, offset,
1778 refs_to_add, extent_op);
1779 ret = 0;
1780 }
1781 return ret;
1782}
1783
1784static int insert_extent_backref(struct btrfs_trans_handle *trans,
1785 struct btrfs_root *root,
1786 struct btrfs_path *path,
1787 u64 bytenr, u64 parent, u64 root_objectid,
1788 u64 owner, u64 offset, int refs_to_add)
1789{
1790 int ret;
1791 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1792 BUG_ON(refs_to_add != 1);
1793 ret = insert_tree_block_ref(trans, root, path, bytenr,
1794 parent, root_objectid);
1795 } else {
1796 ret = insert_extent_data_ref(trans, root, path, bytenr,
1797 parent, root_objectid,
1798 owner, offset, refs_to_add);
1799 }
1800 return ret;
1801}
1802
1803static int remove_extent_backref(struct btrfs_trans_handle *trans,
1804 struct btrfs_root *root,
1805 struct btrfs_path *path,
1806 struct btrfs_extent_inline_ref *iref,
1807 int refs_to_drop, int is_data)
1808{
1809 int ret = 0;
1810
1811 BUG_ON(!is_data && refs_to_drop != 1);
1812 if (iref) {
1813 update_inline_extent_backref(trans, root, path, iref,
1814 -refs_to_drop, NULL);
1815 } else if (is_data) {
1816 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1817 } else {
1818 ret = btrfs_del_item(trans, root, path);
1819 }
1820 return ret;
1821}
1822
1823static int btrfs_issue_discard(struct block_device *bdev,
1824 u64 start, u64 len)
1825{
1826 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1827}
1828
1829static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1830 u64 num_bytes, u64 *actual_bytes)
1831{
1832 int ret;
1833 u64 discarded_bytes = 0;
1834 struct btrfs_bio *bbio = NULL;
1835
1836
1837 /* Tell the block device(s) that the sectors can be discarded */
1838 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1839 bytenr, &num_bytes, &bbio, 0);
1840 /* Error condition is -ENOMEM */
1841 if (!ret) {
1842 struct btrfs_bio_stripe *stripe = bbio->stripes;
1843 int i;
1844
1845
1846 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1847 if (!stripe->dev->can_discard)
1848 continue;
1849
1850 ret = btrfs_issue_discard(stripe->dev->bdev,
1851 stripe->physical,
1852 stripe->length);
1853 if (!ret)
1854 discarded_bytes += stripe->length;
1855 else if (ret != -EOPNOTSUPP)
1856 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1857
1858 /*
1859 * Just in case we get back EOPNOTSUPP for some reason,
1860 * just ignore the return value so we don't screw up
1861 * people calling discard_extent.
1862 */
1863 ret = 0;
1864 }
1865 kfree(bbio);
1866 }
1867
1868 if (actual_bytes)
1869 *actual_bytes = discarded_bytes;
1870
1871
1872 return ret;
1873}
1874
1875/* Can return -ENOMEM */
1876int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1877 struct btrfs_root *root,
1878 u64 bytenr, u64 num_bytes, u64 parent,
1879 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1880{
1881 int ret;
1882 struct btrfs_fs_info *fs_info = root->fs_info;
1883
1884 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1885 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1886
1887 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1888 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1889 num_bytes,
1890 parent, root_objectid, (int)owner,
1891 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1892 } else {
1893 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1894 num_bytes,
1895 parent, root_objectid, owner, offset,
1896 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1897 }
1898 return ret;
1899}
1900
1901static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1902 struct btrfs_root *root,
1903 u64 bytenr, u64 num_bytes,
1904 u64 parent, u64 root_objectid,
1905 u64 owner, u64 offset, int refs_to_add,
1906 struct btrfs_delayed_extent_op *extent_op)
1907{
1908 struct btrfs_path *path;
1909 struct extent_buffer *leaf;
1910 struct btrfs_extent_item *item;
1911 u64 refs;
1912 int ret;
1913 int err = 0;
1914
1915 path = btrfs_alloc_path();
1916 if (!path)
1917 return -ENOMEM;
1918
1919 path->reada = 1;
1920 path->leave_spinning = 1;
1921 /* this will setup the path even if it fails to insert the back ref */
1922 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1923 path, bytenr, num_bytes, parent,
1924 root_objectid, owner, offset,
1925 refs_to_add, extent_op);
1926 if (ret == 0)
1927 goto out;
1928
1929 if (ret != -EAGAIN) {
1930 err = ret;
1931 goto out;
1932 }
1933
1934 leaf = path->nodes[0];
1935 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1936 refs = btrfs_extent_refs(leaf, item);
1937 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1938 if (extent_op)
1939 __run_delayed_extent_op(extent_op, leaf, item);
1940
1941 btrfs_mark_buffer_dirty(leaf);
1942 btrfs_release_path(path);
1943
1944 path->reada = 1;
1945 path->leave_spinning = 1;
1946
1947 /* now insert the actual backref */
1948 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1949 path, bytenr, parent, root_objectid,
1950 owner, offset, refs_to_add);
1951 if (ret)
1952 btrfs_abort_transaction(trans, root, ret);
1953out:
1954 btrfs_free_path(path);
1955 return err;
1956}
1957
1958static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1959 struct btrfs_root *root,
1960 struct btrfs_delayed_ref_node *node,
1961 struct btrfs_delayed_extent_op *extent_op,
1962 int insert_reserved)
1963{
1964 int ret = 0;
1965 struct btrfs_delayed_data_ref *ref;
1966 struct btrfs_key ins;
1967 u64 parent = 0;
1968 u64 ref_root = 0;
1969 u64 flags = 0;
1970
1971 ins.objectid = node->bytenr;
1972 ins.offset = node->num_bytes;
1973 ins.type = BTRFS_EXTENT_ITEM_KEY;
1974
1975 ref = btrfs_delayed_node_to_data_ref(node);
1976 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1977 parent = ref->parent;
1978 else
1979 ref_root = ref->root;
1980
1981 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1982 if (extent_op) {
1983 BUG_ON(extent_op->update_key);
1984 flags |= extent_op->flags_to_set;
1985 }
1986 ret = alloc_reserved_file_extent(trans, root,
1987 parent, ref_root, flags,
1988 ref->objectid, ref->offset,
1989 &ins, node->ref_mod);
1990 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1991 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1992 node->num_bytes, parent,
1993 ref_root, ref->objectid,
1994 ref->offset, node->ref_mod,
1995 extent_op);
1996 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1997 ret = __btrfs_free_extent(trans, root, node->bytenr,
1998 node->num_bytes, parent,
1999 ref_root, ref->objectid,
2000 ref->offset, node->ref_mod,
2001 extent_op);
2002 } else {
2003 BUG();
2004 }
2005 return ret;
2006}
2007
2008static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2009 struct extent_buffer *leaf,
2010 struct btrfs_extent_item *ei)
2011{
2012 u64 flags = btrfs_extent_flags(leaf, ei);
2013 if (extent_op->update_flags) {
2014 flags |= extent_op->flags_to_set;
2015 btrfs_set_extent_flags(leaf, ei, flags);
2016 }
2017
2018 if (extent_op->update_key) {
2019 struct btrfs_tree_block_info *bi;
2020 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2021 bi = (struct btrfs_tree_block_info *)(ei + 1);
2022 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2023 }
2024}
2025
2026static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2027 struct btrfs_root *root,
2028 struct btrfs_delayed_ref_node *node,
2029 struct btrfs_delayed_extent_op *extent_op)
2030{
2031 struct btrfs_key key;
2032 struct btrfs_path *path;
2033 struct btrfs_extent_item *ei;
2034 struct extent_buffer *leaf;
2035 u32 item_size;
2036 int ret;
2037 int err = 0;
2038
2039 if (trans->aborted)
2040 return 0;
2041
2042 path = btrfs_alloc_path();
2043 if (!path)
2044 return -ENOMEM;
2045
2046 key.objectid = node->bytenr;
2047 key.type = BTRFS_EXTENT_ITEM_KEY;
2048 key.offset = node->num_bytes;
2049
2050 path->reada = 1;
2051 path->leave_spinning = 1;
2052 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2053 path, 0, 1);
2054 if (ret < 0) {
2055 err = ret;
2056 goto out;
2057 }
2058 if (ret > 0) {
2059 err = -EIO;
2060 goto out;
2061 }
2062
2063 leaf = path->nodes[0];
2064 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2065#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2066 if (item_size < sizeof(*ei)) {
2067 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2068 path, (u64)-1, 0);
2069 if (ret < 0) {
2070 err = ret;
2071 goto out;
2072 }
2073 leaf = path->nodes[0];
2074 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2075 }
2076#endif
2077 BUG_ON(item_size < sizeof(*ei));
2078 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2079 __run_delayed_extent_op(extent_op, leaf, ei);
2080
2081 btrfs_mark_buffer_dirty(leaf);
2082out:
2083 btrfs_free_path(path);
2084 return err;
2085}
2086
2087static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2088 struct btrfs_root *root,
2089 struct btrfs_delayed_ref_node *node,
2090 struct btrfs_delayed_extent_op *extent_op,
2091 int insert_reserved)
2092{
2093 int ret = 0;
2094 struct btrfs_delayed_tree_ref *ref;
2095 struct btrfs_key ins;
2096 u64 parent = 0;
2097 u64 ref_root = 0;
2098
2099 ins.objectid = node->bytenr;
2100 ins.offset = node->num_bytes;
2101 ins.type = BTRFS_EXTENT_ITEM_KEY;
2102
2103 ref = btrfs_delayed_node_to_tree_ref(node);
2104 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2105 parent = ref->parent;
2106 else
2107 ref_root = ref->root;
2108
2109 BUG_ON(node->ref_mod != 1);
2110 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2111 BUG_ON(!extent_op || !extent_op->update_flags ||
2112 !extent_op->update_key);
2113 ret = alloc_reserved_tree_block(trans, root,
2114 parent, ref_root,
2115 extent_op->flags_to_set,
2116 &extent_op->key,
2117 ref->level, &ins);
2118 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2119 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2120 node->num_bytes, parent, ref_root,
2121 ref->level, 0, 1, extent_op);
2122 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2123 ret = __btrfs_free_extent(trans, root, node->bytenr,
2124 node->num_bytes, parent, ref_root,
2125 ref->level, 0, 1, extent_op);
2126 } else {
2127 BUG();
2128 }
2129 return ret;
2130}
2131
2132/* helper function to actually process a single delayed ref entry */
2133static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2134 struct btrfs_root *root,
2135 struct btrfs_delayed_ref_node *node,
2136 struct btrfs_delayed_extent_op *extent_op,
2137 int insert_reserved)
2138{
2139 int ret = 0;
2140
2141 if (trans->aborted)
2142 return 0;
2143
2144 if (btrfs_delayed_ref_is_head(node)) {
2145 struct btrfs_delayed_ref_head *head;
2146 /*
2147 * we've hit the end of the chain and we were supposed
2148 * to insert this extent into the tree. But, it got
2149 * deleted before we ever needed to insert it, so all
2150 * we have to do is clean up the accounting
2151 */
2152 BUG_ON(extent_op);
2153 head = btrfs_delayed_node_to_head(node);
2154 if (insert_reserved) {
2155 btrfs_pin_extent(root, node->bytenr,
2156 node->num_bytes, 1);
2157 if (head->is_data) {
2158 ret = btrfs_del_csums(trans, root,
2159 node->bytenr,
2160 node->num_bytes);
2161 }
2162 }
2163 mutex_unlock(&head->mutex);
2164 return ret;
2165 }
2166
2167 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2168 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2169 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2170 insert_reserved);
2171 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2172 node->type == BTRFS_SHARED_DATA_REF_KEY)
2173 ret = run_delayed_data_ref(trans, root, node, extent_op,
2174 insert_reserved);
2175 else
2176 BUG();
2177 return ret;
2178}
2179
2180static noinline struct btrfs_delayed_ref_node *
2181select_delayed_ref(struct btrfs_delayed_ref_head *head)
2182{
2183 struct rb_node *node;
2184 struct btrfs_delayed_ref_node *ref;
2185 int action = BTRFS_ADD_DELAYED_REF;
2186again:
2187 /*
2188 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2189 * this prevents ref count from going down to zero when
2190 * there still are pending delayed ref.
2191 */
2192 node = rb_prev(&head->node.rb_node);
2193 while (1) {
2194 if (!node)
2195 break;
2196 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2197 rb_node);
2198 if (ref->bytenr != head->node.bytenr)
2199 break;
2200 if (ref->action == action)
2201 return ref;
2202 node = rb_prev(node);
2203 }
2204 if (action == BTRFS_ADD_DELAYED_REF) {
2205 action = BTRFS_DROP_DELAYED_REF;
2206 goto again;
2207 }
2208 return NULL;
2209}
2210
2211/*
2212 * Returns 0 on success or if called with an already aborted transaction.
2213 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2214 */
2215static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2216 struct btrfs_root *root,
2217 struct list_head *cluster)
2218{
2219 struct btrfs_delayed_ref_root *delayed_refs;
2220 struct btrfs_delayed_ref_node *ref;
2221 struct btrfs_delayed_ref_head *locked_ref = NULL;
2222 struct btrfs_delayed_extent_op *extent_op;
2223 struct btrfs_fs_info *fs_info = root->fs_info;
2224 int ret;
2225 int count = 0;
2226 int must_insert_reserved = 0;
2227
2228 delayed_refs = &trans->transaction->delayed_refs;
2229 while (1) {
2230 if (!locked_ref) {
2231 /* pick a new head ref from the cluster list */
2232 if (list_empty(cluster))
2233 break;
2234
2235 locked_ref = list_entry(cluster->next,
2236 struct btrfs_delayed_ref_head, cluster);
2237
2238 /* grab the lock that says we are going to process
2239 * all the refs for this head */
2240 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2241
2242 /*
2243 * we may have dropped the spin lock to get the head
2244 * mutex lock, and that might have given someone else
2245 * time to free the head. If that's true, it has been
2246 * removed from our list and we can move on.
2247 */
2248 if (ret == -EAGAIN) {
2249 locked_ref = NULL;
2250 count++;
2251 continue;
2252 }
2253 }
2254
2255 /*
2256 * We need to try and merge add/drops of the same ref since we
2257 * can run into issues with relocate dropping the implicit ref
2258 * and then it being added back again before the drop can
2259 * finish. If we merged anything we need to re-loop so we can
2260 * get a good ref.
2261 */
2262 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2263 locked_ref);
2264
2265 /*
2266 * locked_ref is the head node, so we have to go one
2267 * node back for any delayed ref updates
2268 */
2269 ref = select_delayed_ref(locked_ref);
2270
2271 if (ref && ref->seq &&
2272 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2273 /*
2274 * there are still refs with lower seq numbers in the
2275 * process of being added. Don't run this ref yet.
2276 */
2277 list_del_init(&locked_ref->cluster);
2278 mutex_unlock(&locked_ref->mutex);
2279 locked_ref = NULL;
2280 delayed_refs->num_heads_ready++;
2281 spin_unlock(&delayed_refs->lock);
2282 cond_resched();
2283 spin_lock(&delayed_refs->lock);
2284 continue;
2285 }
2286
2287 /*
2288 * record the must insert reserved flag before we
2289 * drop the spin lock.
2290 */
2291 must_insert_reserved = locked_ref->must_insert_reserved;
2292 locked_ref->must_insert_reserved = 0;
2293
2294 extent_op = locked_ref->extent_op;
2295 locked_ref->extent_op = NULL;
2296
2297 if (!ref) {
2298 /* All delayed refs have been processed, Go ahead
2299 * and send the head node to run_one_delayed_ref,
2300 * so that any accounting fixes can happen
2301 */
2302 ref = &locked_ref->node;
2303
2304 if (extent_op && must_insert_reserved) {
2305 kfree(extent_op);
2306 extent_op = NULL;
2307 }
2308
2309 if (extent_op) {
2310 spin_unlock(&delayed_refs->lock);
2311
2312 ret = run_delayed_extent_op(trans, root,
2313 ref, extent_op);
2314 kfree(extent_op);
2315
2316 if (ret) {
2317 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2318 spin_lock(&delayed_refs->lock);
2319 return ret;
2320 }
2321
2322 goto next;
2323 }
2324
2325 list_del_init(&locked_ref->cluster);
2326 locked_ref = NULL;
2327 }
2328
2329 ref->in_tree = 0;
2330 rb_erase(&ref->rb_node, &delayed_refs->root);
2331 delayed_refs->num_entries--;
2332 if (locked_ref) {
2333 /*
2334 * when we play the delayed ref, also correct the
2335 * ref_mod on head
2336 */
2337 switch (ref->action) {
2338 case BTRFS_ADD_DELAYED_REF:
2339 case BTRFS_ADD_DELAYED_EXTENT:
2340 locked_ref->node.ref_mod -= ref->ref_mod;
2341 break;
2342 case BTRFS_DROP_DELAYED_REF:
2343 locked_ref->node.ref_mod += ref->ref_mod;
2344 break;
2345 default:
2346 WARN_ON(1);
2347 }
2348 }
2349 spin_unlock(&delayed_refs->lock);
2350
2351 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2352 must_insert_reserved);
2353
2354 btrfs_put_delayed_ref(ref);
2355 kfree(extent_op);
2356 count++;
2357
2358 if (ret) {
2359 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2360 spin_lock(&delayed_refs->lock);
2361 return ret;
2362 }
2363
2364next:
2365 cond_resched();
2366 spin_lock(&delayed_refs->lock);
2367 }
2368 return count;
2369}
2370
2371#ifdef SCRAMBLE_DELAYED_REFS
2372/*
2373 * Normally delayed refs get processed in ascending bytenr order. This
2374 * correlates in most cases to the order added. To expose dependencies on this
2375 * order, we start to process the tree in the middle instead of the beginning
2376 */
2377static u64 find_middle(struct rb_root *root)
2378{
2379 struct rb_node *n = root->rb_node;
2380 struct btrfs_delayed_ref_node *entry;
2381 int alt = 1;
2382 u64 middle;
2383 u64 first = 0, last = 0;
2384
2385 n = rb_first(root);
2386 if (n) {
2387 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2388 first = entry->bytenr;
2389 }
2390 n = rb_last(root);
2391 if (n) {
2392 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2393 last = entry->bytenr;
2394 }
2395 n = root->rb_node;
2396
2397 while (n) {
2398 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2399 WARN_ON(!entry->in_tree);
2400
2401 middle = entry->bytenr;
2402
2403 if (alt)
2404 n = n->rb_left;
2405 else
2406 n = n->rb_right;
2407
2408 alt = 1 - alt;
2409 }
2410 return middle;
2411}
2412#endif
2413
2414int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2415 struct btrfs_fs_info *fs_info)
2416{
2417 struct qgroup_update *qgroup_update;
2418 int ret = 0;
2419
2420 if (list_empty(&trans->qgroup_ref_list) !=
2421 !trans->delayed_ref_elem.seq) {
2422 /* list without seq or seq without list */
2423 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2424 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2425 trans->delayed_ref_elem.seq);
2426 BUG();
2427 }
2428
2429 if (!trans->delayed_ref_elem.seq)
2430 return 0;
2431
2432 while (!list_empty(&trans->qgroup_ref_list)) {
2433 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2434 struct qgroup_update, list);
2435 list_del(&qgroup_update->list);
2436 if (!ret)
2437 ret = btrfs_qgroup_account_ref(
2438 trans, fs_info, qgroup_update->node,
2439 qgroup_update->extent_op);
2440 kfree(qgroup_update);
2441 }
2442
2443 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2444
2445 return ret;
2446}
2447
2448/*
2449 * this starts processing the delayed reference count updates and
2450 * extent insertions we have queued up so far. count can be
2451 * 0, which means to process everything in the tree at the start
2452 * of the run (but not newly added entries), or it can be some target
2453 * number you'd like to process.
2454 *
2455 * Returns 0 on success or if called with an aborted transaction
2456 * Returns <0 on error and aborts the transaction
2457 */
2458int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2459 struct btrfs_root *root, unsigned long count)
2460{
2461 struct rb_node *node;
2462 struct btrfs_delayed_ref_root *delayed_refs;
2463 struct btrfs_delayed_ref_node *ref;
2464 struct list_head cluster;
2465 int ret;
2466 u64 delayed_start;
2467 int run_all = count == (unsigned long)-1;
2468 int run_most = 0;
2469 int loops;
2470
2471 /* We'll clean this up in btrfs_cleanup_transaction */
2472 if (trans->aborted)
2473 return 0;
2474
2475 if (root == root->fs_info->extent_root)
2476 root = root->fs_info->tree_root;
2477
2478 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2479
2480 delayed_refs = &trans->transaction->delayed_refs;
2481 INIT_LIST_HEAD(&cluster);
2482again:
2483 loops = 0;
2484 spin_lock(&delayed_refs->lock);
2485
2486#ifdef SCRAMBLE_DELAYED_REFS
2487 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2488#endif
2489
2490 if (count == 0) {
2491 count = delayed_refs->num_entries * 2;
2492 run_most = 1;
2493 }
2494 while (1) {
2495 if (!(run_all || run_most) &&
2496 delayed_refs->num_heads_ready < 64)
2497 break;
2498
2499 /*
2500 * go find something we can process in the rbtree. We start at
2501 * the beginning of the tree, and then build a cluster
2502 * of refs to process starting at the first one we are able to
2503 * lock
2504 */
2505 delayed_start = delayed_refs->run_delayed_start;
2506 ret = btrfs_find_ref_cluster(trans, &cluster,
2507 delayed_refs->run_delayed_start);
2508 if (ret)
2509 break;
2510
2511 ret = run_clustered_refs(trans, root, &cluster);
2512 if (ret < 0) {
2513 spin_unlock(&delayed_refs->lock);
2514 btrfs_abort_transaction(trans, root, ret);
2515 return ret;
2516 }
2517
2518 count -= min_t(unsigned long, ret, count);
2519
2520 if (count == 0)
2521 break;
2522
2523 if (delayed_start >= delayed_refs->run_delayed_start) {
2524 if (loops == 0) {
2525 /*
2526 * btrfs_find_ref_cluster looped. let's do one
2527 * more cycle. if we don't run any delayed ref
2528 * during that cycle (because we can't because
2529 * all of them are blocked), bail out.
2530 */
2531 loops = 1;
2532 } else {
2533 /*
2534 * no runnable refs left, stop trying
2535 */
2536 BUG_ON(run_all);
2537 break;
2538 }
2539 }
2540 if (ret) {
2541 /* refs were run, let's reset staleness detection */
2542 loops = 0;
2543 }
2544 }
2545
2546 if (run_all) {
2547 if (!list_empty(&trans->new_bgs)) {
2548 spin_unlock(&delayed_refs->lock);
2549 btrfs_create_pending_block_groups(trans, root);
2550 spin_lock(&delayed_refs->lock);
2551 }
2552
2553 node = rb_first(&delayed_refs->root);
2554 if (!node)
2555 goto out;
2556 count = (unsigned long)-1;
2557
2558 while (node) {
2559 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2560 rb_node);
2561 if (btrfs_delayed_ref_is_head(ref)) {
2562 struct btrfs_delayed_ref_head *head;
2563
2564 head = btrfs_delayed_node_to_head(ref);
2565 atomic_inc(&ref->refs);
2566
2567 spin_unlock(&delayed_refs->lock);
2568 /*
2569 * Mutex was contended, block until it's
2570 * released and try again
2571 */
2572 mutex_lock(&head->mutex);
2573 mutex_unlock(&head->mutex);
2574
2575 btrfs_put_delayed_ref(ref);
2576 cond_resched();
2577 goto again;
2578 }
2579 node = rb_next(node);
2580 }
2581 spin_unlock(&delayed_refs->lock);
2582 schedule_timeout(1);
2583 goto again;
2584 }
2585out:
2586 spin_unlock(&delayed_refs->lock);
2587 assert_qgroups_uptodate(trans);
2588 return 0;
2589}
2590
2591int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2592 struct btrfs_root *root,
2593 u64 bytenr, u64 num_bytes, u64 flags,
2594 int is_data)
2595{
2596 struct btrfs_delayed_extent_op *extent_op;
2597 int ret;
2598
2599 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2600 if (!extent_op)
2601 return -ENOMEM;
2602
2603 extent_op->flags_to_set = flags;
2604 extent_op->update_flags = 1;
2605 extent_op->update_key = 0;
2606 extent_op->is_data = is_data ? 1 : 0;
2607
2608 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2609 num_bytes, extent_op);
2610 if (ret)
2611 kfree(extent_op);
2612 return ret;
2613}
2614
2615static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2616 struct btrfs_root *root,
2617 struct btrfs_path *path,
2618 u64 objectid, u64 offset, u64 bytenr)
2619{
2620 struct btrfs_delayed_ref_head *head;
2621 struct btrfs_delayed_ref_node *ref;
2622 struct btrfs_delayed_data_ref *data_ref;
2623 struct btrfs_delayed_ref_root *delayed_refs;
2624 struct rb_node *node;
2625 int ret = 0;
2626
2627 ret = -ENOENT;
2628 delayed_refs = &trans->transaction->delayed_refs;
2629 spin_lock(&delayed_refs->lock);
2630 head = btrfs_find_delayed_ref_head(trans, bytenr);
2631 if (!head)
2632 goto out;
2633
2634 if (!mutex_trylock(&head->mutex)) {
2635 atomic_inc(&head->node.refs);
2636 spin_unlock(&delayed_refs->lock);
2637
2638 btrfs_release_path(path);
2639
2640 /*
2641 * Mutex was contended, block until it's released and let
2642 * caller try again
2643 */
2644 mutex_lock(&head->mutex);
2645 mutex_unlock(&head->mutex);
2646 btrfs_put_delayed_ref(&head->node);
2647 return -EAGAIN;
2648 }
2649
2650 node = rb_prev(&head->node.rb_node);
2651 if (!node)
2652 goto out_unlock;
2653
2654 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2655
2656 if (ref->bytenr != bytenr)
2657 goto out_unlock;
2658
2659 ret = 1;
2660 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2661 goto out_unlock;
2662
2663 data_ref = btrfs_delayed_node_to_data_ref(ref);
2664
2665 node = rb_prev(node);
2666 if (node) {
2667 int seq = ref->seq;
2668
2669 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2670 if (ref->bytenr == bytenr && ref->seq == seq)
2671 goto out_unlock;
2672 }
2673
2674 if (data_ref->root != root->root_key.objectid ||
2675 data_ref->objectid != objectid || data_ref->offset != offset)
2676 goto out_unlock;
2677
2678 ret = 0;
2679out_unlock:
2680 mutex_unlock(&head->mutex);
2681out:
2682 spin_unlock(&delayed_refs->lock);
2683 return ret;
2684}
2685
2686static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2687 struct btrfs_root *root,
2688 struct btrfs_path *path,
2689 u64 objectid, u64 offset, u64 bytenr)
2690{
2691 struct btrfs_root *extent_root = root->fs_info->extent_root;
2692 struct extent_buffer *leaf;
2693 struct btrfs_extent_data_ref *ref;
2694 struct btrfs_extent_inline_ref *iref;
2695 struct btrfs_extent_item *ei;
2696 struct btrfs_key key;
2697 u32 item_size;
2698 int ret;
2699
2700 key.objectid = bytenr;
2701 key.offset = (u64)-1;
2702 key.type = BTRFS_EXTENT_ITEM_KEY;
2703
2704 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2705 if (ret < 0)
2706 goto out;
2707 BUG_ON(ret == 0); /* Corruption */
2708
2709 ret = -ENOENT;
2710 if (path->slots[0] == 0)
2711 goto out;
2712
2713 path->slots[0]--;
2714 leaf = path->nodes[0];
2715 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2716
2717 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2718 goto out;
2719
2720 ret = 1;
2721 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2722#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2723 if (item_size < sizeof(*ei)) {
2724 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2725 goto out;
2726 }
2727#endif
2728 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2729
2730 if (item_size != sizeof(*ei) +
2731 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2732 goto out;
2733
2734 if (btrfs_extent_generation(leaf, ei) <=
2735 btrfs_root_last_snapshot(&root->root_item))
2736 goto out;
2737
2738 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2739 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2740 BTRFS_EXTENT_DATA_REF_KEY)
2741 goto out;
2742
2743 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2744 if (btrfs_extent_refs(leaf, ei) !=
2745 btrfs_extent_data_ref_count(leaf, ref) ||
2746 btrfs_extent_data_ref_root(leaf, ref) !=
2747 root->root_key.objectid ||
2748 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2749 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2750 goto out;
2751
2752 ret = 0;
2753out:
2754 return ret;
2755}
2756
2757int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2758 struct btrfs_root *root,
2759 u64 objectid, u64 offset, u64 bytenr)
2760{
2761 struct btrfs_path *path;
2762 int ret;
2763 int ret2;
2764
2765 path = btrfs_alloc_path();
2766 if (!path)
2767 return -ENOENT;
2768
2769 do {
2770 ret = check_committed_ref(trans, root, path, objectid,
2771 offset, bytenr);
2772 if (ret && ret != -ENOENT)
2773 goto out;
2774
2775 ret2 = check_delayed_ref(trans, root, path, objectid,
2776 offset, bytenr);
2777 } while (ret2 == -EAGAIN);
2778
2779 if (ret2 && ret2 != -ENOENT) {
2780 ret = ret2;
2781 goto out;
2782 }
2783
2784 if (ret != -ENOENT || ret2 != -ENOENT)
2785 ret = 0;
2786out:
2787 btrfs_free_path(path);
2788 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2789 WARN_ON(ret > 0);
2790 return ret;
2791}
2792
2793static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2794 struct btrfs_root *root,
2795 struct extent_buffer *buf,
2796 int full_backref, int inc, int for_cow)
2797{
2798 u64 bytenr;
2799 u64 num_bytes;
2800 u64 parent;
2801 u64 ref_root;
2802 u32 nritems;
2803 struct btrfs_key key;
2804 struct btrfs_file_extent_item *fi;
2805 int i;
2806 int level;
2807 int ret = 0;
2808 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2809 u64, u64, u64, u64, u64, u64, int);
2810
2811 ref_root = btrfs_header_owner(buf);
2812 nritems = btrfs_header_nritems(buf);
2813 level = btrfs_header_level(buf);
2814
2815 if (!root->ref_cows && level == 0)
2816 return 0;
2817
2818 if (inc)
2819 process_func = btrfs_inc_extent_ref;
2820 else
2821 process_func = btrfs_free_extent;
2822
2823 if (full_backref)
2824 parent = buf->start;
2825 else
2826 parent = 0;
2827
2828 for (i = 0; i < nritems; i++) {
2829 if (level == 0) {
2830 btrfs_item_key_to_cpu(buf, &key, i);
2831 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2832 continue;
2833 fi = btrfs_item_ptr(buf, i,
2834 struct btrfs_file_extent_item);
2835 if (btrfs_file_extent_type(buf, fi) ==
2836 BTRFS_FILE_EXTENT_INLINE)
2837 continue;
2838 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2839 if (bytenr == 0)
2840 continue;
2841
2842 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2843 key.offset -= btrfs_file_extent_offset(buf, fi);
2844 ret = process_func(trans, root, bytenr, num_bytes,
2845 parent, ref_root, key.objectid,
2846 key.offset, for_cow);
2847 if (ret)
2848 goto fail;
2849 } else {
2850 bytenr = btrfs_node_blockptr(buf, i);
2851 num_bytes = btrfs_level_size(root, level - 1);
2852 ret = process_func(trans, root, bytenr, num_bytes,
2853 parent, ref_root, level - 1, 0,
2854 for_cow);
2855 if (ret)
2856 goto fail;
2857 }
2858 }
2859 return 0;
2860fail:
2861 return ret;
2862}
2863
2864int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2865 struct extent_buffer *buf, int full_backref, int for_cow)
2866{
2867 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2868}
2869
2870int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2871 struct extent_buffer *buf, int full_backref, int for_cow)
2872{
2873 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2874}
2875
2876static int write_one_cache_group(struct btrfs_trans_handle *trans,
2877 struct btrfs_root *root,
2878 struct btrfs_path *path,
2879 struct btrfs_block_group_cache *cache)
2880{
2881 int ret;
2882 struct btrfs_root *extent_root = root->fs_info->extent_root;
2883 unsigned long bi;
2884 struct extent_buffer *leaf;
2885
2886 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2887 if (ret < 0)
2888 goto fail;
2889 BUG_ON(ret); /* Corruption */
2890
2891 leaf = path->nodes[0];
2892 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2893 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2894 btrfs_mark_buffer_dirty(leaf);
2895 btrfs_release_path(path);
2896fail:
2897 if (ret) {
2898 btrfs_abort_transaction(trans, root, ret);
2899 return ret;
2900 }
2901 return 0;
2902
2903}
2904
2905static struct btrfs_block_group_cache *
2906next_block_group(struct btrfs_root *root,
2907 struct btrfs_block_group_cache *cache)
2908{
2909 struct rb_node *node;
2910 spin_lock(&root->fs_info->block_group_cache_lock);
2911 node = rb_next(&cache->cache_node);
2912 btrfs_put_block_group(cache);
2913 if (node) {
2914 cache = rb_entry(node, struct btrfs_block_group_cache,
2915 cache_node);
2916 btrfs_get_block_group(cache);
2917 } else
2918 cache = NULL;
2919 spin_unlock(&root->fs_info->block_group_cache_lock);
2920 return cache;
2921}
2922
2923static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2924 struct btrfs_trans_handle *trans,
2925 struct btrfs_path *path)
2926{
2927 struct btrfs_root *root = block_group->fs_info->tree_root;
2928 struct inode *inode = NULL;
2929 u64 alloc_hint = 0;
2930 int dcs = BTRFS_DC_ERROR;
2931 int num_pages = 0;
2932 int retries = 0;
2933 int ret = 0;
2934
2935 /*
2936 * If this block group is smaller than 100 megs don't bother caching the
2937 * block group.
2938 */
2939 if (block_group->key.offset < (100 * 1024 * 1024)) {
2940 spin_lock(&block_group->lock);
2941 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2942 spin_unlock(&block_group->lock);
2943 return 0;
2944 }
2945
2946again:
2947 inode = lookup_free_space_inode(root, block_group, path);
2948 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2949 ret = PTR_ERR(inode);
2950 btrfs_release_path(path);
2951 goto out;
2952 }
2953
2954 if (IS_ERR(inode)) {
2955 BUG_ON(retries);
2956 retries++;
2957
2958 if (block_group->ro)
2959 goto out_free;
2960
2961 ret = create_free_space_inode(root, trans, block_group, path);
2962 if (ret)
2963 goto out_free;
2964 goto again;
2965 }
2966
2967 /* We've already setup this transaction, go ahead and exit */
2968 if (block_group->cache_generation == trans->transid &&
2969 i_size_read(inode)) {
2970 dcs = BTRFS_DC_SETUP;
2971 goto out_put;
2972 }
2973
2974 /*
2975 * We want to set the generation to 0, that way if anything goes wrong
2976 * from here on out we know not to trust this cache when we load up next
2977 * time.
2978 */
2979 BTRFS_I(inode)->generation = 0;
2980 ret = btrfs_update_inode(trans, root, inode);
2981 WARN_ON(ret);
2982
2983 if (i_size_read(inode) > 0) {
2984 ret = btrfs_truncate_free_space_cache(root, trans, path,
2985 inode);
2986 if (ret)
2987 goto out_put;
2988 }
2989
2990 spin_lock(&block_group->lock);
2991 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2992 !btrfs_test_opt(root, SPACE_CACHE)) {
2993 /*
2994 * don't bother trying to write stuff out _if_
2995 * a) we're not cached,
2996 * b) we're with nospace_cache mount option.
2997 */
2998 dcs = BTRFS_DC_WRITTEN;
2999 spin_unlock(&block_group->lock);
3000 goto out_put;
3001 }
3002 spin_unlock(&block_group->lock);
3003
3004 /*
3005 * Try to preallocate enough space based on how big the block group is.
3006 * Keep in mind this has to include any pinned space which could end up
3007 * taking up quite a bit since it's not folded into the other space
3008 * cache.
3009 */
3010 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3011 if (!num_pages)
3012 num_pages = 1;
3013
3014 num_pages *= 16;
3015 num_pages *= PAGE_CACHE_SIZE;
3016
3017 ret = btrfs_check_data_free_space(inode, num_pages);
3018 if (ret)
3019 goto out_put;
3020
3021 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3022 num_pages, num_pages,
3023 &alloc_hint);
3024 if (!ret)
3025 dcs = BTRFS_DC_SETUP;
3026 btrfs_free_reserved_data_space(inode, num_pages);
3027
3028out_put:
3029 iput(inode);
3030out_free:
3031 btrfs_release_path(path);
3032out:
3033 spin_lock(&block_group->lock);
3034 if (!ret && dcs == BTRFS_DC_SETUP)
3035 block_group->cache_generation = trans->transid;
3036 block_group->disk_cache_state = dcs;
3037 spin_unlock(&block_group->lock);
3038
3039 return ret;
3040}
3041
3042int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3043 struct btrfs_root *root)
3044{
3045 struct btrfs_block_group_cache *cache;
3046 int err = 0;
3047 struct btrfs_path *path;
3048 u64 last = 0;
3049
3050 path = btrfs_alloc_path();
3051 if (!path)
3052 return -ENOMEM;
3053
3054again:
3055 while (1) {
3056 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3057 while (cache) {
3058 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3059 break;
3060 cache = next_block_group(root, cache);
3061 }
3062 if (!cache) {
3063 if (last == 0)
3064 break;
3065 last = 0;
3066 continue;
3067 }
3068 err = cache_save_setup(cache, trans, path);
3069 last = cache->key.objectid + cache->key.offset;
3070 btrfs_put_block_group(cache);
3071 }
3072
3073 while (1) {
3074 if (last == 0) {
3075 err = btrfs_run_delayed_refs(trans, root,
3076 (unsigned long)-1);
3077 if (err) /* File system offline */
3078 goto out;
3079 }
3080
3081 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3082 while (cache) {
3083 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3084 btrfs_put_block_group(cache);
3085 goto again;
3086 }
3087
3088 if (cache->dirty)
3089 break;
3090 cache = next_block_group(root, cache);
3091 }
3092 if (!cache) {
3093 if (last == 0)
3094 break;
3095 last = 0;
3096 continue;
3097 }
3098
3099 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3100 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3101 cache->dirty = 0;
3102 last = cache->key.objectid + cache->key.offset;
3103
3104 err = write_one_cache_group(trans, root, path, cache);
3105 if (err) /* File system offline */
3106 goto out;
3107
3108 btrfs_put_block_group(cache);
3109 }
3110
3111 while (1) {
3112 /*
3113 * I don't think this is needed since we're just marking our
3114 * preallocated extent as written, but just in case it can't
3115 * hurt.
3116 */
3117 if (last == 0) {
3118 err = btrfs_run_delayed_refs(trans, root,
3119 (unsigned long)-1);
3120 if (err) /* File system offline */
3121 goto out;
3122 }
3123
3124 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3125 while (cache) {
3126 /*
3127 * Really this shouldn't happen, but it could if we
3128 * couldn't write the entire preallocated extent and
3129 * splitting the extent resulted in a new block.
3130 */
3131 if (cache->dirty) {
3132 btrfs_put_block_group(cache);
3133 goto again;
3134 }
3135 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3136 break;
3137 cache = next_block_group(root, cache);
3138 }
3139 if (!cache) {
3140 if (last == 0)
3141 break;
3142 last = 0;
3143 continue;
3144 }
3145
3146 err = btrfs_write_out_cache(root, trans, cache, path);
3147
3148 /*
3149 * If we didn't have an error then the cache state is still
3150 * NEED_WRITE, so we can set it to WRITTEN.
3151 */
3152 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3153 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3154 last = cache->key.objectid + cache->key.offset;
3155 btrfs_put_block_group(cache);
3156 }
3157out:
3158
3159 btrfs_free_path(path);
3160 return err;
3161}
3162
3163int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3164{
3165 struct btrfs_block_group_cache *block_group;
3166 int readonly = 0;
3167
3168 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3169 if (!block_group || block_group->ro)
3170 readonly = 1;
3171 if (block_group)
3172 btrfs_put_block_group(block_group);
3173 return readonly;
3174}
3175
3176static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3177 u64 total_bytes, u64 bytes_used,
3178 struct btrfs_space_info **space_info)
3179{
3180 struct btrfs_space_info *found;
3181 int i;
3182 int factor;
3183
3184 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3185 BTRFS_BLOCK_GROUP_RAID10))
3186 factor = 2;
3187 else
3188 factor = 1;
3189
3190 found = __find_space_info(info, flags);
3191 if (found) {
3192 spin_lock(&found->lock);
3193 found->total_bytes += total_bytes;
3194 found->disk_total += total_bytes * factor;
3195 found->bytes_used += bytes_used;
3196 found->disk_used += bytes_used * factor;
3197 found->full = 0;
3198 spin_unlock(&found->lock);
3199 *space_info = found;
3200 return 0;
3201 }
3202 found = kzalloc(sizeof(*found), GFP_NOFS);
3203 if (!found)
3204 return -ENOMEM;
3205
3206 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3207 INIT_LIST_HEAD(&found->block_groups[i]);
3208 init_rwsem(&found->groups_sem);
3209 spin_lock_init(&found->lock);
3210 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3211 found->total_bytes = total_bytes;
3212 found->disk_total = total_bytes * factor;
3213 found->bytes_used = bytes_used;
3214 found->disk_used = bytes_used * factor;
3215 found->bytes_pinned = 0;
3216 found->bytes_reserved = 0;
3217 found->bytes_readonly = 0;
3218 found->bytes_may_use = 0;
3219 found->full = 0;
3220 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3221 found->chunk_alloc = 0;
3222 found->flush = 0;
3223 init_waitqueue_head(&found->wait);
3224 *space_info = found;
3225 list_add_rcu(&found->list, &info->space_info);
3226 if (flags & BTRFS_BLOCK_GROUP_DATA)
3227 info->data_sinfo = found;
3228 return 0;
3229}
3230
3231static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3232{
3233 u64 extra_flags = chunk_to_extended(flags) &
3234 BTRFS_EXTENDED_PROFILE_MASK;
3235
3236 if (flags & BTRFS_BLOCK_GROUP_DATA)
3237 fs_info->avail_data_alloc_bits |= extra_flags;
3238 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3239 fs_info->avail_metadata_alloc_bits |= extra_flags;
3240 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3241 fs_info->avail_system_alloc_bits |= extra_flags;
3242}
3243
3244/*
3245 * returns target flags in extended format or 0 if restripe for this
3246 * chunk_type is not in progress
3247 *
3248 * should be called with either volume_mutex or balance_lock held
3249 */
3250static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3251{
3252 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3253 u64 target = 0;
3254
3255 if (!bctl)
3256 return 0;
3257
3258 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3259 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3260 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3261 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3262 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3263 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3264 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3265 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3266 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3267 }
3268
3269 return target;
3270}
3271
3272/*
3273 * @flags: available profiles in extended format (see ctree.h)
3274 *
3275 * Returns reduced profile in chunk format. If profile changing is in
3276 * progress (either running or paused) picks the target profile (if it's
3277 * already available), otherwise falls back to plain reducing.
3278 */
3279u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3280{
3281 /*
3282 * we add in the count of missing devices because we want
3283 * to make sure that any RAID levels on a degraded FS
3284 * continue to be honored.
3285 */
3286 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3287 root->fs_info->fs_devices->missing_devices;
3288 u64 target;
3289
3290 /*
3291 * see if restripe for this chunk_type is in progress, if so
3292 * try to reduce to the target profile
3293 */
3294 spin_lock(&root->fs_info->balance_lock);
3295 target = get_restripe_target(root->fs_info, flags);
3296 if (target) {
3297 /* pick target profile only if it's already available */
3298 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3299 spin_unlock(&root->fs_info->balance_lock);
3300 return extended_to_chunk(target);
3301 }
3302 }
3303 spin_unlock(&root->fs_info->balance_lock);
3304
3305 if (num_devices == 1)
3306 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3307 if (num_devices < 4)
3308 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3309
3310 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3311 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3312 BTRFS_BLOCK_GROUP_RAID10))) {
3313 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3314 }
3315
3316 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3317 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3318 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3319 }
3320
3321 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3322 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3323 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3324 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3325 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3326 }
3327
3328 return extended_to_chunk(flags);
3329}
3330
3331static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3332{
3333 if (flags & BTRFS_BLOCK_GROUP_DATA)
3334 flags |= root->fs_info->avail_data_alloc_bits;
3335 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3336 flags |= root->fs_info->avail_system_alloc_bits;
3337 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3338 flags |= root->fs_info->avail_metadata_alloc_bits;
3339
3340 return btrfs_reduce_alloc_profile(root, flags);
3341}
3342
3343u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3344{
3345 u64 flags;
3346
3347 if (data)
3348 flags = BTRFS_BLOCK_GROUP_DATA;
3349 else if (root == root->fs_info->chunk_root)
3350 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3351 else
3352 flags = BTRFS_BLOCK_GROUP_METADATA;
3353
3354 return get_alloc_profile(root, flags);
3355}
3356
3357/*
3358 * This will check the space that the inode allocates from to make sure we have
3359 * enough space for bytes.
3360 */
3361int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3362{
3363 struct btrfs_space_info *data_sinfo;
3364 struct btrfs_root *root = BTRFS_I(inode)->root;
3365 struct btrfs_fs_info *fs_info = root->fs_info;
3366 u64 used;
3367 int ret = 0, committed = 0, alloc_chunk = 1;
3368
3369 /* make sure bytes are sectorsize aligned */
3370 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3371
3372 if (root == root->fs_info->tree_root ||
3373 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3374 alloc_chunk = 0;
3375 committed = 1;
3376 }
3377
3378 data_sinfo = fs_info->data_sinfo;
3379 if (!data_sinfo)
3380 goto alloc;
3381
3382again:
3383 /* make sure we have enough space to handle the data first */
3384 spin_lock(&data_sinfo->lock);
3385 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3386 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3387 data_sinfo->bytes_may_use;
3388
3389 if (used + bytes > data_sinfo->total_bytes) {
3390 struct btrfs_trans_handle *trans;
3391
3392 /*
3393 * if we don't have enough free bytes in this space then we need
3394 * to alloc a new chunk.
3395 */
3396 if (!data_sinfo->full && alloc_chunk) {
3397 u64 alloc_target;
3398
3399 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3400 spin_unlock(&data_sinfo->lock);
3401alloc:
3402 alloc_target = btrfs_get_alloc_profile(root, 1);
3403 trans = btrfs_join_transaction(root);
3404 if (IS_ERR(trans))
3405 return PTR_ERR(trans);
3406
3407 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3408 alloc_target,
3409 CHUNK_ALLOC_NO_FORCE);
3410 btrfs_end_transaction(trans, root);
3411 if (ret < 0) {
3412 if (ret != -ENOSPC)
3413 return ret;
3414 else
3415 goto commit_trans;
3416 }
3417
3418 if (!data_sinfo)
3419 data_sinfo = fs_info->data_sinfo;
3420
3421 goto again;
3422 }
3423
3424 /*
3425 * If we have less pinned bytes than we want to allocate then
3426 * don't bother committing the transaction, it won't help us.
3427 */
3428 if (data_sinfo->bytes_pinned < bytes)
3429 committed = 1;
3430 spin_unlock(&data_sinfo->lock);
3431
3432 /* commit the current transaction and try again */
3433commit_trans:
3434 if (!committed &&
3435 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3436 committed = 1;
3437 trans = btrfs_join_transaction(root);
3438 if (IS_ERR(trans))
3439 return PTR_ERR(trans);
3440 ret = btrfs_commit_transaction(trans, root);
3441 if (ret)
3442 return ret;
3443 goto again;
3444 }
3445
3446 return -ENOSPC;
3447 }
3448 data_sinfo->bytes_may_use += bytes;
3449 trace_btrfs_space_reservation(root->fs_info, "space_info",
3450 data_sinfo->flags, bytes, 1);
3451 spin_unlock(&data_sinfo->lock);
3452
3453 return 0;
3454}
3455
3456/*
3457 * Called if we need to clear a data reservation for this inode.
3458 */
3459void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3460{
3461 struct btrfs_root *root = BTRFS_I(inode)->root;
3462 struct btrfs_space_info *data_sinfo;
3463
3464 /* make sure bytes are sectorsize aligned */
3465 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3466
3467 data_sinfo = root->fs_info->data_sinfo;
3468 spin_lock(&data_sinfo->lock);
3469 data_sinfo->bytes_may_use -= bytes;
3470 trace_btrfs_space_reservation(root->fs_info, "space_info",
3471 data_sinfo->flags, bytes, 0);
3472 spin_unlock(&data_sinfo->lock);
3473}
3474
3475static void force_metadata_allocation(struct btrfs_fs_info *info)
3476{
3477 struct list_head *head = &info->space_info;
3478 struct btrfs_space_info *found;
3479
3480 rcu_read_lock();
3481 list_for_each_entry_rcu(found, head, list) {
3482 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3483 found->force_alloc = CHUNK_ALLOC_FORCE;
3484 }
3485 rcu_read_unlock();
3486}
3487
3488static int should_alloc_chunk(struct btrfs_root *root,
3489 struct btrfs_space_info *sinfo, int force)
3490{
3491 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3492 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3493 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3494 u64 thresh;
3495
3496 if (force == CHUNK_ALLOC_FORCE)
3497 return 1;
3498
3499 /*
3500 * We need to take into account the global rsv because for all intents
3501 * and purposes it's used space. Don't worry about locking the
3502 * global_rsv, it doesn't change except when the transaction commits.
3503 */
3504 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3505 num_allocated += global_rsv->size;
3506
3507 /*
3508 * in limited mode, we want to have some free space up to
3509 * about 1% of the FS size.
3510 */
3511 if (force == CHUNK_ALLOC_LIMITED) {
3512 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3513 thresh = max_t(u64, 64 * 1024 * 1024,
3514 div_factor_fine(thresh, 1));
3515
3516 if (num_bytes - num_allocated < thresh)
3517 return 1;
3518 }
3519
3520 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3521 return 0;
3522 return 1;
3523}
3524
3525static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3526{
3527 u64 num_dev;
3528
3529 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3530 type & BTRFS_BLOCK_GROUP_RAID0)
3531 num_dev = root->fs_info->fs_devices->rw_devices;
3532 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3533 num_dev = 2;
3534 else
3535 num_dev = 1; /* DUP or single */
3536
3537 /* metadata for updaing devices and chunk tree */
3538 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3539}
3540
3541static void check_system_chunk(struct btrfs_trans_handle *trans,
3542 struct btrfs_root *root, u64 type)
3543{
3544 struct btrfs_space_info *info;
3545 u64 left;
3546 u64 thresh;
3547
3548 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3549 spin_lock(&info->lock);
3550 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3551 info->bytes_reserved - info->bytes_readonly;
3552 spin_unlock(&info->lock);
3553
3554 thresh = get_system_chunk_thresh(root, type);
3555 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3556 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3557 left, thresh, type);
3558 dump_space_info(info, 0, 0);
3559 }
3560
3561 if (left < thresh) {
3562 u64 flags;
3563
3564 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3565 btrfs_alloc_chunk(trans, root, flags);
3566 }
3567}
3568
3569static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3570 struct btrfs_root *extent_root, u64 flags, int force)
3571{
3572 struct btrfs_space_info *space_info;
3573 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3574 int wait_for_alloc = 0;
3575 int ret = 0;
3576
3577 space_info = __find_space_info(extent_root->fs_info, flags);
3578 if (!space_info) {
3579 ret = update_space_info(extent_root->fs_info, flags,
3580 0, 0, &space_info);
3581 BUG_ON(ret); /* -ENOMEM */
3582 }
3583 BUG_ON(!space_info); /* Logic error */
3584
3585again:
3586 spin_lock(&space_info->lock);
3587 if (force < space_info->force_alloc)
3588 force = space_info->force_alloc;
3589 if (space_info->full) {
3590 spin_unlock(&space_info->lock);
3591 return 0;
3592 }
3593
3594 if (!should_alloc_chunk(extent_root, space_info, force)) {
3595 spin_unlock(&space_info->lock);
3596 return 0;
3597 } else if (space_info->chunk_alloc) {
3598 wait_for_alloc = 1;
3599 } else {
3600 space_info->chunk_alloc = 1;
3601 }
3602
3603 spin_unlock(&space_info->lock);
3604
3605 mutex_lock(&fs_info->chunk_mutex);
3606
3607 /*
3608 * The chunk_mutex is held throughout the entirety of a chunk
3609 * allocation, so once we've acquired the chunk_mutex we know that the
3610 * other guy is done and we need to recheck and see if we should
3611 * allocate.
3612 */
3613 if (wait_for_alloc) {
3614 mutex_unlock(&fs_info->chunk_mutex);
3615 wait_for_alloc = 0;
3616 goto again;
3617 }
3618
3619 /*
3620 * If we have mixed data/metadata chunks we want to make sure we keep
3621 * allocating mixed chunks instead of individual chunks.
3622 */
3623 if (btrfs_mixed_space_info(space_info))
3624 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3625
3626 /*
3627 * if we're doing a data chunk, go ahead and make sure that
3628 * we keep a reasonable number of metadata chunks allocated in the
3629 * FS as well.
3630 */
3631 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3632 fs_info->data_chunk_allocations++;
3633 if (!(fs_info->data_chunk_allocations %
3634 fs_info->metadata_ratio))
3635 force_metadata_allocation(fs_info);
3636 }
3637
3638 /*
3639 * Check if we have enough space in SYSTEM chunk because we may need
3640 * to update devices.
3641 */
3642 check_system_chunk(trans, extent_root, flags);
3643
3644 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3645 if (ret < 0 && ret != -ENOSPC)
3646 goto out;
3647
3648 spin_lock(&space_info->lock);
3649 if (ret)
3650 space_info->full = 1;
3651 else
3652 ret = 1;
3653
3654 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3655 space_info->chunk_alloc = 0;
3656 spin_unlock(&space_info->lock);
3657out:
3658 mutex_unlock(&fs_info->chunk_mutex);
3659 return ret;
3660}
3661
3662static int can_overcommit(struct btrfs_root *root,
3663 struct btrfs_space_info *space_info, u64 bytes,
3664 int flush)
3665{
3666 u64 profile = btrfs_get_alloc_profile(root, 0);
3667 u64 avail;
3668 u64 used;
3669
3670 used = space_info->bytes_used + space_info->bytes_reserved +
3671 space_info->bytes_pinned + space_info->bytes_readonly +
3672 space_info->bytes_may_use;
3673
3674 spin_lock(&root->fs_info->free_chunk_lock);
3675 avail = root->fs_info->free_chunk_space;
3676 spin_unlock(&root->fs_info->free_chunk_lock);
3677
3678 /*
3679 * If we have dup, raid1 or raid10 then only half of the free
3680 * space is actually useable.
3681 */
3682 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3683 BTRFS_BLOCK_GROUP_RAID1 |
3684 BTRFS_BLOCK_GROUP_RAID10))
3685 avail >>= 1;
3686
3687 /*
3688 * If we aren't flushing don't let us overcommit too much, say
3689 * 1/8th of the space. If we can flush, let it overcommit up to
3690 * 1/2 of the space.
3691 */
3692 if (flush)
3693 avail >>= 3;
3694 else
3695 avail >>= 1;
3696
3697 if (used + bytes < space_info->total_bytes + avail)
3698 return 1;
3699 return 0;
3700}
3701
3702/*
3703 * shrink metadata reservation for delalloc
3704 */
3705static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3706 bool wait_ordered)
3707{
3708 struct btrfs_block_rsv *block_rsv;
3709 struct btrfs_space_info *space_info;
3710 struct btrfs_trans_handle *trans;
3711 u64 delalloc_bytes;
3712 u64 max_reclaim;
3713 long time_left;
3714 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3715 int loops = 0;
3716
3717 trans = (struct btrfs_trans_handle *)current->journal_info;
3718 block_rsv = &root->fs_info->delalloc_block_rsv;
3719 space_info = block_rsv->space_info;
3720
3721 smp_mb();
3722 delalloc_bytes = root->fs_info->delalloc_bytes;
3723 if (delalloc_bytes == 0) {
3724 if (trans)
3725 return;
3726 btrfs_wait_ordered_extents(root, 0);
3727 return;
3728 }
3729
3730 while (delalloc_bytes && loops < 3) {
3731 max_reclaim = min(delalloc_bytes, to_reclaim);
3732 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3733 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3734 WB_REASON_FS_FREE_SPACE);
3735
3736 /*
3737 * We need to wait for the async pages to actually start before
3738 * we do anything.
3739 */
3740 wait_event(root->fs_info->async_submit_wait,
3741 !atomic_read(&root->fs_info->async_delalloc_pages));
3742
3743 spin_lock(&space_info->lock);
3744 if (can_overcommit(root, space_info, orig, !trans)) {
3745 spin_unlock(&space_info->lock);
3746 break;
3747 }
3748 spin_unlock(&space_info->lock);
3749
3750 loops++;
3751 if (wait_ordered && !trans) {
3752 btrfs_wait_ordered_extents(root, 0);
3753 } else {
3754 time_left = schedule_timeout_killable(1);
3755 if (time_left)
3756 break;
3757 }
3758 smp_mb();
3759 delalloc_bytes = root->fs_info->delalloc_bytes;
3760 }
3761}
3762
3763/**
3764 * maybe_commit_transaction - possibly commit the transaction if its ok to
3765 * @root - the root we're allocating for
3766 * @bytes - the number of bytes we want to reserve
3767 * @force - force the commit
3768 *
3769 * This will check to make sure that committing the transaction will actually
3770 * get us somewhere and then commit the transaction if it does. Otherwise it
3771 * will return -ENOSPC.
3772 */
3773static int may_commit_transaction(struct btrfs_root *root,
3774 struct btrfs_space_info *space_info,
3775 u64 bytes, int force)
3776{
3777 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3778 struct btrfs_trans_handle *trans;
3779
3780 trans = (struct btrfs_trans_handle *)current->journal_info;
3781 if (trans)
3782 return -EAGAIN;
3783
3784 if (force)
3785 goto commit;
3786
3787 /* See if there is enough pinned space to make this reservation */
3788 spin_lock(&space_info->lock);
3789 if (space_info->bytes_pinned >= bytes) {
3790 spin_unlock(&space_info->lock);
3791 goto commit;
3792 }
3793 spin_unlock(&space_info->lock);
3794
3795 /*
3796 * See if there is some space in the delayed insertion reservation for
3797 * this reservation.
3798 */
3799 if (space_info != delayed_rsv->space_info)
3800 return -ENOSPC;
3801
3802 spin_lock(&space_info->lock);
3803 spin_lock(&delayed_rsv->lock);
3804 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3805 spin_unlock(&delayed_rsv->lock);
3806 spin_unlock(&space_info->lock);
3807 return -ENOSPC;
3808 }
3809 spin_unlock(&delayed_rsv->lock);
3810 spin_unlock(&space_info->lock);
3811
3812commit:
3813 trans = btrfs_join_transaction(root);
3814 if (IS_ERR(trans))
3815 return -ENOSPC;
3816
3817 return btrfs_commit_transaction(trans, root);
3818}
3819
3820enum flush_state {
3821 FLUSH_DELAYED_ITEMS_NR = 1,
3822 FLUSH_DELAYED_ITEMS = 2,
3823 FLUSH_DELALLOC = 3,
3824 FLUSH_DELALLOC_WAIT = 4,
3825 ALLOC_CHUNK = 5,
3826 COMMIT_TRANS = 6,
3827};
3828
3829static int flush_space(struct btrfs_root *root,
3830 struct btrfs_space_info *space_info, u64 num_bytes,
3831 u64 orig_bytes, int state)
3832{
3833 struct btrfs_trans_handle *trans;
3834 int nr;
3835 int ret = 0;
3836
3837 switch (state) {
3838 case FLUSH_DELAYED_ITEMS_NR:
3839 case FLUSH_DELAYED_ITEMS:
3840 if (state == FLUSH_DELAYED_ITEMS_NR) {
3841 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3842
3843 nr = (int)div64_u64(num_bytes, bytes);
3844 if (!nr)
3845 nr = 1;
3846 nr *= 2;
3847 } else {
3848 nr = -1;
3849 }
3850 trans = btrfs_join_transaction(root);
3851 if (IS_ERR(trans)) {
3852 ret = PTR_ERR(trans);
3853 break;
3854 }
3855 ret = btrfs_run_delayed_items_nr(trans, root, nr);
3856 btrfs_end_transaction(trans, root);
3857 break;
3858 case FLUSH_DELALLOC:
3859 case FLUSH_DELALLOC_WAIT:
3860 shrink_delalloc(root, num_bytes, orig_bytes,
3861 state == FLUSH_DELALLOC_WAIT);
3862 break;
3863 case ALLOC_CHUNK:
3864 trans = btrfs_join_transaction(root);
3865 if (IS_ERR(trans)) {
3866 ret = PTR_ERR(trans);
3867 break;
3868 }
3869 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3870 btrfs_get_alloc_profile(root, 0),
3871 CHUNK_ALLOC_NO_FORCE);
3872 btrfs_end_transaction(trans, root);
3873 if (ret == -ENOSPC)
3874 ret = 0;
3875 break;
3876 case COMMIT_TRANS:
3877 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3878 break;
3879 default:
3880 ret = -ENOSPC;
3881 break;
3882 }
3883
3884 return ret;
3885}
3886/**
3887 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3888 * @root - the root we're allocating for
3889 * @block_rsv - the block_rsv we're allocating for
3890 * @orig_bytes - the number of bytes we want
3891 * @flush - wether or not we can flush to make our reservation
3892 *
3893 * This will reserve orgi_bytes number of bytes from the space info associated
3894 * with the block_rsv. If there is not enough space it will make an attempt to
3895 * flush out space to make room. It will do this by flushing delalloc if
3896 * possible or committing the transaction. If flush is 0 then no attempts to
3897 * regain reservations will be made and this will fail if there is not enough
3898 * space already.
3899 */
3900static int reserve_metadata_bytes(struct btrfs_root *root,
3901 struct btrfs_block_rsv *block_rsv,
3902 u64 orig_bytes, int flush)
3903{
3904 struct btrfs_space_info *space_info = block_rsv->space_info;
3905 u64 used;
3906 u64 num_bytes = orig_bytes;
3907 int flush_state = FLUSH_DELAYED_ITEMS_NR;
3908 int ret = 0;
3909 bool flushing = false;
3910
3911again:
3912 ret = 0;
3913 spin_lock(&space_info->lock);
3914 /*
3915 * We only want to wait if somebody other than us is flushing and we are
3916 * actually alloed to flush.
3917 */
3918 while (flush && !flushing && space_info->flush) {
3919 spin_unlock(&space_info->lock);
3920 /*
3921 * If we have a trans handle we can't wait because the flusher
3922 * may have to commit the transaction, which would mean we would
3923 * deadlock since we are waiting for the flusher to finish, but
3924 * hold the current transaction open.
3925 */
3926 if (current->journal_info)
3927 return -EAGAIN;
3928 ret = wait_event_killable(space_info->wait, !space_info->flush);
3929 /* Must have been killed, return */
3930 if (ret)
3931 return -EINTR;
3932
3933 spin_lock(&space_info->lock);
3934 }
3935
3936 ret = -ENOSPC;
3937 used = space_info->bytes_used + space_info->bytes_reserved +
3938 space_info->bytes_pinned + space_info->bytes_readonly +
3939 space_info->bytes_may_use;
3940
3941 /*
3942 * The idea here is that we've not already over-reserved the block group
3943 * then we can go ahead and save our reservation first and then start
3944 * flushing if we need to. Otherwise if we've already overcommitted
3945 * lets start flushing stuff first and then come back and try to make
3946 * our reservation.
3947 */
3948 if (used <= space_info->total_bytes) {
3949 if (used + orig_bytes <= space_info->total_bytes) {
3950 space_info->bytes_may_use += orig_bytes;
3951 trace_btrfs_space_reservation(root->fs_info,
3952 "space_info", space_info->flags, orig_bytes, 1);
3953 ret = 0;
3954 } else {
3955 /*
3956 * Ok set num_bytes to orig_bytes since we aren't
3957 * overocmmitted, this way we only try and reclaim what
3958 * we need.
3959 */
3960 num_bytes = orig_bytes;
3961 }
3962 } else {
3963 /*
3964 * Ok we're over committed, set num_bytes to the overcommitted
3965 * amount plus the amount of bytes that we need for this
3966 * reservation.
3967 */
3968 num_bytes = used - space_info->total_bytes +
3969 (orig_bytes * 2);
3970 }
3971
3972 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
3973 space_info->bytes_may_use += orig_bytes;
3974 trace_btrfs_space_reservation(root->fs_info, "space_info",
3975 space_info->flags, orig_bytes,
3976 1);
3977 ret = 0;
3978 }
3979
3980 /*
3981 * Couldn't make our reservation, save our place so while we're trying
3982 * to reclaim space we can actually use it instead of somebody else
3983 * stealing it from us.
3984 */
3985 if (ret && flush) {
3986 flushing = true;
3987 space_info->flush = 1;
3988 }
3989
3990 spin_unlock(&space_info->lock);
3991
3992 if (!ret || !flush)
3993 goto out;
3994
3995 ret = flush_space(root, space_info, num_bytes, orig_bytes,
3996 flush_state);
3997 flush_state++;
3998 if (!ret)
3999 goto again;
4000 else if (flush_state <= COMMIT_TRANS)
4001 goto again;
4002
4003out:
4004 if (flushing) {
4005 spin_lock(&space_info->lock);
4006 space_info->flush = 0;
4007 wake_up_all(&space_info->wait);
4008 spin_unlock(&space_info->lock);
4009 }
4010 return ret;
4011}
4012
4013static struct btrfs_block_rsv *get_block_rsv(
4014 const struct btrfs_trans_handle *trans,
4015 const struct btrfs_root *root)
4016{
4017 struct btrfs_block_rsv *block_rsv = NULL;
4018
4019 if (root->ref_cows)
4020 block_rsv = trans->block_rsv;
4021
4022 if (root == root->fs_info->csum_root && trans->adding_csums)
4023 block_rsv = trans->block_rsv;
4024
4025 if (!block_rsv)
4026 block_rsv = root->block_rsv;
4027
4028 if (!block_rsv)
4029 block_rsv = &root->fs_info->empty_block_rsv;
4030
4031 return block_rsv;
4032}
4033
4034static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4035 u64 num_bytes)
4036{
4037 int ret = -ENOSPC;
4038 spin_lock(&block_rsv->lock);
4039 if (block_rsv->reserved >= num_bytes) {
4040 block_rsv->reserved -= num_bytes;
4041 if (block_rsv->reserved < block_rsv->size)
4042 block_rsv->full = 0;
4043 ret = 0;
4044 }
4045 spin_unlock(&block_rsv->lock);
4046 return ret;
4047}
4048
4049static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4050 u64 num_bytes, int update_size)
4051{
4052 spin_lock(&block_rsv->lock);
4053 block_rsv->reserved += num_bytes;
4054 if (update_size)
4055 block_rsv->size += num_bytes;
4056 else if (block_rsv->reserved >= block_rsv->size)
4057 block_rsv->full = 1;
4058 spin_unlock(&block_rsv->lock);
4059}
4060
4061static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4062 struct btrfs_block_rsv *block_rsv,
4063 struct btrfs_block_rsv *dest, u64 num_bytes)
4064{
4065 struct btrfs_space_info *space_info = block_rsv->space_info;
4066
4067 spin_lock(&block_rsv->lock);
4068 if (num_bytes == (u64)-1)
4069 num_bytes = block_rsv->size;
4070 block_rsv->size -= num_bytes;
4071 if (block_rsv->reserved >= block_rsv->size) {
4072 num_bytes = block_rsv->reserved - block_rsv->size;
4073 block_rsv->reserved = block_rsv->size;
4074 block_rsv->full = 1;
4075 } else {
4076 num_bytes = 0;
4077 }
4078 spin_unlock(&block_rsv->lock);
4079
4080 if (num_bytes > 0) {
4081 if (dest) {
4082 spin_lock(&dest->lock);
4083 if (!dest->full) {
4084 u64 bytes_to_add;
4085
4086 bytes_to_add = dest->size - dest->reserved;
4087 bytes_to_add = min(num_bytes, bytes_to_add);
4088 dest->reserved += bytes_to_add;
4089 if (dest->reserved >= dest->size)
4090 dest->full = 1;
4091 num_bytes -= bytes_to_add;
4092 }
4093 spin_unlock(&dest->lock);
4094 }
4095 if (num_bytes) {
4096 spin_lock(&space_info->lock);
4097 space_info->bytes_may_use -= num_bytes;
4098 trace_btrfs_space_reservation(fs_info, "space_info",
4099 space_info->flags, num_bytes, 0);
4100 space_info->reservation_progress++;
4101 spin_unlock(&space_info->lock);
4102 }
4103 }
4104}
4105
4106static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4107 struct btrfs_block_rsv *dst, u64 num_bytes)
4108{
4109 int ret;
4110
4111 ret = block_rsv_use_bytes(src, num_bytes);
4112 if (ret)
4113 return ret;
4114
4115 block_rsv_add_bytes(dst, num_bytes, 1);
4116 return 0;
4117}
4118
4119void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4120{
4121 memset(rsv, 0, sizeof(*rsv));
4122 spin_lock_init(&rsv->lock);
4123 rsv->type = type;
4124}
4125
4126struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4127 unsigned short type)
4128{
4129 struct btrfs_block_rsv *block_rsv;
4130 struct btrfs_fs_info *fs_info = root->fs_info;
4131
4132 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4133 if (!block_rsv)
4134 return NULL;
4135
4136 btrfs_init_block_rsv(block_rsv, type);
4137 block_rsv->space_info = __find_space_info(fs_info,
4138 BTRFS_BLOCK_GROUP_METADATA);
4139 return block_rsv;
4140}
4141
4142void btrfs_free_block_rsv(struct btrfs_root *root,
4143 struct btrfs_block_rsv *rsv)
4144{
4145 if (!rsv)
4146 return;
4147 btrfs_block_rsv_release(root, rsv, (u64)-1);
4148 kfree(rsv);
4149}
4150
4151static inline int __block_rsv_add(struct btrfs_root *root,
4152 struct btrfs_block_rsv *block_rsv,
4153 u64 num_bytes, int flush)
4154{
4155 int ret;
4156
4157 if (num_bytes == 0)
4158 return 0;
4159
4160 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4161 if (!ret) {
4162 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4163 return 0;
4164 }
4165
4166 return ret;
4167}
4168
4169int btrfs_block_rsv_add(struct btrfs_root *root,
4170 struct btrfs_block_rsv *block_rsv,
4171 u64 num_bytes)
4172{
4173 return __block_rsv_add(root, block_rsv, num_bytes, 1);
4174}
4175
4176int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4177 struct btrfs_block_rsv *block_rsv,
4178 u64 num_bytes)
4179{
4180 return __block_rsv_add(root, block_rsv, num_bytes, 0);
4181}
4182
4183int btrfs_block_rsv_check(struct btrfs_root *root,
4184 struct btrfs_block_rsv *block_rsv, int min_factor)
4185{
4186 u64 num_bytes = 0;
4187 int ret = -ENOSPC;
4188
4189 if (!block_rsv)
4190 return 0;
4191
4192 spin_lock(&block_rsv->lock);
4193 num_bytes = div_factor(block_rsv->size, min_factor);
4194 if (block_rsv->reserved >= num_bytes)
4195 ret = 0;
4196 spin_unlock(&block_rsv->lock);
4197
4198 return ret;
4199}
4200
4201static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4202 struct btrfs_block_rsv *block_rsv,
4203 u64 min_reserved, int flush)
4204{
4205 u64 num_bytes = 0;
4206 int ret = -ENOSPC;
4207
4208 if (!block_rsv)
4209 return 0;
4210
4211 spin_lock(&block_rsv->lock);
4212 num_bytes = min_reserved;
4213 if (block_rsv->reserved >= num_bytes)
4214 ret = 0;
4215 else
4216 num_bytes -= block_rsv->reserved;
4217 spin_unlock(&block_rsv->lock);
4218
4219 if (!ret)
4220 return 0;
4221
4222 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4223 if (!ret) {
4224 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4225 return 0;
4226 }
4227
4228 return ret;
4229}
4230
4231int btrfs_block_rsv_refill(struct btrfs_root *root,
4232 struct btrfs_block_rsv *block_rsv,
4233 u64 min_reserved)
4234{
4235 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4236}
4237
4238int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4239 struct btrfs_block_rsv *block_rsv,
4240 u64 min_reserved)
4241{
4242 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4243}
4244
4245int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4246 struct btrfs_block_rsv *dst_rsv,
4247 u64 num_bytes)
4248{
4249 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4250}
4251
4252void btrfs_block_rsv_release(struct btrfs_root *root,
4253 struct btrfs_block_rsv *block_rsv,
4254 u64 num_bytes)
4255{
4256 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4257 if (global_rsv->full || global_rsv == block_rsv ||
4258 block_rsv->space_info != global_rsv->space_info)
4259 global_rsv = NULL;
4260 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4261 num_bytes);
4262}
4263
4264/*
4265 * helper to calculate size of global block reservation.
4266 * the desired value is sum of space used by extent tree,
4267 * checksum tree and root tree
4268 */
4269static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4270{
4271 struct btrfs_space_info *sinfo;
4272 u64 num_bytes;
4273 u64 meta_used;
4274 u64 data_used;
4275 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4276
4277 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4278 spin_lock(&sinfo->lock);
4279 data_used = sinfo->bytes_used;
4280 spin_unlock(&sinfo->lock);
4281
4282 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4283 spin_lock(&sinfo->lock);
4284 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4285 data_used = 0;
4286 meta_used = sinfo->bytes_used;
4287 spin_unlock(&sinfo->lock);
4288
4289 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4290 csum_size * 2;
4291 num_bytes += div64_u64(data_used + meta_used, 50);
4292
4293 if (num_bytes * 3 > meta_used)
4294 num_bytes = div64_u64(meta_used, 3);
4295
4296 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4297}
4298
4299static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4300{
4301 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4302 struct btrfs_space_info *sinfo = block_rsv->space_info;
4303 u64 num_bytes;
4304
4305 num_bytes = calc_global_metadata_size(fs_info);
4306
4307 spin_lock(&sinfo->lock);
4308 spin_lock(&block_rsv->lock);
4309
4310 block_rsv->size = num_bytes;
4311
4312 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4313 sinfo->bytes_reserved + sinfo->bytes_readonly +
4314 sinfo->bytes_may_use;
4315
4316 if (sinfo->total_bytes > num_bytes) {
4317 num_bytes = sinfo->total_bytes - num_bytes;
4318 block_rsv->reserved += num_bytes;
4319 sinfo->bytes_may_use += num_bytes;
4320 trace_btrfs_space_reservation(fs_info, "space_info",
4321 sinfo->flags, num_bytes, 1);
4322 }
4323
4324 if (block_rsv->reserved >= block_rsv->size) {
4325 num_bytes = block_rsv->reserved - block_rsv->size;
4326 sinfo->bytes_may_use -= num_bytes;
4327 trace_btrfs_space_reservation(fs_info, "space_info",
4328 sinfo->flags, num_bytes, 0);
4329 sinfo->reservation_progress++;
4330 block_rsv->reserved = block_rsv->size;
4331 block_rsv->full = 1;
4332 }
4333
4334 spin_unlock(&block_rsv->lock);
4335 spin_unlock(&sinfo->lock);
4336}
4337
4338static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4339{
4340 struct btrfs_space_info *space_info;
4341
4342 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4343 fs_info->chunk_block_rsv.space_info = space_info;
4344
4345 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4346 fs_info->global_block_rsv.space_info = space_info;
4347 fs_info->delalloc_block_rsv.space_info = space_info;
4348 fs_info->trans_block_rsv.space_info = space_info;
4349 fs_info->empty_block_rsv.space_info = space_info;
4350 fs_info->delayed_block_rsv.space_info = space_info;
4351
4352 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4353 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4354 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4355 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4356 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4357
4358 update_global_block_rsv(fs_info);
4359}
4360
4361static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4362{
4363 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4364 (u64)-1);
4365 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4366 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4367 WARN_ON(fs_info->trans_block_rsv.size > 0);
4368 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4369 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4370 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4371 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4372 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4373}
4374
4375void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4376 struct btrfs_root *root)
4377{
4378 if (!trans->block_rsv)
4379 return;
4380
4381 if (!trans->bytes_reserved)
4382 return;
4383
4384 trace_btrfs_space_reservation(root->fs_info, "transaction",
4385 trans->transid, trans->bytes_reserved, 0);
4386 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4387 trans->bytes_reserved = 0;
4388}
4389
4390/* Can only return 0 or -ENOSPC */
4391int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4392 struct inode *inode)
4393{
4394 struct btrfs_root *root = BTRFS_I(inode)->root;
4395 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4396 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4397
4398 /*
4399 * We need to hold space in order to delete our orphan item once we've
4400 * added it, so this takes the reservation so we can release it later
4401 * when we are truly done with the orphan item.
4402 */
4403 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4404 trace_btrfs_space_reservation(root->fs_info, "orphan",
4405 btrfs_ino(inode), num_bytes, 1);
4406 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4407}
4408
4409void btrfs_orphan_release_metadata(struct inode *inode)
4410{
4411 struct btrfs_root *root = BTRFS_I(inode)->root;
4412 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4413 trace_btrfs_space_reservation(root->fs_info, "orphan",
4414 btrfs_ino(inode), num_bytes, 0);
4415 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4416}
4417
4418int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4419 struct btrfs_pending_snapshot *pending)
4420{
4421 struct btrfs_root *root = pending->root;
4422 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4423 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4424 /*
4425 * two for root back/forward refs, two for directory entries,
4426 * one for root of the snapshot and one for parent inode.
4427 */
4428 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 6);
4429 dst_rsv->space_info = src_rsv->space_info;
4430 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4431}
4432
4433/**
4434 * drop_outstanding_extent - drop an outstanding extent
4435 * @inode: the inode we're dropping the extent for
4436 *
4437 * This is called when we are freeing up an outstanding extent, either called
4438 * after an error or after an extent is written. This will return the number of
4439 * reserved extents that need to be freed. This must be called with
4440 * BTRFS_I(inode)->lock held.
4441 */
4442static unsigned drop_outstanding_extent(struct inode *inode)
4443{
4444 unsigned drop_inode_space = 0;
4445 unsigned dropped_extents = 0;
4446
4447 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4448 BTRFS_I(inode)->outstanding_extents--;
4449
4450 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4451 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4452 &BTRFS_I(inode)->runtime_flags))
4453 drop_inode_space = 1;
4454
4455 /*
4456 * If we have more or the same amount of outsanding extents than we have
4457 * reserved then we need to leave the reserved extents count alone.
4458 */
4459 if (BTRFS_I(inode)->outstanding_extents >=
4460 BTRFS_I(inode)->reserved_extents)
4461 return drop_inode_space;
4462
4463 dropped_extents = BTRFS_I(inode)->reserved_extents -
4464 BTRFS_I(inode)->outstanding_extents;
4465 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4466 return dropped_extents + drop_inode_space;
4467}
4468
4469/**
4470 * calc_csum_metadata_size - return the amount of metada space that must be
4471 * reserved/free'd for the given bytes.
4472 * @inode: the inode we're manipulating
4473 * @num_bytes: the number of bytes in question
4474 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4475 *
4476 * This adjusts the number of csum_bytes in the inode and then returns the
4477 * correct amount of metadata that must either be reserved or freed. We
4478 * calculate how many checksums we can fit into one leaf and then divide the
4479 * number of bytes that will need to be checksumed by this value to figure out
4480 * how many checksums will be required. If we are adding bytes then the number
4481 * may go up and we will return the number of additional bytes that must be
4482 * reserved. If it is going down we will return the number of bytes that must
4483 * be freed.
4484 *
4485 * This must be called with BTRFS_I(inode)->lock held.
4486 */
4487static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4488 int reserve)
4489{
4490 struct btrfs_root *root = BTRFS_I(inode)->root;
4491 u64 csum_size;
4492 int num_csums_per_leaf;
4493 int num_csums;
4494 int old_csums;
4495
4496 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4497 BTRFS_I(inode)->csum_bytes == 0)
4498 return 0;
4499
4500 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4501 if (reserve)
4502 BTRFS_I(inode)->csum_bytes += num_bytes;
4503 else
4504 BTRFS_I(inode)->csum_bytes -= num_bytes;
4505 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4506 num_csums_per_leaf = (int)div64_u64(csum_size,
4507 sizeof(struct btrfs_csum_item) +
4508 sizeof(struct btrfs_disk_key));
4509 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4510 num_csums = num_csums + num_csums_per_leaf - 1;
4511 num_csums = num_csums / num_csums_per_leaf;
4512
4513 old_csums = old_csums + num_csums_per_leaf - 1;
4514 old_csums = old_csums / num_csums_per_leaf;
4515
4516 /* No change, no need to reserve more */
4517 if (old_csums == num_csums)
4518 return 0;
4519
4520 if (reserve)
4521 return btrfs_calc_trans_metadata_size(root,
4522 num_csums - old_csums);
4523
4524 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4525}
4526
4527int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4528{
4529 struct btrfs_root *root = BTRFS_I(inode)->root;
4530 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4531 u64 to_reserve = 0;
4532 u64 csum_bytes;
4533 unsigned nr_extents = 0;
4534 int extra_reserve = 0;
4535 int flush = 1;
4536 int ret;
4537
4538 /* Need to be holding the i_mutex here if we aren't free space cache */
4539 if (btrfs_is_free_space_inode(inode))
4540 flush = 0;
4541
4542 if (flush && btrfs_transaction_in_commit(root->fs_info))
4543 schedule_timeout(1);
4544
4545 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4546 num_bytes = ALIGN(num_bytes, root->sectorsize);
4547
4548 spin_lock(&BTRFS_I(inode)->lock);
4549 BTRFS_I(inode)->outstanding_extents++;
4550
4551 if (BTRFS_I(inode)->outstanding_extents >
4552 BTRFS_I(inode)->reserved_extents)
4553 nr_extents = BTRFS_I(inode)->outstanding_extents -
4554 BTRFS_I(inode)->reserved_extents;
4555
4556 /*
4557 * Add an item to reserve for updating the inode when we complete the
4558 * delalloc io.
4559 */
4560 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4561 &BTRFS_I(inode)->runtime_flags)) {
4562 nr_extents++;
4563 extra_reserve = 1;
4564 }
4565
4566 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4567 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4568 csum_bytes = BTRFS_I(inode)->csum_bytes;
4569 spin_unlock(&BTRFS_I(inode)->lock);
4570
4571 if (root->fs_info->quota_enabled) {
4572 ret = btrfs_qgroup_reserve(root, num_bytes +
4573 nr_extents * root->leafsize);
4574 if (ret) {
4575 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4576 return ret;
4577 }
4578 }
4579
4580 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4581 if (ret) {
4582 u64 to_free = 0;
4583 unsigned dropped;
4584
4585 spin_lock(&BTRFS_I(inode)->lock);
4586 dropped = drop_outstanding_extent(inode);
4587 /*
4588 * If the inodes csum_bytes is the same as the original
4589 * csum_bytes then we know we haven't raced with any free()ers
4590 * so we can just reduce our inodes csum bytes and carry on.
4591 * Otherwise we have to do the normal free thing to account for
4592 * the case that the free side didn't free up its reserve
4593 * because of this outstanding reservation.
4594 */
4595 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4596 calc_csum_metadata_size(inode, num_bytes, 0);
4597 else
4598 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4599 spin_unlock(&BTRFS_I(inode)->lock);
4600 if (dropped)
4601 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4602
4603 if (to_free) {
4604 btrfs_block_rsv_release(root, block_rsv, to_free);
4605 trace_btrfs_space_reservation(root->fs_info,
4606 "delalloc",
4607 btrfs_ino(inode),
4608 to_free, 0);
4609 }
4610 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4611 return ret;
4612 }
4613
4614 spin_lock(&BTRFS_I(inode)->lock);
4615 if (extra_reserve) {
4616 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4617 &BTRFS_I(inode)->runtime_flags);
4618 nr_extents--;
4619 }
4620 BTRFS_I(inode)->reserved_extents += nr_extents;
4621 spin_unlock(&BTRFS_I(inode)->lock);
4622 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4623
4624 if (to_reserve)
4625 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4626 btrfs_ino(inode), to_reserve, 1);
4627 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4628
4629 return 0;
4630}
4631
4632/**
4633 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4634 * @inode: the inode to release the reservation for
4635 * @num_bytes: the number of bytes we're releasing
4636 *
4637 * This will release the metadata reservation for an inode. This can be called
4638 * once we complete IO for a given set of bytes to release their metadata
4639 * reservations.
4640 */
4641void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4642{
4643 struct btrfs_root *root = BTRFS_I(inode)->root;
4644 u64 to_free = 0;
4645 unsigned dropped;
4646
4647 num_bytes = ALIGN(num_bytes, root->sectorsize);
4648 spin_lock(&BTRFS_I(inode)->lock);
4649 dropped = drop_outstanding_extent(inode);
4650
4651 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4652 spin_unlock(&BTRFS_I(inode)->lock);
4653 if (dropped > 0)
4654 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4655
4656 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4657 btrfs_ino(inode), to_free, 0);
4658 if (root->fs_info->quota_enabled) {
4659 btrfs_qgroup_free(root, num_bytes +
4660 dropped * root->leafsize);
4661 }
4662
4663 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4664 to_free);
4665}
4666
4667/**
4668 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4669 * @inode: inode we're writing to
4670 * @num_bytes: the number of bytes we want to allocate
4671 *
4672 * This will do the following things
4673 *
4674 * o reserve space in the data space info for num_bytes
4675 * o reserve space in the metadata space info based on number of outstanding
4676 * extents and how much csums will be needed
4677 * o add to the inodes ->delalloc_bytes
4678 * o add it to the fs_info's delalloc inodes list.
4679 *
4680 * This will return 0 for success and -ENOSPC if there is no space left.
4681 */
4682int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4683{
4684 int ret;
4685
4686 ret = btrfs_check_data_free_space(inode, num_bytes);
4687 if (ret)
4688 return ret;
4689
4690 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4691 if (ret) {
4692 btrfs_free_reserved_data_space(inode, num_bytes);
4693 return ret;
4694 }
4695
4696 return 0;
4697}
4698
4699/**
4700 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4701 * @inode: inode we're releasing space for
4702 * @num_bytes: the number of bytes we want to free up
4703 *
4704 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4705 * called in the case that we don't need the metadata AND data reservations
4706 * anymore. So if there is an error or we insert an inline extent.
4707 *
4708 * This function will release the metadata space that was not used and will
4709 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4710 * list if there are no delalloc bytes left.
4711 */
4712void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4713{
4714 btrfs_delalloc_release_metadata(inode, num_bytes);
4715 btrfs_free_reserved_data_space(inode, num_bytes);
4716}
4717
4718static int update_block_group(struct btrfs_trans_handle *trans,
4719 struct btrfs_root *root,
4720 u64 bytenr, u64 num_bytes, int alloc)
4721{
4722 struct btrfs_block_group_cache *cache = NULL;
4723 struct btrfs_fs_info *info = root->fs_info;
4724 u64 total = num_bytes;
4725 u64 old_val;
4726 u64 byte_in_group;
4727 int factor;
4728
4729 /* block accounting for super block */
4730 spin_lock(&info->delalloc_lock);
4731 old_val = btrfs_super_bytes_used(info->super_copy);
4732 if (alloc)
4733 old_val += num_bytes;
4734 else
4735 old_val -= num_bytes;
4736 btrfs_set_super_bytes_used(info->super_copy, old_val);
4737 spin_unlock(&info->delalloc_lock);
4738
4739 while (total) {
4740 cache = btrfs_lookup_block_group(info, bytenr);
4741 if (!cache)
4742 return -ENOENT;
4743 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4744 BTRFS_BLOCK_GROUP_RAID1 |
4745 BTRFS_BLOCK_GROUP_RAID10))
4746 factor = 2;
4747 else
4748 factor = 1;
4749 /*
4750 * If this block group has free space cache written out, we
4751 * need to make sure to load it if we are removing space. This
4752 * is because we need the unpinning stage to actually add the
4753 * space back to the block group, otherwise we will leak space.
4754 */
4755 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4756 cache_block_group(cache, trans, NULL, 1);
4757
4758 byte_in_group = bytenr - cache->key.objectid;
4759 WARN_ON(byte_in_group > cache->key.offset);
4760
4761 spin_lock(&cache->space_info->lock);
4762 spin_lock(&cache->lock);
4763
4764 if (btrfs_test_opt(root, SPACE_CACHE) &&
4765 cache->disk_cache_state < BTRFS_DC_CLEAR)
4766 cache->disk_cache_state = BTRFS_DC_CLEAR;
4767
4768 cache->dirty = 1;
4769 old_val = btrfs_block_group_used(&cache->item);
4770 num_bytes = min(total, cache->key.offset - byte_in_group);
4771 if (alloc) {
4772 old_val += num_bytes;
4773 btrfs_set_block_group_used(&cache->item, old_val);
4774 cache->reserved -= num_bytes;
4775 cache->space_info->bytes_reserved -= num_bytes;
4776 cache->space_info->bytes_used += num_bytes;
4777 cache->space_info->disk_used += num_bytes * factor;
4778 spin_unlock(&cache->lock);
4779 spin_unlock(&cache->space_info->lock);
4780 } else {
4781 old_val -= num_bytes;
4782 btrfs_set_block_group_used(&cache->item, old_val);
4783 cache->pinned += num_bytes;
4784 cache->space_info->bytes_pinned += num_bytes;
4785 cache->space_info->bytes_used -= num_bytes;
4786 cache->space_info->disk_used -= num_bytes * factor;
4787 spin_unlock(&cache->lock);
4788 spin_unlock(&cache->space_info->lock);
4789
4790 set_extent_dirty(info->pinned_extents,
4791 bytenr, bytenr + num_bytes - 1,
4792 GFP_NOFS | __GFP_NOFAIL);
4793 }
4794 btrfs_put_block_group(cache);
4795 total -= num_bytes;
4796 bytenr += num_bytes;
4797 }
4798 return 0;
4799}
4800
4801static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4802{
4803 struct btrfs_block_group_cache *cache;
4804 u64 bytenr;
4805
4806 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4807 if (!cache)
4808 return 0;
4809
4810 bytenr = cache->key.objectid;
4811 btrfs_put_block_group(cache);
4812
4813 return bytenr;
4814}
4815
4816static int pin_down_extent(struct btrfs_root *root,
4817 struct btrfs_block_group_cache *cache,
4818 u64 bytenr, u64 num_bytes, int reserved)
4819{
4820 spin_lock(&cache->space_info->lock);
4821 spin_lock(&cache->lock);
4822 cache->pinned += num_bytes;
4823 cache->space_info->bytes_pinned += num_bytes;
4824 if (reserved) {
4825 cache->reserved -= num_bytes;
4826 cache->space_info->bytes_reserved -= num_bytes;
4827 }
4828 spin_unlock(&cache->lock);
4829 spin_unlock(&cache->space_info->lock);
4830
4831 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4832 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4833 return 0;
4834}
4835
4836/*
4837 * this function must be called within transaction
4838 */
4839int btrfs_pin_extent(struct btrfs_root *root,
4840 u64 bytenr, u64 num_bytes, int reserved)
4841{
4842 struct btrfs_block_group_cache *cache;
4843
4844 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4845 BUG_ON(!cache); /* Logic error */
4846
4847 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4848
4849 btrfs_put_block_group(cache);
4850 return 0;
4851}
4852
4853/*
4854 * this function must be called within transaction
4855 */
4856int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4857 struct btrfs_root *root,
4858 u64 bytenr, u64 num_bytes)
4859{
4860 struct btrfs_block_group_cache *cache;
4861
4862 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4863 BUG_ON(!cache); /* Logic error */
4864
4865 /*
4866 * pull in the free space cache (if any) so that our pin
4867 * removes the free space from the cache. We have load_only set
4868 * to one because the slow code to read in the free extents does check
4869 * the pinned extents.
4870 */
4871 cache_block_group(cache, trans, root, 1);
4872
4873 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4874
4875 /* remove us from the free space cache (if we're there at all) */
4876 btrfs_remove_free_space(cache, bytenr, num_bytes);
4877 btrfs_put_block_group(cache);
4878 return 0;
4879}
4880
4881/**
4882 * btrfs_update_reserved_bytes - update the block_group and space info counters
4883 * @cache: The cache we are manipulating
4884 * @num_bytes: The number of bytes in question
4885 * @reserve: One of the reservation enums
4886 *
4887 * This is called by the allocator when it reserves space, or by somebody who is
4888 * freeing space that was never actually used on disk. For example if you
4889 * reserve some space for a new leaf in transaction A and before transaction A
4890 * commits you free that leaf, you call this with reserve set to 0 in order to
4891 * clear the reservation.
4892 *
4893 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4894 * ENOSPC accounting. For data we handle the reservation through clearing the
4895 * delalloc bits in the io_tree. We have to do this since we could end up
4896 * allocating less disk space for the amount of data we have reserved in the
4897 * case of compression.
4898 *
4899 * If this is a reservation and the block group has become read only we cannot
4900 * make the reservation and return -EAGAIN, otherwise this function always
4901 * succeeds.
4902 */
4903static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4904 u64 num_bytes, int reserve)
4905{
4906 struct btrfs_space_info *space_info = cache->space_info;
4907 int ret = 0;
4908
4909 spin_lock(&space_info->lock);
4910 spin_lock(&cache->lock);
4911 if (reserve != RESERVE_FREE) {
4912 if (cache->ro) {
4913 ret = -EAGAIN;
4914 } else {
4915 cache->reserved += num_bytes;
4916 space_info->bytes_reserved += num_bytes;
4917 if (reserve == RESERVE_ALLOC) {
4918 trace_btrfs_space_reservation(cache->fs_info,
4919 "space_info", space_info->flags,
4920 num_bytes, 0);
4921 space_info->bytes_may_use -= num_bytes;
4922 }
4923 }
4924 } else {
4925 if (cache->ro)
4926 space_info->bytes_readonly += num_bytes;
4927 cache->reserved -= num_bytes;
4928 space_info->bytes_reserved -= num_bytes;
4929 space_info->reservation_progress++;
4930 }
4931 spin_unlock(&cache->lock);
4932 spin_unlock(&space_info->lock);
4933 return ret;
4934}
4935
4936void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4937 struct btrfs_root *root)
4938{
4939 struct btrfs_fs_info *fs_info = root->fs_info;
4940 struct btrfs_caching_control *next;
4941 struct btrfs_caching_control *caching_ctl;
4942 struct btrfs_block_group_cache *cache;
4943
4944 down_write(&fs_info->extent_commit_sem);
4945
4946 list_for_each_entry_safe(caching_ctl, next,
4947 &fs_info->caching_block_groups, list) {
4948 cache = caching_ctl->block_group;
4949 if (block_group_cache_done(cache)) {
4950 cache->last_byte_to_unpin = (u64)-1;
4951 list_del_init(&caching_ctl->list);
4952 put_caching_control(caching_ctl);
4953 } else {
4954 cache->last_byte_to_unpin = caching_ctl->progress;
4955 }
4956 }
4957
4958 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4959 fs_info->pinned_extents = &fs_info->freed_extents[1];
4960 else
4961 fs_info->pinned_extents = &fs_info->freed_extents[0];
4962
4963 up_write(&fs_info->extent_commit_sem);
4964
4965 update_global_block_rsv(fs_info);
4966}
4967
4968static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4969{
4970 struct btrfs_fs_info *fs_info = root->fs_info;
4971 struct btrfs_block_group_cache *cache = NULL;
4972 u64 len;
4973
4974 while (start <= end) {
4975 if (!cache ||
4976 start >= cache->key.objectid + cache->key.offset) {
4977 if (cache)
4978 btrfs_put_block_group(cache);
4979 cache = btrfs_lookup_block_group(fs_info, start);
4980 BUG_ON(!cache); /* Logic error */
4981 }
4982
4983 len = cache->key.objectid + cache->key.offset - start;
4984 len = min(len, end + 1 - start);
4985
4986 if (start < cache->last_byte_to_unpin) {
4987 len = min(len, cache->last_byte_to_unpin - start);
4988 btrfs_add_free_space(cache, start, len);
4989 }
4990
4991 start += len;
4992
4993 spin_lock(&cache->space_info->lock);
4994 spin_lock(&cache->lock);
4995 cache->pinned -= len;
4996 cache->space_info->bytes_pinned -= len;
4997 if (cache->ro)
4998 cache->space_info->bytes_readonly += len;
4999 spin_unlock(&cache->lock);
5000 spin_unlock(&cache->space_info->lock);
5001 }
5002
5003 if (cache)
5004 btrfs_put_block_group(cache);
5005 return 0;
5006}
5007
5008int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5009 struct btrfs_root *root)
5010{
5011 struct btrfs_fs_info *fs_info = root->fs_info;
5012 struct extent_io_tree *unpin;
5013 u64 start;
5014 u64 end;
5015 int ret;
5016
5017 if (trans->aborted)
5018 return 0;
5019
5020 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5021 unpin = &fs_info->freed_extents[1];
5022 else
5023 unpin = &fs_info->freed_extents[0];
5024
5025 while (1) {
5026 ret = find_first_extent_bit(unpin, 0, &start, &end,
5027 EXTENT_DIRTY, NULL);
5028 if (ret)
5029 break;
5030
5031 if (btrfs_test_opt(root, DISCARD))
5032 ret = btrfs_discard_extent(root, start,
5033 end + 1 - start, NULL);
5034
5035 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5036 unpin_extent_range(root, start, end);
5037 cond_resched();
5038 }
5039
5040 return 0;
5041}
5042
5043static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5044 struct btrfs_root *root,
5045 u64 bytenr, u64 num_bytes, u64 parent,
5046 u64 root_objectid, u64 owner_objectid,
5047 u64 owner_offset, int refs_to_drop,
5048 struct btrfs_delayed_extent_op *extent_op)
5049{
5050 struct btrfs_key key;
5051 struct btrfs_path *path;
5052 struct btrfs_fs_info *info = root->fs_info;
5053 struct btrfs_root *extent_root = info->extent_root;
5054 struct extent_buffer *leaf;
5055 struct btrfs_extent_item *ei;
5056 struct btrfs_extent_inline_ref *iref;
5057 int ret;
5058 int is_data;
5059 int extent_slot = 0;
5060 int found_extent = 0;
5061 int num_to_del = 1;
5062 u32 item_size;
5063 u64 refs;
5064
5065 path = btrfs_alloc_path();
5066 if (!path)
5067 return -ENOMEM;
5068
5069 path->reada = 1;
5070 path->leave_spinning = 1;
5071
5072 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5073 BUG_ON(!is_data && refs_to_drop != 1);
5074
5075 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5076 bytenr, num_bytes, parent,
5077 root_objectid, owner_objectid,
5078 owner_offset);
5079 if (ret == 0) {
5080 extent_slot = path->slots[0];
5081 while (extent_slot >= 0) {
5082 btrfs_item_key_to_cpu(path->nodes[0], &key,
5083 extent_slot);
5084 if (key.objectid != bytenr)
5085 break;
5086 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5087 key.offset == num_bytes) {
5088 found_extent = 1;
5089 break;
5090 }
5091 if (path->slots[0] - extent_slot > 5)
5092 break;
5093 extent_slot--;
5094 }
5095#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5096 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5097 if (found_extent && item_size < sizeof(*ei))
5098 found_extent = 0;
5099#endif
5100 if (!found_extent) {
5101 BUG_ON(iref);
5102 ret = remove_extent_backref(trans, extent_root, path,
5103 NULL, refs_to_drop,
5104 is_data);
5105 if (ret) {
5106 btrfs_abort_transaction(trans, extent_root, ret);
5107 goto out;
5108 }
5109 btrfs_release_path(path);
5110 path->leave_spinning = 1;
5111
5112 key.objectid = bytenr;
5113 key.type = BTRFS_EXTENT_ITEM_KEY;
5114 key.offset = num_bytes;
5115
5116 ret = btrfs_search_slot(trans, extent_root,
5117 &key, path, -1, 1);
5118 if (ret) {
5119 printk(KERN_ERR "umm, got %d back from search"
5120 ", was looking for %llu\n", ret,
5121 (unsigned long long)bytenr);
5122 if (ret > 0)
5123 btrfs_print_leaf(extent_root,
5124 path->nodes[0]);
5125 }
5126 if (ret < 0) {
5127 btrfs_abort_transaction(trans, extent_root, ret);
5128 goto out;
5129 }
5130 extent_slot = path->slots[0];
5131 }
5132 } else if (ret == -ENOENT) {
5133 btrfs_print_leaf(extent_root, path->nodes[0]);
5134 WARN_ON(1);
5135 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5136 "parent %llu root %llu owner %llu offset %llu\n",
5137 (unsigned long long)bytenr,
5138 (unsigned long long)parent,
5139 (unsigned long long)root_objectid,
5140 (unsigned long long)owner_objectid,
5141 (unsigned long long)owner_offset);
5142 } else {
5143 btrfs_abort_transaction(trans, extent_root, ret);
5144 goto out;
5145 }
5146
5147 leaf = path->nodes[0];
5148 item_size = btrfs_item_size_nr(leaf, extent_slot);
5149#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5150 if (item_size < sizeof(*ei)) {
5151 BUG_ON(found_extent || extent_slot != path->slots[0]);
5152 ret = convert_extent_item_v0(trans, extent_root, path,
5153 owner_objectid, 0);
5154 if (ret < 0) {
5155 btrfs_abort_transaction(trans, extent_root, ret);
5156 goto out;
5157 }
5158
5159 btrfs_release_path(path);
5160 path->leave_spinning = 1;
5161
5162 key.objectid = bytenr;
5163 key.type = BTRFS_EXTENT_ITEM_KEY;
5164 key.offset = num_bytes;
5165
5166 ret = btrfs_search_slot(trans, extent_root, &key, path,
5167 -1, 1);
5168 if (ret) {
5169 printk(KERN_ERR "umm, got %d back from search"
5170 ", was looking for %llu\n", ret,
5171 (unsigned long long)bytenr);
5172 btrfs_print_leaf(extent_root, path->nodes[0]);
5173 }
5174 if (ret < 0) {
5175 btrfs_abort_transaction(trans, extent_root, ret);
5176 goto out;
5177 }
5178
5179 extent_slot = path->slots[0];
5180 leaf = path->nodes[0];
5181 item_size = btrfs_item_size_nr(leaf, extent_slot);
5182 }
5183#endif
5184 BUG_ON(item_size < sizeof(*ei));
5185 ei = btrfs_item_ptr(leaf, extent_slot,
5186 struct btrfs_extent_item);
5187 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5188 struct btrfs_tree_block_info *bi;
5189 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5190 bi = (struct btrfs_tree_block_info *)(ei + 1);
5191 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5192 }
5193
5194 refs = btrfs_extent_refs(leaf, ei);
5195 BUG_ON(refs < refs_to_drop);
5196 refs -= refs_to_drop;
5197
5198 if (refs > 0) {
5199 if (extent_op)
5200 __run_delayed_extent_op(extent_op, leaf, ei);
5201 /*
5202 * In the case of inline back ref, reference count will
5203 * be updated by remove_extent_backref
5204 */
5205 if (iref) {
5206 BUG_ON(!found_extent);
5207 } else {
5208 btrfs_set_extent_refs(leaf, ei, refs);
5209 btrfs_mark_buffer_dirty(leaf);
5210 }
5211 if (found_extent) {
5212 ret = remove_extent_backref(trans, extent_root, path,
5213 iref, refs_to_drop,
5214 is_data);
5215 if (ret) {
5216 btrfs_abort_transaction(trans, extent_root, ret);
5217 goto out;
5218 }
5219 }
5220 } else {
5221 if (found_extent) {
5222 BUG_ON(is_data && refs_to_drop !=
5223 extent_data_ref_count(root, path, iref));
5224 if (iref) {
5225 BUG_ON(path->slots[0] != extent_slot);
5226 } else {
5227 BUG_ON(path->slots[0] != extent_slot + 1);
5228 path->slots[0] = extent_slot;
5229 num_to_del = 2;
5230 }
5231 }
5232
5233 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5234 num_to_del);
5235 if (ret) {
5236 btrfs_abort_transaction(trans, extent_root, ret);
5237 goto out;
5238 }
5239 btrfs_release_path(path);
5240
5241 if (is_data) {
5242 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5243 if (ret) {
5244 btrfs_abort_transaction(trans, extent_root, ret);
5245 goto out;
5246 }
5247 }
5248
5249 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5250 if (ret) {
5251 btrfs_abort_transaction(trans, extent_root, ret);
5252 goto out;
5253 }
5254 }
5255out:
5256 btrfs_free_path(path);
5257 return ret;
5258}
5259
5260/*
5261 * when we free an block, it is possible (and likely) that we free the last
5262 * delayed ref for that extent as well. This searches the delayed ref tree for
5263 * a given extent, and if there are no other delayed refs to be processed, it
5264 * removes it from the tree.
5265 */
5266static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5267 struct btrfs_root *root, u64 bytenr)
5268{
5269 struct btrfs_delayed_ref_head *head;
5270 struct btrfs_delayed_ref_root *delayed_refs;
5271 struct btrfs_delayed_ref_node *ref;
5272 struct rb_node *node;
5273 int ret = 0;
5274
5275 delayed_refs = &trans->transaction->delayed_refs;
5276 spin_lock(&delayed_refs->lock);
5277 head = btrfs_find_delayed_ref_head(trans, bytenr);
5278 if (!head)
5279 goto out;
5280
5281 node = rb_prev(&head->node.rb_node);
5282 if (!node)
5283 goto out;
5284
5285 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5286
5287 /* there are still entries for this ref, we can't drop it */
5288 if (ref->bytenr == bytenr)
5289 goto out;
5290
5291 if (head->extent_op) {
5292 if (!head->must_insert_reserved)
5293 goto out;
5294 kfree(head->extent_op);
5295 head->extent_op = NULL;
5296 }
5297
5298 /*
5299 * waiting for the lock here would deadlock. If someone else has it
5300 * locked they are already in the process of dropping it anyway
5301 */
5302 if (!mutex_trylock(&head->mutex))
5303 goto out;
5304
5305 /*
5306 * at this point we have a head with no other entries. Go
5307 * ahead and process it.
5308 */
5309 head->node.in_tree = 0;
5310 rb_erase(&head->node.rb_node, &delayed_refs->root);
5311
5312 delayed_refs->num_entries--;
5313
5314 /*
5315 * we don't take a ref on the node because we're removing it from the
5316 * tree, so we just steal the ref the tree was holding.
5317 */
5318 delayed_refs->num_heads--;
5319 if (list_empty(&head->cluster))
5320 delayed_refs->num_heads_ready--;
5321
5322 list_del_init(&head->cluster);
5323 spin_unlock(&delayed_refs->lock);
5324
5325 BUG_ON(head->extent_op);
5326 if (head->must_insert_reserved)
5327 ret = 1;
5328
5329 mutex_unlock(&head->mutex);
5330 btrfs_put_delayed_ref(&head->node);
5331 return ret;
5332out:
5333 spin_unlock(&delayed_refs->lock);
5334 return 0;
5335}
5336
5337void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5338 struct btrfs_root *root,
5339 struct extent_buffer *buf,
5340 u64 parent, int last_ref)
5341{
5342 struct btrfs_block_group_cache *cache = NULL;
5343 int ret;
5344
5345 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5346 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5347 buf->start, buf->len,
5348 parent, root->root_key.objectid,
5349 btrfs_header_level(buf),
5350 BTRFS_DROP_DELAYED_REF, NULL, 0);
5351 BUG_ON(ret); /* -ENOMEM */
5352 }
5353
5354 if (!last_ref)
5355 return;
5356
5357 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5358
5359 if (btrfs_header_generation(buf) == trans->transid) {
5360 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5361 ret = check_ref_cleanup(trans, root, buf->start);
5362 if (!ret)
5363 goto out;
5364 }
5365
5366 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5367 pin_down_extent(root, cache, buf->start, buf->len, 1);
5368 goto out;
5369 }
5370
5371 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5372
5373 btrfs_add_free_space(cache, buf->start, buf->len);
5374 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5375 }
5376out:
5377 /*
5378 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5379 * anymore.
5380 */
5381 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5382 btrfs_put_block_group(cache);
5383}
5384
5385/* Can return -ENOMEM */
5386int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5387 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5388 u64 owner, u64 offset, int for_cow)
5389{
5390 int ret;
5391 struct btrfs_fs_info *fs_info = root->fs_info;
5392
5393 /*
5394 * tree log blocks never actually go into the extent allocation
5395 * tree, just update pinning info and exit early.
5396 */
5397 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5398 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5399 /* unlocks the pinned mutex */
5400 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5401 ret = 0;
5402 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5403 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5404 num_bytes,
5405 parent, root_objectid, (int)owner,
5406 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5407 } else {
5408 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5409 num_bytes,
5410 parent, root_objectid, owner,
5411 offset, BTRFS_DROP_DELAYED_REF,
5412 NULL, for_cow);
5413 }
5414 return ret;
5415}
5416
5417static u64 stripe_align(struct btrfs_root *root, u64 val)
5418{
5419 u64 mask = ((u64)root->stripesize - 1);
5420 u64 ret = (val + mask) & ~mask;
5421 return ret;
5422}
5423
5424/*
5425 * when we wait for progress in the block group caching, its because
5426 * our allocation attempt failed at least once. So, we must sleep
5427 * and let some progress happen before we try again.
5428 *
5429 * This function will sleep at least once waiting for new free space to
5430 * show up, and then it will check the block group free space numbers
5431 * for our min num_bytes. Another option is to have it go ahead
5432 * and look in the rbtree for a free extent of a given size, but this
5433 * is a good start.
5434 */
5435static noinline int
5436wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5437 u64 num_bytes)
5438{
5439 struct btrfs_caching_control *caching_ctl;
5440 DEFINE_WAIT(wait);
5441
5442 caching_ctl = get_caching_control(cache);
5443 if (!caching_ctl)
5444 return 0;
5445
5446 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5447 (cache->free_space_ctl->free_space >= num_bytes));
5448
5449 put_caching_control(caching_ctl);
5450 return 0;
5451}
5452
5453static noinline int
5454wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5455{
5456 struct btrfs_caching_control *caching_ctl;
5457 DEFINE_WAIT(wait);
5458
5459 caching_ctl = get_caching_control(cache);
5460 if (!caching_ctl)
5461 return 0;
5462
5463 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5464
5465 put_caching_control(caching_ctl);
5466 return 0;
5467}
5468
5469static int __get_block_group_index(u64 flags)
5470{
5471 int index;
5472
5473 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5474 index = 0;
5475 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5476 index = 1;
5477 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5478 index = 2;
5479 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5480 index = 3;
5481 else
5482 index = 4;
5483
5484 return index;
5485}
5486
5487static int get_block_group_index(struct btrfs_block_group_cache *cache)
5488{
5489 return __get_block_group_index(cache->flags);
5490}
5491
5492enum btrfs_loop_type {
5493 LOOP_CACHING_NOWAIT = 0,
5494 LOOP_CACHING_WAIT = 1,
5495 LOOP_ALLOC_CHUNK = 2,
5496 LOOP_NO_EMPTY_SIZE = 3,
5497};
5498
5499/*
5500 * walks the btree of allocated extents and find a hole of a given size.
5501 * The key ins is changed to record the hole:
5502 * ins->objectid == block start
5503 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5504 * ins->offset == number of blocks
5505 * Any available blocks before search_start are skipped.
5506 */
5507static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5508 struct btrfs_root *orig_root,
5509 u64 num_bytes, u64 empty_size,
5510 u64 hint_byte, struct btrfs_key *ins,
5511 u64 data)
5512{
5513 int ret = 0;
5514 struct btrfs_root *root = orig_root->fs_info->extent_root;
5515 struct btrfs_free_cluster *last_ptr = NULL;
5516 struct btrfs_block_group_cache *block_group = NULL;
5517 struct btrfs_block_group_cache *used_block_group;
5518 u64 search_start = 0;
5519 int empty_cluster = 2 * 1024 * 1024;
5520 struct btrfs_space_info *space_info;
5521 int loop = 0;
5522 int index = 0;
5523 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5524 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5525 bool found_uncached_bg = false;
5526 bool failed_cluster_refill = false;
5527 bool failed_alloc = false;
5528 bool use_cluster = true;
5529 bool have_caching_bg = false;
5530
5531 WARN_ON(num_bytes < root->sectorsize);
5532 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5533 ins->objectid = 0;
5534 ins->offset = 0;
5535
5536 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5537
5538 space_info = __find_space_info(root->fs_info, data);
5539 if (!space_info) {
5540 printk(KERN_ERR "No space info for %llu\n", data);
5541 return -ENOSPC;
5542 }
5543
5544 /*
5545 * If the space info is for both data and metadata it means we have a
5546 * small filesystem and we can't use the clustering stuff.
5547 */
5548 if (btrfs_mixed_space_info(space_info))
5549 use_cluster = false;
5550
5551 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5552 last_ptr = &root->fs_info->meta_alloc_cluster;
5553 if (!btrfs_test_opt(root, SSD))
5554 empty_cluster = 64 * 1024;
5555 }
5556
5557 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5558 btrfs_test_opt(root, SSD)) {
5559 last_ptr = &root->fs_info->data_alloc_cluster;
5560 }
5561
5562 if (last_ptr) {
5563 spin_lock(&last_ptr->lock);
5564 if (last_ptr->block_group)
5565 hint_byte = last_ptr->window_start;
5566 spin_unlock(&last_ptr->lock);
5567 }
5568
5569 search_start = max(search_start, first_logical_byte(root, 0));
5570 search_start = max(search_start, hint_byte);
5571
5572 if (!last_ptr)
5573 empty_cluster = 0;
5574
5575 if (search_start == hint_byte) {
5576 block_group = btrfs_lookup_block_group(root->fs_info,
5577 search_start);
5578 used_block_group = block_group;
5579 /*
5580 * we don't want to use the block group if it doesn't match our
5581 * allocation bits, or if its not cached.
5582 *
5583 * However if we are re-searching with an ideal block group
5584 * picked out then we don't care that the block group is cached.
5585 */
5586 if (block_group && block_group_bits(block_group, data) &&
5587 block_group->cached != BTRFS_CACHE_NO) {
5588 down_read(&space_info->groups_sem);
5589 if (list_empty(&block_group->list) ||
5590 block_group->ro) {
5591 /*
5592 * someone is removing this block group,
5593 * we can't jump into the have_block_group
5594 * target because our list pointers are not
5595 * valid
5596 */
5597 btrfs_put_block_group(block_group);
5598 up_read(&space_info->groups_sem);
5599 } else {
5600 index = get_block_group_index(block_group);
5601 goto have_block_group;
5602 }
5603 } else if (block_group) {
5604 btrfs_put_block_group(block_group);
5605 }
5606 }
5607search:
5608 have_caching_bg = false;
5609 down_read(&space_info->groups_sem);
5610 list_for_each_entry(block_group, &space_info->block_groups[index],
5611 list) {
5612 u64 offset;
5613 int cached;
5614
5615 used_block_group = block_group;
5616 btrfs_get_block_group(block_group);
5617 search_start = block_group->key.objectid;
5618
5619 /*
5620 * this can happen if we end up cycling through all the
5621 * raid types, but we want to make sure we only allocate
5622 * for the proper type.
5623 */
5624 if (!block_group_bits(block_group, data)) {
5625 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5626 BTRFS_BLOCK_GROUP_RAID1 |
5627 BTRFS_BLOCK_GROUP_RAID10;
5628
5629 /*
5630 * if they asked for extra copies and this block group
5631 * doesn't provide them, bail. This does allow us to
5632 * fill raid0 from raid1.
5633 */
5634 if ((data & extra) && !(block_group->flags & extra))
5635 goto loop;
5636 }
5637
5638have_block_group:
5639 cached = block_group_cache_done(block_group);
5640 if (unlikely(!cached)) {
5641 found_uncached_bg = true;
5642 ret = cache_block_group(block_group, trans,
5643 orig_root, 0);
5644 BUG_ON(ret < 0);
5645 ret = 0;
5646 }
5647
5648 if (unlikely(block_group->ro))
5649 goto loop;
5650
5651 /*
5652 * Ok we want to try and use the cluster allocator, so
5653 * lets look there
5654 */
5655 if (last_ptr) {
5656 /*
5657 * the refill lock keeps out other
5658 * people trying to start a new cluster
5659 */
5660 spin_lock(&last_ptr->refill_lock);
5661 used_block_group = last_ptr->block_group;
5662 if (used_block_group != block_group &&
5663 (!used_block_group ||
5664 used_block_group->ro ||
5665 !block_group_bits(used_block_group, data))) {
5666 used_block_group = block_group;
5667 goto refill_cluster;
5668 }
5669
5670 if (used_block_group != block_group)
5671 btrfs_get_block_group(used_block_group);
5672
5673 offset = btrfs_alloc_from_cluster(used_block_group,
5674 last_ptr, num_bytes, used_block_group->key.objectid);
5675 if (offset) {
5676 /* we have a block, we're done */
5677 spin_unlock(&last_ptr->refill_lock);
5678 trace_btrfs_reserve_extent_cluster(root,
5679 block_group, search_start, num_bytes);
5680 goto checks;
5681 }
5682
5683 WARN_ON(last_ptr->block_group != used_block_group);
5684 if (used_block_group != block_group) {
5685 btrfs_put_block_group(used_block_group);
5686 used_block_group = block_group;
5687 }
5688refill_cluster:
5689 BUG_ON(used_block_group != block_group);
5690 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5691 * set up a new clusters, so lets just skip it
5692 * and let the allocator find whatever block
5693 * it can find. If we reach this point, we
5694 * will have tried the cluster allocator
5695 * plenty of times and not have found
5696 * anything, so we are likely way too
5697 * fragmented for the clustering stuff to find
5698 * anything.
5699 *
5700 * However, if the cluster is taken from the
5701 * current block group, release the cluster
5702 * first, so that we stand a better chance of
5703 * succeeding in the unclustered
5704 * allocation. */
5705 if (loop >= LOOP_NO_EMPTY_SIZE &&
5706 last_ptr->block_group != block_group) {
5707 spin_unlock(&last_ptr->refill_lock);
5708 goto unclustered_alloc;
5709 }
5710
5711 /*
5712 * this cluster didn't work out, free it and
5713 * start over
5714 */
5715 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5716
5717 if (loop >= LOOP_NO_EMPTY_SIZE) {
5718 spin_unlock(&last_ptr->refill_lock);
5719 goto unclustered_alloc;
5720 }
5721
5722 /* allocate a cluster in this block group */
5723 ret = btrfs_find_space_cluster(trans, root,
5724 block_group, last_ptr,
5725 search_start, num_bytes,
5726 empty_cluster + empty_size);
5727 if (ret == 0) {
5728 /*
5729 * now pull our allocation out of this
5730 * cluster
5731 */
5732 offset = btrfs_alloc_from_cluster(block_group,
5733 last_ptr, num_bytes,
5734 search_start);
5735 if (offset) {
5736 /* we found one, proceed */
5737 spin_unlock(&last_ptr->refill_lock);
5738 trace_btrfs_reserve_extent_cluster(root,
5739 block_group, search_start,
5740 num_bytes);
5741 goto checks;
5742 }
5743 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5744 && !failed_cluster_refill) {
5745 spin_unlock(&last_ptr->refill_lock);
5746
5747 failed_cluster_refill = true;
5748 wait_block_group_cache_progress(block_group,
5749 num_bytes + empty_cluster + empty_size);
5750 goto have_block_group;
5751 }
5752
5753 /*
5754 * at this point we either didn't find a cluster
5755 * or we weren't able to allocate a block from our
5756 * cluster. Free the cluster we've been trying
5757 * to use, and go to the next block group
5758 */
5759 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5760 spin_unlock(&last_ptr->refill_lock);
5761 goto loop;
5762 }
5763
5764unclustered_alloc:
5765 spin_lock(&block_group->free_space_ctl->tree_lock);
5766 if (cached &&
5767 block_group->free_space_ctl->free_space <
5768 num_bytes + empty_cluster + empty_size) {
5769 spin_unlock(&block_group->free_space_ctl->tree_lock);
5770 goto loop;
5771 }
5772 spin_unlock(&block_group->free_space_ctl->tree_lock);
5773
5774 offset = btrfs_find_space_for_alloc(block_group, search_start,
5775 num_bytes, empty_size);
5776 /*
5777 * If we didn't find a chunk, and we haven't failed on this
5778 * block group before, and this block group is in the middle of
5779 * caching and we are ok with waiting, then go ahead and wait
5780 * for progress to be made, and set failed_alloc to true.
5781 *
5782 * If failed_alloc is true then we've already waited on this
5783 * block group once and should move on to the next block group.
5784 */
5785 if (!offset && !failed_alloc && !cached &&
5786 loop > LOOP_CACHING_NOWAIT) {
5787 wait_block_group_cache_progress(block_group,
5788 num_bytes + empty_size);
5789 failed_alloc = true;
5790 goto have_block_group;
5791 } else if (!offset) {
5792 if (!cached)
5793 have_caching_bg = true;
5794 goto loop;
5795 }
5796checks:
5797 search_start = stripe_align(root, offset);
5798
5799 /* move on to the next group */
5800 if (search_start + num_bytes >
5801 used_block_group->key.objectid + used_block_group->key.offset) {
5802 btrfs_add_free_space(used_block_group, offset, num_bytes);
5803 goto loop;
5804 }
5805
5806 if (offset < search_start)
5807 btrfs_add_free_space(used_block_group, offset,
5808 search_start - offset);
5809 BUG_ON(offset > search_start);
5810
5811 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5812 alloc_type);
5813 if (ret == -EAGAIN) {
5814 btrfs_add_free_space(used_block_group, offset, num_bytes);
5815 goto loop;
5816 }
5817
5818 /* we are all good, lets return */
5819 ins->objectid = search_start;
5820 ins->offset = num_bytes;
5821
5822 trace_btrfs_reserve_extent(orig_root, block_group,
5823 search_start, num_bytes);
5824 if (used_block_group != block_group)
5825 btrfs_put_block_group(used_block_group);
5826 btrfs_put_block_group(block_group);
5827 break;
5828loop:
5829 failed_cluster_refill = false;
5830 failed_alloc = false;
5831 BUG_ON(index != get_block_group_index(block_group));
5832 if (used_block_group != block_group)
5833 btrfs_put_block_group(used_block_group);
5834 btrfs_put_block_group(block_group);
5835 }
5836 up_read(&space_info->groups_sem);
5837
5838 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5839 goto search;
5840
5841 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5842 goto search;
5843
5844 /*
5845 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5846 * caching kthreads as we move along
5847 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5848 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5849 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5850 * again
5851 */
5852 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5853 index = 0;
5854 loop++;
5855 if (loop == LOOP_ALLOC_CHUNK) {
5856 ret = do_chunk_alloc(trans, root, data,
5857 CHUNK_ALLOC_FORCE);
5858 /*
5859 * Do not bail out on ENOSPC since we
5860 * can do more things.
5861 */
5862 if (ret < 0 && ret != -ENOSPC) {
5863 btrfs_abort_transaction(trans,
5864 root, ret);
5865 goto out;
5866 }
5867 }
5868
5869 if (loop == LOOP_NO_EMPTY_SIZE) {
5870 empty_size = 0;
5871 empty_cluster = 0;
5872 }
5873
5874 goto search;
5875 } else if (!ins->objectid) {
5876 ret = -ENOSPC;
5877 } else if (ins->objectid) {
5878 ret = 0;
5879 }
5880out:
5881
5882 return ret;
5883}
5884
5885static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5886 int dump_block_groups)
5887{
5888 struct btrfs_block_group_cache *cache;
5889 int index = 0;
5890
5891 spin_lock(&info->lock);
5892 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5893 (unsigned long long)info->flags,
5894 (unsigned long long)(info->total_bytes - info->bytes_used -
5895 info->bytes_pinned - info->bytes_reserved -
5896 info->bytes_readonly),
5897 (info->full) ? "" : "not ");
5898 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5899 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5900 (unsigned long long)info->total_bytes,
5901 (unsigned long long)info->bytes_used,
5902 (unsigned long long)info->bytes_pinned,
5903 (unsigned long long)info->bytes_reserved,
5904 (unsigned long long)info->bytes_may_use,
5905 (unsigned long long)info->bytes_readonly);
5906 spin_unlock(&info->lock);
5907
5908 if (!dump_block_groups)
5909 return;
5910
5911 down_read(&info->groups_sem);
5912again:
5913 list_for_each_entry(cache, &info->block_groups[index], list) {
5914 spin_lock(&cache->lock);
5915 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
5916 (unsigned long long)cache->key.objectid,
5917 (unsigned long long)cache->key.offset,
5918 (unsigned long long)btrfs_block_group_used(&cache->item),
5919 (unsigned long long)cache->pinned,
5920 (unsigned long long)cache->reserved,
5921 cache->ro ? "[readonly]" : "");
5922 btrfs_dump_free_space(cache, bytes);
5923 spin_unlock(&cache->lock);
5924 }
5925 if (++index < BTRFS_NR_RAID_TYPES)
5926 goto again;
5927 up_read(&info->groups_sem);
5928}
5929
5930int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5931 struct btrfs_root *root,
5932 u64 num_bytes, u64 min_alloc_size,
5933 u64 empty_size, u64 hint_byte,
5934 struct btrfs_key *ins, u64 data)
5935{
5936 bool final_tried = false;
5937 int ret;
5938
5939 data = btrfs_get_alloc_profile(root, data);
5940again:
5941 WARN_ON(num_bytes < root->sectorsize);
5942 ret = find_free_extent(trans, root, num_bytes, empty_size,
5943 hint_byte, ins, data);
5944
5945 if (ret == -ENOSPC) {
5946 if (!final_tried) {
5947 num_bytes = num_bytes >> 1;
5948 num_bytes = num_bytes & ~(root->sectorsize - 1);
5949 num_bytes = max(num_bytes, min_alloc_size);
5950 if (num_bytes == min_alloc_size)
5951 final_tried = true;
5952 goto again;
5953 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5954 struct btrfs_space_info *sinfo;
5955
5956 sinfo = __find_space_info(root->fs_info, data);
5957 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5958 "wanted %llu\n", (unsigned long long)data,
5959 (unsigned long long)num_bytes);
5960 if (sinfo)
5961 dump_space_info(sinfo, num_bytes, 1);
5962 }
5963 }
5964
5965 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5966
5967 return ret;
5968}
5969
5970static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5971 u64 start, u64 len, int pin)
5972{
5973 struct btrfs_block_group_cache *cache;
5974 int ret = 0;
5975
5976 cache = btrfs_lookup_block_group(root->fs_info, start);
5977 if (!cache) {
5978 printk(KERN_ERR "Unable to find block group for %llu\n",
5979 (unsigned long long)start);
5980 return -ENOSPC;
5981 }
5982
5983 if (btrfs_test_opt(root, DISCARD))
5984 ret = btrfs_discard_extent(root, start, len, NULL);
5985
5986 if (pin)
5987 pin_down_extent(root, cache, start, len, 1);
5988 else {
5989 btrfs_add_free_space(cache, start, len);
5990 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5991 }
5992 btrfs_put_block_group(cache);
5993
5994 trace_btrfs_reserved_extent_free(root, start, len);
5995
5996 return ret;
5997}
5998
5999int btrfs_free_reserved_extent(struct btrfs_root *root,
6000 u64 start, u64 len)
6001{
6002 return __btrfs_free_reserved_extent(root, start, len, 0);
6003}
6004
6005int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6006 u64 start, u64 len)
6007{
6008 return __btrfs_free_reserved_extent(root, start, len, 1);
6009}
6010
6011static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6012 struct btrfs_root *root,
6013 u64 parent, u64 root_objectid,
6014 u64 flags, u64 owner, u64 offset,
6015 struct btrfs_key *ins, int ref_mod)
6016{
6017 int ret;
6018 struct btrfs_fs_info *fs_info = root->fs_info;
6019 struct btrfs_extent_item *extent_item;
6020 struct btrfs_extent_inline_ref *iref;
6021 struct btrfs_path *path;
6022 struct extent_buffer *leaf;
6023 int type;
6024 u32 size;
6025
6026 if (parent > 0)
6027 type = BTRFS_SHARED_DATA_REF_KEY;
6028 else
6029 type = BTRFS_EXTENT_DATA_REF_KEY;
6030
6031 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6032
6033 path = btrfs_alloc_path();
6034 if (!path)
6035 return -ENOMEM;
6036
6037 path->leave_spinning = 1;
6038 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6039 ins, size);
6040 if (ret) {
6041 btrfs_free_path(path);
6042 return ret;
6043 }
6044
6045 leaf = path->nodes[0];
6046 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6047 struct btrfs_extent_item);
6048 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6049 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6050 btrfs_set_extent_flags(leaf, extent_item,
6051 flags | BTRFS_EXTENT_FLAG_DATA);
6052
6053 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6054 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6055 if (parent > 0) {
6056 struct btrfs_shared_data_ref *ref;
6057 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6058 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6059 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6060 } else {
6061 struct btrfs_extent_data_ref *ref;
6062 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6063 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6064 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6065 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6066 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6067 }
6068
6069 btrfs_mark_buffer_dirty(path->nodes[0]);
6070 btrfs_free_path(path);
6071
6072 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6073 if (ret) { /* -ENOENT, logic error */
6074 printk(KERN_ERR "btrfs update block group failed for %llu "
6075 "%llu\n", (unsigned long long)ins->objectid,
6076 (unsigned long long)ins->offset);
6077 BUG();
6078 }
6079 return ret;
6080}
6081
6082static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6083 struct btrfs_root *root,
6084 u64 parent, u64 root_objectid,
6085 u64 flags, struct btrfs_disk_key *key,
6086 int level, struct btrfs_key *ins)
6087{
6088 int ret;
6089 struct btrfs_fs_info *fs_info = root->fs_info;
6090 struct btrfs_extent_item *extent_item;
6091 struct btrfs_tree_block_info *block_info;
6092 struct btrfs_extent_inline_ref *iref;
6093 struct btrfs_path *path;
6094 struct extent_buffer *leaf;
6095 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6096
6097 path = btrfs_alloc_path();
6098 if (!path)
6099 return -ENOMEM;
6100
6101 path->leave_spinning = 1;
6102 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6103 ins, size);
6104 if (ret) {
6105 btrfs_free_path(path);
6106 return ret;
6107 }
6108
6109 leaf = path->nodes[0];
6110 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6111 struct btrfs_extent_item);
6112 btrfs_set_extent_refs(leaf, extent_item, 1);
6113 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6114 btrfs_set_extent_flags(leaf, extent_item,
6115 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6116 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6117
6118 btrfs_set_tree_block_key(leaf, block_info, key);
6119 btrfs_set_tree_block_level(leaf, block_info, level);
6120
6121 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6122 if (parent > 0) {
6123 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6124 btrfs_set_extent_inline_ref_type(leaf, iref,
6125 BTRFS_SHARED_BLOCK_REF_KEY);
6126 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6127 } else {
6128 btrfs_set_extent_inline_ref_type(leaf, iref,
6129 BTRFS_TREE_BLOCK_REF_KEY);
6130 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6131 }
6132
6133 btrfs_mark_buffer_dirty(leaf);
6134 btrfs_free_path(path);
6135
6136 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6137 if (ret) { /* -ENOENT, logic error */
6138 printk(KERN_ERR "btrfs update block group failed for %llu "
6139 "%llu\n", (unsigned long long)ins->objectid,
6140 (unsigned long long)ins->offset);
6141 BUG();
6142 }
6143 return ret;
6144}
6145
6146int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6147 struct btrfs_root *root,
6148 u64 root_objectid, u64 owner,
6149 u64 offset, struct btrfs_key *ins)
6150{
6151 int ret;
6152
6153 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6154
6155 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6156 ins->offset, 0,
6157 root_objectid, owner, offset,
6158 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6159 return ret;
6160}
6161
6162/*
6163 * this is used by the tree logging recovery code. It records that
6164 * an extent has been allocated and makes sure to clear the free
6165 * space cache bits as well
6166 */
6167int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6168 struct btrfs_root *root,
6169 u64 root_objectid, u64 owner, u64 offset,
6170 struct btrfs_key *ins)
6171{
6172 int ret;
6173 struct btrfs_block_group_cache *block_group;
6174 struct btrfs_caching_control *caching_ctl;
6175 u64 start = ins->objectid;
6176 u64 num_bytes = ins->offset;
6177
6178 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6179 cache_block_group(block_group, trans, NULL, 0);
6180 caching_ctl = get_caching_control(block_group);
6181
6182 if (!caching_ctl) {
6183 BUG_ON(!block_group_cache_done(block_group));
6184 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6185 BUG_ON(ret); /* -ENOMEM */
6186 } else {
6187 mutex_lock(&caching_ctl->mutex);
6188
6189 if (start >= caching_ctl->progress) {
6190 ret = add_excluded_extent(root, start, num_bytes);
6191 BUG_ON(ret); /* -ENOMEM */
6192 } else if (start + num_bytes <= caching_ctl->progress) {
6193 ret = btrfs_remove_free_space(block_group,
6194 start, num_bytes);
6195 BUG_ON(ret); /* -ENOMEM */
6196 } else {
6197 num_bytes = caching_ctl->progress - start;
6198 ret = btrfs_remove_free_space(block_group,
6199 start, num_bytes);
6200 BUG_ON(ret); /* -ENOMEM */
6201
6202 start = caching_ctl->progress;
6203 num_bytes = ins->objectid + ins->offset -
6204 caching_ctl->progress;
6205 ret = add_excluded_extent(root, start, num_bytes);
6206 BUG_ON(ret); /* -ENOMEM */
6207 }
6208
6209 mutex_unlock(&caching_ctl->mutex);
6210 put_caching_control(caching_ctl);
6211 }
6212
6213 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6214 RESERVE_ALLOC_NO_ACCOUNT);
6215 BUG_ON(ret); /* logic error */
6216 btrfs_put_block_group(block_group);
6217 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6218 0, owner, offset, ins, 1);
6219 return ret;
6220}
6221
6222struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6223 struct btrfs_root *root,
6224 u64 bytenr, u32 blocksize,
6225 int level)
6226{
6227 struct extent_buffer *buf;
6228
6229 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6230 if (!buf)
6231 return ERR_PTR(-ENOMEM);
6232 btrfs_set_header_generation(buf, trans->transid);
6233 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6234 btrfs_tree_lock(buf);
6235 clean_tree_block(trans, root, buf);
6236 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6237
6238 btrfs_set_lock_blocking(buf);
6239 btrfs_set_buffer_uptodate(buf);
6240
6241 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6242 /*
6243 * we allow two log transactions at a time, use different
6244 * EXENT bit to differentiate dirty pages.
6245 */
6246 if (root->log_transid % 2 == 0)
6247 set_extent_dirty(&root->dirty_log_pages, buf->start,
6248 buf->start + buf->len - 1, GFP_NOFS);
6249 else
6250 set_extent_new(&root->dirty_log_pages, buf->start,
6251 buf->start + buf->len - 1, GFP_NOFS);
6252 } else {
6253 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6254 buf->start + buf->len - 1, GFP_NOFS);
6255 }
6256 trans->blocks_used++;
6257 /* this returns a buffer locked for blocking */
6258 return buf;
6259}
6260
6261static struct btrfs_block_rsv *
6262use_block_rsv(struct btrfs_trans_handle *trans,
6263 struct btrfs_root *root, u32 blocksize)
6264{
6265 struct btrfs_block_rsv *block_rsv;
6266 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6267 int ret;
6268
6269 block_rsv = get_block_rsv(trans, root);
6270
6271 if (block_rsv->size == 0) {
6272 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6273 /*
6274 * If we couldn't reserve metadata bytes try and use some from
6275 * the global reserve.
6276 */
6277 if (ret && block_rsv != global_rsv) {
6278 ret = block_rsv_use_bytes(global_rsv, blocksize);
6279 if (!ret)
6280 return global_rsv;
6281 return ERR_PTR(ret);
6282 } else if (ret) {
6283 return ERR_PTR(ret);
6284 }
6285 return block_rsv;
6286 }
6287
6288 ret = block_rsv_use_bytes(block_rsv, blocksize);
6289 if (!ret)
6290 return block_rsv;
6291 if (ret && !block_rsv->failfast) {
6292 static DEFINE_RATELIMIT_STATE(_rs,
6293 DEFAULT_RATELIMIT_INTERVAL,
6294 /*DEFAULT_RATELIMIT_BURST*/ 2);
6295 if (__ratelimit(&_rs)) {
6296 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6297 WARN_ON(1);
6298 }
6299 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6300 if (!ret) {
6301 return block_rsv;
6302 } else if (ret && block_rsv != global_rsv) {
6303 ret = block_rsv_use_bytes(global_rsv, blocksize);
6304 if (!ret)
6305 return global_rsv;
6306 }
6307 }
6308
6309 return ERR_PTR(-ENOSPC);
6310}
6311
6312static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6313 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6314{
6315 block_rsv_add_bytes(block_rsv, blocksize, 0);
6316 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6317}
6318
6319/*
6320 * finds a free extent and does all the dirty work required for allocation
6321 * returns the key for the extent through ins, and a tree buffer for
6322 * the first block of the extent through buf.
6323 *
6324 * returns the tree buffer or NULL.
6325 */
6326struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6327 struct btrfs_root *root, u32 blocksize,
6328 u64 parent, u64 root_objectid,
6329 struct btrfs_disk_key *key, int level,
6330 u64 hint, u64 empty_size)
6331{
6332 struct btrfs_key ins;
6333 struct btrfs_block_rsv *block_rsv;
6334 struct extent_buffer *buf;
6335 u64 flags = 0;
6336 int ret;
6337
6338
6339 block_rsv = use_block_rsv(trans, root, blocksize);
6340 if (IS_ERR(block_rsv))
6341 return ERR_CAST(block_rsv);
6342
6343 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6344 empty_size, hint, &ins, 0);
6345 if (ret) {
6346 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6347 return ERR_PTR(ret);
6348 }
6349
6350 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6351 blocksize, level);
6352 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6353
6354 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6355 if (parent == 0)
6356 parent = ins.objectid;
6357 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6358 } else
6359 BUG_ON(parent > 0);
6360
6361 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6362 struct btrfs_delayed_extent_op *extent_op;
6363 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6364 BUG_ON(!extent_op); /* -ENOMEM */
6365 if (key)
6366 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6367 else
6368 memset(&extent_op->key, 0, sizeof(extent_op->key));
6369 extent_op->flags_to_set = flags;
6370 extent_op->update_key = 1;
6371 extent_op->update_flags = 1;
6372 extent_op->is_data = 0;
6373
6374 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6375 ins.objectid,
6376 ins.offset, parent, root_objectid,
6377 level, BTRFS_ADD_DELAYED_EXTENT,
6378 extent_op, 0);
6379 BUG_ON(ret); /* -ENOMEM */
6380 }
6381 return buf;
6382}
6383
6384struct walk_control {
6385 u64 refs[BTRFS_MAX_LEVEL];
6386 u64 flags[BTRFS_MAX_LEVEL];
6387 struct btrfs_key update_progress;
6388 int stage;
6389 int level;
6390 int shared_level;
6391 int update_ref;
6392 int keep_locks;
6393 int reada_slot;
6394 int reada_count;
6395 int for_reloc;
6396};
6397
6398#define DROP_REFERENCE 1
6399#define UPDATE_BACKREF 2
6400
6401static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6402 struct btrfs_root *root,
6403 struct walk_control *wc,
6404 struct btrfs_path *path)
6405{
6406 u64 bytenr;
6407 u64 generation;
6408 u64 refs;
6409 u64 flags;
6410 u32 nritems;
6411 u32 blocksize;
6412 struct btrfs_key key;
6413 struct extent_buffer *eb;
6414 int ret;
6415 int slot;
6416 int nread = 0;
6417
6418 if (path->slots[wc->level] < wc->reada_slot) {
6419 wc->reada_count = wc->reada_count * 2 / 3;
6420 wc->reada_count = max(wc->reada_count, 2);
6421 } else {
6422 wc->reada_count = wc->reada_count * 3 / 2;
6423 wc->reada_count = min_t(int, wc->reada_count,
6424 BTRFS_NODEPTRS_PER_BLOCK(root));
6425 }
6426
6427 eb = path->nodes[wc->level];
6428 nritems = btrfs_header_nritems(eb);
6429 blocksize = btrfs_level_size(root, wc->level - 1);
6430
6431 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6432 if (nread >= wc->reada_count)
6433 break;
6434
6435 cond_resched();
6436 bytenr = btrfs_node_blockptr(eb, slot);
6437 generation = btrfs_node_ptr_generation(eb, slot);
6438
6439 if (slot == path->slots[wc->level])
6440 goto reada;
6441
6442 if (wc->stage == UPDATE_BACKREF &&
6443 generation <= root->root_key.offset)
6444 continue;
6445
6446 /* We don't lock the tree block, it's OK to be racy here */
6447 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6448 &refs, &flags);
6449 /* We don't care about errors in readahead. */
6450 if (ret < 0)
6451 continue;
6452 BUG_ON(refs == 0);
6453
6454 if (wc->stage == DROP_REFERENCE) {
6455 if (refs == 1)
6456 goto reada;
6457
6458 if (wc->level == 1 &&
6459 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6460 continue;
6461 if (!wc->update_ref ||
6462 generation <= root->root_key.offset)
6463 continue;
6464 btrfs_node_key_to_cpu(eb, &key, slot);
6465 ret = btrfs_comp_cpu_keys(&key,
6466 &wc->update_progress);
6467 if (ret < 0)
6468 continue;
6469 } else {
6470 if (wc->level == 1 &&
6471 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6472 continue;
6473 }
6474reada:
6475 ret = readahead_tree_block(root, bytenr, blocksize,
6476 generation);
6477 if (ret)
6478 break;
6479 nread++;
6480 }
6481 wc->reada_slot = slot;
6482}
6483
6484/*
6485 * hepler to process tree block while walking down the tree.
6486 *
6487 * when wc->stage == UPDATE_BACKREF, this function updates
6488 * back refs for pointers in the block.
6489 *
6490 * NOTE: return value 1 means we should stop walking down.
6491 */
6492static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6493 struct btrfs_root *root,
6494 struct btrfs_path *path,
6495 struct walk_control *wc, int lookup_info)
6496{
6497 int level = wc->level;
6498 struct extent_buffer *eb = path->nodes[level];
6499 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6500 int ret;
6501
6502 if (wc->stage == UPDATE_BACKREF &&
6503 btrfs_header_owner(eb) != root->root_key.objectid)
6504 return 1;
6505
6506 /*
6507 * when reference count of tree block is 1, it won't increase
6508 * again. once full backref flag is set, we never clear it.
6509 */
6510 if (lookup_info &&
6511 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6512 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6513 BUG_ON(!path->locks[level]);
6514 ret = btrfs_lookup_extent_info(trans, root,
6515 eb->start, eb->len,
6516 &wc->refs[level],
6517 &wc->flags[level]);
6518 BUG_ON(ret == -ENOMEM);
6519 if (ret)
6520 return ret;
6521 BUG_ON(wc->refs[level] == 0);
6522 }
6523
6524 if (wc->stage == DROP_REFERENCE) {
6525 if (wc->refs[level] > 1)
6526 return 1;
6527
6528 if (path->locks[level] && !wc->keep_locks) {
6529 btrfs_tree_unlock_rw(eb, path->locks[level]);
6530 path->locks[level] = 0;
6531 }
6532 return 0;
6533 }
6534
6535 /* wc->stage == UPDATE_BACKREF */
6536 if (!(wc->flags[level] & flag)) {
6537 BUG_ON(!path->locks[level]);
6538 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6539 BUG_ON(ret); /* -ENOMEM */
6540 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6541 BUG_ON(ret); /* -ENOMEM */
6542 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6543 eb->len, flag, 0);
6544 BUG_ON(ret); /* -ENOMEM */
6545 wc->flags[level] |= flag;
6546 }
6547
6548 /*
6549 * the block is shared by multiple trees, so it's not good to
6550 * keep the tree lock
6551 */
6552 if (path->locks[level] && level > 0) {
6553 btrfs_tree_unlock_rw(eb, path->locks[level]);
6554 path->locks[level] = 0;
6555 }
6556 return 0;
6557}
6558
6559/*
6560 * hepler to process tree block pointer.
6561 *
6562 * when wc->stage == DROP_REFERENCE, this function checks
6563 * reference count of the block pointed to. if the block
6564 * is shared and we need update back refs for the subtree
6565 * rooted at the block, this function changes wc->stage to
6566 * UPDATE_BACKREF. if the block is shared and there is no
6567 * need to update back, this function drops the reference
6568 * to the block.
6569 *
6570 * NOTE: return value 1 means we should stop walking down.
6571 */
6572static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6573 struct btrfs_root *root,
6574 struct btrfs_path *path,
6575 struct walk_control *wc, int *lookup_info)
6576{
6577 u64 bytenr;
6578 u64 generation;
6579 u64 parent;
6580 u32 blocksize;
6581 struct btrfs_key key;
6582 struct extent_buffer *next;
6583 int level = wc->level;
6584 int reada = 0;
6585 int ret = 0;
6586
6587 generation = btrfs_node_ptr_generation(path->nodes[level],
6588 path->slots[level]);
6589 /*
6590 * if the lower level block was created before the snapshot
6591 * was created, we know there is no need to update back refs
6592 * for the subtree
6593 */
6594 if (wc->stage == UPDATE_BACKREF &&
6595 generation <= root->root_key.offset) {
6596 *lookup_info = 1;
6597 return 1;
6598 }
6599
6600 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6601 blocksize = btrfs_level_size(root, level - 1);
6602
6603 next = btrfs_find_tree_block(root, bytenr, blocksize);
6604 if (!next) {
6605 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6606 if (!next)
6607 return -ENOMEM;
6608 reada = 1;
6609 }
6610 btrfs_tree_lock(next);
6611 btrfs_set_lock_blocking(next);
6612
6613 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6614 &wc->refs[level - 1],
6615 &wc->flags[level - 1]);
6616 if (ret < 0) {
6617 btrfs_tree_unlock(next);
6618 return ret;
6619 }
6620
6621 BUG_ON(wc->refs[level - 1] == 0);
6622 *lookup_info = 0;
6623
6624 if (wc->stage == DROP_REFERENCE) {
6625 if (wc->refs[level - 1] > 1) {
6626 if (level == 1 &&
6627 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6628 goto skip;
6629
6630 if (!wc->update_ref ||
6631 generation <= root->root_key.offset)
6632 goto skip;
6633
6634 btrfs_node_key_to_cpu(path->nodes[level], &key,
6635 path->slots[level]);
6636 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6637 if (ret < 0)
6638 goto skip;
6639
6640 wc->stage = UPDATE_BACKREF;
6641 wc->shared_level = level - 1;
6642 }
6643 } else {
6644 if (level == 1 &&
6645 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6646 goto skip;
6647 }
6648
6649 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6650 btrfs_tree_unlock(next);
6651 free_extent_buffer(next);
6652 next = NULL;
6653 *lookup_info = 1;
6654 }
6655
6656 if (!next) {
6657 if (reada && level == 1)
6658 reada_walk_down(trans, root, wc, path);
6659 next = read_tree_block(root, bytenr, blocksize, generation);
6660 if (!next)
6661 return -EIO;
6662 btrfs_tree_lock(next);
6663 btrfs_set_lock_blocking(next);
6664 }
6665
6666 level--;
6667 BUG_ON(level != btrfs_header_level(next));
6668 path->nodes[level] = next;
6669 path->slots[level] = 0;
6670 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6671 wc->level = level;
6672 if (wc->level == 1)
6673 wc->reada_slot = 0;
6674 return 0;
6675skip:
6676 wc->refs[level - 1] = 0;
6677 wc->flags[level - 1] = 0;
6678 if (wc->stage == DROP_REFERENCE) {
6679 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6680 parent = path->nodes[level]->start;
6681 } else {
6682 BUG_ON(root->root_key.objectid !=
6683 btrfs_header_owner(path->nodes[level]));
6684 parent = 0;
6685 }
6686
6687 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6688 root->root_key.objectid, level - 1, 0, 0);
6689 BUG_ON(ret); /* -ENOMEM */
6690 }
6691 btrfs_tree_unlock(next);
6692 free_extent_buffer(next);
6693 *lookup_info = 1;
6694 return 1;
6695}
6696
6697/*
6698 * hepler to process tree block while walking up the tree.
6699 *
6700 * when wc->stage == DROP_REFERENCE, this function drops
6701 * reference count on the block.
6702 *
6703 * when wc->stage == UPDATE_BACKREF, this function changes
6704 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6705 * to UPDATE_BACKREF previously while processing the block.
6706 *
6707 * NOTE: return value 1 means we should stop walking up.
6708 */
6709static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6710 struct btrfs_root *root,
6711 struct btrfs_path *path,
6712 struct walk_control *wc)
6713{
6714 int ret;
6715 int level = wc->level;
6716 struct extent_buffer *eb = path->nodes[level];
6717 u64 parent = 0;
6718
6719 if (wc->stage == UPDATE_BACKREF) {
6720 BUG_ON(wc->shared_level < level);
6721 if (level < wc->shared_level)
6722 goto out;
6723
6724 ret = find_next_key(path, level + 1, &wc->update_progress);
6725 if (ret > 0)
6726 wc->update_ref = 0;
6727
6728 wc->stage = DROP_REFERENCE;
6729 wc->shared_level = -1;
6730 path->slots[level] = 0;
6731
6732 /*
6733 * check reference count again if the block isn't locked.
6734 * we should start walking down the tree again if reference
6735 * count is one.
6736 */
6737 if (!path->locks[level]) {
6738 BUG_ON(level == 0);
6739 btrfs_tree_lock(eb);
6740 btrfs_set_lock_blocking(eb);
6741 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6742
6743 ret = btrfs_lookup_extent_info(trans, root,
6744 eb->start, eb->len,
6745 &wc->refs[level],
6746 &wc->flags[level]);
6747 if (ret < 0) {
6748 btrfs_tree_unlock_rw(eb, path->locks[level]);
6749 return ret;
6750 }
6751 BUG_ON(wc->refs[level] == 0);
6752 if (wc->refs[level] == 1) {
6753 btrfs_tree_unlock_rw(eb, path->locks[level]);
6754 return 1;
6755 }
6756 }
6757 }
6758
6759 /* wc->stage == DROP_REFERENCE */
6760 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6761
6762 if (wc->refs[level] == 1) {
6763 if (level == 0) {
6764 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6765 ret = btrfs_dec_ref(trans, root, eb, 1,
6766 wc->for_reloc);
6767 else
6768 ret = btrfs_dec_ref(trans, root, eb, 0,
6769 wc->for_reloc);
6770 BUG_ON(ret); /* -ENOMEM */
6771 }
6772 /* make block locked assertion in clean_tree_block happy */
6773 if (!path->locks[level] &&
6774 btrfs_header_generation(eb) == trans->transid) {
6775 btrfs_tree_lock(eb);
6776 btrfs_set_lock_blocking(eb);
6777 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6778 }
6779 clean_tree_block(trans, root, eb);
6780 }
6781
6782 if (eb == root->node) {
6783 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6784 parent = eb->start;
6785 else
6786 BUG_ON(root->root_key.objectid !=
6787 btrfs_header_owner(eb));
6788 } else {
6789 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6790 parent = path->nodes[level + 1]->start;
6791 else
6792 BUG_ON(root->root_key.objectid !=
6793 btrfs_header_owner(path->nodes[level + 1]));
6794 }
6795
6796 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6797out:
6798 wc->refs[level] = 0;
6799 wc->flags[level] = 0;
6800 return 0;
6801}
6802
6803static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6804 struct btrfs_root *root,
6805 struct btrfs_path *path,
6806 struct walk_control *wc)
6807{
6808 int level = wc->level;
6809 int lookup_info = 1;
6810 int ret;
6811
6812 while (level >= 0) {
6813 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6814 if (ret > 0)
6815 break;
6816
6817 if (level == 0)
6818 break;
6819
6820 if (path->slots[level] >=
6821 btrfs_header_nritems(path->nodes[level]))
6822 break;
6823
6824 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6825 if (ret > 0) {
6826 path->slots[level]++;
6827 continue;
6828 } else if (ret < 0)
6829 return ret;
6830 level = wc->level;
6831 }
6832 return 0;
6833}
6834
6835static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6836 struct btrfs_root *root,
6837 struct btrfs_path *path,
6838 struct walk_control *wc, int max_level)
6839{
6840 int level = wc->level;
6841 int ret;
6842
6843 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6844 while (level < max_level && path->nodes[level]) {
6845 wc->level = level;
6846 if (path->slots[level] + 1 <
6847 btrfs_header_nritems(path->nodes[level])) {
6848 path->slots[level]++;
6849 return 0;
6850 } else {
6851 ret = walk_up_proc(trans, root, path, wc);
6852 if (ret > 0)
6853 return 0;
6854
6855 if (path->locks[level]) {
6856 btrfs_tree_unlock_rw(path->nodes[level],
6857 path->locks[level]);
6858 path->locks[level] = 0;
6859 }
6860 free_extent_buffer(path->nodes[level]);
6861 path->nodes[level] = NULL;
6862 level++;
6863 }
6864 }
6865 return 1;
6866}
6867
6868/*
6869 * drop a subvolume tree.
6870 *
6871 * this function traverses the tree freeing any blocks that only
6872 * referenced by the tree.
6873 *
6874 * when a shared tree block is found. this function decreases its
6875 * reference count by one. if update_ref is true, this function
6876 * also make sure backrefs for the shared block and all lower level
6877 * blocks are properly updated.
6878 */
6879int btrfs_drop_snapshot(struct btrfs_root *root,
6880 struct btrfs_block_rsv *block_rsv, int update_ref,
6881 int for_reloc)
6882{
6883 struct btrfs_path *path;
6884 struct btrfs_trans_handle *trans;
6885 struct btrfs_root *tree_root = root->fs_info->tree_root;
6886 struct btrfs_root_item *root_item = &root->root_item;
6887 struct walk_control *wc;
6888 struct btrfs_key key;
6889 int err = 0;
6890 int ret;
6891 int level;
6892
6893 path = btrfs_alloc_path();
6894 if (!path) {
6895 err = -ENOMEM;
6896 goto out;
6897 }
6898
6899 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6900 if (!wc) {
6901 btrfs_free_path(path);
6902 err = -ENOMEM;
6903 goto out;
6904 }
6905
6906 trans = btrfs_start_transaction(tree_root, 0);
6907 if (IS_ERR(trans)) {
6908 err = PTR_ERR(trans);
6909 goto out_free;
6910 }
6911
6912 if (block_rsv)
6913 trans->block_rsv = block_rsv;
6914
6915 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6916 level = btrfs_header_level(root->node);
6917 path->nodes[level] = btrfs_lock_root_node(root);
6918 btrfs_set_lock_blocking(path->nodes[level]);
6919 path->slots[level] = 0;
6920 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6921 memset(&wc->update_progress, 0,
6922 sizeof(wc->update_progress));
6923 } else {
6924 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6925 memcpy(&wc->update_progress, &key,
6926 sizeof(wc->update_progress));
6927
6928 level = root_item->drop_level;
6929 BUG_ON(level == 0);
6930 path->lowest_level = level;
6931 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6932 path->lowest_level = 0;
6933 if (ret < 0) {
6934 err = ret;
6935 goto out_end_trans;
6936 }
6937 WARN_ON(ret > 0);
6938
6939 /*
6940 * unlock our path, this is safe because only this
6941 * function is allowed to delete this snapshot
6942 */
6943 btrfs_unlock_up_safe(path, 0);
6944
6945 level = btrfs_header_level(root->node);
6946 while (1) {
6947 btrfs_tree_lock(path->nodes[level]);
6948 btrfs_set_lock_blocking(path->nodes[level]);
6949
6950 ret = btrfs_lookup_extent_info(trans, root,
6951 path->nodes[level]->start,
6952 path->nodes[level]->len,
6953 &wc->refs[level],
6954 &wc->flags[level]);
6955 if (ret < 0) {
6956 err = ret;
6957 goto out_end_trans;
6958 }
6959 BUG_ON(wc->refs[level] == 0);
6960
6961 if (level == root_item->drop_level)
6962 break;
6963
6964 btrfs_tree_unlock(path->nodes[level]);
6965 WARN_ON(wc->refs[level] != 1);
6966 level--;
6967 }
6968 }
6969
6970 wc->level = level;
6971 wc->shared_level = -1;
6972 wc->stage = DROP_REFERENCE;
6973 wc->update_ref = update_ref;
6974 wc->keep_locks = 0;
6975 wc->for_reloc = for_reloc;
6976 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6977
6978 while (1) {
6979 ret = walk_down_tree(trans, root, path, wc);
6980 if (ret < 0) {
6981 err = ret;
6982 break;
6983 }
6984
6985 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6986 if (ret < 0) {
6987 err = ret;
6988 break;
6989 }
6990
6991 if (ret > 0) {
6992 BUG_ON(wc->stage != DROP_REFERENCE);
6993 break;
6994 }
6995
6996 if (wc->stage == DROP_REFERENCE) {
6997 level = wc->level;
6998 btrfs_node_key(path->nodes[level],
6999 &root_item->drop_progress,
7000 path->slots[level]);
7001 root_item->drop_level = level;
7002 }
7003
7004 BUG_ON(wc->level == 0);
7005 if (btrfs_should_end_transaction(trans, tree_root)) {
7006 ret = btrfs_update_root(trans, tree_root,
7007 &root->root_key,
7008 root_item);
7009 if (ret) {
7010 btrfs_abort_transaction(trans, tree_root, ret);
7011 err = ret;
7012 goto out_end_trans;
7013 }
7014
7015 btrfs_end_transaction_throttle(trans, tree_root);
7016 trans = btrfs_start_transaction(tree_root, 0);
7017 if (IS_ERR(trans)) {
7018 err = PTR_ERR(trans);
7019 goto out_free;
7020 }
7021 if (block_rsv)
7022 trans->block_rsv = block_rsv;
7023 }
7024 }
7025 btrfs_release_path(path);
7026 if (err)
7027 goto out_end_trans;
7028
7029 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7030 if (ret) {
7031 btrfs_abort_transaction(trans, tree_root, ret);
7032 goto out_end_trans;
7033 }
7034
7035 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7036 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7037 NULL, NULL);
7038 if (ret < 0) {
7039 btrfs_abort_transaction(trans, tree_root, ret);
7040 err = ret;
7041 goto out_end_trans;
7042 } else if (ret > 0) {
7043 /* if we fail to delete the orphan item this time
7044 * around, it'll get picked up the next time.
7045 *
7046 * The most common failure here is just -ENOENT.
7047 */
7048 btrfs_del_orphan_item(trans, tree_root,
7049 root->root_key.objectid);
7050 }
7051 }
7052
7053 if (root->in_radix) {
7054 btrfs_free_fs_root(tree_root->fs_info, root);
7055 } else {
7056 free_extent_buffer(root->node);
7057 free_extent_buffer(root->commit_root);
7058 kfree(root);
7059 }
7060out_end_trans:
7061 btrfs_end_transaction_throttle(trans, tree_root);
7062out_free:
7063 kfree(wc);
7064 btrfs_free_path(path);
7065out:
7066 if (err)
7067 btrfs_std_error(root->fs_info, err);
7068 return err;
7069}
7070
7071/*
7072 * drop subtree rooted at tree block 'node'.
7073 *
7074 * NOTE: this function will unlock and release tree block 'node'
7075 * only used by relocation code
7076 */
7077int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7078 struct btrfs_root *root,
7079 struct extent_buffer *node,
7080 struct extent_buffer *parent)
7081{
7082 struct btrfs_path *path;
7083 struct walk_control *wc;
7084 int level;
7085 int parent_level;
7086 int ret = 0;
7087 int wret;
7088
7089 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7090
7091 path = btrfs_alloc_path();
7092 if (!path)
7093 return -ENOMEM;
7094
7095 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7096 if (!wc) {
7097 btrfs_free_path(path);
7098 return -ENOMEM;
7099 }
7100
7101 btrfs_assert_tree_locked(parent);
7102 parent_level = btrfs_header_level(parent);
7103 extent_buffer_get(parent);
7104 path->nodes[parent_level] = parent;
7105 path->slots[parent_level] = btrfs_header_nritems(parent);
7106
7107 btrfs_assert_tree_locked(node);
7108 level = btrfs_header_level(node);
7109 path->nodes[level] = node;
7110 path->slots[level] = 0;
7111 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7112
7113 wc->refs[parent_level] = 1;
7114 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7115 wc->level = level;
7116 wc->shared_level = -1;
7117 wc->stage = DROP_REFERENCE;
7118 wc->update_ref = 0;
7119 wc->keep_locks = 1;
7120 wc->for_reloc = 1;
7121 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7122
7123 while (1) {
7124 wret = walk_down_tree(trans, root, path, wc);
7125 if (wret < 0) {
7126 ret = wret;
7127 break;
7128 }
7129
7130 wret = walk_up_tree(trans, root, path, wc, parent_level);
7131 if (wret < 0)
7132 ret = wret;
7133 if (wret != 0)
7134 break;
7135 }
7136
7137 kfree(wc);
7138 btrfs_free_path(path);
7139 return ret;
7140}
7141
7142static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7143{
7144 u64 num_devices;
7145 u64 stripped;
7146
7147 /*
7148 * if restripe for this chunk_type is on pick target profile and
7149 * return, otherwise do the usual balance
7150 */
7151 stripped = get_restripe_target(root->fs_info, flags);
7152 if (stripped)
7153 return extended_to_chunk(stripped);
7154
7155 /*
7156 * we add in the count of missing devices because we want
7157 * to make sure that any RAID levels on a degraded FS
7158 * continue to be honored.
7159 */
7160 num_devices = root->fs_info->fs_devices->rw_devices +
7161 root->fs_info->fs_devices->missing_devices;
7162
7163 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7164 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7165
7166 if (num_devices == 1) {
7167 stripped |= BTRFS_BLOCK_GROUP_DUP;
7168 stripped = flags & ~stripped;
7169
7170 /* turn raid0 into single device chunks */
7171 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7172 return stripped;
7173
7174 /* turn mirroring into duplication */
7175 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7176 BTRFS_BLOCK_GROUP_RAID10))
7177 return stripped | BTRFS_BLOCK_GROUP_DUP;
7178 } else {
7179 /* they already had raid on here, just return */
7180 if (flags & stripped)
7181 return flags;
7182
7183 stripped |= BTRFS_BLOCK_GROUP_DUP;
7184 stripped = flags & ~stripped;
7185
7186 /* switch duplicated blocks with raid1 */
7187 if (flags & BTRFS_BLOCK_GROUP_DUP)
7188 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7189
7190 /* this is drive concat, leave it alone */
7191 }
7192
7193 return flags;
7194}
7195
7196static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7197{
7198 struct btrfs_space_info *sinfo = cache->space_info;
7199 u64 num_bytes;
7200 u64 min_allocable_bytes;
7201 int ret = -ENOSPC;
7202
7203
7204 /*
7205 * We need some metadata space and system metadata space for
7206 * allocating chunks in some corner cases until we force to set
7207 * it to be readonly.
7208 */
7209 if ((sinfo->flags &
7210 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7211 !force)
7212 min_allocable_bytes = 1 * 1024 * 1024;
7213 else
7214 min_allocable_bytes = 0;
7215
7216 spin_lock(&sinfo->lock);
7217 spin_lock(&cache->lock);
7218
7219 if (cache->ro) {
7220 ret = 0;
7221 goto out;
7222 }
7223
7224 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7225 cache->bytes_super - btrfs_block_group_used(&cache->item);
7226
7227 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7228 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7229 min_allocable_bytes <= sinfo->total_bytes) {
7230 sinfo->bytes_readonly += num_bytes;
7231 cache->ro = 1;
7232 ret = 0;
7233 }
7234out:
7235 spin_unlock(&cache->lock);
7236 spin_unlock(&sinfo->lock);
7237 return ret;
7238}
7239
7240int btrfs_set_block_group_ro(struct btrfs_root *root,
7241 struct btrfs_block_group_cache *cache)
7242
7243{
7244 struct btrfs_trans_handle *trans;
7245 u64 alloc_flags;
7246 int ret;
7247
7248 BUG_ON(cache->ro);
7249
7250 trans = btrfs_join_transaction(root);
7251 if (IS_ERR(trans))
7252 return PTR_ERR(trans);
7253
7254 alloc_flags = update_block_group_flags(root, cache->flags);
7255 if (alloc_flags != cache->flags) {
7256 ret = do_chunk_alloc(trans, root, alloc_flags,
7257 CHUNK_ALLOC_FORCE);
7258 if (ret < 0)
7259 goto out;
7260 }
7261
7262 ret = set_block_group_ro(cache, 0);
7263 if (!ret)
7264 goto out;
7265 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7266 ret = do_chunk_alloc(trans, root, alloc_flags,
7267 CHUNK_ALLOC_FORCE);
7268 if (ret < 0)
7269 goto out;
7270 ret = set_block_group_ro(cache, 0);
7271out:
7272 btrfs_end_transaction(trans, root);
7273 return ret;
7274}
7275
7276int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7277 struct btrfs_root *root, u64 type)
7278{
7279 u64 alloc_flags = get_alloc_profile(root, type);
7280 return do_chunk_alloc(trans, root, alloc_flags,
7281 CHUNK_ALLOC_FORCE);
7282}
7283
7284/*
7285 * helper to account the unused space of all the readonly block group in the
7286 * list. takes mirrors into account.
7287 */
7288static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7289{
7290 struct btrfs_block_group_cache *block_group;
7291 u64 free_bytes = 0;
7292 int factor;
7293
7294 list_for_each_entry(block_group, groups_list, list) {
7295 spin_lock(&block_group->lock);
7296
7297 if (!block_group->ro) {
7298 spin_unlock(&block_group->lock);
7299 continue;
7300 }
7301
7302 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7303 BTRFS_BLOCK_GROUP_RAID10 |
7304 BTRFS_BLOCK_GROUP_DUP))
7305 factor = 2;
7306 else
7307 factor = 1;
7308
7309 free_bytes += (block_group->key.offset -
7310 btrfs_block_group_used(&block_group->item)) *
7311 factor;
7312
7313 spin_unlock(&block_group->lock);
7314 }
7315
7316 return free_bytes;
7317}
7318
7319/*
7320 * helper to account the unused space of all the readonly block group in the
7321 * space_info. takes mirrors into account.
7322 */
7323u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7324{
7325 int i;
7326 u64 free_bytes = 0;
7327
7328 spin_lock(&sinfo->lock);
7329
7330 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7331 if (!list_empty(&sinfo->block_groups[i]))
7332 free_bytes += __btrfs_get_ro_block_group_free_space(
7333 &sinfo->block_groups[i]);
7334
7335 spin_unlock(&sinfo->lock);
7336
7337 return free_bytes;
7338}
7339
7340void btrfs_set_block_group_rw(struct btrfs_root *root,
7341 struct btrfs_block_group_cache *cache)
7342{
7343 struct btrfs_space_info *sinfo = cache->space_info;
7344 u64 num_bytes;
7345
7346 BUG_ON(!cache->ro);
7347
7348 spin_lock(&sinfo->lock);
7349 spin_lock(&cache->lock);
7350 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7351 cache->bytes_super - btrfs_block_group_used(&cache->item);
7352 sinfo->bytes_readonly -= num_bytes;
7353 cache->ro = 0;
7354 spin_unlock(&cache->lock);
7355 spin_unlock(&sinfo->lock);
7356}
7357
7358/*
7359 * checks to see if its even possible to relocate this block group.
7360 *
7361 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7362 * ok to go ahead and try.
7363 */
7364int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7365{
7366 struct btrfs_block_group_cache *block_group;
7367 struct btrfs_space_info *space_info;
7368 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7369 struct btrfs_device *device;
7370 u64 min_free;
7371 u64 dev_min = 1;
7372 u64 dev_nr = 0;
7373 u64 target;
7374 int index;
7375 int full = 0;
7376 int ret = 0;
7377
7378 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7379
7380 /* odd, couldn't find the block group, leave it alone */
7381 if (!block_group)
7382 return -1;
7383
7384 min_free = btrfs_block_group_used(&block_group->item);
7385
7386 /* no bytes used, we're good */
7387 if (!min_free)
7388 goto out;
7389
7390 space_info = block_group->space_info;
7391 spin_lock(&space_info->lock);
7392
7393 full = space_info->full;
7394
7395 /*
7396 * if this is the last block group we have in this space, we can't
7397 * relocate it unless we're able to allocate a new chunk below.
7398 *
7399 * Otherwise, we need to make sure we have room in the space to handle
7400 * all of the extents from this block group. If we can, we're good
7401 */
7402 if ((space_info->total_bytes != block_group->key.offset) &&
7403 (space_info->bytes_used + space_info->bytes_reserved +
7404 space_info->bytes_pinned + space_info->bytes_readonly +
7405 min_free < space_info->total_bytes)) {
7406 spin_unlock(&space_info->lock);
7407 goto out;
7408 }
7409 spin_unlock(&space_info->lock);
7410
7411 /*
7412 * ok we don't have enough space, but maybe we have free space on our
7413 * devices to allocate new chunks for relocation, so loop through our
7414 * alloc devices and guess if we have enough space. if this block
7415 * group is going to be restriped, run checks against the target
7416 * profile instead of the current one.
7417 */
7418 ret = -1;
7419
7420 /*
7421 * index:
7422 * 0: raid10
7423 * 1: raid1
7424 * 2: dup
7425 * 3: raid0
7426 * 4: single
7427 */
7428 target = get_restripe_target(root->fs_info, block_group->flags);
7429 if (target) {
7430 index = __get_block_group_index(extended_to_chunk(target));
7431 } else {
7432 /*
7433 * this is just a balance, so if we were marked as full
7434 * we know there is no space for a new chunk
7435 */
7436 if (full)
7437 goto out;
7438
7439 index = get_block_group_index(block_group);
7440 }
7441
7442 if (index == 0) {
7443 dev_min = 4;
7444 /* Divide by 2 */
7445 min_free >>= 1;
7446 } else if (index == 1) {
7447 dev_min = 2;
7448 } else if (index == 2) {
7449 /* Multiply by 2 */
7450 min_free <<= 1;
7451 } else if (index == 3) {
7452 dev_min = fs_devices->rw_devices;
7453 do_div(min_free, dev_min);
7454 }
7455
7456 mutex_lock(&root->fs_info->chunk_mutex);
7457 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7458 u64 dev_offset;
7459
7460 /*
7461 * check to make sure we can actually find a chunk with enough
7462 * space to fit our block group in.
7463 */
7464 if (device->total_bytes > device->bytes_used + min_free) {
7465 ret = find_free_dev_extent(device, min_free,
7466 &dev_offset, NULL);
7467 if (!ret)
7468 dev_nr++;
7469
7470 if (dev_nr >= dev_min)
7471 break;
7472
7473 ret = -1;
7474 }
7475 }
7476 mutex_unlock(&root->fs_info->chunk_mutex);
7477out:
7478 btrfs_put_block_group(block_group);
7479 return ret;
7480}
7481
7482static int find_first_block_group(struct btrfs_root *root,
7483 struct btrfs_path *path, struct btrfs_key *key)
7484{
7485 int ret = 0;
7486 struct btrfs_key found_key;
7487 struct extent_buffer *leaf;
7488 int slot;
7489
7490 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7491 if (ret < 0)
7492 goto out;
7493
7494 while (1) {
7495 slot = path->slots[0];
7496 leaf = path->nodes[0];
7497 if (slot >= btrfs_header_nritems(leaf)) {
7498 ret = btrfs_next_leaf(root, path);
7499 if (ret == 0)
7500 continue;
7501 if (ret < 0)
7502 goto out;
7503 break;
7504 }
7505 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7506
7507 if (found_key.objectid >= key->objectid &&
7508 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7509 ret = 0;
7510 goto out;
7511 }
7512 path->slots[0]++;
7513 }
7514out:
7515 return ret;
7516}
7517
7518void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7519{
7520 struct btrfs_block_group_cache *block_group;
7521 u64 last = 0;
7522
7523 while (1) {
7524 struct inode *inode;
7525
7526 block_group = btrfs_lookup_first_block_group(info, last);
7527 while (block_group) {
7528 spin_lock(&block_group->lock);
7529 if (block_group->iref)
7530 break;
7531 spin_unlock(&block_group->lock);
7532 block_group = next_block_group(info->tree_root,
7533 block_group);
7534 }
7535 if (!block_group) {
7536 if (last == 0)
7537 break;
7538 last = 0;
7539 continue;
7540 }
7541
7542 inode = block_group->inode;
7543 block_group->iref = 0;
7544 block_group->inode = NULL;
7545 spin_unlock(&block_group->lock);
7546 iput(inode);
7547 last = block_group->key.objectid + block_group->key.offset;
7548 btrfs_put_block_group(block_group);
7549 }
7550}
7551
7552int btrfs_free_block_groups(struct btrfs_fs_info *info)
7553{
7554 struct btrfs_block_group_cache *block_group;
7555 struct btrfs_space_info *space_info;
7556 struct btrfs_caching_control *caching_ctl;
7557 struct rb_node *n;
7558
7559 down_write(&info->extent_commit_sem);
7560 while (!list_empty(&info->caching_block_groups)) {
7561 caching_ctl = list_entry(info->caching_block_groups.next,
7562 struct btrfs_caching_control, list);
7563 list_del(&caching_ctl->list);
7564 put_caching_control(caching_ctl);
7565 }
7566 up_write(&info->extent_commit_sem);
7567
7568 spin_lock(&info->block_group_cache_lock);
7569 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7570 block_group = rb_entry(n, struct btrfs_block_group_cache,
7571 cache_node);
7572 rb_erase(&block_group->cache_node,
7573 &info->block_group_cache_tree);
7574 spin_unlock(&info->block_group_cache_lock);
7575
7576 down_write(&block_group->space_info->groups_sem);
7577 list_del(&block_group->list);
7578 up_write(&block_group->space_info->groups_sem);
7579
7580 if (block_group->cached == BTRFS_CACHE_STARTED)
7581 wait_block_group_cache_done(block_group);
7582
7583 /*
7584 * We haven't cached this block group, which means we could
7585 * possibly have excluded extents on this block group.
7586 */
7587 if (block_group->cached == BTRFS_CACHE_NO)
7588 free_excluded_extents(info->extent_root, block_group);
7589
7590 btrfs_remove_free_space_cache(block_group);
7591 btrfs_put_block_group(block_group);
7592
7593 spin_lock(&info->block_group_cache_lock);
7594 }
7595 spin_unlock(&info->block_group_cache_lock);
7596
7597 /* now that all the block groups are freed, go through and
7598 * free all the space_info structs. This is only called during
7599 * the final stages of unmount, and so we know nobody is
7600 * using them. We call synchronize_rcu() once before we start,
7601 * just to be on the safe side.
7602 */
7603 synchronize_rcu();
7604
7605 release_global_block_rsv(info);
7606
7607 while(!list_empty(&info->space_info)) {
7608 space_info = list_entry(info->space_info.next,
7609 struct btrfs_space_info,
7610 list);
7611 if (space_info->bytes_pinned > 0 ||
7612 space_info->bytes_reserved > 0 ||
7613 space_info->bytes_may_use > 0) {
7614 WARN_ON(1);
7615 dump_space_info(space_info, 0, 0);
7616 }
7617 list_del(&space_info->list);
7618 kfree(space_info);
7619 }
7620 return 0;
7621}
7622
7623static void __link_block_group(struct btrfs_space_info *space_info,
7624 struct btrfs_block_group_cache *cache)
7625{
7626 int index = get_block_group_index(cache);
7627
7628 down_write(&space_info->groups_sem);
7629 list_add_tail(&cache->list, &space_info->block_groups[index]);
7630 up_write(&space_info->groups_sem);
7631}
7632
7633int btrfs_read_block_groups(struct btrfs_root *root)
7634{
7635 struct btrfs_path *path;
7636 int ret;
7637 struct btrfs_block_group_cache *cache;
7638 struct btrfs_fs_info *info = root->fs_info;
7639 struct btrfs_space_info *space_info;
7640 struct btrfs_key key;
7641 struct btrfs_key found_key;
7642 struct extent_buffer *leaf;
7643 int need_clear = 0;
7644 u64 cache_gen;
7645
7646 root = info->extent_root;
7647 key.objectid = 0;
7648 key.offset = 0;
7649 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7650 path = btrfs_alloc_path();
7651 if (!path)
7652 return -ENOMEM;
7653 path->reada = 1;
7654
7655 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7656 if (btrfs_test_opt(root, SPACE_CACHE) &&
7657 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7658 need_clear = 1;
7659 if (btrfs_test_opt(root, CLEAR_CACHE))
7660 need_clear = 1;
7661
7662 while (1) {
7663 ret = find_first_block_group(root, path, &key);
7664 if (ret > 0)
7665 break;
7666 if (ret != 0)
7667 goto error;
7668 leaf = path->nodes[0];
7669 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7670 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7671 if (!cache) {
7672 ret = -ENOMEM;
7673 goto error;
7674 }
7675 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7676 GFP_NOFS);
7677 if (!cache->free_space_ctl) {
7678 kfree(cache);
7679 ret = -ENOMEM;
7680 goto error;
7681 }
7682
7683 atomic_set(&cache->count, 1);
7684 spin_lock_init(&cache->lock);
7685 cache->fs_info = info;
7686 INIT_LIST_HEAD(&cache->list);
7687 INIT_LIST_HEAD(&cache->cluster_list);
7688
7689 if (need_clear) {
7690 /*
7691 * When we mount with old space cache, we need to
7692 * set BTRFS_DC_CLEAR and set dirty flag.
7693 *
7694 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7695 * truncate the old free space cache inode and
7696 * setup a new one.
7697 * b) Setting 'dirty flag' makes sure that we flush
7698 * the new space cache info onto disk.
7699 */
7700 cache->disk_cache_state = BTRFS_DC_CLEAR;
7701 if (btrfs_test_opt(root, SPACE_CACHE))
7702 cache->dirty = 1;
7703 }
7704
7705 read_extent_buffer(leaf, &cache->item,
7706 btrfs_item_ptr_offset(leaf, path->slots[0]),
7707 sizeof(cache->item));
7708 memcpy(&cache->key, &found_key, sizeof(found_key));
7709
7710 key.objectid = found_key.objectid + found_key.offset;
7711 btrfs_release_path(path);
7712 cache->flags = btrfs_block_group_flags(&cache->item);
7713 cache->sectorsize = root->sectorsize;
7714
7715 btrfs_init_free_space_ctl(cache);
7716
7717 /*
7718 * We need to exclude the super stripes now so that the space
7719 * info has super bytes accounted for, otherwise we'll think
7720 * we have more space than we actually do.
7721 */
7722 exclude_super_stripes(root, cache);
7723
7724 /*
7725 * check for two cases, either we are full, and therefore
7726 * don't need to bother with the caching work since we won't
7727 * find any space, or we are empty, and we can just add all
7728 * the space in and be done with it. This saves us _alot_ of
7729 * time, particularly in the full case.
7730 */
7731 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7732 cache->last_byte_to_unpin = (u64)-1;
7733 cache->cached = BTRFS_CACHE_FINISHED;
7734 free_excluded_extents(root, cache);
7735 } else if (btrfs_block_group_used(&cache->item) == 0) {
7736 cache->last_byte_to_unpin = (u64)-1;
7737 cache->cached = BTRFS_CACHE_FINISHED;
7738 add_new_free_space(cache, root->fs_info,
7739 found_key.objectid,
7740 found_key.objectid +
7741 found_key.offset);
7742 free_excluded_extents(root, cache);
7743 }
7744
7745 ret = update_space_info(info, cache->flags, found_key.offset,
7746 btrfs_block_group_used(&cache->item),
7747 &space_info);
7748 BUG_ON(ret); /* -ENOMEM */
7749 cache->space_info = space_info;
7750 spin_lock(&cache->space_info->lock);
7751 cache->space_info->bytes_readonly += cache->bytes_super;
7752 spin_unlock(&cache->space_info->lock);
7753
7754 __link_block_group(space_info, cache);
7755
7756 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7757 BUG_ON(ret); /* Logic error */
7758
7759 set_avail_alloc_bits(root->fs_info, cache->flags);
7760 if (btrfs_chunk_readonly(root, cache->key.objectid))
7761 set_block_group_ro(cache, 1);
7762 }
7763
7764 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7765 if (!(get_alloc_profile(root, space_info->flags) &
7766 (BTRFS_BLOCK_GROUP_RAID10 |
7767 BTRFS_BLOCK_GROUP_RAID1 |
7768 BTRFS_BLOCK_GROUP_DUP)))
7769 continue;
7770 /*
7771 * avoid allocating from un-mirrored block group if there are
7772 * mirrored block groups.
7773 */
7774 list_for_each_entry(cache, &space_info->block_groups[3], list)
7775 set_block_group_ro(cache, 1);
7776 list_for_each_entry(cache, &space_info->block_groups[4], list)
7777 set_block_group_ro(cache, 1);
7778 }
7779
7780 init_global_block_rsv(info);
7781 ret = 0;
7782error:
7783 btrfs_free_path(path);
7784 return ret;
7785}
7786
7787void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
7788 struct btrfs_root *root)
7789{
7790 struct btrfs_block_group_cache *block_group, *tmp;
7791 struct btrfs_root *extent_root = root->fs_info->extent_root;
7792 struct btrfs_block_group_item item;
7793 struct btrfs_key key;
7794 int ret = 0;
7795
7796 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
7797 new_bg_list) {
7798 list_del_init(&block_group->new_bg_list);
7799
7800 if (ret)
7801 continue;
7802
7803 spin_lock(&block_group->lock);
7804 memcpy(&item, &block_group->item, sizeof(item));
7805 memcpy(&key, &block_group->key, sizeof(key));
7806 spin_unlock(&block_group->lock);
7807
7808 ret = btrfs_insert_item(trans, extent_root, &key, &item,
7809 sizeof(item));
7810 if (ret)
7811 btrfs_abort_transaction(trans, extent_root, ret);
7812 }
7813}
7814
7815int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7816 struct btrfs_root *root, u64 bytes_used,
7817 u64 type, u64 chunk_objectid, u64 chunk_offset,
7818 u64 size)
7819{
7820 int ret;
7821 struct btrfs_root *extent_root;
7822 struct btrfs_block_group_cache *cache;
7823
7824 extent_root = root->fs_info->extent_root;
7825
7826 root->fs_info->last_trans_log_full_commit = trans->transid;
7827
7828 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7829 if (!cache)
7830 return -ENOMEM;
7831 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7832 GFP_NOFS);
7833 if (!cache->free_space_ctl) {
7834 kfree(cache);
7835 return -ENOMEM;
7836 }
7837
7838 cache->key.objectid = chunk_offset;
7839 cache->key.offset = size;
7840 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7841 cache->sectorsize = root->sectorsize;
7842 cache->fs_info = root->fs_info;
7843
7844 atomic_set(&cache->count, 1);
7845 spin_lock_init(&cache->lock);
7846 INIT_LIST_HEAD(&cache->list);
7847 INIT_LIST_HEAD(&cache->cluster_list);
7848 INIT_LIST_HEAD(&cache->new_bg_list);
7849
7850 btrfs_init_free_space_ctl(cache);
7851
7852 btrfs_set_block_group_used(&cache->item, bytes_used);
7853 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7854 cache->flags = type;
7855 btrfs_set_block_group_flags(&cache->item, type);
7856
7857 cache->last_byte_to_unpin = (u64)-1;
7858 cache->cached = BTRFS_CACHE_FINISHED;
7859 exclude_super_stripes(root, cache);
7860
7861 add_new_free_space(cache, root->fs_info, chunk_offset,
7862 chunk_offset + size);
7863
7864 free_excluded_extents(root, cache);
7865
7866 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7867 &cache->space_info);
7868 BUG_ON(ret); /* -ENOMEM */
7869 update_global_block_rsv(root->fs_info);
7870
7871 spin_lock(&cache->space_info->lock);
7872 cache->space_info->bytes_readonly += cache->bytes_super;
7873 spin_unlock(&cache->space_info->lock);
7874
7875 __link_block_group(cache->space_info, cache);
7876
7877 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7878 BUG_ON(ret); /* Logic error */
7879
7880 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
7881
7882 set_avail_alloc_bits(extent_root->fs_info, type);
7883
7884 return 0;
7885}
7886
7887static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7888{
7889 u64 extra_flags = chunk_to_extended(flags) &
7890 BTRFS_EXTENDED_PROFILE_MASK;
7891
7892 if (flags & BTRFS_BLOCK_GROUP_DATA)
7893 fs_info->avail_data_alloc_bits &= ~extra_flags;
7894 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7895 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7896 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7897 fs_info->avail_system_alloc_bits &= ~extra_flags;
7898}
7899
7900int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7901 struct btrfs_root *root, u64 group_start)
7902{
7903 struct btrfs_path *path;
7904 struct btrfs_block_group_cache *block_group;
7905 struct btrfs_free_cluster *cluster;
7906 struct btrfs_root *tree_root = root->fs_info->tree_root;
7907 struct btrfs_key key;
7908 struct inode *inode;
7909 int ret;
7910 int index;
7911 int factor;
7912
7913 root = root->fs_info->extent_root;
7914
7915 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7916 BUG_ON(!block_group);
7917 BUG_ON(!block_group->ro);
7918
7919 /*
7920 * Free the reserved super bytes from this block group before
7921 * remove it.
7922 */
7923 free_excluded_extents(root, block_group);
7924
7925 memcpy(&key, &block_group->key, sizeof(key));
7926 index = get_block_group_index(block_group);
7927 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7928 BTRFS_BLOCK_GROUP_RAID1 |
7929 BTRFS_BLOCK_GROUP_RAID10))
7930 factor = 2;
7931 else
7932 factor = 1;
7933
7934 /* make sure this block group isn't part of an allocation cluster */
7935 cluster = &root->fs_info->data_alloc_cluster;
7936 spin_lock(&cluster->refill_lock);
7937 btrfs_return_cluster_to_free_space(block_group, cluster);
7938 spin_unlock(&cluster->refill_lock);
7939
7940 /*
7941 * make sure this block group isn't part of a metadata
7942 * allocation cluster
7943 */
7944 cluster = &root->fs_info->meta_alloc_cluster;
7945 spin_lock(&cluster->refill_lock);
7946 btrfs_return_cluster_to_free_space(block_group, cluster);
7947 spin_unlock(&cluster->refill_lock);
7948
7949 path = btrfs_alloc_path();
7950 if (!path) {
7951 ret = -ENOMEM;
7952 goto out;
7953 }
7954
7955 inode = lookup_free_space_inode(tree_root, block_group, path);
7956 if (!IS_ERR(inode)) {
7957 ret = btrfs_orphan_add(trans, inode);
7958 if (ret) {
7959 btrfs_add_delayed_iput(inode);
7960 goto out;
7961 }
7962 clear_nlink(inode);
7963 /* One for the block groups ref */
7964 spin_lock(&block_group->lock);
7965 if (block_group->iref) {
7966 block_group->iref = 0;
7967 block_group->inode = NULL;
7968 spin_unlock(&block_group->lock);
7969 iput(inode);
7970 } else {
7971 spin_unlock(&block_group->lock);
7972 }
7973 /* One for our lookup ref */
7974 btrfs_add_delayed_iput(inode);
7975 }
7976
7977 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7978 key.offset = block_group->key.objectid;
7979 key.type = 0;
7980
7981 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7982 if (ret < 0)
7983 goto out;
7984 if (ret > 0)
7985 btrfs_release_path(path);
7986 if (ret == 0) {
7987 ret = btrfs_del_item(trans, tree_root, path);
7988 if (ret)
7989 goto out;
7990 btrfs_release_path(path);
7991 }
7992
7993 spin_lock(&root->fs_info->block_group_cache_lock);
7994 rb_erase(&block_group->cache_node,
7995 &root->fs_info->block_group_cache_tree);
7996 spin_unlock(&root->fs_info->block_group_cache_lock);
7997
7998 down_write(&block_group->space_info->groups_sem);
7999 /*
8000 * we must use list_del_init so people can check to see if they
8001 * are still on the list after taking the semaphore
8002 */
8003 list_del_init(&block_group->list);
8004 if (list_empty(&block_group->space_info->block_groups[index]))
8005 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8006 up_write(&block_group->space_info->groups_sem);
8007
8008 if (block_group->cached == BTRFS_CACHE_STARTED)
8009 wait_block_group_cache_done(block_group);
8010
8011 btrfs_remove_free_space_cache(block_group);
8012
8013 spin_lock(&block_group->space_info->lock);
8014 block_group->space_info->total_bytes -= block_group->key.offset;
8015 block_group->space_info->bytes_readonly -= block_group->key.offset;
8016 block_group->space_info->disk_total -= block_group->key.offset * factor;
8017 spin_unlock(&block_group->space_info->lock);
8018
8019 memcpy(&key, &block_group->key, sizeof(key));
8020
8021 btrfs_clear_space_info_full(root->fs_info);
8022
8023 btrfs_put_block_group(block_group);
8024 btrfs_put_block_group(block_group);
8025
8026 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8027 if (ret > 0)
8028 ret = -EIO;
8029 if (ret < 0)
8030 goto out;
8031
8032 ret = btrfs_del_item(trans, root, path);
8033out:
8034 btrfs_free_path(path);
8035 return ret;
8036}
8037
8038int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8039{
8040 struct btrfs_space_info *space_info;
8041 struct btrfs_super_block *disk_super;
8042 u64 features;
8043 u64 flags;
8044 int mixed = 0;
8045 int ret;
8046
8047 disk_super = fs_info->super_copy;
8048 if (!btrfs_super_root(disk_super))
8049 return 1;
8050
8051 features = btrfs_super_incompat_flags(disk_super);
8052 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8053 mixed = 1;
8054
8055 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8056 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8057 if (ret)
8058 goto out;
8059
8060 if (mixed) {
8061 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8062 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8063 } else {
8064 flags = BTRFS_BLOCK_GROUP_METADATA;
8065 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8066 if (ret)
8067 goto out;
8068
8069 flags = BTRFS_BLOCK_GROUP_DATA;
8070 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8071 }
8072out:
8073 return ret;
8074}
8075
8076int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8077{
8078 return unpin_extent_range(root, start, end);
8079}
8080
8081int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8082 u64 num_bytes, u64 *actual_bytes)
8083{
8084 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8085}
8086
8087int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8088{
8089 struct btrfs_fs_info *fs_info = root->fs_info;
8090 struct btrfs_block_group_cache *cache = NULL;
8091 u64 group_trimmed;
8092 u64 start;
8093 u64 end;
8094 u64 trimmed = 0;
8095 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8096 int ret = 0;
8097
8098 /*
8099 * try to trim all FS space, our block group may start from non-zero.
8100 */
8101 if (range->len == total_bytes)
8102 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8103 else
8104 cache = btrfs_lookup_block_group(fs_info, range->start);
8105
8106 while (cache) {
8107 if (cache->key.objectid >= (range->start + range->len)) {
8108 btrfs_put_block_group(cache);
8109 break;
8110 }
8111
8112 start = max(range->start, cache->key.objectid);
8113 end = min(range->start + range->len,
8114 cache->key.objectid + cache->key.offset);
8115
8116 if (end - start >= range->minlen) {
8117 if (!block_group_cache_done(cache)) {
8118 ret = cache_block_group(cache, NULL, root, 0);
8119 if (!ret)
8120 wait_block_group_cache_done(cache);
8121 }
8122 ret = btrfs_trim_block_group(cache,
8123 &group_trimmed,
8124 start,
8125 end,
8126 range->minlen);
8127
8128 trimmed += group_trimmed;
8129 if (ret) {
8130 btrfs_put_block_group(cache);
8131 break;
8132 }
8133 }
8134
8135 cache = next_block_group(fs_info->tree_root, cache);
8136 }
8137
8138 range->len = trimmed;
8139 return ret;
8140}
This page took 0.0867019999999999 seconds and 5 git commands to generate.