btrfs: Remove redundant local zero structure
[deliverable/linux.git] / fs / btrfs / extent-tree.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/pagemap.h>
20#include <linux/writeback.h>
21#include <linux/blkdev.h>
22#include <linux/sort.h>
23#include <linux/rcupdate.h>
24#include <linux/kthread.h>
25#include <linux/slab.h>
26#include <linux/ratelimit.h>
27#include <linux/percpu_counter.h>
28#include "hash.h"
29#include "ctree.h"
30#include "disk-io.h"
31#include "print-tree.h"
32#include "transaction.h"
33#include "volumes.h"
34#include "raid56.h"
35#include "locking.h"
36#include "free-space-cache.h"
37#include "math.h"
38
39#undef SCRAMBLE_DELAYED_REFS
40
41/*
42 * control flags for do_chunk_alloc's force field
43 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44 * if we really need one.
45 *
46 * CHUNK_ALLOC_LIMITED means to only try and allocate one
47 * if we have very few chunks already allocated. This is
48 * used as part of the clustering code to help make sure
49 * we have a good pool of storage to cluster in, without
50 * filling the FS with empty chunks
51 *
52 * CHUNK_ALLOC_FORCE means it must try to allocate one
53 *
54 */
55enum {
56 CHUNK_ALLOC_NO_FORCE = 0,
57 CHUNK_ALLOC_LIMITED = 1,
58 CHUNK_ALLOC_FORCE = 2,
59};
60
61/*
62 * Control how reservations are dealt with.
63 *
64 * RESERVE_FREE - freeing a reservation.
65 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66 * ENOSPC accounting
67 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68 * bytes_may_use as the ENOSPC accounting is done elsewhere
69 */
70enum {
71 RESERVE_FREE = 0,
72 RESERVE_ALLOC = 1,
73 RESERVE_ALLOC_NO_ACCOUNT = 2,
74};
75
76static int update_block_group(struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, int alloc);
78static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 u64 bytenr, u64 num_bytes, u64 parent,
81 u64 root_objectid, u64 owner_objectid,
82 u64 owner_offset, int refs_to_drop,
83 struct btrfs_delayed_extent_op *extra_op);
84static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 struct extent_buffer *leaf,
86 struct btrfs_extent_item *ei);
87static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, u64 owner, u64 offset,
91 struct btrfs_key *ins, int ref_mod);
92static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 struct btrfs_root *root,
94 u64 parent, u64 root_objectid,
95 u64 flags, struct btrfs_disk_key *key,
96 int level, struct btrfs_key *ins);
97static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 struct btrfs_root *extent_root, u64 flags,
99 int force);
100static int find_next_key(struct btrfs_path *path, int level,
101 struct btrfs_key *key);
102static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 int dump_block_groups);
104static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 u64 num_bytes, int reserve);
106static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 u64 num_bytes);
108int btrfs_pin_extent(struct btrfs_root *root,
109 u64 bytenr, u64 num_bytes, int reserved);
110
111static noinline int
112block_group_cache_done(struct btrfs_block_group_cache *cache)
113{
114 smp_mb();
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
117}
118
119static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120{
121 return (cache->flags & bits) == bits;
122}
123
124static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125{
126 atomic_inc(&cache->count);
127}
128
129void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130{
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
134 kfree(cache->free_space_ctl);
135 kfree(cache);
136 }
137}
138
139/*
140 * this adds the block group to the fs_info rb tree for the block group
141 * cache
142 */
143static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 struct btrfs_block_group_cache *block_group)
145{
146 struct rb_node **p;
147 struct rb_node *parent = NULL;
148 struct btrfs_block_group_cache *cache;
149
150 spin_lock(&info->block_group_cache_lock);
151 p = &info->block_group_cache_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 cache = rb_entry(parent, struct btrfs_block_group_cache,
156 cache_node);
157 if (block_group->key.objectid < cache->key.objectid) {
158 p = &(*p)->rb_left;
159 } else if (block_group->key.objectid > cache->key.objectid) {
160 p = &(*p)->rb_right;
161 } else {
162 spin_unlock(&info->block_group_cache_lock);
163 return -EEXIST;
164 }
165 }
166
167 rb_link_node(&block_group->cache_node, parent, p);
168 rb_insert_color(&block_group->cache_node,
169 &info->block_group_cache_tree);
170
171 if (info->first_logical_byte > block_group->key.objectid)
172 info->first_logical_byte = block_group->key.objectid;
173
174 spin_unlock(&info->block_group_cache_lock);
175
176 return 0;
177}
178
179/*
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
182 */
183static struct btrfs_block_group_cache *
184block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 int contains)
186{
187 struct btrfs_block_group_cache *cache, *ret = NULL;
188 struct rb_node *n;
189 u64 end, start;
190
191 spin_lock(&info->block_group_cache_lock);
192 n = info->block_group_cache_tree.rb_node;
193
194 while (n) {
195 cache = rb_entry(n, struct btrfs_block_group_cache,
196 cache_node);
197 end = cache->key.objectid + cache->key.offset - 1;
198 start = cache->key.objectid;
199
200 if (bytenr < start) {
201 if (!contains && (!ret || start < ret->key.objectid))
202 ret = cache;
203 n = n->rb_left;
204 } else if (bytenr > start) {
205 if (contains && bytenr <= end) {
206 ret = cache;
207 break;
208 }
209 n = n->rb_right;
210 } else {
211 ret = cache;
212 break;
213 }
214 }
215 if (ret) {
216 btrfs_get_block_group(ret);
217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 info->first_logical_byte = ret->key.objectid;
219 }
220 spin_unlock(&info->block_group_cache_lock);
221
222 return ret;
223}
224
225static int add_excluded_extent(struct btrfs_root *root,
226 u64 start, u64 num_bytes)
227{
228 u64 end = start + num_bytes - 1;
229 set_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231 set_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 return 0;
234}
235
236static void free_excluded_extents(struct btrfs_root *root,
237 struct btrfs_block_group_cache *cache)
238{
239 u64 start, end;
240
241 start = cache->key.objectid;
242 end = start + cache->key.offset - 1;
243
244 clear_extent_bits(&root->fs_info->freed_extents[0],
245 start, end, EXTENT_UPTODATE, GFP_NOFS);
246 clear_extent_bits(&root->fs_info->freed_extents[1],
247 start, end, EXTENT_UPTODATE, GFP_NOFS);
248}
249
250static int exclude_super_stripes(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
252{
253 u64 bytenr;
254 u64 *logical;
255 int stripe_len;
256 int i, nr, ret;
257
258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 cache->bytes_super += stripe_len;
261 ret = add_excluded_extent(root, cache->key.objectid,
262 stripe_len);
263 if (ret)
264 return ret;
265 }
266
267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 bytenr = btrfs_sb_offset(i);
269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 cache->key.objectid, bytenr,
271 0, &logical, &nr, &stripe_len);
272 if (ret)
273 return ret;
274
275 while (nr--) {
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
301 }
302
303 kfree(logical);
304 }
305 return 0;
306}
307
308static struct btrfs_caching_control *
309get_caching_control(struct btrfs_block_group_cache *cache)
310{
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
314 if (cache->cached != BTRFS_CACHE_STARTED) {
315 spin_unlock(&cache->lock);
316 return NULL;
317 }
318
319 /* We're loading it the fast way, so we don't have a caching_ctl. */
320 if (!cache->caching_ctl) {
321 spin_unlock(&cache->lock);
322 return NULL;
323 }
324
325 ctl = cache->caching_ctl;
326 atomic_inc(&ctl->count);
327 spin_unlock(&cache->lock);
328 return ctl;
329}
330
331static void put_caching_control(struct btrfs_caching_control *ctl)
332{
333 if (atomic_dec_and_test(&ctl->count))
334 kfree(ctl);
335}
336
337/*
338 * this is only called by cache_block_group, since we could have freed extents
339 * we need to check the pinned_extents for any extents that can't be used yet
340 * since their free space will be released as soon as the transaction commits.
341 */
342static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
343 struct btrfs_fs_info *info, u64 start, u64 end)
344{
345 u64 extent_start, extent_end, size, total_added = 0;
346 int ret;
347
348 while (start < end) {
349 ret = find_first_extent_bit(info->pinned_extents, start,
350 &extent_start, &extent_end,
351 EXTENT_DIRTY | EXTENT_UPTODATE,
352 NULL);
353 if (ret)
354 break;
355
356 if (extent_start <= start) {
357 start = extent_end + 1;
358 } else if (extent_start > start && extent_start < end) {
359 size = extent_start - start;
360 total_added += size;
361 ret = btrfs_add_free_space(block_group, start,
362 size);
363 BUG_ON(ret); /* -ENOMEM or logic error */
364 start = extent_end + 1;
365 } else {
366 break;
367 }
368 }
369
370 if (start < end) {
371 size = end - start;
372 total_added += size;
373 ret = btrfs_add_free_space(block_group, start, size);
374 BUG_ON(ret); /* -ENOMEM or logic error */
375 }
376
377 return total_added;
378}
379
380static noinline void caching_thread(struct btrfs_work *work)
381{
382 struct btrfs_block_group_cache *block_group;
383 struct btrfs_fs_info *fs_info;
384 struct btrfs_caching_control *caching_ctl;
385 struct btrfs_root *extent_root;
386 struct btrfs_path *path;
387 struct extent_buffer *leaf;
388 struct btrfs_key key;
389 u64 total_found = 0;
390 u64 last = 0;
391 u32 nritems;
392 int ret = -ENOMEM;
393
394 caching_ctl = container_of(work, struct btrfs_caching_control, work);
395 block_group = caching_ctl->block_group;
396 fs_info = block_group->fs_info;
397 extent_root = fs_info->extent_root;
398
399 path = btrfs_alloc_path();
400 if (!path)
401 goto out;
402
403 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
404
405 /*
406 * We don't want to deadlock with somebody trying to allocate a new
407 * extent for the extent root while also trying to search the extent
408 * root to add free space. So we skip locking and search the commit
409 * root, since its read-only
410 */
411 path->skip_locking = 1;
412 path->search_commit_root = 1;
413 path->reada = 1;
414
415 key.objectid = last;
416 key.offset = 0;
417 key.type = BTRFS_EXTENT_ITEM_KEY;
418again:
419 mutex_lock(&caching_ctl->mutex);
420 /* need to make sure the commit_root doesn't disappear */
421 down_read(&fs_info->extent_commit_sem);
422
423next:
424 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
425 if (ret < 0)
426 goto err;
427
428 leaf = path->nodes[0];
429 nritems = btrfs_header_nritems(leaf);
430
431 while (1) {
432 if (btrfs_fs_closing(fs_info) > 1) {
433 last = (u64)-1;
434 break;
435 }
436
437 if (path->slots[0] < nritems) {
438 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
439 } else {
440 ret = find_next_key(path, 0, &key);
441 if (ret)
442 break;
443
444 if (need_resched()) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->extent_commit_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->leafsize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512err:
513 btrfs_free_path(path);
514 up_read(&fs_info->extent_commit_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530}
531
532static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534{
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 caching_ctl->work.func = caching_thread;
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
583 return 0;
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
589
590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 ret = load_free_space_cache(fs_info, cache);
592
593 spin_lock(&cache->lock);
594 if (ret == 1) {
595 cache->caching_ctl = NULL;
596 cache->cached = BTRFS_CACHE_FINISHED;
597 cache->last_byte_to_unpin = (u64)-1;
598 } else {
599 if (load_cache_only) {
600 cache->caching_ctl = NULL;
601 cache->cached = BTRFS_CACHE_NO;
602 } else {
603 cache->cached = BTRFS_CACHE_STARTED;
604 }
605 }
606 spin_unlock(&cache->lock);
607 wake_up(&caching_ctl->wait);
608 if (ret == 1) {
609 put_caching_control(caching_ctl);
610 free_excluded_extents(fs_info->extent_root, cache);
611 return 0;
612 }
613 } else {
614 /*
615 * We are not going to do the fast caching, set cached to the
616 * appropriate value and wakeup any waiters.
617 */
618 spin_lock(&cache->lock);
619 if (load_cache_only) {
620 cache->caching_ctl = NULL;
621 cache->cached = BTRFS_CACHE_NO;
622 } else {
623 cache->cached = BTRFS_CACHE_STARTED;
624 }
625 spin_unlock(&cache->lock);
626 wake_up(&caching_ctl->wait);
627 }
628
629 if (load_cache_only) {
630 put_caching_control(caching_ctl);
631 return 0;
632 }
633
634 down_write(&fs_info->extent_commit_sem);
635 atomic_inc(&caching_ctl->count);
636 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
637 up_write(&fs_info->extent_commit_sem);
638
639 btrfs_get_block_group(cache);
640
641 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
642
643 return ret;
644}
645
646/*
647 * return the block group that starts at or after bytenr
648 */
649static struct btrfs_block_group_cache *
650btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
651{
652 struct btrfs_block_group_cache *cache;
653
654 cache = block_group_cache_tree_search(info, bytenr, 0);
655
656 return cache;
657}
658
659/*
660 * return the block group that contains the given bytenr
661 */
662struct btrfs_block_group_cache *btrfs_lookup_block_group(
663 struct btrfs_fs_info *info,
664 u64 bytenr)
665{
666 struct btrfs_block_group_cache *cache;
667
668 cache = block_group_cache_tree_search(info, bytenr, 1);
669
670 return cache;
671}
672
673static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
674 u64 flags)
675{
676 struct list_head *head = &info->space_info;
677 struct btrfs_space_info *found;
678
679 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
680
681 rcu_read_lock();
682 list_for_each_entry_rcu(found, head, list) {
683 if (found->flags & flags) {
684 rcu_read_unlock();
685 return found;
686 }
687 }
688 rcu_read_unlock();
689 return NULL;
690}
691
692/*
693 * after adding space to the filesystem, we need to clear the full flags
694 * on all the space infos.
695 */
696void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
697{
698 struct list_head *head = &info->space_info;
699 struct btrfs_space_info *found;
700
701 rcu_read_lock();
702 list_for_each_entry_rcu(found, head, list)
703 found->full = 0;
704 rcu_read_unlock();
705}
706
707/* simple helper to search for an existing extent at a given offset */
708int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
709{
710 int ret;
711 struct btrfs_key key;
712 struct btrfs_path *path;
713
714 path = btrfs_alloc_path();
715 if (!path)
716 return -ENOMEM;
717
718 key.objectid = start;
719 key.offset = len;
720 key.type = BTRFS_EXTENT_ITEM_KEY;
721 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
722 0, 0);
723 if (ret > 0) {
724 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
725 if (key.objectid == start &&
726 key.type == BTRFS_METADATA_ITEM_KEY)
727 ret = 0;
728 }
729 btrfs_free_path(path);
730 return ret;
731}
732
733/*
734 * helper function to lookup reference count and flags of a tree block.
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
744 u64 offset, int metadata, u64 *refs, u64 *flags)
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 offset = root->leafsize;
763 metadata = 0;
764 }
765
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
770 if (metadata) {
771 key.objectid = bytenr;
772 key.type = BTRFS_METADATA_ITEM_KEY;
773 key.offset = offset;
774 } else {
775 key.objectid = bytenr;
776 key.type = BTRFS_EXTENT_ITEM_KEY;
777 key.offset = offset;
778 }
779
780 if (!trans) {
781 path->skip_locking = 1;
782 path->search_commit_root = 1;
783 }
784again:
785 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
786 &key, path, 0, 0);
787 if (ret < 0)
788 goto out_free;
789
790 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
791 metadata = 0;
792 if (path->slots[0]) {
793 path->slots[0]--;
794 btrfs_item_key_to_cpu(path->nodes[0], &key,
795 path->slots[0]);
796 if (key.objectid == bytenr &&
797 key.type == BTRFS_EXTENT_ITEM_KEY &&
798 key.offset == root->leafsize)
799 ret = 0;
800 }
801 if (ret) {
802 key.objectid = bytenr;
803 key.type = BTRFS_EXTENT_ITEM_KEY;
804 key.offset = root->leafsize;
805 btrfs_release_path(path);
806 goto again;
807 }
808 }
809
810 if (ret == 0) {
811 leaf = path->nodes[0];
812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 if (item_size >= sizeof(*ei)) {
814 ei = btrfs_item_ptr(leaf, path->slots[0],
815 struct btrfs_extent_item);
816 num_refs = btrfs_extent_refs(leaf, ei);
817 extent_flags = btrfs_extent_flags(leaf, ei);
818 } else {
819#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 struct btrfs_extent_item_v0 *ei0;
821 BUG_ON(item_size != sizeof(*ei0));
822 ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 struct btrfs_extent_item_v0);
824 num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 /* FIXME: this isn't correct for data */
826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827#else
828 BUG();
829#endif
830 }
831 BUG_ON(num_refs == 0);
832 } else {
833 num_refs = 0;
834 extent_flags = 0;
835 ret = 0;
836 }
837
838 if (!trans)
839 goto out;
840
841 delayed_refs = &trans->transaction->delayed_refs;
842 spin_lock(&delayed_refs->lock);
843 head = btrfs_find_delayed_ref_head(trans, bytenr);
844 if (head) {
845 if (!mutex_trylock(&head->mutex)) {
846 atomic_inc(&head->node.refs);
847 spin_unlock(&delayed_refs->lock);
848
849 btrfs_release_path(path);
850
851 /*
852 * Mutex was contended, block until it's released and try
853 * again
854 */
855 mutex_lock(&head->mutex);
856 mutex_unlock(&head->mutex);
857 btrfs_put_delayed_ref(&head->node);
858 goto again;
859 }
860 if (head->extent_op && head->extent_op->update_flags)
861 extent_flags |= head->extent_op->flags_to_set;
862 else
863 BUG_ON(num_refs == 0);
864
865 num_refs += head->node.ref_mod;
866 mutex_unlock(&head->mutex);
867 }
868 spin_unlock(&delayed_refs->lock);
869out:
870 WARN_ON(num_refs == 0);
871 if (refs)
872 *refs = num_refs;
873 if (flags)
874 *flags = extent_flags;
875out_free:
876 btrfs_free_path(path);
877 return ret;
878}
879
880/*
881 * Back reference rules. Back refs have three main goals:
882 *
883 * 1) differentiate between all holders of references to an extent so that
884 * when a reference is dropped we can make sure it was a valid reference
885 * before freeing the extent.
886 *
887 * 2) Provide enough information to quickly find the holders of an extent
888 * if we notice a given block is corrupted or bad.
889 *
890 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
891 * maintenance. This is actually the same as #2, but with a slightly
892 * different use case.
893 *
894 * There are two kinds of back refs. The implicit back refs is optimized
895 * for pointers in non-shared tree blocks. For a given pointer in a block,
896 * back refs of this kind provide information about the block's owner tree
897 * and the pointer's key. These information allow us to find the block by
898 * b-tree searching. The full back refs is for pointers in tree blocks not
899 * referenced by their owner trees. The location of tree block is recorded
900 * in the back refs. Actually the full back refs is generic, and can be
901 * used in all cases the implicit back refs is used. The major shortcoming
902 * of the full back refs is its overhead. Every time a tree block gets
903 * COWed, we have to update back refs entry for all pointers in it.
904 *
905 * For a newly allocated tree block, we use implicit back refs for
906 * pointers in it. This means most tree related operations only involve
907 * implicit back refs. For a tree block created in old transaction, the
908 * only way to drop a reference to it is COW it. So we can detect the
909 * event that tree block loses its owner tree's reference and do the
910 * back refs conversion.
911 *
912 * When a tree block is COW'd through a tree, there are four cases:
913 *
914 * The reference count of the block is one and the tree is the block's
915 * owner tree. Nothing to do in this case.
916 *
917 * The reference count of the block is one and the tree is not the
918 * block's owner tree. In this case, full back refs is used for pointers
919 * in the block. Remove these full back refs, add implicit back refs for
920 * every pointers in the new block.
921 *
922 * The reference count of the block is greater than one and the tree is
923 * the block's owner tree. In this case, implicit back refs is used for
924 * pointers in the block. Add full back refs for every pointers in the
925 * block, increase lower level extents' reference counts. The original
926 * implicit back refs are entailed to the new block.
927 *
928 * The reference count of the block is greater than one and the tree is
929 * not the block's owner tree. Add implicit back refs for every pointer in
930 * the new block, increase lower level extents' reference count.
931 *
932 * Back Reference Key composing:
933 *
934 * The key objectid corresponds to the first byte in the extent,
935 * The key type is used to differentiate between types of back refs.
936 * There are different meanings of the key offset for different types
937 * of back refs.
938 *
939 * File extents can be referenced by:
940 *
941 * - multiple snapshots, subvolumes, or different generations in one subvol
942 * - different files inside a single subvolume
943 * - different offsets inside a file (bookend extents in file.c)
944 *
945 * The extent ref structure for the implicit back refs has fields for:
946 *
947 * - Objectid of the subvolume root
948 * - objectid of the file holding the reference
949 * - original offset in the file
950 * - how many bookend extents
951 *
952 * The key offset for the implicit back refs is hash of the first
953 * three fields.
954 *
955 * The extent ref structure for the full back refs has field for:
956 *
957 * - number of pointers in the tree leaf
958 *
959 * The key offset for the implicit back refs is the first byte of
960 * the tree leaf
961 *
962 * When a file extent is allocated, The implicit back refs is used.
963 * the fields are filled in:
964 *
965 * (root_key.objectid, inode objectid, offset in file, 1)
966 *
967 * When a file extent is removed file truncation, we find the
968 * corresponding implicit back refs and check the following fields:
969 *
970 * (btrfs_header_owner(leaf), inode objectid, offset in file)
971 *
972 * Btree extents can be referenced by:
973 *
974 * - Different subvolumes
975 *
976 * Both the implicit back refs and the full back refs for tree blocks
977 * only consist of key. The key offset for the implicit back refs is
978 * objectid of block's owner tree. The key offset for the full back refs
979 * is the first byte of parent block.
980 *
981 * When implicit back refs is used, information about the lowest key and
982 * level of the tree block are required. These information are stored in
983 * tree block info structure.
984 */
985
986#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
987static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
988 struct btrfs_root *root,
989 struct btrfs_path *path,
990 u64 owner, u32 extra_size)
991{
992 struct btrfs_extent_item *item;
993 struct btrfs_extent_item_v0 *ei0;
994 struct btrfs_extent_ref_v0 *ref0;
995 struct btrfs_tree_block_info *bi;
996 struct extent_buffer *leaf;
997 struct btrfs_key key;
998 struct btrfs_key found_key;
999 u32 new_size = sizeof(*item);
1000 u64 refs;
1001 int ret;
1002
1003 leaf = path->nodes[0];
1004 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1005
1006 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1007 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1008 struct btrfs_extent_item_v0);
1009 refs = btrfs_extent_refs_v0(leaf, ei0);
1010
1011 if (owner == (u64)-1) {
1012 while (1) {
1013 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1014 ret = btrfs_next_leaf(root, path);
1015 if (ret < 0)
1016 return ret;
1017 BUG_ON(ret > 0); /* Corruption */
1018 leaf = path->nodes[0];
1019 }
1020 btrfs_item_key_to_cpu(leaf, &found_key,
1021 path->slots[0]);
1022 BUG_ON(key.objectid != found_key.objectid);
1023 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1024 path->slots[0]++;
1025 continue;
1026 }
1027 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1028 struct btrfs_extent_ref_v0);
1029 owner = btrfs_ref_objectid_v0(leaf, ref0);
1030 break;
1031 }
1032 }
1033 btrfs_release_path(path);
1034
1035 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1036 new_size += sizeof(*bi);
1037
1038 new_size -= sizeof(*ei0);
1039 ret = btrfs_search_slot(trans, root, &key, path,
1040 new_size + extra_size, 1);
1041 if (ret < 0)
1042 return ret;
1043 BUG_ON(ret); /* Corruption */
1044
1045 btrfs_extend_item(root, path, new_size);
1046
1047 leaf = path->nodes[0];
1048 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1049 btrfs_set_extent_refs(leaf, item, refs);
1050 /* FIXME: get real generation */
1051 btrfs_set_extent_generation(leaf, item, 0);
1052 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1053 btrfs_set_extent_flags(leaf, item,
1054 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1055 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1056 bi = (struct btrfs_tree_block_info *)(item + 1);
1057 /* FIXME: get first key of the block */
1058 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1059 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1060 } else {
1061 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1062 }
1063 btrfs_mark_buffer_dirty(leaf);
1064 return 0;
1065}
1066#endif
1067
1068static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1069{
1070 u32 high_crc = ~(u32)0;
1071 u32 low_crc = ~(u32)0;
1072 __le64 lenum;
1073
1074 lenum = cpu_to_le64(root_objectid);
1075 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1076 lenum = cpu_to_le64(owner);
1077 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1078 lenum = cpu_to_le64(offset);
1079 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1080
1081 return ((u64)high_crc << 31) ^ (u64)low_crc;
1082}
1083
1084static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref)
1086{
1087 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1088 btrfs_extent_data_ref_objectid(leaf, ref),
1089 btrfs_extent_data_ref_offset(leaf, ref));
1090}
1091
1092static int match_extent_data_ref(struct extent_buffer *leaf,
1093 struct btrfs_extent_data_ref *ref,
1094 u64 root_objectid, u64 owner, u64 offset)
1095{
1096 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1097 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1098 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1099 return 0;
1100 return 1;
1101}
1102
1103static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1104 struct btrfs_root *root,
1105 struct btrfs_path *path,
1106 u64 bytenr, u64 parent,
1107 u64 root_objectid,
1108 u64 owner, u64 offset)
1109{
1110 struct btrfs_key key;
1111 struct btrfs_extent_data_ref *ref;
1112 struct extent_buffer *leaf;
1113 u32 nritems;
1114 int ret;
1115 int recow;
1116 int err = -ENOENT;
1117
1118 key.objectid = bytenr;
1119 if (parent) {
1120 key.type = BTRFS_SHARED_DATA_REF_KEY;
1121 key.offset = parent;
1122 } else {
1123 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1124 key.offset = hash_extent_data_ref(root_objectid,
1125 owner, offset);
1126 }
1127again:
1128 recow = 0;
1129 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1130 if (ret < 0) {
1131 err = ret;
1132 goto fail;
1133 }
1134
1135 if (parent) {
1136 if (!ret)
1137 return 0;
1138#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1139 key.type = BTRFS_EXTENT_REF_V0_KEY;
1140 btrfs_release_path(path);
1141 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1142 if (ret < 0) {
1143 err = ret;
1144 goto fail;
1145 }
1146 if (!ret)
1147 return 0;
1148#endif
1149 goto fail;
1150 }
1151
1152 leaf = path->nodes[0];
1153 nritems = btrfs_header_nritems(leaf);
1154 while (1) {
1155 if (path->slots[0] >= nritems) {
1156 ret = btrfs_next_leaf(root, path);
1157 if (ret < 0)
1158 err = ret;
1159 if (ret)
1160 goto fail;
1161
1162 leaf = path->nodes[0];
1163 nritems = btrfs_header_nritems(leaf);
1164 recow = 1;
1165 }
1166
1167 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1168 if (key.objectid != bytenr ||
1169 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1170 goto fail;
1171
1172 ref = btrfs_item_ptr(leaf, path->slots[0],
1173 struct btrfs_extent_data_ref);
1174
1175 if (match_extent_data_ref(leaf, ref, root_objectid,
1176 owner, offset)) {
1177 if (recow) {
1178 btrfs_release_path(path);
1179 goto again;
1180 }
1181 err = 0;
1182 break;
1183 }
1184 path->slots[0]++;
1185 }
1186fail:
1187 return err;
1188}
1189
1190static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1191 struct btrfs_root *root,
1192 struct btrfs_path *path,
1193 u64 bytenr, u64 parent,
1194 u64 root_objectid, u64 owner,
1195 u64 offset, int refs_to_add)
1196{
1197 struct btrfs_key key;
1198 struct extent_buffer *leaf;
1199 u32 size;
1200 u32 num_refs;
1201 int ret;
1202
1203 key.objectid = bytenr;
1204 if (parent) {
1205 key.type = BTRFS_SHARED_DATA_REF_KEY;
1206 key.offset = parent;
1207 size = sizeof(struct btrfs_shared_data_ref);
1208 } else {
1209 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1210 key.offset = hash_extent_data_ref(root_objectid,
1211 owner, offset);
1212 size = sizeof(struct btrfs_extent_data_ref);
1213 }
1214
1215 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1216 if (ret && ret != -EEXIST)
1217 goto fail;
1218
1219 leaf = path->nodes[0];
1220 if (parent) {
1221 struct btrfs_shared_data_ref *ref;
1222 ref = btrfs_item_ptr(leaf, path->slots[0],
1223 struct btrfs_shared_data_ref);
1224 if (ret == 0) {
1225 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1226 } else {
1227 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1228 num_refs += refs_to_add;
1229 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1230 }
1231 } else {
1232 struct btrfs_extent_data_ref *ref;
1233 while (ret == -EEXIST) {
1234 ref = btrfs_item_ptr(leaf, path->slots[0],
1235 struct btrfs_extent_data_ref);
1236 if (match_extent_data_ref(leaf, ref, root_objectid,
1237 owner, offset))
1238 break;
1239 btrfs_release_path(path);
1240 key.offset++;
1241 ret = btrfs_insert_empty_item(trans, root, path, &key,
1242 size);
1243 if (ret && ret != -EEXIST)
1244 goto fail;
1245
1246 leaf = path->nodes[0];
1247 }
1248 ref = btrfs_item_ptr(leaf, path->slots[0],
1249 struct btrfs_extent_data_ref);
1250 if (ret == 0) {
1251 btrfs_set_extent_data_ref_root(leaf, ref,
1252 root_objectid);
1253 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1254 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1255 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1256 } else {
1257 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1258 num_refs += refs_to_add;
1259 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1260 }
1261 }
1262 btrfs_mark_buffer_dirty(leaf);
1263 ret = 0;
1264fail:
1265 btrfs_release_path(path);
1266 return ret;
1267}
1268
1269static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *root,
1271 struct btrfs_path *path,
1272 int refs_to_drop)
1273{
1274 struct btrfs_key key;
1275 struct btrfs_extent_data_ref *ref1 = NULL;
1276 struct btrfs_shared_data_ref *ref2 = NULL;
1277 struct extent_buffer *leaf;
1278 u32 num_refs = 0;
1279 int ret = 0;
1280
1281 leaf = path->nodes[0];
1282 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1283
1284 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1285 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_data_ref);
1287 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1288 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1289 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_shared_data_ref);
1291 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1292#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1293 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1294 struct btrfs_extent_ref_v0 *ref0;
1295 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1296 struct btrfs_extent_ref_v0);
1297 num_refs = btrfs_ref_count_v0(leaf, ref0);
1298#endif
1299 } else {
1300 BUG();
1301 }
1302
1303 BUG_ON(num_refs < refs_to_drop);
1304 num_refs -= refs_to_drop;
1305
1306 if (num_refs == 0) {
1307 ret = btrfs_del_item(trans, root, path);
1308 } else {
1309 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1310 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1311 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1312 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1313#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1314 else {
1315 struct btrfs_extent_ref_v0 *ref0;
1316 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1317 struct btrfs_extent_ref_v0);
1318 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1319 }
1320#endif
1321 btrfs_mark_buffer_dirty(leaf);
1322 }
1323 return ret;
1324}
1325
1326static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1327 struct btrfs_path *path,
1328 struct btrfs_extent_inline_ref *iref)
1329{
1330 struct btrfs_key key;
1331 struct extent_buffer *leaf;
1332 struct btrfs_extent_data_ref *ref1;
1333 struct btrfs_shared_data_ref *ref2;
1334 u32 num_refs = 0;
1335
1336 leaf = path->nodes[0];
1337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1338 if (iref) {
1339 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1340 BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else {
1344 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1345 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1346 }
1347 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1348 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_extent_data_ref);
1350 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1351 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1352 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_shared_data_ref);
1354 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1355#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1356 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1357 struct btrfs_extent_ref_v0 *ref0;
1358 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1359 struct btrfs_extent_ref_v0);
1360 num_refs = btrfs_ref_count_v0(leaf, ref0);
1361#endif
1362 } else {
1363 WARN_ON(1);
1364 }
1365 return num_refs;
1366}
1367
1368static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root,
1370 struct btrfs_path *path,
1371 u64 bytenr, u64 parent,
1372 u64 root_objectid)
1373{
1374 struct btrfs_key key;
1375 int ret;
1376
1377 key.objectid = bytenr;
1378 if (parent) {
1379 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 key.offset = parent;
1381 } else {
1382 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 key.offset = root_objectid;
1384 }
1385
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1390 if (ret == -ENOENT && parent) {
1391 btrfs_release_path(path);
1392 key.type = BTRFS_EXTENT_REF_V0_KEY;
1393 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1394 if (ret > 0)
1395 ret = -ENOENT;
1396 }
1397#endif
1398 return ret;
1399}
1400
1401static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_path *path,
1404 u64 bytenr, u64 parent,
1405 u64 root_objectid)
1406{
1407 struct btrfs_key key;
1408 int ret;
1409
1410 key.objectid = bytenr;
1411 if (parent) {
1412 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1413 key.offset = parent;
1414 } else {
1415 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1416 key.offset = root_objectid;
1417 }
1418
1419 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1420 btrfs_release_path(path);
1421 return ret;
1422}
1423
1424static inline int extent_ref_type(u64 parent, u64 owner)
1425{
1426 int type;
1427 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1428 if (parent > 0)
1429 type = BTRFS_SHARED_BLOCK_REF_KEY;
1430 else
1431 type = BTRFS_TREE_BLOCK_REF_KEY;
1432 } else {
1433 if (parent > 0)
1434 type = BTRFS_SHARED_DATA_REF_KEY;
1435 else
1436 type = BTRFS_EXTENT_DATA_REF_KEY;
1437 }
1438 return type;
1439}
1440
1441static int find_next_key(struct btrfs_path *path, int level,
1442 struct btrfs_key *key)
1443
1444{
1445 for (; level < BTRFS_MAX_LEVEL; level++) {
1446 if (!path->nodes[level])
1447 break;
1448 if (path->slots[level] + 1 >=
1449 btrfs_header_nritems(path->nodes[level]))
1450 continue;
1451 if (level == 0)
1452 btrfs_item_key_to_cpu(path->nodes[level], key,
1453 path->slots[level] + 1);
1454 else
1455 btrfs_node_key_to_cpu(path->nodes[level], key,
1456 path->slots[level] + 1);
1457 return 0;
1458 }
1459 return 1;
1460}
1461
1462/*
1463 * look for inline back ref. if back ref is found, *ref_ret is set
1464 * to the address of inline back ref, and 0 is returned.
1465 *
1466 * if back ref isn't found, *ref_ret is set to the address where it
1467 * should be inserted, and -ENOENT is returned.
1468 *
1469 * if insert is true and there are too many inline back refs, the path
1470 * points to the extent item, and -EAGAIN is returned.
1471 *
1472 * NOTE: inline back refs are ordered in the same way that back ref
1473 * items in the tree are ordered.
1474 */
1475static noinline_for_stack
1476int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1477 struct btrfs_root *root,
1478 struct btrfs_path *path,
1479 struct btrfs_extent_inline_ref **ref_ret,
1480 u64 bytenr, u64 num_bytes,
1481 u64 parent, u64 root_objectid,
1482 u64 owner, u64 offset, int insert)
1483{
1484 struct btrfs_key key;
1485 struct extent_buffer *leaf;
1486 struct btrfs_extent_item *ei;
1487 struct btrfs_extent_inline_ref *iref;
1488 u64 flags;
1489 u64 item_size;
1490 unsigned long ptr;
1491 unsigned long end;
1492 int extra_size;
1493 int type;
1494 int want;
1495 int ret;
1496 int err = 0;
1497 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1498 SKINNY_METADATA);
1499
1500 key.objectid = bytenr;
1501 key.type = BTRFS_EXTENT_ITEM_KEY;
1502 key.offset = num_bytes;
1503
1504 want = extent_ref_type(parent, owner);
1505 if (insert) {
1506 extra_size = btrfs_extent_inline_ref_size(want);
1507 path->keep_locks = 1;
1508 } else
1509 extra_size = -1;
1510
1511 /*
1512 * Owner is our parent level, so we can just add one to get the level
1513 * for the block we are interested in.
1514 */
1515 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1516 key.type = BTRFS_METADATA_ITEM_KEY;
1517 key.offset = owner;
1518 }
1519
1520again:
1521 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1522 if (ret < 0) {
1523 err = ret;
1524 goto out;
1525 }
1526
1527 /*
1528 * We may be a newly converted file system which still has the old fat
1529 * extent entries for metadata, so try and see if we have one of those.
1530 */
1531 if (ret > 0 && skinny_metadata) {
1532 skinny_metadata = false;
1533 if (path->slots[0]) {
1534 path->slots[0]--;
1535 btrfs_item_key_to_cpu(path->nodes[0], &key,
1536 path->slots[0]);
1537 if (key.objectid == bytenr &&
1538 key.type == BTRFS_EXTENT_ITEM_KEY &&
1539 key.offset == num_bytes)
1540 ret = 0;
1541 }
1542 if (ret) {
1543 key.type = BTRFS_EXTENT_ITEM_KEY;
1544 key.offset = num_bytes;
1545 btrfs_release_path(path);
1546 goto again;
1547 }
1548 }
1549
1550 if (ret && !insert) {
1551 err = -ENOENT;
1552 goto out;
1553 } else if (ret) {
1554 err = -EIO;
1555 WARN_ON(1);
1556 goto out;
1557 }
1558
1559 leaf = path->nodes[0];
1560 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1561#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1562 if (item_size < sizeof(*ei)) {
1563 if (!insert) {
1564 err = -ENOENT;
1565 goto out;
1566 }
1567 ret = convert_extent_item_v0(trans, root, path, owner,
1568 extra_size);
1569 if (ret < 0) {
1570 err = ret;
1571 goto out;
1572 }
1573 leaf = path->nodes[0];
1574 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1575 }
1576#endif
1577 BUG_ON(item_size < sizeof(*ei));
1578
1579 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1580 flags = btrfs_extent_flags(leaf, ei);
1581
1582 ptr = (unsigned long)(ei + 1);
1583 end = (unsigned long)ei + item_size;
1584
1585 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1586 ptr += sizeof(struct btrfs_tree_block_info);
1587 BUG_ON(ptr > end);
1588 }
1589
1590 err = -ENOENT;
1591 while (1) {
1592 if (ptr >= end) {
1593 WARN_ON(ptr > end);
1594 break;
1595 }
1596 iref = (struct btrfs_extent_inline_ref *)ptr;
1597 type = btrfs_extent_inline_ref_type(leaf, iref);
1598 if (want < type)
1599 break;
1600 if (want > type) {
1601 ptr += btrfs_extent_inline_ref_size(type);
1602 continue;
1603 }
1604
1605 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1606 struct btrfs_extent_data_ref *dref;
1607 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1608 if (match_extent_data_ref(leaf, dref, root_objectid,
1609 owner, offset)) {
1610 err = 0;
1611 break;
1612 }
1613 if (hash_extent_data_ref_item(leaf, dref) <
1614 hash_extent_data_ref(root_objectid, owner, offset))
1615 break;
1616 } else {
1617 u64 ref_offset;
1618 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1619 if (parent > 0) {
1620 if (parent == ref_offset) {
1621 err = 0;
1622 break;
1623 }
1624 if (ref_offset < parent)
1625 break;
1626 } else {
1627 if (root_objectid == ref_offset) {
1628 err = 0;
1629 break;
1630 }
1631 if (ref_offset < root_objectid)
1632 break;
1633 }
1634 }
1635 ptr += btrfs_extent_inline_ref_size(type);
1636 }
1637 if (err == -ENOENT && insert) {
1638 if (item_size + extra_size >=
1639 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1640 err = -EAGAIN;
1641 goto out;
1642 }
1643 /*
1644 * To add new inline back ref, we have to make sure
1645 * there is no corresponding back ref item.
1646 * For simplicity, we just do not add new inline back
1647 * ref if there is any kind of item for this block
1648 */
1649 if (find_next_key(path, 0, &key) == 0 &&
1650 key.objectid == bytenr &&
1651 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1652 err = -EAGAIN;
1653 goto out;
1654 }
1655 }
1656 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1657out:
1658 if (insert) {
1659 path->keep_locks = 0;
1660 btrfs_unlock_up_safe(path, 1);
1661 }
1662 return err;
1663}
1664
1665/*
1666 * helper to add new inline back ref
1667 */
1668static noinline_for_stack
1669void setup_inline_extent_backref(struct btrfs_root *root,
1670 struct btrfs_path *path,
1671 struct btrfs_extent_inline_ref *iref,
1672 u64 parent, u64 root_objectid,
1673 u64 owner, u64 offset, int refs_to_add,
1674 struct btrfs_delayed_extent_op *extent_op)
1675{
1676 struct extent_buffer *leaf;
1677 struct btrfs_extent_item *ei;
1678 unsigned long ptr;
1679 unsigned long end;
1680 unsigned long item_offset;
1681 u64 refs;
1682 int size;
1683 int type;
1684
1685 leaf = path->nodes[0];
1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 item_offset = (unsigned long)iref - (unsigned long)ei;
1688
1689 type = extent_ref_type(parent, owner);
1690 size = btrfs_extent_inline_ref_size(type);
1691
1692 btrfs_extend_item(root, path, size);
1693
1694 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1695 refs = btrfs_extent_refs(leaf, ei);
1696 refs += refs_to_add;
1697 btrfs_set_extent_refs(leaf, ei, refs);
1698 if (extent_op)
1699 __run_delayed_extent_op(extent_op, leaf, ei);
1700
1701 ptr = (unsigned long)ei + item_offset;
1702 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1703 if (ptr < end - size)
1704 memmove_extent_buffer(leaf, ptr + size, ptr,
1705 end - size - ptr);
1706
1707 iref = (struct btrfs_extent_inline_ref *)ptr;
1708 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1709 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1710 struct btrfs_extent_data_ref *dref;
1711 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1712 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1713 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1714 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1715 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1716 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1717 struct btrfs_shared_data_ref *sref;
1718 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1719 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1720 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1721 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1722 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1723 } else {
1724 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1725 }
1726 btrfs_mark_buffer_dirty(leaf);
1727}
1728
1729static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1730 struct btrfs_root *root,
1731 struct btrfs_path *path,
1732 struct btrfs_extent_inline_ref **ref_ret,
1733 u64 bytenr, u64 num_bytes, u64 parent,
1734 u64 root_objectid, u64 owner, u64 offset)
1735{
1736 int ret;
1737
1738 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1739 bytenr, num_bytes, parent,
1740 root_objectid, owner, offset, 0);
1741 if (ret != -ENOENT)
1742 return ret;
1743
1744 btrfs_release_path(path);
1745 *ref_ret = NULL;
1746
1747 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1748 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1749 root_objectid);
1750 } else {
1751 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1752 root_objectid, owner, offset);
1753 }
1754 return ret;
1755}
1756
1757/*
1758 * helper to update/remove inline back ref
1759 */
1760static noinline_for_stack
1761void update_inline_extent_backref(struct btrfs_root *root,
1762 struct btrfs_path *path,
1763 struct btrfs_extent_inline_ref *iref,
1764 int refs_to_mod,
1765 struct btrfs_delayed_extent_op *extent_op)
1766{
1767 struct extent_buffer *leaf;
1768 struct btrfs_extent_item *ei;
1769 struct btrfs_extent_data_ref *dref = NULL;
1770 struct btrfs_shared_data_ref *sref = NULL;
1771 unsigned long ptr;
1772 unsigned long end;
1773 u32 item_size;
1774 int size;
1775 int type;
1776 u64 refs;
1777
1778 leaf = path->nodes[0];
1779 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1780 refs = btrfs_extent_refs(leaf, ei);
1781 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1782 refs += refs_to_mod;
1783 btrfs_set_extent_refs(leaf, ei, refs);
1784 if (extent_op)
1785 __run_delayed_extent_op(extent_op, leaf, ei);
1786
1787 type = btrfs_extent_inline_ref_type(leaf, iref);
1788
1789 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1790 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1791 refs = btrfs_extent_data_ref_count(leaf, dref);
1792 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1793 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1794 refs = btrfs_shared_data_ref_count(leaf, sref);
1795 } else {
1796 refs = 1;
1797 BUG_ON(refs_to_mod != -1);
1798 }
1799
1800 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1801 refs += refs_to_mod;
1802
1803 if (refs > 0) {
1804 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1805 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1806 else
1807 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1808 } else {
1809 size = btrfs_extent_inline_ref_size(type);
1810 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1811 ptr = (unsigned long)iref;
1812 end = (unsigned long)ei + item_size;
1813 if (ptr + size < end)
1814 memmove_extent_buffer(leaf, ptr, ptr + size,
1815 end - ptr - size);
1816 item_size -= size;
1817 btrfs_truncate_item(root, path, item_size, 1);
1818 }
1819 btrfs_mark_buffer_dirty(leaf);
1820}
1821
1822static noinline_for_stack
1823int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1824 struct btrfs_root *root,
1825 struct btrfs_path *path,
1826 u64 bytenr, u64 num_bytes, u64 parent,
1827 u64 root_objectid, u64 owner,
1828 u64 offset, int refs_to_add,
1829 struct btrfs_delayed_extent_op *extent_op)
1830{
1831 struct btrfs_extent_inline_ref *iref;
1832 int ret;
1833
1834 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1835 bytenr, num_bytes, parent,
1836 root_objectid, owner, offset, 1);
1837 if (ret == 0) {
1838 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1839 update_inline_extent_backref(root, path, iref,
1840 refs_to_add, extent_op);
1841 } else if (ret == -ENOENT) {
1842 setup_inline_extent_backref(root, path, iref, parent,
1843 root_objectid, owner, offset,
1844 refs_to_add, extent_op);
1845 ret = 0;
1846 }
1847 return ret;
1848}
1849
1850static int insert_extent_backref(struct btrfs_trans_handle *trans,
1851 struct btrfs_root *root,
1852 struct btrfs_path *path,
1853 u64 bytenr, u64 parent, u64 root_objectid,
1854 u64 owner, u64 offset, int refs_to_add)
1855{
1856 int ret;
1857 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1858 BUG_ON(refs_to_add != 1);
1859 ret = insert_tree_block_ref(trans, root, path, bytenr,
1860 parent, root_objectid);
1861 } else {
1862 ret = insert_extent_data_ref(trans, root, path, bytenr,
1863 parent, root_objectid,
1864 owner, offset, refs_to_add);
1865 }
1866 return ret;
1867}
1868
1869static int remove_extent_backref(struct btrfs_trans_handle *trans,
1870 struct btrfs_root *root,
1871 struct btrfs_path *path,
1872 struct btrfs_extent_inline_ref *iref,
1873 int refs_to_drop, int is_data)
1874{
1875 int ret = 0;
1876
1877 BUG_ON(!is_data && refs_to_drop != 1);
1878 if (iref) {
1879 update_inline_extent_backref(root, path, iref,
1880 -refs_to_drop, NULL);
1881 } else if (is_data) {
1882 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1883 } else {
1884 ret = btrfs_del_item(trans, root, path);
1885 }
1886 return ret;
1887}
1888
1889static int btrfs_issue_discard(struct block_device *bdev,
1890 u64 start, u64 len)
1891{
1892 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1893}
1894
1895static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1896 u64 num_bytes, u64 *actual_bytes)
1897{
1898 int ret;
1899 u64 discarded_bytes = 0;
1900 struct btrfs_bio *bbio = NULL;
1901
1902
1903 /* Tell the block device(s) that the sectors can be discarded */
1904 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1905 bytenr, &num_bytes, &bbio, 0);
1906 /* Error condition is -ENOMEM */
1907 if (!ret) {
1908 struct btrfs_bio_stripe *stripe = bbio->stripes;
1909 int i;
1910
1911
1912 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1913 if (!stripe->dev->can_discard)
1914 continue;
1915
1916 ret = btrfs_issue_discard(stripe->dev->bdev,
1917 stripe->physical,
1918 stripe->length);
1919 if (!ret)
1920 discarded_bytes += stripe->length;
1921 else if (ret != -EOPNOTSUPP)
1922 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1923
1924 /*
1925 * Just in case we get back EOPNOTSUPP for some reason,
1926 * just ignore the return value so we don't screw up
1927 * people calling discard_extent.
1928 */
1929 ret = 0;
1930 }
1931 kfree(bbio);
1932 }
1933
1934 if (actual_bytes)
1935 *actual_bytes = discarded_bytes;
1936
1937
1938 if (ret == -EOPNOTSUPP)
1939 ret = 0;
1940 return ret;
1941}
1942
1943/* Can return -ENOMEM */
1944int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1945 struct btrfs_root *root,
1946 u64 bytenr, u64 num_bytes, u64 parent,
1947 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1948{
1949 int ret;
1950 struct btrfs_fs_info *fs_info = root->fs_info;
1951
1952 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1953 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1954
1955 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1956 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1957 num_bytes,
1958 parent, root_objectid, (int)owner,
1959 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1960 } else {
1961 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1962 num_bytes,
1963 parent, root_objectid, owner, offset,
1964 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1965 }
1966 return ret;
1967}
1968
1969static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1970 struct btrfs_root *root,
1971 u64 bytenr, u64 num_bytes,
1972 u64 parent, u64 root_objectid,
1973 u64 owner, u64 offset, int refs_to_add,
1974 struct btrfs_delayed_extent_op *extent_op)
1975{
1976 struct btrfs_path *path;
1977 struct extent_buffer *leaf;
1978 struct btrfs_extent_item *item;
1979 u64 refs;
1980 int ret;
1981
1982 path = btrfs_alloc_path();
1983 if (!path)
1984 return -ENOMEM;
1985
1986 path->reada = 1;
1987 path->leave_spinning = 1;
1988 /* this will setup the path even if it fails to insert the back ref */
1989 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1990 path, bytenr, num_bytes, parent,
1991 root_objectid, owner, offset,
1992 refs_to_add, extent_op);
1993 if (ret != -EAGAIN)
1994 goto out;
1995
1996 leaf = path->nodes[0];
1997 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1998 refs = btrfs_extent_refs(leaf, item);
1999 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2000 if (extent_op)
2001 __run_delayed_extent_op(extent_op, leaf, item);
2002
2003 btrfs_mark_buffer_dirty(leaf);
2004 btrfs_release_path(path);
2005
2006 path->reada = 1;
2007 path->leave_spinning = 1;
2008
2009 /* now insert the actual backref */
2010 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2011 path, bytenr, parent, root_objectid,
2012 owner, offset, refs_to_add);
2013 if (ret)
2014 btrfs_abort_transaction(trans, root, ret);
2015out:
2016 btrfs_free_path(path);
2017 return ret;
2018}
2019
2020static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2021 struct btrfs_root *root,
2022 struct btrfs_delayed_ref_node *node,
2023 struct btrfs_delayed_extent_op *extent_op,
2024 int insert_reserved)
2025{
2026 int ret = 0;
2027 struct btrfs_delayed_data_ref *ref;
2028 struct btrfs_key ins;
2029 u64 parent = 0;
2030 u64 ref_root = 0;
2031 u64 flags = 0;
2032
2033 ins.objectid = node->bytenr;
2034 ins.offset = node->num_bytes;
2035 ins.type = BTRFS_EXTENT_ITEM_KEY;
2036
2037 ref = btrfs_delayed_node_to_data_ref(node);
2038 trace_run_delayed_data_ref(node, ref, node->action);
2039
2040 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2041 parent = ref->parent;
2042 else
2043 ref_root = ref->root;
2044
2045 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2046 if (extent_op)
2047 flags |= extent_op->flags_to_set;
2048 ret = alloc_reserved_file_extent(trans, root,
2049 parent, ref_root, flags,
2050 ref->objectid, ref->offset,
2051 &ins, node->ref_mod);
2052 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2053 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2054 node->num_bytes, parent,
2055 ref_root, ref->objectid,
2056 ref->offset, node->ref_mod,
2057 extent_op);
2058 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2059 ret = __btrfs_free_extent(trans, root, node->bytenr,
2060 node->num_bytes, parent,
2061 ref_root, ref->objectid,
2062 ref->offset, node->ref_mod,
2063 extent_op);
2064 } else {
2065 BUG();
2066 }
2067 return ret;
2068}
2069
2070static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2071 struct extent_buffer *leaf,
2072 struct btrfs_extent_item *ei)
2073{
2074 u64 flags = btrfs_extent_flags(leaf, ei);
2075 if (extent_op->update_flags) {
2076 flags |= extent_op->flags_to_set;
2077 btrfs_set_extent_flags(leaf, ei, flags);
2078 }
2079
2080 if (extent_op->update_key) {
2081 struct btrfs_tree_block_info *bi;
2082 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2083 bi = (struct btrfs_tree_block_info *)(ei + 1);
2084 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2085 }
2086}
2087
2088static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2089 struct btrfs_root *root,
2090 struct btrfs_delayed_ref_node *node,
2091 struct btrfs_delayed_extent_op *extent_op)
2092{
2093 struct btrfs_key key;
2094 struct btrfs_path *path;
2095 struct btrfs_extent_item *ei;
2096 struct extent_buffer *leaf;
2097 u32 item_size;
2098 int ret;
2099 int err = 0;
2100 int metadata = !extent_op->is_data;
2101
2102 if (trans->aborted)
2103 return 0;
2104
2105 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2106 metadata = 0;
2107
2108 path = btrfs_alloc_path();
2109 if (!path)
2110 return -ENOMEM;
2111
2112 key.objectid = node->bytenr;
2113
2114 if (metadata) {
2115 key.type = BTRFS_METADATA_ITEM_KEY;
2116 key.offset = extent_op->level;
2117 } else {
2118 key.type = BTRFS_EXTENT_ITEM_KEY;
2119 key.offset = node->num_bytes;
2120 }
2121
2122again:
2123 path->reada = 1;
2124 path->leave_spinning = 1;
2125 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2126 path, 0, 1);
2127 if (ret < 0) {
2128 err = ret;
2129 goto out;
2130 }
2131 if (ret > 0) {
2132 if (metadata) {
2133 if (path->slots[0] > 0) {
2134 path->slots[0]--;
2135 btrfs_item_key_to_cpu(path->nodes[0], &key,
2136 path->slots[0]);
2137 if (key.objectid == node->bytenr &&
2138 key.type == BTRFS_EXTENT_ITEM_KEY &&
2139 key.offset == node->num_bytes)
2140 ret = 0;
2141 }
2142 if (ret > 0) {
2143 btrfs_release_path(path);
2144 metadata = 0;
2145
2146 key.objectid = node->bytenr;
2147 key.offset = node->num_bytes;
2148 key.type = BTRFS_EXTENT_ITEM_KEY;
2149 goto again;
2150 }
2151 } else {
2152 err = -EIO;
2153 goto out;
2154 }
2155 }
2156
2157 leaf = path->nodes[0];
2158 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2159#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2160 if (item_size < sizeof(*ei)) {
2161 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2162 path, (u64)-1, 0);
2163 if (ret < 0) {
2164 err = ret;
2165 goto out;
2166 }
2167 leaf = path->nodes[0];
2168 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2169 }
2170#endif
2171 BUG_ON(item_size < sizeof(*ei));
2172 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2173 __run_delayed_extent_op(extent_op, leaf, ei);
2174
2175 btrfs_mark_buffer_dirty(leaf);
2176out:
2177 btrfs_free_path(path);
2178 return err;
2179}
2180
2181static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2182 struct btrfs_root *root,
2183 struct btrfs_delayed_ref_node *node,
2184 struct btrfs_delayed_extent_op *extent_op,
2185 int insert_reserved)
2186{
2187 int ret = 0;
2188 struct btrfs_delayed_tree_ref *ref;
2189 struct btrfs_key ins;
2190 u64 parent = 0;
2191 u64 ref_root = 0;
2192 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2193 SKINNY_METADATA);
2194
2195 ref = btrfs_delayed_node_to_tree_ref(node);
2196 trace_run_delayed_tree_ref(node, ref, node->action);
2197
2198 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2199 parent = ref->parent;
2200 else
2201 ref_root = ref->root;
2202
2203 ins.objectid = node->bytenr;
2204 if (skinny_metadata) {
2205 ins.offset = ref->level;
2206 ins.type = BTRFS_METADATA_ITEM_KEY;
2207 } else {
2208 ins.offset = node->num_bytes;
2209 ins.type = BTRFS_EXTENT_ITEM_KEY;
2210 }
2211
2212 BUG_ON(node->ref_mod != 1);
2213 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2214 BUG_ON(!extent_op || !extent_op->update_flags);
2215 ret = alloc_reserved_tree_block(trans, root,
2216 parent, ref_root,
2217 extent_op->flags_to_set,
2218 &extent_op->key,
2219 ref->level, &ins);
2220 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2221 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2222 node->num_bytes, parent, ref_root,
2223 ref->level, 0, 1, extent_op);
2224 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2225 ret = __btrfs_free_extent(trans, root, node->bytenr,
2226 node->num_bytes, parent, ref_root,
2227 ref->level, 0, 1, extent_op);
2228 } else {
2229 BUG();
2230 }
2231 return ret;
2232}
2233
2234/* helper function to actually process a single delayed ref entry */
2235static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2236 struct btrfs_root *root,
2237 struct btrfs_delayed_ref_node *node,
2238 struct btrfs_delayed_extent_op *extent_op,
2239 int insert_reserved)
2240{
2241 int ret = 0;
2242
2243 if (trans->aborted) {
2244 if (insert_reserved)
2245 btrfs_pin_extent(root, node->bytenr,
2246 node->num_bytes, 1);
2247 return 0;
2248 }
2249
2250 if (btrfs_delayed_ref_is_head(node)) {
2251 struct btrfs_delayed_ref_head *head;
2252 /*
2253 * we've hit the end of the chain and we were supposed
2254 * to insert this extent into the tree. But, it got
2255 * deleted before we ever needed to insert it, so all
2256 * we have to do is clean up the accounting
2257 */
2258 BUG_ON(extent_op);
2259 head = btrfs_delayed_node_to_head(node);
2260 trace_run_delayed_ref_head(node, head, node->action);
2261
2262 if (insert_reserved) {
2263 btrfs_pin_extent(root, node->bytenr,
2264 node->num_bytes, 1);
2265 if (head->is_data) {
2266 ret = btrfs_del_csums(trans, root,
2267 node->bytenr,
2268 node->num_bytes);
2269 }
2270 }
2271 return ret;
2272 }
2273
2274 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2275 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2276 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2277 insert_reserved);
2278 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2279 node->type == BTRFS_SHARED_DATA_REF_KEY)
2280 ret = run_delayed_data_ref(trans, root, node, extent_op,
2281 insert_reserved);
2282 else
2283 BUG();
2284 return ret;
2285}
2286
2287static noinline struct btrfs_delayed_ref_node *
2288select_delayed_ref(struct btrfs_delayed_ref_head *head)
2289{
2290 struct rb_node *node;
2291 struct btrfs_delayed_ref_node *ref;
2292 int action = BTRFS_ADD_DELAYED_REF;
2293again:
2294 /*
2295 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2296 * this prevents ref count from going down to zero when
2297 * there still are pending delayed ref.
2298 */
2299 node = rb_prev(&head->node.rb_node);
2300 while (1) {
2301 if (!node)
2302 break;
2303 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2304 rb_node);
2305 if (ref->bytenr != head->node.bytenr)
2306 break;
2307 if (ref->action == action)
2308 return ref;
2309 node = rb_prev(node);
2310 }
2311 if (action == BTRFS_ADD_DELAYED_REF) {
2312 action = BTRFS_DROP_DELAYED_REF;
2313 goto again;
2314 }
2315 return NULL;
2316}
2317
2318/*
2319 * Returns 0 on success or if called with an already aborted transaction.
2320 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2321 */
2322static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2323 struct btrfs_root *root,
2324 struct list_head *cluster)
2325{
2326 struct btrfs_delayed_ref_root *delayed_refs;
2327 struct btrfs_delayed_ref_node *ref;
2328 struct btrfs_delayed_ref_head *locked_ref = NULL;
2329 struct btrfs_delayed_extent_op *extent_op;
2330 struct btrfs_fs_info *fs_info = root->fs_info;
2331 int ret;
2332 int count = 0;
2333 int must_insert_reserved = 0;
2334
2335 delayed_refs = &trans->transaction->delayed_refs;
2336 while (1) {
2337 if (!locked_ref) {
2338 /* pick a new head ref from the cluster list */
2339 if (list_empty(cluster))
2340 break;
2341
2342 locked_ref = list_entry(cluster->next,
2343 struct btrfs_delayed_ref_head, cluster);
2344
2345 /* grab the lock that says we are going to process
2346 * all the refs for this head */
2347 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2348
2349 /*
2350 * we may have dropped the spin lock to get the head
2351 * mutex lock, and that might have given someone else
2352 * time to free the head. If that's true, it has been
2353 * removed from our list and we can move on.
2354 */
2355 if (ret == -EAGAIN) {
2356 locked_ref = NULL;
2357 count++;
2358 continue;
2359 }
2360 }
2361
2362 /*
2363 * We need to try and merge add/drops of the same ref since we
2364 * can run into issues with relocate dropping the implicit ref
2365 * and then it being added back again before the drop can
2366 * finish. If we merged anything we need to re-loop so we can
2367 * get a good ref.
2368 */
2369 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2370 locked_ref);
2371
2372 /*
2373 * locked_ref is the head node, so we have to go one
2374 * node back for any delayed ref updates
2375 */
2376 ref = select_delayed_ref(locked_ref);
2377
2378 if (ref && ref->seq &&
2379 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2380 /*
2381 * there are still refs with lower seq numbers in the
2382 * process of being added. Don't run this ref yet.
2383 */
2384 list_del_init(&locked_ref->cluster);
2385 btrfs_delayed_ref_unlock(locked_ref);
2386 locked_ref = NULL;
2387 delayed_refs->num_heads_ready++;
2388 spin_unlock(&delayed_refs->lock);
2389 cond_resched();
2390 spin_lock(&delayed_refs->lock);
2391 continue;
2392 }
2393
2394 /*
2395 * record the must insert reserved flag before we
2396 * drop the spin lock.
2397 */
2398 must_insert_reserved = locked_ref->must_insert_reserved;
2399 locked_ref->must_insert_reserved = 0;
2400
2401 extent_op = locked_ref->extent_op;
2402 locked_ref->extent_op = NULL;
2403
2404 if (!ref) {
2405 /* All delayed refs have been processed, Go ahead
2406 * and send the head node to run_one_delayed_ref,
2407 * so that any accounting fixes can happen
2408 */
2409 ref = &locked_ref->node;
2410
2411 if (extent_op && must_insert_reserved) {
2412 btrfs_free_delayed_extent_op(extent_op);
2413 extent_op = NULL;
2414 }
2415
2416 if (extent_op) {
2417 spin_unlock(&delayed_refs->lock);
2418
2419 ret = run_delayed_extent_op(trans, root,
2420 ref, extent_op);
2421 btrfs_free_delayed_extent_op(extent_op);
2422
2423 if (ret) {
2424 /*
2425 * Need to reset must_insert_reserved if
2426 * there was an error so the abort stuff
2427 * can cleanup the reserved space
2428 * properly.
2429 */
2430 if (must_insert_reserved)
2431 locked_ref->must_insert_reserved = 1;
2432 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2433 spin_lock(&delayed_refs->lock);
2434 btrfs_delayed_ref_unlock(locked_ref);
2435 return ret;
2436 }
2437
2438 goto next;
2439 }
2440 }
2441
2442 ref->in_tree = 0;
2443 rb_erase(&ref->rb_node, &delayed_refs->root);
2444 delayed_refs->num_entries--;
2445 if (!btrfs_delayed_ref_is_head(ref)) {
2446 /*
2447 * when we play the delayed ref, also correct the
2448 * ref_mod on head
2449 */
2450 switch (ref->action) {
2451 case BTRFS_ADD_DELAYED_REF:
2452 case BTRFS_ADD_DELAYED_EXTENT:
2453 locked_ref->node.ref_mod -= ref->ref_mod;
2454 break;
2455 case BTRFS_DROP_DELAYED_REF:
2456 locked_ref->node.ref_mod += ref->ref_mod;
2457 break;
2458 default:
2459 WARN_ON(1);
2460 }
2461 } else {
2462 list_del_init(&locked_ref->cluster);
2463 }
2464 spin_unlock(&delayed_refs->lock);
2465
2466 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2467 must_insert_reserved);
2468
2469 btrfs_free_delayed_extent_op(extent_op);
2470 if (ret) {
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 btrfs_put_delayed_ref(ref);
2473 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2474 spin_lock(&delayed_refs->lock);
2475 return ret;
2476 }
2477
2478 /*
2479 * If this node is a head, that means all the refs in this head
2480 * have been dealt with, and we will pick the next head to deal
2481 * with, so we must unlock the head and drop it from the cluster
2482 * list before we release it.
2483 */
2484 if (btrfs_delayed_ref_is_head(ref)) {
2485 btrfs_delayed_ref_unlock(locked_ref);
2486 locked_ref = NULL;
2487 }
2488 btrfs_put_delayed_ref(ref);
2489 count++;
2490next:
2491 cond_resched();
2492 spin_lock(&delayed_refs->lock);
2493 }
2494 return count;
2495}
2496
2497#ifdef SCRAMBLE_DELAYED_REFS
2498/*
2499 * Normally delayed refs get processed in ascending bytenr order. This
2500 * correlates in most cases to the order added. To expose dependencies on this
2501 * order, we start to process the tree in the middle instead of the beginning
2502 */
2503static u64 find_middle(struct rb_root *root)
2504{
2505 struct rb_node *n = root->rb_node;
2506 struct btrfs_delayed_ref_node *entry;
2507 int alt = 1;
2508 u64 middle;
2509 u64 first = 0, last = 0;
2510
2511 n = rb_first(root);
2512 if (n) {
2513 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2514 first = entry->bytenr;
2515 }
2516 n = rb_last(root);
2517 if (n) {
2518 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2519 last = entry->bytenr;
2520 }
2521 n = root->rb_node;
2522
2523 while (n) {
2524 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2525 WARN_ON(!entry->in_tree);
2526
2527 middle = entry->bytenr;
2528
2529 if (alt)
2530 n = n->rb_left;
2531 else
2532 n = n->rb_right;
2533
2534 alt = 1 - alt;
2535 }
2536 return middle;
2537}
2538#endif
2539
2540int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2541 struct btrfs_fs_info *fs_info)
2542{
2543 struct qgroup_update *qgroup_update;
2544 int ret = 0;
2545
2546 if (list_empty(&trans->qgroup_ref_list) !=
2547 !trans->delayed_ref_elem.seq) {
2548 /* list without seq or seq without list */
2549 btrfs_err(fs_info,
2550 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2551 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2552 (u32)(trans->delayed_ref_elem.seq >> 32),
2553 (u32)trans->delayed_ref_elem.seq);
2554 BUG();
2555 }
2556
2557 if (!trans->delayed_ref_elem.seq)
2558 return 0;
2559
2560 while (!list_empty(&trans->qgroup_ref_list)) {
2561 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2562 struct qgroup_update, list);
2563 list_del(&qgroup_update->list);
2564 if (!ret)
2565 ret = btrfs_qgroup_account_ref(
2566 trans, fs_info, qgroup_update->node,
2567 qgroup_update->extent_op);
2568 kfree(qgroup_update);
2569 }
2570
2571 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2572
2573 return ret;
2574}
2575
2576static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2577 int count)
2578{
2579 int val = atomic_read(&delayed_refs->ref_seq);
2580
2581 if (val < seq || val >= seq + count)
2582 return 1;
2583 return 0;
2584}
2585
2586static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2587{
2588 u64 num_bytes;
2589
2590 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2591 sizeof(struct btrfs_extent_inline_ref));
2592 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2593 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2594
2595 /*
2596 * We don't ever fill up leaves all the way so multiply by 2 just to be
2597 * closer to what we're really going to want to ouse.
2598 */
2599 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2600}
2601
2602int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2603 struct btrfs_root *root)
2604{
2605 struct btrfs_block_rsv *global_rsv;
2606 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2607 u64 num_bytes;
2608 int ret = 0;
2609
2610 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2611 num_heads = heads_to_leaves(root, num_heads);
2612 if (num_heads > 1)
2613 num_bytes += (num_heads - 1) * root->leafsize;
2614 num_bytes <<= 1;
2615 global_rsv = &root->fs_info->global_block_rsv;
2616
2617 /*
2618 * If we can't allocate any more chunks lets make sure we have _lots_ of
2619 * wiggle room since running delayed refs can create more delayed refs.
2620 */
2621 if (global_rsv->space_info->full)
2622 num_bytes <<= 1;
2623
2624 spin_lock(&global_rsv->lock);
2625 if (global_rsv->reserved <= num_bytes)
2626 ret = 1;
2627 spin_unlock(&global_rsv->lock);
2628 return ret;
2629}
2630
2631/*
2632 * this starts processing the delayed reference count updates and
2633 * extent insertions we have queued up so far. count can be
2634 * 0, which means to process everything in the tree at the start
2635 * of the run (but not newly added entries), or it can be some target
2636 * number you'd like to process.
2637 *
2638 * Returns 0 on success or if called with an aborted transaction
2639 * Returns <0 on error and aborts the transaction
2640 */
2641int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2642 struct btrfs_root *root, unsigned long count)
2643{
2644 struct rb_node *node;
2645 struct btrfs_delayed_ref_root *delayed_refs;
2646 struct btrfs_delayed_ref_node *ref;
2647 struct list_head cluster;
2648 int ret;
2649 u64 delayed_start;
2650 int run_all = count == (unsigned long)-1;
2651 int run_most = 0;
2652 int loops;
2653
2654 /* We'll clean this up in btrfs_cleanup_transaction */
2655 if (trans->aborted)
2656 return 0;
2657
2658 if (root == root->fs_info->extent_root)
2659 root = root->fs_info->tree_root;
2660
2661 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2662
2663 delayed_refs = &trans->transaction->delayed_refs;
2664 INIT_LIST_HEAD(&cluster);
2665 if (count == 0) {
2666 count = delayed_refs->num_entries * 2;
2667 run_most = 1;
2668 }
2669
2670 if (!run_all && !run_most) {
2671 int old;
2672 int seq = atomic_read(&delayed_refs->ref_seq);
2673
2674progress:
2675 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2676 if (old) {
2677 DEFINE_WAIT(__wait);
2678 if (delayed_refs->flushing ||
2679 !btrfs_should_throttle_delayed_refs(trans, root))
2680 return 0;
2681
2682 prepare_to_wait(&delayed_refs->wait, &__wait,
2683 TASK_UNINTERRUPTIBLE);
2684
2685 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2686 if (old) {
2687 schedule();
2688 finish_wait(&delayed_refs->wait, &__wait);
2689
2690 if (!refs_newer(delayed_refs, seq, 256))
2691 goto progress;
2692 else
2693 return 0;
2694 } else {
2695 finish_wait(&delayed_refs->wait, &__wait);
2696 goto again;
2697 }
2698 }
2699
2700 } else {
2701 atomic_inc(&delayed_refs->procs_running_refs);
2702 }
2703
2704again:
2705 loops = 0;
2706 spin_lock(&delayed_refs->lock);
2707
2708#ifdef SCRAMBLE_DELAYED_REFS
2709 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2710#endif
2711
2712 while (1) {
2713 if (!(run_all || run_most) &&
2714 !btrfs_should_throttle_delayed_refs(trans, root))
2715 break;
2716
2717 /*
2718 * go find something we can process in the rbtree. We start at
2719 * the beginning of the tree, and then build a cluster
2720 * of refs to process starting at the first one we are able to
2721 * lock
2722 */
2723 delayed_start = delayed_refs->run_delayed_start;
2724 ret = btrfs_find_ref_cluster(trans, &cluster,
2725 delayed_refs->run_delayed_start);
2726 if (ret)
2727 break;
2728
2729 ret = run_clustered_refs(trans, root, &cluster);
2730 if (ret < 0) {
2731 btrfs_release_ref_cluster(&cluster);
2732 spin_unlock(&delayed_refs->lock);
2733 btrfs_abort_transaction(trans, root, ret);
2734 atomic_dec(&delayed_refs->procs_running_refs);
2735 wake_up(&delayed_refs->wait);
2736 return ret;
2737 }
2738
2739 atomic_add(ret, &delayed_refs->ref_seq);
2740
2741 count -= min_t(unsigned long, ret, count);
2742
2743 if (count == 0)
2744 break;
2745
2746 if (delayed_start >= delayed_refs->run_delayed_start) {
2747 if (loops == 0) {
2748 /*
2749 * btrfs_find_ref_cluster looped. let's do one
2750 * more cycle. if we don't run any delayed ref
2751 * during that cycle (because we can't because
2752 * all of them are blocked), bail out.
2753 */
2754 loops = 1;
2755 } else {
2756 /*
2757 * no runnable refs left, stop trying
2758 */
2759 BUG_ON(run_all);
2760 break;
2761 }
2762 }
2763 if (ret) {
2764 /* refs were run, let's reset staleness detection */
2765 loops = 0;
2766 }
2767 }
2768
2769 if (run_all) {
2770 if (!list_empty(&trans->new_bgs)) {
2771 spin_unlock(&delayed_refs->lock);
2772 btrfs_create_pending_block_groups(trans, root);
2773 spin_lock(&delayed_refs->lock);
2774 }
2775
2776 node = rb_first(&delayed_refs->root);
2777 if (!node)
2778 goto out;
2779 count = (unsigned long)-1;
2780
2781 while (node) {
2782 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2783 rb_node);
2784 if (btrfs_delayed_ref_is_head(ref)) {
2785 struct btrfs_delayed_ref_head *head;
2786
2787 head = btrfs_delayed_node_to_head(ref);
2788 atomic_inc(&ref->refs);
2789
2790 spin_unlock(&delayed_refs->lock);
2791 /*
2792 * Mutex was contended, block until it's
2793 * released and try again
2794 */
2795 mutex_lock(&head->mutex);
2796 mutex_unlock(&head->mutex);
2797
2798 btrfs_put_delayed_ref(ref);
2799 cond_resched();
2800 goto again;
2801 }
2802 node = rb_next(node);
2803 }
2804 spin_unlock(&delayed_refs->lock);
2805 schedule_timeout(1);
2806 goto again;
2807 }
2808out:
2809 atomic_dec(&delayed_refs->procs_running_refs);
2810 smp_mb();
2811 if (waitqueue_active(&delayed_refs->wait))
2812 wake_up(&delayed_refs->wait);
2813
2814 spin_unlock(&delayed_refs->lock);
2815 assert_qgroups_uptodate(trans);
2816 return 0;
2817}
2818
2819int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2820 struct btrfs_root *root,
2821 u64 bytenr, u64 num_bytes, u64 flags,
2822 int level, int is_data)
2823{
2824 struct btrfs_delayed_extent_op *extent_op;
2825 int ret;
2826
2827 extent_op = btrfs_alloc_delayed_extent_op();
2828 if (!extent_op)
2829 return -ENOMEM;
2830
2831 extent_op->flags_to_set = flags;
2832 extent_op->update_flags = 1;
2833 extent_op->update_key = 0;
2834 extent_op->is_data = is_data ? 1 : 0;
2835 extent_op->level = level;
2836
2837 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2838 num_bytes, extent_op);
2839 if (ret)
2840 btrfs_free_delayed_extent_op(extent_op);
2841 return ret;
2842}
2843
2844static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2845 struct btrfs_root *root,
2846 struct btrfs_path *path,
2847 u64 objectid, u64 offset, u64 bytenr)
2848{
2849 struct btrfs_delayed_ref_head *head;
2850 struct btrfs_delayed_ref_node *ref;
2851 struct btrfs_delayed_data_ref *data_ref;
2852 struct btrfs_delayed_ref_root *delayed_refs;
2853 struct rb_node *node;
2854 int ret = 0;
2855
2856 ret = -ENOENT;
2857 delayed_refs = &trans->transaction->delayed_refs;
2858 spin_lock(&delayed_refs->lock);
2859 head = btrfs_find_delayed_ref_head(trans, bytenr);
2860 if (!head)
2861 goto out;
2862
2863 if (!mutex_trylock(&head->mutex)) {
2864 atomic_inc(&head->node.refs);
2865 spin_unlock(&delayed_refs->lock);
2866
2867 btrfs_release_path(path);
2868
2869 /*
2870 * Mutex was contended, block until it's released and let
2871 * caller try again
2872 */
2873 mutex_lock(&head->mutex);
2874 mutex_unlock(&head->mutex);
2875 btrfs_put_delayed_ref(&head->node);
2876 return -EAGAIN;
2877 }
2878
2879 node = rb_prev(&head->node.rb_node);
2880 if (!node)
2881 goto out_unlock;
2882
2883 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2884
2885 if (ref->bytenr != bytenr)
2886 goto out_unlock;
2887
2888 ret = 1;
2889 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2890 goto out_unlock;
2891
2892 data_ref = btrfs_delayed_node_to_data_ref(ref);
2893
2894 node = rb_prev(node);
2895 if (node) {
2896 int seq = ref->seq;
2897
2898 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2899 if (ref->bytenr == bytenr && ref->seq == seq)
2900 goto out_unlock;
2901 }
2902
2903 if (data_ref->root != root->root_key.objectid ||
2904 data_ref->objectid != objectid || data_ref->offset != offset)
2905 goto out_unlock;
2906
2907 ret = 0;
2908out_unlock:
2909 mutex_unlock(&head->mutex);
2910out:
2911 spin_unlock(&delayed_refs->lock);
2912 return ret;
2913}
2914
2915static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2916 struct btrfs_root *root,
2917 struct btrfs_path *path,
2918 u64 objectid, u64 offset, u64 bytenr)
2919{
2920 struct btrfs_root *extent_root = root->fs_info->extent_root;
2921 struct extent_buffer *leaf;
2922 struct btrfs_extent_data_ref *ref;
2923 struct btrfs_extent_inline_ref *iref;
2924 struct btrfs_extent_item *ei;
2925 struct btrfs_key key;
2926 u32 item_size;
2927 int ret;
2928
2929 key.objectid = bytenr;
2930 key.offset = (u64)-1;
2931 key.type = BTRFS_EXTENT_ITEM_KEY;
2932
2933 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2934 if (ret < 0)
2935 goto out;
2936 BUG_ON(ret == 0); /* Corruption */
2937
2938 ret = -ENOENT;
2939 if (path->slots[0] == 0)
2940 goto out;
2941
2942 path->slots[0]--;
2943 leaf = path->nodes[0];
2944 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2945
2946 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2947 goto out;
2948
2949 ret = 1;
2950 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2951#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2952 if (item_size < sizeof(*ei)) {
2953 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2954 goto out;
2955 }
2956#endif
2957 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2958
2959 if (item_size != sizeof(*ei) +
2960 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2961 goto out;
2962
2963 if (btrfs_extent_generation(leaf, ei) <=
2964 btrfs_root_last_snapshot(&root->root_item))
2965 goto out;
2966
2967 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2968 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2969 BTRFS_EXTENT_DATA_REF_KEY)
2970 goto out;
2971
2972 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2973 if (btrfs_extent_refs(leaf, ei) !=
2974 btrfs_extent_data_ref_count(leaf, ref) ||
2975 btrfs_extent_data_ref_root(leaf, ref) !=
2976 root->root_key.objectid ||
2977 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2978 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2979 goto out;
2980
2981 ret = 0;
2982out:
2983 return ret;
2984}
2985
2986int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2987 struct btrfs_root *root,
2988 u64 objectid, u64 offset, u64 bytenr)
2989{
2990 struct btrfs_path *path;
2991 int ret;
2992 int ret2;
2993
2994 path = btrfs_alloc_path();
2995 if (!path)
2996 return -ENOENT;
2997
2998 do {
2999 ret = check_committed_ref(trans, root, path, objectid,
3000 offset, bytenr);
3001 if (ret && ret != -ENOENT)
3002 goto out;
3003
3004 ret2 = check_delayed_ref(trans, root, path, objectid,
3005 offset, bytenr);
3006 } while (ret2 == -EAGAIN);
3007
3008 if (ret2 && ret2 != -ENOENT) {
3009 ret = ret2;
3010 goto out;
3011 }
3012
3013 if (ret != -ENOENT || ret2 != -ENOENT)
3014 ret = 0;
3015out:
3016 btrfs_free_path(path);
3017 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3018 WARN_ON(ret > 0);
3019 return ret;
3020}
3021
3022static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *root,
3024 struct extent_buffer *buf,
3025 int full_backref, int inc, int for_cow)
3026{
3027 u64 bytenr;
3028 u64 num_bytes;
3029 u64 parent;
3030 u64 ref_root;
3031 u32 nritems;
3032 struct btrfs_key key;
3033 struct btrfs_file_extent_item *fi;
3034 int i;
3035 int level;
3036 int ret = 0;
3037 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3038 u64, u64, u64, u64, u64, u64, int);
3039
3040 ref_root = btrfs_header_owner(buf);
3041 nritems = btrfs_header_nritems(buf);
3042 level = btrfs_header_level(buf);
3043
3044 if (!root->ref_cows && level == 0)
3045 return 0;
3046
3047 if (inc)
3048 process_func = btrfs_inc_extent_ref;
3049 else
3050 process_func = btrfs_free_extent;
3051
3052 if (full_backref)
3053 parent = buf->start;
3054 else
3055 parent = 0;
3056
3057 for (i = 0; i < nritems; i++) {
3058 if (level == 0) {
3059 btrfs_item_key_to_cpu(buf, &key, i);
3060 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3061 continue;
3062 fi = btrfs_item_ptr(buf, i,
3063 struct btrfs_file_extent_item);
3064 if (btrfs_file_extent_type(buf, fi) ==
3065 BTRFS_FILE_EXTENT_INLINE)
3066 continue;
3067 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3068 if (bytenr == 0)
3069 continue;
3070
3071 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3072 key.offset -= btrfs_file_extent_offset(buf, fi);
3073 ret = process_func(trans, root, bytenr, num_bytes,
3074 parent, ref_root, key.objectid,
3075 key.offset, for_cow);
3076 if (ret)
3077 goto fail;
3078 } else {
3079 bytenr = btrfs_node_blockptr(buf, i);
3080 num_bytes = btrfs_level_size(root, level - 1);
3081 ret = process_func(trans, root, bytenr, num_bytes,
3082 parent, ref_root, level - 1, 0,
3083 for_cow);
3084 if (ret)
3085 goto fail;
3086 }
3087 }
3088 return 0;
3089fail:
3090 return ret;
3091}
3092
3093int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3094 struct extent_buffer *buf, int full_backref, int for_cow)
3095{
3096 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3097}
3098
3099int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3100 struct extent_buffer *buf, int full_backref, int for_cow)
3101{
3102 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3103}
3104
3105static int write_one_cache_group(struct btrfs_trans_handle *trans,
3106 struct btrfs_root *root,
3107 struct btrfs_path *path,
3108 struct btrfs_block_group_cache *cache)
3109{
3110 int ret;
3111 struct btrfs_root *extent_root = root->fs_info->extent_root;
3112 unsigned long bi;
3113 struct extent_buffer *leaf;
3114
3115 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3116 if (ret < 0)
3117 goto fail;
3118 BUG_ON(ret); /* Corruption */
3119
3120 leaf = path->nodes[0];
3121 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3122 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3123 btrfs_mark_buffer_dirty(leaf);
3124 btrfs_release_path(path);
3125fail:
3126 if (ret) {
3127 btrfs_abort_transaction(trans, root, ret);
3128 return ret;
3129 }
3130 return 0;
3131
3132}
3133
3134static struct btrfs_block_group_cache *
3135next_block_group(struct btrfs_root *root,
3136 struct btrfs_block_group_cache *cache)
3137{
3138 struct rb_node *node;
3139 spin_lock(&root->fs_info->block_group_cache_lock);
3140 node = rb_next(&cache->cache_node);
3141 btrfs_put_block_group(cache);
3142 if (node) {
3143 cache = rb_entry(node, struct btrfs_block_group_cache,
3144 cache_node);
3145 btrfs_get_block_group(cache);
3146 } else
3147 cache = NULL;
3148 spin_unlock(&root->fs_info->block_group_cache_lock);
3149 return cache;
3150}
3151
3152static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3153 struct btrfs_trans_handle *trans,
3154 struct btrfs_path *path)
3155{
3156 struct btrfs_root *root = block_group->fs_info->tree_root;
3157 struct inode *inode = NULL;
3158 u64 alloc_hint = 0;
3159 int dcs = BTRFS_DC_ERROR;
3160 int num_pages = 0;
3161 int retries = 0;
3162 int ret = 0;
3163
3164 /*
3165 * If this block group is smaller than 100 megs don't bother caching the
3166 * block group.
3167 */
3168 if (block_group->key.offset < (100 * 1024 * 1024)) {
3169 spin_lock(&block_group->lock);
3170 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3171 spin_unlock(&block_group->lock);
3172 return 0;
3173 }
3174
3175again:
3176 inode = lookup_free_space_inode(root, block_group, path);
3177 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3178 ret = PTR_ERR(inode);
3179 btrfs_release_path(path);
3180 goto out;
3181 }
3182
3183 if (IS_ERR(inode)) {
3184 BUG_ON(retries);
3185 retries++;
3186
3187 if (block_group->ro)
3188 goto out_free;
3189
3190 ret = create_free_space_inode(root, trans, block_group, path);
3191 if (ret)
3192 goto out_free;
3193 goto again;
3194 }
3195
3196 /* We've already setup this transaction, go ahead and exit */
3197 if (block_group->cache_generation == trans->transid &&
3198 i_size_read(inode)) {
3199 dcs = BTRFS_DC_SETUP;
3200 goto out_put;
3201 }
3202
3203 /*
3204 * We want to set the generation to 0, that way if anything goes wrong
3205 * from here on out we know not to trust this cache when we load up next
3206 * time.
3207 */
3208 BTRFS_I(inode)->generation = 0;
3209 ret = btrfs_update_inode(trans, root, inode);
3210 WARN_ON(ret);
3211
3212 if (i_size_read(inode) > 0) {
3213 ret = btrfs_check_trunc_cache_free_space(root,
3214 &root->fs_info->global_block_rsv);
3215 if (ret)
3216 goto out_put;
3217
3218 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3219 if (ret)
3220 goto out_put;
3221 }
3222
3223 spin_lock(&block_group->lock);
3224 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3225 !btrfs_test_opt(root, SPACE_CACHE)) {
3226 /*
3227 * don't bother trying to write stuff out _if_
3228 * a) we're not cached,
3229 * b) we're with nospace_cache mount option.
3230 */
3231 dcs = BTRFS_DC_WRITTEN;
3232 spin_unlock(&block_group->lock);
3233 goto out_put;
3234 }
3235 spin_unlock(&block_group->lock);
3236
3237 /*
3238 * Try to preallocate enough space based on how big the block group is.
3239 * Keep in mind this has to include any pinned space which could end up
3240 * taking up quite a bit since it's not folded into the other space
3241 * cache.
3242 */
3243 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3244 if (!num_pages)
3245 num_pages = 1;
3246
3247 num_pages *= 16;
3248 num_pages *= PAGE_CACHE_SIZE;
3249
3250 ret = btrfs_check_data_free_space(inode, num_pages);
3251 if (ret)
3252 goto out_put;
3253
3254 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3255 num_pages, num_pages,
3256 &alloc_hint);
3257 if (!ret)
3258 dcs = BTRFS_DC_SETUP;
3259 btrfs_free_reserved_data_space(inode, num_pages);
3260
3261out_put:
3262 iput(inode);
3263out_free:
3264 btrfs_release_path(path);
3265out:
3266 spin_lock(&block_group->lock);
3267 if (!ret && dcs == BTRFS_DC_SETUP)
3268 block_group->cache_generation = trans->transid;
3269 block_group->disk_cache_state = dcs;
3270 spin_unlock(&block_group->lock);
3271
3272 return ret;
3273}
3274
3275int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3276 struct btrfs_root *root)
3277{
3278 struct btrfs_block_group_cache *cache;
3279 int err = 0;
3280 struct btrfs_path *path;
3281 u64 last = 0;
3282
3283 path = btrfs_alloc_path();
3284 if (!path)
3285 return -ENOMEM;
3286
3287again:
3288 while (1) {
3289 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3290 while (cache) {
3291 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3292 break;
3293 cache = next_block_group(root, cache);
3294 }
3295 if (!cache) {
3296 if (last == 0)
3297 break;
3298 last = 0;
3299 continue;
3300 }
3301 err = cache_save_setup(cache, trans, path);
3302 last = cache->key.objectid + cache->key.offset;
3303 btrfs_put_block_group(cache);
3304 }
3305
3306 while (1) {
3307 if (last == 0) {
3308 err = btrfs_run_delayed_refs(trans, root,
3309 (unsigned long)-1);
3310 if (err) /* File system offline */
3311 goto out;
3312 }
3313
3314 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3315 while (cache) {
3316 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3317 btrfs_put_block_group(cache);
3318 goto again;
3319 }
3320
3321 if (cache->dirty)
3322 break;
3323 cache = next_block_group(root, cache);
3324 }
3325 if (!cache) {
3326 if (last == 0)
3327 break;
3328 last = 0;
3329 continue;
3330 }
3331
3332 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3333 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3334 cache->dirty = 0;
3335 last = cache->key.objectid + cache->key.offset;
3336
3337 err = write_one_cache_group(trans, root, path, cache);
3338 btrfs_put_block_group(cache);
3339 if (err) /* File system offline */
3340 goto out;
3341 }
3342
3343 while (1) {
3344 /*
3345 * I don't think this is needed since we're just marking our
3346 * preallocated extent as written, but just in case it can't
3347 * hurt.
3348 */
3349 if (last == 0) {
3350 err = btrfs_run_delayed_refs(trans, root,
3351 (unsigned long)-1);
3352 if (err) /* File system offline */
3353 goto out;
3354 }
3355
3356 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3357 while (cache) {
3358 /*
3359 * Really this shouldn't happen, but it could if we
3360 * couldn't write the entire preallocated extent and
3361 * splitting the extent resulted in a new block.
3362 */
3363 if (cache->dirty) {
3364 btrfs_put_block_group(cache);
3365 goto again;
3366 }
3367 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3368 break;
3369 cache = next_block_group(root, cache);
3370 }
3371 if (!cache) {
3372 if (last == 0)
3373 break;
3374 last = 0;
3375 continue;
3376 }
3377
3378 err = btrfs_write_out_cache(root, trans, cache, path);
3379
3380 /*
3381 * If we didn't have an error then the cache state is still
3382 * NEED_WRITE, so we can set it to WRITTEN.
3383 */
3384 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3385 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3386 last = cache->key.objectid + cache->key.offset;
3387 btrfs_put_block_group(cache);
3388 }
3389out:
3390
3391 btrfs_free_path(path);
3392 return err;
3393}
3394
3395int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3396{
3397 struct btrfs_block_group_cache *block_group;
3398 int readonly = 0;
3399
3400 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3401 if (!block_group || block_group->ro)
3402 readonly = 1;
3403 if (block_group)
3404 btrfs_put_block_group(block_group);
3405 return readonly;
3406}
3407
3408static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3409 u64 total_bytes, u64 bytes_used,
3410 struct btrfs_space_info **space_info)
3411{
3412 struct btrfs_space_info *found;
3413 int i;
3414 int factor;
3415 int ret;
3416
3417 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3418 BTRFS_BLOCK_GROUP_RAID10))
3419 factor = 2;
3420 else
3421 factor = 1;
3422
3423 found = __find_space_info(info, flags);
3424 if (found) {
3425 spin_lock(&found->lock);
3426 found->total_bytes += total_bytes;
3427 found->disk_total += total_bytes * factor;
3428 found->bytes_used += bytes_used;
3429 found->disk_used += bytes_used * factor;
3430 found->full = 0;
3431 spin_unlock(&found->lock);
3432 *space_info = found;
3433 return 0;
3434 }
3435 found = kzalloc(sizeof(*found), GFP_NOFS);
3436 if (!found)
3437 return -ENOMEM;
3438
3439 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3440 if (ret) {
3441 kfree(found);
3442 return ret;
3443 }
3444
3445 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3446 INIT_LIST_HEAD(&found->block_groups[i]);
3447 init_rwsem(&found->groups_sem);
3448 spin_lock_init(&found->lock);
3449 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3450 found->total_bytes = total_bytes;
3451 found->disk_total = total_bytes * factor;
3452 found->bytes_used = bytes_used;
3453 found->disk_used = bytes_used * factor;
3454 found->bytes_pinned = 0;
3455 found->bytes_reserved = 0;
3456 found->bytes_readonly = 0;
3457 found->bytes_may_use = 0;
3458 found->full = 0;
3459 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3460 found->chunk_alloc = 0;
3461 found->flush = 0;
3462 init_waitqueue_head(&found->wait);
3463 *space_info = found;
3464 list_add_rcu(&found->list, &info->space_info);
3465 if (flags & BTRFS_BLOCK_GROUP_DATA)
3466 info->data_sinfo = found;
3467 return 0;
3468}
3469
3470static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3471{
3472 u64 extra_flags = chunk_to_extended(flags) &
3473 BTRFS_EXTENDED_PROFILE_MASK;
3474
3475 write_seqlock(&fs_info->profiles_lock);
3476 if (flags & BTRFS_BLOCK_GROUP_DATA)
3477 fs_info->avail_data_alloc_bits |= extra_flags;
3478 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3479 fs_info->avail_metadata_alloc_bits |= extra_flags;
3480 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3481 fs_info->avail_system_alloc_bits |= extra_flags;
3482 write_sequnlock(&fs_info->profiles_lock);
3483}
3484
3485/*
3486 * returns target flags in extended format or 0 if restripe for this
3487 * chunk_type is not in progress
3488 *
3489 * should be called with either volume_mutex or balance_lock held
3490 */
3491static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3492{
3493 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3494 u64 target = 0;
3495
3496 if (!bctl)
3497 return 0;
3498
3499 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3500 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3501 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3502 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3503 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3504 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3505 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3506 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3507 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3508 }
3509
3510 return target;
3511}
3512
3513/*
3514 * @flags: available profiles in extended format (see ctree.h)
3515 *
3516 * Returns reduced profile in chunk format. If profile changing is in
3517 * progress (either running or paused) picks the target profile (if it's
3518 * already available), otherwise falls back to plain reducing.
3519 */
3520static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3521{
3522 /*
3523 * we add in the count of missing devices because we want
3524 * to make sure that any RAID levels on a degraded FS
3525 * continue to be honored.
3526 */
3527 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3528 root->fs_info->fs_devices->missing_devices;
3529 u64 target;
3530 u64 tmp;
3531
3532 /*
3533 * see if restripe for this chunk_type is in progress, if so
3534 * try to reduce to the target profile
3535 */
3536 spin_lock(&root->fs_info->balance_lock);
3537 target = get_restripe_target(root->fs_info, flags);
3538 if (target) {
3539 /* pick target profile only if it's already available */
3540 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3541 spin_unlock(&root->fs_info->balance_lock);
3542 return extended_to_chunk(target);
3543 }
3544 }
3545 spin_unlock(&root->fs_info->balance_lock);
3546
3547 /* First, mask out the RAID levels which aren't possible */
3548 if (num_devices == 1)
3549 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3550 BTRFS_BLOCK_GROUP_RAID5);
3551 if (num_devices < 3)
3552 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3553 if (num_devices < 4)
3554 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3555
3556 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3557 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3558 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3559 flags &= ~tmp;
3560
3561 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3562 tmp = BTRFS_BLOCK_GROUP_RAID6;
3563 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3564 tmp = BTRFS_BLOCK_GROUP_RAID5;
3565 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3566 tmp = BTRFS_BLOCK_GROUP_RAID10;
3567 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3568 tmp = BTRFS_BLOCK_GROUP_RAID1;
3569 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3570 tmp = BTRFS_BLOCK_GROUP_RAID0;
3571
3572 return extended_to_chunk(flags | tmp);
3573}
3574
3575static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3576{
3577 unsigned seq;
3578
3579 do {
3580 seq = read_seqbegin(&root->fs_info->profiles_lock);
3581
3582 if (flags & BTRFS_BLOCK_GROUP_DATA)
3583 flags |= root->fs_info->avail_data_alloc_bits;
3584 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3585 flags |= root->fs_info->avail_system_alloc_bits;
3586 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3587 flags |= root->fs_info->avail_metadata_alloc_bits;
3588 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3589
3590 return btrfs_reduce_alloc_profile(root, flags);
3591}
3592
3593u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3594{
3595 u64 flags;
3596 u64 ret;
3597
3598 if (data)
3599 flags = BTRFS_BLOCK_GROUP_DATA;
3600 else if (root == root->fs_info->chunk_root)
3601 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3602 else
3603 flags = BTRFS_BLOCK_GROUP_METADATA;
3604
3605 ret = get_alloc_profile(root, flags);
3606 return ret;
3607}
3608
3609/*
3610 * This will check the space that the inode allocates from to make sure we have
3611 * enough space for bytes.
3612 */
3613int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3614{
3615 struct btrfs_space_info *data_sinfo;
3616 struct btrfs_root *root = BTRFS_I(inode)->root;
3617 struct btrfs_fs_info *fs_info = root->fs_info;
3618 u64 used;
3619 int ret = 0, committed = 0, alloc_chunk = 1;
3620
3621 /* make sure bytes are sectorsize aligned */
3622 bytes = ALIGN(bytes, root->sectorsize);
3623
3624 if (btrfs_is_free_space_inode(inode)) {
3625 committed = 1;
3626 ASSERT(current->journal_info);
3627 }
3628
3629 data_sinfo = fs_info->data_sinfo;
3630 if (!data_sinfo)
3631 goto alloc;
3632
3633again:
3634 /* make sure we have enough space to handle the data first */
3635 spin_lock(&data_sinfo->lock);
3636 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3637 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3638 data_sinfo->bytes_may_use;
3639
3640 if (used + bytes > data_sinfo->total_bytes) {
3641 struct btrfs_trans_handle *trans;
3642
3643 /*
3644 * if we don't have enough free bytes in this space then we need
3645 * to alloc a new chunk.
3646 */
3647 if (!data_sinfo->full && alloc_chunk) {
3648 u64 alloc_target;
3649
3650 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3651 spin_unlock(&data_sinfo->lock);
3652alloc:
3653 alloc_target = btrfs_get_alloc_profile(root, 1);
3654 /*
3655 * It is ugly that we don't call nolock join
3656 * transaction for the free space inode case here.
3657 * But it is safe because we only do the data space
3658 * reservation for the free space cache in the
3659 * transaction context, the common join transaction
3660 * just increase the counter of the current transaction
3661 * handler, doesn't try to acquire the trans_lock of
3662 * the fs.
3663 */
3664 trans = btrfs_join_transaction(root);
3665 if (IS_ERR(trans))
3666 return PTR_ERR(trans);
3667
3668 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3669 alloc_target,
3670 CHUNK_ALLOC_NO_FORCE);
3671 btrfs_end_transaction(trans, root);
3672 if (ret < 0) {
3673 if (ret != -ENOSPC)
3674 return ret;
3675 else
3676 goto commit_trans;
3677 }
3678
3679 if (!data_sinfo)
3680 data_sinfo = fs_info->data_sinfo;
3681
3682 goto again;
3683 }
3684
3685 /*
3686 * If we don't have enough pinned space to deal with this
3687 * allocation don't bother committing the transaction.
3688 */
3689 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3690 bytes) < 0)
3691 committed = 1;
3692 spin_unlock(&data_sinfo->lock);
3693
3694 /* commit the current transaction and try again */
3695commit_trans:
3696 if (!committed &&
3697 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3698 committed = 1;
3699
3700 trans = btrfs_join_transaction(root);
3701 if (IS_ERR(trans))
3702 return PTR_ERR(trans);
3703 ret = btrfs_commit_transaction(trans, root);
3704 if (ret)
3705 return ret;
3706 goto again;
3707 }
3708
3709 trace_btrfs_space_reservation(root->fs_info,
3710 "space_info:enospc",
3711 data_sinfo->flags, bytes, 1);
3712 return -ENOSPC;
3713 }
3714 data_sinfo->bytes_may_use += bytes;
3715 trace_btrfs_space_reservation(root->fs_info, "space_info",
3716 data_sinfo->flags, bytes, 1);
3717 spin_unlock(&data_sinfo->lock);
3718
3719 return 0;
3720}
3721
3722/*
3723 * Called if we need to clear a data reservation for this inode.
3724 */
3725void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3726{
3727 struct btrfs_root *root = BTRFS_I(inode)->root;
3728 struct btrfs_space_info *data_sinfo;
3729
3730 /* make sure bytes are sectorsize aligned */
3731 bytes = ALIGN(bytes, root->sectorsize);
3732
3733 data_sinfo = root->fs_info->data_sinfo;
3734 spin_lock(&data_sinfo->lock);
3735 WARN_ON(data_sinfo->bytes_may_use < bytes);
3736 data_sinfo->bytes_may_use -= bytes;
3737 trace_btrfs_space_reservation(root->fs_info, "space_info",
3738 data_sinfo->flags, bytes, 0);
3739 spin_unlock(&data_sinfo->lock);
3740}
3741
3742static void force_metadata_allocation(struct btrfs_fs_info *info)
3743{
3744 struct list_head *head = &info->space_info;
3745 struct btrfs_space_info *found;
3746
3747 rcu_read_lock();
3748 list_for_each_entry_rcu(found, head, list) {
3749 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3750 found->force_alloc = CHUNK_ALLOC_FORCE;
3751 }
3752 rcu_read_unlock();
3753}
3754
3755static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3756{
3757 return (global->size << 1);
3758}
3759
3760static int should_alloc_chunk(struct btrfs_root *root,
3761 struct btrfs_space_info *sinfo, int force)
3762{
3763 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3764 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3765 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3766 u64 thresh;
3767
3768 if (force == CHUNK_ALLOC_FORCE)
3769 return 1;
3770
3771 /*
3772 * We need to take into account the global rsv because for all intents
3773 * and purposes it's used space. Don't worry about locking the
3774 * global_rsv, it doesn't change except when the transaction commits.
3775 */
3776 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3777 num_allocated += calc_global_rsv_need_space(global_rsv);
3778
3779 /*
3780 * in limited mode, we want to have some free space up to
3781 * about 1% of the FS size.
3782 */
3783 if (force == CHUNK_ALLOC_LIMITED) {
3784 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3785 thresh = max_t(u64, 64 * 1024 * 1024,
3786 div_factor_fine(thresh, 1));
3787
3788 if (num_bytes - num_allocated < thresh)
3789 return 1;
3790 }
3791
3792 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3793 return 0;
3794 return 1;
3795}
3796
3797static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3798{
3799 u64 num_dev;
3800
3801 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3802 BTRFS_BLOCK_GROUP_RAID0 |
3803 BTRFS_BLOCK_GROUP_RAID5 |
3804 BTRFS_BLOCK_GROUP_RAID6))
3805 num_dev = root->fs_info->fs_devices->rw_devices;
3806 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3807 num_dev = 2;
3808 else
3809 num_dev = 1; /* DUP or single */
3810
3811 /* metadata for updaing devices and chunk tree */
3812 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3813}
3814
3815static void check_system_chunk(struct btrfs_trans_handle *trans,
3816 struct btrfs_root *root, u64 type)
3817{
3818 struct btrfs_space_info *info;
3819 u64 left;
3820 u64 thresh;
3821
3822 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3823 spin_lock(&info->lock);
3824 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3825 info->bytes_reserved - info->bytes_readonly;
3826 spin_unlock(&info->lock);
3827
3828 thresh = get_system_chunk_thresh(root, type);
3829 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3830 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3831 left, thresh, type);
3832 dump_space_info(info, 0, 0);
3833 }
3834
3835 if (left < thresh) {
3836 u64 flags;
3837
3838 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3839 btrfs_alloc_chunk(trans, root, flags);
3840 }
3841}
3842
3843static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3844 struct btrfs_root *extent_root, u64 flags, int force)
3845{
3846 struct btrfs_space_info *space_info;
3847 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3848 int wait_for_alloc = 0;
3849 int ret = 0;
3850
3851 /* Don't re-enter if we're already allocating a chunk */
3852 if (trans->allocating_chunk)
3853 return -ENOSPC;
3854
3855 space_info = __find_space_info(extent_root->fs_info, flags);
3856 if (!space_info) {
3857 ret = update_space_info(extent_root->fs_info, flags,
3858 0, 0, &space_info);
3859 BUG_ON(ret); /* -ENOMEM */
3860 }
3861 BUG_ON(!space_info); /* Logic error */
3862
3863again:
3864 spin_lock(&space_info->lock);
3865 if (force < space_info->force_alloc)
3866 force = space_info->force_alloc;
3867 if (space_info->full) {
3868 if (should_alloc_chunk(extent_root, space_info, force))
3869 ret = -ENOSPC;
3870 else
3871 ret = 0;
3872 spin_unlock(&space_info->lock);
3873 return ret;
3874 }
3875
3876 if (!should_alloc_chunk(extent_root, space_info, force)) {
3877 spin_unlock(&space_info->lock);
3878 return 0;
3879 } else if (space_info->chunk_alloc) {
3880 wait_for_alloc = 1;
3881 } else {
3882 space_info->chunk_alloc = 1;
3883 }
3884
3885 spin_unlock(&space_info->lock);
3886
3887 mutex_lock(&fs_info->chunk_mutex);
3888
3889 /*
3890 * The chunk_mutex is held throughout the entirety of a chunk
3891 * allocation, so once we've acquired the chunk_mutex we know that the
3892 * other guy is done and we need to recheck and see if we should
3893 * allocate.
3894 */
3895 if (wait_for_alloc) {
3896 mutex_unlock(&fs_info->chunk_mutex);
3897 wait_for_alloc = 0;
3898 goto again;
3899 }
3900
3901 trans->allocating_chunk = true;
3902
3903 /*
3904 * If we have mixed data/metadata chunks we want to make sure we keep
3905 * allocating mixed chunks instead of individual chunks.
3906 */
3907 if (btrfs_mixed_space_info(space_info))
3908 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3909
3910 /*
3911 * if we're doing a data chunk, go ahead and make sure that
3912 * we keep a reasonable number of metadata chunks allocated in the
3913 * FS as well.
3914 */
3915 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3916 fs_info->data_chunk_allocations++;
3917 if (!(fs_info->data_chunk_allocations %
3918 fs_info->metadata_ratio))
3919 force_metadata_allocation(fs_info);
3920 }
3921
3922 /*
3923 * Check if we have enough space in SYSTEM chunk because we may need
3924 * to update devices.
3925 */
3926 check_system_chunk(trans, extent_root, flags);
3927
3928 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3929 trans->allocating_chunk = false;
3930
3931 spin_lock(&space_info->lock);
3932 if (ret < 0 && ret != -ENOSPC)
3933 goto out;
3934 if (ret)
3935 space_info->full = 1;
3936 else
3937 ret = 1;
3938
3939 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3940out:
3941 space_info->chunk_alloc = 0;
3942 spin_unlock(&space_info->lock);
3943 mutex_unlock(&fs_info->chunk_mutex);
3944 return ret;
3945}
3946
3947static int can_overcommit(struct btrfs_root *root,
3948 struct btrfs_space_info *space_info, u64 bytes,
3949 enum btrfs_reserve_flush_enum flush)
3950{
3951 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3952 u64 profile = btrfs_get_alloc_profile(root, 0);
3953 u64 space_size;
3954 u64 avail;
3955 u64 used;
3956
3957 used = space_info->bytes_used + space_info->bytes_reserved +
3958 space_info->bytes_pinned + space_info->bytes_readonly;
3959
3960 /*
3961 * We only want to allow over committing if we have lots of actual space
3962 * free, but if we don't have enough space to handle the global reserve
3963 * space then we could end up having a real enospc problem when trying
3964 * to allocate a chunk or some other such important allocation.
3965 */
3966 spin_lock(&global_rsv->lock);
3967 space_size = calc_global_rsv_need_space(global_rsv);
3968 spin_unlock(&global_rsv->lock);
3969 if (used + space_size >= space_info->total_bytes)
3970 return 0;
3971
3972 used += space_info->bytes_may_use;
3973
3974 spin_lock(&root->fs_info->free_chunk_lock);
3975 avail = root->fs_info->free_chunk_space;
3976 spin_unlock(&root->fs_info->free_chunk_lock);
3977
3978 /*
3979 * If we have dup, raid1 or raid10 then only half of the free
3980 * space is actually useable. For raid56, the space info used
3981 * doesn't include the parity drive, so we don't have to
3982 * change the math
3983 */
3984 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3985 BTRFS_BLOCK_GROUP_RAID1 |
3986 BTRFS_BLOCK_GROUP_RAID10))
3987 avail >>= 1;
3988
3989 /*
3990 * If we aren't flushing all things, let us overcommit up to
3991 * 1/2th of the space. If we can flush, don't let us overcommit
3992 * too much, let it overcommit up to 1/8 of the space.
3993 */
3994 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3995 avail >>= 3;
3996 else
3997 avail >>= 1;
3998
3999 if (used + bytes < space_info->total_bytes + avail)
4000 return 1;
4001 return 0;
4002}
4003
4004static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4005 unsigned long nr_pages)
4006{
4007 struct super_block *sb = root->fs_info->sb;
4008
4009 if (down_read_trylock(&sb->s_umount)) {
4010 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4011 up_read(&sb->s_umount);
4012 } else {
4013 /*
4014 * We needn't worry the filesystem going from r/w to r/o though
4015 * we don't acquire ->s_umount mutex, because the filesystem
4016 * should guarantee the delalloc inodes list be empty after
4017 * the filesystem is readonly(all dirty pages are written to
4018 * the disk).
4019 */
4020 btrfs_start_all_delalloc_inodes(root->fs_info, 0);
4021 if (!current->journal_info)
4022 btrfs_wait_all_ordered_extents(root->fs_info);
4023 }
4024}
4025
4026/*
4027 * shrink metadata reservation for delalloc
4028 */
4029static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4030 bool wait_ordered)
4031{
4032 struct btrfs_block_rsv *block_rsv;
4033 struct btrfs_space_info *space_info;
4034 struct btrfs_trans_handle *trans;
4035 u64 delalloc_bytes;
4036 u64 max_reclaim;
4037 long time_left;
4038 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
4039 int loops = 0;
4040 enum btrfs_reserve_flush_enum flush;
4041
4042 trans = (struct btrfs_trans_handle *)current->journal_info;
4043 block_rsv = &root->fs_info->delalloc_block_rsv;
4044 space_info = block_rsv->space_info;
4045
4046 smp_mb();
4047 delalloc_bytes = percpu_counter_sum_positive(
4048 &root->fs_info->delalloc_bytes);
4049 if (delalloc_bytes == 0) {
4050 if (trans)
4051 return;
4052 btrfs_wait_all_ordered_extents(root->fs_info);
4053 return;
4054 }
4055
4056 while (delalloc_bytes && loops < 3) {
4057 max_reclaim = min(delalloc_bytes, to_reclaim);
4058 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4059 btrfs_writeback_inodes_sb_nr(root, nr_pages);
4060 /*
4061 * We need to wait for the async pages to actually start before
4062 * we do anything.
4063 */
4064 wait_event(root->fs_info->async_submit_wait,
4065 !atomic_read(&root->fs_info->async_delalloc_pages));
4066
4067 if (!trans)
4068 flush = BTRFS_RESERVE_FLUSH_ALL;
4069 else
4070 flush = BTRFS_RESERVE_NO_FLUSH;
4071 spin_lock(&space_info->lock);
4072 if (can_overcommit(root, space_info, orig, flush)) {
4073 spin_unlock(&space_info->lock);
4074 break;
4075 }
4076 spin_unlock(&space_info->lock);
4077
4078 loops++;
4079 if (wait_ordered && !trans) {
4080 btrfs_wait_all_ordered_extents(root->fs_info);
4081 } else {
4082 time_left = schedule_timeout_killable(1);
4083 if (time_left)
4084 break;
4085 }
4086 smp_mb();
4087 delalloc_bytes = percpu_counter_sum_positive(
4088 &root->fs_info->delalloc_bytes);
4089 }
4090}
4091
4092/**
4093 * maybe_commit_transaction - possibly commit the transaction if its ok to
4094 * @root - the root we're allocating for
4095 * @bytes - the number of bytes we want to reserve
4096 * @force - force the commit
4097 *
4098 * This will check to make sure that committing the transaction will actually
4099 * get us somewhere and then commit the transaction if it does. Otherwise it
4100 * will return -ENOSPC.
4101 */
4102static int may_commit_transaction(struct btrfs_root *root,
4103 struct btrfs_space_info *space_info,
4104 u64 bytes, int force)
4105{
4106 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4107 struct btrfs_trans_handle *trans;
4108
4109 trans = (struct btrfs_trans_handle *)current->journal_info;
4110 if (trans)
4111 return -EAGAIN;
4112
4113 if (force)
4114 goto commit;
4115
4116 /* See if there is enough pinned space to make this reservation */
4117 spin_lock(&space_info->lock);
4118 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4119 bytes) >= 0) {
4120 spin_unlock(&space_info->lock);
4121 goto commit;
4122 }
4123 spin_unlock(&space_info->lock);
4124
4125 /*
4126 * See if there is some space in the delayed insertion reservation for
4127 * this reservation.
4128 */
4129 if (space_info != delayed_rsv->space_info)
4130 return -ENOSPC;
4131
4132 spin_lock(&space_info->lock);
4133 spin_lock(&delayed_rsv->lock);
4134 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4135 bytes - delayed_rsv->size) >= 0) {
4136 spin_unlock(&delayed_rsv->lock);
4137 spin_unlock(&space_info->lock);
4138 return -ENOSPC;
4139 }
4140 spin_unlock(&delayed_rsv->lock);
4141 spin_unlock(&space_info->lock);
4142
4143commit:
4144 trans = btrfs_join_transaction(root);
4145 if (IS_ERR(trans))
4146 return -ENOSPC;
4147
4148 return btrfs_commit_transaction(trans, root);
4149}
4150
4151enum flush_state {
4152 FLUSH_DELAYED_ITEMS_NR = 1,
4153 FLUSH_DELAYED_ITEMS = 2,
4154 FLUSH_DELALLOC = 3,
4155 FLUSH_DELALLOC_WAIT = 4,
4156 ALLOC_CHUNK = 5,
4157 COMMIT_TRANS = 6,
4158};
4159
4160static int flush_space(struct btrfs_root *root,
4161 struct btrfs_space_info *space_info, u64 num_bytes,
4162 u64 orig_bytes, int state)
4163{
4164 struct btrfs_trans_handle *trans;
4165 int nr;
4166 int ret = 0;
4167
4168 switch (state) {
4169 case FLUSH_DELAYED_ITEMS_NR:
4170 case FLUSH_DELAYED_ITEMS:
4171 if (state == FLUSH_DELAYED_ITEMS_NR) {
4172 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4173
4174 nr = (int)div64_u64(num_bytes, bytes);
4175 if (!nr)
4176 nr = 1;
4177 nr *= 2;
4178 } else {
4179 nr = -1;
4180 }
4181 trans = btrfs_join_transaction(root);
4182 if (IS_ERR(trans)) {
4183 ret = PTR_ERR(trans);
4184 break;
4185 }
4186 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4187 btrfs_end_transaction(trans, root);
4188 break;
4189 case FLUSH_DELALLOC:
4190 case FLUSH_DELALLOC_WAIT:
4191 shrink_delalloc(root, num_bytes, orig_bytes,
4192 state == FLUSH_DELALLOC_WAIT);
4193 break;
4194 case ALLOC_CHUNK:
4195 trans = btrfs_join_transaction(root);
4196 if (IS_ERR(trans)) {
4197 ret = PTR_ERR(trans);
4198 break;
4199 }
4200 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4201 btrfs_get_alloc_profile(root, 0),
4202 CHUNK_ALLOC_NO_FORCE);
4203 btrfs_end_transaction(trans, root);
4204 if (ret == -ENOSPC)
4205 ret = 0;
4206 break;
4207 case COMMIT_TRANS:
4208 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4209 break;
4210 default:
4211 ret = -ENOSPC;
4212 break;
4213 }
4214
4215 return ret;
4216}
4217/**
4218 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4219 * @root - the root we're allocating for
4220 * @block_rsv - the block_rsv we're allocating for
4221 * @orig_bytes - the number of bytes we want
4222 * @flush - whether or not we can flush to make our reservation
4223 *
4224 * This will reserve orgi_bytes number of bytes from the space info associated
4225 * with the block_rsv. If there is not enough space it will make an attempt to
4226 * flush out space to make room. It will do this by flushing delalloc if
4227 * possible or committing the transaction. If flush is 0 then no attempts to
4228 * regain reservations will be made and this will fail if there is not enough
4229 * space already.
4230 */
4231static int reserve_metadata_bytes(struct btrfs_root *root,
4232 struct btrfs_block_rsv *block_rsv,
4233 u64 orig_bytes,
4234 enum btrfs_reserve_flush_enum flush)
4235{
4236 struct btrfs_space_info *space_info = block_rsv->space_info;
4237 u64 used;
4238 u64 num_bytes = orig_bytes;
4239 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4240 int ret = 0;
4241 bool flushing = false;
4242
4243again:
4244 ret = 0;
4245 spin_lock(&space_info->lock);
4246 /*
4247 * We only want to wait if somebody other than us is flushing and we
4248 * are actually allowed to flush all things.
4249 */
4250 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4251 space_info->flush) {
4252 spin_unlock(&space_info->lock);
4253 /*
4254 * If we have a trans handle we can't wait because the flusher
4255 * may have to commit the transaction, which would mean we would
4256 * deadlock since we are waiting for the flusher to finish, but
4257 * hold the current transaction open.
4258 */
4259 if (current->journal_info)
4260 return -EAGAIN;
4261 ret = wait_event_killable(space_info->wait, !space_info->flush);
4262 /* Must have been killed, return */
4263 if (ret)
4264 return -EINTR;
4265
4266 spin_lock(&space_info->lock);
4267 }
4268
4269 ret = -ENOSPC;
4270 used = space_info->bytes_used + space_info->bytes_reserved +
4271 space_info->bytes_pinned + space_info->bytes_readonly +
4272 space_info->bytes_may_use;
4273
4274 /*
4275 * The idea here is that we've not already over-reserved the block group
4276 * then we can go ahead and save our reservation first and then start
4277 * flushing if we need to. Otherwise if we've already overcommitted
4278 * lets start flushing stuff first and then come back and try to make
4279 * our reservation.
4280 */
4281 if (used <= space_info->total_bytes) {
4282 if (used + orig_bytes <= space_info->total_bytes) {
4283 space_info->bytes_may_use += orig_bytes;
4284 trace_btrfs_space_reservation(root->fs_info,
4285 "space_info", space_info->flags, orig_bytes, 1);
4286 ret = 0;
4287 } else {
4288 /*
4289 * Ok set num_bytes to orig_bytes since we aren't
4290 * overocmmitted, this way we only try and reclaim what
4291 * we need.
4292 */
4293 num_bytes = orig_bytes;
4294 }
4295 } else {
4296 /*
4297 * Ok we're over committed, set num_bytes to the overcommitted
4298 * amount plus the amount of bytes that we need for this
4299 * reservation.
4300 */
4301 num_bytes = used - space_info->total_bytes +
4302 (orig_bytes * 2);
4303 }
4304
4305 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4306 space_info->bytes_may_use += orig_bytes;
4307 trace_btrfs_space_reservation(root->fs_info, "space_info",
4308 space_info->flags, orig_bytes,
4309 1);
4310 ret = 0;
4311 }
4312
4313 /*
4314 * Couldn't make our reservation, save our place so while we're trying
4315 * to reclaim space we can actually use it instead of somebody else
4316 * stealing it from us.
4317 *
4318 * We make the other tasks wait for the flush only when we can flush
4319 * all things.
4320 */
4321 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4322 flushing = true;
4323 space_info->flush = 1;
4324 }
4325
4326 spin_unlock(&space_info->lock);
4327
4328 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4329 goto out;
4330
4331 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4332 flush_state);
4333 flush_state++;
4334
4335 /*
4336 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4337 * would happen. So skip delalloc flush.
4338 */
4339 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4340 (flush_state == FLUSH_DELALLOC ||
4341 flush_state == FLUSH_DELALLOC_WAIT))
4342 flush_state = ALLOC_CHUNK;
4343
4344 if (!ret)
4345 goto again;
4346 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4347 flush_state < COMMIT_TRANS)
4348 goto again;
4349 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4350 flush_state <= COMMIT_TRANS)
4351 goto again;
4352
4353out:
4354 if (ret == -ENOSPC &&
4355 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4356 struct btrfs_block_rsv *global_rsv =
4357 &root->fs_info->global_block_rsv;
4358
4359 if (block_rsv != global_rsv &&
4360 !block_rsv_use_bytes(global_rsv, orig_bytes))
4361 ret = 0;
4362 }
4363 if (ret == -ENOSPC)
4364 trace_btrfs_space_reservation(root->fs_info,
4365 "space_info:enospc",
4366 space_info->flags, orig_bytes, 1);
4367 if (flushing) {
4368 spin_lock(&space_info->lock);
4369 space_info->flush = 0;
4370 wake_up_all(&space_info->wait);
4371 spin_unlock(&space_info->lock);
4372 }
4373 return ret;
4374}
4375
4376static struct btrfs_block_rsv *get_block_rsv(
4377 const struct btrfs_trans_handle *trans,
4378 const struct btrfs_root *root)
4379{
4380 struct btrfs_block_rsv *block_rsv = NULL;
4381
4382 if (root->ref_cows)
4383 block_rsv = trans->block_rsv;
4384
4385 if (root == root->fs_info->csum_root && trans->adding_csums)
4386 block_rsv = trans->block_rsv;
4387
4388 if (root == root->fs_info->uuid_root)
4389 block_rsv = trans->block_rsv;
4390
4391 if (!block_rsv)
4392 block_rsv = root->block_rsv;
4393
4394 if (!block_rsv)
4395 block_rsv = &root->fs_info->empty_block_rsv;
4396
4397 return block_rsv;
4398}
4399
4400static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4401 u64 num_bytes)
4402{
4403 int ret = -ENOSPC;
4404 spin_lock(&block_rsv->lock);
4405 if (block_rsv->reserved >= num_bytes) {
4406 block_rsv->reserved -= num_bytes;
4407 if (block_rsv->reserved < block_rsv->size)
4408 block_rsv->full = 0;
4409 ret = 0;
4410 }
4411 spin_unlock(&block_rsv->lock);
4412 return ret;
4413}
4414
4415static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4416 u64 num_bytes, int update_size)
4417{
4418 spin_lock(&block_rsv->lock);
4419 block_rsv->reserved += num_bytes;
4420 if (update_size)
4421 block_rsv->size += num_bytes;
4422 else if (block_rsv->reserved >= block_rsv->size)
4423 block_rsv->full = 1;
4424 spin_unlock(&block_rsv->lock);
4425}
4426
4427int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4428 struct btrfs_block_rsv *dest, u64 num_bytes,
4429 int min_factor)
4430{
4431 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4432 u64 min_bytes;
4433
4434 if (global_rsv->space_info != dest->space_info)
4435 return -ENOSPC;
4436
4437 spin_lock(&global_rsv->lock);
4438 min_bytes = div_factor(global_rsv->size, min_factor);
4439 if (global_rsv->reserved < min_bytes + num_bytes) {
4440 spin_unlock(&global_rsv->lock);
4441 return -ENOSPC;
4442 }
4443 global_rsv->reserved -= num_bytes;
4444 if (global_rsv->reserved < global_rsv->size)
4445 global_rsv->full = 0;
4446 spin_unlock(&global_rsv->lock);
4447
4448 block_rsv_add_bytes(dest, num_bytes, 1);
4449 return 0;
4450}
4451
4452static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4453 struct btrfs_block_rsv *block_rsv,
4454 struct btrfs_block_rsv *dest, u64 num_bytes)
4455{
4456 struct btrfs_space_info *space_info = block_rsv->space_info;
4457
4458 spin_lock(&block_rsv->lock);
4459 if (num_bytes == (u64)-1)
4460 num_bytes = block_rsv->size;
4461 block_rsv->size -= num_bytes;
4462 if (block_rsv->reserved >= block_rsv->size) {
4463 num_bytes = block_rsv->reserved - block_rsv->size;
4464 block_rsv->reserved = block_rsv->size;
4465 block_rsv->full = 1;
4466 } else {
4467 num_bytes = 0;
4468 }
4469 spin_unlock(&block_rsv->lock);
4470
4471 if (num_bytes > 0) {
4472 if (dest) {
4473 spin_lock(&dest->lock);
4474 if (!dest->full) {
4475 u64 bytes_to_add;
4476
4477 bytes_to_add = dest->size - dest->reserved;
4478 bytes_to_add = min(num_bytes, bytes_to_add);
4479 dest->reserved += bytes_to_add;
4480 if (dest->reserved >= dest->size)
4481 dest->full = 1;
4482 num_bytes -= bytes_to_add;
4483 }
4484 spin_unlock(&dest->lock);
4485 }
4486 if (num_bytes) {
4487 spin_lock(&space_info->lock);
4488 space_info->bytes_may_use -= num_bytes;
4489 trace_btrfs_space_reservation(fs_info, "space_info",
4490 space_info->flags, num_bytes, 0);
4491 spin_unlock(&space_info->lock);
4492 }
4493 }
4494}
4495
4496static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4497 struct btrfs_block_rsv *dst, u64 num_bytes)
4498{
4499 int ret;
4500
4501 ret = block_rsv_use_bytes(src, num_bytes);
4502 if (ret)
4503 return ret;
4504
4505 block_rsv_add_bytes(dst, num_bytes, 1);
4506 return 0;
4507}
4508
4509void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4510{
4511 memset(rsv, 0, sizeof(*rsv));
4512 spin_lock_init(&rsv->lock);
4513 rsv->type = type;
4514}
4515
4516struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4517 unsigned short type)
4518{
4519 struct btrfs_block_rsv *block_rsv;
4520 struct btrfs_fs_info *fs_info = root->fs_info;
4521
4522 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4523 if (!block_rsv)
4524 return NULL;
4525
4526 btrfs_init_block_rsv(block_rsv, type);
4527 block_rsv->space_info = __find_space_info(fs_info,
4528 BTRFS_BLOCK_GROUP_METADATA);
4529 return block_rsv;
4530}
4531
4532void btrfs_free_block_rsv(struct btrfs_root *root,
4533 struct btrfs_block_rsv *rsv)
4534{
4535 if (!rsv)
4536 return;
4537 btrfs_block_rsv_release(root, rsv, (u64)-1);
4538 kfree(rsv);
4539}
4540
4541int btrfs_block_rsv_add(struct btrfs_root *root,
4542 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4543 enum btrfs_reserve_flush_enum flush)
4544{
4545 int ret;
4546
4547 if (num_bytes == 0)
4548 return 0;
4549
4550 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4551 if (!ret) {
4552 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4553 return 0;
4554 }
4555
4556 return ret;
4557}
4558
4559int btrfs_block_rsv_check(struct btrfs_root *root,
4560 struct btrfs_block_rsv *block_rsv, int min_factor)
4561{
4562 u64 num_bytes = 0;
4563 int ret = -ENOSPC;
4564
4565 if (!block_rsv)
4566 return 0;
4567
4568 spin_lock(&block_rsv->lock);
4569 num_bytes = div_factor(block_rsv->size, min_factor);
4570 if (block_rsv->reserved >= num_bytes)
4571 ret = 0;
4572 spin_unlock(&block_rsv->lock);
4573
4574 return ret;
4575}
4576
4577int btrfs_block_rsv_refill(struct btrfs_root *root,
4578 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4579 enum btrfs_reserve_flush_enum flush)
4580{
4581 u64 num_bytes = 0;
4582 int ret = -ENOSPC;
4583
4584 if (!block_rsv)
4585 return 0;
4586
4587 spin_lock(&block_rsv->lock);
4588 num_bytes = min_reserved;
4589 if (block_rsv->reserved >= num_bytes)
4590 ret = 0;
4591 else
4592 num_bytes -= block_rsv->reserved;
4593 spin_unlock(&block_rsv->lock);
4594
4595 if (!ret)
4596 return 0;
4597
4598 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4599 if (!ret) {
4600 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4601 return 0;
4602 }
4603
4604 return ret;
4605}
4606
4607int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4608 struct btrfs_block_rsv *dst_rsv,
4609 u64 num_bytes)
4610{
4611 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4612}
4613
4614void btrfs_block_rsv_release(struct btrfs_root *root,
4615 struct btrfs_block_rsv *block_rsv,
4616 u64 num_bytes)
4617{
4618 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4619 if (global_rsv->full || global_rsv == block_rsv ||
4620 block_rsv->space_info != global_rsv->space_info)
4621 global_rsv = NULL;
4622 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4623 num_bytes);
4624}
4625
4626/*
4627 * helper to calculate size of global block reservation.
4628 * the desired value is sum of space used by extent tree,
4629 * checksum tree and root tree
4630 */
4631static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4632{
4633 struct btrfs_space_info *sinfo;
4634 u64 num_bytes;
4635 u64 meta_used;
4636 u64 data_used;
4637 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4638
4639 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4640 spin_lock(&sinfo->lock);
4641 data_used = sinfo->bytes_used;
4642 spin_unlock(&sinfo->lock);
4643
4644 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4645 spin_lock(&sinfo->lock);
4646 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4647 data_used = 0;
4648 meta_used = sinfo->bytes_used;
4649 spin_unlock(&sinfo->lock);
4650
4651 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4652 csum_size * 2;
4653 num_bytes += div64_u64(data_used + meta_used, 50);
4654
4655 if (num_bytes * 3 > meta_used)
4656 num_bytes = div64_u64(meta_used, 3);
4657
4658 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4659}
4660
4661static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4662{
4663 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4664 struct btrfs_space_info *sinfo = block_rsv->space_info;
4665 u64 num_bytes;
4666
4667 num_bytes = calc_global_metadata_size(fs_info);
4668
4669 spin_lock(&sinfo->lock);
4670 spin_lock(&block_rsv->lock);
4671
4672 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4673
4674 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4675 sinfo->bytes_reserved + sinfo->bytes_readonly +
4676 sinfo->bytes_may_use;
4677
4678 if (sinfo->total_bytes > num_bytes) {
4679 num_bytes = sinfo->total_bytes - num_bytes;
4680 block_rsv->reserved += num_bytes;
4681 sinfo->bytes_may_use += num_bytes;
4682 trace_btrfs_space_reservation(fs_info, "space_info",
4683 sinfo->flags, num_bytes, 1);
4684 }
4685
4686 if (block_rsv->reserved >= block_rsv->size) {
4687 num_bytes = block_rsv->reserved - block_rsv->size;
4688 sinfo->bytes_may_use -= num_bytes;
4689 trace_btrfs_space_reservation(fs_info, "space_info",
4690 sinfo->flags, num_bytes, 0);
4691 block_rsv->reserved = block_rsv->size;
4692 block_rsv->full = 1;
4693 }
4694
4695 spin_unlock(&block_rsv->lock);
4696 spin_unlock(&sinfo->lock);
4697}
4698
4699static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4700{
4701 struct btrfs_space_info *space_info;
4702
4703 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4704 fs_info->chunk_block_rsv.space_info = space_info;
4705
4706 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4707 fs_info->global_block_rsv.space_info = space_info;
4708 fs_info->delalloc_block_rsv.space_info = space_info;
4709 fs_info->trans_block_rsv.space_info = space_info;
4710 fs_info->empty_block_rsv.space_info = space_info;
4711 fs_info->delayed_block_rsv.space_info = space_info;
4712
4713 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4714 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4715 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4716 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4717 if (fs_info->quota_root)
4718 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4719 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4720
4721 update_global_block_rsv(fs_info);
4722}
4723
4724static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4725{
4726 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4727 (u64)-1);
4728 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4729 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4730 WARN_ON(fs_info->trans_block_rsv.size > 0);
4731 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4732 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4733 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4734 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4735 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4736}
4737
4738void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4739 struct btrfs_root *root)
4740{
4741 if (!trans->block_rsv)
4742 return;
4743
4744 if (!trans->bytes_reserved)
4745 return;
4746
4747 trace_btrfs_space_reservation(root->fs_info, "transaction",
4748 trans->transid, trans->bytes_reserved, 0);
4749 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4750 trans->bytes_reserved = 0;
4751}
4752
4753/* Can only return 0 or -ENOSPC */
4754int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4755 struct inode *inode)
4756{
4757 struct btrfs_root *root = BTRFS_I(inode)->root;
4758 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4759 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4760
4761 /*
4762 * We need to hold space in order to delete our orphan item once we've
4763 * added it, so this takes the reservation so we can release it later
4764 * when we are truly done with the orphan item.
4765 */
4766 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4767 trace_btrfs_space_reservation(root->fs_info, "orphan",
4768 btrfs_ino(inode), num_bytes, 1);
4769 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4770}
4771
4772void btrfs_orphan_release_metadata(struct inode *inode)
4773{
4774 struct btrfs_root *root = BTRFS_I(inode)->root;
4775 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4776 trace_btrfs_space_reservation(root->fs_info, "orphan",
4777 btrfs_ino(inode), num_bytes, 0);
4778 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4779}
4780
4781/*
4782 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4783 * root: the root of the parent directory
4784 * rsv: block reservation
4785 * items: the number of items that we need do reservation
4786 * qgroup_reserved: used to return the reserved size in qgroup
4787 *
4788 * This function is used to reserve the space for snapshot/subvolume
4789 * creation and deletion. Those operations are different with the
4790 * common file/directory operations, they change two fs/file trees
4791 * and root tree, the number of items that the qgroup reserves is
4792 * different with the free space reservation. So we can not use
4793 * the space reseravtion mechanism in start_transaction().
4794 */
4795int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4796 struct btrfs_block_rsv *rsv,
4797 int items,
4798 u64 *qgroup_reserved,
4799 bool use_global_rsv)
4800{
4801 u64 num_bytes;
4802 int ret;
4803 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4804
4805 if (root->fs_info->quota_enabled) {
4806 /* One for parent inode, two for dir entries */
4807 num_bytes = 3 * root->leafsize;
4808 ret = btrfs_qgroup_reserve(root, num_bytes);
4809 if (ret)
4810 return ret;
4811 } else {
4812 num_bytes = 0;
4813 }
4814
4815 *qgroup_reserved = num_bytes;
4816
4817 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4818 rsv->space_info = __find_space_info(root->fs_info,
4819 BTRFS_BLOCK_GROUP_METADATA);
4820 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4821 BTRFS_RESERVE_FLUSH_ALL);
4822
4823 if (ret == -ENOSPC && use_global_rsv)
4824 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4825
4826 if (ret) {
4827 if (*qgroup_reserved)
4828 btrfs_qgroup_free(root, *qgroup_reserved);
4829 }
4830
4831 return ret;
4832}
4833
4834void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4835 struct btrfs_block_rsv *rsv,
4836 u64 qgroup_reserved)
4837{
4838 btrfs_block_rsv_release(root, rsv, (u64)-1);
4839 if (qgroup_reserved)
4840 btrfs_qgroup_free(root, qgroup_reserved);
4841}
4842
4843/**
4844 * drop_outstanding_extent - drop an outstanding extent
4845 * @inode: the inode we're dropping the extent for
4846 *
4847 * This is called when we are freeing up an outstanding extent, either called
4848 * after an error or after an extent is written. This will return the number of
4849 * reserved extents that need to be freed. This must be called with
4850 * BTRFS_I(inode)->lock held.
4851 */
4852static unsigned drop_outstanding_extent(struct inode *inode)
4853{
4854 unsigned drop_inode_space = 0;
4855 unsigned dropped_extents = 0;
4856
4857 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4858 BTRFS_I(inode)->outstanding_extents--;
4859
4860 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4861 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4862 &BTRFS_I(inode)->runtime_flags))
4863 drop_inode_space = 1;
4864
4865 /*
4866 * If we have more or the same amount of outsanding extents than we have
4867 * reserved then we need to leave the reserved extents count alone.
4868 */
4869 if (BTRFS_I(inode)->outstanding_extents >=
4870 BTRFS_I(inode)->reserved_extents)
4871 return drop_inode_space;
4872
4873 dropped_extents = BTRFS_I(inode)->reserved_extents -
4874 BTRFS_I(inode)->outstanding_extents;
4875 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4876 return dropped_extents + drop_inode_space;
4877}
4878
4879/**
4880 * calc_csum_metadata_size - return the amount of metada space that must be
4881 * reserved/free'd for the given bytes.
4882 * @inode: the inode we're manipulating
4883 * @num_bytes: the number of bytes in question
4884 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4885 *
4886 * This adjusts the number of csum_bytes in the inode and then returns the
4887 * correct amount of metadata that must either be reserved or freed. We
4888 * calculate how many checksums we can fit into one leaf and then divide the
4889 * number of bytes that will need to be checksumed by this value to figure out
4890 * how many checksums will be required. If we are adding bytes then the number
4891 * may go up and we will return the number of additional bytes that must be
4892 * reserved. If it is going down we will return the number of bytes that must
4893 * be freed.
4894 *
4895 * This must be called with BTRFS_I(inode)->lock held.
4896 */
4897static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4898 int reserve)
4899{
4900 struct btrfs_root *root = BTRFS_I(inode)->root;
4901 u64 csum_size;
4902 int num_csums_per_leaf;
4903 int num_csums;
4904 int old_csums;
4905
4906 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4907 BTRFS_I(inode)->csum_bytes == 0)
4908 return 0;
4909
4910 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4911 if (reserve)
4912 BTRFS_I(inode)->csum_bytes += num_bytes;
4913 else
4914 BTRFS_I(inode)->csum_bytes -= num_bytes;
4915 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4916 num_csums_per_leaf = (int)div64_u64(csum_size,
4917 sizeof(struct btrfs_csum_item) +
4918 sizeof(struct btrfs_disk_key));
4919 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4920 num_csums = num_csums + num_csums_per_leaf - 1;
4921 num_csums = num_csums / num_csums_per_leaf;
4922
4923 old_csums = old_csums + num_csums_per_leaf - 1;
4924 old_csums = old_csums / num_csums_per_leaf;
4925
4926 /* No change, no need to reserve more */
4927 if (old_csums == num_csums)
4928 return 0;
4929
4930 if (reserve)
4931 return btrfs_calc_trans_metadata_size(root,
4932 num_csums - old_csums);
4933
4934 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4935}
4936
4937int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4938{
4939 struct btrfs_root *root = BTRFS_I(inode)->root;
4940 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4941 u64 to_reserve = 0;
4942 u64 csum_bytes;
4943 unsigned nr_extents = 0;
4944 int extra_reserve = 0;
4945 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4946 int ret = 0;
4947 bool delalloc_lock = true;
4948 u64 to_free = 0;
4949 unsigned dropped;
4950
4951 /* If we are a free space inode we need to not flush since we will be in
4952 * the middle of a transaction commit. We also don't need the delalloc
4953 * mutex since we won't race with anybody. We need this mostly to make
4954 * lockdep shut its filthy mouth.
4955 */
4956 if (btrfs_is_free_space_inode(inode)) {
4957 flush = BTRFS_RESERVE_NO_FLUSH;
4958 delalloc_lock = false;
4959 }
4960
4961 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4962 btrfs_transaction_in_commit(root->fs_info))
4963 schedule_timeout(1);
4964
4965 if (delalloc_lock)
4966 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4967
4968 num_bytes = ALIGN(num_bytes, root->sectorsize);
4969
4970 spin_lock(&BTRFS_I(inode)->lock);
4971 BTRFS_I(inode)->outstanding_extents++;
4972
4973 if (BTRFS_I(inode)->outstanding_extents >
4974 BTRFS_I(inode)->reserved_extents)
4975 nr_extents = BTRFS_I(inode)->outstanding_extents -
4976 BTRFS_I(inode)->reserved_extents;
4977
4978 /*
4979 * Add an item to reserve for updating the inode when we complete the
4980 * delalloc io.
4981 */
4982 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4983 &BTRFS_I(inode)->runtime_flags)) {
4984 nr_extents++;
4985 extra_reserve = 1;
4986 }
4987
4988 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4989 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4990 csum_bytes = BTRFS_I(inode)->csum_bytes;
4991 spin_unlock(&BTRFS_I(inode)->lock);
4992
4993 if (root->fs_info->quota_enabled) {
4994 ret = btrfs_qgroup_reserve(root, num_bytes +
4995 nr_extents * root->leafsize);
4996 if (ret)
4997 goto out_fail;
4998 }
4999
5000 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5001 if (unlikely(ret)) {
5002 if (root->fs_info->quota_enabled)
5003 btrfs_qgroup_free(root, num_bytes +
5004 nr_extents * root->leafsize);
5005 goto out_fail;
5006 }
5007
5008 spin_lock(&BTRFS_I(inode)->lock);
5009 if (extra_reserve) {
5010 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5011 &BTRFS_I(inode)->runtime_flags);
5012 nr_extents--;
5013 }
5014 BTRFS_I(inode)->reserved_extents += nr_extents;
5015 spin_unlock(&BTRFS_I(inode)->lock);
5016
5017 if (delalloc_lock)
5018 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5019
5020 if (to_reserve)
5021 trace_btrfs_space_reservation(root->fs_info,"delalloc",
5022 btrfs_ino(inode), to_reserve, 1);
5023 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5024
5025 return 0;
5026
5027out_fail:
5028 spin_lock(&BTRFS_I(inode)->lock);
5029 dropped = drop_outstanding_extent(inode);
5030 /*
5031 * If the inodes csum_bytes is the same as the original
5032 * csum_bytes then we know we haven't raced with any free()ers
5033 * so we can just reduce our inodes csum bytes and carry on.
5034 */
5035 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5036 calc_csum_metadata_size(inode, num_bytes, 0);
5037 } else {
5038 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5039 u64 bytes;
5040
5041 /*
5042 * This is tricky, but first we need to figure out how much we
5043 * free'd from any free-ers that occured during this
5044 * reservation, so we reset ->csum_bytes to the csum_bytes
5045 * before we dropped our lock, and then call the free for the
5046 * number of bytes that were freed while we were trying our
5047 * reservation.
5048 */
5049 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5050 BTRFS_I(inode)->csum_bytes = csum_bytes;
5051 to_free = calc_csum_metadata_size(inode, bytes, 0);
5052
5053
5054 /*
5055 * Now we need to see how much we would have freed had we not
5056 * been making this reservation and our ->csum_bytes were not
5057 * artificially inflated.
5058 */
5059 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5060 bytes = csum_bytes - orig_csum_bytes;
5061 bytes = calc_csum_metadata_size(inode, bytes, 0);
5062
5063 /*
5064 * Now reset ->csum_bytes to what it should be. If bytes is
5065 * more than to_free then we would have free'd more space had we
5066 * not had an artificially high ->csum_bytes, so we need to free
5067 * the remainder. If bytes is the same or less then we don't
5068 * need to do anything, the other free-ers did the correct
5069 * thing.
5070 */
5071 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5072 if (bytes > to_free)
5073 to_free = bytes - to_free;
5074 else
5075 to_free = 0;
5076 }
5077 spin_unlock(&BTRFS_I(inode)->lock);
5078 if (dropped)
5079 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5080
5081 if (to_free) {
5082 btrfs_block_rsv_release(root, block_rsv, to_free);
5083 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5084 btrfs_ino(inode), to_free, 0);
5085 }
5086 if (delalloc_lock)
5087 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5088 return ret;
5089}
5090
5091/**
5092 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5093 * @inode: the inode to release the reservation for
5094 * @num_bytes: the number of bytes we're releasing
5095 *
5096 * This will release the metadata reservation for an inode. This can be called
5097 * once we complete IO for a given set of bytes to release their metadata
5098 * reservations.
5099 */
5100void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5101{
5102 struct btrfs_root *root = BTRFS_I(inode)->root;
5103 u64 to_free = 0;
5104 unsigned dropped;
5105
5106 num_bytes = ALIGN(num_bytes, root->sectorsize);
5107 spin_lock(&BTRFS_I(inode)->lock);
5108 dropped = drop_outstanding_extent(inode);
5109
5110 if (num_bytes)
5111 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5112 spin_unlock(&BTRFS_I(inode)->lock);
5113 if (dropped > 0)
5114 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5115
5116 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5117 btrfs_ino(inode), to_free, 0);
5118 if (root->fs_info->quota_enabled) {
5119 btrfs_qgroup_free(root, num_bytes +
5120 dropped * root->leafsize);
5121 }
5122
5123 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5124 to_free);
5125}
5126
5127/**
5128 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5129 * @inode: inode we're writing to
5130 * @num_bytes: the number of bytes we want to allocate
5131 *
5132 * This will do the following things
5133 *
5134 * o reserve space in the data space info for num_bytes
5135 * o reserve space in the metadata space info based on number of outstanding
5136 * extents and how much csums will be needed
5137 * o add to the inodes ->delalloc_bytes
5138 * o add it to the fs_info's delalloc inodes list.
5139 *
5140 * This will return 0 for success and -ENOSPC if there is no space left.
5141 */
5142int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5143{
5144 int ret;
5145
5146 ret = btrfs_check_data_free_space(inode, num_bytes);
5147 if (ret)
5148 return ret;
5149
5150 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5151 if (ret) {
5152 btrfs_free_reserved_data_space(inode, num_bytes);
5153 return ret;
5154 }
5155
5156 return 0;
5157}
5158
5159/**
5160 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5161 * @inode: inode we're releasing space for
5162 * @num_bytes: the number of bytes we want to free up
5163 *
5164 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5165 * called in the case that we don't need the metadata AND data reservations
5166 * anymore. So if there is an error or we insert an inline extent.
5167 *
5168 * This function will release the metadata space that was not used and will
5169 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5170 * list if there are no delalloc bytes left.
5171 */
5172void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5173{
5174 btrfs_delalloc_release_metadata(inode, num_bytes);
5175 btrfs_free_reserved_data_space(inode, num_bytes);
5176}
5177
5178static int update_block_group(struct btrfs_root *root,
5179 u64 bytenr, u64 num_bytes, int alloc)
5180{
5181 struct btrfs_block_group_cache *cache = NULL;
5182 struct btrfs_fs_info *info = root->fs_info;
5183 u64 total = num_bytes;
5184 u64 old_val;
5185 u64 byte_in_group;
5186 int factor;
5187
5188 /* block accounting for super block */
5189 spin_lock(&info->delalloc_root_lock);
5190 old_val = btrfs_super_bytes_used(info->super_copy);
5191 if (alloc)
5192 old_val += num_bytes;
5193 else
5194 old_val -= num_bytes;
5195 btrfs_set_super_bytes_used(info->super_copy, old_val);
5196 spin_unlock(&info->delalloc_root_lock);
5197
5198 while (total) {
5199 cache = btrfs_lookup_block_group(info, bytenr);
5200 if (!cache)
5201 return -ENOENT;
5202 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5203 BTRFS_BLOCK_GROUP_RAID1 |
5204 BTRFS_BLOCK_GROUP_RAID10))
5205 factor = 2;
5206 else
5207 factor = 1;
5208 /*
5209 * If this block group has free space cache written out, we
5210 * need to make sure to load it if we are removing space. This
5211 * is because we need the unpinning stage to actually add the
5212 * space back to the block group, otherwise we will leak space.
5213 */
5214 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5215 cache_block_group(cache, 1);
5216
5217 byte_in_group = bytenr - cache->key.objectid;
5218 WARN_ON(byte_in_group > cache->key.offset);
5219
5220 spin_lock(&cache->space_info->lock);
5221 spin_lock(&cache->lock);
5222
5223 if (btrfs_test_opt(root, SPACE_CACHE) &&
5224 cache->disk_cache_state < BTRFS_DC_CLEAR)
5225 cache->disk_cache_state = BTRFS_DC_CLEAR;
5226
5227 cache->dirty = 1;
5228 old_val = btrfs_block_group_used(&cache->item);
5229 num_bytes = min(total, cache->key.offset - byte_in_group);
5230 if (alloc) {
5231 old_val += num_bytes;
5232 btrfs_set_block_group_used(&cache->item, old_val);
5233 cache->reserved -= num_bytes;
5234 cache->space_info->bytes_reserved -= num_bytes;
5235 cache->space_info->bytes_used += num_bytes;
5236 cache->space_info->disk_used += num_bytes * factor;
5237 spin_unlock(&cache->lock);
5238 spin_unlock(&cache->space_info->lock);
5239 } else {
5240 old_val -= num_bytes;
5241 btrfs_set_block_group_used(&cache->item, old_val);
5242 cache->pinned += num_bytes;
5243 cache->space_info->bytes_pinned += num_bytes;
5244 cache->space_info->bytes_used -= num_bytes;
5245 cache->space_info->disk_used -= num_bytes * factor;
5246 spin_unlock(&cache->lock);
5247 spin_unlock(&cache->space_info->lock);
5248
5249 set_extent_dirty(info->pinned_extents,
5250 bytenr, bytenr + num_bytes - 1,
5251 GFP_NOFS | __GFP_NOFAIL);
5252 }
5253 btrfs_put_block_group(cache);
5254 total -= num_bytes;
5255 bytenr += num_bytes;
5256 }
5257 return 0;
5258}
5259
5260static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5261{
5262 struct btrfs_block_group_cache *cache;
5263 u64 bytenr;
5264
5265 spin_lock(&root->fs_info->block_group_cache_lock);
5266 bytenr = root->fs_info->first_logical_byte;
5267 spin_unlock(&root->fs_info->block_group_cache_lock);
5268
5269 if (bytenr < (u64)-1)
5270 return bytenr;
5271
5272 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5273 if (!cache)
5274 return 0;
5275
5276 bytenr = cache->key.objectid;
5277 btrfs_put_block_group(cache);
5278
5279 return bytenr;
5280}
5281
5282static int pin_down_extent(struct btrfs_root *root,
5283 struct btrfs_block_group_cache *cache,
5284 u64 bytenr, u64 num_bytes, int reserved)
5285{
5286 spin_lock(&cache->space_info->lock);
5287 spin_lock(&cache->lock);
5288 cache->pinned += num_bytes;
5289 cache->space_info->bytes_pinned += num_bytes;
5290 if (reserved) {
5291 cache->reserved -= num_bytes;
5292 cache->space_info->bytes_reserved -= num_bytes;
5293 }
5294 spin_unlock(&cache->lock);
5295 spin_unlock(&cache->space_info->lock);
5296
5297 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5298 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5299 if (reserved)
5300 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5301 return 0;
5302}
5303
5304/*
5305 * this function must be called within transaction
5306 */
5307int btrfs_pin_extent(struct btrfs_root *root,
5308 u64 bytenr, u64 num_bytes, int reserved)
5309{
5310 struct btrfs_block_group_cache *cache;
5311
5312 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5313 BUG_ON(!cache); /* Logic error */
5314
5315 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5316
5317 btrfs_put_block_group(cache);
5318 return 0;
5319}
5320
5321/*
5322 * this function must be called within transaction
5323 */
5324int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5325 u64 bytenr, u64 num_bytes)
5326{
5327 struct btrfs_block_group_cache *cache;
5328 int ret;
5329
5330 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5331 if (!cache)
5332 return -EINVAL;
5333
5334 /*
5335 * pull in the free space cache (if any) so that our pin
5336 * removes the free space from the cache. We have load_only set
5337 * to one because the slow code to read in the free extents does check
5338 * the pinned extents.
5339 */
5340 cache_block_group(cache, 1);
5341
5342 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5343
5344 /* remove us from the free space cache (if we're there at all) */
5345 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5346 btrfs_put_block_group(cache);
5347 return ret;
5348}
5349
5350static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5351{
5352 int ret;
5353 struct btrfs_block_group_cache *block_group;
5354 struct btrfs_caching_control *caching_ctl;
5355
5356 block_group = btrfs_lookup_block_group(root->fs_info, start);
5357 if (!block_group)
5358 return -EINVAL;
5359
5360 cache_block_group(block_group, 0);
5361 caching_ctl = get_caching_control(block_group);
5362
5363 if (!caching_ctl) {
5364 /* Logic error */
5365 BUG_ON(!block_group_cache_done(block_group));
5366 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5367 } else {
5368 mutex_lock(&caching_ctl->mutex);
5369
5370 if (start >= caching_ctl->progress) {
5371 ret = add_excluded_extent(root, start, num_bytes);
5372 } else if (start + num_bytes <= caching_ctl->progress) {
5373 ret = btrfs_remove_free_space(block_group,
5374 start, num_bytes);
5375 } else {
5376 num_bytes = caching_ctl->progress - start;
5377 ret = btrfs_remove_free_space(block_group,
5378 start, num_bytes);
5379 if (ret)
5380 goto out_lock;
5381
5382 num_bytes = (start + num_bytes) -
5383 caching_ctl->progress;
5384 start = caching_ctl->progress;
5385 ret = add_excluded_extent(root, start, num_bytes);
5386 }
5387out_lock:
5388 mutex_unlock(&caching_ctl->mutex);
5389 put_caching_control(caching_ctl);
5390 }
5391 btrfs_put_block_group(block_group);
5392 return ret;
5393}
5394
5395int btrfs_exclude_logged_extents(struct btrfs_root *log,
5396 struct extent_buffer *eb)
5397{
5398 struct btrfs_file_extent_item *item;
5399 struct btrfs_key key;
5400 int found_type;
5401 int i;
5402
5403 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5404 return 0;
5405
5406 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5407 btrfs_item_key_to_cpu(eb, &key, i);
5408 if (key.type != BTRFS_EXTENT_DATA_KEY)
5409 continue;
5410 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5411 found_type = btrfs_file_extent_type(eb, item);
5412 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5413 continue;
5414 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5415 continue;
5416 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5417 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5418 __exclude_logged_extent(log, key.objectid, key.offset);
5419 }
5420
5421 return 0;
5422}
5423
5424/**
5425 * btrfs_update_reserved_bytes - update the block_group and space info counters
5426 * @cache: The cache we are manipulating
5427 * @num_bytes: The number of bytes in question
5428 * @reserve: One of the reservation enums
5429 *
5430 * This is called by the allocator when it reserves space, or by somebody who is
5431 * freeing space that was never actually used on disk. For example if you
5432 * reserve some space for a new leaf in transaction A and before transaction A
5433 * commits you free that leaf, you call this with reserve set to 0 in order to
5434 * clear the reservation.
5435 *
5436 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5437 * ENOSPC accounting. For data we handle the reservation through clearing the
5438 * delalloc bits in the io_tree. We have to do this since we could end up
5439 * allocating less disk space for the amount of data we have reserved in the
5440 * case of compression.
5441 *
5442 * If this is a reservation and the block group has become read only we cannot
5443 * make the reservation and return -EAGAIN, otherwise this function always
5444 * succeeds.
5445 */
5446static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5447 u64 num_bytes, int reserve)
5448{
5449 struct btrfs_space_info *space_info = cache->space_info;
5450 int ret = 0;
5451
5452 spin_lock(&space_info->lock);
5453 spin_lock(&cache->lock);
5454 if (reserve != RESERVE_FREE) {
5455 if (cache->ro) {
5456 ret = -EAGAIN;
5457 } else {
5458 cache->reserved += num_bytes;
5459 space_info->bytes_reserved += num_bytes;
5460 if (reserve == RESERVE_ALLOC) {
5461 trace_btrfs_space_reservation(cache->fs_info,
5462 "space_info", space_info->flags,
5463 num_bytes, 0);
5464 space_info->bytes_may_use -= num_bytes;
5465 }
5466 }
5467 } else {
5468 if (cache->ro)
5469 space_info->bytes_readonly += num_bytes;
5470 cache->reserved -= num_bytes;
5471 space_info->bytes_reserved -= num_bytes;
5472 }
5473 spin_unlock(&cache->lock);
5474 spin_unlock(&space_info->lock);
5475 return ret;
5476}
5477
5478void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5479 struct btrfs_root *root)
5480{
5481 struct btrfs_fs_info *fs_info = root->fs_info;
5482 struct btrfs_caching_control *next;
5483 struct btrfs_caching_control *caching_ctl;
5484 struct btrfs_block_group_cache *cache;
5485 struct btrfs_space_info *space_info;
5486
5487 down_write(&fs_info->extent_commit_sem);
5488
5489 list_for_each_entry_safe(caching_ctl, next,
5490 &fs_info->caching_block_groups, list) {
5491 cache = caching_ctl->block_group;
5492 if (block_group_cache_done(cache)) {
5493 cache->last_byte_to_unpin = (u64)-1;
5494 list_del_init(&caching_ctl->list);
5495 put_caching_control(caching_ctl);
5496 } else {
5497 cache->last_byte_to_unpin = caching_ctl->progress;
5498 }
5499 }
5500
5501 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5502 fs_info->pinned_extents = &fs_info->freed_extents[1];
5503 else
5504 fs_info->pinned_extents = &fs_info->freed_extents[0];
5505
5506 up_write(&fs_info->extent_commit_sem);
5507
5508 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5509 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5510
5511 update_global_block_rsv(fs_info);
5512}
5513
5514static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5515{
5516 struct btrfs_fs_info *fs_info = root->fs_info;
5517 struct btrfs_block_group_cache *cache = NULL;
5518 struct btrfs_space_info *space_info;
5519 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5520 u64 len;
5521 bool readonly;
5522
5523 while (start <= end) {
5524 readonly = false;
5525 if (!cache ||
5526 start >= cache->key.objectid + cache->key.offset) {
5527 if (cache)
5528 btrfs_put_block_group(cache);
5529 cache = btrfs_lookup_block_group(fs_info, start);
5530 BUG_ON(!cache); /* Logic error */
5531 }
5532
5533 len = cache->key.objectid + cache->key.offset - start;
5534 len = min(len, end + 1 - start);
5535
5536 if (start < cache->last_byte_to_unpin) {
5537 len = min(len, cache->last_byte_to_unpin - start);
5538 btrfs_add_free_space(cache, start, len);
5539 }
5540
5541 start += len;
5542 space_info = cache->space_info;
5543
5544 spin_lock(&space_info->lock);
5545 spin_lock(&cache->lock);
5546 cache->pinned -= len;
5547 space_info->bytes_pinned -= len;
5548 if (cache->ro) {
5549 space_info->bytes_readonly += len;
5550 readonly = true;
5551 }
5552 spin_unlock(&cache->lock);
5553 if (!readonly && global_rsv->space_info == space_info) {
5554 spin_lock(&global_rsv->lock);
5555 if (!global_rsv->full) {
5556 len = min(len, global_rsv->size -
5557 global_rsv->reserved);
5558 global_rsv->reserved += len;
5559 space_info->bytes_may_use += len;
5560 if (global_rsv->reserved >= global_rsv->size)
5561 global_rsv->full = 1;
5562 }
5563 spin_unlock(&global_rsv->lock);
5564 }
5565 spin_unlock(&space_info->lock);
5566 }
5567
5568 if (cache)
5569 btrfs_put_block_group(cache);
5570 return 0;
5571}
5572
5573int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5574 struct btrfs_root *root)
5575{
5576 struct btrfs_fs_info *fs_info = root->fs_info;
5577 struct extent_io_tree *unpin;
5578 u64 start;
5579 u64 end;
5580 int ret;
5581
5582 if (trans->aborted)
5583 return 0;
5584
5585 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5586 unpin = &fs_info->freed_extents[1];
5587 else
5588 unpin = &fs_info->freed_extents[0];
5589
5590 while (1) {
5591 ret = find_first_extent_bit(unpin, 0, &start, &end,
5592 EXTENT_DIRTY, NULL);
5593 if (ret)
5594 break;
5595
5596 if (btrfs_test_opt(root, DISCARD))
5597 ret = btrfs_discard_extent(root, start,
5598 end + 1 - start, NULL);
5599
5600 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5601 unpin_extent_range(root, start, end);
5602 cond_resched();
5603 }
5604
5605 return 0;
5606}
5607
5608static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5609 u64 owner, u64 root_objectid)
5610{
5611 struct btrfs_space_info *space_info;
5612 u64 flags;
5613
5614 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5615 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5616 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5617 else
5618 flags = BTRFS_BLOCK_GROUP_METADATA;
5619 } else {
5620 flags = BTRFS_BLOCK_GROUP_DATA;
5621 }
5622
5623 space_info = __find_space_info(fs_info, flags);
5624 BUG_ON(!space_info); /* Logic bug */
5625 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5626}
5627
5628
5629static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5630 struct btrfs_root *root,
5631 u64 bytenr, u64 num_bytes, u64 parent,
5632 u64 root_objectid, u64 owner_objectid,
5633 u64 owner_offset, int refs_to_drop,
5634 struct btrfs_delayed_extent_op *extent_op)
5635{
5636 struct btrfs_key key;
5637 struct btrfs_path *path;
5638 struct btrfs_fs_info *info = root->fs_info;
5639 struct btrfs_root *extent_root = info->extent_root;
5640 struct extent_buffer *leaf;
5641 struct btrfs_extent_item *ei;
5642 struct btrfs_extent_inline_ref *iref;
5643 int ret;
5644 int is_data;
5645 int extent_slot = 0;
5646 int found_extent = 0;
5647 int num_to_del = 1;
5648 u32 item_size;
5649 u64 refs;
5650 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5651 SKINNY_METADATA);
5652
5653 path = btrfs_alloc_path();
5654 if (!path)
5655 return -ENOMEM;
5656
5657 path->reada = 1;
5658 path->leave_spinning = 1;
5659
5660 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5661 BUG_ON(!is_data && refs_to_drop != 1);
5662
5663 if (is_data)
5664 skinny_metadata = 0;
5665
5666 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5667 bytenr, num_bytes, parent,
5668 root_objectid, owner_objectid,
5669 owner_offset);
5670 if (ret == 0) {
5671 extent_slot = path->slots[0];
5672 while (extent_slot >= 0) {
5673 btrfs_item_key_to_cpu(path->nodes[0], &key,
5674 extent_slot);
5675 if (key.objectid != bytenr)
5676 break;
5677 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5678 key.offset == num_bytes) {
5679 found_extent = 1;
5680 break;
5681 }
5682 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5683 key.offset == owner_objectid) {
5684 found_extent = 1;
5685 break;
5686 }
5687 if (path->slots[0] - extent_slot > 5)
5688 break;
5689 extent_slot--;
5690 }
5691#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5692 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5693 if (found_extent && item_size < sizeof(*ei))
5694 found_extent = 0;
5695#endif
5696 if (!found_extent) {
5697 BUG_ON(iref);
5698 ret = remove_extent_backref(trans, extent_root, path,
5699 NULL, refs_to_drop,
5700 is_data);
5701 if (ret) {
5702 btrfs_abort_transaction(trans, extent_root, ret);
5703 goto out;
5704 }
5705 btrfs_release_path(path);
5706 path->leave_spinning = 1;
5707
5708 key.objectid = bytenr;
5709 key.type = BTRFS_EXTENT_ITEM_KEY;
5710 key.offset = num_bytes;
5711
5712 if (!is_data && skinny_metadata) {
5713 key.type = BTRFS_METADATA_ITEM_KEY;
5714 key.offset = owner_objectid;
5715 }
5716
5717 ret = btrfs_search_slot(trans, extent_root,
5718 &key, path, -1, 1);
5719 if (ret > 0 && skinny_metadata && path->slots[0]) {
5720 /*
5721 * Couldn't find our skinny metadata item,
5722 * see if we have ye olde extent item.
5723 */
5724 path->slots[0]--;
5725 btrfs_item_key_to_cpu(path->nodes[0], &key,
5726 path->slots[0]);
5727 if (key.objectid == bytenr &&
5728 key.type == BTRFS_EXTENT_ITEM_KEY &&
5729 key.offset == num_bytes)
5730 ret = 0;
5731 }
5732
5733 if (ret > 0 && skinny_metadata) {
5734 skinny_metadata = false;
5735 key.type = BTRFS_EXTENT_ITEM_KEY;
5736 key.offset = num_bytes;
5737 btrfs_release_path(path);
5738 ret = btrfs_search_slot(trans, extent_root,
5739 &key, path, -1, 1);
5740 }
5741
5742 if (ret) {
5743 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5744 ret, bytenr);
5745 if (ret > 0)
5746 btrfs_print_leaf(extent_root,
5747 path->nodes[0]);
5748 }
5749 if (ret < 0) {
5750 btrfs_abort_transaction(trans, extent_root, ret);
5751 goto out;
5752 }
5753 extent_slot = path->slots[0];
5754 }
5755 } else if (ret == -ENOENT) {
5756 btrfs_print_leaf(extent_root, path->nodes[0]);
5757 WARN_ON(1);
5758 btrfs_err(info,
5759 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5760 bytenr, parent, root_objectid, owner_objectid,
5761 owner_offset);
5762 } else {
5763 btrfs_abort_transaction(trans, extent_root, ret);
5764 goto out;
5765 }
5766
5767 leaf = path->nodes[0];
5768 item_size = btrfs_item_size_nr(leaf, extent_slot);
5769#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5770 if (item_size < sizeof(*ei)) {
5771 BUG_ON(found_extent || extent_slot != path->slots[0]);
5772 ret = convert_extent_item_v0(trans, extent_root, path,
5773 owner_objectid, 0);
5774 if (ret < 0) {
5775 btrfs_abort_transaction(trans, extent_root, ret);
5776 goto out;
5777 }
5778
5779 btrfs_release_path(path);
5780 path->leave_spinning = 1;
5781
5782 key.objectid = bytenr;
5783 key.type = BTRFS_EXTENT_ITEM_KEY;
5784 key.offset = num_bytes;
5785
5786 ret = btrfs_search_slot(trans, extent_root, &key, path,
5787 -1, 1);
5788 if (ret) {
5789 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5790 ret, bytenr);
5791 btrfs_print_leaf(extent_root, path->nodes[0]);
5792 }
5793 if (ret < 0) {
5794 btrfs_abort_transaction(trans, extent_root, ret);
5795 goto out;
5796 }
5797
5798 extent_slot = path->slots[0];
5799 leaf = path->nodes[0];
5800 item_size = btrfs_item_size_nr(leaf, extent_slot);
5801 }
5802#endif
5803 BUG_ON(item_size < sizeof(*ei));
5804 ei = btrfs_item_ptr(leaf, extent_slot,
5805 struct btrfs_extent_item);
5806 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5807 key.type == BTRFS_EXTENT_ITEM_KEY) {
5808 struct btrfs_tree_block_info *bi;
5809 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5810 bi = (struct btrfs_tree_block_info *)(ei + 1);
5811 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5812 }
5813
5814 refs = btrfs_extent_refs(leaf, ei);
5815 if (refs < refs_to_drop) {
5816 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5817 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5818 ret = -EINVAL;
5819 btrfs_abort_transaction(trans, extent_root, ret);
5820 goto out;
5821 }
5822 refs -= refs_to_drop;
5823
5824 if (refs > 0) {
5825 if (extent_op)
5826 __run_delayed_extent_op(extent_op, leaf, ei);
5827 /*
5828 * In the case of inline back ref, reference count will
5829 * be updated by remove_extent_backref
5830 */
5831 if (iref) {
5832 BUG_ON(!found_extent);
5833 } else {
5834 btrfs_set_extent_refs(leaf, ei, refs);
5835 btrfs_mark_buffer_dirty(leaf);
5836 }
5837 if (found_extent) {
5838 ret = remove_extent_backref(trans, extent_root, path,
5839 iref, refs_to_drop,
5840 is_data);
5841 if (ret) {
5842 btrfs_abort_transaction(trans, extent_root, ret);
5843 goto out;
5844 }
5845 }
5846 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5847 root_objectid);
5848 } else {
5849 if (found_extent) {
5850 BUG_ON(is_data && refs_to_drop !=
5851 extent_data_ref_count(root, path, iref));
5852 if (iref) {
5853 BUG_ON(path->slots[0] != extent_slot);
5854 } else {
5855 BUG_ON(path->slots[0] != extent_slot + 1);
5856 path->slots[0] = extent_slot;
5857 num_to_del = 2;
5858 }
5859 }
5860
5861 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5862 num_to_del);
5863 if (ret) {
5864 btrfs_abort_transaction(trans, extent_root, ret);
5865 goto out;
5866 }
5867 btrfs_release_path(path);
5868
5869 if (is_data) {
5870 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5871 if (ret) {
5872 btrfs_abort_transaction(trans, extent_root, ret);
5873 goto out;
5874 }
5875 }
5876
5877 ret = update_block_group(root, bytenr, num_bytes, 0);
5878 if (ret) {
5879 btrfs_abort_transaction(trans, extent_root, ret);
5880 goto out;
5881 }
5882 }
5883out:
5884 btrfs_free_path(path);
5885 return ret;
5886}
5887
5888/*
5889 * when we free an block, it is possible (and likely) that we free the last
5890 * delayed ref for that extent as well. This searches the delayed ref tree for
5891 * a given extent, and if there are no other delayed refs to be processed, it
5892 * removes it from the tree.
5893 */
5894static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5895 struct btrfs_root *root, u64 bytenr)
5896{
5897 struct btrfs_delayed_ref_head *head;
5898 struct btrfs_delayed_ref_root *delayed_refs;
5899 struct btrfs_delayed_ref_node *ref;
5900 struct rb_node *node;
5901 int ret = 0;
5902
5903 delayed_refs = &trans->transaction->delayed_refs;
5904 spin_lock(&delayed_refs->lock);
5905 head = btrfs_find_delayed_ref_head(trans, bytenr);
5906 if (!head)
5907 goto out;
5908
5909 node = rb_prev(&head->node.rb_node);
5910 if (!node)
5911 goto out;
5912
5913 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5914
5915 /* there are still entries for this ref, we can't drop it */
5916 if (ref->bytenr == bytenr)
5917 goto out;
5918
5919 if (head->extent_op) {
5920 if (!head->must_insert_reserved)
5921 goto out;
5922 btrfs_free_delayed_extent_op(head->extent_op);
5923 head->extent_op = NULL;
5924 }
5925
5926 /*
5927 * waiting for the lock here would deadlock. If someone else has it
5928 * locked they are already in the process of dropping it anyway
5929 */
5930 if (!mutex_trylock(&head->mutex))
5931 goto out;
5932
5933 /*
5934 * at this point we have a head with no other entries. Go
5935 * ahead and process it.
5936 */
5937 head->node.in_tree = 0;
5938 rb_erase(&head->node.rb_node, &delayed_refs->root);
5939
5940 delayed_refs->num_entries--;
5941
5942 /*
5943 * we don't take a ref on the node because we're removing it from the
5944 * tree, so we just steal the ref the tree was holding.
5945 */
5946 delayed_refs->num_heads--;
5947 if (list_empty(&head->cluster))
5948 delayed_refs->num_heads_ready--;
5949
5950 list_del_init(&head->cluster);
5951 spin_unlock(&delayed_refs->lock);
5952
5953 BUG_ON(head->extent_op);
5954 if (head->must_insert_reserved)
5955 ret = 1;
5956
5957 mutex_unlock(&head->mutex);
5958 btrfs_put_delayed_ref(&head->node);
5959 return ret;
5960out:
5961 spin_unlock(&delayed_refs->lock);
5962 return 0;
5963}
5964
5965void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5966 struct btrfs_root *root,
5967 struct extent_buffer *buf,
5968 u64 parent, int last_ref)
5969{
5970 struct btrfs_block_group_cache *cache = NULL;
5971 int pin = 1;
5972 int ret;
5973
5974 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5975 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5976 buf->start, buf->len,
5977 parent, root->root_key.objectid,
5978 btrfs_header_level(buf),
5979 BTRFS_DROP_DELAYED_REF, NULL, 0);
5980 BUG_ON(ret); /* -ENOMEM */
5981 }
5982
5983 if (!last_ref)
5984 return;
5985
5986 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5987
5988 if (btrfs_header_generation(buf) == trans->transid) {
5989 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5990 ret = check_ref_cleanup(trans, root, buf->start);
5991 if (!ret)
5992 goto out;
5993 }
5994
5995 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5996 pin_down_extent(root, cache, buf->start, buf->len, 1);
5997 goto out;
5998 }
5999
6000 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6001
6002 btrfs_add_free_space(cache, buf->start, buf->len);
6003 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
6004 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6005 pin = 0;
6006 }
6007out:
6008 if (pin)
6009 add_pinned_bytes(root->fs_info, buf->len,
6010 btrfs_header_level(buf),
6011 root->root_key.objectid);
6012
6013 /*
6014 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6015 * anymore.
6016 */
6017 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6018 btrfs_put_block_group(cache);
6019}
6020
6021/* Can return -ENOMEM */
6022int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6023 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6024 u64 owner, u64 offset, int for_cow)
6025{
6026 int ret;
6027 struct btrfs_fs_info *fs_info = root->fs_info;
6028
6029 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6030
6031 /*
6032 * tree log blocks never actually go into the extent allocation
6033 * tree, just update pinning info and exit early.
6034 */
6035 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6036 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6037 /* unlocks the pinned mutex */
6038 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6039 ret = 0;
6040 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6041 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6042 num_bytes,
6043 parent, root_objectid, (int)owner,
6044 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6045 } else {
6046 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6047 num_bytes,
6048 parent, root_objectid, owner,
6049 offset, BTRFS_DROP_DELAYED_REF,
6050 NULL, for_cow);
6051 }
6052 return ret;
6053}
6054
6055static u64 stripe_align(struct btrfs_root *root,
6056 struct btrfs_block_group_cache *cache,
6057 u64 val, u64 num_bytes)
6058{
6059 u64 ret = ALIGN(val, root->stripesize);
6060 return ret;
6061}
6062
6063/*
6064 * when we wait for progress in the block group caching, its because
6065 * our allocation attempt failed at least once. So, we must sleep
6066 * and let some progress happen before we try again.
6067 *
6068 * This function will sleep at least once waiting for new free space to
6069 * show up, and then it will check the block group free space numbers
6070 * for our min num_bytes. Another option is to have it go ahead
6071 * and look in the rbtree for a free extent of a given size, but this
6072 * is a good start.
6073 *
6074 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6075 * any of the information in this block group.
6076 */
6077static noinline void
6078wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6079 u64 num_bytes)
6080{
6081 struct btrfs_caching_control *caching_ctl;
6082
6083 caching_ctl = get_caching_control(cache);
6084 if (!caching_ctl)
6085 return;
6086
6087 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6088 (cache->free_space_ctl->free_space >= num_bytes));
6089
6090 put_caching_control(caching_ctl);
6091}
6092
6093static noinline int
6094wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6095{
6096 struct btrfs_caching_control *caching_ctl;
6097 int ret = 0;
6098
6099 caching_ctl = get_caching_control(cache);
6100 if (!caching_ctl)
6101 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6102
6103 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6104 if (cache->cached == BTRFS_CACHE_ERROR)
6105 ret = -EIO;
6106 put_caching_control(caching_ctl);
6107 return ret;
6108}
6109
6110int __get_raid_index(u64 flags)
6111{
6112 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6113 return BTRFS_RAID_RAID10;
6114 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6115 return BTRFS_RAID_RAID1;
6116 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6117 return BTRFS_RAID_DUP;
6118 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6119 return BTRFS_RAID_RAID0;
6120 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6121 return BTRFS_RAID_RAID5;
6122 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6123 return BTRFS_RAID_RAID6;
6124
6125 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6126}
6127
6128static int get_block_group_index(struct btrfs_block_group_cache *cache)
6129{
6130 return __get_raid_index(cache->flags);
6131}
6132
6133enum btrfs_loop_type {
6134 LOOP_CACHING_NOWAIT = 0,
6135 LOOP_CACHING_WAIT = 1,
6136 LOOP_ALLOC_CHUNK = 2,
6137 LOOP_NO_EMPTY_SIZE = 3,
6138};
6139
6140/*
6141 * walks the btree of allocated extents and find a hole of a given size.
6142 * The key ins is changed to record the hole:
6143 * ins->objectid == start position
6144 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6145 * ins->offset == the size of the hole.
6146 * Any available blocks before search_start are skipped.
6147 *
6148 * If there is no suitable free space, we will record the max size of
6149 * the free space extent currently.
6150 */
6151static noinline int find_free_extent(struct btrfs_root *orig_root,
6152 u64 num_bytes, u64 empty_size,
6153 u64 hint_byte, struct btrfs_key *ins,
6154 u64 flags)
6155{
6156 int ret = 0;
6157 struct btrfs_root *root = orig_root->fs_info->extent_root;
6158 struct btrfs_free_cluster *last_ptr = NULL;
6159 struct btrfs_block_group_cache *block_group = NULL;
6160 struct btrfs_block_group_cache *used_block_group;
6161 u64 search_start = 0;
6162 u64 max_extent_size = 0;
6163 int empty_cluster = 2 * 1024 * 1024;
6164 struct btrfs_space_info *space_info;
6165 int loop = 0;
6166 int index = __get_raid_index(flags);
6167 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6168 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6169 bool found_uncached_bg = false;
6170 bool failed_cluster_refill = false;
6171 bool failed_alloc = false;
6172 bool use_cluster = true;
6173 bool have_caching_bg = false;
6174
6175 WARN_ON(num_bytes < root->sectorsize);
6176 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6177 ins->objectid = 0;
6178 ins->offset = 0;
6179
6180 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6181
6182 space_info = __find_space_info(root->fs_info, flags);
6183 if (!space_info) {
6184 btrfs_err(root->fs_info, "No space info for %llu", flags);
6185 return -ENOSPC;
6186 }
6187
6188 /*
6189 * If the space info is for both data and metadata it means we have a
6190 * small filesystem and we can't use the clustering stuff.
6191 */
6192 if (btrfs_mixed_space_info(space_info))
6193 use_cluster = false;
6194
6195 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6196 last_ptr = &root->fs_info->meta_alloc_cluster;
6197 if (!btrfs_test_opt(root, SSD))
6198 empty_cluster = 64 * 1024;
6199 }
6200
6201 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6202 btrfs_test_opt(root, SSD)) {
6203 last_ptr = &root->fs_info->data_alloc_cluster;
6204 }
6205
6206 if (last_ptr) {
6207 spin_lock(&last_ptr->lock);
6208 if (last_ptr->block_group)
6209 hint_byte = last_ptr->window_start;
6210 spin_unlock(&last_ptr->lock);
6211 }
6212
6213 search_start = max(search_start, first_logical_byte(root, 0));
6214 search_start = max(search_start, hint_byte);
6215
6216 if (!last_ptr)
6217 empty_cluster = 0;
6218
6219 if (search_start == hint_byte) {
6220 block_group = btrfs_lookup_block_group(root->fs_info,
6221 search_start);
6222 used_block_group = block_group;
6223 /*
6224 * we don't want to use the block group if it doesn't match our
6225 * allocation bits, or if its not cached.
6226 *
6227 * However if we are re-searching with an ideal block group
6228 * picked out then we don't care that the block group is cached.
6229 */
6230 if (block_group && block_group_bits(block_group, flags) &&
6231 block_group->cached != BTRFS_CACHE_NO) {
6232 down_read(&space_info->groups_sem);
6233 if (list_empty(&block_group->list) ||
6234 block_group->ro) {
6235 /*
6236 * someone is removing this block group,
6237 * we can't jump into the have_block_group
6238 * target because our list pointers are not
6239 * valid
6240 */
6241 btrfs_put_block_group(block_group);
6242 up_read(&space_info->groups_sem);
6243 } else {
6244 index = get_block_group_index(block_group);
6245 goto have_block_group;
6246 }
6247 } else if (block_group) {
6248 btrfs_put_block_group(block_group);
6249 }
6250 }
6251search:
6252 have_caching_bg = false;
6253 down_read(&space_info->groups_sem);
6254 list_for_each_entry(block_group, &space_info->block_groups[index],
6255 list) {
6256 u64 offset;
6257 int cached;
6258
6259 used_block_group = block_group;
6260 btrfs_get_block_group(block_group);
6261 search_start = block_group->key.objectid;
6262
6263 /*
6264 * this can happen if we end up cycling through all the
6265 * raid types, but we want to make sure we only allocate
6266 * for the proper type.
6267 */
6268 if (!block_group_bits(block_group, flags)) {
6269 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6270 BTRFS_BLOCK_GROUP_RAID1 |
6271 BTRFS_BLOCK_GROUP_RAID5 |
6272 BTRFS_BLOCK_GROUP_RAID6 |
6273 BTRFS_BLOCK_GROUP_RAID10;
6274
6275 /*
6276 * if they asked for extra copies and this block group
6277 * doesn't provide them, bail. This does allow us to
6278 * fill raid0 from raid1.
6279 */
6280 if ((flags & extra) && !(block_group->flags & extra))
6281 goto loop;
6282 }
6283
6284have_block_group:
6285 cached = block_group_cache_done(block_group);
6286 if (unlikely(!cached)) {
6287 found_uncached_bg = true;
6288 ret = cache_block_group(block_group, 0);
6289 BUG_ON(ret < 0);
6290 ret = 0;
6291 }
6292
6293 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6294 goto loop;
6295 if (unlikely(block_group->ro))
6296 goto loop;
6297
6298 /*
6299 * Ok we want to try and use the cluster allocator, so
6300 * lets look there
6301 */
6302 if (last_ptr) {
6303 unsigned long aligned_cluster;
6304 /*
6305 * the refill lock keeps out other
6306 * people trying to start a new cluster
6307 */
6308 spin_lock(&last_ptr->refill_lock);
6309 used_block_group = last_ptr->block_group;
6310 if (used_block_group != block_group &&
6311 (!used_block_group ||
6312 used_block_group->ro ||
6313 !block_group_bits(used_block_group, flags))) {
6314 used_block_group = block_group;
6315 goto refill_cluster;
6316 }
6317
6318 if (used_block_group != block_group)
6319 btrfs_get_block_group(used_block_group);
6320
6321 offset = btrfs_alloc_from_cluster(used_block_group,
6322 last_ptr,
6323 num_bytes,
6324 used_block_group->key.objectid,
6325 &max_extent_size);
6326 if (offset) {
6327 /* we have a block, we're done */
6328 spin_unlock(&last_ptr->refill_lock);
6329 trace_btrfs_reserve_extent_cluster(root,
6330 block_group, search_start, num_bytes);
6331 goto checks;
6332 }
6333
6334 WARN_ON(last_ptr->block_group != used_block_group);
6335 if (used_block_group != block_group) {
6336 btrfs_put_block_group(used_block_group);
6337 used_block_group = block_group;
6338 }
6339refill_cluster:
6340 BUG_ON(used_block_group != block_group);
6341 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6342 * set up a new clusters, so lets just skip it
6343 * and let the allocator find whatever block
6344 * it can find. If we reach this point, we
6345 * will have tried the cluster allocator
6346 * plenty of times and not have found
6347 * anything, so we are likely way too
6348 * fragmented for the clustering stuff to find
6349 * anything.
6350 *
6351 * However, if the cluster is taken from the
6352 * current block group, release the cluster
6353 * first, so that we stand a better chance of
6354 * succeeding in the unclustered
6355 * allocation. */
6356 if (loop >= LOOP_NO_EMPTY_SIZE &&
6357 last_ptr->block_group != block_group) {
6358 spin_unlock(&last_ptr->refill_lock);
6359 goto unclustered_alloc;
6360 }
6361
6362 /*
6363 * this cluster didn't work out, free it and
6364 * start over
6365 */
6366 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6367
6368 if (loop >= LOOP_NO_EMPTY_SIZE) {
6369 spin_unlock(&last_ptr->refill_lock);
6370 goto unclustered_alloc;
6371 }
6372
6373 aligned_cluster = max_t(unsigned long,
6374 empty_cluster + empty_size,
6375 block_group->full_stripe_len);
6376
6377 /* allocate a cluster in this block group */
6378 ret = btrfs_find_space_cluster(root, block_group,
6379 last_ptr, search_start,
6380 num_bytes,
6381 aligned_cluster);
6382 if (ret == 0) {
6383 /*
6384 * now pull our allocation out of this
6385 * cluster
6386 */
6387 offset = btrfs_alloc_from_cluster(block_group,
6388 last_ptr,
6389 num_bytes,
6390 search_start,
6391 &max_extent_size);
6392 if (offset) {
6393 /* we found one, proceed */
6394 spin_unlock(&last_ptr->refill_lock);
6395 trace_btrfs_reserve_extent_cluster(root,
6396 block_group, search_start,
6397 num_bytes);
6398 goto checks;
6399 }
6400 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6401 && !failed_cluster_refill) {
6402 spin_unlock(&last_ptr->refill_lock);
6403
6404 failed_cluster_refill = true;
6405 wait_block_group_cache_progress(block_group,
6406 num_bytes + empty_cluster + empty_size);
6407 goto have_block_group;
6408 }
6409
6410 /*
6411 * at this point we either didn't find a cluster
6412 * or we weren't able to allocate a block from our
6413 * cluster. Free the cluster we've been trying
6414 * to use, and go to the next block group
6415 */
6416 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6417 spin_unlock(&last_ptr->refill_lock);
6418 goto loop;
6419 }
6420
6421unclustered_alloc:
6422 spin_lock(&block_group->free_space_ctl->tree_lock);
6423 if (cached &&
6424 block_group->free_space_ctl->free_space <
6425 num_bytes + empty_cluster + empty_size) {
6426 if (block_group->free_space_ctl->free_space >
6427 max_extent_size)
6428 max_extent_size =
6429 block_group->free_space_ctl->free_space;
6430 spin_unlock(&block_group->free_space_ctl->tree_lock);
6431 goto loop;
6432 }
6433 spin_unlock(&block_group->free_space_ctl->tree_lock);
6434
6435 offset = btrfs_find_space_for_alloc(block_group, search_start,
6436 num_bytes, empty_size,
6437 &max_extent_size);
6438 /*
6439 * If we didn't find a chunk, and we haven't failed on this
6440 * block group before, and this block group is in the middle of
6441 * caching and we are ok with waiting, then go ahead and wait
6442 * for progress to be made, and set failed_alloc to true.
6443 *
6444 * If failed_alloc is true then we've already waited on this
6445 * block group once and should move on to the next block group.
6446 */
6447 if (!offset && !failed_alloc && !cached &&
6448 loop > LOOP_CACHING_NOWAIT) {
6449 wait_block_group_cache_progress(block_group,
6450 num_bytes + empty_size);
6451 failed_alloc = true;
6452 goto have_block_group;
6453 } else if (!offset) {
6454 if (!cached)
6455 have_caching_bg = true;
6456 goto loop;
6457 }
6458checks:
6459 search_start = stripe_align(root, used_block_group,
6460 offset, num_bytes);
6461
6462 /* move on to the next group */
6463 if (search_start + num_bytes >
6464 used_block_group->key.objectid + used_block_group->key.offset) {
6465 btrfs_add_free_space(used_block_group, offset, num_bytes);
6466 goto loop;
6467 }
6468
6469 if (offset < search_start)
6470 btrfs_add_free_space(used_block_group, offset,
6471 search_start - offset);
6472 BUG_ON(offset > search_start);
6473
6474 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6475 alloc_type);
6476 if (ret == -EAGAIN) {
6477 btrfs_add_free_space(used_block_group, offset, num_bytes);
6478 goto loop;
6479 }
6480
6481 /* we are all good, lets return */
6482 ins->objectid = search_start;
6483 ins->offset = num_bytes;
6484
6485 trace_btrfs_reserve_extent(orig_root, block_group,
6486 search_start, num_bytes);
6487 if (used_block_group != block_group)
6488 btrfs_put_block_group(used_block_group);
6489 btrfs_put_block_group(block_group);
6490 break;
6491loop:
6492 failed_cluster_refill = false;
6493 failed_alloc = false;
6494 BUG_ON(index != get_block_group_index(block_group));
6495 if (used_block_group != block_group)
6496 btrfs_put_block_group(used_block_group);
6497 btrfs_put_block_group(block_group);
6498 }
6499 up_read(&space_info->groups_sem);
6500
6501 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6502 goto search;
6503
6504 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6505 goto search;
6506
6507 /*
6508 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6509 * caching kthreads as we move along
6510 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6511 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6512 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6513 * again
6514 */
6515 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6516 index = 0;
6517 loop++;
6518 if (loop == LOOP_ALLOC_CHUNK) {
6519 struct btrfs_trans_handle *trans;
6520
6521 trans = btrfs_join_transaction(root);
6522 if (IS_ERR(trans)) {
6523 ret = PTR_ERR(trans);
6524 goto out;
6525 }
6526
6527 ret = do_chunk_alloc(trans, root, flags,
6528 CHUNK_ALLOC_FORCE);
6529 /*
6530 * Do not bail out on ENOSPC since we
6531 * can do more things.
6532 */
6533 if (ret < 0 && ret != -ENOSPC)
6534 btrfs_abort_transaction(trans,
6535 root, ret);
6536 else
6537 ret = 0;
6538 btrfs_end_transaction(trans, root);
6539 if (ret)
6540 goto out;
6541 }
6542
6543 if (loop == LOOP_NO_EMPTY_SIZE) {
6544 empty_size = 0;
6545 empty_cluster = 0;
6546 }
6547
6548 goto search;
6549 } else if (!ins->objectid) {
6550 ret = -ENOSPC;
6551 } else if (ins->objectid) {
6552 ret = 0;
6553 }
6554out:
6555 if (ret == -ENOSPC)
6556 ins->offset = max_extent_size;
6557 return ret;
6558}
6559
6560static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6561 int dump_block_groups)
6562{
6563 struct btrfs_block_group_cache *cache;
6564 int index = 0;
6565
6566 spin_lock(&info->lock);
6567 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6568 info->flags,
6569 info->total_bytes - info->bytes_used - info->bytes_pinned -
6570 info->bytes_reserved - info->bytes_readonly,
6571 (info->full) ? "" : "not ");
6572 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6573 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6574 info->total_bytes, info->bytes_used, info->bytes_pinned,
6575 info->bytes_reserved, info->bytes_may_use,
6576 info->bytes_readonly);
6577 spin_unlock(&info->lock);
6578
6579 if (!dump_block_groups)
6580 return;
6581
6582 down_read(&info->groups_sem);
6583again:
6584 list_for_each_entry(cache, &info->block_groups[index], list) {
6585 spin_lock(&cache->lock);
6586 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6587 cache->key.objectid, cache->key.offset,
6588 btrfs_block_group_used(&cache->item), cache->pinned,
6589 cache->reserved, cache->ro ? "[readonly]" : "");
6590 btrfs_dump_free_space(cache, bytes);
6591 spin_unlock(&cache->lock);
6592 }
6593 if (++index < BTRFS_NR_RAID_TYPES)
6594 goto again;
6595 up_read(&info->groups_sem);
6596}
6597
6598int btrfs_reserve_extent(struct btrfs_root *root,
6599 u64 num_bytes, u64 min_alloc_size,
6600 u64 empty_size, u64 hint_byte,
6601 struct btrfs_key *ins, int is_data)
6602{
6603 bool final_tried = false;
6604 u64 flags;
6605 int ret;
6606
6607 flags = btrfs_get_alloc_profile(root, is_data);
6608again:
6609 WARN_ON(num_bytes < root->sectorsize);
6610 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6611 flags);
6612
6613 if (ret == -ENOSPC) {
6614 if (!final_tried && ins->offset) {
6615 num_bytes = min(num_bytes >> 1, ins->offset);
6616 num_bytes = round_down(num_bytes, root->sectorsize);
6617 num_bytes = max(num_bytes, min_alloc_size);
6618 if (num_bytes == min_alloc_size)
6619 final_tried = true;
6620 goto again;
6621 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6622 struct btrfs_space_info *sinfo;
6623
6624 sinfo = __find_space_info(root->fs_info, flags);
6625 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6626 flags, num_bytes);
6627 if (sinfo)
6628 dump_space_info(sinfo, num_bytes, 1);
6629 }
6630 }
6631
6632 return ret;
6633}
6634
6635static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6636 u64 start, u64 len, int pin)
6637{
6638 struct btrfs_block_group_cache *cache;
6639 int ret = 0;
6640
6641 cache = btrfs_lookup_block_group(root->fs_info, start);
6642 if (!cache) {
6643 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6644 start);
6645 return -ENOSPC;
6646 }
6647
6648 if (btrfs_test_opt(root, DISCARD))
6649 ret = btrfs_discard_extent(root, start, len, NULL);
6650
6651 if (pin)
6652 pin_down_extent(root, cache, start, len, 1);
6653 else {
6654 btrfs_add_free_space(cache, start, len);
6655 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6656 }
6657 btrfs_put_block_group(cache);
6658
6659 trace_btrfs_reserved_extent_free(root, start, len);
6660
6661 return ret;
6662}
6663
6664int btrfs_free_reserved_extent(struct btrfs_root *root,
6665 u64 start, u64 len)
6666{
6667 return __btrfs_free_reserved_extent(root, start, len, 0);
6668}
6669
6670int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6671 u64 start, u64 len)
6672{
6673 return __btrfs_free_reserved_extent(root, start, len, 1);
6674}
6675
6676static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6677 struct btrfs_root *root,
6678 u64 parent, u64 root_objectid,
6679 u64 flags, u64 owner, u64 offset,
6680 struct btrfs_key *ins, int ref_mod)
6681{
6682 int ret;
6683 struct btrfs_fs_info *fs_info = root->fs_info;
6684 struct btrfs_extent_item *extent_item;
6685 struct btrfs_extent_inline_ref *iref;
6686 struct btrfs_path *path;
6687 struct extent_buffer *leaf;
6688 int type;
6689 u32 size;
6690
6691 if (parent > 0)
6692 type = BTRFS_SHARED_DATA_REF_KEY;
6693 else
6694 type = BTRFS_EXTENT_DATA_REF_KEY;
6695
6696 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6697
6698 path = btrfs_alloc_path();
6699 if (!path)
6700 return -ENOMEM;
6701
6702 path->leave_spinning = 1;
6703 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6704 ins, size);
6705 if (ret) {
6706 btrfs_free_path(path);
6707 return ret;
6708 }
6709
6710 leaf = path->nodes[0];
6711 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6712 struct btrfs_extent_item);
6713 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6714 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6715 btrfs_set_extent_flags(leaf, extent_item,
6716 flags | BTRFS_EXTENT_FLAG_DATA);
6717
6718 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6719 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6720 if (parent > 0) {
6721 struct btrfs_shared_data_ref *ref;
6722 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6724 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6725 } else {
6726 struct btrfs_extent_data_ref *ref;
6727 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6728 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6729 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6730 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6731 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6732 }
6733
6734 btrfs_mark_buffer_dirty(path->nodes[0]);
6735 btrfs_free_path(path);
6736
6737 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6738 if (ret) { /* -ENOENT, logic error */
6739 btrfs_err(fs_info, "update block group failed for %llu %llu",
6740 ins->objectid, ins->offset);
6741 BUG();
6742 }
6743 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6744 return ret;
6745}
6746
6747static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6748 struct btrfs_root *root,
6749 u64 parent, u64 root_objectid,
6750 u64 flags, struct btrfs_disk_key *key,
6751 int level, struct btrfs_key *ins)
6752{
6753 int ret;
6754 struct btrfs_fs_info *fs_info = root->fs_info;
6755 struct btrfs_extent_item *extent_item;
6756 struct btrfs_tree_block_info *block_info;
6757 struct btrfs_extent_inline_ref *iref;
6758 struct btrfs_path *path;
6759 struct extent_buffer *leaf;
6760 u32 size = sizeof(*extent_item) + sizeof(*iref);
6761 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6762 SKINNY_METADATA);
6763
6764 if (!skinny_metadata)
6765 size += sizeof(*block_info);
6766
6767 path = btrfs_alloc_path();
6768 if (!path) {
6769 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6770 root->leafsize);
6771 return -ENOMEM;
6772 }
6773
6774 path->leave_spinning = 1;
6775 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6776 ins, size);
6777 if (ret) {
6778 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6779 root->leafsize);
6780 btrfs_free_path(path);
6781 return ret;
6782 }
6783
6784 leaf = path->nodes[0];
6785 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6786 struct btrfs_extent_item);
6787 btrfs_set_extent_refs(leaf, extent_item, 1);
6788 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6789 btrfs_set_extent_flags(leaf, extent_item,
6790 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6791
6792 if (skinny_metadata) {
6793 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6794 } else {
6795 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6796 btrfs_set_tree_block_key(leaf, block_info, key);
6797 btrfs_set_tree_block_level(leaf, block_info, level);
6798 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6799 }
6800
6801 if (parent > 0) {
6802 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6803 btrfs_set_extent_inline_ref_type(leaf, iref,
6804 BTRFS_SHARED_BLOCK_REF_KEY);
6805 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6806 } else {
6807 btrfs_set_extent_inline_ref_type(leaf, iref,
6808 BTRFS_TREE_BLOCK_REF_KEY);
6809 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6810 }
6811
6812 btrfs_mark_buffer_dirty(leaf);
6813 btrfs_free_path(path);
6814
6815 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6816 if (ret) { /* -ENOENT, logic error */
6817 btrfs_err(fs_info, "update block group failed for %llu %llu",
6818 ins->objectid, ins->offset);
6819 BUG();
6820 }
6821
6822 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6823 return ret;
6824}
6825
6826int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6827 struct btrfs_root *root,
6828 u64 root_objectid, u64 owner,
6829 u64 offset, struct btrfs_key *ins)
6830{
6831 int ret;
6832
6833 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6834
6835 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6836 ins->offset, 0,
6837 root_objectid, owner, offset,
6838 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6839 return ret;
6840}
6841
6842/*
6843 * this is used by the tree logging recovery code. It records that
6844 * an extent has been allocated and makes sure to clear the free
6845 * space cache bits as well
6846 */
6847int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6848 struct btrfs_root *root,
6849 u64 root_objectid, u64 owner, u64 offset,
6850 struct btrfs_key *ins)
6851{
6852 int ret;
6853 struct btrfs_block_group_cache *block_group;
6854
6855 /*
6856 * Mixed block groups will exclude before processing the log so we only
6857 * need to do the exlude dance if this fs isn't mixed.
6858 */
6859 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6860 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6861 if (ret)
6862 return ret;
6863 }
6864
6865 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6866 if (!block_group)
6867 return -EINVAL;
6868
6869 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6870 RESERVE_ALLOC_NO_ACCOUNT);
6871 BUG_ON(ret); /* logic error */
6872 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6873 0, owner, offset, ins, 1);
6874 btrfs_put_block_group(block_group);
6875 return ret;
6876}
6877
6878static struct extent_buffer *
6879btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6880 u64 bytenr, u32 blocksize, int level)
6881{
6882 struct extent_buffer *buf;
6883
6884 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6885 if (!buf)
6886 return ERR_PTR(-ENOMEM);
6887 btrfs_set_header_generation(buf, trans->transid);
6888 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6889 btrfs_tree_lock(buf);
6890 clean_tree_block(trans, root, buf);
6891 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6892
6893 btrfs_set_lock_blocking(buf);
6894 btrfs_set_buffer_uptodate(buf);
6895
6896 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6897 /*
6898 * we allow two log transactions at a time, use different
6899 * EXENT bit to differentiate dirty pages.
6900 */
6901 if (root->log_transid % 2 == 0)
6902 set_extent_dirty(&root->dirty_log_pages, buf->start,
6903 buf->start + buf->len - 1, GFP_NOFS);
6904 else
6905 set_extent_new(&root->dirty_log_pages, buf->start,
6906 buf->start + buf->len - 1, GFP_NOFS);
6907 } else {
6908 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6909 buf->start + buf->len - 1, GFP_NOFS);
6910 }
6911 trans->blocks_used++;
6912 /* this returns a buffer locked for blocking */
6913 return buf;
6914}
6915
6916static struct btrfs_block_rsv *
6917use_block_rsv(struct btrfs_trans_handle *trans,
6918 struct btrfs_root *root, u32 blocksize)
6919{
6920 struct btrfs_block_rsv *block_rsv;
6921 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6922 int ret;
6923 bool global_updated = false;
6924
6925 block_rsv = get_block_rsv(trans, root);
6926
6927 if (unlikely(block_rsv->size == 0))
6928 goto try_reserve;
6929again:
6930 ret = block_rsv_use_bytes(block_rsv, blocksize);
6931 if (!ret)
6932 return block_rsv;
6933
6934 if (block_rsv->failfast)
6935 return ERR_PTR(ret);
6936
6937 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6938 global_updated = true;
6939 update_global_block_rsv(root->fs_info);
6940 goto again;
6941 }
6942
6943 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6944 static DEFINE_RATELIMIT_STATE(_rs,
6945 DEFAULT_RATELIMIT_INTERVAL * 10,
6946 /*DEFAULT_RATELIMIT_BURST*/ 1);
6947 if (__ratelimit(&_rs))
6948 WARN(1, KERN_DEBUG
6949 "btrfs: block rsv returned %d\n", ret);
6950 }
6951try_reserve:
6952 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6953 BTRFS_RESERVE_NO_FLUSH);
6954 if (!ret)
6955 return block_rsv;
6956 /*
6957 * If we couldn't reserve metadata bytes try and use some from
6958 * the global reserve if its space type is the same as the global
6959 * reservation.
6960 */
6961 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6962 block_rsv->space_info == global_rsv->space_info) {
6963 ret = block_rsv_use_bytes(global_rsv, blocksize);
6964 if (!ret)
6965 return global_rsv;
6966 }
6967 return ERR_PTR(ret);
6968}
6969
6970static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6971 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6972{
6973 block_rsv_add_bytes(block_rsv, blocksize, 0);
6974 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6975}
6976
6977/*
6978 * finds a free extent and does all the dirty work required for allocation
6979 * returns the key for the extent through ins, and a tree buffer for
6980 * the first block of the extent through buf.
6981 *
6982 * returns the tree buffer or NULL.
6983 */
6984struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6985 struct btrfs_root *root, u32 blocksize,
6986 u64 parent, u64 root_objectid,
6987 struct btrfs_disk_key *key, int level,
6988 u64 hint, u64 empty_size)
6989{
6990 struct btrfs_key ins;
6991 struct btrfs_block_rsv *block_rsv;
6992 struct extent_buffer *buf;
6993 u64 flags = 0;
6994 int ret;
6995 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6996 SKINNY_METADATA);
6997
6998 block_rsv = use_block_rsv(trans, root, blocksize);
6999 if (IS_ERR(block_rsv))
7000 return ERR_CAST(block_rsv);
7001
7002 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7003 empty_size, hint, &ins, 0);
7004 if (ret) {
7005 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7006 return ERR_PTR(ret);
7007 }
7008
7009 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7010 blocksize, level);
7011 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7012
7013 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7014 if (parent == 0)
7015 parent = ins.objectid;
7016 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7017 } else
7018 BUG_ON(parent > 0);
7019
7020 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7021 struct btrfs_delayed_extent_op *extent_op;
7022 extent_op = btrfs_alloc_delayed_extent_op();
7023 BUG_ON(!extent_op); /* -ENOMEM */
7024 if (key)
7025 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7026 else
7027 memset(&extent_op->key, 0, sizeof(extent_op->key));
7028 extent_op->flags_to_set = flags;
7029 if (skinny_metadata)
7030 extent_op->update_key = 0;
7031 else
7032 extent_op->update_key = 1;
7033 extent_op->update_flags = 1;
7034 extent_op->is_data = 0;
7035 extent_op->level = level;
7036
7037 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7038 ins.objectid,
7039 ins.offset, parent, root_objectid,
7040 level, BTRFS_ADD_DELAYED_EXTENT,
7041 extent_op, 0);
7042 BUG_ON(ret); /* -ENOMEM */
7043 }
7044 return buf;
7045}
7046
7047struct walk_control {
7048 u64 refs[BTRFS_MAX_LEVEL];
7049 u64 flags[BTRFS_MAX_LEVEL];
7050 struct btrfs_key update_progress;
7051 int stage;
7052 int level;
7053 int shared_level;
7054 int update_ref;
7055 int keep_locks;
7056 int reada_slot;
7057 int reada_count;
7058 int for_reloc;
7059};
7060
7061#define DROP_REFERENCE 1
7062#define UPDATE_BACKREF 2
7063
7064static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7065 struct btrfs_root *root,
7066 struct walk_control *wc,
7067 struct btrfs_path *path)
7068{
7069 u64 bytenr;
7070 u64 generation;
7071 u64 refs;
7072 u64 flags;
7073 u32 nritems;
7074 u32 blocksize;
7075 struct btrfs_key key;
7076 struct extent_buffer *eb;
7077 int ret;
7078 int slot;
7079 int nread = 0;
7080
7081 if (path->slots[wc->level] < wc->reada_slot) {
7082 wc->reada_count = wc->reada_count * 2 / 3;
7083 wc->reada_count = max(wc->reada_count, 2);
7084 } else {
7085 wc->reada_count = wc->reada_count * 3 / 2;
7086 wc->reada_count = min_t(int, wc->reada_count,
7087 BTRFS_NODEPTRS_PER_BLOCK(root));
7088 }
7089
7090 eb = path->nodes[wc->level];
7091 nritems = btrfs_header_nritems(eb);
7092 blocksize = btrfs_level_size(root, wc->level - 1);
7093
7094 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7095 if (nread >= wc->reada_count)
7096 break;
7097
7098 cond_resched();
7099 bytenr = btrfs_node_blockptr(eb, slot);
7100 generation = btrfs_node_ptr_generation(eb, slot);
7101
7102 if (slot == path->slots[wc->level])
7103 goto reada;
7104
7105 if (wc->stage == UPDATE_BACKREF &&
7106 generation <= root->root_key.offset)
7107 continue;
7108
7109 /* We don't lock the tree block, it's OK to be racy here */
7110 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7111 wc->level - 1, 1, &refs,
7112 &flags);
7113 /* We don't care about errors in readahead. */
7114 if (ret < 0)
7115 continue;
7116 BUG_ON(refs == 0);
7117
7118 if (wc->stage == DROP_REFERENCE) {
7119 if (refs == 1)
7120 goto reada;
7121
7122 if (wc->level == 1 &&
7123 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7124 continue;
7125 if (!wc->update_ref ||
7126 generation <= root->root_key.offset)
7127 continue;
7128 btrfs_node_key_to_cpu(eb, &key, slot);
7129 ret = btrfs_comp_cpu_keys(&key,
7130 &wc->update_progress);
7131 if (ret < 0)
7132 continue;
7133 } else {
7134 if (wc->level == 1 &&
7135 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7136 continue;
7137 }
7138reada:
7139 ret = readahead_tree_block(root, bytenr, blocksize,
7140 generation);
7141 if (ret)
7142 break;
7143 nread++;
7144 }
7145 wc->reada_slot = slot;
7146}
7147
7148/*
7149 * helper to process tree block while walking down the tree.
7150 *
7151 * when wc->stage == UPDATE_BACKREF, this function updates
7152 * back refs for pointers in the block.
7153 *
7154 * NOTE: return value 1 means we should stop walking down.
7155 */
7156static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7157 struct btrfs_root *root,
7158 struct btrfs_path *path,
7159 struct walk_control *wc, int lookup_info)
7160{
7161 int level = wc->level;
7162 struct extent_buffer *eb = path->nodes[level];
7163 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7164 int ret;
7165
7166 if (wc->stage == UPDATE_BACKREF &&
7167 btrfs_header_owner(eb) != root->root_key.objectid)
7168 return 1;
7169
7170 /*
7171 * when reference count of tree block is 1, it won't increase
7172 * again. once full backref flag is set, we never clear it.
7173 */
7174 if (lookup_info &&
7175 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7176 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7177 BUG_ON(!path->locks[level]);
7178 ret = btrfs_lookup_extent_info(trans, root,
7179 eb->start, level, 1,
7180 &wc->refs[level],
7181 &wc->flags[level]);
7182 BUG_ON(ret == -ENOMEM);
7183 if (ret)
7184 return ret;
7185 BUG_ON(wc->refs[level] == 0);
7186 }
7187
7188 if (wc->stage == DROP_REFERENCE) {
7189 if (wc->refs[level] > 1)
7190 return 1;
7191
7192 if (path->locks[level] && !wc->keep_locks) {
7193 btrfs_tree_unlock_rw(eb, path->locks[level]);
7194 path->locks[level] = 0;
7195 }
7196 return 0;
7197 }
7198
7199 /* wc->stage == UPDATE_BACKREF */
7200 if (!(wc->flags[level] & flag)) {
7201 BUG_ON(!path->locks[level]);
7202 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7203 BUG_ON(ret); /* -ENOMEM */
7204 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7205 BUG_ON(ret); /* -ENOMEM */
7206 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7207 eb->len, flag,
7208 btrfs_header_level(eb), 0);
7209 BUG_ON(ret); /* -ENOMEM */
7210 wc->flags[level] |= flag;
7211 }
7212
7213 /*
7214 * the block is shared by multiple trees, so it's not good to
7215 * keep the tree lock
7216 */
7217 if (path->locks[level] && level > 0) {
7218 btrfs_tree_unlock_rw(eb, path->locks[level]);
7219 path->locks[level] = 0;
7220 }
7221 return 0;
7222}
7223
7224/*
7225 * helper to process tree block pointer.
7226 *
7227 * when wc->stage == DROP_REFERENCE, this function checks
7228 * reference count of the block pointed to. if the block
7229 * is shared and we need update back refs for the subtree
7230 * rooted at the block, this function changes wc->stage to
7231 * UPDATE_BACKREF. if the block is shared and there is no
7232 * need to update back, this function drops the reference
7233 * to the block.
7234 *
7235 * NOTE: return value 1 means we should stop walking down.
7236 */
7237static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7238 struct btrfs_root *root,
7239 struct btrfs_path *path,
7240 struct walk_control *wc, int *lookup_info)
7241{
7242 u64 bytenr;
7243 u64 generation;
7244 u64 parent;
7245 u32 blocksize;
7246 struct btrfs_key key;
7247 struct extent_buffer *next;
7248 int level = wc->level;
7249 int reada = 0;
7250 int ret = 0;
7251
7252 generation = btrfs_node_ptr_generation(path->nodes[level],
7253 path->slots[level]);
7254 /*
7255 * if the lower level block was created before the snapshot
7256 * was created, we know there is no need to update back refs
7257 * for the subtree
7258 */
7259 if (wc->stage == UPDATE_BACKREF &&
7260 generation <= root->root_key.offset) {
7261 *lookup_info = 1;
7262 return 1;
7263 }
7264
7265 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7266 blocksize = btrfs_level_size(root, level - 1);
7267
7268 next = btrfs_find_tree_block(root, bytenr, blocksize);
7269 if (!next) {
7270 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7271 if (!next)
7272 return -ENOMEM;
7273 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7274 level - 1);
7275 reada = 1;
7276 }
7277 btrfs_tree_lock(next);
7278 btrfs_set_lock_blocking(next);
7279
7280 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7281 &wc->refs[level - 1],
7282 &wc->flags[level - 1]);
7283 if (ret < 0) {
7284 btrfs_tree_unlock(next);
7285 return ret;
7286 }
7287
7288 if (unlikely(wc->refs[level - 1] == 0)) {
7289 btrfs_err(root->fs_info, "Missing references.");
7290 BUG();
7291 }
7292 *lookup_info = 0;
7293
7294 if (wc->stage == DROP_REFERENCE) {
7295 if (wc->refs[level - 1] > 1) {
7296 if (level == 1 &&
7297 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7298 goto skip;
7299
7300 if (!wc->update_ref ||
7301 generation <= root->root_key.offset)
7302 goto skip;
7303
7304 btrfs_node_key_to_cpu(path->nodes[level], &key,
7305 path->slots[level]);
7306 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7307 if (ret < 0)
7308 goto skip;
7309
7310 wc->stage = UPDATE_BACKREF;
7311 wc->shared_level = level - 1;
7312 }
7313 } else {
7314 if (level == 1 &&
7315 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7316 goto skip;
7317 }
7318
7319 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7320 btrfs_tree_unlock(next);
7321 free_extent_buffer(next);
7322 next = NULL;
7323 *lookup_info = 1;
7324 }
7325
7326 if (!next) {
7327 if (reada && level == 1)
7328 reada_walk_down(trans, root, wc, path);
7329 next = read_tree_block(root, bytenr, blocksize, generation);
7330 if (!next || !extent_buffer_uptodate(next)) {
7331 free_extent_buffer(next);
7332 return -EIO;
7333 }
7334 btrfs_tree_lock(next);
7335 btrfs_set_lock_blocking(next);
7336 }
7337
7338 level--;
7339 BUG_ON(level != btrfs_header_level(next));
7340 path->nodes[level] = next;
7341 path->slots[level] = 0;
7342 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7343 wc->level = level;
7344 if (wc->level == 1)
7345 wc->reada_slot = 0;
7346 return 0;
7347skip:
7348 wc->refs[level - 1] = 0;
7349 wc->flags[level - 1] = 0;
7350 if (wc->stage == DROP_REFERENCE) {
7351 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7352 parent = path->nodes[level]->start;
7353 } else {
7354 BUG_ON(root->root_key.objectid !=
7355 btrfs_header_owner(path->nodes[level]));
7356 parent = 0;
7357 }
7358
7359 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7360 root->root_key.objectid, level - 1, 0, 0);
7361 BUG_ON(ret); /* -ENOMEM */
7362 }
7363 btrfs_tree_unlock(next);
7364 free_extent_buffer(next);
7365 *lookup_info = 1;
7366 return 1;
7367}
7368
7369/*
7370 * helper to process tree block while walking up the tree.
7371 *
7372 * when wc->stage == DROP_REFERENCE, this function drops
7373 * reference count on the block.
7374 *
7375 * when wc->stage == UPDATE_BACKREF, this function changes
7376 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7377 * to UPDATE_BACKREF previously while processing the block.
7378 *
7379 * NOTE: return value 1 means we should stop walking up.
7380 */
7381static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7382 struct btrfs_root *root,
7383 struct btrfs_path *path,
7384 struct walk_control *wc)
7385{
7386 int ret;
7387 int level = wc->level;
7388 struct extent_buffer *eb = path->nodes[level];
7389 u64 parent = 0;
7390
7391 if (wc->stage == UPDATE_BACKREF) {
7392 BUG_ON(wc->shared_level < level);
7393 if (level < wc->shared_level)
7394 goto out;
7395
7396 ret = find_next_key(path, level + 1, &wc->update_progress);
7397 if (ret > 0)
7398 wc->update_ref = 0;
7399
7400 wc->stage = DROP_REFERENCE;
7401 wc->shared_level = -1;
7402 path->slots[level] = 0;
7403
7404 /*
7405 * check reference count again if the block isn't locked.
7406 * we should start walking down the tree again if reference
7407 * count is one.
7408 */
7409 if (!path->locks[level]) {
7410 BUG_ON(level == 0);
7411 btrfs_tree_lock(eb);
7412 btrfs_set_lock_blocking(eb);
7413 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7414
7415 ret = btrfs_lookup_extent_info(trans, root,
7416 eb->start, level, 1,
7417 &wc->refs[level],
7418 &wc->flags[level]);
7419 if (ret < 0) {
7420 btrfs_tree_unlock_rw(eb, path->locks[level]);
7421 path->locks[level] = 0;
7422 return ret;
7423 }
7424 BUG_ON(wc->refs[level] == 0);
7425 if (wc->refs[level] == 1) {
7426 btrfs_tree_unlock_rw(eb, path->locks[level]);
7427 path->locks[level] = 0;
7428 return 1;
7429 }
7430 }
7431 }
7432
7433 /* wc->stage == DROP_REFERENCE */
7434 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7435
7436 if (wc->refs[level] == 1) {
7437 if (level == 0) {
7438 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7439 ret = btrfs_dec_ref(trans, root, eb, 1,
7440 wc->for_reloc);
7441 else
7442 ret = btrfs_dec_ref(trans, root, eb, 0,
7443 wc->for_reloc);
7444 BUG_ON(ret); /* -ENOMEM */
7445 }
7446 /* make block locked assertion in clean_tree_block happy */
7447 if (!path->locks[level] &&
7448 btrfs_header_generation(eb) == trans->transid) {
7449 btrfs_tree_lock(eb);
7450 btrfs_set_lock_blocking(eb);
7451 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7452 }
7453 clean_tree_block(trans, root, eb);
7454 }
7455
7456 if (eb == root->node) {
7457 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7458 parent = eb->start;
7459 else
7460 BUG_ON(root->root_key.objectid !=
7461 btrfs_header_owner(eb));
7462 } else {
7463 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7464 parent = path->nodes[level + 1]->start;
7465 else
7466 BUG_ON(root->root_key.objectid !=
7467 btrfs_header_owner(path->nodes[level + 1]));
7468 }
7469
7470 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7471out:
7472 wc->refs[level] = 0;
7473 wc->flags[level] = 0;
7474 return 0;
7475}
7476
7477static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7478 struct btrfs_root *root,
7479 struct btrfs_path *path,
7480 struct walk_control *wc)
7481{
7482 int level = wc->level;
7483 int lookup_info = 1;
7484 int ret;
7485
7486 while (level >= 0) {
7487 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7488 if (ret > 0)
7489 break;
7490
7491 if (level == 0)
7492 break;
7493
7494 if (path->slots[level] >=
7495 btrfs_header_nritems(path->nodes[level]))
7496 break;
7497
7498 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7499 if (ret > 0) {
7500 path->slots[level]++;
7501 continue;
7502 } else if (ret < 0)
7503 return ret;
7504 level = wc->level;
7505 }
7506 return 0;
7507}
7508
7509static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7510 struct btrfs_root *root,
7511 struct btrfs_path *path,
7512 struct walk_control *wc, int max_level)
7513{
7514 int level = wc->level;
7515 int ret;
7516
7517 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7518 while (level < max_level && path->nodes[level]) {
7519 wc->level = level;
7520 if (path->slots[level] + 1 <
7521 btrfs_header_nritems(path->nodes[level])) {
7522 path->slots[level]++;
7523 return 0;
7524 } else {
7525 ret = walk_up_proc(trans, root, path, wc);
7526 if (ret > 0)
7527 return 0;
7528
7529 if (path->locks[level]) {
7530 btrfs_tree_unlock_rw(path->nodes[level],
7531 path->locks[level]);
7532 path->locks[level] = 0;
7533 }
7534 free_extent_buffer(path->nodes[level]);
7535 path->nodes[level] = NULL;
7536 level++;
7537 }
7538 }
7539 return 1;
7540}
7541
7542/*
7543 * drop a subvolume tree.
7544 *
7545 * this function traverses the tree freeing any blocks that only
7546 * referenced by the tree.
7547 *
7548 * when a shared tree block is found. this function decreases its
7549 * reference count by one. if update_ref is true, this function
7550 * also make sure backrefs for the shared block and all lower level
7551 * blocks are properly updated.
7552 *
7553 * If called with for_reloc == 0, may exit early with -EAGAIN
7554 */
7555int btrfs_drop_snapshot(struct btrfs_root *root,
7556 struct btrfs_block_rsv *block_rsv, int update_ref,
7557 int for_reloc)
7558{
7559 struct btrfs_path *path;
7560 struct btrfs_trans_handle *trans;
7561 struct btrfs_root *tree_root = root->fs_info->tree_root;
7562 struct btrfs_root_item *root_item = &root->root_item;
7563 struct walk_control *wc;
7564 struct btrfs_key key;
7565 int err = 0;
7566 int ret;
7567 int level;
7568 bool root_dropped = false;
7569
7570 path = btrfs_alloc_path();
7571 if (!path) {
7572 err = -ENOMEM;
7573 goto out;
7574 }
7575
7576 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7577 if (!wc) {
7578 btrfs_free_path(path);
7579 err = -ENOMEM;
7580 goto out;
7581 }
7582
7583 trans = btrfs_start_transaction(tree_root, 0);
7584 if (IS_ERR(trans)) {
7585 err = PTR_ERR(trans);
7586 goto out_free;
7587 }
7588
7589 if (block_rsv)
7590 trans->block_rsv = block_rsv;
7591
7592 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7593 level = btrfs_header_level(root->node);
7594 path->nodes[level] = btrfs_lock_root_node(root);
7595 btrfs_set_lock_blocking(path->nodes[level]);
7596 path->slots[level] = 0;
7597 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7598 memset(&wc->update_progress, 0,
7599 sizeof(wc->update_progress));
7600 } else {
7601 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7602 memcpy(&wc->update_progress, &key,
7603 sizeof(wc->update_progress));
7604
7605 level = root_item->drop_level;
7606 BUG_ON(level == 0);
7607 path->lowest_level = level;
7608 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7609 path->lowest_level = 0;
7610 if (ret < 0) {
7611 err = ret;
7612 goto out_end_trans;
7613 }
7614 WARN_ON(ret > 0);
7615
7616 /*
7617 * unlock our path, this is safe because only this
7618 * function is allowed to delete this snapshot
7619 */
7620 btrfs_unlock_up_safe(path, 0);
7621
7622 level = btrfs_header_level(root->node);
7623 while (1) {
7624 btrfs_tree_lock(path->nodes[level]);
7625 btrfs_set_lock_blocking(path->nodes[level]);
7626 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7627
7628 ret = btrfs_lookup_extent_info(trans, root,
7629 path->nodes[level]->start,
7630 level, 1, &wc->refs[level],
7631 &wc->flags[level]);
7632 if (ret < 0) {
7633 err = ret;
7634 goto out_end_trans;
7635 }
7636 BUG_ON(wc->refs[level] == 0);
7637
7638 if (level == root_item->drop_level)
7639 break;
7640
7641 btrfs_tree_unlock(path->nodes[level]);
7642 path->locks[level] = 0;
7643 WARN_ON(wc->refs[level] != 1);
7644 level--;
7645 }
7646 }
7647
7648 wc->level = level;
7649 wc->shared_level = -1;
7650 wc->stage = DROP_REFERENCE;
7651 wc->update_ref = update_ref;
7652 wc->keep_locks = 0;
7653 wc->for_reloc = for_reloc;
7654 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7655
7656 while (1) {
7657
7658 ret = walk_down_tree(trans, root, path, wc);
7659 if (ret < 0) {
7660 err = ret;
7661 break;
7662 }
7663
7664 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7665 if (ret < 0) {
7666 err = ret;
7667 break;
7668 }
7669
7670 if (ret > 0) {
7671 BUG_ON(wc->stage != DROP_REFERENCE);
7672 break;
7673 }
7674
7675 if (wc->stage == DROP_REFERENCE) {
7676 level = wc->level;
7677 btrfs_node_key(path->nodes[level],
7678 &root_item->drop_progress,
7679 path->slots[level]);
7680 root_item->drop_level = level;
7681 }
7682
7683 BUG_ON(wc->level == 0);
7684 if (btrfs_should_end_transaction(trans, tree_root) ||
7685 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7686 ret = btrfs_update_root(trans, tree_root,
7687 &root->root_key,
7688 root_item);
7689 if (ret) {
7690 btrfs_abort_transaction(trans, tree_root, ret);
7691 err = ret;
7692 goto out_end_trans;
7693 }
7694
7695 btrfs_end_transaction_throttle(trans, tree_root);
7696 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7697 pr_debug("btrfs: drop snapshot early exit\n");
7698 err = -EAGAIN;
7699 goto out_free;
7700 }
7701
7702 trans = btrfs_start_transaction(tree_root, 0);
7703 if (IS_ERR(trans)) {
7704 err = PTR_ERR(trans);
7705 goto out_free;
7706 }
7707 if (block_rsv)
7708 trans->block_rsv = block_rsv;
7709 }
7710 }
7711 btrfs_release_path(path);
7712 if (err)
7713 goto out_end_trans;
7714
7715 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7716 if (ret) {
7717 btrfs_abort_transaction(trans, tree_root, ret);
7718 goto out_end_trans;
7719 }
7720
7721 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7722 ret = btrfs_find_root(tree_root, &root->root_key, path,
7723 NULL, NULL);
7724 if (ret < 0) {
7725 btrfs_abort_transaction(trans, tree_root, ret);
7726 err = ret;
7727 goto out_end_trans;
7728 } else if (ret > 0) {
7729 /* if we fail to delete the orphan item this time
7730 * around, it'll get picked up the next time.
7731 *
7732 * The most common failure here is just -ENOENT.
7733 */
7734 btrfs_del_orphan_item(trans, tree_root,
7735 root->root_key.objectid);
7736 }
7737 }
7738
7739 if (root->in_radix) {
7740 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7741 } else {
7742 free_extent_buffer(root->node);
7743 free_extent_buffer(root->commit_root);
7744 btrfs_put_fs_root(root);
7745 }
7746 root_dropped = true;
7747out_end_trans:
7748 btrfs_end_transaction_throttle(trans, tree_root);
7749out_free:
7750 kfree(wc);
7751 btrfs_free_path(path);
7752out:
7753 /*
7754 * So if we need to stop dropping the snapshot for whatever reason we
7755 * need to make sure to add it back to the dead root list so that we
7756 * keep trying to do the work later. This also cleans up roots if we
7757 * don't have it in the radix (like when we recover after a power fail
7758 * or unmount) so we don't leak memory.
7759 */
7760 if (!for_reloc && root_dropped == false)
7761 btrfs_add_dead_root(root);
7762 if (err)
7763 btrfs_std_error(root->fs_info, err);
7764 return err;
7765}
7766
7767/*
7768 * drop subtree rooted at tree block 'node'.
7769 *
7770 * NOTE: this function will unlock and release tree block 'node'
7771 * only used by relocation code
7772 */
7773int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7774 struct btrfs_root *root,
7775 struct extent_buffer *node,
7776 struct extent_buffer *parent)
7777{
7778 struct btrfs_path *path;
7779 struct walk_control *wc;
7780 int level;
7781 int parent_level;
7782 int ret = 0;
7783 int wret;
7784
7785 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7786
7787 path = btrfs_alloc_path();
7788 if (!path)
7789 return -ENOMEM;
7790
7791 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7792 if (!wc) {
7793 btrfs_free_path(path);
7794 return -ENOMEM;
7795 }
7796
7797 btrfs_assert_tree_locked(parent);
7798 parent_level = btrfs_header_level(parent);
7799 extent_buffer_get(parent);
7800 path->nodes[parent_level] = parent;
7801 path->slots[parent_level] = btrfs_header_nritems(parent);
7802
7803 btrfs_assert_tree_locked(node);
7804 level = btrfs_header_level(node);
7805 path->nodes[level] = node;
7806 path->slots[level] = 0;
7807 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7808
7809 wc->refs[parent_level] = 1;
7810 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7811 wc->level = level;
7812 wc->shared_level = -1;
7813 wc->stage = DROP_REFERENCE;
7814 wc->update_ref = 0;
7815 wc->keep_locks = 1;
7816 wc->for_reloc = 1;
7817 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7818
7819 while (1) {
7820 wret = walk_down_tree(trans, root, path, wc);
7821 if (wret < 0) {
7822 ret = wret;
7823 break;
7824 }
7825
7826 wret = walk_up_tree(trans, root, path, wc, parent_level);
7827 if (wret < 0)
7828 ret = wret;
7829 if (wret != 0)
7830 break;
7831 }
7832
7833 kfree(wc);
7834 btrfs_free_path(path);
7835 return ret;
7836}
7837
7838static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7839{
7840 u64 num_devices;
7841 u64 stripped;
7842
7843 /*
7844 * if restripe for this chunk_type is on pick target profile and
7845 * return, otherwise do the usual balance
7846 */
7847 stripped = get_restripe_target(root->fs_info, flags);
7848 if (stripped)
7849 return extended_to_chunk(stripped);
7850
7851 /*
7852 * we add in the count of missing devices because we want
7853 * to make sure that any RAID levels on a degraded FS
7854 * continue to be honored.
7855 */
7856 num_devices = root->fs_info->fs_devices->rw_devices +
7857 root->fs_info->fs_devices->missing_devices;
7858
7859 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7860 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7861 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7862
7863 if (num_devices == 1) {
7864 stripped |= BTRFS_BLOCK_GROUP_DUP;
7865 stripped = flags & ~stripped;
7866
7867 /* turn raid0 into single device chunks */
7868 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7869 return stripped;
7870
7871 /* turn mirroring into duplication */
7872 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7873 BTRFS_BLOCK_GROUP_RAID10))
7874 return stripped | BTRFS_BLOCK_GROUP_DUP;
7875 } else {
7876 /* they already had raid on here, just return */
7877 if (flags & stripped)
7878 return flags;
7879
7880 stripped |= BTRFS_BLOCK_GROUP_DUP;
7881 stripped = flags & ~stripped;
7882
7883 /* switch duplicated blocks with raid1 */
7884 if (flags & BTRFS_BLOCK_GROUP_DUP)
7885 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7886
7887 /* this is drive concat, leave it alone */
7888 }
7889
7890 return flags;
7891}
7892
7893static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7894{
7895 struct btrfs_space_info *sinfo = cache->space_info;
7896 u64 num_bytes;
7897 u64 min_allocable_bytes;
7898 int ret = -ENOSPC;
7899
7900
7901 /*
7902 * We need some metadata space and system metadata space for
7903 * allocating chunks in some corner cases until we force to set
7904 * it to be readonly.
7905 */
7906 if ((sinfo->flags &
7907 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7908 !force)
7909 min_allocable_bytes = 1 * 1024 * 1024;
7910 else
7911 min_allocable_bytes = 0;
7912
7913 spin_lock(&sinfo->lock);
7914 spin_lock(&cache->lock);
7915
7916 if (cache->ro) {
7917 ret = 0;
7918 goto out;
7919 }
7920
7921 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7922 cache->bytes_super - btrfs_block_group_used(&cache->item);
7923
7924 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7925 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7926 min_allocable_bytes <= sinfo->total_bytes) {
7927 sinfo->bytes_readonly += num_bytes;
7928 cache->ro = 1;
7929 ret = 0;
7930 }
7931out:
7932 spin_unlock(&cache->lock);
7933 spin_unlock(&sinfo->lock);
7934 return ret;
7935}
7936
7937int btrfs_set_block_group_ro(struct btrfs_root *root,
7938 struct btrfs_block_group_cache *cache)
7939
7940{
7941 struct btrfs_trans_handle *trans;
7942 u64 alloc_flags;
7943 int ret;
7944
7945 BUG_ON(cache->ro);
7946
7947 trans = btrfs_join_transaction(root);
7948 if (IS_ERR(trans))
7949 return PTR_ERR(trans);
7950
7951 alloc_flags = update_block_group_flags(root, cache->flags);
7952 if (alloc_flags != cache->flags) {
7953 ret = do_chunk_alloc(trans, root, alloc_flags,
7954 CHUNK_ALLOC_FORCE);
7955 if (ret < 0)
7956 goto out;
7957 }
7958
7959 ret = set_block_group_ro(cache, 0);
7960 if (!ret)
7961 goto out;
7962 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7963 ret = do_chunk_alloc(trans, root, alloc_flags,
7964 CHUNK_ALLOC_FORCE);
7965 if (ret < 0)
7966 goto out;
7967 ret = set_block_group_ro(cache, 0);
7968out:
7969 btrfs_end_transaction(trans, root);
7970 return ret;
7971}
7972
7973int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7974 struct btrfs_root *root, u64 type)
7975{
7976 u64 alloc_flags = get_alloc_profile(root, type);
7977 return do_chunk_alloc(trans, root, alloc_flags,
7978 CHUNK_ALLOC_FORCE);
7979}
7980
7981/*
7982 * helper to account the unused space of all the readonly block group in the
7983 * list. takes mirrors into account.
7984 */
7985static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7986{
7987 struct btrfs_block_group_cache *block_group;
7988 u64 free_bytes = 0;
7989 int factor;
7990
7991 list_for_each_entry(block_group, groups_list, list) {
7992 spin_lock(&block_group->lock);
7993
7994 if (!block_group->ro) {
7995 spin_unlock(&block_group->lock);
7996 continue;
7997 }
7998
7999 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8000 BTRFS_BLOCK_GROUP_RAID10 |
8001 BTRFS_BLOCK_GROUP_DUP))
8002 factor = 2;
8003 else
8004 factor = 1;
8005
8006 free_bytes += (block_group->key.offset -
8007 btrfs_block_group_used(&block_group->item)) *
8008 factor;
8009
8010 spin_unlock(&block_group->lock);
8011 }
8012
8013 return free_bytes;
8014}
8015
8016/*
8017 * helper to account the unused space of all the readonly block group in the
8018 * space_info. takes mirrors into account.
8019 */
8020u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8021{
8022 int i;
8023 u64 free_bytes = 0;
8024
8025 spin_lock(&sinfo->lock);
8026
8027 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8028 if (!list_empty(&sinfo->block_groups[i]))
8029 free_bytes += __btrfs_get_ro_block_group_free_space(
8030 &sinfo->block_groups[i]);
8031
8032 spin_unlock(&sinfo->lock);
8033
8034 return free_bytes;
8035}
8036
8037void btrfs_set_block_group_rw(struct btrfs_root *root,
8038 struct btrfs_block_group_cache *cache)
8039{
8040 struct btrfs_space_info *sinfo = cache->space_info;
8041 u64 num_bytes;
8042
8043 BUG_ON(!cache->ro);
8044
8045 spin_lock(&sinfo->lock);
8046 spin_lock(&cache->lock);
8047 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8048 cache->bytes_super - btrfs_block_group_used(&cache->item);
8049 sinfo->bytes_readonly -= num_bytes;
8050 cache->ro = 0;
8051 spin_unlock(&cache->lock);
8052 spin_unlock(&sinfo->lock);
8053}
8054
8055/*
8056 * checks to see if its even possible to relocate this block group.
8057 *
8058 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8059 * ok to go ahead and try.
8060 */
8061int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8062{
8063 struct btrfs_block_group_cache *block_group;
8064 struct btrfs_space_info *space_info;
8065 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8066 struct btrfs_device *device;
8067 struct btrfs_trans_handle *trans;
8068 u64 min_free;
8069 u64 dev_min = 1;
8070 u64 dev_nr = 0;
8071 u64 target;
8072 int index;
8073 int full = 0;
8074 int ret = 0;
8075
8076 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8077
8078 /* odd, couldn't find the block group, leave it alone */
8079 if (!block_group)
8080 return -1;
8081
8082 min_free = btrfs_block_group_used(&block_group->item);
8083
8084 /* no bytes used, we're good */
8085 if (!min_free)
8086 goto out;
8087
8088 space_info = block_group->space_info;
8089 spin_lock(&space_info->lock);
8090
8091 full = space_info->full;
8092
8093 /*
8094 * if this is the last block group we have in this space, we can't
8095 * relocate it unless we're able to allocate a new chunk below.
8096 *
8097 * Otherwise, we need to make sure we have room in the space to handle
8098 * all of the extents from this block group. If we can, we're good
8099 */
8100 if ((space_info->total_bytes != block_group->key.offset) &&
8101 (space_info->bytes_used + space_info->bytes_reserved +
8102 space_info->bytes_pinned + space_info->bytes_readonly +
8103 min_free < space_info->total_bytes)) {
8104 spin_unlock(&space_info->lock);
8105 goto out;
8106 }
8107 spin_unlock(&space_info->lock);
8108
8109 /*
8110 * ok we don't have enough space, but maybe we have free space on our
8111 * devices to allocate new chunks for relocation, so loop through our
8112 * alloc devices and guess if we have enough space. if this block
8113 * group is going to be restriped, run checks against the target
8114 * profile instead of the current one.
8115 */
8116 ret = -1;
8117
8118 /*
8119 * index:
8120 * 0: raid10
8121 * 1: raid1
8122 * 2: dup
8123 * 3: raid0
8124 * 4: single
8125 */
8126 target = get_restripe_target(root->fs_info, block_group->flags);
8127 if (target) {
8128 index = __get_raid_index(extended_to_chunk(target));
8129 } else {
8130 /*
8131 * this is just a balance, so if we were marked as full
8132 * we know there is no space for a new chunk
8133 */
8134 if (full)
8135 goto out;
8136
8137 index = get_block_group_index(block_group);
8138 }
8139
8140 if (index == BTRFS_RAID_RAID10) {
8141 dev_min = 4;
8142 /* Divide by 2 */
8143 min_free >>= 1;
8144 } else if (index == BTRFS_RAID_RAID1) {
8145 dev_min = 2;
8146 } else if (index == BTRFS_RAID_DUP) {
8147 /* Multiply by 2 */
8148 min_free <<= 1;
8149 } else if (index == BTRFS_RAID_RAID0) {
8150 dev_min = fs_devices->rw_devices;
8151 do_div(min_free, dev_min);
8152 }
8153
8154 /* We need to do this so that we can look at pending chunks */
8155 trans = btrfs_join_transaction(root);
8156 if (IS_ERR(trans)) {
8157 ret = PTR_ERR(trans);
8158 goto out;
8159 }
8160
8161 mutex_lock(&root->fs_info->chunk_mutex);
8162 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8163 u64 dev_offset;
8164
8165 /*
8166 * check to make sure we can actually find a chunk with enough
8167 * space to fit our block group in.
8168 */
8169 if (device->total_bytes > device->bytes_used + min_free &&
8170 !device->is_tgtdev_for_dev_replace) {
8171 ret = find_free_dev_extent(trans, device, min_free,
8172 &dev_offset, NULL);
8173 if (!ret)
8174 dev_nr++;
8175
8176 if (dev_nr >= dev_min)
8177 break;
8178
8179 ret = -1;
8180 }
8181 }
8182 mutex_unlock(&root->fs_info->chunk_mutex);
8183 btrfs_end_transaction(trans, root);
8184out:
8185 btrfs_put_block_group(block_group);
8186 return ret;
8187}
8188
8189static int find_first_block_group(struct btrfs_root *root,
8190 struct btrfs_path *path, struct btrfs_key *key)
8191{
8192 int ret = 0;
8193 struct btrfs_key found_key;
8194 struct extent_buffer *leaf;
8195 int slot;
8196
8197 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8198 if (ret < 0)
8199 goto out;
8200
8201 while (1) {
8202 slot = path->slots[0];
8203 leaf = path->nodes[0];
8204 if (slot >= btrfs_header_nritems(leaf)) {
8205 ret = btrfs_next_leaf(root, path);
8206 if (ret == 0)
8207 continue;
8208 if (ret < 0)
8209 goto out;
8210 break;
8211 }
8212 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8213
8214 if (found_key.objectid >= key->objectid &&
8215 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8216 ret = 0;
8217 goto out;
8218 }
8219 path->slots[0]++;
8220 }
8221out:
8222 return ret;
8223}
8224
8225void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8226{
8227 struct btrfs_block_group_cache *block_group;
8228 u64 last = 0;
8229
8230 while (1) {
8231 struct inode *inode;
8232
8233 block_group = btrfs_lookup_first_block_group(info, last);
8234 while (block_group) {
8235 spin_lock(&block_group->lock);
8236 if (block_group->iref)
8237 break;
8238 spin_unlock(&block_group->lock);
8239 block_group = next_block_group(info->tree_root,
8240 block_group);
8241 }
8242 if (!block_group) {
8243 if (last == 0)
8244 break;
8245 last = 0;
8246 continue;
8247 }
8248
8249 inode = block_group->inode;
8250 block_group->iref = 0;
8251 block_group->inode = NULL;
8252 spin_unlock(&block_group->lock);
8253 iput(inode);
8254 last = block_group->key.objectid + block_group->key.offset;
8255 btrfs_put_block_group(block_group);
8256 }
8257}
8258
8259int btrfs_free_block_groups(struct btrfs_fs_info *info)
8260{
8261 struct btrfs_block_group_cache *block_group;
8262 struct btrfs_space_info *space_info;
8263 struct btrfs_caching_control *caching_ctl;
8264 struct rb_node *n;
8265
8266 down_write(&info->extent_commit_sem);
8267 while (!list_empty(&info->caching_block_groups)) {
8268 caching_ctl = list_entry(info->caching_block_groups.next,
8269 struct btrfs_caching_control, list);
8270 list_del(&caching_ctl->list);
8271 put_caching_control(caching_ctl);
8272 }
8273 up_write(&info->extent_commit_sem);
8274
8275 spin_lock(&info->block_group_cache_lock);
8276 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8277 block_group = rb_entry(n, struct btrfs_block_group_cache,
8278 cache_node);
8279 rb_erase(&block_group->cache_node,
8280 &info->block_group_cache_tree);
8281 spin_unlock(&info->block_group_cache_lock);
8282
8283 down_write(&block_group->space_info->groups_sem);
8284 list_del(&block_group->list);
8285 up_write(&block_group->space_info->groups_sem);
8286
8287 if (block_group->cached == BTRFS_CACHE_STARTED)
8288 wait_block_group_cache_done(block_group);
8289
8290 /*
8291 * We haven't cached this block group, which means we could
8292 * possibly have excluded extents on this block group.
8293 */
8294 if (block_group->cached == BTRFS_CACHE_NO ||
8295 block_group->cached == BTRFS_CACHE_ERROR)
8296 free_excluded_extents(info->extent_root, block_group);
8297
8298 btrfs_remove_free_space_cache(block_group);
8299 btrfs_put_block_group(block_group);
8300
8301 spin_lock(&info->block_group_cache_lock);
8302 }
8303 spin_unlock(&info->block_group_cache_lock);
8304
8305 /* now that all the block groups are freed, go through and
8306 * free all the space_info structs. This is only called during
8307 * the final stages of unmount, and so we know nobody is
8308 * using them. We call synchronize_rcu() once before we start,
8309 * just to be on the safe side.
8310 */
8311 synchronize_rcu();
8312
8313 release_global_block_rsv(info);
8314
8315 while(!list_empty(&info->space_info)) {
8316 space_info = list_entry(info->space_info.next,
8317 struct btrfs_space_info,
8318 list);
8319 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8320 if (space_info->bytes_pinned > 0 ||
8321 space_info->bytes_reserved > 0 ||
8322 space_info->bytes_may_use > 0) {
8323 WARN_ON(1);
8324 dump_space_info(space_info, 0, 0);
8325 }
8326 }
8327 percpu_counter_destroy(&space_info->total_bytes_pinned);
8328 list_del(&space_info->list);
8329 kfree(space_info);
8330 }
8331 return 0;
8332}
8333
8334static void __link_block_group(struct btrfs_space_info *space_info,
8335 struct btrfs_block_group_cache *cache)
8336{
8337 int index = get_block_group_index(cache);
8338
8339 down_write(&space_info->groups_sem);
8340 list_add_tail(&cache->list, &space_info->block_groups[index]);
8341 up_write(&space_info->groups_sem);
8342}
8343
8344int btrfs_read_block_groups(struct btrfs_root *root)
8345{
8346 struct btrfs_path *path;
8347 int ret;
8348 struct btrfs_block_group_cache *cache;
8349 struct btrfs_fs_info *info = root->fs_info;
8350 struct btrfs_space_info *space_info;
8351 struct btrfs_key key;
8352 struct btrfs_key found_key;
8353 struct extent_buffer *leaf;
8354 int need_clear = 0;
8355 u64 cache_gen;
8356
8357 root = info->extent_root;
8358 key.objectid = 0;
8359 key.offset = 0;
8360 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8361 path = btrfs_alloc_path();
8362 if (!path)
8363 return -ENOMEM;
8364 path->reada = 1;
8365
8366 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8367 if (btrfs_test_opt(root, SPACE_CACHE) &&
8368 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8369 need_clear = 1;
8370 if (btrfs_test_opt(root, CLEAR_CACHE))
8371 need_clear = 1;
8372
8373 while (1) {
8374 ret = find_first_block_group(root, path, &key);
8375 if (ret > 0)
8376 break;
8377 if (ret != 0)
8378 goto error;
8379 leaf = path->nodes[0];
8380 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8381 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8382 if (!cache) {
8383 ret = -ENOMEM;
8384 goto error;
8385 }
8386 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8387 GFP_NOFS);
8388 if (!cache->free_space_ctl) {
8389 kfree(cache);
8390 ret = -ENOMEM;
8391 goto error;
8392 }
8393
8394 atomic_set(&cache->count, 1);
8395 spin_lock_init(&cache->lock);
8396 cache->fs_info = info;
8397 INIT_LIST_HEAD(&cache->list);
8398 INIT_LIST_HEAD(&cache->cluster_list);
8399
8400 if (need_clear) {
8401 /*
8402 * When we mount with old space cache, we need to
8403 * set BTRFS_DC_CLEAR and set dirty flag.
8404 *
8405 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8406 * truncate the old free space cache inode and
8407 * setup a new one.
8408 * b) Setting 'dirty flag' makes sure that we flush
8409 * the new space cache info onto disk.
8410 */
8411 cache->disk_cache_state = BTRFS_DC_CLEAR;
8412 if (btrfs_test_opt(root, SPACE_CACHE))
8413 cache->dirty = 1;
8414 }
8415
8416 read_extent_buffer(leaf, &cache->item,
8417 btrfs_item_ptr_offset(leaf, path->slots[0]),
8418 sizeof(cache->item));
8419 memcpy(&cache->key, &found_key, sizeof(found_key));
8420
8421 key.objectid = found_key.objectid + found_key.offset;
8422 btrfs_release_path(path);
8423 cache->flags = btrfs_block_group_flags(&cache->item);
8424 cache->sectorsize = root->sectorsize;
8425 cache->full_stripe_len = btrfs_full_stripe_len(root,
8426 &root->fs_info->mapping_tree,
8427 found_key.objectid);
8428 btrfs_init_free_space_ctl(cache);
8429
8430 /*
8431 * We need to exclude the super stripes now so that the space
8432 * info has super bytes accounted for, otherwise we'll think
8433 * we have more space than we actually do.
8434 */
8435 ret = exclude_super_stripes(root, cache);
8436 if (ret) {
8437 /*
8438 * We may have excluded something, so call this just in
8439 * case.
8440 */
8441 free_excluded_extents(root, cache);
8442 kfree(cache->free_space_ctl);
8443 kfree(cache);
8444 goto error;
8445 }
8446
8447 /*
8448 * check for two cases, either we are full, and therefore
8449 * don't need to bother with the caching work since we won't
8450 * find any space, or we are empty, and we can just add all
8451 * the space in and be done with it. This saves us _alot_ of
8452 * time, particularly in the full case.
8453 */
8454 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8455 cache->last_byte_to_unpin = (u64)-1;
8456 cache->cached = BTRFS_CACHE_FINISHED;
8457 free_excluded_extents(root, cache);
8458 } else if (btrfs_block_group_used(&cache->item) == 0) {
8459 cache->last_byte_to_unpin = (u64)-1;
8460 cache->cached = BTRFS_CACHE_FINISHED;
8461 add_new_free_space(cache, root->fs_info,
8462 found_key.objectid,
8463 found_key.objectid +
8464 found_key.offset);
8465 free_excluded_extents(root, cache);
8466 }
8467
8468 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8469 if (ret) {
8470 btrfs_remove_free_space_cache(cache);
8471 btrfs_put_block_group(cache);
8472 goto error;
8473 }
8474
8475 ret = update_space_info(info, cache->flags, found_key.offset,
8476 btrfs_block_group_used(&cache->item),
8477 &space_info);
8478 if (ret) {
8479 btrfs_remove_free_space_cache(cache);
8480 spin_lock(&info->block_group_cache_lock);
8481 rb_erase(&cache->cache_node,
8482 &info->block_group_cache_tree);
8483 spin_unlock(&info->block_group_cache_lock);
8484 btrfs_put_block_group(cache);
8485 goto error;
8486 }
8487
8488 cache->space_info = space_info;
8489 spin_lock(&cache->space_info->lock);
8490 cache->space_info->bytes_readonly += cache->bytes_super;
8491 spin_unlock(&cache->space_info->lock);
8492
8493 __link_block_group(space_info, cache);
8494
8495 set_avail_alloc_bits(root->fs_info, cache->flags);
8496 if (btrfs_chunk_readonly(root, cache->key.objectid))
8497 set_block_group_ro(cache, 1);
8498 }
8499
8500 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8501 if (!(get_alloc_profile(root, space_info->flags) &
8502 (BTRFS_BLOCK_GROUP_RAID10 |
8503 BTRFS_BLOCK_GROUP_RAID1 |
8504 BTRFS_BLOCK_GROUP_RAID5 |
8505 BTRFS_BLOCK_GROUP_RAID6 |
8506 BTRFS_BLOCK_GROUP_DUP)))
8507 continue;
8508 /*
8509 * avoid allocating from un-mirrored block group if there are
8510 * mirrored block groups.
8511 */
8512 list_for_each_entry(cache,
8513 &space_info->block_groups[BTRFS_RAID_RAID0],
8514 list)
8515 set_block_group_ro(cache, 1);
8516 list_for_each_entry(cache,
8517 &space_info->block_groups[BTRFS_RAID_SINGLE],
8518 list)
8519 set_block_group_ro(cache, 1);
8520 }
8521
8522 init_global_block_rsv(info);
8523 ret = 0;
8524error:
8525 btrfs_free_path(path);
8526 return ret;
8527}
8528
8529void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8530 struct btrfs_root *root)
8531{
8532 struct btrfs_block_group_cache *block_group, *tmp;
8533 struct btrfs_root *extent_root = root->fs_info->extent_root;
8534 struct btrfs_block_group_item item;
8535 struct btrfs_key key;
8536 int ret = 0;
8537
8538 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8539 new_bg_list) {
8540 list_del_init(&block_group->new_bg_list);
8541
8542 if (ret)
8543 continue;
8544
8545 spin_lock(&block_group->lock);
8546 memcpy(&item, &block_group->item, sizeof(item));
8547 memcpy(&key, &block_group->key, sizeof(key));
8548 spin_unlock(&block_group->lock);
8549
8550 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8551 sizeof(item));
8552 if (ret)
8553 btrfs_abort_transaction(trans, extent_root, ret);
8554 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8555 key.objectid, key.offset);
8556 if (ret)
8557 btrfs_abort_transaction(trans, extent_root, ret);
8558 }
8559}
8560
8561int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8562 struct btrfs_root *root, u64 bytes_used,
8563 u64 type, u64 chunk_objectid, u64 chunk_offset,
8564 u64 size)
8565{
8566 int ret;
8567 struct btrfs_root *extent_root;
8568 struct btrfs_block_group_cache *cache;
8569
8570 extent_root = root->fs_info->extent_root;
8571
8572 root->fs_info->last_trans_log_full_commit = trans->transid;
8573
8574 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8575 if (!cache)
8576 return -ENOMEM;
8577 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8578 GFP_NOFS);
8579 if (!cache->free_space_ctl) {
8580 kfree(cache);
8581 return -ENOMEM;
8582 }
8583
8584 cache->key.objectid = chunk_offset;
8585 cache->key.offset = size;
8586 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8587 cache->sectorsize = root->sectorsize;
8588 cache->fs_info = root->fs_info;
8589 cache->full_stripe_len = btrfs_full_stripe_len(root,
8590 &root->fs_info->mapping_tree,
8591 chunk_offset);
8592
8593 atomic_set(&cache->count, 1);
8594 spin_lock_init(&cache->lock);
8595 INIT_LIST_HEAD(&cache->list);
8596 INIT_LIST_HEAD(&cache->cluster_list);
8597 INIT_LIST_HEAD(&cache->new_bg_list);
8598
8599 btrfs_init_free_space_ctl(cache);
8600
8601 btrfs_set_block_group_used(&cache->item, bytes_used);
8602 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8603 cache->flags = type;
8604 btrfs_set_block_group_flags(&cache->item, type);
8605
8606 cache->last_byte_to_unpin = (u64)-1;
8607 cache->cached = BTRFS_CACHE_FINISHED;
8608 ret = exclude_super_stripes(root, cache);
8609 if (ret) {
8610 /*
8611 * We may have excluded something, so call this just in
8612 * case.
8613 */
8614 free_excluded_extents(root, cache);
8615 kfree(cache->free_space_ctl);
8616 kfree(cache);
8617 return ret;
8618 }
8619
8620 add_new_free_space(cache, root->fs_info, chunk_offset,
8621 chunk_offset + size);
8622
8623 free_excluded_extents(root, cache);
8624
8625 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8626 if (ret) {
8627 btrfs_remove_free_space_cache(cache);
8628 btrfs_put_block_group(cache);
8629 return ret;
8630 }
8631
8632 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8633 &cache->space_info);
8634 if (ret) {
8635 btrfs_remove_free_space_cache(cache);
8636 spin_lock(&root->fs_info->block_group_cache_lock);
8637 rb_erase(&cache->cache_node,
8638 &root->fs_info->block_group_cache_tree);
8639 spin_unlock(&root->fs_info->block_group_cache_lock);
8640 btrfs_put_block_group(cache);
8641 return ret;
8642 }
8643 update_global_block_rsv(root->fs_info);
8644
8645 spin_lock(&cache->space_info->lock);
8646 cache->space_info->bytes_readonly += cache->bytes_super;
8647 spin_unlock(&cache->space_info->lock);
8648
8649 __link_block_group(cache->space_info, cache);
8650
8651 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8652
8653 set_avail_alloc_bits(extent_root->fs_info, type);
8654
8655 return 0;
8656}
8657
8658static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8659{
8660 u64 extra_flags = chunk_to_extended(flags) &
8661 BTRFS_EXTENDED_PROFILE_MASK;
8662
8663 write_seqlock(&fs_info->profiles_lock);
8664 if (flags & BTRFS_BLOCK_GROUP_DATA)
8665 fs_info->avail_data_alloc_bits &= ~extra_flags;
8666 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8667 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8668 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8669 fs_info->avail_system_alloc_bits &= ~extra_flags;
8670 write_sequnlock(&fs_info->profiles_lock);
8671}
8672
8673int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8674 struct btrfs_root *root, u64 group_start)
8675{
8676 struct btrfs_path *path;
8677 struct btrfs_block_group_cache *block_group;
8678 struct btrfs_free_cluster *cluster;
8679 struct btrfs_root *tree_root = root->fs_info->tree_root;
8680 struct btrfs_key key;
8681 struct inode *inode;
8682 int ret;
8683 int index;
8684 int factor;
8685
8686 root = root->fs_info->extent_root;
8687
8688 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8689 BUG_ON(!block_group);
8690 BUG_ON(!block_group->ro);
8691
8692 /*
8693 * Free the reserved super bytes from this block group before
8694 * remove it.
8695 */
8696 free_excluded_extents(root, block_group);
8697
8698 memcpy(&key, &block_group->key, sizeof(key));
8699 index = get_block_group_index(block_group);
8700 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8701 BTRFS_BLOCK_GROUP_RAID1 |
8702 BTRFS_BLOCK_GROUP_RAID10))
8703 factor = 2;
8704 else
8705 factor = 1;
8706
8707 /* make sure this block group isn't part of an allocation cluster */
8708 cluster = &root->fs_info->data_alloc_cluster;
8709 spin_lock(&cluster->refill_lock);
8710 btrfs_return_cluster_to_free_space(block_group, cluster);
8711 spin_unlock(&cluster->refill_lock);
8712
8713 /*
8714 * make sure this block group isn't part of a metadata
8715 * allocation cluster
8716 */
8717 cluster = &root->fs_info->meta_alloc_cluster;
8718 spin_lock(&cluster->refill_lock);
8719 btrfs_return_cluster_to_free_space(block_group, cluster);
8720 spin_unlock(&cluster->refill_lock);
8721
8722 path = btrfs_alloc_path();
8723 if (!path) {
8724 ret = -ENOMEM;
8725 goto out;
8726 }
8727
8728 inode = lookup_free_space_inode(tree_root, block_group, path);
8729 if (!IS_ERR(inode)) {
8730 ret = btrfs_orphan_add(trans, inode);
8731 if (ret) {
8732 btrfs_add_delayed_iput(inode);
8733 goto out;
8734 }
8735 clear_nlink(inode);
8736 /* One for the block groups ref */
8737 spin_lock(&block_group->lock);
8738 if (block_group->iref) {
8739 block_group->iref = 0;
8740 block_group->inode = NULL;
8741 spin_unlock(&block_group->lock);
8742 iput(inode);
8743 } else {
8744 spin_unlock(&block_group->lock);
8745 }
8746 /* One for our lookup ref */
8747 btrfs_add_delayed_iput(inode);
8748 }
8749
8750 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8751 key.offset = block_group->key.objectid;
8752 key.type = 0;
8753
8754 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8755 if (ret < 0)
8756 goto out;
8757 if (ret > 0)
8758 btrfs_release_path(path);
8759 if (ret == 0) {
8760 ret = btrfs_del_item(trans, tree_root, path);
8761 if (ret)
8762 goto out;
8763 btrfs_release_path(path);
8764 }
8765
8766 spin_lock(&root->fs_info->block_group_cache_lock);
8767 rb_erase(&block_group->cache_node,
8768 &root->fs_info->block_group_cache_tree);
8769
8770 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8771 root->fs_info->first_logical_byte = (u64)-1;
8772 spin_unlock(&root->fs_info->block_group_cache_lock);
8773
8774 down_write(&block_group->space_info->groups_sem);
8775 /*
8776 * we must use list_del_init so people can check to see if they
8777 * are still on the list after taking the semaphore
8778 */
8779 list_del_init(&block_group->list);
8780 if (list_empty(&block_group->space_info->block_groups[index]))
8781 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8782 up_write(&block_group->space_info->groups_sem);
8783
8784 if (block_group->cached == BTRFS_CACHE_STARTED)
8785 wait_block_group_cache_done(block_group);
8786
8787 btrfs_remove_free_space_cache(block_group);
8788
8789 spin_lock(&block_group->space_info->lock);
8790 block_group->space_info->total_bytes -= block_group->key.offset;
8791 block_group->space_info->bytes_readonly -= block_group->key.offset;
8792 block_group->space_info->disk_total -= block_group->key.offset * factor;
8793 spin_unlock(&block_group->space_info->lock);
8794
8795 memcpy(&key, &block_group->key, sizeof(key));
8796
8797 btrfs_clear_space_info_full(root->fs_info);
8798
8799 btrfs_put_block_group(block_group);
8800 btrfs_put_block_group(block_group);
8801
8802 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8803 if (ret > 0)
8804 ret = -EIO;
8805 if (ret < 0)
8806 goto out;
8807
8808 ret = btrfs_del_item(trans, root, path);
8809out:
8810 btrfs_free_path(path);
8811 return ret;
8812}
8813
8814int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8815{
8816 struct btrfs_space_info *space_info;
8817 struct btrfs_super_block *disk_super;
8818 u64 features;
8819 u64 flags;
8820 int mixed = 0;
8821 int ret;
8822
8823 disk_super = fs_info->super_copy;
8824 if (!btrfs_super_root(disk_super))
8825 return 1;
8826
8827 features = btrfs_super_incompat_flags(disk_super);
8828 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8829 mixed = 1;
8830
8831 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8832 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8833 if (ret)
8834 goto out;
8835
8836 if (mixed) {
8837 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8838 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8839 } else {
8840 flags = BTRFS_BLOCK_GROUP_METADATA;
8841 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8842 if (ret)
8843 goto out;
8844
8845 flags = BTRFS_BLOCK_GROUP_DATA;
8846 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8847 }
8848out:
8849 return ret;
8850}
8851
8852int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8853{
8854 return unpin_extent_range(root, start, end);
8855}
8856
8857int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8858 u64 num_bytes, u64 *actual_bytes)
8859{
8860 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8861}
8862
8863int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8864{
8865 struct btrfs_fs_info *fs_info = root->fs_info;
8866 struct btrfs_block_group_cache *cache = NULL;
8867 u64 group_trimmed;
8868 u64 start;
8869 u64 end;
8870 u64 trimmed = 0;
8871 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8872 int ret = 0;
8873
8874 /*
8875 * try to trim all FS space, our block group may start from non-zero.
8876 */
8877 if (range->len == total_bytes)
8878 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8879 else
8880 cache = btrfs_lookup_block_group(fs_info, range->start);
8881
8882 while (cache) {
8883 if (cache->key.objectid >= (range->start + range->len)) {
8884 btrfs_put_block_group(cache);
8885 break;
8886 }
8887
8888 start = max(range->start, cache->key.objectid);
8889 end = min(range->start + range->len,
8890 cache->key.objectid + cache->key.offset);
8891
8892 if (end - start >= range->minlen) {
8893 if (!block_group_cache_done(cache)) {
8894 ret = cache_block_group(cache, 0);
8895 if (ret) {
8896 btrfs_put_block_group(cache);
8897 break;
8898 }
8899 ret = wait_block_group_cache_done(cache);
8900 if (ret) {
8901 btrfs_put_block_group(cache);
8902 break;
8903 }
8904 }
8905 ret = btrfs_trim_block_group(cache,
8906 &group_trimmed,
8907 start,
8908 end,
8909 range->minlen);
8910
8911 trimmed += group_trimmed;
8912 if (ret) {
8913 btrfs_put_block_group(cache);
8914 break;
8915 }
8916 }
8917
8918 cache = next_block_group(fs_info->tree_root, cache);
8919 }
8920
8921 range->len = trimmed;
8922 return ret;
8923}
This page took 0.055932 seconds and 5 git commands to generate.