btrfs: Introduce extent_read_full_page_nolock()
[deliverable/linux.git] / fs / btrfs / ioctl.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/fsnotify.h>
25#include <linux/pagemap.h>
26#include <linux/highmem.h>
27#include <linux/time.h>
28#include <linux/init.h>
29#include <linux/string.h>
30#include <linux/backing-dev.h>
31#include <linux/mount.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/swap.h>
35#include <linux/writeback.h>
36#include <linux/statfs.h>
37#include <linux/compat.h>
38#include <linux/bit_spinlock.h>
39#include <linux/security.h>
40#include <linux/xattr.h>
41#include <linux/vmalloc.h>
42#include <linux/slab.h>
43#include <linux/blkdev.h>
44#include <linux/uuid.h>
45#include <linux/btrfs.h>
46#include "compat.h"
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
51#include "print-tree.h"
52#include "volumes.h"
53#include "locking.h"
54#include "inode-map.h"
55#include "backref.h"
56#include "rcu-string.h"
57#include "send.h"
58#include "dev-replace.h"
59
60/* Mask out flags that are inappropriate for the given type of inode. */
61static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
62{
63 if (S_ISDIR(mode))
64 return flags;
65 else if (S_ISREG(mode))
66 return flags & ~FS_DIRSYNC_FL;
67 else
68 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
69}
70
71/*
72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
73 */
74static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
75{
76 unsigned int iflags = 0;
77
78 if (flags & BTRFS_INODE_SYNC)
79 iflags |= FS_SYNC_FL;
80 if (flags & BTRFS_INODE_IMMUTABLE)
81 iflags |= FS_IMMUTABLE_FL;
82 if (flags & BTRFS_INODE_APPEND)
83 iflags |= FS_APPEND_FL;
84 if (flags & BTRFS_INODE_NODUMP)
85 iflags |= FS_NODUMP_FL;
86 if (flags & BTRFS_INODE_NOATIME)
87 iflags |= FS_NOATIME_FL;
88 if (flags & BTRFS_INODE_DIRSYNC)
89 iflags |= FS_DIRSYNC_FL;
90 if (flags & BTRFS_INODE_NODATACOW)
91 iflags |= FS_NOCOW_FL;
92
93 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
94 iflags |= FS_COMPR_FL;
95 else if (flags & BTRFS_INODE_NOCOMPRESS)
96 iflags |= FS_NOCOMP_FL;
97
98 return iflags;
99}
100
101/*
102 * Update inode->i_flags based on the btrfs internal flags.
103 */
104void btrfs_update_iflags(struct inode *inode)
105{
106 struct btrfs_inode *ip = BTRFS_I(inode);
107
108 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
109
110 if (ip->flags & BTRFS_INODE_SYNC)
111 inode->i_flags |= S_SYNC;
112 if (ip->flags & BTRFS_INODE_IMMUTABLE)
113 inode->i_flags |= S_IMMUTABLE;
114 if (ip->flags & BTRFS_INODE_APPEND)
115 inode->i_flags |= S_APPEND;
116 if (ip->flags & BTRFS_INODE_NOATIME)
117 inode->i_flags |= S_NOATIME;
118 if (ip->flags & BTRFS_INODE_DIRSYNC)
119 inode->i_flags |= S_DIRSYNC;
120}
121
122/*
123 * Inherit flags from the parent inode.
124 *
125 * Currently only the compression flags and the cow flags are inherited.
126 */
127void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
128{
129 unsigned int flags;
130
131 if (!dir)
132 return;
133
134 flags = BTRFS_I(dir)->flags;
135
136 if (flags & BTRFS_INODE_NOCOMPRESS) {
137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
138 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
139 } else if (flags & BTRFS_INODE_COMPRESS) {
140 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
141 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
142 }
143
144 if (flags & BTRFS_INODE_NODATACOW) {
145 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
146 if (S_ISREG(inode->i_mode))
147 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
148 }
149
150 btrfs_update_iflags(inode);
151}
152
153static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
154{
155 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
156 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
157
158 if (copy_to_user(arg, &flags, sizeof(flags)))
159 return -EFAULT;
160 return 0;
161}
162
163static int check_flags(unsigned int flags)
164{
165 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
166 FS_NOATIME_FL | FS_NODUMP_FL | \
167 FS_SYNC_FL | FS_DIRSYNC_FL | \
168 FS_NOCOMP_FL | FS_COMPR_FL |
169 FS_NOCOW_FL))
170 return -EOPNOTSUPP;
171
172 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
173 return -EINVAL;
174
175 return 0;
176}
177
178static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
179{
180 struct inode *inode = file_inode(file);
181 struct btrfs_inode *ip = BTRFS_I(inode);
182 struct btrfs_root *root = ip->root;
183 struct btrfs_trans_handle *trans;
184 unsigned int flags, oldflags;
185 int ret;
186 u64 ip_oldflags;
187 unsigned int i_oldflags;
188 umode_t mode;
189
190 if (btrfs_root_readonly(root))
191 return -EROFS;
192
193 if (copy_from_user(&flags, arg, sizeof(flags)))
194 return -EFAULT;
195
196 ret = check_flags(flags);
197 if (ret)
198 return ret;
199
200 if (!inode_owner_or_capable(inode))
201 return -EACCES;
202
203 ret = mnt_want_write_file(file);
204 if (ret)
205 return ret;
206
207 mutex_lock(&inode->i_mutex);
208
209 ip_oldflags = ip->flags;
210 i_oldflags = inode->i_flags;
211 mode = inode->i_mode;
212
213 flags = btrfs_mask_flags(inode->i_mode, flags);
214 oldflags = btrfs_flags_to_ioctl(ip->flags);
215 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
216 if (!capable(CAP_LINUX_IMMUTABLE)) {
217 ret = -EPERM;
218 goto out_unlock;
219 }
220 }
221
222 if (flags & FS_SYNC_FL)
223 ip->flags |= BTRFS_INODE_SYNC;
224 else
225 ip->flags &= ~BTRFS_INODE_SYNC;
226 if (flags & FS_IMMUTABLE_FL)
227 ip->flags |= BTRFS_INODE_IMMUTABLE;
228 else
229 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
230 if (flags & FS_APPEND_FL)
231 ip->flags |= BTRFS_INODE_APPEND;
232 else
233 ip->flags &= ~BTRFS_INODE_APPEND;
234 if (flags & FS_NODUMP_FL)
235 ip->flags |= BTRFS_INODE_NODUMP;
236 else
237 ip->flags &= ~BTRFS_INODE_NODUMP;
238 if (flags & FS_NOATIME_FL)
239 ip->flags |= BTRFS_INODE_NOATIME;
240 else
241 ip->flags &= ~BTRFS_INODE_NOATIME;
242 if (flags & FS_DIRSYNC_FL)
243 ip->flags |= BTRFS_INODE_DIRSYNC;
244 else
245 ip->flags &= ~BTRFS_INODE_DIRSYNC;
246 if (flags & FS_NOCOW_FL) {
247 if (S_ISREG(mode)) {
248 /*
249 * It's safe to turn csums off here, no extents exist.
250 * Otherwise we want the flag to reflect the real COW
251 * status of the file and will not set it.
252 */
253 if (inode->i_size == 0)
254 ip->flags |= BTRFS_INODE_NODATACOW
255 | BTRFS_INODE_NODATASUM;
256 } else {
257 ip->flags |= BTRFS_INODE_NODATACOW;
258 }
259 } else {
260 /*
261 * Revert back under same assuptions as above
262 */
263 if (S_ISREG(mode)) {
264 if (inode->i_size == 0)
265 ip->flags &= ~(BTRFS_INODE_NODATACOW
266 | BTRFS_INODE_NODATASUM);
267 } else {
268 ip->flags &= ~BTRFS_INODE_NODATACOW;
269 }
270 }
271
272 /*
273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
274 * flag may be changed automatically if compression code won't make
275 * things smaller.
276 */
277 if (flags & FS_NOCOMP_FL) {
278 ip->flags &= ~BTRFS_INODE_COMPRESS;
279 ip->flags |= BTRFS_INODE_NOCOMPRESS;
280 } else if (flags & FS_COMPR_FL) {
281 ip->flags |= BTRFS_INODE_COMPRESS;
282 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
283 } else {
284 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
285 }
286
287 trans = btrfs_start_transaction(root, 1);
288 if (IS_ERR(trans)) {
289 ret = PTR_ERR(trans);
290 goto out_drop;
291 }
292
293 btrfs_update_iflags(inode);
294 inode_inc_iversion(inode);
295 inode->i_ctime = CURRENT_TIME;
296 ret = btrfs_update_inode(trans, root, inode);
297
298 btrfs_end_transaction(trans, root);
299 out_drop:
300 if (ret) {
301 ip->flags = ip_oldflags;
302 inode->i_flags = i_oldflags;
303 }
304
305 out_unlock:
306 mutex_unlock(&inode->i_mutex);
307 mnt_drop_write_file(file);
308 return ret;
309}
310
311static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
312{
313 struct inode *inode = file_inode(file);
314
315 return put_user(inode->i_generation, arg);
316}
317
318static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
319{
320 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
321 struct btrfs_device *device;
322 struct request_queue *q;
323 struct fstrim_range range;
324 u64 minlen = ULLONG_MAX;
325 u64 num_devices = 0;
326 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
327 int ret;
328
329 if (!capable(CAP_SYS_ADMIN))
330 return -EPERM;
331
332 rcu_read_lock();
333 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
334 dev_list) {
335 if (!device->bdev)
336 continue;
337 q = bdev_get_queue(device->bdev);
338 if (blk_queue_discard(q)) {
339 num_devices++;
340 minlen = min((u64)q->limits.discard_granularity,
341 minlen);
342 }
343 }
344 rcu_read_unlock();
345
346 if (!num_devices)
347 return -EOPNOTSUPP;
348 if (copy_from_user(&range, arg, sizeof(range)))
349 return -EFAULT;
350 if (range.start > total_bytes ||
351 range.len < fs_info->sb->s_blocksize)
352 return -EINVAL;
353
354 range.len = min(range.len, total_bytes - range.start);
355 range.minlen = max(range.minlen, minlen);
356 ret = btrfs_trim_fs(fs_info->tree_root, &range);
357 if (ret < 0)
358 return ret;
359
360 if (copy_to_user(arg, &range, sizeof(range)))
361 return -EFAULT;
362
363 return 0;
364}
365
366static noinline int create_subvol(struct inode *dir,
367 struct dentry *dentry,
368 char *name, int namelen,
369 u64 *async_transid,
370 struct btrfs_qgroup_inherit *inherit)
371{
372 struct btrfs_trans_handle *trans;
373 struct btrfs_key key;
374 struct btrfs_root_item root_item;
375 struct btrfs_inode_item *inode_item;
376 struct extent_buffer *leaf;
377 struct btrfs_root *root = BTRFS_I(dir)->root;
378 struct btrfs_root *new_root;
379 struct btrfs_block_rsv block_rsv;
380 struct timespec cur_time = CURRENT_TIME;
381 int ret;
382 int err;
383 u64 objectid;
384 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
385 u64 index = 0;
386 u64 qgroup_reserved;
387 uuid_le new_uuid;
388
389 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
390 if (ret)
391 return ret;
392
393 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
394 /*
395 * The same as the snapshot creation, please see the comment
396 * of create_snapshot().
397 */
398 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
399 7, &qgroup_reserved, false);
400 if (ret)
401 return ret;
402
403 trans = btrfs_start_transaction(root, 0);
404 if (IS_ERR(trans)) {
405 ret = PTR_ERR(trans);
406 goto out;
407 }
408 trans->block_rsv = &block_rsv;
409 trans->bytes_reserved = block_rsv.size;
410
411 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
412 if (ret)
413 goto fail;
414
415 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
416 0, objectid, NULL, 0, 0, 0);
417 if (IS_ERR(leaf)) {
418 ret = PTR_ERR(leaf);
419 goto fail;
420 }
421
422 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
423 btrfs_set_header_bytenr(leaf, leaf->start);
424 btrfs_set_header_generation(leaf, trans->transid);
425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
426 btrfs_set_header_owner(leaf, objectid);
427
428 write_extent_buffer(leaf, root->fs_info->fsid,
429 (unsigned long)btrfs_header_fsid(leaf),
430 BTRFS_FSID_SIZE);
431 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
432 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
433 BTRFS_UUID_SIZE);
434 btrfs_mark_buffer_dirty(leaf);
435
436 memset(&root_item, 0, sizeof(root_item));
437
438 inode_item = &root_item.inode;
439 btrfs_set_stack_inode_generation(inode_item, 1);
440 btrfs_set_stack_inode_size(inode_item, 3);
441 btrfs_set_stack_inode_nlink(inode_item, 1);
442 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
443 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
444
445 btrfs_set_root_flags(&root_item, 0);
446 btrfs_set_root_limit(&root_item, 0);
447 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
448
449 btrfs_set_root_bytenr(&root_item, leaf->start);
450 btrfs_set_root_generation(&root_item, trans->transid);
451 btrfs_set_root_level(&root_item, 0);
452 btrfs_set_root_refs(&root_item, 1);
453 btrfs_set_root_used(&root_item, leaf->len);
454 btrfs_set_root_last_snapshot(&root_item, 0);
455
456 btrfs_set_root_generation_v2(&root_item,
457 btrfs_root_generation(&root_item));
458 uuid_le_gen(&new_uuid);
459 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
460 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
461 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
462 root_item.ctime = root_item.otime;
463 btrfs_set_root_ctransid(&root_item, trans->transid);
464 btrfs_set_root_otransid(&root_item, trans->transid);
465
466 btrfs_tree_unlock(leaf);
467 free_extent_buffer(leaf);
468 leaf = NULL;
469
470 btrfs_set_root_dirid(&root_item, new_dirid);
471
472 key.objectid = objectid;
473 key.offset = 0;
474 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
475 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
476 &root_item);
477 if (ret)
478 goto fail;
479
480 key.offset = (u64)-1;
481 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
482 if (IS_ERR(new_root)) {
483 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
484 ret = PTR_ERR(new_root);
485 goto fail;
486 }
487
488 btrfs_record_root_in_trans(trans, new_root);
489
490 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
491 if (ret) {
492 /* We potentially lose an unused inode item here */
493 btrfs_abort_transaction(trans, root, ret);
494 goto fail;
495 }
496
497 /*
498 * insert the directory item
499 */
500 ret = btrfs_set_inode_index(dir, &index);
501 if (ret) {
502 btrfs_abort_transaction(trans, root, ret);
503 goto fail;
504 }
505
506 ret = btrfs_insert_dir_item(trans, root,
507 name, namelen, dir, &key,
508 BTRFS_FT_DIR, index);
509 if (ret) {
510 btrfs_abort_transaction(trans, root, ret);
511 goto fail;
512 }
513
514 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
515 ret = btrfs_update_inode(trans, root, dir);
516 BUG_ON(ret);
517
518 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
519 objectid, root->root_key.objectid,
520 btrfs_ino(dir), index, name, namelen);
521
522 BUG_ON(ret);
523
524fail:
525 trans->block_rsv = NULL;
526 trans->bytes_reserved = 0;
527 if (async_transid) {
528 *async_transid = trans->transid;
529 err = btrfs_commit_transaction_async(trans, root, 1);
530 if (err)
531 err = btrfs_commit_transaction(trans, root);
532 } else {
533 err = btrfs_commit_transaction(trans, root);
534 }
535 if (err && !ret)
536 ret = err;
537
538 if (!ret)
539 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
540out:
541 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
542 return ret;
543}
544
545static int create_snapshot(struct btrfs_root *root, struct inode *dir,
546 struct dentry *dentry, char *name, int namelen,
547 u64 *async_transid, bool readonly,
548 struct btrfs_qgroup_inherit *inherit)
549{
550 struct inode *inode;
551 struct btrfs_pending_snapshot *pending_snapshot;
552 struct btrfs_trans_handle *trans;
553 int ret;
554
555 if (!root->ref_cows)
556 return -EINVAL;
557
558 ret = btrfs_start_delalloc_inodes(root, 0);
559 if (ret)
560 return ret;
561
562 btrfs_wait_ordered_extents(root, 0);
563
564 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
565 if (!pending_snapshot)
566 return -ENOMEM;
567
568 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
569 BTRFS_BLOCK_RSV_TEMP);
570 /*
571 * 1 - parent dir inode
572 * 2 - dir entries
573 * 1 - root item
574 * 2 - root ref/backref
575 * 1 - root of snapshot
576 */
577 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
578 &pending_snapshot->block_rsv, 7,
579 &pending_snapshot->qgroup_reserved,
580 false);
581 if (ret)
582 goto out;
583
584 pending_snapshot->dentry = dentry;
585 pending_snapshot->root = root;
586 pending_snapshot->readonly = readonly;
587 pending_snapshot->dir = dir;
588 pending_snapshot->inherit = inherit;
589
590 trans = btrfs_start_transaction(root, 0);
591 if (IS_ERR(trans)) {
592 ret = PTR_ERR(trans);
593 goto fail;
594 }
595
596 spin_lock(&root->fs_info->trans_lock);
597 list_add(&pending_snapshot->list,
598 &trans->transaction->pending_snapshots);
599 spin_unlock(&root->fs_info->trans_lock);
600 if (async_transid) {
601 *async_transid = trans->transid;
602 ret = btrfs_commit_transaction_async(trans,
603 root->fs_info->extent_root, 1);
604 if (ret)
605 ret = btrfs_commit_transaction(trans, root);
606 } else {
607 ret = btrfs_commit_transaction(trans,
608 root->fs_info->extent_root);
609 }
610 if (ret)
611 goto fail;
612
613 ret = pending_snapshot->error;
614 if (ret)
615 goto fail;
616
617 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
618 if (ret)
619 goto fail;
620
621 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
622 if (IS_ERR(inode)) {
623 ret = PTR_ERR(inode);
624 goto fail;
625 }
626 BUG_ON(!inode);
627 d_instantiate(dentry, inode);
628 ret = 0;
629fail:
630 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
631 &pending_snapshot->block_rsv,
632 pending_snapshot->qgroup_reserved);
633out:
634 kfree(pending_snapshot);
635 return ret;
636}
637
638/* copy of check_sticky in fs/namei.c()
639* It's inline, so penalty for filesystems that don't use sticky bit is
640* minimal.
641*/
642static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
643{
644 kuid_t fsuid = current_fsuid();
645
646 if (!(dir->i_mode & S_ISVTX))
647 return 0;
648 if (uid_eq(inode->i_uid, fsuid))
649 return 0;
650 if (uid_eq(dir->i_uid, fsuid))
651 return 0;
652 return !capable(CAP_FOWNER);
653}
654
655/* copy of may_delete in fs/namei.c()
656 * Check whether we can remove a link victim from directory dir, check
657 * whether the type of victim is right.
658 * 1. We can't do it if dir is read-only (done in permission())
659 * 2. We should have write and exec permissions on dir
660 * 3. We can't remove anything from append-only dir
661 * 4. We can't do anything with immutable dir (done in permission())
662 * 5. If the sticky bit on dir is set we should either
663 * a. be owner of dir, or
664 * b. be owner of victim, or
665 * c. have CAP_FOWNER capability
666 * 6. If the victim is append-only or immutable we can't do antyhing with
667 * links pointing to it.
668 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
669 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
670 * 9. We can't remove a root or mountpoint.
671 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
672 * nfs_async_unlink().
673 */
674
675static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
676{
677 int error;
678
679 if (!victim->d_inode)
680 return -ENOENT;
681
682 BUG_ON(victim->d_parent->d_inode != dir);
683 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
684
685 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
686 if (error)
687 return error;
688 if (IS_APPEND(dir))
689 return -EPERM;
690 if (btrfs_check_sticky(dir, victim->d_inode)||
691 IS_APPEND(victim->d_inode)||
692 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
693 return -EPERM;
694 if (isdir) {
695 if (!S_ISDIR(victim->d_inode->i_mode))
696 return -ENOTDIR;
697 if (IS_ROOT(victim))
698 return -EBUSY;
699 } else if (S_ISDIR(victim->d_inode->i_mode))
700 return -EISDIR;
701 if (IS_DEADDIR(dir))
702 return -ENOENT;
703 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
704 return -EBUSY;
705 return 0;
706}
707
708/* copy of may_create in fs/namei.c() */
709static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
710{
711 if (child->d_inode)
712 return -EEXIST;
713 if (IS_DEADDIR(dir))
714 return -ENOENT;
715 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
716}
717
718/*
719 * Create a new subvolume below @parent. This is largely modeled after
720 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
721 * inside this filesystem so it's quite a bit simpler.
722 */
723static noinline int btrfs_mksubvol(struct path *parent,
724 char *name, int namelen,
725 struct btrfs_root *snap_src,
726 u64 *async_transid, bool readonly,
727 struct btrfs_qgroup_inherit *inherit)
728{
729 struct inode *dir = parent->dentry->d_inode;
730 struct dentry *dentry;
731 int error;
732
733 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
734 if (error == -EINTR)
735 return error;
736
737 dentry = lookup_one_len(name, parent->dentry, namelen);
738 error = PTR_ERR(dentry);
739 if (IS_ERR(dentry))
740 goto out_unlock;
741
742 error = -EEXIST;
743 if (dentry->d_inode)
744 goto out_dput;
745
746 error = btrfs_may_create(dir, dentry);
747 if (error)
748 goto out_dput;
749
750 /*
751 * even if this name doesn't exist, we may get hash collisions.
752 * check for them now when we can safely fail
753 */
754 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
755 dir->i_ino, name,
756 namelen);
757 if (error)
758 goto out_dput;
759
760 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
761
762 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
763 goto out_up_read;
764
765 if (snap_src) {
766 error = create_snapshot(snap_src, dir, dentry, name, namelen,
767 async_transid, readonly, inherit);
768 } else {
769 error = create_subvol(dir, dentry, name, namelen,
770 async_transid, inherit);
771 }
772 if (!error)
773 fsnotify_mkdir(dir, dentry);
774out_up_read:
775 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
776out_dput:
777 dput(dentry);
778out_unlock:
779 mutex_unlock(&dir->i_mutex);
780 return error;
781}
782
783/*
784 * When we're defragging a range, we don't want to kick it off again
785 * if it is really just waiting for delalloc to send it down.
786 * If we find a nice big extent or delalloc range for the bytes in the
787 * file you want to defrag, we return 0 to let you know to skip this
788 * part of the file
789 */
790static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
791{
792 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
793 struct extent_map *em = NULL;
794 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
795 u64 end;
796
797 read_lock(&em_tree->lock);
798 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
799 read_unlock(&em_tree->lock);
800
801 if (em) {
802 end = extent_map_end(em);
803 free_extent_map(em);
804 if (end - offset > thresh)
805 return 0;
806 }
807 /* if we already have a nice delalloc here, just stop */
808 thresh /= 2;
809 end = count_range_bits(io_tree, &offset, offset + thresh,
810 thresh, EXTENT_DELALLOC, 1);
811 if (end >= thresh)
812 return 0;
813 return 1;
814}
815
816/*
817 * helper function to walk through a file and find extents
818 * newer than a specific transid, and smaller than thresh.
819 *
820 * This is used by the defragging code to find new and small
821 * extents
822 */
823static int find_new_extents(struct btrfs_root *root,
824 struct inode *inode, u64 newer_than,
825 u64 *off, int thresh)
826{
827 struct btrfs_path *path;
828 struct btrfs_key min_key;
829 struct btrfs_key max_key;
830 struct extent_buffer *leaf;
831 struct btrfs_file_extent_item *extent;
832 int type;
833 int ret;
834 u64 ino = btrfs_ino(inode);
835
836 path = btrfs_alloc_path();
837 if (!path)
838 return -ENOMEM;
839
840 min_key.objectid = ino;
841 min_key.type = BTRFS_EXTENT_DATA_KEY;
842 min_key.offset = *off;
843
844 max_key.objectid = ino;
845 max_key.type = (u8)-1;
846 max_key.offset = (u64)-1;
847
848 path->keep_locks = 1;
849
850 while(1) {
851 ret = btrfs_search_forward(root, &min_key, &max_key,
852 path, newer_than);
853 if (ret != 0)
854 goto none;
855 if (min_key.objectid != ino)
856 goto none;
857 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
858 goto none;
859
860 leaf = path->nodes[0];
861 extent = btrfs_item_ptr(leaf, path->slots[0],
862 struct btrfs_file_extent_item);
863
864 type = btrfs_file_extent_type(leaf, extent);
865 if (type == BTRFS_FILE_EXTENT_REG &&
866 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
867 check_defrag_in_cache(inode, min_key.offset, thresh)) {
868 *off = min_key.offset;
869 btrfs_free_path(path);
870 return 0;
871 }
872
873 if (min_key.offset == (u64)-1)
874 goto none;
875
876 min_key.offset++;
877 btrfs_release_path(path);
878 }
879none:
880 btrfs_free_path(path);
881 return -ENOENT;
882}
883
884static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
885{
886 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
887 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
888 struct extent_map *em;
889 u64 len = PAGE_CACHE_SIZE;
890
891 /*
892 * hopefully we have this extent in the tree already, try without
893 * the full extent lock
894 */
895 read_lock(&em_tree->lock);
896 em = lookup_extent_mapping(em_tree, start, len);
897 read_unlock(&em_tree->lock);
898
899 if (!em) {
900 /* get the big lock and read metadata off disk */
901 lock_extent(io_tree, start, start + len - 1);
902 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
903 unlock_extent(io_tree, start, start + len - 1);
904
905 if (IS_ERR(em))
906 return NULL;
907 }
908
909 return em;
910}
911
912static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
913{
914 struct extent_map *next;
915 bool ret = true;
916
917 /* this is the last extent */
918 if (em->start + em->len >= i_size_read(inode))
919 return false;
920
921 next = defrag_lookup_extent(inode, em->start + em->len);
922 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
923 ret = false;
924
925 free_extent_map(next);
926 return ret;
927}
928
929static int should_defrag_range(struct inode *inode, u64 start, int thresh,
930 u64 *last_len, u64 *skip, u64 *defrag_end,
931 int compress)
932{
933 struct extent_map *em;
934 int ret = 1;
935 bool next_mergeable = true;
936
937 /*
938 * make sure that once we start defragging an extent, we keep on
939 * defragging it
940 */
941 if (start < *defrag_end)
942 return 1;
943
944 *skip = 0;
945
946 em = defrag_lookup_extent(inode, start);
947 if (!em)
948 return 0;
949
950 /* this will cover holes, and inline extents */
951 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
952 ret = 0;
953 goto out;
954 }
955
956 next_mergeable = defrag_check_next_extent(inode, em);
957
958 /*
959 * we hit a real extent, if it is big or the next extent is not a
960 * real extent, don't bother defragging it
961 */
962 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
963 (em->len >= thresh || !next_mergeable))
964 ret = 0;
965out:
966 /*
967 * last_len ends up being a counter of how many bytes we've defragged.
968 * every time we choose not to defrag an extent, we reset *last_len
969 * so that the next tiny extent will force a defrag.
970 *
971 * The end result of this is that tiny extents before a single big
972 * extent will force at least part of that big extent to be defragged.
973 */
974 if (ret) {
975 *defrag_end = extent_map_end(em);
976 } else {
977 *last_len = 0;
978 *skip = extent_map_end(em);
979 *defrag_end = 0;
980 }
981
982 free_extent_map(em);
983 return ret;
984}
985
986/*
987 * it doesn't do much good to defrag one or two pages
988 * at a time. This pulls in a nice chunk of pages
989 * to COW and defrag.
990 *
991 * It also makes sure the delalloc code has enough
992 * dirty data to avoid making new small extents as part
993 * of the defrag
994 *
995 * It's a good idea to start RA on this range
996 * before calling this.
997 */
998static int cluster_pages_for_defrag(struct inode *inode,
999 struct page **pages,
1000 unsigned long start_index,
1001 int num_pages)
1002{
1003 unsigned long file_end;
1004 u64 isize = i_size_read(inode);
1005 u64 page_start;
1006 u64 page_end;
1007 u64 page_cnt;
1008 int ret;
1009 int i;
1010 int i_done;
1011 struct btrfs_ordered_extent *ordered;
1012 struct extent_state *cached_state = NULL;
1013 struct extent_io_tree *tree;
1014 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1015
1016 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1017 if (!isize || start_index > file_end)
1018 return 0;
1019
1020 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1021
1022 ret = btrfs_delalloc_reserve_space(inode,
1023 page_cnt << PAGE_CACHE_SHIFT);
1024 if (ret)
1025 return ret;
1026 i_done = 0;
1027 tree = &BTRFS_I(inode)->io_tree;
1028
1029 /* step one, lock all the pages */
1030 for (i = 0; i < page_cnt; i++) {
1031 struct page *page;
1032again:
1033 page = find_or_create_page(inode->i_mapping,
1034 start_index + i, mask);
1035 if (!page)
1036 break;
1037
1038 page_start = page_offset(page);
1039 page_end = page_start + PAGE_CACHE_SIZE - 1;
1040 while (1) {
1041 lock_extent(tree, page_start, page_end);
1042 ordered = btrfs_lookup_ordered_extent(inode,
1043 page_start);
1044 unlock_extent(tree, page_start, page_end);
1045 if (!ordered)
1046 break;
1047
1048 unlock_page(page);
1049 btrfs_start_ordered_extent(inode, ordered, 1);
1050 btrfs_put_ordered_extent(ordered);
1051 lock_page(page);
1052 /*
1053 * we unlocked the page above, so we need check if
1054 * it was released or not.
1055 */
1056 if (page->mapping != inode->i_mapping) {
1057 unlock_page(page);
1058 page_cache_release(page);
1059 goto again;
1060 }
1061 }
1062
1063 if (!PageUptodate(page)) {
1064 btrfs_readpage(NULL, page);
1065 lock_page(page);
1066 if (!PageUptodate(page)) {
1067 unlock_page(page);
1068 page_cache_release(page);
1069 ret = -EIO;
1070 break;
1071 }
1072 }
1073
1074 if (page->mapping != inode->i_mapping) {
1075 unlock_page(page);
1076 page_cache_release(page);
1077 goto again;
1078 }
1079
1080 pages[i] = page;
1081 i_done++;
1082 }
1083 if (!i_done || ret)
1084 goto out;
1085
1086 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1087 goto out;
1088
1089 /*
1090 * so now we have a nice long stream of locked
1091 * and up to date pages, lets wait on them
1092 */
1093 for (i = 0; i < i_done; i++)
1094 wait_on_page_writeback(pages[i]);
1095
1096 page_start = page_offset(pages[0]);
1097 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1098
1099 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1100 page_start, page_end - 1, 0, &cached_state);
1101 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1102 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1103 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1104 &cached_state, GFP_NOFS);
1105
1106 if (i_done != page_cnt) {
1107 spin_lock(&BTRFS_I(inode)->lock);
1108 BTRFS_I(inode)->outstanding_extents++;
1109 spin_unlock(&BTRFS_I(inode)->lock);
1110 btrfs_delalloc_release_space(inode,
1111 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1112 }
1113
1114
1115 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1116 &cached_state, GFP_NOFS);
1117
1118 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1119 page_start, page_end - 1, &cached_state,
1120 GFP_NOFS);
1121
1122 for (i = 0; i < i_done; i++) {
1123 clear_page_dirty_for_io(pages[i]);
1124 ClearPageChecked(pages[i]);
1125 set_page_extent_mapped(pages[i]);
1126 set_page_dirty(pages[i]);
1127 unlock_page(pages[i]);
1128 page_cache_release(pages[i]);
1129 }
1130 return i_done;
1131out:
1132 for (i = 0; i < i_done; i++) {
1133 unlock_page(pages[i]);
1134 page_cache_release(pages[i]);
1135 }
1136 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1137 return ret;
1138
1139}
1140
1141int btrfs_defrag_file(struct inode *inode, struct file *file,
1142 struct btrfs_ioctl_defrag_range_args *range,
1143 u64 newer_than, unsigned long max_to_defrag)
1144{
1145 struct btrfs_root *root = BTRFS_I(inode)->root;
1146 struct file_ra_state *ra = NULL;
1147 unsigned long last_index;
1148 u64 isize = i_size_read(inode);
1149 u64 last_len = 0;
1150 u64 skip = 0;
1151 u64 defrag_end = 0;
1152 u64 newer_off = range->start;
1153 unsigned long i;
1154 unsigned long ra_index = 0;
1155 int ret;
1156 int defrag_count = 0;
1157 int compress_type = BTRFS_COMPRESS_ZLIB;
1158 int extent_thresh = range->extent_thresh;
1159 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1160 int cluster = max_cluster;
1161 u64 new_align = ~((u64)128 * 1024 - 1);
1162 struct page **pages = NULL;
1163
1164 if (isize == 0)
1165 return 0;
1166
1167 if (range->start >= isize)
1168 return -EINVAL;
1169
1170 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1171 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1172 return -EINVAL;
1173 if (range->compress_type)
1174 compress_type = range->compress_type;
1175 }
1176
1177 if (extent_thresh == 0)
1178 extent_thresh = 256 * 1024;
1179
1180 /*
1181 * if we were not given a file, allocate a readahead
1182 * context
1183 */
1184 if (!file) {
1185 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1186 if (!ra)
1187 return -ENOMEM;
1188 file_ra_state_init(ra, inode->i_mapping);
1189 } else {
1190 ra = &file->f_ra;
1191 }
1192
1193 pages = kmalloc(sizeof(struct page *) * max_cluster,
1194 GFP_NOFS);
1195 if (!pages) {
1196 ret = -ENOMEM;
1197 goto out_ra;
1198 }
1199
1200 /* find the last page to defrag */
1201 if (range->start + range->len > range->start) {
1202 last_index = min_t(u64, isize - 1,
1203 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1204 } else {
1205 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1206 }
1207
1208 if (newer_than) {
1209 ret = find_new_extents(root, inode, newer_than,
1210 &newer_off, 64 * 1024);
1211 if (!ret) {
1212 range->start = newer_off;
1213 /*
1214 * we always align our defrag to help keep
1215 * the extents in the file evenly spaced
1216 */
1217 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1218 } else
1219 goto out_ra;
1220 } else {
1221 i = range->start >> PAGE_CACHE_SHIFT;
1222 }
1223 if (!max_to_defrag)
1224 max_to_defrag = last_index + 1;
1225
1226 /*
1227 * make writeback starts from i, so the defrag range can be
1228 * written sequentially.
1229 */
1230 if (i < inode->i_mapping->writeback_index)
1231 inode->i_mapping->writeback_index = i;
1232
1233 while (i <= last_index && defrag_count < max_to_defrag &&
1234 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1235 PAGE_CACHE_SHIFT)) {
1236 /*
1237 * make sure we stop running if someone unmounts
1238 * the FS
1239 */
1240 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1241 break;
1242
1243 if (btrfs_defrag_cancelled(root->fs_info)) {
1244 printk(KERN_DEBUG "btrfs: defrag_file cancelled\n");
1245 ret = -EAGAIN;
1246 break;
1247 }
1248
1249 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1250 extent_thresh, &last_len, &skip,
1251 &defrag_end, range->flags &
1252 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1253 unsigned long next;
1254 /*
1255 * the should_defrag function tells us how much to skip
1256 * bump our counter by the suggested amount
1257 */
1258 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1259 i = max(i + 1, next);
1260 continue;
1261 }
1262
1263 if (!newer_than) {
1264 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1265 PAGE_CACHE_SHIFT) - i;
1266 cluster = min(cluster, max_cluster);
1267 } else {
1268 cluster = max_cluster;
1269 }
1270
1271 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1272 BTRFS_I(inode)->force_compress = compress_type;
1273
1274 if (i + cluster > ra_index) {
1275 ra_index = max(i, ra_index);
1276 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1277 cluster);
1278 ra_index += max_cluster;
1279 }
1280
1281 mutex_lock(&inode->i_mutex);
1282 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1283 if (ret < 0) {
1284 mutex_unlock(&inode->i_mutex);
1285 goto out_ra;
1286 }
1287
1288 defrag_count += ret;
1289 balance_dirty_pages_ratelimited(inode->i_mapping);
1290 mutex_unlock(&inode->i_mutex);
1291
1292 if (newer_than) {
1293 if (newer_off == (u64)-1)
1294 break;
1295
1296 if (ret > 0)
1297 i += ret;
1298
1299 newer_off = max(newer_off + 1,
1300 (u64)i << PAGE_CACHE_SHIFT);
1301
1302 ret = find_new_extents(root, inode,
1303 newer_than, &newer_off,
1304 64 * 1024);
1305 if (!ret) {
1306 range->start = newer_off;
1307 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1308 } else {
1309 break;
1310 }
1311 } else {
1312 if (ret > 0) {
1313 i += ret;
1314 last_len += ret << PAGE_CACHE_SHIFT;
1315 } else {
1316 i++;
1317 last_len = 0;
1318 }
1319 }
1320 }
1321
1322 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1323 filemap_flush(inode->i_mapping);
1324
1325 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1326 /* the filemap_flush will queue IO into the worker threads, but
1327 * we have to make sure the IO is actually started and that
1328 * ordered extents get created before we return
1329 */
1330 atomic_inc(&root->fs_info->async_submit_draining);
1331 while (atomic_read(&root->fs_info->nr_async_submits) ||
1332 atomic_read(&root->fs_info->async_delalloc_pages)) {
1333 wait_event(root->fs_info->async_submit_wait,
1334 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1335 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1336 }
1337 atomic_dec(&root->fs_info->async_submit_draining);
1338
1339 mutex_lock(&inode->i_mutex);
1340 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1341 mutex_unlock(&inode->i_mutex);
1342 }
1343
1344 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1345 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1346 }
1347
1348 ret = defrag_count;
1349
1350out_ra:
1351 if (!file)
1352 kfree(ra);
1353 kfree(pages);
1354 return ret;
1355}
1356
1357static noinline int btrfs_ioctl_resize(struct file *file,
1358 void __user *arg)
1359{
1360 u64 new_size;
1361 u64 old_size;
1362 u64 devid = 1;
1363 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1364 struct btrfs_ioctl_vol_args *vol_args;
1365 struct btrfs_trans_handle *trans;
1366 struct btrfs_device *device = NULL;
1367 char *sizestr;
1368 char *devstr = NULL;
1369 int ret = 0;
1370 int mod = 0;
1371
1372 if (!capable(CAP_SYS_ADMIN))
1373 return -EPERM;
1374
1375 ret = mnt_want_write_file(file);
1376 if (ret)
1377 return ret;
1378
1379 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1380 1)) {
1381 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
1382 mnt_drop_write_file(file);
1383 return -EINVAL;
1384 }
1385
1386 mutex_lock(&root->fs_info->volume_mutex);
1387 vol_args = memdup_user(arg, sizeof(*vol_args));
1388 if (IS_ERR(vol_args)) {
1389 ret = PTR_ERR(vol_args);
1390 goto out;
1391 }
1392
1393 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1394
1395 sizestr = vol_args->name;
1396 devstr = strchr(sizestr, ':');
1397 if (devstr) {
1398 char *end;
1399 sizestr = devstr + 1;
1400 *devstr = '\0';
1401 devstr = vol_args->name;
1402 devid = simple_strtoull(devstr, &end, 10);
1403 if (!devid) {
1404 ret = -EINVAL;
1405 goto out_free;
1406 }
1407 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1408 (unsigned long long)devid);
1409 }
1410
1411 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1412 if (!device) {
1413 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1414 (unsigned long long)devid);
1415 ret = -ENODEV;
1416 goto out_free;
1417 }
1418
1419 if (!device->writeable) {
1420 printk(KERN_INFO "btrfs: resizer unable to apply on "
1421 "readonly device %llu\n",
1422 (unsigned long long)devid);
1423 ret = -EPERM;
1424 goto out_free;
1425 }
1426
1427 if (!strcmp(sizestr, "max"))
1428 new_size = device->bdev->bd_inode->i_size;
1429 else {
1430 if (sizestr[0] == '-') {
1431 mod = -1;
1432 sizestr++;
1433 } else if (sizestr[0] == '+') {
1434 mod = 1;
1435 sizestr++;
1436 }
1437 new_size = memparse(sizestr, NULL);
1438 if (new_size == 0) {
1439 ret = -EINVAL;
1440 goto out_free;
1441 }
1442 }
1443
1444 if (device->is_tgtdev_for_dev_replace) {
1445 ret = -EPERM;
1446 goto out_free;
1447 }
1448
1449 old_size = device->total_bytes;
1450
1451 if (mod < 0) {
1452 if (new_size > old_size) {
1453 ret = -EINVAL;
1454 goto out_free;
1455 }
1456 new_size = old_size - new_size;
1457 } else if (mod > 0) {
1458 new_size = old_size + new_size;
1459 }
1460
1461 if (new_size < 256 * 1024 * 1024) {
1462 ret = -EINVAL;
1463 goto out_free;
1464 }
1465 if (new_size > device->bdev->bd_inode->i_size) {
1466 ret = -EFBIG;
1467 goto out_free;
1468 }
1469
1470 do_div(new_size, root->sectorsize);
1471 new_size *= root->sectorsize;
1472
1473 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1474 rcu_str_deref(device->name),
1475 (unsigned long long)new_size);
1476
1477 if (new_size > old_size) {
1478 trans = btrfs_start_transaction(root, 0);
1479 if (IS_ERR(trans)) {
1480 ret = PTR_ERR(trans);
1481 goto out_free;
1482 }
1483 ret = btrfs_grow_device(trans, device, new_size);
1484 btrfs_commit_transaction(trans, root);
1485 } else if (new_size < old_size) {
1486 ret = btrfs_shrink_device(device, new_size);
1487 } /* equal, nothing need to do */
1488
1489out_free:
1490 kfree(vol_args);
1491out:
1492 mutex_unlock(&root->fs_info->volume_mutex);
1493 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1494 mnt_drop_write_file(file);
1495 return ret;
1496}
1497
1498static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1499 char *name, unsigned long fd, int subvol,
1500 u64 *transid, bool readonly,
1501 struct btrfs_qgroup_inherit *inherit)
1502{
1503 int namelen;
1504 int ret = 0;
1505
1506 ret = mnt_want_write_file(file);
1507 if (ret)
1508 goto out;
1509
1510 namelen = strlen(name);
1511 if (strchr(name, '/')) {
1512 ret = -EINVAL;
1513 goto out_drop_write;
1514 }
1515
1516 if (name[0] == '.' &&
1517 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1518 ret = -EEXIST;
1519 goto out_drop_write;
1520 }
1521
1522 if (subvol) {
1523 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1524 NULL, transid, readonly, inherit);
1525 } else {
1526 struct fd src = fdget(fd);
1527 struct inode *src_inode;
1528 if (!src.file) {
1529 ret = -EINVAL;
1530 goto out_drop_write;
1531 }
1532
1533 src_inode = file_inode(src.file);
1534 if (src_inode->i_sb != file_inode(file)->i_sb) {
1535 printk(KERN_INFO "btrfs: Snapshot src from "
1536 "another FS\n");
1537 ret = -EINVAL;
1538 } else {
1539 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1540 BTRFS_I(src_inode)->root,
1541 transid, readonly, inherit);
1542 }
1543 fdput(src);
1544 }
1545out_drop_write:
1546 mnt_drop_write_file(file);
1547out:
1548 return ret;
1549}
1550
1551static noinline int btrfs_ioctl_snap_create(struct file *file,
1552 void __user *arg, int subvol)
1553{
1554 struct btrfs_ioctl_vol_args *vol_args;
1555 int ret;
1556
1557 vol_args = memdup_user(arg, sizeof(*vol_args));
1558 if (IS_ERR(vol_args))
1559 return PTR_ERR(vol_args);
1560 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1561
1562 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1563 vol_args->fd, subvol,
1564 NULL, false, NULL);
1565
1566 kfree(vol_args);
1567 return ret;
1568}
1569
1570static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1571 void __user *arg, int subvol)
1572{
1573 struct btrfs_ioctl_vol_args_v2 *vol_args;
1574 int ret;
1575 u64 transid = 0;
1576 u64 *ptr = NULL;
1577 bool readonly = false;
1578 struct btrfs_qgroup_inherit *inherit = NULL;
1579
1580 vol_args = memdup_user(arg, sizeof(*vol_args));
1581 if (IS_ERR(vol_args))
1582 return PTR_ERR(vol_args);
1583 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1584
1585 if (vol_args->flags &
1586 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1587 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1588 ret = -EOPNOTSUPP;
1589 goto out;
1590 }
1591
1592 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1593 ptr = &transid;
1594 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1595 readonly = true;
1596 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1597 if (vol_args->size > PAGE_CACHE_SIZE) {
1598 ret = -EINVAL;
1599 goto out;
1600 }
1601 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1602 if (IS_ERR(inherit)) {
1603 ret = PTR_ERR(inherit);
1604 goto out;
1605 }
1606 }
1607
1608 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1609 vol_args->fd, subvol, ptr,
1610 readonly, inherit);
1611
1612 if (ret == 0 && ptr &&
1613 copy_to_user(arg +
1614 offsetof(struct btrfs_ioctl_vol_args_v2,
1615 transid), ptr, sizeof(*ptr)))
1616 ret = -EFAULT;
1617out:
1618 kfree(vol_args);
1619 kfree(inherit);
1620 return ret;
1621}
1622
1623static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1624 void __user *arg)
1625{
1626 struct inode *inode = file_inode(file);
1627 struct btrfs_root *root = BTRFS_I(inode)->root;
1628 int ret = 0;
1629 u64 flags = 0;
1630
1631 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1632 return -EINVAL;
1633
1634 down_read(&root->fs_info->subvol_sem);
1635 if (btrfs_root_readonly(root))
1636 flags |= BTRFS_SUBVOL_RDONLY;
1637 up_read(&root->fs_info->subvol_sem);
1638
1639 if (copy_to_user(arg, &flags, sizeof(flags)))
1640 ret = -EFAULT;
1641
1642 return ret;
1643}
1644
1645static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1646 void __user *arg)
1647{
1648 struct inode *inode = file_inode(file);
1649 struct btrfs_root *root = BTRFS_I(inode)->root;
1650 struct btrfs_trans_handle *trans;
1651 u64 root_flags;
1652 u64 flags;
1653 int ret = 0;
1654
1655 ret = mnt_want_write_file(file);
1656 if (ret)
1657 goto out;
1658
1659 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1660 ret = -EINVAL;
1661 goto out_drop_write;
1662 }
1663
1664 if (copy_from_user(&flags, arg, sizeof(flags))) {
1665 ret = -EFAULT;
1666 goto out_drop_write;
1667 }
1668
1669 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1670 ret = -EINVAL;
1671 goto out_drop_write;
1672 }
1673
1674 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1675 ret = -EOPNOTSUPP;
1676 goto out_drop_write;
1677 }
1678
1679 if (!inode_owner_or_capable(inode)) {
1680 ret = -EACCES;
1681 goto out_drop_write;
1682 }
1683
1684 down_write(&root->fs_info->subvol_sem);
1685
1686 /* nothing to do */
1687 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1688 goto out_drop_sem;
1689
1690 root_flags = btrfs_root_flags(&root->root_item);
1691 if (flags & BTRFS_SUBVOL_RDONLY)
1692 btrfs_set_root_flags(&root->root_item,
1693 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1694 else
1695 btrfs_set_root_flags(&root->root_item,
1696 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1697
1698 trans = btrfs_start_transaction(root, 1);
1699 if (IS_ERR(trans)) {
1700 ret = PTR_ERR(trans);
1701 goto out_reset;
1702 }
1703
1704 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1705 &root->root_key, &root->root_item);
1706
1707 btrfs_commit_transaction(trans, root);
1708out_reset:
1709 if (ret)
1710 btrfs_set_root_flags(&root->root_item, root_flags);
1711out_drop_sem:
1712 up_write(&root->fs_info->subvol_sem);
1713out_drop_write:
1714 mnt_drop_write_file(file);
1715out:
1716 return ret;
1717}
1718
1719/*
1720 * helper to check if the subvolume references other subvolumes
1721 */
1722static noinline int may_destroy_subvol(struct btrfs_root *root)
1723{
1724 struct btrfs_path *path;
1725 struct btrfs_key key;
1726 int ret;
1727
1728 path = btrfs_alloc_path();
1729 if (!path)
1730 return -ENOMEM;
1731
1732 key.objectid = root->root_key.objectid;
1733 key.type = BTRFS_ROOT_REF_KEY;
1734 key.offset = (u64)-1;
1735
1736 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1737 &key, path, 0, 0);
1738 if (ret < 0)
1739 goto out;
1740 BUG_ON(ret == 0);
1741
1742 ret = 0;
1743 if (path->slots[0] > 0) {
1744 path->slots[0]--;
1745 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1746 if (key.objectid == root->root_key.objectid &&
1747 key.type == BTRFS_ROOT_REF_KEY)
1748 ret = -ENOTEMPTY;
1749 }
1750out:
1751 btrfs_free_path(path);
1752 return ret;
1753}
1754
1755static noinline int key_in_sk(struct btrfs_key *key,
1756 struct btrfs_ioctl_search_key *sk)
1757{
1758 struct btrfs_key test;
1759 int ret;
1760
1761 test.objectid = sk->min_objectid;
1762 test.type = sk->min_type;
1763 test.offset = sk->min_offset;
1764
1765 ret = btrfs_comp_cpu_keys(key, &test);
1766 if (ret < 0)
1767 return 0;
1768
1769 test.objectid = sk->max_objectid;
1770 test.type = sk->max_type;
1771 test.offset = sk->max_offset;
1772
1773 ret = btrfs_comp_cpu_keys(key, &test);
1774 if (ret > 0)
1775 return 0;
1776 return 1;
1777}
1778
1779static noinline int copy_to_sk(struct btrfs_root *root,
1780 struct btrfs_path *path,
1781 struct btrfs_key *key,
1782 struct btrfs_ioctl_search_key *sk,
1783 char *buf,
1784 unsigned long *sk_offset,
1785 int *num_found)
1786{
1787 u64 found_transid;
1788 struct extent_buffer *leaf;
1789 struct btrfs_ioctl_search_header sh;
1790 unsigned long item_off;
1791 unsigned long item_len;
1792 int nritems;
1793 int i;
1794 int slot;
1795 int ret = 0;
1796
1797 leaf = path->nodes[0];
1798 slot = path->slots[0];
1799 nritems = btrfs_header_nritems(leaf);
1800
1801 if (btrfs_header_generation(leaf) > sk->max_transid) {
1802 i = nritems;
1803 goto advance_key;
1804 }
1805 found_transid = btrfs_header_generation(leaf);
1806
1807 for (i = slot; i < nritems; i++) {
1808 item_off = btrfs_item_ptr_offset(leaf, i);
1809 item_len = btrfs_item_size_nr(leaf, i);
1810
1811 btrfs_item_key_to_cpu(leaf, key, i);
1812 if (!key_in_sk(key, sk))
1813 continue;
1814
1815 if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1816 item_len = 0;
1817
1818 if (sizeof(sh) + item_len + *sk_offset >
1819 BTRFS_SEARCH_ARGS_BUFSIZE) {
1820 ret = 1;
1821 goto overflow;
1822 }
1823
1824 sh.objectid = key->objectid;
1825 sh.offset = key->offset;
1826 sh.type = key->type;
1827 sh.len = item_len;
1828 sh.transid = found_transid;
1829
1830 /* copy search result header */
1831 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1832 *sk_offset += sizeof(sh);
1833
1834 if (item_len) {
1835 char *p = buf + *sk_offset;
1836 /* copy the item */
1837 read_extent_buffer(leaf, p,
1838 item_off, item_len);
1839 *sk_offset += item_len;
1840 }
1841 (*num_found)++;
1842
1843 if (*num_found >= sk->nr_items)
1844 break;
1845 }
1846advance_key:
1847 ret = 0;
1848 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1849 key->offset++;
1850 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1851 key->offset = 0;
1852 key->type++;
1853 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1854 key->offset = 0;
1855 key->type = 0;
1856 key->objectid++;
1857 } else
1858 ret = 1;
1859overflow:
1860 return ret;
1861}
1862
1863static noinline int search_ioctl(struct inode *inode,
1864 struct btrfs_ioctl_search_args *args)
1865{
1866 struct btrfs_root *root;
1867 struct btrfs_key key;
1868 struct btrfs_key max_key;
1869 struct btrfs_path *path;
1870 struct btrfs_ioctl_search_key *sk = &args->key;
1871 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1872 int ret;
1873 int num_found = 0;
1874 unsigned long sk_offset = 0;
1875
1876 path = btrfs_alloc_path();
1877 if (!path)
1878 return -ENOMEM;
1879
1880 if (sk->tree_id == 0) {
1881 /* search the root of the inode that was passed */
1882 root = BTRFS_I(inode)->root;
1883 } else {
1884 key.objectid = sk->tree_id;
1885 key.type = BTRFS_ROOT_ITEM_KEY;
1886 key.offset = (u64)-1;
1887 root = btrfs_read_fs_root_no_name(info, &key);
1888 if (IS_ERR(root)) {
1889 printk(KERN_ERR "could not find root %llu\n",
1890 sk->tree_id);
1891 btrfs_free_path(path);
1892 return -ENOENT;
1893 }
1894 }
1895
1896 key.objectid = sk->min_objectid;
1897 key.type = sk->min_type;
1898 key.offset = sk->min_offset;
1899
1900 max_key.objectid = sk->max_objectid;
1901 max_key.type = sk->max_type;
1902 max_key.offset = sk->max_offset;
1903
1904 path->keep_locks = 1;
1905
1906 while(1) {
1907 ret = btrfs_search_forward(root, &key, &max_key, path,
1908 sk->min_transid);
1909 if (ret != 0) {
1910 if (ret > 0)
1911 ret = 0;
1912 goto err;
1913 }
1914 ret = copy_to_sk(root, path, &key, sk, args->buf,
1915 &sk_offset, &num_found);
1916 btrfs_release_path(path);
1917 if (ret || num_found >= sk->nr_items)
1918 break;
1919
1920 }
1921 ret = 0;
1922err:
1923 sk->nr_items = num_found;
1924 btrfs_free_path(path);
1925 return ret;
1926}
1927
1928static noinline int btrfs_ioctl_tree_search(struct file *file,
1929 void __user *argp)
1930{
1931 struct btrfs_ioctl_search_args *args;
1932 struct inode *inode;
1933 int ret;
1934
1935 if (!capable(CAP_SYS_ADMIN))
1936 return -EPERM;
1937
1938 args = memdup_user(argp, sizeof(*args));
1939 if (IS_ERR(args))
1940 return PTR_ERR(args);
1941
1942 inode = file_inode(file);
1943 ret = search_ioctl(inode, args);
1944 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1945 ret = -EFAULT;
1946 kfree(args);
1947 return ret;
1948}
1949
1950/*
1951 * Search INODE_REFs to identify path name of 'dirid' directory
1952 * in a 'tree_id' tree. and sets path name to 'name'.
1953 */
1954static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1955 u64 tree_id, u64 dirid, char *name)
1956{
1957 struct btrfs_root *root;
1958 struct btrfs_key key;
1959 char *ptr;
1960 int ret = -1;
1961 int slot;
1962 int len;
1963 int total_len = 0;
1964 struct btrfs_inode_ref *iref;
1965 struct extent_buffer *l;
1966 struct btrfs_path *path;
1967
1968 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1969 name[0]='\0';
1970 return 0;
1971 }
1972
1973 path = btrfs_alloc_path();
1974 if (!path)
1975 return -ENOMEM;
1976
1977 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1978
1979 key.objectid = tree_id;
1980 key.type = BTRFS_ROOT_ITEM_KEY;
1981 key.offset = (u64)-1;
1982 root = btrfs_read_fs_root_no_name(info, &key);
1983 if (IS_ERR(root)) {
1984 printk(KERN_ERR "could not find root %llu\n", tree_id);
1985 ret = -ENOENT;
1986 goto out;
1987 }
1988
1989 key.objectid = dirid;
1990 key.type = BTRFS_INODE_REF_KEY;
1991 key.offset = (u64)-1;
1992
1993 while(1) {
1994 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1995 if (ret < 0)
1996 goto out;
1997
1998 l = path->nodes[0];
1999 slot = path->slots[0];
2000 if (ret > 0 && slot > 0)
2001 slot--;
2002 btrfs_item_key_to_cpu(l, &key, slot);
2003
2004 if (ret > 0 && (key.objectid != dirid ||
2005 key.type != BTRFS_INODE_REF_KEY)) {
2006 ret = -ENOENT;
2007 goto out;
2008 }
2009
2010 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2011 len = btrfs_inode_ref_name_len(l, iref);
2012 ptr -= len + 1;
2013 total_len += len + 1;
2014 if (ptr < name)
2015 goto out;
2016
2017 *(ptr + len) = '/';
2018 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
2019
2020 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2021 break;
2022
2023 btrfs_release_path(path);
2024 key.objectid = key.offset;
2025 key.offset = (u64)-1;
2026 dirid = key.objectid;
2027 }
2028 if (ptr < name)
2029 goto out;
2030 memmove(name, ptr, total_len);
2031 name[total_len]='\0';
2032 ret = 0;
2033out:
2034 btrfs_free_path(path);
2035 return ret;
2036}
2037
2038static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2039 void __user *argp)
2040{
2041 struct btrfs_ioctl_ino_lookup_args *args;
2042 struct inode *inode;
2043 int ret;
2044
2045 if (!capable(CAP_SYS_ADMIN))
2046 return -EPERM;
2047
2048 args = memdup_user(argp, sizeof(*args));
2049 if (IS_ERR(args))
2050 return PTR_ERR(args);
2051
2052 inode = file_inode(file);
2053
2054 if (args->treeid == 0)
2055 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2056
2057 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2058 args->treeid, args->objectid,
2059 args->name);
2060
2061 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2062 ret = -EFAULT;
2063
2064 kfree(args);
2065 return ret;
2066}
2067
2068static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2069 void __user *arg)
2070{
2071 struct dentry *parent = fdentry(file);
2072 struct dentry *dentry;
2073 struct inode *dir = parent->d_inode;
2074 struct inode *inode;
2075 struct btrfs_root *root = BTRFS_I(dir)->root;
2076 struct btrfs_root *dest = NULL;
2077 struct btrfs_ioctl_vol_args *vol_args;
2078 struct btrfs_trans_handle *trans;
2079 struct btrfs_block_rsv block_rsv;
2080 u64 qgroup_reserved;
2081 int namelen;
2082 int ret;
2083 int err = 0;
2084
2085 vol_args = memdup_user(arg, sizeof(*vol_args));
2086 if (IS_ERR(vol_args))
2087 return PTR_ERR(vol_args);
2088
2089 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2090 namelen = strlen(vol_args->name);
2091 if (strchr(vol_args->name, '/') ||
2092 strncmp(vol_args->name, "..", namelen) == 0) {
2093 err = -EINVAL;
2094 goto out;
2095 }
2096
2097 err = mnt_want_write_file(file);
2098 if (err)
2099 goto out;
2100
2101 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2102 if (err == -EINTR)
2103 goto out;
2104 dentry = lookup_one_len(vol_args->name, parent, namelen);
2105 if (IS_ERR(dentry)) {
2106 err = PTR_ERR(dentry);
2107 goto out_unlock_dir;
2108 }
2109
2110 if (!dentry->d_inode) {
2111 err = -ENOENT;
2112 goto out_dput;
2113 }
2114
2115 inode = dentry->d_inode;
2116 dest = BTRFS_I(inode)->root;
2117 if (!capable(CAP_SYS_ADMIN)){
2118 /*
2119 * Regular user. Only allow this with a special mount
2120 * option, when the user has write+exec access to the
2121 * subvol root, and when rmdir(2) would have been
2122 * allowed.
2123 *
2124 * Note that this is _not_ check that the subvol is
2125 * empty or doesn't contain data that we wouldn't
2126 * otherwise be able to delete.
2127 *
2128 * Users who want to delete empty subvols should try
2129 * rmdir(2).
2130 */
2131 err = -EPERM;
2132 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2133 goto out_dput;
2134
2135 /*
2136 * Do not allow deletion if the parent dir is the same
2137 * as the dir to be deleted. That means the ioctl
2138 * must be called on the dentry referencing the root
2139 * of the subvol, not a random directory contained
2140 * within it.
2141 */
2142 err = -EINVAL;
2143 if (root == dest)
2144 goto out_dput;
2145
2146 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2147 if (err)
2148 goto out_dput;
2149 }
2150
2151 /* check if subvolume may be deleted by a user */
2152 err = btrfs_may_delete(dir, dentry, 1);
2153 if (err)
2154 goto out_dput;
2155
2156 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2157 err = -EINVAL;
2158 goto out_dput;
2159 }
2160
2161 mutex_lock(&inode->i_mutex);
2162 err = d_invalidate(dentry);
2163 if (err)
2164 goto out_unlock;
2165
2166 down_write(&root->fs_info->subvol_sem);
2167
2168 err = may_destroy_subvol(dest);
2169 if (err)
2170 goto out_up_write;
2171
2172 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2173 /*
2174 * One for dir inode, two for dir entries, two for root
2175 * ref/backref.
2176 */
2177 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2178 5, &qgroup_reserved, true);
2179 if (err)
2180 goto out_up_write;
2181
2182 trans = btrfs_start_transaction(root, 0);
2183 if (IS_ERR(trans)) {
2184 err = PTR_ERR(trans);
2185 goto out_release;
2186 }
2187 trans->block_rsv = &block_rsv;
2188 trans->bytes_reserved = block_rsv.size;
2189
2190 ret = btrfs_unlink_subvol(trans, root, dir,
2191 dest->root_key.objectid,
2192 dentry->d_name.name,
2193 dentry->d_name.len);
2194 if (ret) {
2195 err = ret;
2196 btrfs_abort_transaction(trans, root, ret);
2197 goto out_end_trans;
2198 }
2199
2200 btrfs_record_root_in_trans(trans, dest);
2201
2202 memset(&dest->root_item.drop_progress, 0,
2203 sizeof(dest->root_item.drop_progress));
2204 dest->root_item.drop_level = 0;
2205 btrfs_set_root_refs(&dest->root_item, 0);
2206
2207 if (!xchg(&dest->orphan_item_inserted, 1)) {
2208 ret = btrfs_insert_orphan_item(trans,
2209 root->fs_info->tree_root,
2210 dest->root_key.objectid);
2211 if (ret) {
2212 btrfs_abort_transaction(trans, root, ret);
2213 err = ret;
2214 goto out_end_trans;
2215 }
2216 }
2217out_end_trans:
2218 trans->block_rsv = NULL;
2219 trans->bytes_reserved = 0;
2220 ret = btrfs_end_transaction(trans, root);
2221 if (ret && !err)
2222 err = ret;
2223 inode->i_flags |= S_DEAD;
2224out_release:
2225 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2226out_up_write:
2227 up_write(&root->fs_info->subvol_sem);
2228out_unlock:
2229 mutex_unlock(&inode->i_mutex);
2230 if (!err) {
2231 shrink_dcache_sb(root->fs_info->sb);
2232 btrfs_invalidate_inodes(dest);
2233 d_delete(dentry);
2234
2235 /* the last ref */
2236 if (dest->cache_inode) {
2237 iput(dest->cache_inode);
2238 dest->cache_inode = NULL;
2239 }
2240 }
2241out_dput:
2242 dput(dentry);
2243out_unlock_dir:
2244 mutex_unlock(&dir->i_mutex);
2245 mnt_drop_write_file(file);
2246out:
2247 kfree(vol_args);
2248 return err;
2249}
2250
2251static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2252{
2253 struct inode *inode = file_inode(file);
2254 struct btrfs_root *root = BTRFS_I(inode)->root;
2255 struct btrfs_ioctl_defrag_range_args *range;
2256 int ret;
2257
2258 ret = mnt_want_write_file(file);
2259 if (ret)
2260 return ret;
2261
2262 if (btrfs_root_readonly(root)) {
2263 ret = -EROFS;
2264 goto out;
2265 }
2266
2267 switch (inode->i_mode & S_IFMT) {
2268 case S_IFDIR:
2269 if (!capable(CAP_SYS_ADMIN)) {
2270 ret = -EPERM;
2271 goto out;
2272 }
2273 ret = btrfs_defrag_root(root);
2274 if (ret)
2275 goto out;
2276 ret = btrfs_defrag_root(root->fs_info->extent_root);
2277 break;
2278 case S_IFREG:
2279 if (!(file->f_mode & FMODE_WRITE)) {
2280 ret = -EINVAL;
2281 goto out;
2282 }
2283
2284 range = kzalloc(sizeof(*range), GFP_KERNEL);
2285 if (!range) {
2286 ret = -ENOMEM;
2287 goto out;
2288 }
2289
2290 if (argp) {
2291 if (copy_from_user(range, argp,
2292 sizeof(*range))) {
2293 ret = -EFAULT;
2294 kfree(range);
2295 goto out;
2296 }
2297 /* compression requires us to start the IO */
2298 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2299 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2300 range->extent_thresh = (u32)-1;
2301 }
2302 } else {
2303 /* the rest are all set to zero by kzalloc */
2304 range->len = (u64)-1;
2305 }
2306 ret = btrfs_defrag_file(file_inode(file), file,
2307 range, 0, 0);
2308 if (ret > 0)
2309 ret = 0;
2310 kfree(range);
2311 break;
2312 default:
2313 ret = -EINVAL;
2314 }
2315out:
2316 mnt_drop_write_file(file);
2317 return ret;
2318}
2319
2320static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2321{
2322 struct btrfs_ioctl_vol_args *vol_args;
2323 int ret;
2324
2325 if (!capable(CAP_SYS_ADMIN))
2326 return -EPERM;
2327
2328 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2329 1)) {
2330 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2331 return -EINVAL;
2332 }
2333
2334 mutex_lock(&root->fs_info->volume_mutex);
2335 vol_args = memdup_user(arg, sizeof(*vol_args));
2336 if (IS_ERR(vol_args)) {
2337 ret = PTR_ERR(vol_args);
2338 goto out;
2339 }
2340
2341 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2342 ret = btrfs_init_new_device(root, vol_args->name);
2343
2344 kfree(vol_args);
2345out:
2346 mutex_unlock(&root->fs_info->volume_mutex);
2347 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2348 return ret;
2349}
2350
2351static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2352{
2353 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2354 struct btrfs_ioctl_vol_args *vol_args;
2355 int ret;
2356
2357 if (!capable(CAP_SYS_ADMIN))
2358 return -EPERM;
2359
2360 ret = mnt_want_write_file(file);
2361 if (ret)
2362 return ret;
2363
2364 vol_args = memdup_user(arg, sizeof(*vol_args));
2365 if (IS_ERR(vol_args)) {
2366 ret = PTR_ERR(vol_args);
2367 goto out;
2368 }
2369
2370 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2371
2372 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2373 1)) {
2374 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2375 goto out;
2376 }
2377
2378 mutex_lock(&root->fs_info->volume_mutex);
2379 ret = btrfs_rm_device(root, vol_args->name);
2380 mutex_unlock(&root->fs_info->volume_mutex);
2381 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2382
2383out:
2384 kfree(vol_args);
2385 mnt_drop_write_file(file);
2386 return ret;
2387}
2388
2389static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2390{
2391 struct btrfs_ioctl_fs_info_args *fi_args;
2392 struct btrfs_device *device;
2393 struct btrfs_device *next;
2394 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2395 int ret = 0;
2396
2397 if (!capable(CAP_SYS_ADMIN))
2398 return -EPERM;
2399
2400 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2401 if (!fi_args)
2402 return -ENOMEM;
2403
2404 fi_args->num_devices = fs_devices->num_devices;
2405 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2406
2407 mutex_lock(&fs_devices->device_list_mutex);
2408 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2409 if (device->devid > fi_args->max_id)
2410 fi_args->max_id = device->devid;
2411 }
2412 mutex_unlock(&fs_devices->device_list_mutex);
2413
2414 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2415 ret = -EFAULT;
2416
2417 kfree(fi_args);
2418 return ret;
2419}
2420
2421static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2422{
2423 struct btrfs_ioctl_dev_info_args *di_args;
2424 struct btrfs_device *dev;
2425 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2426 int ret = 0;
2427 char *s_uuid = NULL;
2428 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2429
2430 if (!capable(CAP_SYS_ADMIN))
2431 return -EPERM;
2432
2433 di_args = memdup_user(arg, sizeof(*di_args));
2434 if (IS_ERR(di_args))
2435 return PTR_ERR(di_args);
2436
2437 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2438 s_uuid = di_args->uuid;
2439
2440 mutex_lock(&fs_devices->device_list_mutex);
2441 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2442
2443 if (!dev) {
2444 ret = -ENODEV;
2445 goto out;
2446 }
2447
2448 di_args->devid = dev->devid;
2449 di_args->bytes_used = dev->bytes_used;
2450 di_args->total_bytes = dev->total_bytes;
2451 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2452 if (dev->name) {
2453 struct rcu_string *name;
2454
2455 rcu_read_lock();
2456 name = rcu_dereference(dev->name);
2457 strncpy(di_args->path, name->str, sizeof(di_args->path));
2458 rcu_read_unlock();
2459 di_args->path[sizeof(di_args->path) - 1] = 0;
2460 } else {
2461 di_args->path[0] = '\0';
2462 }
2463
2464out:
2465 mutex_unlock(&fs_devices->device_list_mutex);
2466 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2467 ret = -EFAULT;
2468
2469 kfree(di_args);
2470 return ret;
2471}
2472
2473static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2474{
2475 /* do any pending delalloc/csum calc on src, one way or
2476 another, and lock file content */
2477 while (1) {
2478 struct btrfs_ordered_extent *ordered;
2479 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2480 ordered = btrfs_lookup_first_ordered_extent(inode,
2481 off + len - 1);
2482 if (!ordered &&
2483 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2484 off + len - 1, EXTENT_DELALLOC, 0, NULL))
2485 break;
2486 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2487 if (ordered)
2488 btrfs_put_ordered_extent(ordered);
2489 btrfs_wait_ordered_range(inode, off, len);
2490 }
2491}
2492
2493/**
2494 * btrfs_clone() - clone a range from inode file to another
2495 *
2496 * @src: Inode to clone from
2497 * @inode: Inode to clone to
2498 * @off: Offset within source to start clone from
2499 * @olen: Original length, passed by user, of range to clone
2500 * @olen_aligned: Block-aligned value of olen, extent_same uses
2501 * identical values here
2502 * @destoff: Offset within @inode to start clone
2503 */
2504static int btrfs_clone(struct inode *src, struct inode *inode,
2505 u64 off, u64 olen, u64 olen_aligned, u64 destoff)
2506{
2507 struct btrfs_root *root = BTRFS_I(inode)->root;
2508 struct btrfs_path *path = NULL;
2509 struct extent_buffer *leaf;
2510 struct btrfs_trans_handle *trans;
2511 char *buf = NULL;
2512 struct btrfs_key key;
2513 u32 nritems;
2514 int slot;
2515 int ret;
2516 u64 len = olen_aligned;
2517
2518 ret = -ENOMEM;
2519 buf = vmalloc(btrfs_level_size(root, 0));
2520 if (!buf)
2521 return ret;
2522
2523 path = btrfs_alloc_path();
2524 if (!path) {
2525 vfree(buf);
2526 return ret;
2527 }
2528
2529 path->reada = 2;
2530 /* clone data */
2531 key.objectid = btrfs_ino(src);
2532 key.type = BTRFS_EXTENT_DATA_KEY;
2533 key.offset = 0;
2534
2535 while (1) {
2536 /*
2537 * note the key will change type as we walk through the
2538 * tree.
2539 */
2540 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2541 0, 0);
2542 if (ret < 0)
2543 goto out;
2544
2545 nritems = btrfs_header_nritems(path->nodes[0]);
2546 if (path->slots[0] >= nritems) {
2547 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2548 if (ret < 0)
2549 goto out;
2550 if (ret > 0)
2551 break;
2552 nritems = btrfs_header_nritems(path->nodes[0]);
2553 }
2554 leaf = path->nodes[0];
2555 slot = path->slots[0];
2556
2557 btrfs_item_key_to_cpu(leaf, &key, slot);
2558 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2559 key.objectid != btrfs_ino(src))
2560 break;
2561
2562 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2563 struct btrfs_file_extent_item *extent;
2564 int type;
2565 u32 size;
2566 struct btrfs_key new_key;
2567 u64 disko = 0, diskl = 0;
2568 u64 datao = 0, datal = 0;
2569 u8 comp;
2570 u64 endoff;
2571
2572 size = btrfs_item_size_nr(leaf, slot);
2573 read_extent_buffer(leaf, buf,
2574 btrfs_item_ptr_offset(leaf, slot),
2575 size);
2576
2577 extent = btrfs_item_ptr(leaf, slot,
2578 struct btrfs_file_extent_item);
2579 comp = btrfs_file_extent_compression(leaf, extent);
2580 type = btrfs_file_extent_type(leaf, extent);
2581 if (type == BTRFS_FILE_EXTENT_REG ||
2582 type == BTRFS_FILE_EXTENT_PREALLOC) {
2583 disko = btrfs_file_extent_disk_bytenr(leaf,
2584 extent);
2585 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2586 extent);
2587 datao = btrfs_file_extent_offset(leaf, extent);
2588 datal = btrfs_file_extent_num_bytes(leaf,
2589 extent);
2590 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2591 /* take upper bound, may be compressed */
2592 datal = btrfs_file_extent_ram_bytes(leaf,
2593 extent);
2594 }
2595 btrfs_release_path(path);
2596
2597 if (key.offset + datal <= off ||
2598 key.offset >= off + len - 1)
2599 goto next;
2600
2601 memcpy(&new_key, &key, sizeof(new_key));
2602 new_key.objectid = btrfs_ino(inode);
2603 if (off <= key.offset)
2604 new_key.offset = key.offset + destoff - off;
2605 else
2606 new_key.offset = destoff;
2607
2608 /*
2609 * 1 - adjusting old extent (we may have to split it)
2610 * 1 - add new extent
2611 * 1 - inode update
2612 */
2613 trans = btrfs_start_transaction(root, 3);
2614 if (IS_ERR(trans)) {
2615 ret = PTR_ERR(trans);
2616 goto out;
2617 }
2618
2619 if (type == BTRFS_FILE_EXTENT_REG ||
2620 type == BTRFS_FILE_EXTENT_PREALLOC) {
2621 /*
2622 * a | --- range to clone ---| b
2623 * | ------------- extent ------------- |
2624 */
2625
2626 /* substract range b */
2627 if (key.offset + datal > off + len)
2628 datal = off + len - key.offset;
2629
2630 /* substract range a */
2631 if (off > key.offset) {
2632 datao += off - key.offset;
2633 datal -= off - key.offset;
2634 }
2635
2636 ret = btrfs_drop_extents(trans, root, inode,
2637 new_key.offset,
2638 new_key.offset + datal,
2639 1);
2640 if (ret) {
2641 btrfs_abort_transaction(trans, root,
2642 ret);
2643 btrfs_end_transaction(trans, root);
2644 goto out;
2645 }
2646
2647 ret = btrfs_insert_empty_item(trans, root, path,
2648 &new_key, size);
2649 if (ret) {
2650 btrfs_abort_transaction(trans, root,
2651 ret);
2652 btrfs_end_transaction(trans, root);
2653 goto out;
2654 }
2655
2656 leaf = path->nodes[0];
2657 slot = path->slots[0];
2658 write_extent_buffer(leaf, buf,
2659 btrfs_item_ptr_offset(leaf, slot),
2660 size);
2661
2662 extent = btrfs_item_ptr(leaf, slot,
2663 struct btrfs_file_extent_item);
2664
2665 /* disko == 0 means it's a hole */
2666 if (!disko)
2667 datao = 0;
2668
2669 btrfs_set_file_extent_offset(leaf, extent,
2670 datao);
2671 btrfs_set_file_extent_num_bytes(leaf, extent,
2672 datal);
2673 if (disko) {
2674 inode_add_bytes(inode, datal);
2675 ret = btrfs_inc_extent_ref(trans, root,
2676 disko, diskl, 0,
2677 root->root_key.objectid,
2678 btrfs_ino(inode),
2679 new_key.offset - datao,
2680 0);
2681 if (ret) {
2682 btrfs_abort_transaction(trans,
2683 root,
2684 ret);
2685 btrfs_end_transaction(trans,
2686 root);
2687 goto out;
2688
2689 }
2690 }
2691 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2692 u64 skip = 0;
2693 u64 trim = 0;
2694 if (off > key.offset) {
2695 skip = off - key.offset;
2696 new_key.offset += skip;
2697 }
2698
2699 if (key.offset + datal > off + len)
2700 trim = key.offset + datal - (off + len);
2701
2702 if (comp && (skip || trim)) {
2703 ret = -EINVAL;
2704 btrfs_end_transaction(trans, root);
2705 goto out;
2706 }
2707 size -= skip + trim;
2708 datal -= skip + trim;
2709
2710 ret = btrfs_drop_extents(trans, root, inode,
2711 new_key.offset,
2712 new_key.offset + datal,
2713 1);
2714 if (ret) {
2715 btrfs_abort_transaction(trans, root,
2716 ret);
2717 btrfs_end_transaction(trans, root);
2718 goto out;
2719 }
2720
2721 ret = btrfs_insert_empty_item(trans, root, path,
2722 &new_key, size);
2723 if (ret) {
2724 btrfs_abort_transaction(trans, root,
2725 ret);
2726 btrfs_end_transaction(trans, root);
2727 goto out;
2728 }
2729
2730 if (skip) {
2731 u32 start =
2732 btrfs_file_extent_calc_inline_size(0);
2733 memmove(buf+start, buf+start+skip,
2734 datal);
2735 }
2736
2737 leaf = path->nodes[0];
2738 slot = path->slots[0];
2739 write_extent_buffer(leaf, buf,
2740 btrfs_item_ptr_offset(leaf, slot),
2741 size);
2742 inode_add_bytes(inode, datal);
2743 }
2744
2745 btrfs_mark_buffer_dirty(leaf);
2746 btrfs_release_path(path);
2747
2748 inode_inc_iversion(inode);
2749 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2750
2751 /*
2752 * we round up to the block size at eof when
2753 * determining which extents to clone above,
2754 * but shouldn't round up the file size
2755 */
2756 endoff = new_key.offset + datal;
2757 if (endoff > destoff+olen)
2758 endoff = destoff+olen;
2759 if (endoff > inode->i_size)
2760 btrfs_i_size_write(inode, endoff);
2761
2762 ret = btrfs_update_inode(trans, root, inode);
2763 if (ret) {
2764 btrfs_abort_transaction(trans, root, ret);
2765 btrfs_end_transaction(trans, root);
2766 goto out;
2767 }
2768 ret = btrfs_end_transaction(trans, root);
2769 }
2770next:
2771 btrfs_release_path(path);
2772 key.offset++;
2773 }
2774 ret = 0;
2775
2776out:
2777 btrfs_release_path(path);
2778 btrfs_free_path(path);
2779 vfree(buf);
2780 return ret;
2781}
2782
2783static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2784 u64 off, u64 olen, u64 destoff)
2785{
2786 struct inode *inode = fdentry(file)->d_inode;
2787 struct btrfs_root *root = BTRFS_I(inode)->root;
2788 struct fd src_file;
2789 struct inode *src;
2790 int ret;
2791 u64 len = olen;
2792 u64 bs = root->fs_info->sb->s_blocksize;
2793 int same_inode = 0;
2794
2795 /*
2796 * TODO:
2797 * - split compressed inline extents. annoying: we need to
2798 * decompress into destination's address_space (the file offset
2799 * may change, so source mapping won't do), then recompress (or
2800 * otherwise reinsert) a subrange.
2801 * - allow ranges within the same file to be cloned (provided
2802 * they don't overlap)?
2803 */
2804
2805 /* the destination must be opened for writing */
2806 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2807 return -EINVAL;
2808
2809 if (btrfs_root_readonly(root))
2810 return -EROFS;
2811
2812 ret = mnt_want_write_file(file);
2813 if (ret)
2814 return ret;
2815
2816 src_file = fdget(srcfd);
2817 if (!src_file.file) {
2818 ret = -EBADF;
2819 goto out_drop_write;
2820 }
2821
2822 ret = -EXDEV;
2823 if (src_file.file->f_path.mnt != file->f_path.mnt)
2824 goto out_fput;
2825
2826 src = file_inode(src_file.file);
2827
2828 ret = -EINVAL;
2829 if (src == inode)
2830 same_inode = 1;
2831
2832 /* the src must be open for reading */
2833 if (!(src_file.file->f_mode & FMODE_READ))
2834 goto out_fput;
2835
2836 /* don't make the dst file partly checksummed */
2837 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2838 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2839 goto out_fput;
2840
2841 ret = -EISDIR;
2842 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2843 goto out_fput;
2844
2845 ret = -EXDEV;
2846 if (src->i_sb != inode->i_sb)
2847 goto out_fput;
2848
2849 if (!same_inode) {
2850 if (inode < src) {
2851 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2852 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2853 } else {
2854 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2855 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2856 }
2857 } else {
2858 mutex_lock(&src->i_mutex);
2859 }
2860
2861 /* determine range to clone */
2862 ret = -EINVAL;
2863 if (off + len > src->i_size || off + len < off)
2864 goto out_unlock;
2865 if (len == 0)
2866 olen = len = src->i_size - off;
2867 /* if we extend to eof, continue to block boundary */
2868 if (off + len == src->i_size)
2869 len = ALIGN(src->i_size, bs) - off;
2870
2871 /* verify the end result is block aligned */
2872 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2873 !IS_ALIGNED(destoff, bs))
2874 goto out_unlock;
2875
2876 /* verify if ranges are overlapped within the same file */
2877 if (same_inode) {
2878 if (destoff + len > off && destoff < off + len)
2879 goto out_unlock;
2880 }
2881
2882 if (destoff > inode->i_size) {
2883 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2884 if (ret)
2885 goto out_unlock;
2886 }
2887
2888 /* truncate page cache pages from target inode range */
2889 truncate_inode_pages_range(&inode->i_data, destoff,
2890 PAGE_CACHE_ALIGN(destoff + len) - 1);
2891
2892 lock_extent_range(src, off, len);
2893
2894 ret = btrfs_clone(src, inode, off, olen, len, destoff);
2895
2896 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2897out_unlock:
2898 mutex_unlock(&src->i_mutex);
2899 if (!same_inode)
2900 mutex_unlock(&inode->i_mutex);
2901out_fput:
2902 fdput(src_file);
2903out_drop_write:
2904 mnt_drop_write_file(file);
2905 return ret;
2906}
2907
2908static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2909{
2910 struct btrfs_ioctl_clone_range_args args;
2911
2912 if (copy_from_user(&args, argp, sizeof(args)))
2913 return -EFAULT;
2914 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2915 args.src_length, args.dest_offset);
2916}
2917
2918/*
2919 * there are many ways the trans_start and trans_end ioctls can lead
2920 * to deadlocks. They should only be used by applications that
2921 * basically own the machine, and have a very in depth understanding
2922 * of all the possible deadlocks and enospc problems.
2923 */
2924static long btrfs_ioctl_trans_start(struct file *file)
2925{
2926 struct inode *inode = file_inode(file);
2927 struct btrfs_root *root = BTRFS_I(inode)->root;
2928 struct btrfs_trans_handle *trans;
2929 int ret;
2930
2931 ret = -EPERM;
2932 if (!capable(CAP_SYS_ADMIN))
2933 goto out;
2934
2935 ret = -EINPROGRESS;
2936 if (file->private_data)
2937 goto out;
2938
2939 ret = -EROFS;
2940 if (btrfs_root_readonly(root))
2941 goto out;
2942
2943 ret = mnt_want_write_file(file);
2944 if (ret)
2945 goto out;
2946
2947 atomic_inc(&root->fs_info->open_ioctl_trans);
2948
2949 ret = -ENOMEM;
2950 trans = btrfs_start_ioctl_transaction(root);
2951 if (IS_ERR(trans))
2952 goto out_drop;
2953
2954 file->private_data = trans;
2955 return 0;
2956
2957out_drop:
2958 atomic_dec(&root->fs_info->open_ioctl_trans);
2959 mnt_drop_write_file(file);
2960out:
2961 return ret;
2962}
2963
2964static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2965{
2966 struct inode *inode = file_inode(file);
2967 struct btrfs_root *root = BTRFS_I(inode)->root;
2968 struct btrfs_root *new_root;
2969 struct btrfs_dir_item *di;
2970 struct btrfs_trans_handle *trans;
2971 struct btrfs_path *path;
2972 struct btrfs_key location;
2973 struct btrfs_disk_key disk_key;
2974 u64 objectid = 0;
2975 u64 dir_id;
2976 int ret;
2977
2978 if (!capable(CAP_SYS_ADMIN))
2979 return -EPERM;
2980
2981 ret = mnt_want_write_file(file);
2982 if (ret)
2983 return ret;
2984
2985 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2986 ret = -EFAULT;
2987 goto out;
2988 }
2989
2990 if (!objectid)
2991 objectid = root->root_key.objectid;
2992
2993 location.objectid = objectid;
2994 location.type = BTRFS_ROOT_ITEM_KEY;
2995 location.offset = (u64)-1;
2996
2997 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2998 if (IS_ERR(new_root)) {
2999 ret = PTR_ERR(new_root);
3000 goto out;
3001 }
3002
3003 path = btrfs_alloc_path();
3004 if (!path) {
3005 ret = -ENOMEM;
3006 goto out;
3007 }
3008 path->leave_spinning = 1;
3009
3010 trans = btrfs_start_transaction(root, 1);
3011 if (IS_ERR(trans)) {
3012 btrfs_free_path(path);
3013 ret = PTR_ERR(trans);
3014 goto out;
3015 }
3016
3017 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3018 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3019 dir_id, "default", 7, 1);
3020 if (IS_ERR_OR_NULL(di)) {
3021 btrfs_free_path(path);
3022 btrfs_end_transaction(trans, root);
3023 printk(KERN_ERR "Umm, you don't have the default dir item, "
3024 "this isn't going to work\n");
3025 ret = -ENOENT;
3026 goto out;
3027 }
3028
3029 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3030 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3031 btrfs_mark_buffer_dirty(path->nodes[0]);
3032 btrfs_free_path(path);
3033
3034 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3035 btrfs_end_transaction(trans, root);
3036out:
3037 mnt_drop_write_file(file);
3038 return ret;
3039}
3040
3041void btrfs_get_block_group_info(struct list_head *groups_list,
3042 struct btrfs_ioctl_space_info *space)
3043{
3044 struct btrfs_block_group_cache *block_group;
3045
3046 space->total_bytes = 0;
3047 space->used_bytes = 0;
3048 space->flags = 0;
3049 list_for_each_entry(block_group, groups_list, list) {
3050 space->flags = block_group->flags;
3051 space->total_bytes += block_group->key.offset;
3052 space->used_bytes +=
3053 btrfs_block_group_used(&block_group->item);
3054 }
3055}
3056
3057static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3058{
3059 struct btrfs_ioctl_space_args space_args;
3060 struct btrfs_ioctl_space_info space;
3061 struct btrfs_ioctl_space_info *dest;
3062 struct btrfs_ioctl_space_info *dest_orig;
3063 struct btrfs_ioctl_space_info __user *user_dest;
3064 struct btrfs_space_info *info;
3065 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3066 BTRFS_BLOCK_GROUP_SYSTEM,
3067 BTRFS_BLOCK_GROUP_METADATA,
3068 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3069 int num_types = 4;
3070 int alloc_size;
3071 int ret = 0;
3072 u64 slot_count = 0;
3073 int i, c;
3074
3075 if (copy_from_user(&space_args,
3076 (struct btrfs_ioctl_space_args __user *)arg,
3077 sizeof(space_args)))
3078 return -EFAULT;
3079
3080 for (i = 0; i < num_types; i++) {
3081 struct btrfs_space_info *tmp;
3082
3083 info = NULL;
3084 rcu_read_lock();
3085 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3086 list) {
3087 if (tmp->flags == types[i]) {
3088 info = tmp;
3089 break;
3090 }
3091 }
3092 rcu_read_unlock();
3093
3094 if (!info)
3095 continue;
3096
3097 down_read(&info->groups_sem);
3098 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3099 if (!list_empty(&info->block_groups[c]))
3100 slot_count++;
3101 }
3102 up_read(&info->groups_sem);
3103 }
3104
3105 /* space_slots == 0 means they are asking for a count */
3106 if (space_args.space_slots == 0) {
3107 space_args.total_spaces = slot_count;
3108 goto out;
3109 }
3110
3111 slot_count = min_t(u64, space_args.space_slots, slot_count);
3112
3113 alloc_size = sizeof(*dest) * slot_count;
3114
3115 /* we generally have at most 6 or so space infos, one for each raid
3116 * level. So, a whole page should be more than enough for everyone
3117 */
3118 if (alloc_size > PAGE_CACHE_SIZE)
3119 return -ENOMEM;
3120
3121 space_args.total_spaces = 0;
3122 dest = kmalloc(alloc_size, GFP_NOFS);
3123 if (!dest)
3124 return -ENOMEM;
3125 dest_orig = dest;
3126
3127 /* now we have a buffer to copy into */
3128 for (i = 0; i < num_types; i++) {
3129 struct btrfs_space_info *tmp;
3130
3131 if (!slot_count)
3132 break;
3133
3134 info = NULL;
3135 rcu_read_lock();
3136 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3137 list) {
3138 if (tmp->flags == types[i]) {
3139 info = tmp;
3140 break;
3141 }
3142 }
3143 rcu_read_unlock();
3144
3145 if (!info)
3146 continue;
3147 down_read(&info->groups_sem);
3148 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3149 if (!list_empty(&info->block_groups[c])) {
3150 btrfs_get_block_group_info(
3151 &info->block_groups[c], &space);
3152 memcpy(dest, &space, sizeof(space));
3153 dest++;
3154 space_args.total_spaces++;
3155 slot_count--;
3156 }
3157 if (!slot_count)
3158 break;
3159 }
3160 up_read(&info->groups_sem);
3161 }
3162
3163 user_dest = (struct btrfs_ioctl_space_info __user *)
3164 (arg + sizeof(struct btrfs_ioctl_space_args));
3165
3166 if (copy_to_user(user_dest, dest_orig, alloc_size))
3167 ret = -EFAULT;
3168
3169 kfree(dest_orig);
3170out:
3171 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3172 ret = -EFAULT;
3173
3174 return ret;
3175}
3176
3177/*
3178 * there are many ways the trans_start and trans_end ioctls can lead
3179 * to deadlocks. They should only be used by applications that
3180 * basically own the machine, and have a very in depth understanding
3181 * of all the possible deadlocks and enospc problems.
3182 */
3183long btrfs_ioctl_trans_end(struct file *file)
3184{
3185 struct inode *inode = file_inode(file);
3186 struct btrfs_root *root = BTRFS_I(inode)->root;
3187 struct btrfs_trans_handle *trans;
3188
3189 trans = file->private_data;
3190 if (!trans)
3191 return -EINVAL;
3192 file->private_data = NULL;
3193
3194 btrfs_end_transaction(trans, root);
3195
3196 atomic_dec(&root->fs_info->open_ioctl_trans);
3197
3198 mnt_drop_write_file(file);
3199 return 0;
3200}
3201
3202static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3203 void __user *argp)
3204{
3205 struct btrfs_trans_handle *trans;
3206 u64 transid;
3207 int ret;
3208
3209 trans = btrfs_attach_transaction_barrier(root);
3210 if (IS_ERR(trans)) {
3211 if (PTR_ERR(trans) != -ENOENT)
3212 return PTR_ERR(trans);
3213
3214 /* No running transaction, don't bother */
3215 transid = root->fs_info->last_trans_committed;
3216 goto out;
3217 }
3218 transid = trans->transid;
3219 ret = btrfs_commit_transaction_async(trans, root, 0);
3220 if (ret) {
3221 btrfs_end_transaction(trans, root);
3222 return ret;
3223 }
3224out:
3225 if (argp)
3226 if (copy_to_user(argp, &transid, sizeof(transid)))
3227 return -EFAULT;
3228 return 0;
3229}
3230
3231static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3232 void __user *argp)
3233{
3234 u64 transid;
3235
3236 if (argp) {
3237 if (copy_from_user(&transid, argp, sizeof(transid)))
3238 return -EFAULT;
3239 } else {
3240 transid = 0; /* current trans */
3241 }
3242 return btrfs_wait_for_commit(root, transid);
3243}
3244
3245static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3246{
3247 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3248 struct btrfs_ioctl_scrub_args *sa;
3249 int ret;
3250
3251 if (!capable(CAP_SYS_ADMIN))
3252 return -EPERM;
3253
3254 sa = memdup_user(arg, sizeof(*sa));
3255 if (IS_ERR(sa))
3256 return PTR_ERR(sa);
3257
3258 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3259 ret = mnt_want_write_file(file);
3260 if (ret)
3261 goto out;
3262 }
3263
3264 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3265 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3266 0);
3267
3268 if (copy_to_user(arg, sa, sizeof(*sa)))
3269 ret = -EFAULT;
3270
3271 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3272 mnt_drop_write_file(file);
3273out:
3274 kfree(sa);
3275 return ret;
3276}
3277
3278static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3279{
3280 if (!capable(CAP_SYS_ADMIN))
3281 return -EPERM;
3282
3283 return btrfs_scrub_cancel(root->fs_info);
3284}
3285
3286static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3287 void __user *arg)
3288{
3289 struct btrfs_ioctl_scrub_args *sa;
3290 int ret;
3291
3292 if (!capable(CAP_SYS_ADMIN))
3293 return -EPERM;
3294
3295 sa = memdup_user(arg, sizeof(*sa));
3296 if (IS_ERR(sa))
3297 return PTR_ERR(sa);
3298
3299 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3300
3301 if (copy_to_user(arg, sa, sizeof(*sa)))
3302 ret = -EFAULT;
3303
3304 kfree(sa);
3305 return ret;
3306}
3307
3308static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3309 void __user *arg)
3310{
3311 struct btrfs_ioctl_get_dev_stats *sa;
3312 int ret;
3313
3314 sa = memdup_user(arg, sizeof(*sa));
3315 if (IS_ERR(sa))
3316 return PTR_ERR(sa);
3317
3318 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3319 kfree(sa);
3320 return -EPERM;
3321 }
3322
3323 ret = btrfs_get_dev_stats(root, sa);
3324
3325 if (copy_to_user(arg, sa, sizeof(*sa)))
3326 ret = -EFAULT;
3327
3328 kfree(sa);
3329 return ret;
3330}
3331
3332static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3333{
3334 struct btrfs_ioctl_dev_replace_args *p;
3335 int ret;
3336
3337 if (!capable(CAP_SYS_ADMIN))
3338 return -EPERM;
3339
3340 p = memdup_user(arg, sizeof(*p));
3341 if (IS_ERR(p))
3342 return PTR_ERR(p);
3343
3344 switch (p->cmd) {
3345 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3346 if (atomic_xchg(
3347 &root->fs_info->mutually_exclusive_operation_running,
3348 1)) {
3349 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3350 ret = -EINPROGRESS;
3351 } else {
3352 ret = btrfs_dev_replace_start(root, p);
3353 atomic_set(
3354 &root->fs_info->mutually_exclusive_operation_running,
3355 0);
3356 }
3357 break;
3358 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3359 btrfs_dev_replace_status(root->fs_info, p);
3360 ret = 0;
3361 break;
3362 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3363 ret = btrfs_dev_replace_cancel(root->fs_info, p);
3364 break;
3365 default:
3366 ret = -EINVAL;
3367 break;
3368 }
3369
3370 if (copy_to_user(arg, p, sizeof(*p)))
3371 ret = -EFAULT;
3372
3373 kfree(p);
3374 return ret;
3375}
3376
3377static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3378{
3379 int ret = 0;
3380 int i;
3381 u64 rel_ptr;
3382 int size;
3383 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3384 struct inode_fs_paths *ipath = NULL;
3385 struct btrfs_path *path;
3386
3387 if (!capable(CAP_DAC_READ_SEARCH))
3388 return -EPERM;
3389
3390 path = btrfs_alloc_path();
3391 if (!path) {
3392 ret = -ENOMEM;
3393 goto out;
3394 }
3395
3396 ipa = memdup_user(arg, sizeof(*ipa));
3397 if (IS_ERR(ipa)) {
3398 ret = PTR_ERR(ipa);
3399 ipa = NULL;
3400 goto out;
3401 }
3402
3403 size = min_t(u32, ipa->size, 4096);
3404 ipath = init_ipath(size, root, path);
3405 if (IS_ERR(ipath)) {
3406 ret = PTR_ERR(ipath);
3407 ipath = NULL;
3408 goto out;
3409 }
3410
3411 ret = paths_from_inode(ipa->inum, ipath);
3412 if (ret < 0)
3413 goto out;
3414
3415 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3416 rel_ptr = ipath->fspath->val[i] -
3417 (u64)(unsigned long)ipath->fspath->val;
3418 ipath->fspath->val[i] = rel_ptr;
3419 }
3420
3421 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3422 (void *)(unsigned long)ipath->fspath, size);
3423 if (ret) {
3424 ret = -EFAULT;
3425 goto out;
3426 }
3427
3428out:
3429 btrfs_free_path(path);
3430 free_ipath(ipath);
3431 kfree(ipa);
3432
3433 return ret;
3434}
3435
3436static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3437{
3438 struct btrfs_data_container *inodes = ctx;
3439 const size_t c = 3 * sizeof(u64);
3440
3441 if (inodes->bytes_left >= c) {
3442 inodes->bytes_left -= c;
3443 inodes->val[inodes->elem_cnt] = inum;
3444 inodes->val[inodes->elem_cnt + 1] = offset;
3445 inodes->val[inodes->elem_cnt + 2] = root;
3446 inodes->elem_cnt += 3;
3447 } else {
3448 inodes->bytes_missing += c - inodes->bytes_left;
3449 inodes->bytes_left = 0;
3450 inodes->elem_missed += 3;
3451 }
3452
3453 return 0;
3454}
3455
3456static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3457 void __user *arg)
3458{
3459 int ret = 0;
3460 int size;
3461 struct btrfs_ioctl_logical_ino_args *loi;
3462 struct btrfs_data_container *inodes = NULL;
3463 struct btrfs_path *path = NULL;
3464
3465 if (!capable(CAP_SYS_ADMIN))
3466 return -EPERM;
3467
3468 loi = memdup_user(arg, sizeof(*loi));
3469 if (IS_ERR(loi)) {
3470 ret = PTR_ERR(loi);
3471 loi = NULL;
3472 goto out;
3473 }
3474
3475 path = btrfs_alloc_path();
3476 if (!path) {
3477 ret = -ENOMEM;
3478 goto out;
3479 }
3480
3481 size = min_t(u32, loi->size, 64 * 1024);
3482 inodes = init_data_container(size);
3483 if (IS_ERR(inodes)) {
3484 ret = PTR_ERR(inodes);
3485 inodes = NULL;
3486 goto out;
3487 }
3488
3489 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3490 build_ino_list, inodes);
3491 if (ret == -EINVAL)
3492 ret = -ENOENT;
3493 if (ret < 0)
3494 goto out;
3495
3496 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3497 (void *)(unsigned long)inodes, size);
3498 if (ret)
3499 ret = -EFAULT;
3500
3501out:
3502 btrfs_free_path(path);
3503 vfree(inodes);
3504 kfree(loi);
3505
3506 return ret;
3507}
3508
3509void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3510 struct btrfs_ioctl_balance_args *bargs)
3511{
3512 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3513
3514 bargs->flags = bctl->flags;
3515
3516 if (atomic_read(&fs_info->balance_running))
3517 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3518 if (atomic_read(&fs_info->balance_pause_req))
3519 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3520 if (atomic_read(&fs_info->balance_cancel_req))
3521 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3522
3523 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3524 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3525 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3526
3527 if (lock) {
3528 spin_lock(&fs_info->balance_lock);
3529 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3530 spin_unlock(&fs_info->balance_lock);
3531 } else {
3532 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3533 }
3534}
3535
3536static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3537{
3538 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3539 struct btrfs_fs_info *fs_info = root->fs_info;
3540 struct btrfs_ioctl_balance_args *bargs;
3541 struct btrfs_balance_control *bctl;
3542 bool need_unlock; /* for mut. excl. ops lock */
3543 int ret;
3544
3545 if (!capable(CAP_SYS_ADMIN))
3546 return -EPERM;
3547
3548 ret = mnt_want_write_file(file);
3549 if (ret)
3550 return ret;
3551
3552again:
3553 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
3554 mutex_lock(&fs_info->volume_mutex);
3555 mutex_lock(&fs_info->balance_mutex);
3556 need_unlock = true;
3557 goto locked;
3558 }
3559
3560 /*
3561 * mut. excl. ops lock is locked. Three possibilites:
3562 * (1) some other op is running
3563 * (2) balance is running
3564 * (3) balance is paused -- special case (think resume)
3565 */
3566 mutex_lock(&fs_info->balance_mutex);
3567 if (fs_info->balance_ctl) {
3568 /* this is either (2) or (3) */
3569 if (!atomic_read(&fs_info->balance_running)) {
3570 mutex_unlock(&fs_info->balance_mutex);
3571 if (!mutex_trylock(&fs_info->volume_mutex))
3572 goto again;
3573 mutex_lock(&fs_info->balance_mutex);
3574
3575 if (fs_info->balance_ctl &&
3576 !atomic_read(&fs_info->balance_running)) {
3577 /* this is (3) */
3578 need_unlock = false;
3579 goto locked;
3580 }
3581
3582 mutex_unlock(&fs_info->balance_mutex);
3583 mutex_unlock(&fs_info->volume_mutex);
3584 goto again;
3585 } else {
3586 /* this is (2) */
3587 mutex_unlock(&fs_info->balance_mutex);
3588 ret = -EINPROGRESS;
3589 goto out;
3590 }
3591 } else {
3592 /* this is (1) */
3593 mutex_unlock(&fs_info->balance_mutex);
3594 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3595 ret = -EINVAL;
3596 goto out;
3597 }
3598
3599locked:
3600 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
3601
3602 if (arg) {
3603 bargs = memdup_user(arg, sizeof(*bargs));
3604 if (IS_ERR(bargs)) {
3605 ret = PTR_ERR(bargs);
3606 goto out_unlock;
3607 }
3608
3609 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3610 if (!fs_info->balance_ctl) {
3611 ret = -ENOTCONN;
3612 goto out_bargs;
3613 }
3614
3615 bctl = fs_info->balance_ctl;
3616 spin_lock(&fs_info->balance_lock);
3617 bctl->flags |= BTRFS_BALANCE_RESUME;
3618 spin_unlock(&fs_info->balance_lock);
3619
3620 goto do_balance;
3621 }
3622 } else {
3623 bargs = NULL;
3624 }
3625
3626 if (fs_info->balance_ctl) {
3627 ret = -EINPROGRESS;
3628 goto out_bargs;
3629 }
3630
3631 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3632 if (!bctl) {
3633 ret = -ENOMEM;
3634 goto out_bargs;
3635 }
3636
3637 bctl->fs_info = fs_info;
3638 if (arg) {
3639 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3640 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3641 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3642
3643 bctl->flags = bargs->flags;
3644 } else {
3645 /* balance everything - no filters */
3646 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3647 }
3648
3649do_balance:
3650 /*
3651 * Ownership of bctl and mutually_exclusive_operation_running
3652 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
3653 * or, if restriper was paused all the way until unmount, in
3654 * free_fs_info. mutually_exclusive_operation_running is
3655 * cleared in __cancel_balance.
3656 */
3657 need_unlock = false;
3658
3659 ret = btrfs_balance(bctl, bargs);
3660
3661 if (arg) {
3662 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3663 ret = -EFAULT;
3664 }
3665
3666out_bargs:
3667 kfree(bargs);
3668out_unlock:
3669 mutex_unlock(&fs_info->balance_mutex);
3670 mutex_unlock(&fs_info->volume_mutex);
3671 if (need_unlock)
3672 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3673out:
3674 mnt_drop_write_file(file);
3675 return ret;
3676}
3677
3678static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3679{
3680 if (!capable(CAP_SYS_ADMIN))
3681 return -EPERM;
3682
3683 switch (cmd) {
3684 case BTRFS_BALANCE_CTL_PAUSE:
3685 return btrfs_pause_balance(root->fs_info);
3686 case BTRFS_BALANCE_CTL_CANCEL:
3687 return btrfs_cancel_balance(root->fs_info);
3688 }
3689
3690 return -EINVAL;
3691}
3692
3693static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3694 void __user *arg)
3695{
3696 struct btrfs_fs_info *fs_info = root->fs_info;
3697 struct btrfs_ioctl_balance_args *bargs;
3698 int ret = 0;
3699
3700 if (!capable(CAP_SYS_ADMIN))
3701 return -EPERM;
3702
3703 mutex_lock(&fs_info->balance_mutex);
3704 if (!fs_info->balance_ctl) {
3705 ret = -ENOTCONN;
3706 goto out;
3707 }
3708
3709 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3710 if (!bargs) {
3711 ret = -ENOMEM;
3712 goto out;
3713 }
3714
3715 update_ioctl_balance_args(fs_info, 1, bargs);
3716
3717 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3718 ret = -EFAULT;
3719
3720 kfree(bargs);
3721out:
3722 mutex_unlock(&fs_info->balance_mutex);
3723 return ret;
3724}
3725
3726static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3727{
3728 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3729 struct btrfs_ioctl_quota_ctl_args *sa;
3730 struct btrfs_trans_handle *trans = NULL;
3731 int ret;
3732 int err;
3733
3734 if (!capable(CAP_SYS_ADMIN))
3735 return -EPERM;
3736
3737 ret = mnt_want_write_file(file);
3738 if (ret)
3739 return ret;
3740
3741 sa = memdup_user(arg, sizeof(*sa));
3742 if (IS_ERR(sa)) {
3743 ret = PTR_ERR(sa);
3744 goto drop_write;
3745 }
3746
3747 down_write(&root->fs_info->subvol_sem);
3748 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
3749 if (IS_ERR(trans)) {
3750 ret = PTR_ERR(trans);
3751 goto out;
3752 }
3753
3754 switch (sa->cmd) {
3755 case BTRFS_QUOTA_CTL_ENABLE:
3756 ret = btrfs_quota_enable(trans, root->fs_info);
3757 break;
3758 case BTRFS_QUOTA_CTL_DISABLE:
3759 ret = btrfs_quota_disable(trans, root->fs_info);
3760 break;
3761 default:
3762 ret = -EINVAL;
3763 break;
3764 }
3765
3766 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
3767 if (err && !ret)
3768 ret = err;
3769out:
3770 kfree(sa);
3771 up_write(&root->fs_info->subvol_sem);
3772drop_write:
3773 mnt_drop_write_file(file);
3774 return ret;
3775}
3776
3777static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3778{
3779 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3780 struct btrfs_ioctl_qgroup_assign_args *sa;
3781 struct btrfs_trans_handle *trans;
3782 int ret;
3783 int err;
3784
3785 if (!capable(CAP_SYS_ADMIN))
3786 return -EPERM;
3787
3788 ret = mnt_want_write_file(file);
3789 if (ret)
3790 return ret;
3791
3792 sa = memdup_user(arg, sizeof(*sa));
3793 if (IS_ERR(sa)) {
3794 ret = PTR_ERR(sa);
3795 goto drop_write;
3796 }
3797
3798 trans = btrfs_join_transaction(root);
3799 if (IS_ERR(trans)) {
3800 ret = PTR_ERR(trans);
3801 goto out;
3802 }
3803
3804 /* FIXME: check if the IDs really exist */
3805 if (sa->assign) {
3806 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3807 sa->src, sa->dst);
3808 } else {
3809 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3810 sa->src, sa->dst);
3811 }
3812
3813 err = btrfs_end_transaction(trans, root);
3814 if (err && !ret)
3815 ret = err;
3816
3817out:
3818 kfree(sa);
3819drop_write:
3820 mnt_drop_write_file(file);
3821 return ret;
3822}
3823
3824static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3825{
3826 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3827 struct btrfs_ioctl_qgroup_create_args *sa;
3828 struct btrfs_trans_handle *trans;
3829 int ret;
3830 int err;
3831
3832 if (!capable(CAP_SYS_ADMIN))
3833 return -EPERM;
3834
3835 ret = mnt_want_write_file(file);
3836 if (ret)
3837 return ret;
3838
3839 sa = memdup_user(arg, sizeof(*sa));
3840 if (IS_ERR(sa)) {
3841 ret = PTR_ERR(sa);
3842 goto drop_write;
3843 }
3844
3845 if (!sa->qgroupid) {
3846 ret = -EINVAL;
3847 goto out;
3848 }
3849
3850 trans = btrfs_join_transaction(root);
3851 if (IS_ERR(trans)) {
3852 ret = PTR_ERR(trans);
3853 goto out;
3854 }
3855
3856 /* FIXME: check if the IDs really exist */
3857 if (sa->create) {
3858 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3859 NULL);
3860 } else {
3861 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3862 }
3863
3864 err = btrfs_end_transaction(trans, root);
3865 if (err && !ret)
3866 ret = err;
3867
3868out:
3869 kfree(sa);
3870drop_write:
3871 mnt_drop_write_file(file);
3872 return ret;
3873}
3874
3875static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3876{
3877 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3878 struct btrfs_ioctl_qgroup_limit_args *sa;
3879 struct btrfs_trans_handle *trans;
3880 int ret;
3881 int err;
3882 u64 qgroupid;
3883
3884 if (!capable(CAP_SYS_ADMIN))
3885 return -EPERM;
3886
3887 ret = mnt_want_write_file(file);
3888 if (ret)
3889 return ret;
3890
3891 sa = memdup_user(arg, sizeof(*sa));
3892 if (IS_ERR(sa)) {
3893 ret = PTR_ERR(sa);
3894 goto drop_write;
3895 }
3896
3897 trans = btrfs_join_transaction(root);
3898 if (IS_ERR(trans)) {
3899 ret = PTR_ERR(trans);
3900 goto out;
3901 }
3902
3903 qgroupid = sa->qgroupid;
3904 if (!qgroupid) {
3905 /* take the current subvol as qgroup */
3906 qgroupid = root->root_key.objectid;
3907 }
3908
3909 /* FIXME: check if the IDs really exist */
3910 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3911
3912 err = btrfs_end_transaction(trans, root);
3913 if (err && !ret)
3914 ret = err;
3915
3916out:
3917 kfree(sa);
3918drop_write:
3919 mnt_drop_write_file(file);
3920 return ret;
3921}
3922
3923static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3924{
3925 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3926 struct btrfs_ioctl_quota_rescan_args *qsa;
3927 int ret;
3928
3929 if (!capable(CAP_SYS_ADMIN))
3930 return -EPERM;
3931
3932 ret = mnt_want_write_file(file);
3933 if (ret)
3934 return ret;
3935
3936 qsa = memdup_user(arg, sizeof(*qsa));
3937 if (IS_ERR(qsa)) {
3938 ret = PTR_ERR(qsa);
3939 goto drop_write;
3940 }
3941
3942 if (qsa->flags) {
3943 ret = -EINVAL;
3944 goto out;
3945 }
3946
3947 ret = btrfs_qgroup_rescan(root->fs_info);
3948
3949out:
3950 kfree(qsa);
3951drop_write:
3952 mnt_drop_write_file(file);
3953 return ret;
3954}
3955
3956static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
3957{
3958 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3959 struct btrfs_ioctl_quota_rescan_args *qsa;
3960 int ret = 0;
3961
3962 if (!capable(CAP_SYS_ADMIN))
3963 return -EPERM;
3964
3965 qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
3966 if (!qsa)
3967 return -ENOMEM;
3968
3969 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3970 qsa->flags = 1;
3971 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
3972 }
3973
3974 if (copy_to_user(arg, qsa, sizeof(*qsa)))
3975 ret = -EFAULT;
3976
3977 kfree(qsa);
3978 return ret;
3979}
3980
3981static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
3982{
3983 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3984
3985 if (!capable(CAP_SYS_ADMIN))
3986 return -EPERM;
3987
3988 return btrfs_qgroup_wait_for_completion(root->fs_info);
3989}
3990
3991static long btrfs_ioctl_set_received_subvol(struct file *file,
3992 void __user *arg)
3993{
3994 struct btrfs_ioctl_received_subvol_args *sa = NULL;
3995 struct inode *inode = file_inode(file);
3996 struct btrfs_root *root = BTRFS_I(inode)->root;
3997 struct btrfs_root_item *root_item = &root->root_item;
3998 struct btrfs_trans_handle *trans;
3999 struct timespec ct = CURRENT_TIME;
4000 int ret = 0;
4001
4002 ret = mnt_want_write_file(file);
4003 if (ret < 0)
4004 return ret;
4005
4006 down_write(&root->fs_info->subvol_sem);
4007
4008 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4009 ret = -EINVAL;
4010 goto out;
4011 }
4012
4013 if (btrfs_root_readonly(root)) {
4014 ret = -EROFS;
4015 goto out;
4016 }
4017
4018 if (!inode_owner_or_capable(inode)) {
4019 ret = -EACCES;
4020 goto out;
4021 }
4022
4023 sa = memdup_user(arg, sizeof(*sa));
4024 if (IS_ERR(sa)) {
4025 ret = PTR_ERR(sa);
4026 sa = NULL;
4027 goto out;
4028 }
4029
4030 trans = btrfs_start_transaction(root, 1);
4031 if (IS_ERR(trans)) {
4032 ret = PTR_ERR(trans);
4033 trans = NULL;
4034 goto out;
4035 }
4036
4037 sa->rtransid = trans->transid;
4038 sa->rtime.sec = ct.tv_sec;
4039 sa->rtime.nsec = ct.tv_nsec;
4040
4041 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4042 btrfs_set_root_stransid(root_item, sa->stransid);
4043 btrfs_set_root_rtransid(root_item, sa->rtransid);
4044 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4045 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4046 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4047 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4048
4049 ret = btrfs_update_root(trans, root->fs_info->tree_root,
4050 &root->root_key, &root->root_item);
4051 if (ret < 0) {
4052 btrfs_end_transaction(trans, root);
4053 trans = NULL;
4054 goto out;
4055 } else {
4056 ret = btrfs_commit_transaction(trans, root);
4057 if (ret < 0)
4058 goto out;
4059 }
4060
4061 ret = copy_to_user(arg, sa, sizeof(*sa));
4062 if (ret)
4063 ret = -EFAULT;
4064
4065out:
4066 kfree(sa);
4067 up_write(&root->fs_info->subvol_sem);
4068 mnt_drop_write_file(file);
4069 return ret;
4070}
4071
4072static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4073{
4074 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4075 size_t len;
4076 int ret;
4077 char label[BTRFS_LABEL_SIZE];
4078
4079 spin_lock(&root->fs_info->super_lock);
4080 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4081 spin_unlock(&root->fs_info->super_lock);
4082
4083 len = strnlen(label, BTRFS_LABEL_SIZE);
4084
4085 if (len == BTRFS_LABEL_SIZE) {
4086 pr_warn("btrfs: label is too long, return the first %zu bytes\n",
4087 --len);
4088 }
4089
4090 ret = copy_to_user(arg, label, len);
4091
4092 return ret ? -EFAULT : 0;
4093}
4094
4095static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4096{
4097 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4098 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4099 struct btrfs_trans_handle *trans;
4100 char label[BTRFS_LABEL_SIZE];
4101 int ret;
4102
4103 if (!capable(CAP_SYS_ADMIN))
4104 return -EPERM;
4105
4106 if (copy_from_user(label, arg, sizeof(label)))
4107 return -EFAULT;
4108
4109 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4110 pr_err("btrfs: unable to set label with more than %d bytes\n",
4111 BTRFS_LABEL_SIZE - 1);
4112 return -EINVAL;
4113 }
4114
4115 ret = mnt_want_write_file(file);
4116 if (ret)
4117 return ret;
4118
4119 trans = btrfs_start_transaction(root, 0);
4120 if (IS_ERR(trans)) {
4121 ret = PTR_ERR(trans);
4122 goto out_unlock;
4123 }
4124
4125 spin_lock(&root->fs_info->super_lock);
4126 strcpy(super_block->label, label);
4127 spin_unlock(&root->fs_info->super_lock);
4128 ret = btrfs_end_transaction(trans, root);
4129
4130out_unlock:
4131 mnt_drop_write_file(file);
4132 return ret;
4133}
4134
4135long btrfs_ioctl(struct file *file, unsigned int
4136 cmd, unsigned long arg)
4137{
4138 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4139 void __user *argp = (void __user *)arg;
4140
4141 switch (cmd) {
4142 case FS_IOC_GETFLAGS:
4143 return btrfs_ioctl_getflags(file, argp);
4144 case FS_IOC_SETFLAGS:
4145 return btrfs_ioctl_setflags(file, argp);
4146 case FS_IOC_GETVERSION:
4147 return btrfs_ioctl_getversion(file, argp);
4148 case FITRIM:
4149 return btrfs_ioctl_fitrim(file, argp);
4150 case BTRFS_IOC_SNAP_CREATE:
4151 return btrfs_ioctl_snap_create(file, argp, 0);
4152 case BTRFS_IOC_SNAP_CREATE_V2:
4153 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4154 case BTRFS_IOC_SUBVOL_CREATE:
4155 return btrfs_ioctl_snap_create(file, argp, 1);
4156 case BTRFS_IOC_SUBVOL_CREATE_V2:
4157 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4158 case BTRFS_IOC_SNAP_DESTROY:
4159 return btrfs_ioctl_snap_destroy(file, argp);
4160 case BTRFS_IOC_SUBVOL_GETFLAGS:
4161 return btrfs_ioctl_subvol_getflags(file, argp);
4162 case BTRFS_IOC_SUBVOL_SETFLAGS:
4163 return btrfs_ioctl_subvol_setflags(file, argp);
4164 case BTRFS_IOC_DEFAULT_SUBVOL:
4165 return btrfs_ioctl_default_subvol(file, argp);
4166 case BTRFS_IOC_DEFRAG:
4167 return btrfs_ioctl_defrag(file, NULL);
4168 case BTRFS_IOC_DEFRAG_RANGE:
4169 return btrfs_ioctl_defrag(file, argp);
4170 case BTRFS_IOC_RESIZE:
4171 return btrfs_ioctl_resize(file, argp);
4172 case BTRFS_IOC_ADD_DEV:
4173 return btrfs_ioctl_add_dev(root, argp);
4174 case BTRFS_IOC_RM_DEV:
4175 return btrfs_ioctl_rm_dev(file, argp);
4176 case BTRFS_IOC_FS_INFO:
4177 return btrfs_ioctl_fs_info(root, argp);
4178 case BTRFS_IOC_DEV_INFO:
4179 return btrfs_ioctl_dev_info(root, argp);
4180 case BTRFS_IOC_BALANCE:
4181 return btrfs_ioctl_balance(file, NULL);
4182 case BTRFS_IOC_CLONE:
4183 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4184 case BTRFS_IOC_CLONE_RANGE:
4185 return btrfs_ioctl_clone_range(file, argp);
4186 case BTRFS_IOC_TRANS_START:
4187 return btrfs_ioctl_trans_start(file);
4188 case BTRFS_IOC_TRANS_END:
4189 return btrfs_ioctl_trans_end(file);
4190 case BTRFS_IOC_TREE_SEARCH:
4191 return btrfs_ioctl_tree_search(file, argp);
4192 case BTRFS_IOC_INO_LOOKUP:
4193 return btrfs_ioctl_ino_lookup(file, argp);
4194 case BTRFS_IOC_INO_PATHS:
4195 return btrfs_ioctl_ino_to_path(root, argp);
4196 case BTRFS_IOC_LOGICAL_INO:
4197 return btrfs_ioctl_logical_to_ino(root, argp);
4198 case BTRFS_IOC_SPACE_INFO:
4199 return btrfs_ioctl_space_info(root, argp);
4200 case BTRFS_IOC_SYNC:
4201 btrfs_sync_fs(file->f_dentry->d_sb, 1);
4202 return 0;
4203 case BTRFS_IOC_START_SYNC:
4204 return btrfs_ioctl_start_sync(root, argp);
4205 case BTRFS_IOC_WAIT_SYNC:
4206 return btrfs_ioctl_wait_sync(root, argp);
4207 case BTRFS_IOC_SCRUB:
4208 return btrfs_ioctl_scrub(file, argp);
4209 case BTRFS_IOC_SCRUB_CANCEL:
4210 return btrfs_ioctl_scrub_cancel(root, argp);
4211 case BTRFS_IOC_SCRUB_PROGRESS:
4212 return btrfs_ioctl_scrub_progress(root, argp);
4213 case BTRFS_IOC_BALANCE_V2:
4214 return btrfs_ioctl_balance(file, argp);
4215 case BTRFS_IOC_BALANCE_CTL:
4216 return btrfs_ioctl_balance_ctl(root, arg);
4217 case BTRFS_IOC_BALANCE_PROGRESS:
4218 return btrfs_ioctl_balance_progress(root, argp);
4219 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4220 return btrfs_ioctl_set_received_subvol(file, argp);
4221 case BTRFS_IOC_SEND:
4222 return btrfs_ioctl_send(file, argp);
4223 case BTRFS_IOC_GET_DEV_STATS:
4224 return btrfs_ioctl_get_dev_stats(root, argp);
4225 case BTRFS_IOC_QUOTA_CTL:
4226 return btrfs_ioctl_quota_ctl(file, argp);
4227 case BTRFS_IOC_QGROUP_ASSIGN:
4228 return btrfs_ioctl_qgroup_assign(file, argp);
4229 case BTRFS_IOC_QGROUP_CREATE:
4230 return btrfs_ioctl_qgroup_create(file, argp);
4231 case BTRFS_IOC_QGROUP_LIMIT:
4232 return btrfs_ioctl_qgroup_limit(file, argp);
4233 case BTRFS_IOC_QUOTA_RESCAN:
4234 return btrfs_ioctl_quota_rescan(file, argp);
4235 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4236 return btrfs_ioctl_quota_rescan_status(file, argp);
4237 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4238 return btrfs_ioctl_quota_rescan_wait(file, argp);
4239 case BTRFS_IOC_DEV_REPLACE:
4240 return btrfs_ioctl_dev_replace(root, argp);
4241 case BTRFS_IOC_GET_FSLABEL:
4242 return btrfs_ioctl_get_fslabel(file, argp);
4243 case BTRFS_IOC_SET_FSLABEL:
4244 return btrfs_ioctl_set_fslabel(file, argp);
4245 }
4246
4247 return -ENOTTY;
4248}
This page took 0.037627 seconds and 5 git commands to generate.