Btrfs: Include the device in most error printk()s
[deliverable/linux.git] / fs / btrfs / super.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/module.h>
21#include <linux/buffer_head.h>
22#include <linux/fs.h>
23#include <linux/pagemap.h>
24#include <linux/highmem.h>
25#include <linux/time.h>
26#include <linux/init.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mount.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
36#include <linux/parser.h>
37#include <linux/ctype.h>
38#include <linux/namei.h>
39#include <linux/miscdevice.h>
40#include <linux/magic.h>
41#include <linux/slab.h>
42#include <linux/cleancache.h>
43#include <linux/ratelimit.h>
44#include <linux/btrfs.h>
45#include "compat.h"
46#include "delayed-inode.h"
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
51#include "print-tree.h"
52#include "xattr.h"
53#include "volumes.h"
54#include "version.h"
55#include "export.h"
56#include "compression.h"
57#include "rcu-string.h"
58#include "dev-replace.h"
59#include "free-space-cache.h"
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/btrfs.h>
63
64static const struct super_operations btrfs_super_ops;
65static struct file_system_type btrfs_fs_type;
66
67static const char *btrfs_decode_error(int errno)
68{
69 char *errstr = "unknown";
70
71 switch (errno) {
72 case -EIO:
73 errstr = "IO failure";
74 break;
75 case -ENOMEM:
76 errstr = "Out of memory";
77 break;
78 case -EROFS:
79 errstr = "Readonly filesystem";
80 break;
81 case -EEXIST:
82 errstr = "Object already exists";
83 break;
84 }
85
86 return errstr;
87}
88
89static void save_error_info(struct btrfs_fs_info *fs_info)
90{
91 /*
92 * today we only save the error info into ram. Long term we'll
93 * also send it down to the disk
94 */
95 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
96}
97
98/* btrfs handle error by forcing the filesystem readonly */
99static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
100{
101 struct super_block *sb = fs_info->sb;
102
103 if (sb->s_flags & MS_RDONLY)
104 return;
105
106 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
107 sb->s_flags |= MS_RDONLY;
108 btrfs_info(fs_info, "forced readonly");
109 /*
110 * Note that a running device replace operation is not
111 * canceled here although there is no way to update
112 * the progress. It would add the risk of a deadlock,
113 * therefore the canceling is ommited. The only penalty
114 * is that some I/O remains active until the procedure
115 * completes. The next time when the filesystem is
116 * mounted writeable again, the device replace
117 * operation continues.
118 */
119 }
120}
121
122#ifdef CONFIG_PRINTK
123/*
124 * __btrfs_std_error decodes expected errors from the caller and
125 * invokes the approciate error response.
126 */
127void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
128 unsigned int line, int errno, const char *fmt, ...)
129{
130 struct super_block *sb = fs_info->sb;
131 const char *errstr;
132
133 /*
134 * Special case: if the error is EROFS, and we're already
135 * under MS_RDONLY, then it is safe here.
136 */
137 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
138 return;
139
140 errstr = btrfs_decode_error(errno);
141 if (fmt) {
142 struct va_format vaf;
143 va_list args;
144
145 va_start(args, fmt);
146 vaf.fmt = fmt;
147 vaf.va = &args;
148
149 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
150 sb->s_id, function, line, errno, errstr, &vaf);
151 va_end(args);
152 } else {
153 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
154 sb->s_id, function, line, errno, errstr);
155 }
156
157 /* Don't go through full error handling during mount */
158 if (sb->s_flags & MS_BORN) {
159 save_error_info(fs_info);
160 btrfs_handle_error(fs_info);
161 }
162}
163
164static const char * const logtypes[] = {
165 "emergency",
166 "alert",
167 "critical",
168 "error",
169 "warning",
170 "notice",
171 "info",
172 "debug",
173};
174
175void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
176{
177 struct super_block *sb = fs_info->sb;
178 char lvl[4];
179 struct va_format vaf;
180 va_list args;
181 const char *type = logtypes[4];
182 int kern_level;
183
184 va_start(args, fmt);
185
186 kern_level = printk_get_level(fmt);
187 if (kern_level) {
188 size_t size = printk_skip_level(fmt) - fmt;
189 memcpy(lvl, fmt, size);
190 lvl[size] = '\0';
191 fmt += size;
192 type = logtypes[kern_level - '0'];
193 } else
194 *lvl = '\0';
195
196 vaf.fmt = fmt;
197 vaf.va = &args;
198
199 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
200
201 va_end(args);
202}
203
204#else
205
206void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
207 unsigned int line, int errno, const char *fmt, ...)
208{
209 struct super_block *sb = fs_info->sb;
210
211 /*
212 * Special case: if the error is EROFS, and we're already
213 * under MS_RDONLY, then it is safe here.
214 */
215 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
216 return;
217
218 /* Don't go through full error handling during mount */
219 if (sb->s_flags & MS_BORN) {
220 save_error_info(fs_info);
221 btrfs_handle_error(fs_info);
222 }
223}
224#endif
225
226/*
227 * We only mark the transaction aborted and then set the file system read-only.
228 * This will prevent new transactions from starting or trying to join this
229 * one.
230 *
231 * This means that error recovery at the call site is limited to freeing
232 * any local memory allocations and passing the error code up without
233 * further cleanup. The transaction should complete as it normally would
234 * in the call path but will return -EIO.
235 *
236 * We'll complete the cleanup in btrfs_end_transaction and
237 * btrfs_commit_transaction.
238 */
239void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
240 struct btrfs_root *root, const char *function,
241 unsigned int line, int errno)
242{
243 /*
244 * Report first abort since mount
245 */
246 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
247 &root->fs_info->fs_state)) {
248 WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
249 errno);
250 }
251 trans->aborted = errno;
252 /* Nothing used. The other threads that have joined this
253 * transaction may be able to continue. */
254 if (!trans->blocks_used) {
255 const char *errstr;
256
257 errstr = btrfs_decode_error(errno);
258 btrfs_warn(root->fs_info,
259 "%s:%d: Aborting unused transaction(%s).",
260 function, line, errstr);
261 return;
262 }
263 ACCESS_ONCE(trans->transaction->aborted) = errno;
264 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
265}
266/*
267 * __btrfs_panic decodes unexpected, fatal errors from the caller,
268 * issues an alert, and either panics or BUGs, depending on mount options.
269 */
270void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
271 unsigned int line, int errno, const char *fmt, ...)
272{
273 char *s_id = "<unknown>";
274 const char *errstr;
275 struct va_format vaf = { .fmt = fmt };
276 va_list args;
277
278 if (fs_info)
279 s_id = fs_info->sb->s_id;
280
281 va_start(args, fmt);
282 vaf.va = &args;
283
284 errstr = btrfs_decode_error(errno);
285 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
286 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
287 s_id, function, line, &vaf, errno, errstr);
288
289 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
290 s_id, function, line, &vaf, errno, errstr);
291 va_end(args);
292 /* Caller calls BUG() */
293}
294
295static void btrfs_put_super(struct super_block *sb)
296{
297 (void)close_ctree(btrfs_sb(sb)->tree_root);
298 /* FIXME: need to fix VFS to return error? */
299 /* AV: return it _where_? ->put_super() can be triggered by any number
300 * of async events, up to and including delivery of SIGKILL to the
301 * last process that kept it busy. Or segfault in the aforementioned
302 * process... Whom would you report that to?
303 */
304}
305
306enum {
307 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
308 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
309 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
310 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
311 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
312 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
313 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
314 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
315 Opt_check_integrity, Opt_check_integrity_including_extent_data,
316 Opt_check_integrity_print_mask, Opt_fatal_errors,
317 Opt_err,
318};
319
320static match_table_t tokens = {
321 {Opt_degraded, "degraded"},
322 {Opt_subvol, "subvol=%s"},
323 {Opt_subvolid, "subvolid=%d"},
324 {Opt_device, "device=%s"},
325 {Opt_nodatasum, "nodatasum"},
326 {Opt_nodatacow, "nodatacow"},
327 {Opt_nobarrier, "nobarrier"},
328 {Opt_max_inline, "max_inline=%s"},
329 {Opt_alloc_start, "alloc_start=%s"},
330 {Opt_thread_pool, "thread_pool=%d"},
331 {Opt_compress, "compress"},
332 {Opt_compress_type, "compress=%s"},
333 {Opt_compress_force, "compress-force"},
334 {Opt_compress_force_type, "compress-force=%s"},
335 {Opt_ssd, "ssd"},
336 {Opt_ssd_spread, "ssd_spread"},
337 {Opt_nossd, "nossd"},
338 {Opt_noacl, "noacl"},
339 {Opt_notreelog, "notreelog"},
340 {Opt_flushoncommit, "flushoncommit"},
341 {Opt_ratio, "metadata_ratio=%d"},
342 {Opt_discard, "discard"},
343 {Opt_space_cache, "space_cache"},
344 {Opt_clear_cache, "clear_cache"},
345 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
346 {Opt_enospc_debug, "enospc_debug"},
347 {Opt_subvolrootid, "subvolrootid=%d"},
348 {Opt_defrag, "autodefrag"},
349 {Opt_inode_cache, "inode_cache"},
350 {Opt_no_space_cache, "nospace_cache"},
351 {Opt_recovery, "recovery"},
352 {Opt_skip_balance, "skip_balance"},
353 {Opt_check_integrity, "check_int"},
354 {Opt_check_integrity_including_extent_data, "check_int_data"},
355 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
356 {Opt_fatal_errors, "fatal_errors=%s"},
357 {Opt_err, NULL},
358};
359
360/*
361 * Regular mount options parser. Everything that is needed only when
362 * reading in a new superblock is parsed here.
363 * XXX JDM: This needs to be cleaned up for remount.
364 */
365int btrfs_parse_options(struct btrfs_root *root, char *options)
366{
367 struct btrfs_fs_info *info = root->fs_info;
368 substring_t args[MAX_OPT_ARGS];
369 char *p, *num, *orig = NULL;
370 u64 cache_gen;
371 int intarg;
372 int ret = 0;
373 char *compress_type;
374 bool compress_force = false;
375
376 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
377 if (cache_gen)
378 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
379
380 if (!options)
381 goto out;
382
383 /*
384 * strsep changes the string, duplicate it because parse_options
385 * gets called twice
386 */
387 options = kstrdup(options, GFP_NOFS);
388 if (!options)
389 return -ENOMEM;
390
391 orig = options;
392
393 while ((p = strsep(&options, ",")) != NULL) {
394 int token;
395 if (!*p)
396 continue;
397
398 token = match_token(p, tokens, args);
399 switch (token) {
400 case Opt_degraded:
401 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
402 btrfs_set_opt(info->mount_opt, DEGRADED);
403 break;
404 case Opt_subvol:
405 case Opt_subvolid:
406 case Opt_subvolrootid:
407 case Opt_device:
408 /*
409 * These are parsed by btrfs_parse_early_options
410 * and can be happily ignored here.
411 */
412 break;
413 case Opt_nodatasum:
414 printk(KERN_INFO "btrfs: setting nodatasum\n");
415 btrfs_set_opt(info->mount_opt, NODATASUM);
416 break;
417 case Opt_nodatacow:
418 if (!btrfs_test_opt(root, COMPRESS) ||
419 !btrfs_test_opt(root, FORCE_COMPRESS)) {
420 printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
421 } else {
422 printk(KERN_INFO "btrfs: setting nodatacow\n");
423 }
424 info->compress_type = BTRFS_COMPRESS_NONE;
425 btrfs_clear_opt(info->mount_opt, COMPRESS);
426 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
427 btrfs_set_opt(info->mount_opt, NODATACOW);
428 btrfs_set_opt(info->mount_opt, NODATASUM);
429 break;
430 case Opt_compress_force:
431 case Opt_compress_force_type:
432 compress_force = true;
433 /* Fallthrough */
434 case Opt_compress:
435 case Opt_compress_type:
436 if (token == Opt_compress ||
437 token == Opt_compress_force ||
438 strcmp(args[0].from, "zlib") == 0) {
439 compress_type = "zlib";
440 info->compress_type = BTRFS_COMPRESS_ZLIB;
441 btrfs_set_opt(info->mount_opt, COMPRESS);
442 btrfs_clear_opt(info->mount_opt, NODATACOW);
443 btrfs_clear_opt(info->mount_opt, NODATASUM);
444 } else if (strcmp(args[0].from, "lzo") == 0) {
445 compress_type = "lzo";
446 info->compress_type = BTRFS_COMPRESS_LZO;
447 btrfs_set_opt(info->mount_opt, COMPRESS);
448 btrfs_clear_opt(info->mount_opt, NODATACOW);
449 btrfs_clear_opt(info->mount_opt, NODATASUM);
450 btrfs_set_fs_incompat(info, COMPRESS_LZO);
451 } else if (strncmp(args[0].from, "no", 2) == 0) {
452 compress_type = "no";
453 info->compress_type = BTRFS_COMPRESS_NONE;
454 btrfs_clear_opt(info->mount_opt, COMPRESS);
455 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
456 compress_force = false;
457 } else {
458 ret = -EINVAL;
459 goto out;
460 }
461
462 if (compress_force) {
463 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
464 pr_info("btrfs: force %s compression\n",
465 compress_type);
466 } else
467 pr_info("btrfs: use %s compression\n",
468 compress_type);
469 break;
470 case Opt_ssd:
471 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
472 btrfs_set_opt(info->mount_opt, SSD);
473 break;
474 case Opt_ssd_spread:
475 printk(KERN_INFO "btrfs: use spread ssd "
476 "allocation scheme\n");
477 btrfs_set_opt(info->mount_opt, SSD);
478 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
479 break;
480 case Opt_nossd:
481 printk(KERN_INFO "btrfs: not using ssd allocation "
482 "scheme\n");
483 btrfs_set_opt(info->mount_opt, NOSSD);
484 btrfs_clear_opt(info->mount_opt, SSD);
485 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
486 break;
487 case Opt_nobarrier:
488 printk(KERN_INFO "btrfs: turning off barriers\n");
489 btrfs_set_opt(info->mount_opt, NOBARRIER);
490 break;
491 case Opt_thread_pool:
492 intarg = 0;
493 match_int(&args[0], &intarg);
494 if (intarg)
495 info->thread_pool_size = intarg;
496 break;
497 case Opt_max_inline:
498 num = match_strdup(&args[0]);
499 if (num) {
500 info->max_inline = memparse(num, NULL);
501 kfree(num);
502
503 if (info->max_inline) {
504 info->max_inline = max_t(u64,
505 info->max_inline,
506 root->sectorsize);
507 }
508 printk(KERN_INFO "btrfs: max_inline at %llu\n",
509 (unsigned long long)info->max_inline);
510 }
511 break;
512 case Opt_alloc_start:
513 num = match_strdup(&args[0]);
514 if (num) {
515 mutex_lock(&info->chunk_mutex);
516 info->alloc_start = memparse(num, NULL);
517 mutex_unlock(&info->chunk_mutex);
518 kfree(num);
519 printk(KERN_INFO
520 "btrfs: allocations start at %llu\n",
521 (unsigned long long)info->alloc_start);
522 }
523 break;
524 case Opt_noacl:
525 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
526 break;
527 case Opt_notreelog:
528 printk(KERN_INFO "btrfs: disabling tree log\n");
529 btrfs_set_opt(info->mount_opt, NOTREELOG);
530 break;
531 case Opt_flushoncommit:
532 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
533 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
534 break;
535 case Opt_ratio:
536 intarg = 0;
537 match_int(&args[0], &intarg);
538 if (intarg) {
539 info->metadata_ratio = intarg;
540 printk(KERN_INFO "btrfs: metadata ratio %d\n",
541 info->metadata_ratio);
542 }
543 break;
544 case Opt_discard:
545 btrfs_set_opt(info->mount_opt, DISCARD);
546 break;
547 case Opt_space_cache:
548 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
549 break;
550 case Opt_no_space_cache:
551 printk(KERN_INFO "btrfs: disabling disk space caching\n");
552 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
553 break;
554 case Opt_inode_cache:
555 printk(KERN_INFO "btrfs: enabling inode map caching\n");
556 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
557 break;
558 case Opt_clear_cache:
559 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
560 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
561 break;
562 case Opt_user_subvol_rm_allowed:
563 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
564 break;
565 case Opt_enospc_debug:
566 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
567 break;
568 case Opt_defrag:
569 printk(KERN_INFO "btrfs: enabling auto defrag\n");
570 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
571 break;
572 case Opt_recovery:
573 printk(KERN_INFO "btrfs: enabling auto recovery\n");
574 btrfs_set_opt(info->mount_opt, RECOVERY);
575 break;
576 case Opt_skip_balance:
577 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
578 break;
579#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
580 case Opt_check_integrity_including_extent_data:
581 printk(KERN_INFO "btrfs: enabling check integrity"
582 " including extent data\n");
583 btrfs_set_opt(info->mount_opt,
584 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
585 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
586 break;
587 case Opt_check_integrity:
588 printk(KERN_INFO "btrfs: enabling check integrity\n");
589 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
590 break;
591 case Opt_check_integrity_print_mask:
592 intarg = 0;
593 match_int(&args[0], &intarg);
594 if (intarg) {
595 info->check_integrity_print_mask = intarg;
596 printk(KERN_INFO "btrfs:"
597 " check_integrity_print_mask 0x%x\n",
598 info->check_integrity_print_mask);
599 }
600 break;
601#else
602 case Opt_check_integrity_including_extent_data:
603 case Opt_check_integrity:
604 case Opt_check_integrity_print_mask:
605 printk(KERN_ERR "btrfs: support for check_integrity*"
606 " not compiled in!\n");
607 ret = -EINVAL;
608 goto out;
609#endif
610 case Opt_fatal_errors:
611 if (strcmp(args[0].from, "panic") == 0)
612 btrfs_set_opt(info->mount_opt,
613 PANIC_ON_FATAL_ERROR);
614 else if (strcmp(args[0].from, "bug") == 0)
615 btrfs_clear_opt(info->mount_opt,
616 PANIC_ON_FATAL_ERROR);
617 else {
618 ret = -EINVAL;
619 goto out;
620 }
621 break;
622 case Opt_err:
623 printk(KERN_INFO "btrfs: unrecognized mount option "
624 "'%s'\n", p);
625 ret = -EINVAL;
626 goto out;
627 default:
628 break;
629 }
630 }
631out:
632 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
633 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
634 kfree(orig);
635 return ret;
636}
637
638/*
639 * Parse mount options that are required early in the mount process.
640 *
641 * All other options will be parsed on much later in the mount process and
642 * only when we need to allocate a new super block.
643 */
644static int btrfs_parse_early_options(const char *options, fmode_t flags,
645 void *holder, char **subvol_name, u64 *subvol_objectid,
646 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
647{
648 substring_t args[MAX_OPT_ARGS];
649 char *device_name, *opts, *orig, *p;
650 int error = 0;
651 int intarg;
652
653 if (!options)
654 return 0;
655
656 /*
657 * strsep changes the string, duplicate it because parse_options
658 * gets called twice
659 */
660 opts = kstrdup(options, GFP_KERNEL);
661 if (!opts)
662 return -ENOMEM;
663 orig = opts;
664
665 while ((p = strsep(&opts, ",")) != NULL) {
666 int token;
667 if (!*p)
668 continue;
669
670 token = match_token(p, tokens, args);
671 switch (token) {
672 case Opt_subvol:
673 kfree(*subvol_name);
674 *subvol_name = match_strdup(&args[0]);
675 break;
676 case Opt_subvolid:
677 intarg = 0;
678 error = match_int(&args[0], &intarg);
679 if (!error) {
680 /* we want the original fs_tree */
681 if (!intarg)
682 *subvol_objectid =
683 BTRFS_FS_TREE_OBJECTID;
684 else
685 *subvol_objectid = intarg;
686 }
687 break;
688 case Opt_subvolrootid:
689 intarg = 0;
690 error = match_int(&args[0], &intarg);
691 if (!error) {
692 /* we want the original fs_tree */
693 if (!intarg)
694 *subvol_rootid =
695 BTRFS_FS_TREE_OBJECTID;
696 else
697 *subvol_rootid = intarg;
698 }
699 break;
700 case Opt_device:
701 device_name = match_strdup(&args[0]);
702 if (!device_name) {
703 error = -ENOMEM;
704 goto out;
705 }
706 error = btrfs_scan_one_device(device_name,
707 flags, holder, fs_devices);
708 kfree(device_name);
709 if (error)
710 goto out;
711 break;
712 default:
713 break;
714 }
715 }
716
717out:
718 kfree(orig);
719 return error;
720}
721
722static struct dentry *get_default_root(struct super_block *sb,
723 u64 subvol_objectid)
724{
725 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
726 struct btrfs_root *root = fs_info->tree_root;
727 struct btrfs_root *new_root;
728 struct btrfs_dir_item *di;
729 struct btrfs_path *path;
730 struct btrfs_key location;
731 struct inode *inode;
732 u64 dir_id;
733 int new = 0;
734
735 /*
736 * We have a specific subvol we want to mount, just setup location and
737 * go look up the root.
738 */
739 if (subvol_objectid) {
740 location.objectid = subvol_objectid;
741 location.type = BTRFS_ROOT_ITEM_KEY;
742 location.offset = (u64)-1;
743 goto find_root;
744 }
745
746 path = btrfs_alloc_path();
747 if (!path)
748 return ERR_PTR(-ENOMEM);
749 path->leave_spinning = 1;
750
751 /*
752 * Find the "default" dir item which points to the root item that we
753 * will mount by default if we haven't been given a specific subvolume
754 * to mount.
755 */
756 dir_id = btrfs_super_root_dir(fs_info->super_copy);
757 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
758 if (IS_ERR(di)) {
759 btrfs_free_path(path);
760 return ERR_CAST(di);
761 }
762 if (!di) {
763 /*
764 * Ok the default dir item isn't there. This is weird since
765 * it's always been there, but don't freak out, just try and
766 * mount to root most subvolume.
767 */
768 btrfs_free_path(path);
769 dir_id = BTRFS_FIRST_FREE_OBJECTID;
770 new_root = fs_info->fs_root;
771 goto setup_root;
772 }
773
774 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
775 btrfs_free_path(path);
776
777find_root:
778 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
779 if (IS_ERR(new_root))
780 return ERR_CAST(new_root);
781
782 if (btrfs_root_refs(&new_root->root_item) == 0)
783 return ERR_PTR(-ENOENT);
784
785 dir_id = btrfs_root_dirid(&new_root->root_item);
786setup_root:
787 location.objectid = dir_id;
788 location.type = BTRFS_INODE_ITEM_KEY;
789 location.offset = 0;
790
791 inode = btrfs_iget(sb, &location, new_root, &new);
792 if (IS_ERR(inode))
793 return ERR_CAST(inode);
794
795 /*
796 * If we're just mounting the root most subvol put the inode and return
797 * a reference to the dentry. We will have already gotten a reference
798 * to the inode in btrfs_fill_super so we're good to go.
799 */
800 if (!new && sb->s_root->d_inode == inode) {
801 iput(inode);
802 return dget(sb->s_root);
803 }
804
805 return d_obtain_alias(inode);
806}
807
808static int btrfs_fill_super(struct super_block *sb,
809 struct btrfs_fs_devices *fs_devices,
810 void *data, int silent)
811{
812 struct inode *inode;
813 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
814 struct btrfs_key key;
815 int err;
816
817 sb->s_maxbytes = MAX_LFS_FILESIZE;
818 sb->s_magic = BTRFS_SUPER_MAGIC;
819 sb->s_op = &btrfs_super_ops;
820 sb->s_d_op = &btrfs_dentry_operations;
821 sb->s_export_op = &btrfs_export_ops;
822 sb->s_xattr = btrfs_xattr_handlers;
823 sb->s_time_gran = 1;
824#ifdef CONFIG_BTRFS_FS_POSIX_ACL
825 sb->s_flags |= MS_POSIXACL;
826#endif
827 sb->s_flags |= MS_I_VERSION;
828 err = open_ctree(sb, fs_devices, (char *)data);
829 if (err) {
830 printk("btrfs: open_ctree failed\n");
831 return err;
832 }
833
834 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
835 key.type = BTRFS_INODE_ITEM_KEY;
836 key.offset = 0;
837 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
838 if (IS_ERR(inode)) {
839 err = PTR_ERR(inode);
840 goto fail_close;
841 }
842
843 sb->s_root = d_make_root(inode);
844 if (!sb->s_root) {
845 err = -ENOMEM;
846 goto fail_close;
847 }
848
849 save_mount_options(sb, data);
850 cleancache_init_fs(sb);
851 sb->s_flags |= MS_ACTIVE;
852 return 0;
853
854fail_close:
855 close_ctree(fs_info->tree_root);
856 return err;
857}
858
859int btrfs_sync_fs(struct super_block *sb, int wait)
860{
861 struct btrfs_trans_handle *trans;
862 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
863 struct btrfs_root *root = fs_info->tree_root;
864
865 trace_btrfs_sync_fs(wait);
866
867 if (!wait) {
868 filemap_flush(fs_info->btree_inode->i_mapping);
869 return 0;
870 }
871
872 btrfs_wait_ordered_extents(root, 0);
873
874 trans = btrfs_attach_transaction_barrier(root);
875 if (IS_ERR(trans)) {
876 /* no transaction, don't bother */
877 if (PTR_ERR(trans) == -ENOENT)
878 return 0;
879 return PTR_ERR(trans);
880 }
881 return btrfs_commit_transaction(trans, root);
882}
883
884static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
885{
886 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
887 struct btrfs_root *root = info->tree_root;
888 char *compress_type;
889
890 if (btrfs_test_opt(root, DEGRADED))
891 seq_puts(seq, ",degraded");
892 if (btrfs_test_opt(root, NODATASUM))
893 seq_puts(seq, ",nodatasum");
894 if (btrfs_test_opt(root, NODATACOW))
895 seq_puts(seq, ",nodatacow");
896 if (btrfs_test_opt(root, NOBARRIER))
897 seq_puts(seq, ",nobarrier");
898 if (info->max_inline != 8192 * 1024)
899 seq_printf(seq, ",max_inline=%llu",
900 (unsigned long long)info->max_inline);
901 if (info->alloc_start != 0)
902 seq_printf(seq, ",alloc_start=%llu",
903 (unsigned long long)info->alloc_start);
904 if (info->thread_pool_size != min_t(unsigned long,
905 num_online_cpus() + 2, 8))
906 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
907 if (btrfs_test_opt(root, COMPRESS)) {
908 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
909 compress_type = "zlib";
910 else
911 compress_type = "lzo";
912 if (btrfs_test_opt(root, FORCE_COMPRESS))
913 seq_printf(seq, ",compress-force=%s", compress_type);
914 else
915 seq_printf(seq, ",compress=%s", compress_type);
916 }
917 if (btrfs_test_opt(root, NOSSD))
918 seq_puts(seq, ",nossd");
919 if (btrfs_test_opt(root, SSD_SPREAD))
920 seq_puts(seq, ",ssd_spread");
921 else if (btrfs_test_opt(root, SSD))
922 seq_puts(seq, ",ssd");
923 if (btrfs_test_opt(root, NOTREELOG))
924 seq_puts(seq, ",notreelog");
925 if (btrfs_test_opt(root, FLUSHONCOMMIT))
926 seq_puts(seq, ",flushoncommit");
927 if (btrfs_test_opt(root, DISCARD))
928 seq_puts(seq, ",discard");
929 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
930 seq_puts(seq, ",noacl");
931 if (btrfs_test_opt(root, SPACE_CACHE))
932 seq_puts(seq, ",space_cache");
933 else
934 seq_puts(seq, ",nospace_cache");
935 if (btrfs_test_opt(root, CLEAR_CACHE))
936 seq_puts(seq, ",clear_cache");
937 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
938 seq_puts(seq, ",user_subvol_rm_allowed");
939 if (btrfs_test_opt(root, ENOSPC_DEBUG))
940 seq_puts(seq, ",enospc_debug");
941 if (btrfs_test_opt(root, AUTO_DEFRAG))
942 seq_puts(seq, ",autodefrag");
943 if (btrfs_test_opt(root, INODE_MAP_CACHE))
944 seq_puts(seq, ",inode_cache");
945 if (btrfs_test_opt(root, SKIP_BALANCE))
946 seq_puts(seq, ",skip_balance");
947 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
948 seq_puts(seq, ",fatal_errors=panic");
949 return 0;
950}
951
952static int btrfs_test_super(struct super_block *s, void *data)
953{
954 struct btrfs_fs_info *p = data;
955 struct btrfs_fs_info *fs_info = btrfs_sb(s);
956
957 return fs_info->fs_devices == p->fs_devices;
958}
959
960static int btrfs_set_super(struct super_block *s, void *data)
961{
962 int err = set_anon_super(s, data);
963 if (!err)
964 s->s_fs_info = data;
965 return err;
966}
967
968/*
969 * subvolumes are identified by ino 256
970 */
971static inline int is_subvolume_inode(struct inode *inode)
972{
973 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
974 return 1;
975 return 0;
976}
977
978/*
979 * This will strip out the subvol=%s argument for an argument string and add
980 * subvolid=0 to make sure we get the actual tree root for path walking to the
981 * subvol we want.
982 */
983static char *setup_root_args(char *args)
984{
985 unsigned len = strlen(args) + 2 + 1;
986 char *src, *dst, *buf;
987
988 /*
989 * We need the same args as before, but with this substitution:
990 * s!subvol=[^,]+!subvolid=0!
991 *
992 * Since the replacement string is up to 2 bytes longer than the
993 * original, allocate strlen(args) + 2 + 1 bytes.
994 */
995
996 src = strstr(args, "subvol=");
997 /* This shouldn't happen, but just in case.. */
998 if (!src)
999 return NULL;
1000
1001 buf = dst = kmalloc(len, GFP_NOFS);
1002 if (!buf)
1003 return NULL;
1004
1005 /*
1006 * If the subvol= arg is not at the start of the string,
1007 * copy whatever precedes it into buf.
1008 */
1009 if (src != args) {
1010 *src++ = '\0';
1011 strcpy(buf, args);
1012 dst += strlen(args);
1013 }
1014
1015 strcpy(dst, "subvolid=0");
1016 dst += strlen("subvolid=0");
1017
1018 /*
1019 * If there is a "," after the original subvol=... string,
1020 * copy that suffix into our buffer. Otherwise, we're done.
1021 */
1022 src = strchr(src, ',');
1023 if (src)
1024 strcpy(dst, src);
1025
1026 return buf;
1027}
1028
1029static struct dentry *mount_subvol(const char *subvol_name, int flags,
1030 const char *device_name, char *data)
1031{
1032 struct dentry *root;
1033 struct vfsmount *mnt;
1034 char *newargs;
1035
1036 newargs = setup_root_args(data);
1037 if (!newargs)
1038 return ERR_PTR(-ENOMEM);
1039 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1040 newargs);
1041 kfree(newargs);
1042 if (IS_ERR(mnt))
1043 return ERR_CAST(mnt);
1044
1045 root = mount_subtree(mnt, subvol_name);
1046
1047 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1048 struct super_block *s = root->d_sb;
1049 dput(root);
1050 root = ERR_PTR(-EINVAL);
1051 deactivate_locked_super(s);
1052 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1053 subvol_name);
1054 }
1055
1056 return root;
1057}
1058
1059/*
1060 * Find a superblock for the given device / mount point.
1061 *
1062 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1063 * for multiple device setup. Make sure to keep it in sync.
1064 */
1065static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1066 const char *device_name, void *data)
1067{
1068 struct block_device *bdev = NULL;
1069 struct super_block *s;
1070 struct dentry *root;
1071 struct btrfs_fs_devices *fs_devices = NULL;
1072 struct btrfs_fs_info *fs_info = NULL;
1073 fmode_t mode = FMODE_READ;
1074 char *subvol_name = NULL;
1075 u64 subvol_objectid = 0;
1076 u64 subvol_rootid = 0;
1077 int error = 0;
1078
1079 if (!(flags & MS_RDONLY))
1080 mode |= FMODE_WRITE;
1081
1082 error = btrfs_parse_early_options(data, mode, fs_type,
1083 &subvol_name, &subvol_objectid,
1084 &subvol_rootid, &fs_devices);
1085 if (error) {
1086 kfree(subvol_name);
1087 return ERR_PTR(error);
1088 }
1089
1090 if (subvol_name) {
1091 root = mount_subvol(subvol_name, flags, device_name, data);
1092 kfree(subvol_name);
1093 return root;
1094 }
1095
1096 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1097 if (error)
1098 return ERR_PTR(error);
1099
1100 /*
1101 * Setup a dummy root and fs_info for test/set super. This is because
1102 * we don't actually fill this stuff out until open_ctree, but we need
1103 * it for searching for existing supers, so this lets us do that and
1104 * then open_ctree will properly initialize everything later.
1105 */
1106 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1107 if (!fs_info)
1108 return ERR_PTR(-ENOMEM);
1109
1110 fs_info->fs_devices = fs_devices;
1111
1112 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1113 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1114 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1115 error = -ENOMEM;
1116 goto error_fs_info;
1117 }
1118
1119 error = btrfs_open_devices(fs_devices, mode, fs_type);
1120 if (error)
1121 goto error_fs_info;
1122
1123 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1124 error = -EACCES;
1125 goto error_close_devices;
1126 }
1127
1128 bdev = fs_devices->latest_bdev;
1129 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1130 fs_info);
1131 if (IS_ERR(s)) {
1132 error = PTR_ERR(s);
1133 goto error_close_devices;
1134 }
1135
1136 if (s->s_root) {
1137 btrfs_close_devices(fs_devices);
1138 free_fs_info(fs_info);
1139 if ((flags ^ s->s_flags) & MS_RDONLY)
1140 error = -EBUSY;
1141 } else {
1142 char b[BDEVNAME_SIZE];
1143
1144 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1145 btrfs_sb(s)->bdev_holder = fs_type;
1146 error = btrfs_fill_super(s, fs_devices, data,
1147 flags & MS_SILENT ? 1 : 0);
1148 }
1149
1150 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1151 if (IS_ERR(root))
1152 deactivate_locked_super(s);
1153
1154 return root;
1155
1156error_close_devices:
1157 btrfs_close_devices(fs_devices);
1158error_fs_info:
1159 free_fs_info(fs_info);
1160 return ERR_PTR(error);
1161}
1162
1163static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1164{
1165 spin_lock_irq(&workers->lock);
1166 workers->max_workers = new_limit;
1167 spin_unlock_irq(&workers->lock);
1168}
1169
1170static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1171 int new_pool_size, int old_pool_size)
1172{
1173 if (new_pool_size == old_pool_size)
1174 return;
1175
1176 fs_info->thread_pool_size = new_pool_size;
1177
1178 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1179 old_pool_size, new_pool_size);
1180
1181 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1182 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1183 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1184 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1185 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1186 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1187 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1188 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1189 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1190 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1191 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1192 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1193 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1194 btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1195 new_pool_size);
1196}
1197
1198static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info,
1199 unsigned long old_opts, int flags)
1200{
1201 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1202
1203 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1204 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1205 (flags & MS_RDONLY))) {
1206 /* wait for any defraggers to finish */
1207 wait_event(fs_info->transaction_wait,
1208 (atomic_read(&fs_info->defrag_running) == 0));
1209 if (flags & MS_RDONLY)
1210 sync_filesystem(fs_info->sb);
1211 }
1212}
1213
1214static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1215 unsigned long old_opts)
1216{
1217 /*
1218 * We need cleanup all defragable inodes if the autodefragment is
1219 * close or the fs is R/O.
1220 */
1221 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1222 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1223 (fs_info->sb->s_flags & MS_RDONLY))) {
1224 btrfs_cleanup_defrag_inodes(fs_info);
1225 }
1226
1227 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1228}
1229
1230static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1231{
1232 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1233 struct btrfs_root *root = fs_info->tree_root;
1234 unsigned old_flags = sb->s_flags;
1235 unsigned long old_opts = fs_info->mount_opt;
1236 unsigned long old_compress_type = fs_info->compress_type;
1237 u64 old_max_inline = fs_info->max_inline;
1238 u64 old_alloc_start = fs_info->alloc_start;
1239 int old_thread_pool_size = fs_info->thread_pool_size;
1240 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1241 int ret;
1242
1243 btrfs_remount_prepare(fs_info, old_opts, *flags);
1244
1245 ret = btrfs_parse_options(root, data);
1246 if (ret) {
1247 ret = -EINVAL;
1248 goto restore;
1249 }
1250
1251 btrfs_resize_thread_pool(fs_info,
1252 fs_info->thread_pool_size, old_thread_pool_size);
1253
1254 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1255 goto out;
1256
1257 if (*flags & MS_RDONLY) {
1258 /*
1259 * this also happens on 'umount -rf' or on shutdown, when
1260 * the filesystem is busy.
1261 */
1262 sb->s_flags |= MS_RDONLY;
1263
1264 btrfs_dev_replace_suspend_for_unmount(fs_info);
1265 btrfs_scrub_cancel(fs_info);
1266
1267 ret = btrfs_commit_super(root);
1268 if (ret)
1269 goto restore;
1270 } else {
1271 if (fs_info->fs_devices->rw_devices == 0) {
1272 ret = -EACCES;
1273 goto restore;
1274 }
1275
1276 if (fs_info->fs_devices->missing_devices >
1277 fs_info->num_tolerated_disk_barrier_failures &&
1278 !(*flags & MS_RDONLY)) {
1279 printk(KERN_WARNING
1280 "Btrfs: too many missing devices, writeable remount is not allowed\n");
1281 ret = -EACCES;
1282 goto restore;
1283 }
1284
1285 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1286 ret = -EINVAL;
1287 goto restore;
1288 }
1289
1290 ret = btrfs_cleanup_fs_roots(fs_info);
1291 if (ret)
1292 goto restore;
1293
1294 /* recover relocation */
1295 ret = btrfs_recover_relocation(root);
1296 if (ret)
1297 goto restore;
1298
1299 ret = btrfs_resume_balance_async(fs_info);
1300 if (ret)
1301 goto restore;
1302
1303 ret = btrfs_resume_dev_replace_async(fs_info);
1304 if (ret) {
1305 pr_warn("btrfs: failed to resume dev_replace\n");
1306 goto restore;
1307 }
1308 sb->s_flags &= ~MS_RDONLY;
1309 }
1310out:
1311 btrfs_remount_cleanup(fs_info, old_opts);
1312 return 0;
1313
1314restore:
1315 /* We've hit an error - don't reset MS_RDONLY */
1316 if (sb->s_flags & MS_RDONLY)
1317 old_flags |= MS_RDONLY;
1318 sb->s_flags = old_flags;
1319 fs_info->mount_opt = old_opts;
1320 fs_info->compress_type = old_compress_type;
1321 fs_info->max_inline = old_max_inline;
1322 mutex_lock(&fs_info->chunk_mutex);
1323 fs_info->alloc_start = old_alloc_start;
1324 mutex_unlock(&fs_info->chunk_mutex);
1325 btrfs_resize_thread_pool(fs_info,
1326 old_thread_pool_size, fs_info->thread_pool_size);
1327 fs_info->metadata_ratio = old_metadata_ratio;
1328 btrfs_remount_cleanup(fs_info, old_opts);
1329 return ret;
1330}
1331
1332/* Used to sort the devices by max_avail(descending sort) */
1333static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1334 const void *dev_info2)
1335{
1336 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1337 ((struct btrfs_device_info *)dev_info2)->max_avail)
1338 return -1;
1339 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1340 ((struct btrfs_device_info *)dev_info2)->max_avail)
1341 return 1;
1342 else
1343 return 0;
1344}
1345
1346/*
1347 * sort the devices by max_avail, in which max free extent size of each device
1348 * is stored.(Descending Sort)
1349 */
1350static inline void btrfs_descending_sort_devices(
1351 struct btrfs_device_info *devices,
1352 size_t nr_devices)
1353{
1354 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1355 btrfs_cmp_device_free_bytes, NULL);
1356}
1357
1358/*
1359 * The helper to calc the free space on the devices that can be used to store
1360 * file data.
1361 */
1362static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1363{
1364 struct btrfs_fs_info *fs_info = root->fs_info;
1365 struct btrfs_device_info *devices_info;
1366 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1367 struct btrfs_device *device;
1368 u64 skip_space;
1369 u64 type;
1370 u64 avail_space;
1371 u64 used_space;
1372 u64 min_stripe_size;
1373 int min_stripes = 1, num_stripes = 1;
1374 int i = 0, nr_devices;
1375 int ret;
1376
1377 nr_devices = fs_info->fs_devices->open_devices;
1378 BUG_ON(!nr_devices);
1379
1380 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1381 GFP_NOFS);
1382 if (!devices_info)
1383 return -ENOMEM;
1384
1385 /* calc min stripe number for data space alloction */
1386 type = btrfs_get_alloc_profile(root, 1);
1387 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1388 min_stripes = 2;
1389 num_stripes = nr_devices;
1390 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1391 min_stripes = 2;
1392 num_stripes = 2;
1393 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1394 min_stripes = 4;
1395 num_stripes = 4;
1396 }
1397
1398 if (type & BTRFS_BLOCK_GROUP_DUP)
1399 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1400 else
1401 min_stripe_size = BTRFS_STRIPE_LEN;
1402
1403 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1404 if (!device->in_fs_metadata || !device->bdev ||
1405 device->is_tgtdev_for_dev_replace)
1406 continue;
1407
1408 avail_space = device->total_bytes - device->bytes_used;
1409
1410 /* align with stripe_len */
1411 do_div(avail_space, BTRFS_STRIPE_LEN);
1412 avail_space *= BTRFS_STRIPE_LEN;
1413
1414 /*
1415 * In order to avoid overwritting the superblock on the drive,
1416 * btrfs starts at an offset of at least 1MB when doing chunk
1417 * allocation.
1418 */
1419 skip_space = 1024 * 1024;
1420
1421 /* user can set the offset in fs_info->alloc_start. */
1422 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1423 device->total_bytes)
1424 skip_space = max(fs_info->alloc_start, skip_space);
1425
1426 /*
1427 * btrfs can not use the free space in [0, skip_space - 1],
1428 * we must subtract it from the total. In order to implement
1429 * it, we account the used space in this range first.
1430 */
1431 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1432 &used_space);
1433 if (ret) {
1434 kfree(devices_info);
1435 return ret;
1436 }
1437
1438 /* calc the free space in [0, skip_space - 1] */
1439 skip_space -= used_space;
1440
1441 /*
1442 * we can use the free space in [0, skip_space - 1], subtract
1443 * it from the total.
1444 */
1445 if (avail_space && avail_space >= skip_space)
1446 avail_space -= skip_space;
1447 else
1448 avail_space = 0;
1449
1450 if (avail_space < min_stripe_size)
1451 continue;
1452
1453 devices_info[i].dev = device;
1454 devices_info[i].max_avail = avail_space;
1455
1456 i++;
1457 }
1458
1459 nr_devices = i;
1460
1461 btrfs_descending_sort_devices(devices_info, nr_devices);
1462
1463 i = nr_devices - 1;
1464 avail_space = 0;
1465 while (nr_devices >= min_stripes) {
1466 if (num_stripes > nr_devices)
1467 num_stripes = nr_devices;
1468
1469 if (devices_info[i].max_avail >= min_stripe_size) {
1470 int j;
1471 u64 alloc_size;
1472
1473 avail_space += devices_info[i].max_avail * num_stripes;
1474 alloc_size = devices_info[i].max_avail;
1475 for (j = i + 1 - num_stripes; j <= i; j++)
1476 devices_info[j].max_avail -= alloc_size;
1477 }
1478 i--;
1479 nr_devices--;
1480 }
1481
1482 kfree(devices_info);
1483 *free_bytes = avail_space;
1484 return 0;
1485}
1486
1487static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1488{
1489 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1490 struct btrfs_super_block *disk_super = fs_info->super_copy;
1491 struct list_head *head = &fs_info->space_info;
1492 struct btrfs_space_info *found;
1493 u64 total_used = 0;
1494 u64 total_free_data = 0;
1495 int bits = dentry->d_sb->s_blocksize_bits;
1496 __be32 *fsid = (__be32 *)fs_info->fsid;
1497 int ret;
1498
1499 /* holding chunk_muext to avoid allocating new chunks */
1500 mutex_lock(&fs_info->chunk_mutex);
1501 rcu_read_lock();
1502 list_for_each_entry_rcu(found, head, list) {
1503 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1504 total_free_data += found->disk_total - found->disk_used;
1505 total_free_data -=
1506 btrfs_account_ro_block_groups_free_space(found);
1507 }
1508
1509 total_used += found->disk_used;
1510 }
1511 rcu_read_unlock();
1512
1513 buf->f_namelen = BTRFS_NAME_LEN;
1514 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1515 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1516 buf->f_bsize = dentry->d_sb->s_blocksize;
1517 buf->f_type = BTRFS_SUPER_MAGIC;
1518 buf->f_bavail = total_free_data;
1519 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1520 if (ret) {
1521 mutex_unlock(&fs_info->chunk_mutex);
1522 return ret;
1523 }
1524 buf->f_bavail += total_free_data;
1525 buf->f_bavail = buf->f_bavail >> bits;
1526 mutex_unlock(&fs_info->chunk_mutex);
1527
1528 /* We treat it as constant endianness (it doesn't matter _which_)
1529 because we want the fsid to come out the same whether mounted
1530 on a big-endian or little-endian host */
1531 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1532 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1533 /* Mask in the root object ID too, to disambiguate subvols */
1534 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1535 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1536
1537 return 0;
1538}
1539
1540static void btrfs_kill_super(struct super_block *sb)
1541{
1542 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1543 kill_anon_super(sb);
1544 free_fs_info(fs_info);
1545}
1546
1547static struct file_system_type btrfs_fs_type = {
1548 .owner = THIS_MODULE,
1549 .name = "btrfs",
1550 .mount = btrfs_mount,
1551 .kill_sb = btrfs_kill_super,
1552 .fs_flags = FS_REQUIRES_DEV,
1553};
1554MODULE_ALIAS_FS("btrfs");
1555
1556/*
1557 * used by btrfsctl to scan devices when no FS is mounted
1558 */
1559static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1560 unsigned long arg)
1561{
1562 struct btrfs_ioctl_vol_args *vol;
1563 struct btrfs_fs_devices *fs_devices;
1564 int ret = -ENOTTY;
1565
1566 if (!capable(CAP_SYS_ADMIN))
1567 return -EPERM;
1568
1569 vol = memdup_user((void __user *)arg, sizeof(*vol));
1570 if (IS_ERR(vol))
1571 return PTR_ERR(vol);
1572
1573 switch (cmd) {
1574 case BTRFS_IOC_SCAN_DEV:
1575 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1576 &btrfs_fs_type, &fs_devices);
1577 break;
1578 case BTRFS_IOC_DEVICES_READY:
1579 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1580 &btrfs_fs_type, &fs_devices);
1581 if (ret)
1582 break;
1583 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1584 break;
1585 }
1586
1587 kfree(vol);
1588 return ret;
1589}
1590
1591static int btrfs_freeze(struct super_block *sb)
1592{
1593 struct btrfs_trans_handle *trans;
1594 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1595
1596 trans = btrfs_attach_transaction_barrier(root);
1597 if (IS_ERR(trans)) {
1598 /* no transaction, don't bother */
1599 if (PTR_ERR(trans) == -ENOENT)
1600 return 0;
1601 return PTR_ERR(trans);
1602 }
1603 return btrfs_commit_transaction(trans, root);
1604}
1605
1606static int btrfs_unfreeze(struct super_block *sb)
1607{
1608 return 0;
1609}
1610
1611static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1612{
1613 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1614 struct btrfs_fs_devices *cur_devices;
1615 struct btrfs_device *dev, *first_dev = NULL;
1616 struct list_head *head;
1617 struct rcu_string *name;
1618
1619 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1620 cur_devices = fs_info->fs_devices;
1621 while (cur_devices) {
1622 head = &cur_devices->devices;
1623 list_for_each_entry(dev, head, dev_list) {
1624 if (dev->missing)
1625 continue;
1626 if (!first_dev || dev->devid < first_dev->devid)
1627 first_dev = dev;
1628 }
1629 cur_devices = cur_devices->seed;
1630 }
1631
1632 if (first_dev) {
1633 rcu_read_lock();
1634 name = rcu_dereference(first_dev->name);
1635 seq_escape(m, name->str, " \t\n\\");
1636 rcu_read_unlock();
1637 } else {
1638 WARN_ON(1);
1639 }
1640 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1641 return 0;
1642}
1643
1644static const struct super_operations btrfs_super_ops = {
1645 .drop_inode = btrfs_drop_inode,
1646 .evict_inode = btrfs_evict_inode,
1647 .put_super = btrfs_put_super,
1648 .sync_fs = btrfs_sync_fs,
1649 .show_options = btrfs_show_options,
1650 .show_devname = btrfs_show_devname,
1651 .write_inode = btrfs_write_inode,
1652 .alloc_inode = btrfs_alloc_inode,
1653 .destroy_inode = btrfs_destroy_inode,
1654 .statfs = btrfs_statfs,
1655 .remount_fs = btrfs_remount,
1656 .freeze_fs = btrfs_freeze,
1657 .unfreeze_fs = btrfs_unfreeze,
1658};
1659
1660static const struct file_operations btrfs_ctl_fops = {
1661 .unlocked_ioctl = btrfs_control_ioctl,
1662 .compat_ioctl = btrfs_control_ioctl,
1663 .owner = THIS_MODULE,
1664 .llseek = noop_llseek,
1665};
1666
1667static struct miscdevice btrfs_misc = {
1668 .minor = BTRFS_MINOR,
1669 .name = "btrfs-control",
1670 .fops = &btrfs_ctl_fops
1671};
1672
1673MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1674MODULE_ALIAS("devname:btrfs-control");
1675
1676static int btrfs_interface_init(void)
1677{
1678 return misc_register(&btrfs_misc);
1679}
1680
1681static void btrfs_interface_exit(void)
1682{
1683 if (misc_deregister(&btrfs_misc) < 0)
1684 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1685}
1686
1687static int __init init_btrfs_fs(void)
1688{
1689 int err;
1690
1691 err = btrfs_init_sysfs();
1692 if (err)
1693 return err;
1694
1695 btrfs_init_compress();
1696
1697 err = btrfs_init_cachep();
1698 if (err)
1699 goto free_compress;
1700
1701 err = extent_io_init();
1702 if (err)
1703 goto free_cachep;
1704
1705 err = extent_map_init();
1706 if (err)
1707 goto free_extent_io;
1708
1709 err = ordered_data_init();
1710 if (err)
1711 goto free_extent_map;
1712
1713 err = btrfs_delayed_inode_init();
1714 if (err)
1715 goto free_ordered_data;
1716
1717 err = btrfs_auto_defrag_init();
1718 if (err)
1719 goto free_delayed_inode;
1720
1721 err = btrfs_delayed_ref_init();
1722 if (err)
1723 goto free_auto_defrag;
1724
1725 err = btrfs_interface_init();
1726 if (err)
1727 goto free_delayed_ref;
1728
1729 err = register_filesystem(&btrfs_fs_type);
1730 if (err)
1731 goto unregister_ioctl;
1732
1733 btrfs_init_lockdep();
1734
1735#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1736 btrfs_test_free_space_cache();
1737#endif
1738
1739 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1740 return 0;
1741
1742unregister_ioctl:
1743 btrfs_interface_exit();
1744free_delayed_ref:
1745 btrfs_delayed_ref_exit();
1746free_auto_defrag:
1747 btrfs_auto_defrag_exit();
1748free_delayed_inode:
1749 btrfs_delayed_inode_exit();
1750free_ordered_data:
1751 ordered_data_exit();
1752free_extent_map:
1753 extent_map_exit();
1754free_extent_io:
1755 extent_io_exit();
1756free_cachep:
1757 btrfs_destroy_cachep();
1758free_compress:
1759 btrfs_exit_compress();
1760 btrfs_exit_sysfs();
1761 return err;
1762}
1763
1764static void __exit exit_btrfs_fs(void)
1765{
1766 btrfs_destroy_cachep();
1767 btrfs_delayed_ref_exit();
1768 btrfs_auto_defrag_exit();
1769 btrfs_delayed_inode_exit();
1770 ordered_data_exit();
1771 extent_map_exit();
1772 extent_io_exit();
1773 btrfs_interface_exit();
1774 unregister_filesystem(&btrfs_fs_type);
1775 btrfs_exit_sysfs();
1776 btrfs_cleanup_fs_uuids();
1777 btrfs_exit_compress();
1778}
1779
1780module_init(init_btrfs_fs)
1781module_exit(exit_btrfs_fs)
1782
1783MODULE_LICENSE("GPL");
This page took 0.030021 seconds and 5 git commands to generate.