Merge remote-tracking branch 'jfs/jfs-next'
[deliverable/linux.git] / fs / f2fs / f2fs.h
... / ...
CommitLineData
1/*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#ifndef _LINUX_F2FS_H
12#define _LINUX_F2FS_H
13
14#include <linux/types.h>
15#include <linux/page-flags.h>
16#include <linux/buffer_head.h>
17#include <linux/slab.h>
18#include <linux/crc32.h>
19#include <linux/magic.h>
20#include <linux/kobject.h>
21#include <linux/sched.h>
22#include <linux/vmalloc.h>
23#include <linux/bio.h>
24#include <linux/blkdev.h>
25#include <linux/fscrypto.h>
26#include <crypto/hash.h>
27
28#ifdef CONFIG_F2FS_CHECK_FS
29#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30#else
31#define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38#endif
39
40#ifdef CONFIG_F2FS_FAULT_INJECTION
41enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_EVICT_INODE,
49 FAULT_MAX,
50};
51
52struct f2fs_fault_info {
53 atomic_t inject_ops;
54 unsigned int inject_rate;
55 unsigned int inject_type;
56};
57
58extern struct f2fs_fault_info f2fs_fault;
59extern char *fault_name[FAULT_MAX];
60#define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
61
62static inline bool time_to_inject(int type)
63{
64 if (!f2fs_fault.inject_rate)
65 return false;
66 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
67 return false;
68 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
69 return false;
70 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
71 return false;
72 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
73 return false;
74 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
75 return false;
76 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
77 return false;
78 else if (type == FAULT_EVICT_INODE && !IS_FAULT_SET(type))
79 return false;
80
81 atomic_inc(&f2fs_fault.inject_ops);
82 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
83 atomic_set(&f2fs_fault.inject_ops, 0);
84 printk("%sF2FS-fs : inject %s in %pF\n",
85 KERN_INFO,
86 fault_name[type],
87 __builtin_return_address(0));
88 return true;
89 }
90 return false;
91}
92#endif
93
94/*
95 * For mount options
96 */
97#define F2FS_MOUNT_BG_GC 0x00000001
98#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
99#define F2FS_MOUNT_DISCARD 0x00000004
100#define F2FS_MOUNT_NOHEAP 0x00000008
101#define F2FS_MOUNT_XATTR_USER 0x00000010
102#define F2FS_MOUNT_POSIX_ACL 0x00000020
103#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
104#define F2FS_MOUNT_INLINE_XATTR 0x00000080
105#define F2FS_MOUNT_INLINE_DATA 0x00000100
106#define F2FS_MOUNT_INLINE_DENTRY 0x00000200
107#define F2FS_MOUNT_FLUSH_MERGE 0x00000400
108#define F2FS_MOUNT_NOBARRIER 0x00000800
109#define F2FS_MOUNT_FASTBOOT 0x00001000
110#define F2FS_MOUNT_EXTENT_CACHE 0x00002000
111#define F2FS_MOUNT_FORCE_FG_GC 0x00004000
112#define F2FS_MOUNT_DATA_FLUSH 0x00008000
113#define F2FS_MOUNT_FAULT_INJECTION 0x00010000
114#define F2FS_MOUNT_ADAPTIVE 0x00020000
115#define F2FS_MOUNT_LFS 0x00040000
116
117#define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
118#define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
119#define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
120
121#define ver_after(a, b) (typecheck(unsigned long long, a) && \
122 typecheck(unsigned long long, b) && \
123 ((long long)((a) - (b)) > 0))
124
125typedef u32 block_t; /*
126 * should not change u32, since it is the on-disk block
127 * address format, __le32.
128 */
129typedef u32 nid_t;
130
131struct f2fs_mount_info {
132 unsigned int opt;
133};
134
135#define F2FS_FEATURE_ENCRYPT 0x0001
136#define F2FS_FEATURE_HMSMR 0x0002
137
138#define F2FS_HAS_FEATURE(sb, mask) \
139 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
140#define F2FS_SET_FEATURE(sb, mask) \
141 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
142#define F2FS_CLEAR_FEATURE(sb, mask) \
143 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
144
145/*
146 * For checkpoint manager
147 */
148enum {
149 NAT_BITMAP,
150 SIT_BITMAP
151};
152
153enum {
154 CP_UMOUNT,
155 CP_FASTBOOT,
156 CP_SYNC,
157 CP_RECOVERY,
158 CP_DISCARD,
159};
160
161#define DEF_BATCHED_TRIM_SECTIONS 2
162#define BATCHED_TRIM_SEGMENTS(sbi) \
163 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
164#define BATCHED_TRIM_BLOCKS(sbi) \
165 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
166#define DEF_CP_INTERVAL 60 /* 60 secs */
167#define DEF_IDLE_INTERVAL 5 /* 5 secs */
168
169struct cp_control {
170 int reason;
171 __u64 trim_start;
172 __u64 trim_end;
173 __u64 trim_minlen;
174 __u64 trimmed;
175};
176
177/*
178 * For CP/NAT/SIT/SSA readahead
179 */
180enum {
181 META_CP,
182 META_NAT,
183 META_SIT,
184 META_SSA,
185 META_POR,
186};
187
188/* for the list of ino */
189enum {
190 ORPHAN_INO, /* for orphan ino list */
191 APPEND_INO, /* for append ino list */
192 UPDATE_INO, /* for update ino list */
193 MAX_INO_ENTRY, /* max. list */
194};
195
196struct ino_entry {
197 struct list_head list; /* list head */
198 nid_t ino; /* inode number */
199};
200
201/* for the list of inodes to be GCed */
202struct inode_entry {
203 struct list_head list; /* list head */
204 struct inode *inode; /* vfs inode pointer */
205};
206
207/* for the list of blockaddresses to be discarded */
208struct discard_entry {
209 struct list_head list; /* list head */
210 block_t blkaddr; /* block address to be discarded */
211 int len; /* # of consecutive blocks of the discard */
212};
213
214struct bio_entry {
215 struct list_head list;
216 struct bio *bio;
217 struct completion event;
218 int error;
219};
220
221/* for the list of fsync inodes, used only during recovery */
222struct fsync_inode_entry {
223 struct list_head list; /* list head */
224 struct inode *inode; /* vfs inode pointer */
225 block_t blkaddr; /* block address locating the last fsync */
226 block_t last_dentry; /* block address locating the last dentry */
227};
228
229#define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
230#define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
231
232#define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
233#define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
234#define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
235#define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
236
237#define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
238#define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
239
240static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
241{
242 int before = nats_in_cursum(journal);
243 journal->n_nats = cpu_to_le16(before + i);
244 return before;
245}
246
247static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
248{
249 int before = sits_in_cursum(journal);
250 journal->n_sits = cpu_to_le16(before + i);
251 return before;
252}
253
254static inline bool __has_cursum_space(struct f2fs_journal *journal,
255 int size, int type)
256{
257 if (type == NAT_JOURNAL)
258 return size <= MAX_NAT_JENTRIES(journal);
259 return size <= MAX_SIT_JENTRIES(journal);
260}
261
262/*
263 * ioctl commands
264 */
265#define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
266#define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
267#define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
268
269#define F2FS_IOCTL_MAGIC 0xf5
270#define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
271#define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
272#define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
273#define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
274#define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
275#define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
276#define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
277#define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
278#define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
279 struct f2fs_move_range)
280
281#define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
282#define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
283#define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
284
285/*
286 * should be same as XFS_IOC_GOINGDOWN.
287 * Flags for going down operation used by FS_IOC_GOINGDOWN
288 */
289#define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
290#define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
291#define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
292#define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
293#define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
294
295#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
296/*
297 * ioctl commands in 32 bit emulation
298 */
299#define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
300#define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
301#define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
302#endif
303
304struct f2fs_defragment {
305 u64 start;
306 u64 len;
307};
308
309struct f2fs_move_range {
310 u32 dst_fd; /* destination fd */
311 u64 pos_in; /* start position in src_fd */
312 u64 pos_out; /* start position in dst_fd */
313 u64 len; /* size to move */
314};
315
316/*
317 * For INODE and NODE manager
318 */
319/* for directory operations */
320struct f2fs_dentry_ptr {
321 struct inode *inode;
322 const void *bitmap;
323 struct f2fs_dir_entry *dentry;
324 __u8 (*filename)[F2FS_SLOT_LEN];
325 int max;
326};
327
328static inline void make_dentry_ptr(struct inode *inode,
329 struct f2fs_dentry_ptr *d, void *src, int type)
330{
331 d->inode = inode;
332
333 if (type == 1) {
334 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
335 d->max = NR_DENTRY_IN_BLOCK;
336 d->bitmap = &t->dentry_bitmap;
337 d->dentry = t->dentry;
338 d->filename = t->filename;
339 } else {
340 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
341 d->max = NR_INLINE_DENTRY;
342 d->bitmap = &t->dentry_bitmap;
343 d->dentry = t->dentry;
344 d->filename = t->filename;
345 }
346}
347
348/*
349 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
350 * as its node offset to distinguish from index node blocks.
351 * But some bits are used to mark the node block.
352 */
353#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
354 >> OFFSET_BIT_SHIFT)
355enum {
356 ALLOC_NODE, /* allocate a new node page if needed */
357 LOOKUP_NODE, /* look up a node without readahead */
358 LOOKUP_NODE_RA, /*
359 * look up a node with readahead called
360 * by get_data_block.
361 */
362};
363
364#define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
365
366#define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
367
368/* vector size for gang look-up from extent cache that consists of radix tree */
369#define EXT_TREE_VEC_SIZE 64
370
371/* for in-memory extent cache entry */
372#define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
373
374/* number of extent info in extent cache we try to shrink */
375#define EXTENT_CACHE_SHRINK_NUMBER 128
376
377struct extent_info {
378 unsigned int fofs; /* start offset in a file */
379 u32 blk; /* start block address of the extent */
380 unsigned int len; /* length of the extent */
381};
382
383struct extent_node {
384 struct rb_node rb_node; /* rb node located in rb-tree */
385 struct list_head list; /* node in global extent list of sbi */
386 struct extent_info ei; /* extent info */
387 struct extent_tree *et; /* extent tree pointer */
388};
389
390struct extent_tree {
391 nid_t ino; /* inode number */
392 struct rb_root root; /* root of extent info rb-tree */
393 struct extent_node *cached_en; /* recently accessed extent node */
394 struct extent_info largest; /* largested extent info */
395 struct list_head list; /* to be used by sbi->zombie_list */
396 rwlock_t lock; /* protect extent info rb-tree */
397 atomic_t node_cnt; /* # of extent node in rb-tree*/
398};
399
400/*
401 * This structure is taken from ext4_map_blocks.
402 *
403 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
404 */
405#define F2FS_MAP_NEW (1 << BH_New)
406#define F2FS_MAP_MAPPED (1 << BH_Mapped)
407#define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
408#define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
409 F2FS_MAP_UNWRITTEN)
410
411struct f2fs_map_blocks {
412 block_t m_pblk;
413 block_t m_lblk;
414 unsigned int m_len;
415 unsigned int m_flags;
416 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
417};
418
419/* for flag in get_data_block */
420#define F2FS_GET_BLOCK_READ 0
421#define F2FS_GET_BLOCK_DIO 1
422#define F2FS_GET_BLOCK_FIEMAP 2
423#define F2FS_GET_BLOCK_BMAP 3
424#define F2FS_GET_BLOCK_PRE_DIO 4
425#define F2FS_GET_BLOCK_PRE_AIO 5
426
427/*
428 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
429 */
430#define FADVISE_COLD_BIT 0x01
431#define FADVISE_LOST_PINO_BIT 0x02
432#define FADVISE_ENCRYPT_BIT 0x04
433#define FADVISE_ENC_NAME_BIT 0x08
434
435#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
436#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
437#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
438#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
439#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
440#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
441#define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
442#define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
443#define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
444#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
445#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
446
447#define DEF_DIR_LEVEL 0
448
449struct f2fs_inode_info {
450 struct inode vfs_inode; /* serve a vfs inode */
451 unsigned long i_flags; /* keep an inode flags for ioctl */
452 unsigned char i_advise; /* use to give file attribute hints */
453 unsigned char i_dir_level; /* use for dentry level for large dir */
454 unsigned int i_current_depth; /* use only in directory structure */
455 unsigned int i_pino; /* parent inode number */
456 umode_t i_acl_mode; /* keep file acl mode temporarily */
457
458 /* Use below internally in f2fs*/
459 unsigned long flags; /* use to pass per-file flags */
460 struct rw_semaphore i_sem; /* protect fi info */
461 struct percpu_counter dirty_pages; /* # of dirty pages */
462 f2fs_hash_t chash; /* hash value of given file name */
463 unsigned int clevel; /* maximum level of given file name */
464 nid_t i_xattr_nid; /* node id that contains xattrs */
465 unsigned long long xattr_ver; /* cp version of xattr modification */
466 loff_t last_disk_size; /* lastly written file size */
467
468 struct list_head dirty_list; /* dirty list for dirs and files */
469 struct list_head gdirty_list; /* linked in global dirty list */
470 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
471 struct mutex inmem_lock; /* lock for inmemory pages */
472 struct extent_tree *extent_tree; /* cached extent_tree entry */
473 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
474};
475
476static inline void get_extent_info(struct extent_info *ext,
477 struct f2fs_extent *i_ext)
478{
479 ext->fofs = le32_to_cpu(i_ext->fofs);
480 ext->blk = le32_to_cpu(i_ext->blk);
481 ext->len = le32_to_cpu(i_ext->len);
482}
483
484static inline void set_raw_extent(struct extent_info *ext,
485 struct f2fs_extent *i_ext)
486{
487 i_ext->fofs = cpu_to_le32(ext->fofs);
488 i_ext->blk = cpu_to_le32(ext->blk);
489 i_ext->len = cpu_to_le32(ext->len);
490}
491
492static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
493 u32 blk, unsigned int len)
494{
495 ei->fofs = fofs;
496 ei->blk = blk;
497 ei->len = len;
498}
499
500static inline bool __is_extent_same(struct extent_info *ei1,
501 struct extent_info *ei2)
502{
503 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
504 ei1->len == ei2->len);
505}
506
507static inline bool __is_extent_mergeable(struct extent_info *back,
508 struct extent_info *front)
509{
510 return (back->fofs + back->len == front->fofs &&
511 back->blk + back->len == front->blk);
512}
513
514static inline bool __is_back_mergeable(struct extent_info *cur,
515 struct extent_info *back)
516{
517 return __is_extent_mergeable(back, cur);
518}
519
520static inline bool __is_front_mergeable(struct extent_info *cur,
521 struct extent_info *front)
522{
523 return __is_extent_mergeable(cur, front);
524}
525
526extern void f2fs_mark_inode_dirty_sync(struct inode *);
527static inline void __try_update_largest_extent(struct inode *inode,
528 struct extent_tree *et, struct extent_node *en)
529{
530 if (en->ei.len > et->largest.len) {
531 et->largest = en->ei;
532 f2fs_mark_inode_dirty_sync(inode);
533 }
534}
535
536struct f2fs_nm_info {
537 block_t nat_blkaddr; /* base disk address of NAT */
538 nid_t max_nid; /* maximum possible node ids */
539 nid_t available_nids; /* maximum available node ids */
540 nid_t next_scan_nid; /* the next nid to be scanned */
541 unsigned int ram_thresh; /* control the memory footprint */
542 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
543 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
544
545 /* NAT cache management */
546 struct radix_tree_root nat_root;/* root of the nat entry cache */
547 struct radix_tree_root nat_set_root;/* root of the nat set cache */
548 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
549 struct list_head nat_entries; /* cached nat entry list (clean) */
550 unsigned int nat_cnt; /* the # of cached nat entries */
551 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
552
553 /* free node ids management */
554 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
555 struct list_head free_nid_list; /* a list for free nids */
556 spinlock_t free_nid_list_lock; /* protect free nid list */
557 unsigned int fcnt; /* the number of free node id */
558 struct mutex build_lock; /* lock for build free nids */
559
560 /* for checkpoint */
561 char *nat_bitmap; /* NAT bitmap pointer */
562 int bitmap_size; /* bitmap size */
563};
564
565/*
566 * this structure is used as one of function parameters.
567 * all the information are dedicated to a given direct node block determined
568 * by the data offset in a file.
569 */
570struct dnode_of_data {
571 struct inode *inode; /* vfs inode pointer */
572 struct page *inode_page; /* its inode page, NULL is possible */
573 struct page *node_page; /* cached direct node page */
574 nid_t nid; /* node id of the direct node block */
575 unsigned int ofs_in_node; /* data offset in the node page */
576 bool inode_page_locked; /* inode page is locked or not */
577 bool node_changed; /* is node block changed */
578 char cur_level; /* level of hole node page */
579 char max_level; /* level of current page located */
580 block_t data_blkaddr; /* block address of the node block */
581};
582
583static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
584 struct page *ipage, struct page *npage, nid_t nid)
585{
586 memset(dn, 0, sizeof(*dn));
587 dn->inode = inode;
588 dn->inode_page = ipage;
589 dn->node_page = npage;
590 dn->nid = nid;
591}
592
593/*
594 * For SIT manager
595 *
596 * By default, there are 6 active log areas across the whole main area.
597 * When considering hot and cold data separation to reduce cleaning overhead,
598 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
599 * respectively.
600 * In the current design, you should not change the numbers intentionally.
601 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
602 * logs individually according to the underlying devices. (default: 6)
603 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
604 * data and 8 for node logs.
605 */
606#define NR_CURSEG_DATA_TYPE (3)
607#define NR_CURSEG_NODE_TYPE (3)
608#define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
609
610enum {
611 CURSEG_HOT_DATA = 0, /* directory entry blocks */
612 CURSEG_WARM_DATA, /* data blocks */
613 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
614 CURSEG_HOT_NODE, /* direct node blocks of directory files */
615 CURSEG_WARM_NODE, /* direct node blocks of normal files */
616 CURSEG_COLD_NODE, /* indirect node blocks */
617 NO_CHECK_TYPE,
618 CURSEG_DIRECT_IO, /* to use for the direct IO path */
619};
620
621struct flush_cmd {
622 struct completion wait;
623 struct llist_node llnode;
624 int ret;
625};
626
627struct flush_cmd_control {
628 struct task_struct *f2fs_issue_flush; /* flush thread */
629 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
630 atomic_t submit_flush; /* # of issued flushes */
631 struct llist_head issue_list; /* list for command issue */
632 struct llist_node *dispatch_list; /* list for command dispatch */
633};
634
635struct f2fs_sm_info {
636 struct sit_info *sit_info; /* whole segment information */
637 struct free_segmap_info *free_info; /* free segment information */
638 struct dirty_seglist_info *dirty_info; /* dirty segment information */
639 struct curseg_info *curseg_array; /* active segment information */
640
641 block_t seg0_blkaddr; /* block address of 0'th segment */
642 block_t main_blkaddr; /* start block address of main area */
643 block_t ssa_blkaddr; /* start block address of SSA area */
644
645 unsigned int segment_count; /* total # of segments */
646 unsigned int main_segments; /* # of segments in main area */
647 unsigned int reserved_segments; /* # of reserved segments */
648 unsigned int ovp_segments; /* # of overprovision segments */
649
650 /* a threshold to reclaim prefree segments */
651 unsigned int rec_prefree_segments;
652
653 /* for small discard management */
654 struct list_head discard_list; /* 4KB discard list */
655 struct list_head wait_list; /* linked with issued discard bio */
656 int nr_discards; /* # of discards in the list */
657 int max_discards; /* max. discards to be issued */
658
659 /* for batched trimming */
660 unsigned int trim_sections; /* # of sections to trim */
661
662 struct list_head sit_entry_set; /* sit entry set list */
663
664 unsigned int ipu_policy; /* in-place-update policy */
665 unsigned int min_ipu_util; /* in-place-update threshold */
666 unsigned int min_fsync_blocks; /* threshold for fsync */
667
668 /* for flush command control */
669 struct flush_cmd_control *cmd_control_info;
670
671};
672
673/*
674 * For superblock
675 */
676/*
677 * COUNT_TYPE for monitoring
678 *
679 * f2fs monitors the number of several block types such as on-writeback,
680 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
681 */
682enum count_type {
683 F2FS_DIRTY_DENTS,
684 F2FS_DIRTY_DATA,
685 F2FS_DIRTY_NODES,
686 F2FS_DIRTY_META,
687 F2FS_INMEM_PAGES,
688 F2FS_DIRTY_IMETA,
689 NR_COUNT_TYPE,
690};
691
692/*
693 * The below are the page types of bios used in submit_bio().
694 * The available types are:
695 * DATA User data pages. It operates as async mode.
696 * NODE Node pages. It operates as async mode.
697 * META FS metadata pages such as SIT, NAT, CP.
698 * NR_PAGE_TYPE The number of page types.
699 * META_FLUSH Make sure the previous pages are written
700 * with waiting the bio's completion
701 * ... Only can be used with META.
702 */
703#define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
704enum page_type {
705 DATA,
706 NODE,
707 META,
708 NR_PAGE_TYPE,
709 META_FLUSH,
710 INMEM, /* the below types are used by tracepoints only. */
711 INMEM_DROP,
712 INMEM_REVOKE,
713 IPU,
714 OPU,
715};
716
717struct f2fs_io_info {
718 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
719 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
720 int op; /* contains REQ_OP_ */
721 int op_flags; /* rq_flag_bits */
722 block_t new_blkaddr; /* new block address to be written */
723 block_t old_blkaddr; /* old block address before Cow */
724 struct page *page; /* page to be written */
725 struct page *encrypted_page; /* encrypted page */
726};
727
728#define is_read_io(rw) (rw == READ)
729struct f2fs_bio_info {
730 struct f2fs_sb_info *sbi; /* f2fs superblock */
731 struct bio *bio; /* bios to merge */
732 sector_t last_block_in_bio; /* last block number */
733 struct f2fs_io_info fio; /* store buffered io info. */
734 struct rw_semaphore io_rwsem; /* blocking op for bio */
735};
736
737enum inode_type {
738 DIR_INODE, /* for dirty dir inode */
739 FILE_INODE, /* for dirty regular/symlink inode */
740 DIRTY_META, /* for all dirtied inode metadata */
741 NR_INODE_TYPE,
742};
743
744/* for inner inode cache management */
745struct inode_management {
746 struct radix_tree_root ino_root; /* ino entry array */
747 spinlock_t ino_lock; /* for ino entry lock */
748 struct list_head ino_list; /* inode list head */
749 unsigned long ino_num; /* number of entries */
750};
751
752/* For s_flag in struct f2fs_sb_info */
753enum {
754 SBI_IS_DIRTY, /* dirty flag for checkpoint */
755 SBI_IS_CLOSE, /* specify unmounting */
756 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
757 SBI_POR_DOING, /* recovery is doing or not */
758 SBI_NEED_SB_WRITE, /* need to recover superblock */
759 SBI_NEED_CP, /* need to checkpoint */
760};
761
762enum {
763 CP_TIME,
764 REQ_TIME,
765 MAX_TIME,
766};
767
768#ifdef CONFIG_F2FS_FS_ENCRYPTION
769#define F2FS_KEY_DESC_PREFIX "f2fs:"
770#define F2FS_KEY_DESC_PREFIX_SIZE 5
771#endif
772struct f2fs_sb_info {
773 struct super_block *sb; /* pointer to VFS super block */
774 struct proc_dir_entry *s_proc; /* proc entry */
775 struct f2fs_super_block *raw_super; /* raw super block pointer */
776 int valid_super_block; /* valid super block no */
777 int s_flag; /* flags for sbi */
778
779#ifdef CONFIG_F2FS_FS_ENCRYPTION
780 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
781 u8 key_prefix_size;
782#endif
783 /* for node-related operations */
784 struct f2fs_nm_info *nm_info; /* node manager */
785 struct inode *node_inode; /* cache node blocks */
786
787 /* for segment-related operations */
788 struct f2fs_sm_info *sm_info; /* segment manager */
789
790 /* for bio operations */
791 struct f2fs_bio_info read_io; /* for read bios */
792 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
793 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
794
795 /* for checkpoint */
796 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
797 struct inode *meta_inode; /* cache meta blocks */
798 struct mutex cp_mutex; /* checkpoint procedure lock */
799 struct rw_semaphore cp_rwsem; /* blocking FS operations */
800 struct rw_semaphore node_write; /* locking node writes */
801 wait_queue_head_t cp_wait;
802 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
803 long interval_time[MAX_TIME]; /* to store thresholds */
804
805 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
806
807 /* for orphan inode, use 0'th array */
808 unsigned int max_orphans; /* max orphan inodes */
809
810 /* for inode management */
811 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
812 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
813
814 /* for extent tree cache */
815 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
816 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
817 struct list_head extent_list; /* lru list for shrinker */
818 spinlock_t extent_lock; /* locking extent lru list */
819 atomic_t total_ext_tree; /* extent tree count */
820 struct list_head zombie_list; /* extent zombie tree list */
821 atomic_t total_zombie_tree; /* extent zombie tree count */
822 atomic_t total_ext_node; /* extent info count */
823
824 /* basic filesystem units */
825 unsigned int log_sectors_per_block; /* log2 sectors per block */
826 unsigned int log_blocksize; /* log2 block size */
827 unsigned int blocksize; /* block size */
828 unsigned int root_ino_num; /* root inode number*/
829 unsigned int node_ino_num; /* node inode number*/
830 unsigned int meta_ino_num; /* meta inode number*/
831 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
832 unsigned int blocks_per_seg; /* blocks per segment */
833 unsigned int segs_per_sec; /* segments per section */
834 unsigned int secs_per_zone; /* sections per zone */
835 unsigned int total_sections; /* total section count */
836 unsigned int total_node_count; /* total node block count */
837 unsigned int total_valid_node_count; /* valid node block count */
838 loff_t max_file_blocks; /* max block index of file */
839 int active_logs; /* # of active logs */
840 int dir_level; /* directory level */
841
842 block_t user_block_count; /* # of user blocks */
843 block_t total_valid_block_count; /* # of valid blocks */
844 block_t discard_blks; /* discard command candidats */
845 block_t last_valid_block_count; /* for recovery */
846 u32 s_next_generation; /* for NFS support */
847 atomic_t nr_wb_bios; /* # of writeback bios */
848
849 /* # of pages, see count_type */
850 struct percpu_counter nr_pages[NR_COUNT_TYPE];
851 /* # of allocated blocks */
852 struct percpu_counter alloc_valid_block_count;
853
854 /* valid inode count */
855 struct percpu_counter total_valid_inode_count;
856
857 struct f2fs_mount_info mount_opt; /* mount options */
858
859 /* for cleaning operations */
860 struct mutex gc_mutex; /* mutex for GC */
861 struct f2fs_gc_kthread *gc_thread; /* GC thread */
862 unsigned int cur_victim_sec; /* current victim section num */
863
864 /* maximum # of trials to find a victim segment for SSR and GC */
865 unsigned int max_victim_search;
866
867 /*
868 * for stat information.
869 * one is for the LFS mode, and the other is for the SSR mode.
870 */
871#ifdef CONFIG_F2FS_STAT_FS
872 struct f2fs_stat_info *stat_info; /* FS status information */
873 unsigned int segment_count[2]; /* # of allocated segments */
874 unsigned int block_count[2]; /* # of allocated blocks */
875 atomic_t inplace_count; /* # of inplace update */
876 atomic64_t total_hit_ext; /* # of lookup extent cache */
877 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
878 atomic64_t read_hit_largest; /* # of hit largest extent node */
879 atomic64_t read_hit_cached; /* # of hit cached extent node */
880 atomic_t inline_xattr; /* # of inline_xattr inodes */
881 atomic_t inline_inode; /* # of inline_data inodes */
882 atomic_t inline_dir; /* # of inline_dentry inodes */
883 int bg_gc; /* background gc calls */
884 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
885#endif
886 unsigned int last_victim[2]; /* last victim segment # */
887 spinlock_t stat_lock; /* lock for stat operations */
888
889 /* For sysfs suppport */
890 struct kobject s_kobj;
891 struct completion s_kobj_unregister;
892
893 /* For shrinker support */
894 struct list_head s_list;
895 struct mutex umount_mutex;
896 unsigned int shrinker_run_no;
897
898 /* For write statistics */
899 u64 sectors_written_start;
900 u64 kbytes_written;
901
902 /* Reference to checksum algorithm driver via cryptoapi */
903 struct crypto_shash *s_chksum_driver;
904};
905
906/* For write statistics. Suppose sector size is 512 bytes,
907 * and the return value is in kbytes. s is of struct f2fs_sb_info.
908 */
909#define BD_PART_WRITTEN(s) \
910(((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
911 s->sectors_written_start) >> 1)
912
913static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
914{
915 sbi->last_time[type] = jiffies;
916}
917
918static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
919{
920 struct timespec ts = {sbi->interval_time[type], 0};
921 unsigned long interval = timespec_to_jiffies(&ts);
922
923 return time_after(jiffies, sbi->last_time[type] + interval);
924}
925
926static inline bool is_idle(struct f2fs_sb_info *sbi)
927{
928 struct block_device *bdev = sbi->sb->s_bdev;
929 struct request_queue *q = bdev_get_queue(bdev);
930 struct request_list *rl = &q->root_rl;
931
932 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
933 return 0;
934
935 return f2fs_time_over(sbi, REQ_TIME);
936}
937
938/*
939 * Inline functions
940 */
941static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
942 unsigned int length)
943{
944 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
945 u32 *ctx = (u32 *)shash_desc_ctx(shash);
946 int err;
947
948 shash->tfm = sbi->s_chksum_driver;
949 shash->flags = 0;
950 *ctx = F2FS_SUPER_MAGIC;
951
952 err = crypto_shash_update(shash, address, length);
953 BUG_ON(err);
954
955 return *ctx;
956}
957
958static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
959 void *buf, size_t buf_size)
960{
961 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
962}
963
964static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
965{
966 return container_of(inode, struct f2fs_inode_info, vfs_inode);
967}
968
969static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
970{
971 return sb->s_fs_info;
972}
973
974static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
975{
976 return F2FS_SB(inode->i_sb);
977}
978
979static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
980{
981 return F2FS_I_SB(mapping->host);
982}
983
984static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
985{
986 return F2FS_M_SB(page->mapping);
987}
988
989static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
990{
991 return (struct f2fs_super_block *)(sbi->raw_super);
992}
993
994static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
995{
996 return (struct f2fs_checkpoint *)(sbi->ckpt);
997}
998
999static inline struct f2fs_node *F2FS_NODE(struct page *page)
1000{
1001 return (struct f2fs_node *)page_address(page);
1002}
1003
1004static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1005{
1006 return &((struct f2fs_node *)page_address(page))->i;
1007}
1008
1009static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1010{
1011 return (struct f2fs_nm_info *)(sbi->nm_info);
1012}
1013
1014static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1015{
1016 return (struct f2fs_sm_info *)(sbi->sm_info);
1017}
1018
1019static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1020{
1021 return (struct sit_info *)(SM_I(sbi)->sit_info);
1022}
1023
1024static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1025{
1026 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1027}
1028
1029static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1030{
1031 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1032}
1033
1034static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1035{
1036 return sbi->meta_inode->i_mapping;
1037}
1038
1039static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1040{
1041 return sbi->node_inode->i_mapping;
1042}
1043
1044static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1045{
1046 return sbi->s_flag & (0x01 << type);
1047}
1048
1049static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1050{
1051 sbi->s_flag |= (0x01 << type);
1052}
1053
1054static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1055{
1056 sbi->s_flag &= ~(0x01 << type);
1057}
1058
1059static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1060{
1061 return le64_to_cpu(cp->checkpoint_ver);
1062}
1063
1064static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1065{
1066 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1067 return ckpt_flags & f;
1068}
1069
1070static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1071{
1072 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1073 ckpt_flags |= f;
1074 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1075}
1076
1077static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1078{
1079 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1080 ckpt_flags &= (~f);
1081 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1082}
1083
1084static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
1085{
1086 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
1087
1088 return blk_queue_discard(q);
1089}
1090
1091static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1092{
1093 down_read(&sbi->cp_rwsem);
1094}
1095
1096static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1097{
1098 up_read(&sbi->cp_rwsem);
1099}
1100
1101static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1102{
1103 down_write(&sbi->cp_rwsem);
1104}
1105
1106static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1107{
1108 up_write(&sbi->cp_rwsem);
1109}
1110
1111static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1112{
1113 int reason = CP_SYNC;
1114
1115 if (test_opt(sbi, FASTBOOT))
1116 reason = CP_FASTBOOT;
1117 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1118 reason = CP_UMOUNT;
1119 return reason;
1120}
1121
1122static inline bool __remain_node_summaries(int reason)
1123{
1124 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1125}
1126
1127static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1128{
1129 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1130 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1131}
1132
1133/*
1134 * Check whether the given nid is within node id range.
1135 */
1136static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1137{
1138 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1139 return -EINVAL;
1140 if (unlikely(nid >= NM_I(sbi)->max_nid))
1141 return -EINVAL;
1142 return 0;
1143}
1144
1145#define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1146
1147/*
1148 * Check whether the inode has blocks or not
1149 */
1150static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1151{
1152 if (F2FS_I(inode)->i_xattr_nid)
1153 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1154 else
1155 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1156}
1157
1158static inline bool f2fs_has_xattr_block(unsigned int ofs)
1159{
1160 return ofs == XATTR_NODE_OFFSET;
1161}
1162
1163static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1164static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1165 struct inode *inode, blkcnt_t *count)
1166{
1167 blkcnt_t diff;
1168
1169#ifdef CONFIG_F2FS_FAULT_INJECTION
1170 if (time_to_inject(FAULT_BLOCK))
1171 return false;
1172#endif
1173 /*
1174 * let's increase this in prior to actual block count change in order
1175 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1176 */
1177 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1178
1179 spin_lock(&sbi->stat_lock);
1180 sbi->total_valid_block_count += (block_t)(*count);
1181 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1182 diff = sbi->total_valid_block_count - sbi->user_block_count;
1183 *count -= diff;
1184 sbi->total_valid_block_count = sbi->user_block_count;
1185 if (!*count) {
1186 spin_unlock(&sbi->stat_lock);
1187 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1188 return false;
1189 }
1190 }
1191 spin_unlock(&sbi->stat_lock);
1192
1193 f2fs_i_blocks_write(inode, *count, true);
1194 return true;
1195}
1196
1197static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1198 struct inode *inode,
1199 blkcnt_t count)
1200{
1201 spin_lock(&sbi->stat_lock);
1202 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1203 f2fs_bug_on(sbi, inode->i_blocks < count);
1204 sbi->total_valid_block_count -= (block_t)count;
1205 spin_unlock(&sbi->stat_lock);
1206 f2fs_i_blocks_write(inode, count, false);
1207}
1208
1209static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1210{
1211 percpu_counter_inc(&sbi->nr_pages[count_type]);
1212
1213 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES)
1214 return;
1215
1216 set_sbi_flag(sbi, SBI_IS_DIRTY);
1217}
1218
1219static inline void inode_inc_dirty_pages(struct inode *inode)
1220{
1221 percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1222 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1223 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1224}
1225
1226static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1227{
1228 percpu_counter_dec(&sbi->nr_pages[count_type]);
1229}
1230
1231static inline void inode_dec_dirty_pages(struct inode *inode)
1232{
1233 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1234 !S_ISLNK(inode->i_mode))
1235 return;
1236
1237 percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1238 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1239 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1240}
1241
1242static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1243{
1244 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1245}
1246
1247static inline s64 get_dirty_pages(struct inode *inode)
1248{
1249 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1250}
1251
1252static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1253{
1254 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1255 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1256 sbi->log_blocks_per_seg;
1257
1258 return segs / sbi->segs_per_sec;
1259}
1260
1261static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1262{
1263 return sbi->total_valid_block_count;
1264}
1265
1266static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1267{
1268 return sbi->discard_blks;
1269}
1270
1271static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1272{
1273 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1274
1275 /* return NAT or SIT bitmap */
1276 if (flag == NAT_BITMAP)
1277 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1278 else if (flag == SIT_BITMAP)
1279 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1280
1281 return 0;
1282}
1283
1284static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1285{
1286 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1287}
1288
1289static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1290{
1291 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1292 int offset;
1293
1294 if (__cp_payload(sbi) > 0) {
1295 if (flag == NAT_BITMAP)
1296 return &ckpt->sit_nat_version_bitmap;
1297 else
1298 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1299 } else {
1300 offset = (flag == NAT_BITMAP) ?
1301 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1302 return &ckpt->sit_nat_version_bitmap + offset;
1303 }
1304}
1305
1306static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1307{
1308 block_t start_addr;
1309 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1310 unsigned long long ckpt_version = cur_cp_version(ckpt);
1311
1312 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1313
1314 /*
1315 * odd numbered checkpoint should at cp segment 0
1316 * and even segment must be at cp segment 1
1317 */
1318 if (!(ckpt_version & 1))
1319 start_addr += sbi->blocks_per_seg;
1320
1321 return start_addr;
1322}
1323
1324static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1325{
1326 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1327}
1328
1329static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1330 struct inode *inode)
1331{
1332 block_t valid_block_count;
1333 unsigned int valid_node_count;
1334
1335 spin_lock(&sbi->stat_lock);
1336
1337 valid_block_count = sbi->total_valid_block_count + 1;
1338 if (unlikely(valid_block_count > sbi->user_block_count)) {
1339 spin_unlock(&sbi->stat_lock);
1340 return false;
1341 }
1342
1343 valid_node_count = sbi->total_valid_node_count + 1;
1344 if (unlikely(valid_node_count > sbi->total_node_count)) {
1345 spin_unlock(&sbi->stat_lock);
1346 return false;
1347 }
1348
1349 if (inode)
1350 f2fs_i_blocks_write(inode, 1, true);
1351
1352 sbi->total_valid_node_count++;
1353 sbi->total_valid_block_count++;
1354 spin_unlock(&sbi->stat_lock);
1355
1356 percpu_counter_inc(&sbi->alloc_valid_block_count);
1357 return true;
1358}
1359
1360static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1361 struct inode *inode)
1362{
1363 spin_lock(&sbi->stat_lock);
1364
1365 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1366 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1367 f2fs_bug_on(sbi, !inode->i_blocks);
1368
1369 f2fs_i_blocks_write(inode, 1, false);
1370 sbi->total_valid_node_count--;
1371 sbi->total_valid_block_count--;
1372
1373 spin_unlock(&sbi->stat_lock);
1374}
1375
1376static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1377{
1378 return sbi->total_valid_node_count;
1379}
1380
1381static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1382{
1383 percpu_counter_inc(&sbi->total_valid_inode_count);
1384}
1385
1386static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1387{
1388 percpu_counter_dec(&sbi->total_valid_inode_count);
1389}
1390
1391static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1392{
1393 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1394}
1395
1396static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1397 pgoff_t index, bool for_write)
1398{
1399#ifdef CONFIG_F2FS_FAULT_INJECTION
1400 struct page *page = find_lock_page(mapping, index);
1401 if (page)
1402 return page;
1403
1404 if (time_to_inject(FAULT_PAGE_ALLOC))
1405 return NULL;
1406#endif
1407 if (!for_write)
1408 return grab_cache_page(mapping, index);
1409 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1410}
1411
1412static inline void f2fs_copy_page(struct page *src, struct page *dst)
1413{
1414 char *src_kaddr = kmap(src);
1415 char *dst_kaddr = kmap(dst);
1416
1417 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1418 kunmap(dst);
1419 kunmap(src);
1420}
1421
1422static inline void f2fs_put_page(struct page *page, int unlock)
1423{
1424 if (!page)
1425 return;
1426
1427 if (unlock) {
1428 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1429 unlock_page(page);
1430 }
1431 put_page(page);
1432}
1433
1434static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1435{
1436 if (dn->node_page)
1437 f2fs_put_page(dn->node_page, 1);
1438 if (dn->inode_page && dn->node_page != dn->inode_page)
1439 f2fs_put_page(dn->inode_page, 0);
1440 dn->node_page = NULL;
1441 dn->inode_page = NULL;
1442}
1443
1444static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1445 size_t size)
1446{
1447 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1448}
1449
1450static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1451 gfp_t flags)
1452{
1453 void *entry;
1454
1455 entry = kmem_cache_alloc(cachep, flags);
1456 if (!entry)
1457 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1458 return entry;
1459}
1460
1461static inline struct bio *f2fs_bio_alloc(int npages)
1462{
1463 struct bio *bio;
1464
1465 /* No failure on bio allocation */
1466 bio = bio_alloc(GFP_NOIO, npages);
1467 if (!bio)
1468 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1469 return bio;
1470}
1471
1472static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1473 unsigned long index, void *item)
1474{
1475 while (radix_tree_insert(root, index, item))
1476 cond_resched();
1477}
1478
1479#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1480
1481static inline bool IS_INODE(struct page *page)
1482{
1483 struct f2fs_node *p = F2FS_NODE(page);
1484 return RAW_IS_INODE(p);
1485}
1486
1487static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1488{
1489 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1490}
1491
1492static inline block_t datablock_addr(struct page *node_page,
1493 unsigned int offset)
1494{
1495 struct f2fs_node *raw_node;
1496 __le32 *addr_array;
1497 raw_node = F2FS_NODE(node_page);
1498 addr_array = blkaddr_in_node(raw_node);
1499 return le32_to_cpu(addr_array[offset]);
1500}
1501
1502static inline int f2fs_test_bit(unsigned int nr, char *addr)
1503{
1504 int mask;
1505
1506 addr += (nr >> 3);
1507 mask = 1 << (7 - (nr & 0x07));
1508 return mask & *addr;
1509}
1510
1511static inline void f2fs_set_bit(unsigned int nr, char *addr)
1512{
1513 int mask;
1514
1515 addr += (nr >> 3);
1516 mask = 1 << (7 - (nr & 0x07));
1517 *addr |= mask;
1518}
1519
1520static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1521{
1522 int mask;
1523
1524 addr += (nr >> 3);
1525 mask = 1 << (7 - (nr & 0x07));
1526 *addr &= ~mask;
1527}
1528
1529static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1530{
1531 int mask;
1532 int ret;
1533
1534 addr += (nr >> 3);
1535 mask = 1 << (7 - (nr & 0x07));
1536 ret = mask & *addr;
1537 *addr |= mask;
1538 return ret;
1539}
1540
1541static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1542{
1543 int mask;
1544 int ret;
1545
1546 addr += (nr >> 3);
1547 mask = 1 << (7 - (nr & 0x07));
1548 ret = mask & *addr;
1549 *addr &= ~mask;
1550 return ret;
1551}
1552
1553static inline void f2fs_change_bit(unsigned int nr, char *addr)
1554{
1555 int mask;
1556
1557 addr += (nr >> 3);
1558 mask = 1 << (7 - (nr & 0x07));
1559 *addr ^= mask;
1560}
1561
1562/* used for f2fs_inode_info->flags */
1563enum {
1564 FI_NEW_INODE, /* indicate newly allocated inode */
1565 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1566 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1567 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1568 FI_INC_LINK, /* need to increment i_nlink */
1569 FI_ACL_MODE, /* indicate acl mode */
1570 FI_NO_ALLOC, /* should not allocate any blocks */
1571 FI_FREE_NID, /* free allocated nide */
1572 FI_NO_EXTENT, /* not to use the extent cache */
1573 FI_INLINE_XATTR, /* used for inline xattr */
1574 FI_INLINE_DATA, /* used for inline data*/
1575 FI_INLINE_DENTRY, /* used for inline dentry */
1576 FI_APPEND_WRITE, /* inode has appended data */
1577 FI_UPDATE_WRITE, /* inode has in-place-update data */
1578 FI_NEED_IPU, /* used for ipu per file */
1579 FI_ATOMIC_FILE, /* indicate atomic file */
1580 FI_VOLATILE_FILE, /* indicate volatile file */
1581 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1582 FI_DROP_CACHE, /* drop dirty page cache */
1583 FI_DATA_EXIST, /* indicate data exists */
1584 FI_INLINE_DOTS, /* indicate inline dot dentries */
1585 FI_DO_DEFRAG, /* indicate defragment is running */
1586 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1587};
1588
1589static inline void __mark_inode_dirty_flag(struct inode *inode,
1590 int flag, bool set)
1591{
1592 switch (flag) {
1593 case FI_INLINE_XATTR:
1594 case FI_INLINE_DATA:
1595 case FI_INLINE_DENTRY:
1596 if (set)
1597 return;
1598 case FI_DATA_EXIST:
1599 case FI_INLINE_DOTS:
1600 f2fs_mark_inode_dirty_sync(inode);
1601 }
1602}
1603
1604static inline void set_inode_flag(struct inode *inode, int flag)
1605{
1606 if (!test_bit(flag, &F2FS_I(inode)->flags))
1607 set_bit(flag, &F2FS_I(inode)->flags);
1608 __mark_inode_dirty_flag(inode, flag, true);
1609}
1610
1611static inline int is_inode_flag_set(struct inode *inode, int flag)
1612{
1613 return test_bit(flag, &F2FS_I(inode)->flags);
1614}
1615
1616static inline void clear_inode_flag(struct inode *inode, int flag)
1617{
1618 if (test_bit(flag, &F2FS_I(inode)->flags))
1619 clear_bit(flag, &F2FS_I(inode)->flags);
1620 __mark_inode_dirty_flag(inode, flag, false);
1621}
1622
1623static inline void set_acl_inode(struct inode *inode, umode_t mode)
1624{
1625 F2FS_I(inode)->i_acl_mode = mode;
1626 set_inode_flag(inode, FI_ACL_MODE);
1627 f2fs_mark_inode_dirty_sync(inode);
1628}
1629
1630static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1631{
1632 if (inc)
1633 inc_nlink(inode);
1634 else
1635 drop_nlink(inode);
1636 f2fs_mark_inode_dirty_sync(inode);
1637}
1638
1639static inline void f2fs_i_blocks_write(struct inode *inode,
1640 blkcnt_t diff, bool add)
1641{
1642 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1643 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1644
1645 inode->i_blocks = add ? inode->i_blocks + diff :
1646 inode->i_blocks - diff;
1647 f2fs_mark_inode_dirty_sync(inode);
1648 if (clean || recover)
1649 set_inode_flag(inode, FI_AUTO_RECOVER);
1650}
1651
1652static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1653{
1654 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1655 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1656
1657 if (i_size_read(inode) == i_size)
1658 return;
1659
1660 i_size_write(inode, i_size);
1661 f2fs_mark_inode_dirty_sync(inode);
1662 if (clean || recover)
1663 set_inode_flag(inode, FI_AUTO_RECOVER);
1664}
1665
1666static inline bool f2fs_skip_inode_update(struct inode *inode)
1667{
1668 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER))
1669 return false;
1670 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1671}
1672
1673static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1674{
1675 F2FS_I(inode)->i_current_depth = depth;
1676 f2fs_mark_inode_dirty_sync(inode);
1677}
1678
1679static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1680{
1681 F2FS_I(inode)->i_xattr_nid = xnid;
1682 f2fs_mark_inode_dirty_sync(inode);
1683}
1684
1685static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1686{
1687 F2FS_I(inode)->i_pino = pino;
1688 f2fs_mark_inode_dirty_sync(inode);
1689}
1690
1691static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1692{
1693 struct f2fs_inode_info *fi = F2FS_I(inode);
1694
1695 if (ri->i_inline & F2FS_INLINE_XATTR)
1696 set_bit(FI_INLINE_XATTR, &fi->flags);
1697 if (ri->i_inline & F2FS_INLINE_DATA)
1698 set_bit(FI_INLINE_DATA, &fi->flags);
1699 if (ri->i_inline & F2FS_INLINE_DENTRY)
1700 set_bit(FI_INLINE_DENTRY, &fi->flags);
1701 if (ri->i_inline & F2FS_DATA_EXIST)
1702 set_bit(FI_DATA_EXIST, &fi->flags);
1703 if (ri->i_inline & F2FS_INLINE_DOTS)
1704 set_bit(FI_INLINE_DOTS, &fi->flags);
1705}
1706
1707static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1708{
1709 ri->i_inline = 0;
1710
1711 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1712 ri->i_inline |= F2FS_INLINE_XATTR;
1713 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1714 ri->i_inline |= F2FS_INLINE_DATA;
1715 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1716 ri->i_inline |= F2FS_INLINE_DENTRY;
1717 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1718 ri->i_inline |= F2FS_DATA_EXIST;
1719 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1720 ri->i_inline |= F2FS_INLINE_DOTS;
1721}
1722
1723static inline int f2fs_has_inline_xattr(struct inode *inode)
1724{
1725 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1726}
1727
1728static inline unsigned int addrs_per_inode(struct inode *inode)
1729{
1730 if (f2fs_has_inline_xattr(inode))
1731 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1732 return DEF_ADDRS_PER_INODE;
1733}
1734
1735static inline void *inline_xattr_addr(struct page *page)
1736{
1737 struct f2fs_inode *ri = F2FS_INODE(page);
1738 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1739 F2FS_INLINE_XATTR_ADDRS]);
1740}
1741
1742static inline int inline_xattr_size(struct inode *inode)
1743{
1744 if (f2fs_has_inline_xattr(inode))
1745 return F2FS_INLINE_XATTR_ADDRS << 2;
1746 else
1747 return 0;
1748}
1749
1750static inline int f2fs_has_inline_data(struct inode *inode)
1751{
1752 return is_inode_flag_set(inode, FI_INLINE_DATA);
1753}
1754
1755static inline void f2fs_clear_inline_inode(struct inode *inode)
1756{
1757 clear_inode_flag(inode, FI_INLINE_DATA);
1758 clear_inode_flag(inode, FI_DATA_EXIST);
1759}
1760
1761static inline int f2fs_exist_data(struct inode *inode)
1762{
1763 return is_inode_flag_set(inode, FI_DATA_EXIST);
1764}
1765
1766static inline int f2fs_has_inline_dots(struct inode *inode)
1767{
1768 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1769}
1770
1771static inline bool f2fs_is_atomic_file(struct inode *inode)
1772{
1773 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1774}
1775
1776static inline bool f2fs_is_volatile_file(struct inode *inode)
1777{
1778 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1779}
1780
1781static inline bool f2fs_is_first_block_written(struct inode *inode)
1782{
1783 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1784}
1785
1786static inline bool f2fs_is_drop_cache(struct inode *inode)
1787{
1788 return is_inode_flag_set(inode, FI_DROP_CACHE);
1789}
1790
1791static inline void *inline_data_addr(struct page *page)
1792{
1793 struct f2fs_inode *ri = F2FS_INODE(page);
1794 return (void *)&(ri->i_addr[1]);
1795}
1796
1797static inline int f2fs_has_inline_dentry(struct inode *inode)
1798{
1799 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1800}
1801
1802static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1803{
1804 if (!f2fs_has_inline_dentry(dir))
1805 kunmap(page);
1806}
1807
1808static inline int is_file(struct inode *inode, int type)
1809{
1810 return F2FS_I(inode)->i_advise & type;
1811}
1812
1813static inline void set_file(struct inode *inode, int type)
1814{
1815 F2FS_I(inode)->i_advise |= type;
1816 f2fs_mark_inode_dirty_sync(inode);
1817}
1818
1819static inline void clear_file(struct inode *inode, int type)
1820{
1821 F2FS_I(inode)->i_advise &= ~type;
1822 f2fs_mark_inode_dirty_sync(inode);
1823}
1824
1825static inline int f2fs_readonly(struct super_block *sb)
1826{
1827 return sb->s_flags & MS_RDONLY;
1828}
1829
1830static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1831{
1832 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1833}
1834
1835static inline bool is_dot_dotdot(const struct qstr *str)
1836{
1837 if (str->len == 1 && str->name[0] == '.')
1838 return true;
1839
1840 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1841 return true;
1842
1843 return false;
1844}
1845
1846static inline bool f2fs_may_extent_tree(struct inode *inode)
1847{
1848 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1849 is_inode_flag_set(inode, FI_NO_EXTENT))
1850 return false;
1851
1852 return S_ISREG(inode->i_mode);
1853}
1854
1855static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1856{
1857#ifdef CONFIG_F2FS_FAULT_INJECTION
1858 if (time_to_inject(FAULT_KMALLOC))
1859 return NULL;
1860#endif
1861 return kmalloc(size, flags);
1862}
1863
1864static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1865{
1866 void *ret;
1867
1868 ret = kmalloc(size, flags | __GFP_NOWARN);
1869 if (!ret)
1870 ret = __vmalloc(size, flags, PAGE_KERNEL);
1871 return ret;
1872}
1873
1874static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1875{
1876 void *ret;
1877
1878 ret = kzalloc(size, flags | __GFP_NOWARN);
1879 if (!ret)
1880 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1881 return ret;
1882}
1883
1884#define get_inode_mode(i) \
1885 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1886 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1887
1888/* get offset of first page in next direct node */
1889#define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1890 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1891 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1892 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1893
1894/*
1895 * file.c
1896 */
1897int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1898void truncate_data_blocks(struct dnode_of_data *);
1899int truncate_blocks(struct inode *, u64, bool);
1900int f2fs_truncate(struct inode *);
1901int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1902int f2fs_setattr(struct dentry *, struct iattr *);
1903int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1904int truncate_data_blocks_range(struct dnode_of_data *, int);
1905long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1906long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1907
1908/*
1909 * inode.c
1910 */
1911void f2fs_set_inode_flags(struct inode *);
1912struct inode *f2fs_iget(struct super_block *, unsigned long);
1913int try_to_free_nats(struct f2fs_sb_info *, int);
1914int update_inode(struct inode *, struct page *);
1915int update_inode_page(struct inode *);
1916int f2fs_write_inode(struct inode *, struct writeback_control *);
1917void f2fs_evict_inode(struct inode *);
1918void handle_failed_inode(struct inode *);
1919
1920/*
1921 * namei.c
1922 */
1923struct dentry *f2fs_get_parent(struct dentry *child);
1924
1925/*
1926 * dir.c
1927 */
1928extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1929void set_de_type(struct f2fs_dir_entry *, umode_t);
1930unsigned char get_de_type(struct f2fs_dir_entry *);
1931struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1932 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1933bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1934 unsigned int, struct fscrypt_str *);
1935void do_make_empty_dir(struct inode *, struct inode *,
1936 struct f2fs_dentry_ptr *);
1937struct page *init_inode_metadata(struct inode *, struct inode *,
1938 const struct qstr *, const struct qstr *, struct page *);
1939void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1940int room_for_filename(const void *, int, int);
1941void f2fs_drop_nlink(struct inode *, struct inode *);
1942struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *,
1943 struct page **);
1944struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
1945 struct page **);
1946struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1947ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
1948void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1949 struct page *, struct inode *);
1950int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1951void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1952 const struct qstr *, f2fs_hash_t , unsigned int);
1953int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1954 const struct qstr *, struct inode *, nid_t, umode_t);
1955int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *,
1956 nid_t, umode_t);
1957int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1958 umode_t);
1959void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1960 struct inode *);
1961int f2fs_do_tmpfile(struct inode *, struct inode *);
1962bool f2fs_empty_dir(struct inode *);
1963
1964static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1965{
1966 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1967 inode, inode->i_ino, inode->i_mode);
1968}
1969
1970/*
1971 * super.c
1972 */
1973int f2fs_inode_dirtied(struct inode *);
1974void f2fs_inode_synced(struct inode *);
1975int f2fs_commit_super(struct f2fs_sb_info *, bool);
1976int f2fs_sync_fs(struct super_block *, int);
1977extern __printf(3, 4)
1978void f2fs_msg(struct super_block *, const char *, const char *, ...);
1979int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1980
1981/*
1982 * hash.c
1983 */
1984f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1985
1986/*
1987 * node.c
1988 */
1989struct dnode_of_data;
1990struct node_info;
1991
1992bool available_free_memory(struct f2fs_sb_info *, int);
1993int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1994bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1995bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1996void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1997pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1998int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1999int truncate_inode_blocks(struct inode *, pgoff_t);
2000int truncate_xattr_node(struct inode *, struct page *);
2001int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
2002int remove_inode_page(struct inode *);
2003struct page *new_inode_page(struct inode *);
2004struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
2005void ra_node_page(struct f2fs_sb_info *, nid_t);
2006struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
2007struct page *get_node_page_ra(struct page *, int);
2008void move_node_page(struct page *, int);
2009int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
2010 struct writeback_control *, bool);
2011int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
2012void build_free_nids(struct f2fs_sb_info *);
2013bool alloc_nid(struct f2fs_sb_info *, nid_t *);
2014void alloc_nid_done(struct f2fs_sb_info *, nid_t);
2015void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
2016int try_to_free_nids(struct f2fs_sb_info *, int);
2017void recover_inline_xattr(struct inode *, struct page *);
2018void recover_xattr_data(struct inode *, struct page *, block_t);
2019int recover_inode_page(struct f2fs_sb_info *, struct page *);
2020int restore_node_summary(struct f2fs_sb_info *, unsigned int,
2021 struct f2fs_summary_block *);
2022void flush_nat_entries(struct f2fs_sb_info *);
2023int build_node_manager(struct f2fs_sb_info *);
2024void destroy_node_manager(struct f2fs_sb_info *);
2025int __init create_node_manager_caches(void);
2026void destroy_node_manager_caches(void);
2027
2028/*
2029 * segment.c
2030 */
2031void register_inmem_page(struct inode *, struct page *);
2032void drop_inmem_pages(struct inode *);
2033int commit_inmem_pages(struct inode *);
2034void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2035void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2036int f2fs_issue_flush(struct f2fs_sb_info *);
2037int create_flush_cmd_control(struct f2fs_sb_info *);
2038void destroy_flush_cmd_control(struct f2fs_sb_info *);
2039void invalidate_blocks(struct f2fs_sb_info *, block_t);
2040bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2041void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2042void f2fs_wait_all_discard_bio(struct f2fs_sb_info *);
2043void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2044void release_discard_addrs(struct f2fs_sb_info *);
2045bool discard_next_dnode(struct f2fs_sb_info *, block_t);
2046int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2047void allocate_new_segments(struct f2fs_sb_info *);
2048int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2049struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2050void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2051void write_meta_page(struct f2fs_sb_info *, struct page *);
2052void write_node_page(unsigned int, struct f2fs_io_info *);
2053void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2054void rewrite_data_page(struct f2fs_io_info *);
2055void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2056 block_t, block_t, bool, bool);
2057void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2058 block_t, block_t, unsigned char, bool, bool);
2059void allocate_data_block(struct f2fs_sb_info *, struct page *,
2060 block_t, block_t *, struct f2fs_summary *, int);
2061void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2062void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2063void write_data_summaries(struct f2fs_sb_info *, block_t);
2064void write_node_summaries(struct f2fs_sb_info *, block_t);
2065int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2066void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2067int build_segment_manager(struct f2fs_sb_info *);
2068void destroy_segment_manager(struct f2fs_sb_info *);
2069int __init create_segment_manager_caches(void);
2070void destroy_segment_manager_caches(void);
2071
2072/*
2073 * checkpoint.c
2074 */
2075void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2076struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2077struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2078struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2079bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2080int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2081void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2082long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2083void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2084void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2085void release_ino_entry(struct f2fs_sb_info *, bool);
2086bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2087int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2088int acquire_orphan_inode(struct f2fs_sb_info *);
2089void release_orphan_inode(struct f2fs_sb_info *);
2090void add_orphan_inode(struct inode *);
2091void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2092int recover_orphan_inodes(struct f2fs_sb_info *);
2093int get_valid_checkpoint(struct f2fs_sb_info *);
2094void update_dirty_page(struct inode *, struct page *);
2095void remove_dirty_inode(struct inode *);
2096int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2097int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2098void init_ino_entry_info(struct f2fs_sb_info *);
2099int __init create_checkpoint_caches(void);
2100void destroy_checkpoint_caches(void);
2101
2102/*
2103 * data.c
2104 */
2105void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2106void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2107 struct page *, nid_t, enum page_type, int);
2108void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2109int f2fs_submit_page_bio(struct f2fs_io_info *);
2110void f2fs_submit_page_mbio(struct f2fs_io_info *);
2111void set_data_blkaddr(struct dnode_of_data *);
2112void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2113int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2114int reserve_new_block(struct dnode_of_data *);
2115int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2116ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2117int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2118struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2119struct page *find_data_page(struct inode *, pgoff_t);
2120struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2121struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2122int do_write_data_page(struct f2fs_io_info *);
2123int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2124int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2125void f2fs_set_page_dirty_nobuffers(struct page *);
2126void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2127int f2fs_release_page(struct page *, gfp_t);
2128
2129/*
2130 * gc.c
2131 */
2132int start_gc_thread(struct f2fs_sb_info *);
2133void stop_gc_thread(struct f2fs_sb_info *);
2134block_t start_bidx_of_node(unsigned int, struct inode *);
2135int f2fs_gc(struct f2fs_sb_info *, bool);
2136void build_gc_manager(struct f2fs_sb_info *);
2137
2138/*
2139 * recovery.c
2140 */
2141int recover_fsync_data(struct f2fs_sb_info *, bool);
2142bool space_for_roll_forward(struct f2fs_sb_info *);
2143
2144/*
2145 * debug.c
2146 */
2147#ifdef CONFIG_F2FS_STAT_FS
2148struct f2fs_stat_info {
2149 struct list_head stat_list;
2150 struct f2fs_sb_info *sbi;
2151 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2152 int main_area_segs, main_area_sections, main_area_zones;
2153 unsigned long long hit_largest, hit_cached, hit_rbtree;
2154 unsigned long long hit_total, total_ext;
2155 int ext_tree, zombie_tree, ext_node;
2156 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2157 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2158 int nats, dirty_nats, sits, dirty_sits, fnids;
2159 int total_count, utilization;
2160 int bg_gc, wb_bios;
2161 int inline_xattr, inline_inode, inline_dir, orphans;
2162 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2163 unsigned int bimodal, avg_vblocks;
2164 int util_free, util_valid, util_invalid;
2165 int rsvd_segs, overp_segs;
2166 int dirty_count, node_pages, meta_pages;
2167 int prefree_count, call_count, cp_count, bg_cp_count;
2168 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2169 int bg_node_segs, bg_data_segs;
2170 int tot_blks, data_blks, node_blks;
2171 int bg_data_blks, bg_node_blks;
2172 int curseg[NR_CURSEG_TYPE];
2173 int cursec[NR_CURSEG_TYPE];
2174 int curzone[NR_CURSEG_TYPE];
2175
2176 unsigned int segment_count[2];
2177 unsigned int block_count[2];
2178 unsigned int inplace_count;
2179 unsigned long long base_mem, cache_mem, page_mem;
2180};
2181
2182static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2183{
2184 return (struct f2fs_stat_info *)sbi->stat_info;
2185}
2186
2187#define stat_inc_cp_count(si) ((si)->cp_count++)
2188#define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2189#define stat_inc_call_count(si) ((si)->call_count++)
2190#define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2191#define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2192#define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2193#define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2194#define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2195#define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2196#define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2197#define stat_inc_inline_xattr(inode) \
2198 do { \
2199 if (f2fs_has_inline_xattr(inode)) \
2200 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2201 } while (0)
2202#define stat_dec_inline_xattr(inode) \
2203 do { \
2204 if (f2fs_has_inline_xattr(inode)) \
2205 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2206 } while (0)
2207#define stat_inc_inline_inode(inode) \
2208 do { \
2209 if (f2fs_has_inline_data(inode)) \
2210 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2211 } while (0)
2212#define stat_dec_inline_inode(inode) \
2213 do { \
2214 if (f2fs_has_inline_data(inode)) \
2215 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2216 } while (0)
2217#define stat_inc_inline_dir(inode) \
2218 do { \
2219 if (f2fs_has_inline_dentry(inode)) \
2220 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2221 } while (0)
2222#define stat_dec_inline_dir(inode) \
2223 do { \
2224 if (f2fs_has_inline_dentry(inode)) \
2225 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2226 } while (0)
2227#define stat_inc_seg_type(sbi, curseg) \
2228 ((sbi)->segment_count[(curseg)->alloc_type]++)
2229#define stat_inc_block_count(sbi, curseg) \
2230 ((sbi)->block_count[(curseg)->alloc_type]++)
2231#define stat_inc_inplace_blocks(sbi) \
2232 (atomic_inc(&(sbi)->inplace_count))
2233#define stat_inc_seg_count(sbi, type, gc_type) \
2234 do { \
2235 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2236 (si)->tot_segs++; \
2237 if (type == SUM_TYPE_DATA) { \
2238 si->data_segs++; \
2239 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2240 } else { \
2241 si->node_segs++; \
2242 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2243 } \
2244 } while (0)
2245
2246#define stat_inc_tot_blk_count(si, blks) \
2247 (si->tot_blks += (blks))
2248
2249#define stat_inc_data_blk_count(sbi, blks, gc_type) \
2250 do { \
2251 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2252 stat_inc_tot_blk_count(si, blks); \
2253 si->data_blks += (blks); \
2254 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2255 } while (0)
2256
2257#define stat_inc_node_blk_count(sbi, blks, gc_type) \
2258 do { \
2259 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2260 stat_inc_tot_blk_count(si, blks); \
2261 si->node_blks += (blks); \
2262 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2263 } while (0)
2264
2265int f2fs_build_stats(struct f2fs_sb_info *);
2266void f2fs_destroy_stats(struct f2fs_sb_info *);
2267int __init f2fs_create_root_stats(void);
2268void f2fs_destroy_root_stats(void);
2269#else
2270#define stat_inc_cp_count(si)
2271#define stat_inc_bg_cp_count(si)
2272#define stat_inc_call_count(si)
2273#define stat_inc_bggc_count(si)
2274#define stat_inc_dirty_inode(sbi, type)
2275#define stat_dec_dirty_inode(sbi, type)
2276#define stat_inc_total_hit(sb)
2277#define stat_inc_rbtree_node_hit(sb)
2278#define stat_inc_largest_node_hit(sbi)
2279#define stat_inc_cached_node_hit(sbi)
2280#define stat_inc_inline_xattr(inode)
2281#define stat_dec_inline_xattr(inode)
2282#define stat_inc_inline_inode(inode)
2283#define stat_dec_inline_inode(inode)
2284#define stat_inc_inline_dir(inode)
2285#define stat_dec_inline_dir(inode)
2286#define stat_inc_seg_type(sbi, curseg)
2287#define stat_inc_block_count(sbi, curseg)
2288#define stat_inc_inplace_blocks(sbi)
2289#define stat_inc_seg_count(sbi, type, gc_type)
2290#define stat_inc_tot_blk_count(si, blks)
2291#define stat_inc_data_blk_count(sbi, blks, gc_type)
2292#define stat_inc_node_blk_count(sbi, blks, gc_type)
2293
2294static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2295static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2296static inline int __init f2fs_create_root_stats(void) { return 0; }
2297static inline void f2fs_destroy_root_stats(void) { }
2298#endif
2299
2300extern const struct file_operations f2fs_dir_operations;
2301extern const struct file_operations f2fs_file_operations;
2302extern const struct inode_operations f2fs_file_inode_operations;
2303extern const struct address_space_operations f2fs_dblock_aops;
2304extern const struct address_space_operations f2fs_node_aops;
2305extern const struct address_space_operations f2fs_meta_aops;
2306extern const struct inode_operations f2fs_dir_inode_operations;
2307extern const struct inode_operations f2fs_symlink_inode_operations;
2308extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2309extern const struct inode_operations f2fs_special_inode_operations;
2310extern struct kmem_cache *inode_entry_slab;
2311
2312/*
2313 * inline.c
2314 */
2315bool f2fs_may_inline_data(struct inode *);
2316bool f2fs_may_inline_dentry(struct inode *);
2317void read_inline_data(struct page *, struct page *);
2318bool truncate_inline_inode(struct page *, u64);
2319int f2fs_read_inline_data(struct inode *, struct page *);
2320int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2321int f2fs_convert_inline_inode(struct inode *);
2322int f2fs_write_inline_data(struct inode *, struct page *);
2323bool recover_inline_data(struct inode *, struct page *);
2324struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2325 struct fscrypt_name *, struct page **);
2326int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2327int f2fs_add_inline_entry(struct inode *, const struct qstr *,
2328 const struct qstr *, struct inode *, nid_t, umode_t);
2329void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2330 struct inode *, struct inode *);
2331bool f2fs_empty_inline_dir(struct inode *);
2332int f2fs_read_inline_dir(struct file *, struct dir_context *,
2333 struct fscrypt_str *);
2334int f2fs_inline_data_fiemap(struct inode *,
2335 struct fiemap_extent_info *, __u64, __u64);
2336
2337/*
2338 * shrinker.c
2339 */
2340unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2341unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2342void f2fs_join_shrinker(struct f2fs_sb_info *);
2343void f2fs_leave_shrinker(struct f2fs_sb_info *);
2344
2345/*
2346 * extent_cache.c
2347 */
2348unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2349bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2350void f2fs_drop_extent_tree(struct inode *);
2351unsigned int f2fs_destroy_extent_node(struct inode *);
2352void f2fs_destroy_extent_tree(struct inode *);
2353bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2354void f2fs_update_extent_cache(struct dnode_of_data *);
2355void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2356 pgoff_t, block_t, unsigned int);
2357void init_extent_cache_info(struct f2fs_sb_info *);
2358int __init create_extent_cache(void);
2359void destroy_extent_cache(void);
2360
2361/*
2362 * crypto support
2363 */
2364static inline bool f2fs_encrypted_inode(struct inode *inode)
2365{
2366 return file_is_encrypt(inode);
2367}
2368
2369static inline void f2fs_set_encrypted_inode(struct inode *inode)
2370{
2371#ifdef CONFIG_F2FS_FS_ENCRYPTION
2372 file_set_encrypt(inode);
2373#endif
2374}
2375
2376static inline bool f2fs_bio_encrypted(struct bio *bio)
2377{
2378 return bio->bi_private != NULL;
2379}
2380
2381static inline int f2fs_sb_has_crypto(struct super_block *sb)
2382{
2383 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2384}
2385
2386static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb)
2387{
2388 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR);
2389}
2390
2391static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2392{
2393 clear_opt(sbi, ADAPTIVE);
2394 clear_opt(sbi, LFS);
2395
2396 switch (mt) {
2397 case F2FS_MOUNT_ADAPTIVE:
2398 set_opt(sbi, ADAPTIVE);
2399 break;
2400 case F2FS_MOUNT_LFS:
2401 set_opt(sbi, LFS);
2402 break;
2403 }
2404}
2405
2406static inline bool f2fs_may_encrypt(struct inode *inode)
2407{
2408#ifdef CONFIG_F2FS_FS_ENCRYPTION
2409 umode_t mode = inode->i_mode;
2410
2411 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2412#else
2413 return 0;
2414#endif
2415}
2416
2417#ifndef CONFIG_F2FS_FS_ENCRYPTION
2418#define fscrypt_set_d_op(i)
2419#define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2420#define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2421#define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2422#define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2423#define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2424#define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2425#define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2426#define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2427#define fscrypt_process_policy fscrypt_notsupp_process_policy
2428#define fscrypt_get_policy fscrypt_notsupp_get_policy
2429#define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2430#define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2431#define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2432#define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2433#define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2434#define fscrypt_free_filename fscrypt_notsupp_free_filename
2435#define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2436#define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2437#define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2438#define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2439#define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2440#endif
2441#endif
This page took 0.036564 seconds and 5 git commands to generate.