f2fs: do not use discard_map for hard disks
[deliverable/linux.git] / fs / f2fs / f2fs.h
... / ...
CommitLineData
1/*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#ifndef _LINUX_F2FS_H
12#define _LINUX_F2FS_H
13
14#include <linux/types.h>
15#include <linux/page-flags.h>
16#include <linux/buffer_head.h>
17#include <linux/slab.h>
18#include <linux/crc32.h>
19#include <linux/magic.h>
20#include <linux/kobject.h>
21#include <linux/sched.h>
22#include <linux/vmalloc.h>
23#include <linux/bio.h>
24#include <linux/blkdev.h>
25#include <linux/fscrypto.h>
26#include <crypto/hash.h>
27
28#ifdef CONFIG_F2FS_CHECK_FS
29#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30#else
31#define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38#endif
39
40#ifdef CONFIG_F2FS_FAULT_INJECTION
41enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_EVICT_INODE,
49 FAULT_MAX,
50};
51
52struct f2fs_fault_info {
53 atomic_t inject_ops;
54 unsigned int inject_rate;
55 unsigned int inject_type;
56};
57
58extern struct f2fs_fault_info f2fs_fault;
59extern char *fault_name[FAULT_MAX];
60#define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
61
62static inline bool time_to_inject(int type)
63{
64 if (!f2fs_fault.inject_rate)
65 return false;
66 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
67 return false;
68 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
69 return false;
70 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
71 return false;
72 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
73 return false;
74 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
75 return false;
76 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
77 return false;
78 else if (type == FAULT_EVICT_INODE && !IS_FAULT_SET(type))
79 return false;
80
81 atomic_inc(&f2fs_fault.inject_ops);
82 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
83 atomic_set(&f2fs_fault.inject_ops, 0);
84 printk("%sF2FS-fs : inject %s in %pF\n",
85 KERN_INFO,
86 fault_name[type],
87 __builtin_return_address(0));
88 return true;
89 }
90 return false;
91}
92#endif
93
94/*
95 * For mount options
96 */
97#define F2FS_MOUNT_BG_GC 0x00000001
98#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
99#define F2FS_MOUNT_DISCARD 0x00000004
100#define F2FS_MOUNT_NOHEAP 0x00000008
101#define F2FS_MOUNT_XATTR_USER 0x00000010
102#define F2FS_MOUNT_POSIX_ACL 0x00000020
103#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
104#define F2FS_MOUNT_INLINE_XATTR 0x00000080
105#define F2FS_MOUNT_INLINE_DATA 0x00000100
106#define F2FS_MOUNT_INLINE_DENTRY 0x00000200
107#define F2FS_MOUNT_FLUSH_MERGE 0x00000400
108#define F2FS_MOUNT_NOBARRIER 0x00000800
109#define F2FS_MOUNT_FASTBOOT 0x00001000
110#define F2FS_MOUNT_EXTENT_CACHE 0x00002000
111#define F2FS_MOUNT_FORCE_FG_GC 0x00004000
112#define F2FS_MOUNT_DATA_FLUSH 0x00008000
113#define F2FS_MOUNT_FAULT_INJECTION 0x00010000
114#define F2FS_MOUNT_ADAPTIVE 0x00020000
115#define F2FS_MOUNT_LFS 0x00040000
116
117#define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
118#define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
119#define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
120
121#define ver_after(a, b) (typecheck(unsigned long long, a) && \
122 typecheck(unsigned long long, b) && \
123 ((long long)((a) - (b)) > 0))
124
125typedef u32 block_t; /*
126 * should not change u32, since it is the on-disk block
127 * address format, __le32.
128 */
129typedef u32 nid_t;
130
131struct f2fs_mount_info {
132 unsigned int opt;
133};
134
135#define F2FS_FEATURE_ENCRYPT 0x0001
136#define F2FS_FEATURE_HMSMR 0x0002
137
138#define F2FS_HAS_FEATURE(sb, mask) \
139 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
140#define F2FS_SET_FEATURE(sb, mask) \
141 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
142#define F2FS_CLEAR_FEATURE(sb, mask) \
143 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
144
145/*
146 * For checkpoint manager
147 */
148enum {
149 NAT_BITMAP,
150 SIT_BITMAP
151};
152
153enum {
154 CP_UMOUNT,
155 CP_FASTBOOT,
156 CP_SYNC,
157 CP_RECOVERY,
158 CP_DISCARD,
159};
160
161#define DEF_BATCHED_TRIM_SECTIONS 32
162#define BATCHED_TRIM_SEGMENTS(sbi) \
163 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
164#define BATCHED_TRIM_BLOCKS(sbi) \
165 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
166#define DEF_CP_INTERVAL 60 /* 60 secs */
167#define DEF_IDLE_INTERVAL 5 /* 5 secs */
168
169struct cp_control {
170 int reason;
171 __u64 trim_start;
172 __u64 trim_end;
173 __u64 trim_minlen;
174 __u64 trimmed;
175};
176
177/*
178 * For CP/NAT/SIT/SSA readahead
179 */
180enum {
181 META_CP,
182 META_NAT,
183 META_SIT,
184 META_SSA,
185 META_POR,
186};
187
188/* for the list of ino */
189enum {
190 ORPHAN_INO, /* for orphan ino list */
191 APPEND_INO, /* for append ino list */
192 UPDATE_INO, /* for update ino list */
193 MAX_INO_ENTRY, /* max. list */
194};
195
196struct ino_entry {
197 struct list_head list; /* list head */
198 nid_t ino; /* inode number */
199};
200
201/* for the list of inodes to be GCed */
202struct inode_entry {
203 struct list_head list; /* list head */
204 struct inode *inode; /* vfs inode pointer */
205};
206
207/* for the list of blockaddresses to be discarded */
208struct discard_entry {
209 struct list_head list; /* list head */
210 block_t blkaddr; /* block address to be discarded */
211 int len; /* # of consecutive blocks of the discard */
212};
213
214/* for the list of fsync inodes, used only during recovery */
215struct fsync_inode_entry {
216 struct list_head list; /* list head */
217 struct inode *inode; /* vfs inode pointer */
218 block_t blkaddr; /* block address locating the last fsync */
219 block_t last_dentry; /* block address locating the last dentry */
220};
221
222#define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
223#define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
224
225#define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
226#define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
227#define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
228#define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
229
230#define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
231#define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
232
233static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
234{
235 int before = nats_in_cursum(journal);
236 journal->n_nats = cpu_to_le16(before + i);
237 return before;
238}
239
240static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
241{
242 int before = sits_in_cursum(journal);
243 journal->n_sits = cpu_to_le16(before + i);
244 return before;
245}
246
247static inline bool __has_cursum_space(struct f2fs_journal *journal,
248 int size, int type)
249{
250 if (type == NAT_JOURNAL)
251 return size <= MAX_NAT_JENTRIES(journal);
252 return size <= MAX_SIT_JENTRIES(journal);
253}
254
255/*
256 * ioctl commands
257 */
258#define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
259#define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
260#define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
261
262#define F2FS_IOCTL_MAGIC 0xf5
263#define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
264#define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
265#define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
266#define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
267#define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
268#define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
269#define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
270#define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
271#define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
272 struct f2fs_move_range)
273
274#define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
275#define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
276#define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
277
278/*
279 * should be same as XFS_IOC_GOINGDOWN.
280 * Flags for going down operation used by FS_IOC_GOINGDOWN
281 */
282#define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
283#define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
284#define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
285#define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
286#define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
287
288#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
289/*
290 * ioctl commands in 32 bit emulation
291 */
292#define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
293#define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
294#define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
295#endif
296
297struct f2fs_defragment {
298 u64 start;
299 u64 len;
300};
301
302struct f2fs_move_range {
303 u32 dst_fd; /* destination fd */
304 u64 pos_in; /* start position in src_fd */
305 u64 pos_out; /* start position in dst_fd */
306 u64 len; /* size to move */
307};
308
309/*
310 * For INODE and NODE manager
311 */
312/* for directory operations */
313struct f2fs_dentry_ptr {
314 struct inode *inode;
315 const void *bitmap;
316 struct f2fs_dir_entry *dentry;
317 __u8 (*filename)[F2FS_SLOT_LEN];
318 int max;
319};
320
321static inline void make_dentry_ptr(struct inode *inode,
322 struct f2fs_dentry_ptr *d, void *src, int type)
323{
324 d->inode = inode;
325
326 if (type == 1) {
327 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
328 d->max = NR_DENTRY_IN_BLOCK;
329 d->bitmap = &t->dentry_bitmap;
330 d->dentry = t->dentry;
331 d->filename = t->filename;
332 } else {
333 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
334 d->max = NR_INLINE_DENTRY;
335 d->bitmap = &t->dentry_bitmap;
336 d->dentry = t->dentry;
337 d->filename = t->filename;
338 }
339}
340
341/*
342 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
343 * as its node offset to distinguish from index node blocks.
344 * But some bits are used to mark the node block.
345 */
346#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
347 >> OFFSET_BIT_SHIFT)
348enum {
349 ALLOC_NODE, /* allocate a new node page if needed */
350 LOOKUP_NODE, /* look up a node without readahead */
351 LOOKUP_NODE_RA, /*
352 * look up a node with readahead called
353 * by get_data_block.
354 */
355};
356
357#define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
358
359#define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
360
361/* vector size for gang look-up from extent cache that consists of radix tree */
362#define EXT_TREE_VEC_SIZE 64
363
364/* for in-memory extent cache entry */
365#define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
366
367/* number of extent info in extent cache we try to shrink */
368#define EXTENT_CACHE_SHRINK_NUMBER 128
369
370struct extent_info {
371 unsigned int fofs; /* start offset in a file */
372 u32 blk; /* start block address of the extent */
373 unsigned int len; /* length of the extent */
374};
375
376struct extent_node {
377 struct rb_node rb_node; /* rb node located in rb-tree */
378 struct list_head list; /* node in global extent list of sbi */
379 struct extent_info ei; /* extent info */
380 struct extent_tree *et; /* extent tree pointer */
381};
382
383struct extent_tree {
384 nid_t ino; /* inode number */
385 struct rb_root root; /* root of extent info rb-tree */
386 struct extent_node *cached_en; /* recently accessed extent node */
387 struct extent_info largest; /* largested extent info */
388 struct list_head list; /* to be used by sbi->zombie_list */
389 rwlock_t lock; /* protect extent info rb-tree */
390 atomic_t node_cnt; /* # of extent node in rb-tree*/
391};
392
393/*
394 * This structure is taken from ext4_map_blocks.
395 *
396 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
397 */
398#define F2FS_MAP_NEW (1 << BH_New)
399#define F2FS_MAP_MAPPED (1 << BH_Mapped)
400#define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
401#define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
402 F2FS_MAP_UNWRITTEN)
403
404struct f2fs_map_blocks {
405 block_t m_pblk;
406 block_t m_lblk;
407 unsigned int m_len;
408 unsigned int m_flags;
409 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
410};
411
412/* for flag in get_data_block */
413#define F2FS_GET_BLOCK_READ 0
414#define F2FS_GET_BLOCK_DIO 1
415#define F2FS_GET_BLOCK_FIEMAP 2
416#define F2FS_GET_BLOCK_BMAP 3
417#define F2FS_GET_BLOCK_PRE_DIO 4
418#define F2FS_GET_BLOCK_PRE_AIO 5
419
420/*
421 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
422 */
423#define FADVISE_COLD_BIT 0x01
424#define FADVISE_LOST_PINO_BIT 0x02
425#define FADVISE_ENCRYPT_BIT 0x04
426#define FADVISE_ENC_NAME_BIT 0x08
427
428#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
429#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
430#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
431#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
432#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
433#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
434#define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
435#define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
436#define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
437#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
438#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
439
440#define DEF_DIR_LEVEL 0
441
442struct f2fs_inode_info {
443 struct inode vfs_inode; /* serve a vfs inode */
444 unsigned long i_flags; /* keep an inode flags for ioctl */
445 unsigned char i_advise; /* use to give file attribute hints */
446 unsigned char i_dir_level; /* use for dentry level for large dir */
447 unsigned int i_current_depth; /* use only in directory structure */
448 unsigned int i_pino; /* parent inode number */
449 umode_t i_acl_mode; /* keep file acl mode temporarily */
450
451 /* Use below internally in f2fs*/
452 unsigned long flags; /* use to pass per-file flags */
453 struct rw_semaphore i_sem; /* protect fi info */
454 struct percpu_counter dirty_pages; /* # of dirty pages */
455 f2fs_hash_t chash; /* hash value of given file name */
456 unsigned int clevel; /* maximum level of given file name */
457 nid_t i_xattr_nid; /* node id that contains xattrs */
458 unsigned long long xattr_ver; /* cp version of xattr modification */
459 loff_t last_disk_size; /* lastly written file size */
460
461 struct list_head dirty_list; /* dirty list for dirs and files */
462 struct list_head gdirty_list; /* linked in global dirty list */
463 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
464 struct mutex inmem_lock; /* lock for inmemory pages */
465 struct extent_tree *extent_tree; /* cached extent_tree entry */
466 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
467};
468
469static inline void get_extent_info(struct extent_info *ext,
470 struct f2fs_extent *i_ext)
471{
472 ext->fofs = le32_to_cpu(i_ext->fofs);
473 ext->blk = le32_to_cpu(i_ext->blk);
474 ext->len = le32_to_cpu(i_ext->len);
475}
476
477static inline void set_raw_extent(struct extent_info *ext,
478 struct f2fs_extent *i_ext)
479{
480 i_ext->fofs = cpu_to_le32(ext->fofs);
481 i_ext->blk = cpu_to_le32(ext->blk);
482 i_ext->len = cpu_to_le32(ext->len);
483}
484
485static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
486 u32 blk, unsigned int len)
487{
488 ei->fofs = fofs;
489 ei->blk = blk;
490 ei->len = len;
491}
492
493static inline bool __is_extent_same(struct extent_info *ei1,
494 struct extent_info *ei2)
495{
496 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
497 ei1->len == ei2->len);
498}
499
500static inline bool __is_extent_mergeable(struct extent_info *back,
501 struct extent_info *front)
502{
503 return (back->fofs + back->len == front->fofs &&
504 back->blk + back->len == front->blk);
505}
506
507static inline bool __is_back_mergeable(struct extent_info *cur,
508 struct extent_info *back)
509{
510 return __is_extent_mergeable(back, cur);
511}
512
513static inline bool __is_front_mergeable(struct extent_info *cur,
514 struct extent_info *front)
515{
516 return __is_extent_mergeable(cur, front);
517}
518
519extern void f2fs_mark_inode_dirty_sync(struct inode *);
520static inline void __try_update_largest_extent(struct inode *inode,
521 struct extent_tree *et, struct extent_node *en)
522{
523 if (en->ei.len > et->largest.len) {
524 et->largest = en->ei;
525 f2fs_mark_inode_dirty_sync(inode);
526 }
527}
528
529struct f2fs_nm_info {
530 block_t nat_blkaddr; /* base disk address of NAT */
531 nid_t max_nid; /* maximum possible node ids */
532 nid_t available_nids; /* maximum available node ids */
533 nid_t next_scan_nid; /* the next nid to be scanned */
534 unsigned int ram_thresh; /* control the memory footprint */
535 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
536 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
537
538 /* NAT cache management */
539 struct radix_tree_root nat_root;/* root of the nat entry cache */
540 struct radix_tree_root nat_set_root;/* root of the nat set cache */
541 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
542 struct list_head nat_entries; /* cached nat entry list (clean) */
543 unsigned int nat_cnt; /* the # of cached nat entries */
544 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
545
546 /* free node ids management */
547 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
548 struct list_head free_nid_list; /* a list for free nids */
549 spinlock_t free_nid_list_lock; /* protect free nid list */
550 unsigned int fcnt; /* the number of free node id */
551 struct mutex build_lock; /* lock for build free nids */
552
553 /* for checkpoint */
554 char *nat_bitmap; /* NAT bitmap pointer */
555 int bitmap_size; /* bitmap size */
556};
557
558/*
559 * this structure is used as one of function parameters.
560 * all the information are dedicated to a given direct node block determined
561 * by the data offset in a file.
562 */
563struct dnode_of_data {
564 struct inode *inode; /* vfs inode pointer */
565 struct page *inode_page; /* its inode page, NULL is possible */
566 struct page *node_page; /* cached direct node page */
567 nid_t nid; /* node id of the direct node block */
568 unsigned int ofs_in_node; /* data offset in the node page */
569 bool inode_page_locked; /* inode page is locked or not */
570 bool node_changed; /* is node block changed */
571 char cur_level; /* level of hole node page */
572 char max_level; /* level of current page located */
573 block_t data_blkaddr; /* block address of the node block */
574};
575
576static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
577 struct page *ipage, struct page *npage, nid_t nid)
578{
579 memset(dn, 0, sizeof(*dn));
580 dn->inode = inode;
581 dn->inode_page = ipage;
582 dn->node_page = npage;
583 dn->nid = nid;
584}
585
586/*
587 * For SIT manager
588 *
589 * By default, there are 6 active log areas across the whole main area.
590 * When considering hot and cold data separation to reduce cleaning overhead,
591 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
592 * respectively.
593 * In the current design, you should not change the numbers intentionally.
594 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
595 * logs individually according to the underlying devices. (default: 6)
596 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
597 * data and 8 for node logs.
598 */
599#define NR_CURSEG_DATA_TYPE (3)
600#define NR_CURSEG_NODE_TYPE (3)
601#define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
602
603enum {
604 CURSEG_HOT_DATA = 0, /* directory entry blocks */
605 CURSEG_WARM_DATA, /* data blocks */
606 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
607 CURSEG_HOT_NODE, /* direct node blocks of directory files */
608 CURSEG_WARM_NODE, /* direct node blocks of normal files */
609 CURSEG_COLD_NODE, /* indirect node blocks */
610 NO_CHECK_TYPE,
611 CURSEG_DIRECT_IO, /* to use for the direct IO path */
612};
613
614struct flush_cmd {
615 struct completion wait;
616 struct llist_node llnode;
617 int ret;
618};
619
620struct flush_cmd_control {
621 struct task_struct *f2fs_issue_flush; /* flush thread */
622 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
623 atomic_t submit_flush; /* # of issued flushes */
624 struct llist_head issue_list; /* list for command issue */
625 struct llist_node *dispatch_list; /* list for command dispatch */
626};
627
628struct f2fs_sm_info {
629 struct sit_info *sit_info; /* whole segment information */
630 struct free_segmap_info *free_info; /* free segment information */
631 struct dirty_seglist_info *dirty_info; /* dirty segment information */
632 struct curseg_info *curseg_array; /* active segment information */
633
634 block_t seg0_blkaddr; /* block address of 0'th segment */
635 block_t main_blkaddr; /* start block address of main area */
636 block_t ssa_blkaddr; /* start block address of SSA area */
637
638 unsigned int segment_count; /* total # of segments */
639 unsigned int main_segments; /* # of segments in main area */
640 unsigned int reserved_segments; /* # of reserved segments */
641 unsigned int ovp_segments; /* # of overprovision segments */
642
643 /* a threshold to reclaim prefree segments */
644 unsigned int rec_prefree_segments;
645
646 /* for small discard management */
647 struct list_head discard_list; /* 4KB discard list */
648 int nr_discards; /* # of discards in the list */
649 int max_discards; /* max. discards to be issued */
650
651 /* for batched trimming */
652 unsigned int trim_sections; /* # of sections to trim */
653
654 struct list_head sit_entry_set; /* sit entry set list */
655
656 unsigned int ipu_policy; /* in-place-update policy */
657 unsigned int min_ipu_util; /* in-place-update threshold */
658 unsigned int min_fsync_blocks; /* threshold for fsync */
659
660 /* for flush command control */
661 struct flush_cmd_control *cmd_control_info;
662
663};
664
665/*
666 * For superblock
667 */
668/*
669 * COUNT_TYPE for monitoring
670 *
671 * f2fs monitors the number of several block types such as on-writeback,
672 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
673 */
674enum count_type {
675 F2FS_DIRTY_DENTS,
676 F2FS_DIRTY_DATA,
677 F2FS_DIRTY_NODES,
678 F2FS_DIRTY_META,
679 F2FS_INMEM_PAGES,
680 F2FS_DIRTY_IMETA,
681 NR_COUNT_TYPE,
682};
683
684/*
685 * The below are the page types of bios used in submit_bio().
686 * The available types are:
687 * DATA User data pages. It operates as async mode.
688 * NODE Node pages. It operates as async mode.
689 * META FS metadata pages such as SIT, NAT, CP.
690 * NR_PAGE_TYPE The number of page types.
691 * META_FLUSH Make sure the previous pages are written
692 * with waiting the bio's completion
693 * ... Only can be used with META.
694 */
695#define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
696enum page_type {
697 DATA,
698 NODE,
699 META,
700 NR_PAGE_TYPE,
701 META_FLUSH,
702 INMEM, /* the below types are used by tracepoints only. */
703 INMEM_DROP,
704 INMEM_REVOKE,
705 IPU,
706 OPU,
707};
708
709struct f2fs_io_info {
710 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
711 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
712 int op; /* contains REQ_OP_ */
713 int op_flags; /* rq_flag_bits */
714 block_t new_blkaddr; /* new block address to be written */
715 block_t old_blkaddr; /* old block address before Cow */
716 struct page *page; /* page to be written */
717 struct page *encrypted_page; /* encrypted page */
718};
719
720#define is_read_io(rw) (rw == READ)
721struct f2fs_bio_info {
722 struct f2fs_sb_info *sbi; /* f2fs superblock */
723 struct bio *bio; /* bios to merge */
724 sector_t last_block_in_bio; /* last block number */
725 struct f2fs_io_info fio; /* store buffered io info. */
726 struct rw_semaphore io_rwsem; /* blocking op for bio */
727};
728
729enum inode_type {
730 DIR_INODE, /* for dirty dir inode */
731 FILE_INODE, /* for dirty regular/symlink inode */
732 DIRTY_META, /* for all dirtied inode metadata */
733 NR_INODE_TYPE,
734};
735
736/* for inner inode cache management */
737struct inode_management {
738 struct radix_tree_root ino_root; /* ino entry array */
739 spinlock_t ino_lock; /* for ino entry lock */
740 struct list_head ino_list; /* inode list head */
741 unsigned long ino_num; /* number of entries */
742};
743
744/* For s_flag in struct f2fs_sb_info */
745enum {
746 SBI_IS_DIRTY, /* dirty flag for checkpoint */
747 SBI_IS_CLOSE, /* specify unmounting */
748 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
749 SBI_POR_DOING, /* recovery is doing or not */
750 SBI_NEED_SB_WRITE, /* need to recover superblock */
751};
752
753enum {
754 CP_TIME,
755 REQ_TIME,
756 MAX_TIME,
757};
758
759#ifdef CONFIG_F2FS_FS_ENCRYPTION
760#define F2FS_KEY_DESC_PREFIX "f2fs:"
761#define F2FS_KEY_DESC_PREFIX_SIZE 5
762#endif
763struct f2fs_sb_info {
764 struct super_block *sb; /* pointer to VFS super block */
765 struct proc_dir_entry *s_proc; /* proc entry */
766 struct f2fs_super_block *raw_super; /* raw super block pointer */
767 int valid_super_block; /* valid super block no */
768 int s_flag; /* flags for sbi */
769
770#ifdef CONFIG_F2FS_FS_ENCRYPTION
771 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
772 u8 key_prefix_size;
773#endif
774 /* for node-related operations */
775 struct f2fs_nm_info *nm_info; /* node manager */
776 struct inode *node_inode; /* cache node blocks */
777
778 /* for segment-related operations */
779 struct f2fs_sm_info *sm_info; /* segment manager */
780
781 /* for bio operations */
782 struct f2fs_bio_info read_io; /* for read bios */
783 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
784 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
785
786 /* for checkpoint */
787 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
788 struct inode *meta_inode; /* cache meta blocks */
789 struct mutex cp_mutex; /* checkpoint procedure lock */
790 struct rw_semaphore cp_rwsem; /* blocking FS operations */
791 struct rw_semaphore node_write; /* locking node writes */
792 wait_queue_head_t cp_wait;
793 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
794 long interval_time[MAX_TIME]; /* to store thresholds */
795
796 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
797
798 /* for orphan inode, use 0'th array */
799 unsigned int max_orphans; /* max orphan inodes */
800
801 /* for inode management */
802 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
803 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
804
805 /* for extent tree cache */
806 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
807 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
808 struct list_head extent_list; /* lru list for shrinker */
809 spinlock_t extent_lock; /* locking extent lru list */
810 atomic_t total_ext_tree; /* extent tree count */
811 struct list_head zombie_list; /* extent zombie tree list */
812 atomic_t total_zombie_tree; /* extent zombie tree count */
813 atomic_t total_ext_node; /* extent info count */
814
815 /* basic filesystem units */
816 unsigned int log_sectors_per_block; /* log2 sectors per block */
817 unsigned int log_blocksize; /* log2 block size */
818 unsigned int blocksize; /* block size */
819 unsigned int root_ino_num; /* root inode number*/
820 unsigned int node_ino_num; /* node inode number*/
821 unsigned int meta_ino_num; /* meta inode number*/
822 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
823 unsigned int blocks_per_seg; /* blocks per segment */
824 unsigned int segs_per_sec; /* segments per section */
825 unsigned int secs_per_zone; /* sections per zone */
826 unsigned int total_sections; /* total section count */
827 unsigned int total_node_count; /* total node block count */
828 unsigned int total_valid_node_count; /* valid node block count */
829 loff_t max_file_blocks; /* max block index of file */
830 int active_logs; /* # of active logs */
831 int dir_level; /* directory level */
832
833 block_t user_block_count; /* # of user blocks */
834 block_t total_valid_block_count; /* # of valid blocks */
835 block_t discard_blks; /* discard command candidats */
836 block_t last_valid_block_count; /* for recovery */
837 u32 s_next_generation; /* for NFS support */
838 atomic_t nr_wb_bios; /* # of writeback bios */
839
840 /* # of pages, see count_type */
841 struct percpu_counter nr_pages[NR_COUNT_TYPE];
842 /* # of allocated blocks */
843 struct percpu_counter alloc_valid_block_count;
844
845 /* valid inode count */
846 struct percpu_counter total_valid_inode_count;
847
848 struct f2fs_mount_info mount_opt; /* mount options */
849
850 /* for cleaning operations */
851 struct mutex gc_mutex; /* mutex for GC */
852 struct f2fs_gc_kthread *gc_thread; /* GC thread */
853 unsigned int cur_victim_sec; /* current victim section num */
854
855 /* maximum # of trials to find a victim segment for SSR and GC */
856 unsigned int max_victim_search;
857
858 /*
859 * for stat information.
860 * one is for the LFS mode, and the other is for the SSR mode.
861 */
862#ifdef CONFIG_F2FS_STAT_FS
863 struct f2fs_stat_info *stat_info; /* FS status information */
864 unsigned int segment_count[2]; /* # of allocated segments */
865 unsigned int block_count[2]; /* # of allocated blocks */
866 atomic_t inplace_count; /* # of inplace update */
867 atomic64_t total_hit_ext; /* # of lookup extent cache */
868 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
869 atomic64_t read_hit_largest; /* # of hit largest extent node */
870 atomic64_t read_hit_cached; /* # of hit cached extent node */
871 atomic_t inline_xattr; /* # of inline_xattr inodes */
872 atomic_t inline_inode; /* # of inline_data inodes */
873 atomic_t inline_dir; /* # of inline_dentry inodes */
874 int bg_gc; /* background gc calls */
875 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
876#endif
877 unsigned int last_victim[2]; /* last victim segment # */
878 spinlock_t stat_lock; /* lock for stat operations */
879
880 /* For sysfs suppport */
881 struct kobject s_kobj;
882 struct completion s_kobj_unregister;
883
884 /* For shrinker support */
885 struct list_head s_list;
886 struct mutex umount_mutex;
887 unsigned int shrinker_run_no;
888
889 /* For write statistics */
890 u64 sectors_written_start;
891 u64 kbytes_written;
892
893 /* Reference to checksum algorithm driver via cryptoapi */
894 struct crypto_shash *s_chksum_driver;
895};
896
897/* For write statistics. Suppose sector size is 512 bytes,
898 * and the return value is in kbytes. s is of struct f2fs_sb_info.
899 */
900#define BD_PART_WRITTEN(s) \
901(((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
902 s->sectors_written_start) >> 1)
903
904static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
905{
906 sbi->last_time[type] = jiffies;
907}
908
909static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
910{
911 struct timespec ts = {sbi->interval_time[type], 0};
912 unsigned long interval = timespec_to_jiffies(&ts);
913
914 return time_after(jiffies, sbi->last_time[type] + interval);
915}
916
917static inline bool is_idle(struct f2fs_sb_info *sbi)
918{
919 struct block_device *bdev = sbi->sb->s_bdev;
920 struct request_queue *q = bdev_get_queue(bdev);
921 struct request_list *rl = &q->root_rl;
922
923 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
924 return 0;
925
926 return f2fs_time_over(sbi, REQ_TIME);
927}
928
929/*
930 * Inline functions
931 */
932static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
933 unsigned int length)
934{
935 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
936 u32 *ctx = (u32 *)shash_desc_ctx(shash);
937 int err;
938
939 shash->tfm = sbi->s_chksum_driver;
940 shash->flags = 0;
941 *ctx = F2FS_SUPER_MAGIC;
942
943 err = crypto_shash_update(shash, address, length);
944 BUG_ON(err);
945
946 return *ctx;
947}
948
949static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
950 void *buf, size_t buf_size)
951{
952 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
953}
954
955static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
956{
957 return container_of(inode, struct f2fs_inode_info, vfs_inode);
958}
959
960static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
961{
962 return sb->s_fs_info;
963}
964
965static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
966{
967 return F2FS_SB(inode->i_sb);
968}
969
970static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
971{
972 return F2FS_I_SB(mapping->host);
973}
974
975static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
976{
977 return F2FS_M_SB(page->mapping);
978}
979
980static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
981{
982 return (struct f2fs_super_block *)(sbi->raw_super);
983}
984
985static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
986{
987 return (struct f2fs_checkpoint *)(sbi->ckpt);
988}
989
990static inline struct f2fs_node *F2FS_NODE(struct page *page)
991{
992 return (struct f2fs_node *)page_address(page);
993}
994
995static inline struct f2fs_inode *F2FS_INODE(struct page *page)
996{
997 return &((struct f2fs_node *)page_address(page))->i;
998}
999
1000static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1001{
1002 return (struct f2fs_nm_info *)(sbi->nm_info);
1003}
1004
1005static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1006{
1007 return (struct f2fs_sm_info *)(sbi->sm_info);
1008}
1009
1010static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1011{
1012 return (struct sit_info *)(SM_I(sbi)->sit_info);
1013}
1014
1015static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1016{
1017 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1018}
1019
1020static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1021{
1022 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1023}
1024
1025static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1026{
1027 return sbi->meta_inode->i_mapping;
1028}
1029
1030static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1031{
1032 return sbi->node_inode->i_mapping;
1033}
1034
1035static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1036{
1037 return sbi->s_flag & (0x01 << type);
1038}
1039
1040static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1041{
1042 sbi->s_flag |= (0x01 << type);
1043}
1044
1045static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1046{
1047 sbi->s_flag &= ~(0x01 << type);
1048}
1049
1050static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1051{
1052 return le64_to_cpu(cp->checkpoint_ver);
1053}
1054
1055static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1056{
1057 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1058 return ckpt_flags & f;
1059}
1060
1061static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1062{
1063 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1064 ckpt_flags |= f;
1065 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1066}
1067
1068static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1069{
1070 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1071 ckpt_flags &= (~f);
1072 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1073}
1074
1075static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
1076{
1077 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
1078
1079 return blk_queue_discard(q);
1080}
1081
1082static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1083{
1084 down_read(&sbi->cp_rwsem);
1085}
1086
1087static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1088{
1089 up_read(&sbi->cp_rwsem);
1090}
1091
1092static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1093{
1094 down_write(&sbi->cp_rwsem);
1095}
1096
1097static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1098{
1099 up_write(&sbi->cp_rwsem);
1100}
1101
1102static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1103{
1104 int reason = CP_SYNC;
1105
1106 if (test_opt(sbi, FASTBOOT))
1107 reason = CP_FASTBOOT;
1108 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1109 reason = CP_UMOUNT;
1110 return reason;
1111}
1112
1113static inline bool __remain_node_summaries(int reason)
1114{
1115 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1116}
1117
1118static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1119{
1120 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1121 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1122}
1123
1124/*
1125 * Check whether the given nid is within node id range.
1126 */
1127static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1128{
1129 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1130 return -EINVAL;
1131 if (unlikely(nid >= NM_I(sbi)->max_nid))
1132 return -EINVAL;
1133 return 0;
1134}
1135
1136#define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1137
1138/*
1139 * Check whether the inode has blocks or not
1140 */
1141static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1142{
1143 if (F2FS_I(inode)->i_xattr_nid)
1144 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1145 else
1146 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1147}
1148
1149static inline bool f2fs_has_xattr_block(unsigned int ofs)
1150{
1151 return ofs == XATTR_NODE_OFFSET;
1152}
1153
1154static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1155static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1156 struct inode *inode, blkcnt_t *count)
1157{
1158 blkcnt_t diff;
1159
1160#ifdef CONFIG_F2FS_FAULT_INJECTION
1161 if (time_to_inject(FAULT_BLOCK))
1162 return false;
1163#endif
1164 /*
1165 * let's increase this in prior to actual block count change in order
1166 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1167 */
1168 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1169
1170 spin_lock(&sbi->stat_lock);
1171 sbi->total_valid_block_count += (block_t)(*count);
1172 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1173 diff = sbi->total_valid_block_count - sbi->user_block_count;
1174 *count -= diff;
1175 sbi->total_valid_block_count = sbi->user_block_count;
1176 if (!*count) {
1177 spin_unlock(&sbi->stat_lock);
1178 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1179 return false;
1180 }
1181 }
1182 spin_unlock(&sbi->stat_lock);
1183
1184 f2fs_i_blocks_write(inode, *count, true);
1185 return true;
1186}
1187
1188static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1189 struct inode *inode,
1190 blkcnt_t count)
1191{
1192 spin_lock(&sbi->stat_lock);
1193 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1194 f2fs_bug_on(sbi, inode->i_blocks < count);
1195 sbi->total_valid_block_count -= (block_t)count;
1196 spin_unlock(&sbi->stat_lock);
1197 f2fs_i_blocks_write(inode, count, false);
1198}
1199
1200static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1201{
1202 percpu_counter_inc(&sbi->nr_pages[count_type]);
1203 set_sbi_flag(sbi, SBI_IS_DIRTY);
1204}
1205
1206static inline void inode_inc_dirty_pages(struct inode *inode)
1207{
1208 percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1209 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1210 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1211}
1212
1213static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1214{
1215 percpu_counter_dec(&sbi->nr_pages[count_type]);
1216}
1217
1218static inline void inode_dec_dirty_pages(struct inode *inode)
1219{
1220 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1221 !S_ISLNK(inode->i_mode))
1222 return;
1223
1224 percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1225 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1226 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1227}
1228
1229static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1230{
1231 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1232}
1233
1234static inline s64 get_dirty_pages(struct inode *inode)
1235{
1236 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1237}
1238
1239static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1240{
1241 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1242 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1243 sbi->log_blocks_per_seg;
1244
1245 return segs / sbi->segs_per_sec;
1246}
1247
1248static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1249{
1250 return sbi->total_valid_block_count;
1251}
1252
1253static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1254{
1255 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1256
1257 /* return NAT or SIT bitmap */
1258 if (flag == NAT_BITMAP)
1259 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1260 else if (flag == SIT_BITMAP)
1261 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1262
1263 return 0;
1264}
1265
1266static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1267{
1268 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1269}
1270
1271static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1272{
1273 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1274 int offset;
1275
1276 if (__cp_payload(sbi) > 0) {
1277 if (flag == NAT_BITMAP)
1278 return &ckpt->sit_nat_version_bitmap;
1279 else
1280 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1281 } else {
1282 offset = (flag == NAT_BITMAP) ?
1283 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1284 return &ckpt->sit_nat_version_bitmap + offset;
1285 }
1286}
1287
1288static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1289{
1290 block_t start_addr;
1291 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1292 unsigned long long ckpt_version = cur_cp_version(ckpt);
1293
1294 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1295
1296 /*
1297 * odd numbered checkpoint should at cp segment 0
1298 * and even segment must be at cp segment 1
1299 */
1300 if (!(ckpt_version & 1))
1301 start_addr += sbi->blocks_per_seg;
1302
1303 return start_addr;
1304}
1305
1306static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1307{
1308 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1309}
1310
1311static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1312 struct inode *inode)
1313{
1314 block_t valid_block_count;
1315 unsigned int valid_node_count;
1316
1317 spin_lock(&sbi->stat_lock);
1318
1319 valid_block_count = sbi->total_valid_block_count + 1;
1320 if (unlikely(valid_block_count > sbi->user_block_count)) {
1321 spin_unlock(&sbi->stat_lock);
1322 return false;
1323 }
1324
1325 valid_node_count = sbi->total_valid_node_count + 1;
1326 if (unlikely(valid_node_count > sbi->total_node_count)) {
1327 spin_unlock(&sbi->stat_lock);
1328 return false;
1329 }
1330
1331 if (inode)
1332 f2fs_i_blocks_write(inode, 1, true);
1333
1334 sbi->total_valid_node_count++;
1335 sbi->total_valid_block_count++;
1336 spin_unlock(&sbi->stat_lock);
1337
1338 percpu_counter_inc(&sbi->alloc_valid_block_count);
1339 return true;
1340}
1341
1342static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1343 struct inode *inode)
1344{
1345 spin_lock(&sbi->stat_lock);
1346
1347 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1348 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1349 f2fs_bug_on(sbi, !inode->i_blocks);
1350
1351 f2fs_i_blocks_write(inode, 1, false);
1352 sbi->total_valid_node_count--;
1353 sbi->total_valid_block_count--;
1354
1355 spin_unlock(&sbi->stat_lock);
1356}
1357
1358static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1359{
1360 return sbi->total_valid_node_count;
1361}
1362
1363static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1364{
1365 percpu_counter_inc(&sbi->total_valid_inode_count);
1366}
1367
1368static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1369{
1370 percpu_counter_dec(&sbi->total_valid_inode_count);
1371}
1372
1373static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1374{
1375 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1376}
1377
1378static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1379 pgoff_t index, bool for_write)
1380{
1381#ifdef CONFIG_F2FS_FAULT_INJECTION
1382 struct page *page = find_lock_page(mapping, index);
1383 if (page)
1384 return page;
1385
1386 if (time_to_inject(FAULT_PAGE_ALLOC))
1387 return NULL;
1388#endif
1389 if (!for_write)
1390 return grab_cache_page(mapping, index);
1391 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1392}
1393
1394static inline void f2fs_copy_page(struct page *src, struct page *dst)
1395{
1396 char *src_kaddr = kmap(src);
1397 char *dst_kaddr = kmap(dst);
1398
1399 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1400 kunmap(dst);
1401 kunmap(src);
1402}
1403
1404static inline void f2fs_put_page(struct page *page, int unlock)
1405{
1406 if (!page)
1407 return;
1408
1409 if (unlock) {
1410 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1411 unlock_page(page);
1412 }
1413 put_page(page);
1414}
1415
1416static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1417{
1418 if (dn->node_page)
1419 f2fs_put_page(dn->node_page, 1);
1420 if (dn->inode_page && dn->node_page != dn->inode_page)
1421 f2fs_put_page(dn->inode_page, 0);
1422 dn->node_page = NULL;
1423 dn->inode_page = NULL;
1424}
1425
1426static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1427 size_t size)
1428{
1429 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1430}
1431
1432static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1433 gfp_t flags)
1434{
1435 void *entry;
1436
1437 entry = kmem_cache_alloc(cachep, flags);
1438 if (!entry)
1439 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1440 return entry;
1441}
1442
1443static inline struct bio *f2fs_bio_alloc(int npages)
1444{
1445 struct bio *bio;
1446
1447 /* No failure on bio allocation */
1448 bio = bio_alloc(GFP_NOIO, npages);
1449 if (!bio)
1450 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1451 return bio;
1452}
1453
1454static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1455 unsigned long index, void *item)
1456{
1457 while (radix_tree_insert(root, index, item))
1458 cond_resched();
1459}
1460
1461#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1462
1463static inline bool IS_INODE(struct page *page)
1464{
1465 struct f2fs_node *p = F2FS_NODE(page);
1466 return RAW_IS_INODE(p);
1467}
1468
1469static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1470{
1471 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1472}
1473
1474static inline block_t datablock_addr(struct page *node_page,
1475 unsigned int offset)
1476{
1477 struct f2fs_node *raw_node;
1478 __le32 *addr_array;
1479 raw_node = F2FS_NODE(node_page);
1480 addr_array = blkaddr_in_node(raw_node);
1481 return le32_to_cpu(addr_array[offset]);
1482}
1483
1484static inline int f2fs_test_bit(unsigned int nr, char *addr)
1485{
1486 int mask;
1487
1488 addr += (nr >> 3);
1489 mask = 1 << (7 - (nr & 0x07));
1490 return mask & *addr;
1491}
1492
1493static inline void f2fs_set_bit(unsigned int nr, char *addr)
1494{
1495 int mask;
1496
1497 addr += (nr >> 3);
1498 mask = 1 << (7 - (nr & 0x07));
1499 *addr |= mask;
1500}
1501
1502static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1503{
1504 int mask;
1505
1506 addr += (nr >> 3);
1507 mask = 1 << (7 - (nr & 0x07));
1508 *addr &= ~mask;
1509}
1510
1511static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1512{
1513 int mask;
1514 int ret;
1515
1516 addr += (nr >> 3);
1517 mask = 1 << (7 - (nr & 0x07));
1518 ret = mask & *addr;
1519 *addr |= mask;
1520 return ret;
1521}
1522
1523static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1524{
1525 int mask;
1526 int ret;
1527
1528 addr += (nr >> 3);
1529 mask = 1 << (7 - (nr & 0x07));
1530 ret = mask & *addr;
1531 *addr &= ~mask;
1532 return ret;
1533}
1534
1535static inline void f2fs_change_bit(unsigned int nr, char *addr)
1536{
1537 int mask;
1538
1539 addr += (nr >> 3);
1540 mask = 1 << (7 - (nr & 0x07));
1541 *addr ^= mask;
1542}
1543
1544/* used for f2fs_inode_info->flags */
1545enum {
1546 FI_NEW_INODE, /* indicate newly allocated inode */
1547 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1548 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1549 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1550 FI_INC_LINK, /* need to increment i_nlink */
1551 FI_ACL_MODE, /* indicate acl mode */
1552 FI_NO_ALLOC, /* should not allocate any blocks */
1553 FI_FREE_NID, /* free allocated nide */
1554 FI_NO_EXTENT, /* not to use the extent cache */
1555 FI_INLINE_XATTR, /* used for inline xattr */
1556 FI_INLINE_DATA, /* used for inline data*/
1557 FI_INLINE_DENTRY, /* used for inline dentry */
1558 FI_APPEND_WRITE, /* inode has appended data */
1559 FI_UPDATE_WRITE, /* inode has in-place-update data */
1560 FI_NEED_IPU, /* used for ipu per file */
1561 FI_ATOMIC_FILE, /* indicate atomic file */
1562 FI_VOLATILE_FILE, /* indicate volatile file */
1563 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1564 FI_DROP_CACHE, /* drop dirty page cache */
1565 FI_DATA_EXIST, /* indicate data exists */
1566 FI_INLINE_DOTS, /* indicate inline dot dentries */
1567 FI_DO_DEFRAG, /* indicate defragment is running */
1568 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1569};
1570
1571static inline void __mark_inode_dirty_flag(struct inode *inode,
1572 int flag, bool set)
1573{
1574 switch (flag) {
1575 case FI_INLINE_XATTR:
1576 case FI_INLINE_DATA:
1577 case FI_INLINE_DENTRY:
1578 if (set)
1579 return;
1580 case FI_DATA_EXIST:
1581 case FI_INLINE_DOTS:
1582 f2fs_mark_inode_dirty_sync(inode);
1583 }
1584}
1585
1586static inline void set_inode_flag(struct inode *inode, int flag)
1587{
1588 if (!test_bit(flag, &F2FS_I(inode)->flags))
1589 set_bit(flag, &F2FS_I(inode)->flags);
1590 __mark_inode_dirty_flag(inode, flag, true);
1591}
1592
1593static inline int is_inode_flag_set(struct inode *inode, int flag)
1594{
1595 return test_bit(flag, &F2FS_I(inode)->flags);
1596}
1597
1598static inline void clear_inode_flag(struct inode *inode, int flag)
1599{
1600 if (test_bit(flag, &F2FS_I(inode)->flags))
1601 clear_bit(flag, &F2FS_I(inode)->flags);
1602 __mark_inode_dirty_flag(inode, flag, false);
1603}
1604
1605static inline void set_acl_inode(struct inode *inode, umode_t mode)
1606{
1607 F2FS_I(inode)->i_acl_mode = mode;
1608 set_inode_flag(inode, FI_ACL_MODE);
1609 f2fs_mark_inode_dirty_sync(inode);
1610}
1611
1612static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1613{
1614 if (inc)
1615 inc_nlink(inode);
1616 else
1617 drop_nlink(inode);
1618 f2fs_mark_inode_dirty_sync(inode);
1619}
1620
1621static inline void f2fs_i_blocks_write(struct inode *inode,
1622 blkcnt_t diff, bool add)
1623{
1624 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1625 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1626
1627 inode->i_blocks = add ? inode->i_blocks + diff :
1628 inode->i_blocks - diff;
1629 f2fs_mark_inode_dirty_sync(inode);
1630 if (clean || recover)
1631 set_inode_flag(inode, FI_AUTO_RECOVER);
1632}
1633
1634static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1635{
1636 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1637 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1638
1639 if (i_size_read(inode) == i_size)
1640 return;
1641
1642 i_size_write(inode, i_size);
1643 f2fs_mark_inode_dirty_sync(inode);
1644 if (clean || recover)
1645 set_inode_flag(inode, FI_AUTO_RECOVER);
1646}
1647
1648static inline bool f2fs_skip_inode_update(struct inode *inode)
1649{
1650 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER))
1651 return false;
1652 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1653}
1654
1655static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1656{
1657 F2FS_I(inode)->i_current_depth = depth;
1658 f2fs_mark_inode_dirty_sync(inode);
1659}
1660
1661static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1662{
1663 F2FS_I(inode)->i_xattr_nid = xnid;
1664 f2fs_mark_inode_dirty_sync(inode);
1665}
1666
1667static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1668{
1669 F2FS_I(inode)->i_pino = pino;
1670 f2fs_mark_inode_dirty_sync(inode);
1671}
1672
1673static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1674{
1675 struct f2fs_inode_info *fi = F2FS_I(inode);
1676
1677 if (ri->i_inline & F2FS_INLINE_XATTR)
1678 set_bit(FI_INLINE_XATTR, &fi->flags);
1679 if (ri->i_inline & F2FS_INLINE_DATA)
1680 set_bit(FI_INLINE_DATA, &fi->flags);
1681 if (ri->i_inline & F2FS_INLINE_DENTRY)
1682 set_bit(FI_INLINE_DENTRY, &fi->flags);
1683 if (ri->i_inline & F2FS_DATA_EXIST)
1684 set_bit(FI_DATA_EXIST, &fi->flags);
1685 if (ri->i_inline & F2FS_INLINE_DOTS)
1686 set_bit(FI_INLINE_DOTS, &fi->flags);
1687}
1688
1689static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1690{
1691 ri->i_inline = 0;
1692
1693 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1694 ri->i_inline |= F2FS_INLINE_XATTR;
1695 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1696 ri->i_inline |= F2FS_INLINE_DATA;
1697 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1698 ri->i_inline |= F2FS_INLINE_DENTRY;
1699 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1700 ri->i_inline |= F2FS_DATA_EXIST;
1701 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1702 ri->i_inline |= F2FS_INLINE_DOTS;
1703}
1704
1705static inline int f2fs_has_inline_xattr(struct inode *inode)
1706{
1707 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1708}
1709
1710static inline unsigned int addrs_per_inode(struct inode *inode)
1711{
1712 if (f2fs_has_inline_xattr(inode))
1713 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1714 return DEF_ADDRS_PER_INODE;
1715}
1716
1717static inline void *inline_xattr_addr(struct page *page)
1718{
1719 struct f2fs_inode *ri = F2FS_INODE(page);
1720 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1721 F2FS_INLINE_XATTR_ADDRS]);
1722}
1723
1724static inline int inline_xattr_size(struct inode *inode)
1725{
1726 if (f2fs_has_inline_xattr(inode))
1727 return F2FS_INLINE_XATTR_ADDRS << 2;
1728 else
1729 return 0;
1730}
1731
1732static inline int f2fs_has_inline_data(struct inode *inode)
1733{
1734 return is_inode_flag_set(inode, FI_INLINE_DATA);
1735}
1736
1737static inline void f2fs_clear_inline_inode(struct inode *inode)
1738{
1739 clear_inode_flag(inode, FI_INLINE_DATA);
1740 clear_inode_flag(inode, FI_DATA_EXIST);
1741}
1742
1743static inline int f2fs_exist_data(struct inode *inode)
1744{
1745 return is_inode_flag_set(inode, FI_DATA_EXIST);
1746}
1747
1748static inline int f2fs_has_inline_dots(struct inode *inode)
1749{
1750 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1751}
1752
1753static inline bool f2fs_is_atomic_file(struct inode *inode)
1754{
1755 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1756}
1757
1758static inline bool f2fs_is_volatile_file(struct inode *inode)
1759{
1760 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1761}
1762
1763static inline bool f2fs_is_first_block_written(struct inode *inode)
1764{
1765 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1766}
1767
1768static inline bool f2fs_is_drop_cache(struct inode *inode)
1769{
1770 return is_inode_flag_set(inode, FI_DROP_CACHE);
1771}
1772
1773static inline void *inline_data_addr(struct page *page)
1774{
1775 struct f2fs_inode *ri = F2FS_INODE(page);
1776 return (void *)&(ri->i_addr[1]);
1777}
1778
1779static inline int f2fs_has_inline_dentry(struct inode *inode)
1780{
1781 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1782}
1783
1784static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1785{
1786 if (!f2fs_has_inline_dentry(dir))
1787 kunmap(page);
1788}
1789
1790static inline int is_file(struct inode *inode, int type)
1791{
1792 return F2FS_I(inode)->i_advise & type;
1793}
1794
1795static inline void set_file(struct inode *inode, int type)
1796{
1797 F2FS_I(inode)->i_advise |= type;
1798 f2fs_mark_inode_dirty_sync(inode);
1799}
1800
1801static inline void clear_file(struct inode *inode, int type)
1802{
1803 F2FS_I(inode)->i_advise &= ~type;
1804 f2fs_mark_inode_dirty_sync(inode);
1805}
1806
1807static inline int f2fs_readonly(struct super_block *sb)
1808{
1809 return sb->s_flags & MS_RDONLY;
1810}
1811
1812static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1813{
1814 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1815}
1816
1817static inline bool is_dot_dotdot(const struct qstr *str)
1818{
1819 if (str->len == 1 && str->name[0] == '.')
1820 return true;
1821
1822 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1823 return true;
1824
1825 return false;
1826}
1827
1828static inline bool f2fs_may_extent_tree(struct inode *inode)
1829{
1830 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1831 is_inode_flag_set(inode, FI_NO_EXTENT))
1832 return false;
1833
1834 return S_ISREG(inode->i_mode);
1835}
1836
1837static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1838{
1839#ifdef CONFIG_F2FS_FAULT_INJECTION
1840 if (time_to_inject(FAULT_KMALLOC))
1841 return NULL;
1842#endif
1843 return kmalloc(size, flags);
1844}
1845
1846static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1847{
1848 void *ret;
1849
1850 ret = kmalloc(size, flags | __GFP_NOWARN);
1851 if (!ret)
1852 ret = __vmalloc(size, flags, PAGE_KERNEL);
1853 return ret;
1854}
1855
1856static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1857{
1858 void *ret;
1859
1860 ret = kzalloc(size, flags | __GFP_NOWARN);
1861 if (!ret)
1862 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1863 return ret;
1864}
1865
1866#define get_inode_mode(i) \
1867 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1868 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1869
1870/* get offset of first page in next direct node */
1871#define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1872 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1873 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1874 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1875
1876/*
1877 * file.c
1878 */
1879int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1880void truncate_data_blocks(struct dnode_of_data *);
1881int truncate_blocks(struct inode *, u64, bool);
1882int f2fs_truncate(struct inode *);
1883int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1884int f2fs_setattr(struct dentry *, struct iattr *);
1885int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1886int truncate_data_blocks_range(struct dnode_of_data *, int);
1887long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1888long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1889
1890/*
1891 * inode.c
1892 */
1893void f2fs_set_inode_flags(struct inode *);
1894struct inode *f2fs_iget(struct super_block *, unsigned long);
1895int try_to_free_nats(struct f2fs_sb_info *, int);
1896int update_inode(struct inode *, struct page *);
1897int update_inode_page(struct inode *);
1898int f2fs_write_inode(struct inode *, struct writeback_control *);
1899void f2fs_evict_inode(struct inode *);
1900void handle_failed_inode(struct inode *);
1901
1902/*
1903 * namei.c
1904 */
1905struct dentry *f2fs_get_parent(struct dentry *child);
1906
1907/*
1908 * dir.c
1909 */
1910extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1911void set_de_type(struct f2fs_dir_entry *, umode_t);
1912unsigned char get_de_type(struct f2fs_dir_entry *);
1913struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1914 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1915bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1916 unsigned int, struct fscrypt_str *);
1917void do_make_empty_dir(struct inode *, struct inode *,
1918 struct f2fs_dentry_ptr *);
1919struct page *init_inode_metadata(struct inode *, struct inode *,
1920 const struct qstr *, struct page *);
1921void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1922int room_for_filename(const void *, int, int);
1923void f2fs_drop_nlink(struct inode *, struct inode *);
1924struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
1925 struct page **);
1926struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1927ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
1928void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1929 struct page *, struct inode *);
1930int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1931void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1932 const struct qstr *, f2fs_hash_t , unsigned int);
1933int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1934 struct inode *, nid_t, umode_t);
1935int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1936 umode_t);
1937void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1938 struct inode *);
1939int f2fs_do_tmpfile(struct inode *, struct inode *);
1940bool f2fs_empty_dir(struct inode *);
1941
1942static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1943{
1944 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1945 inode, inode->i_ino, inode->i_mode);
1946}
1947
1948/*
1949 * super.c
1950 */
1951int f2fs_inode_dirtied(struct inode *);
1952void f2fs_inode_synced(struct inode *);
1953int f2fs_commit_super(struct f2fs_sb_info *, bool);
1954int f2fs_sync_fs(struct super_block *, int);
1955extern __printf(3, 4)
1956void f2fs_msg(struct super_block *, const char *, const char *, ...);
1957int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1958
1959/*
1960 * hash.c
1961 */
1962f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1963
1964/*
1965 * node.c
1966 */
1967struct dnode_of_data;
1968struct node_info;
1969
1970bool available_free_memory(struct f2fs_sb_info *, int);
1971int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1972bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1973bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1974void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1975pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1976int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1977int truncate_inode_blocks(struct inode *, pgoff_t);
1978int truncate_xattr_node(struct inode *, struct page *);
1979int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1980int remove_inode_page(struct inode *);
1981struct page *new_inode_page(struct inode *);
1982struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1983void ra_node_page(struct f2fs_sb_info *, nid_t);
1984struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1985struct page *get_node_page_ra(struct page *, int);
1986void move_node_page(struct page *, int);
1987int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
1988 struct writeback_control *, bool);
1989int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1990void build_free_nids(struct f2fs_sb_info *);
1991bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1992void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1993void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1994int try_to_free_nids(struct f2fs_sb_info *, int);
1995void recover_inline_xattr(struct inode *, struct page *);
1996void recover_xattr_data(struct inode *, struct page *, block_t);
1997int recover_inode_page(struct f2fs_sb_info *, struct page *);
1998int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1999 struct f2fs_summary_block *);
2000void flush_nat_entries(struct f2fs_sb_info *);
2001int build_node_manager(struct f2fs_sb_info *);
2002void destroy_node_manager(struct f2fs_sb_info *);
2003int __init create_node_manager_caches(void);
2004void destroy_node_manager_caches(void);
2005
2006/*
2007 * segment.c
2008 */
2009void register_inmem_page(struct inode *, struct page *);
2010void drop_inmem_pages(struct inode *);
2011int commit_inmem_pages(struct inode *);
2012void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2013void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2014int f2fs_issue_flush(struct f2fs_sb_info *);
2015int create_flush_cmd_control(struct f2fs_sb_info *);
2016void destroy_flush_cmd_control(struct f2fs_sb_info *);
2017void invalidate_blocks(struct f2fs_sb_info *, block_t);
2018bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2019void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2020void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2021void release_discard_addrs(struct f2fs_sb_info *);
2022bool discard_next_dnode(struct f2fs_sb_info *, block_t);
2023int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2024void allocate_new_segments(struct f2fs_sb_info *);
2025int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2026struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2027void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2028void write_meta_page(struct f2fs_sb_info *, struct page *);
2029void write_node_page(unsigned int, struct f2fs_io_info *);
2030void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2031void rewrite_data_page(struct f2fs_io_info *);
2032void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2033 block_t, block_t, bool, bool);
2034void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2035 block_t, block_t, unsigned char, bool, bool);
2036void allocate_data_block(struct f2fs_sb_info *, struct page *,
2037 block_t, block_t *, struct f2fs_summary *, int);
2038void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2039void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2040void write_data_summaries(struct f2fs_sb_info *, block_t);
2041void write_node_summaries(struct f2fs_sb_info *, block_t);
2042int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2043void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2044int build_segment_manager(struct f2fs_sb_info *);
2045void destroy_segment_manager(struct f2fs_sb_info *);
2046int __init create_segment_manager_caches(void);
2047void destroy_segment_manager_caches(void);
2048
2049/*
2050 * checkpoint.c
2051 */
2052void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2053struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2054struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2055struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2056bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2057int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2058void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2059long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2060void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2061void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2062void release_ino_entry(struct f2fs_sb_info *, bool);
2063bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2064int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2065int acquire_orphan_inode(struct f2fs_sb_info *);
2066void release_orphan_inode(struct f2fs_sb_info *);
2067void add_orphan_inode(struct inode *);
2068void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2069int recover_orphan_inodes(struct f2fs_sb_info *);
2070int get_valid_checkpoint(struct f2fs_sb_info *);
2071void update_dirty_page(struct inode *, struct page *);
2072void remove_dirty_inode(struct inode *);
2073int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2074int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2075void init_ino_entry_info(struct f2fs_sb_info *);
2076int __init create_checkpoint_caches(void);
2077void destroy_checkpoint_caches(void);
2078
2079/*
2080 * data.c
2081 */
2082void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2083void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2084 struct page *, nid_t, enum page_type, int);
2085void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2086int f2fs_submit_page_bio(struct f2fs_io_info *);
2087void f2fs_submit_page_mbio(struct f2fs_io_info *);
2088void set_data_blkaddr(struct dnode_of_data *);
2089void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2090int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2091int reserve_new_block(struct dnode_of_data *);
2092int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2093ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2094int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2095struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2096struct page *find_data_page(struct inode *, pgoff_t);
2097struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2098struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2099int do_write_data_page(struct f2fs_io_info *);
2100int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2101int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2102void f2fs_set_page_dirty_nobuffers(struct page *);
2103void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2104int f2fs_release_page(struct page *, gfp_t);
2105
2106/*
2107 * gc.c
2108 */
2109int start_gc_thread(struct f2fs_sb_info *);
2110void stop_gc_thread(struct f2fs_sb_info *);
2111block_t start_bidx_of_node(unsigned int, struct inode *);
2112int f2fs_gc(struct f2fs_sb_info *, bool);
2113void build_gc_manager(struct f2fs_sb_info *);
2114
2115/*
2116 * recovery.c
2117 */
2118int recover_fsync_data(struct f2fs_sb_info *, bool);
2119bool space_for_roll_forward(struct f2fs_sb_info *);
2120
2121/*
2122 * debug.c
2123 */
2124#ifdef CONFIG_F2FS_STAT_FS
2125struct f2fs_stat_info {
2126 struct list_head stat_list;
2127 struct f2fs_sb_info *sbi;
2128 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2129 int main_area_segs, main_area_sections, main_area_zones;
2130 unsigned long long hit_largest, hit_cached, hit_rbtree;
2131 unsigned long long hit_total, total_ext;
2132 int ext_tree, zombie_tree, ext_node;
2133 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2134 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2135 int nats, dirty_nats, sits, dirty_sits, fnids;
2136 int total_count, utilization;
2137 int bg_gc, wb_bios;
2138 int inline_xattr, inline_inode, inline_dir, orphans;
2139 unsigned int valid_count, valid_node_count, valid_inode_count;
2140 unsigned int bimodal, avg_vblocks;
2141 int util_free, util_valid, util_invalid;
2142 int rsvd_segs, overp_segs;
2143 int dirty_count, node_pages, meta_pages;
2144 int prefree_count, call_count, cp_count, bg_cp_count;
2145 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2146 int bg_node_segs, bg_data_segs;
2147 int tot_blks, data_blks, node_blks;
2148 int bg_data_blks, bg_node_blks;
2149 int curseg[NR_CURSEG_TYPE];
2150 int cursec[NR_CURSEG_TYPE];
2151 int curzone[NR_CURSEG_TYPE];
2152
2153 unsigned int segment_count[2];
2154 unsigned int block_count[2];
2155 unsigned int inplace_count;
2156 unsigned long long base_mem, cache_mem, page_mem;
2157};
2158
2159static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2160{
2161 return (struct f2fs_stat_info *)sbi->stat_info;
2162}
2163
2164#define stat_inc_cp_count(si) ((si)->cp_count++)
2165#define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2166#define stat_inc_call_count(si) ((si)->call_count++)
2167#define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2168#define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2169#define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2170#define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2171#define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2172#define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2173#define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2174#define stat_inc_inline_xattr(inode) \
2175 do { \
2176 if (f2fs_has_inline_xattr(inode)) \
2177 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2178 } while (0)
2179#define stat_dec_inline_xattr(inode) \
2180 do { \
2181 if (f2fs_has_inline_xattr(inode)) \
2182 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2183 } while (0)
2184#define stat_inc_inline_inode(inode) \
2185 do { \
2186 if (f2fs_has_inline_data(inode)) \
2187 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2188 } while (0)
2189#define stat_dec_inline_inode(inode) \
2190 do { \
2191 if (f2fs_has_inline_data(inode)) \
2192 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2193 } while (0)
2194#define stat_inc_inline_dir(inode) \
2195 do { \
2196 if (f2fs_has_inline_dentry(inode)) \
2197 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2198 } while (0)
2199#define stat_dec_inline_dir(inode) \
2200 do { \
2201 if (f2fs_has_inline_dentry(inode)) \
2202 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2203 } while (0)
2204#define stat_inc_seg_type(sbi, curseg) \
2205 ((sbi)->segment_count[(curseg)->alloc_type]++)
2206#define stat_inc_block_count(sbi, curseg) \
2207 ((sbi)->block_count[(curseg)->alloc_type]++)
2208#define stat_inc_inplace_blocks(sbi) \
2209 (atomic_inc(&(sbi)->inplace_count))
2210#define stat_inc_seg_count(sbi, type, gc_type) \
2211 do { \
2212 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2213 (si)->tot_segs++; \
2214 if (type == SUM_TYPE_DATA) { \
2215 si->data_segs++; \
2216 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2217 } else { \
2218 si->node_segs++; \
2219 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2220 } \
2221 } while (0)
2222
2223#define stat_inc_tot_blk_count(si, blks) \
2224 (si->tot_blks += (blks))
2225
2226#define stat_inc_data_blk_count(sbi, blks, gc_type) \
2227 do { \
2228 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2229 stat_inc_tot_blk_count(si, blks); \
2230 si->data_blks += (blks); \
2231 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2232 } while (0)
2233
2234#define stat_inc_node_blk_count(sbi, blks, gc_type) \
2235 do { \
2236 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2237 stat_inc_tot_blk_count(si, blks); \
2238 si->node_blks += (blks); \
2239 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2240 } while (0)
2241
2242int f2fs_build_stats(struct f2fs_sb_info *);
2243void f2fs_destroy_stats(struct f2fs_sb_info *);
2244int __init f2fs_create_root_stats(void);
2245void f2fs_destroy_root_stats(void);
2246#else
2247#define stat_inc_cp_count(si)
2248#define stat_inc_bg_cp_count(si)
2249#define stat_inc_call_count(si)
2250#define stat_inc_bggc_count(si)
2251#define stat_inc_dirty_inode(sbi, type)
2252#define stat_dec_dirty_inode(sbi, type)
2253#define stat_inc_total_hit(sb)
2254#define stat_inc_rbtree_node_hit(sb)
2255#define stat_inc_largest_node_hit(sbi)
2256#define stat_inc_cached_node_hit(sbi)
2257#define stat_inc_inline_xattr(inode)
2258#define stat_dec_inline_xattr(inode)
2259#define stat_inc_inline_inode(inode)
2260#define stat_dec_inline_inode(inode)
2261#define stat_inc_inline_dir(inode)
2262#define stat_dec_inline_dir(inode)
2263#define stat_inc_seg_type(sbi, curseg)
2264#define stat_inc_block_count(sbi, curseg)
2265#define stat_inc_inplace_blocks(sbi)
2266#define stat_inc_seg_count(sbi, type, gc_type)
2267#define stat_inc_tot_blk_count(si, blks)
2268#define stat_inc_data_blk_count(sbi, blks, gc_type)
2269#define stat_inc_node_blk_count(sbi, blks, gc_type)
2270
2271static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2272static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2273static inline int __init f2fs_create_root_stats(void) { return 0; }
2274static inline void f2fs_destroy_root_stats(void) { }
2275#endif
2276
2277extern const struct file_operations f2fs_dir_operations;
2278extern const struct file_operations f2fs_file_operations;
2279extern const struct inode_operations f2fs_file_inode_operations;
2280extern const struct address_space_operations f2fs_dblock_aops;
2281extern const struct address_space_operations f2fs_node_aops;
2282extern const struct address_space_operations f2fs_meta_aops;
2283extern const struct inode_operations f2fs_dir_inode_operations;
2284extern const struct inode_operations f2fs_symlink_inode_operations;
2285extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2286extern const struct inode_operations f2fs_special_inode_operations;
2287extern struct kmem_cache *inode_entry_slab;
2288
2289/*
2290 * inline.c
2291 */
2292bool f2fs_may_inline_data(struct inode *);
2293bool f2fs_may_inline_dentry(struct inode *);
2294void read_inline_data(struct page *, struct page *);
2295bool truncate_inline_inode(struct page *, u64);
2296int f2fs_read_inline_data(struct inode *, struct page *);
2297int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2298int f2fs_convert_inline_inode(struct inode *);
2299int f2fs_write_inline_data(struct inode *, struct page *);
2300bool recover_inline_data(struct inode *, struct page *);
2301struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2302 struct fscrypt_name *, struct page **);
2303int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2304int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2305 nid_t, umode_t);
2306void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2307 struct inode *, struct inode *);
2308bool f2fs_empty_inline_dir(struct inode *);
2309int f2fs_read_inline_dir(struct file *, struct dir_context *,
2310 struct fscrypt_str *);
2311int f2fs_inline_data_fiemap(struct inode *,
2312 struct fiemap_extent_info *, __u64, __u64);
2313
2314/*
2315 * shrinker.c
2316 */
2317unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2318unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2319void f2fs_join_shrinker(struct f2fs_sb_info *);
2320void f2fs_leave_shrinker(struct f2fs_sb_info *);
2321
2322/*
2323 * extent_cache.c
2324 */
2325unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2326bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2327void f2fs_drop_extent_tree(struct inode *);
2328unsigned int f2fs_destroy_extent_node(struct inode *);
2329void f2fs_destroy_extent_tree(struct inode *);
2330bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2331void f2fs_update_extent_cache(struct dnode_of_data *);
2332void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2333 pgoff_t, block_t, unsigned int);
2334void init_extent_cache_info(struct f2fs_sb_info *);
2335int __init create_extent_cache(void);
2336void destroy_extent_cache(void);
2337
2338/*
2339 * crypto support
2340 */
2341static inline bool f2fs_encrypted_inode(struct inode *inode)
2342{
2343 return file_is_encrypt(inode);
2344}
2345
2346static inline void f2fs_set_encrypted_inode(struct inode *inode)
2347{
2348#ifdef CONFIG_F2FS_FS_ENCRYPTION
2349 file_set_encrypt(inode);
2350#endif
2351}
2352
2353static inline bool f2fs_bio_encrypted(struct bio *bio)
2354{
2355 return bio->bi_private != NULL;
2356}
2357
2358static inline int f2fs_sb_has_crypto(struct super_block *sb)
2359{
2360 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2361}
2362
2363static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb)
2364{
2365 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR);
2366}
2367
2368static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2369{
2370 clear_opt(sbi, ADAPTIVE);
2371 clear_opt(sbi, LFS);
2372
2373 switch (mt) {
2374 case F2FS_MOUNT_ADAPTIVE:
2375 set_opt(sbi, ADAPTIVE);
2376 break;
2377 case F2FS_MOUNT_LFS:
2378 set_opt(sbi, LFS);
2379 break;
2380 }
2381}
2382
2383static inline bool f2fs_may_encrypt(struct inode *inode)
2384{
2385#ifdef CONFIG_F2FS_FS_ENCRYPTION
2386 umode_t mode = inode->i_mode;
2387
2388 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2389#else
2390 return 0;
2391#endif
2392}
2393
2394#ifndef CONFIG_F2FS_FS_ENCRYPTION
2395#define fscrypt_set_d_op(i)
2396#define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2397#define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2398#define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2399#define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2400#define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2401#define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2402#define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2403#define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2404#define fscrypt_process_policy fscrypt_notsupp_process_policy
2405#define fscrypt_get_policy fscrypt_notsupp_get_policy
2406#define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2407#define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2408#define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2409#define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2410#define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2411#define fscrypt_free_filename fscrypt_notsupp_free_filename
2412#define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2413#define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2414#define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2415#define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2416#define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2417#endif
2418#endif
This page took 0.03168 seconds and 5 git commands to generate.