jffs2: Erase pending blocks in GC pass, avoid invalid -EIO return
[deliverable/linux.git] / fs / jffs2 / nodemgmt.c
... / ...
CommitLineData
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright © 2001-2007 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
10 */
11
12#include <linux/kernel.h>
13#include <linux/mtd/mtd.h>
14#include <linux/compiler.h>
15#include <linux/sched.h> /* For cond_resched() */
16#include "nodelist.h"
17#include "debug.h"
18
19/**
20 * jffs2_reserve_space - request physical space to write nodes to flash
21 * @c: superblock info
22 * @minsize: Minimum acceptable size of allocation
23 * @len: Returned value of allocation length
24 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
25 *
26 * Requests a block of physical space on the flash. Returns zero for success
27 * and puts 'len' into the appropriate place, or returns -ENOSPC or other
28 * error if appropriate. Doesn't return len since that's
29 *
30 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
31 * allocation semaphore, to prevent more than one allocation from being
32 * active at any time. The semaphore is later released by jffs2_commit_allocation()
33 *
34 * jffs2_reserve_space() may trigger garbage collection in order to make room
35 * for the requested allocation.
36 */
37
38static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
39 uint32_t *len, uint32_t sumsize);
40
41int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
42 uint32_t *len, int prio, uint32_t sumsize)
43{
44 int ret = -EAGAIN;
45 int blocksneeded = c->resv_blocks_write;
46 /* align it */
47 minsize = PAD(minsize);
48
49 D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
50 mutex_lock(&c->alloc_sem);
51
52 D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
53
54 spin_lock(&c->erase_completion_lock);
55
56 /* this needs a little more thought (true <tglx> :)) */
57 while(ret == -EAGAIN) {
58 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
59 uint32_t dirty, avail;
60
61 /* calculate real dirty size
62 * dirty_size contains blocks on erase_pending_list
63 * those blocks are counted in c->nr_erasing_blocks.
64 * If one block is actually erased, it is not longer counted as dirty_space
65 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
66 * with c->nr_erasing_blocks * c->sector_size again.
67 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
68 * This helps us to force gc and pick eventually a clean block to spread the load.
69 * We add unchecked_size here, as we hopefully will find some space to use.
70 * This will affect the sum only once, as gc first finishes checking
71 * of nodes.
72 */
73 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
74 if (dirty < c->nospc_dirty_size) {
75 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
76 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
77 break;
78 }
79 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
80 dirty, c->unchecked_size, c->sector_size));
81
82 spin_unlock(&c->erase_completion_lock);
83 mutex_unlock(&c->alloc_sem);
84 return -ENOSPC;
85 }
86
87 /* Calc possibly available space. Possibly available means that we
88 * don't know, if unchecked size contains obsoleted nodes, which could give us some
89 * more usable space. This will affect the sum only once, as gc first finishes checking
90 * of nodes.
91 + Return -ENOSPC, if the maximum possibly available space is less or equal than
92 * blocksneeded * sector_size.
93 * This blocks endless gc looping on a filesystem, which is nearly full, even if
94 * the check above passes.
95 */
96 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
97 if ( (avail / c->sector_size) <= blocksneeded) {
98 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
99 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
100 break;
101 }
102
103 D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
104 avail, blocksneeded * c->sector_size));
105 spin_unlock(&c->erase_completion_lock);
106 mutex_unlock(&c->alloc_sem);
107 return -ENOSPC;
108 }
109
110 mutex_unlock(&c->alloc_sem);
111
112 D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
113 c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
114 c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
115 spin_unlock(&c->erase_completion_lock);
116
117 ret = jffs2_garbage_collect_pass(c);
118
119 if (ret == -EAGAIN) {
120 spin_lock(&c->erase_completion_lock);
121 if (c->nr_erasing_blocks &&
122 list_empty(&c->erase_pending_list) &&
123 list_empty(&c->erase_complete_list)) {
124 DECLARE_WAITQUEUE(wait, current);
125 set_current_state(TASK_UNINTERRUPTIBLE);
126 add_wait_queue(&c->erase_wait, &wait);
127 D1(printk(KERN_DEBUG "%s waiting for erase to complete\n", __func__));
128 spin_unlock(&c->erase_completion_lock);
129
130 schedule();
131 } else
132 spin_unlock(&c->erase_completion_lock);
133 } else if (ret)
134 return ret;
135
136 cond_resched();
137
138 if (signal_pending(current))
139 return -EINTR;
140
141 mutex_lock(&c->alloc_sem);
142 spin_lock(&c->erase_completion_lock);
143 }
144
145 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
146 if (ret) {
147 D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
148 }
149 }
150 spin_unlock(&c->erase_completion_lock);
151 if (!ret)
152 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
153 if (ret)
154 mutex_unlock(&c->alloc_sem);
155 return ret;
156}
157
158int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
159 uint32_t *len, uint32_t sumsize)
160{
161 int ret = -EAGAIN;
162 minsize = PAD(minsize);
163
164 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
165
166 spin_lock(&c->erase_completion_lock);
167 while(ret == -EAGAIN) {
168 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
169 if (ret) {
170 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
171 }
172 }
173 spin_unlock(&c->erase_completion_lock);
174 if (!ret)
175 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
176
177 return ret;
178}
179
180
181/* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
182
183static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
184{
185
186 if (c->nextblock == NULL) {
187 D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
188 jeb->offset));
189 return;
190 }
191 /* Check, if we have a dirty block now, or if it was dirty already */
192 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
193 c->dirty_size += jeb->wasted_size;
194 c->wasted_size -= jeb->wasted_size;
195 jeb->dirty_size += jeb->wasted_size;
196 jeb->wasted_size = 0;
197 if (VERYDIRTY(c, jeb->dirty_size)) {
198 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
199 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
200 list_add_tail(&jeb->list, &c->very_dirty_list);
201 } else {
202 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
203 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
204 list_add_tail(&jeb->list, &c->dirty_list);
205 }
206 } else {
207 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
208 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
209 list_add_tail(&jeb->list, &c->clean_list);
210 }
211 c->nextblock = NULL;
212
213}
214
215/* Select a new jeb for nextblock */
216
217static int jffs2_find_nextblock(struct jffs2_sb_info *c)
218{
219 struct list_head *next;
220
221 /* Take the next block off the 'free' list */
222
223 if (list_empty(&c->free_list)) {
224
225 if (!c->nr_erasing_blocks &&
226 !list_empty(&c->erasable_list)) {
227 struct jffs2_eraseblock *ejeb;
228
229 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
230 list_move_tail(&ejeb->list, &c->erase_pending_list);
231 c->nr_erasing_blocks++;
232 jffs2_erase_pending_trigger(c);
233 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
234 ejeb->offset));
235 }
236
237 if (!c->nr_erasing_blocks &&
238 !list_empty(&c->erasable_pending_wbuf_list)) {
239 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
240 /* c->nextblock is NULL, no update to c->nextblock allowed */
241 spin_unlock(&c->erase_completion_lock);
242 jffs2_flush_wbuf_pad(c);
243 spin_lock(&c->erase_completion_lock);
244 /* Have another go. It'll be on the erasable_list now */
245 return -EAGAIN;
246 }
247
248 if (!c->nr_erasing_blocks) {
249 /* Ouch. We're in GC, or we wouldn't have got here.
250 And there's no space left. At all. */
251 printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
252 c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
253 list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
254 return -ENOSPC;
255 }
256
257 spin_unlock(&c->erase_completion_lock);
258 /* Don't wait for it; just erase one right now */
259 jffs2_erase_pending_blocks(c, 1);
260 spin_lock(&c->erase_completion_lock);
261
262 /* An erase may have failed, decreasing the
263 amount of free space available. So we must
264 restart from the beginning */
265 return -EAGAIN;
266 }
267
268 next = c->free_list.next;
269 list_del(next);
270 c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
271 c->nr_free_blocks--;
272
273 jffs2_sum_reset_collected(c->summary); /* reset collected summary */
274
275#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
276 /* adjust write buffer offset, else we get a non contiguous write bug */
277 if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
278 c->wbuf_ofs = 0xffffffff;
279#endif
280
281 D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
282
283 return 0;
284}
285
286/* Called with alloc sem _and_ erase_completion_lock */
287static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
288 uint32_t *len, uint32_t sumsize)
289{
290 struct jffs2_eraseblock *jeb = c->nextblock;
291 uint32_t reserved_size; /* for summary information at the end of the jeb */
292 int ret;
293
294 restart:
295 reserved_size = 0;
296
297 if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
298 /* NOSUM_SIZE means not to generate summary */
299
300 if (jeb) {
301 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
302 dbg_summary("minsize=%d , jeb->free=%d ,"
303 "summary->size=%d , sumsize=%d\n",
304 minsize, jeb->free_size,
305 c->summary->sum_size, sumsize);
306 }
307
308 /* Is there enough space for writing out the current node, or we have to
309 write out summary information now, close this jeb and select new nextblock? */
310 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
311 JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
312
313 /* Has summary been disabled for this jeb? */
314 if (jffs2_sum_is_disabled(c->summary)) {
315 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
316 goto restart;
317 }
318
319 /* Writing out the collected summary information */
320 dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
321 ret = jffs2_sum_write_sumnode(c);
322
323 if (ret)
324 return ret;
325
326 if (jffs2_sum_is_disabled(c->summary)) {
327 /* jffs2_write_sumnode() couldn't write out the summary information
328 diabling summary for this jeb and free the collected information
329 */
330 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
331 goto restart;
332 }
333
334 jffs2_close_nextblock(c, jeb);
335 jeb = NULL;
336 /* keep always valid value in reserved_size */
337 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
338 }
339 } else {
340 if (jeb && minsize > jeb->free_size) {
341 uint32_t waste;
342
343 /* Skip the end of this block and file it as having some dirty space */
344 /* If there's a pending write to it, flush now */
345
346 if (jffs2_wbuf_dirty(c)) {
347 spin_unlock(&c->erase_completion_lock);
348 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
349 jffs2_flush_wbuf_pad(c);
350 spin_lock(&c->erase_completion_lock);
351 jeb = c->nextblock;
352 goto restart;
353 }
354
355 spin_unlock(&c->erase_completion_lock);
356
357 ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
358 if (ret)
359 return ret;
360 /* Just lock it again and continue. Nothing much can change because
361 we hold c->alloc_sem anyway. In fact, it's not entirely clear why
362 we hold c->erase_completion_lock in the majority of this function...
363 but that's a question for another (more caffeine-rich) day. */
364 spin_lock(&c->erase_completion_lock);
365
366 waste = jeb->free_size;
367 jffs2_link_node_ref(c, jeb,
368 (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
369 waste, NULL);
370 /* FIXME: that made it count as dirty. Convert to wasted */
371 jeb->dirty_size -= waste;
372 c->dirty_size -= waste;
373 jeb->wasted_size += waste;
374 c->wasted_size += waste;
375
376 jffs2_close_nextblock(c, jeb);
377 jeb = NULL;
378 }
379 }
380
381 if (!jeb) {
382
383 ret = jffs2_find_nextblock(c);
384 if (ret)
385 return ret;
386
387 jeb = c->nextblock;
388
389 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
390 printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
391 goto restart;
392 }
393 }
394 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
395 enough space */
396 *len = jeb->free_size - reserved_size;
397
398 if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
399 !jeb->first_node->next_in_ino) {
400 /* Only node in it beforehand was a CLEANMARKER node (we think).
401 So mark it obsolete now that there's going to be another node
402 in the block. This will reduce used_size to zero but We've
403 already set c->nextblock so that jffs2_mark_node_obsolete()
404 won't try to refile it to the dirty_list.
405 */
406 spin_unlock(&c->erase_completion_lock);
407 jffs2_mark_node_obsolete(c, jeb->first_node);
408 spin_lock(&c->erase_completion_lock);
409 }
410
411 D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
412 *len, jeb->offset + (c->sector_size - jeb->free_size)));
413 return 0;
414}
415
416/**
417 * jffs2_add_physical_node_ref - add a physical node reference to the list
418 * @c: superblock info
419 * @new: new node reference to add
420 * @len: length of this physical node
421 *
422 * Should only be used to report nodes for which space has been allocated
423 * by jffs2_reserve_space.
424 *
425 * Must be called with the alloc_sem held.
426 */
427
428struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
429 uint32_t ofs, uint32_t len,
430 struct jffs2_inode_cache *ic)
431{
432 struct jffs2_eraseblock *jeb;
433 struct jffs2_raw_node_ref *new;
434
435 jeb = &c->blocks[ofs / c->sector_size];
436
437 D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
438 ofs & ~3, ofs & 3, len));
439#if 1
440 /* Allow non-obsolete nodes only to be added at the end of c->nextblock,
441 if c->nextblock is set. Note that wbuf.c will file obsolete nodes
442 even after refiling c->nextblock */
443 if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
444 && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
445 printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
446 if (c->nextblock)
447 printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
448 else
449 printk(KERN_WARNING "No nextblock");
450 printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
451 return ERR_PTR(-EINVAL);
452 }
453#endif
454 spin_lock(&c->erase_completion_lock);
455
456 new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
457
458 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
459 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
460 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
461 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
462 if (jffs2_wbuf_dirty(c)) {
463 /* Flush the last write in the block if it's outstanding */
464 spin_unlock(&c->erase_completion_lock);
465 jffs2_flush_wbuf_pad(c);
466 spin_lock(&c->erase_completion_lock);
467 }
468
469 list_add_tail(&jeb->list, &c->clean_list);
470 c->nextblock = NULL;
471 }
472 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
473 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
474
475 spin_unlock(&c->erase_completion_lock);
476
477 return new;
478}
479
480
481void jffs2_complete_reservation(struct jffs2_sb_info *c)
482{
483 D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
484 jffs2_garbage_collect_trigger(c);
485 mutex_unlock(&c->alloc_sem);
486}
487
488static inline int on_list(struct list_head *obj, struct list_head *head)
489{
490 struct list_head *this;
491
492 list_for_each(this, head) {
493 if (this == obj) {
494 D1(printk("%p is on list at %p\n", obj, head));
495 return 1;
496
497 }
498 }
499 return 0;
500}
501
502void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
503{
504 struct jffs2_eraseblock *jeb;
505 int blocknr;
506 struct jffs2_unknown_node n;
507 int ret, addedsize;
508 size_t retlen;
509 uint32_t freed_len;
510
511 if(unlikely(!ref)) {
512 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
513 return;
514 }
515 if (ref_obsolete(ref)) {
516 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
517 return;
518 }
519 blocknr = ref->flash_offset / c->sector_size;
520 if (blocknr >= c->nr_blocks) {
521 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
522 BUG();
523 }
524 jeb = &c->blocks[blocknr];
525
526 if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
527 !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
528 /* Hm. This may confuse static lock analysis. If any of the above
529 three conditions is false, we're going to return from this
530 function without actually obliterating any nodes or freeing
531 any jffs2_raw_node_refs. So we don't need to stop erases from
532 happening, or protect against people holding an obsolete
533 jffs2_raw_node_ref without the erase_completion_lock. */
534 mutex_lock(&c->erase_free_sem);
535 }
536
537 spin_lock(&c->erase_completion_lock);
538
539 freed_len = ref_totlen(c, jeb, ref);
540
541 if (ref_flags(ref) == REF_UNCHECKED) {
542 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
543 printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
544 freed_len, blocknr, ref->flash_offset, jeb->used_size);
545 BUG();
546 })
547 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
548 jeb->unchecked_size -= freed_len;
549 c->unchecked_size -= freed_len;
550 } else {
551 D1(if (unlikely(jeb->used_size < freed_len)) {
552 printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
553 freed_len, blocknr, ref->flash_offset, jeb->used_size);
554 BUG();
555 })
556 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
557 jeb->used_size -= freed_len;
558 c->used_size -= freed_len;
559 }
560
561 // Take care, that wasted size is taken into concern
562 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
563 D1(printk("Dirtying\n"));
564 addedsize = freed_len;
565 jeb->dirty_size += freed_len;
566 c->dirty_size += freed_len;
567
568 /* Convert wasted space to dirty, if not a bad block */
569 if (jeb->wasted_size) {
570 if (on_list(&jeb->list, &c->bad_used_list)) {
571 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
572 jeb->offset));
573 addedsize = 0; /* To fool the refiling code later */
574 } else {
575 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
576 jeb->wasted_size, jeb->offset));
577 addedsize += jeb->wasted_size;
578 jeb->dirty_size += jeb->wasted_size;
579 c->dirty_size += jeb->wasted_size;
580 c->wasted_size -= jeb->wasted_size;
581 jeb->wasted_size = 0;
582 }
583 }
584 } else {
585 D1(printk("Wasting\n"));
586 addedsize = 0;
587 jeb->wasted_size += freed_len;
588 c->wasted_size += freed_len;
589 }
590 ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
591
592 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
593 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
594
595 if (c->flags & JFFS2_SB_FLAG_SCANNING) {
596 /* Flash scanning is in progress. Don't muck about with the block
597 lists because they're not ready yet, and don't actually
598 obliterate nodes that look obsolete. If they weren't
599 marked obsolete on the flash at the time they _became_
600 obsolete, there was probably a reason for that. */
601 spin_unlock(&c->erase_completion_lock);
602 /* We didn't lock the erase_free_sem */
603 return;
604 }
605
606 if (jeb == c->nextblock) {
607 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
608 } else if (!jeb->used_size && !jeb->unchecked_size) {
609 if (jeb == c->gcblock) {
610 D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
611 c->gcblock = NULL;
612 } else {
613 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
614 list_del(&jeb->list);
615 }
616 if (jffs2_wbuf_dirty(c)) {
617 D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
618 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
619 } else {
620 if (jiffies & 127) {
621 /* Most of the time, we just erase it immediately. Otherwise we
622 spend ages scanning it on mount, etc. */
623 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
624 list_add_tail(&jeb->list, &c->erase_pending_list);
625 c->nr_erasing_blocks++;
626 jffs2_erase_pending_trigger(c);
627 } else {
628 /* Sometimes, however, we leave it elsewhere so it doesn't get
629 immediately reused, and we spread the load a bit. */
630 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
631 list_add_tail(&jeb->list, &c->erasable_list);
632 }
633 }
634 D1(printk(KERN_DEBUG "Done OK\n"));
635 } else if (jeb == c->gcblock) {
636 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
637 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
638 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
639 list_del(&jeb->list);
640 D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
641 list_add_tail(&jeb->list, &c->dirty_list);
642 } else if (VERYDIRTY(c, jeb->dirty_size) &&
643 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
644 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
645 list_del(&jeb->list);
646 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
647 list_add_tail(&jeb->list, &c->very_dirty_list);
648 } else {
649 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
650 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
651 }
652
653 spin_unlock(&c->erase_completion_lock);
654
655 if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
656 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
657 /* We didn't lock the erase_free_sem */
658 return;
659 }
660
661 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
662 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
663 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
664 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
665
666 D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
667 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
668 if (ret) {
669 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
670 goto out_erase_sem;
671 }
672 if (retlen != sizeof(n)) {
673 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
674 goto out_erase_sem;
675 }
676 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
677 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
678 goto out_erase_sem;
679 }
680 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
681 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
682 goto out_erase_sem;
683 }
684 /* XXX FIXME: This is ugly now */
685 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
686 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
687 if (ret) {
688 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
689 goto out_erase_sem;
690 }
691 if (retlen != sizeof(n)) {
692 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
693 goto out_erase_sem;
694 }
695
696 /* Nodes which have been marked obsolete no longer need to be
697 associated with any inode. Remove them from the per-inode list.
698
699 Note we can't do this for NAND at the moment because we need
700 obsolete dirent nodes to stay on the lists, because of the
701 horridness in jffs2_garbage_collect_deletion_dirent(). Also
702 because we delete the inocache, and on NAND we need that to
703 stay around until all the nodes are actually erased, in order
704 to stop us from giving the same inode number to another newly
705 created inode. */
706 if (ref->next_in_ino) {
707 struct jffs2_inode_cache *ic;
708 struct jffs2_raw_node_ref **p;
709
710 spin_lock(&c->erase_completion_lock);
711
712 ic = jffs2_raw_ref_to_ic(ref);
713 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
714 ;
715
716 *p = ref->next_in_ino;
717 ref->next_in_ino = NULL;
718
719 switch (ic->class) {
720#ifdef CONFIG_JFFS2_FS_XATTR
721 case RAWNODE_CLASS_XATTR_DATUM:
722 jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
723 break;
724 case RAWNODE_CLASS_XATTR_REF:
725 jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
726 break;
727#endif
728 default:
729 if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
730 jffs2_del_ino_cache(c, ic);
731 break;
732 }
733 spin_unlock(&c->erase_completion_lock);
734 }
735
736 out_erase_sem:
737 mutex_unlock(&c->erase_free_sem);
738}
739
740int jffs2_thread_should_wake(struct jffs2_sb_info *c)
741{
742 int ret = 0;
743 uint32_t dirty;
744 int nr_very_dirty = 0;
745 struct jffs2_eraseblock *jeb;
746
747 if (c->unchecked_size) {
748 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
749 c->unchecked_size, c->checked_ino));
750 return 1;
751 }
752
753 /* dirty_size contains blocks on erase_pending_list
754 * those blocks are counted in c->nr_erasing_blocks.
755 * If one block is actually erased, it is not longer counted as dirty_space
756 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
757 * with c->nr_erasing_blocks * c->sector_size again.
758 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
759 * This helps us to force gc and pick eventually a clean block to spread the load.
760 */
761 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
762
763 if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
764 (dirty > c->nospc_dirty_size))
765 ret = 1;
766
767 list_for_each_entry(jeb, &c->very_dirty_list, list) {
768 nr_very_dirty++;
769 if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
770 ret = 1;
771 /* In debug mode, actually go through and count them all */
772 D1(continue);
773 break;
774 }
775 }
776
777 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
778 c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
779
780 return ret;
781}
This page took 0.030077 seconds and 5 git commands to generate.