mm/slab.c: add a helper function get_first_slab
[deliverable/linux.git] / fs / kernfs / dir.c
... / ...
CommitLineData
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11#include <linux/sched.h>
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
21DEFINE_MUTEX(kernfs_mutex);
22static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24
25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45}
46
47static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
49{
50 char *p = buf + buflen;
51 int len;
52
53 *--p = '\0';
54
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
61 }
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
67
68 return p;
69}
70
71/**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
83int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84{
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
92}
93
94/**
95 * kernfs_path_len - determine the length of the full path of a given node
96 * @kn: kernfs_node of interest
97 *
98 * The returned length doesn't include the space for the terminating '\0'.
99 */
100size_t kernfs_path_len(struct kernfs_node *kn)
101{
102 size_t len = 0;
103 unsigned long flags;
104
105 spin_lock_irqsave(&kernfs_rename_lock, flags);
106
107 do {
108 len += strlen(kn->name) + 1;
109 kn = kn->parent;
110 } while (kn && kn->parent);
111
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113
114 return len;
115}
116
117/**
118 * kernfs_path - build full path of a given node
119 * @kn: kernfs_node of interest
120 * @buf: buffer to copy @kn's name into
121 * @buflen: size of @buf
122 *
123 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
124 * path is built from the end of @buf so the returned pointer usually
125 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
126 * and %NULL is returned.
127 */
128char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
129{
130 unsigned long flags;
131 char *p;
132
133 spin_lock_irqsave(&kernfs_rename_lock, flags);
134 p = kernfs_path_locked(kn, buf, buflen);
135 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 return p;
137}
138EXPORT_SYMBOL_GPL(kernfs_path);
139
140/**
141 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
142 * @kn: kernfs_node of interest
143 *
144 * This function can be called from any context.
145 */
146void pr_cont_kernfs_name(struct kernfs_node *kn)
147{
148 unsigned long flags;
149
150 spin_lock_irqsave(&kernfs_rename_lock, flags);
151
152 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
153 pr_cont("%s", kernfs_pr_cont_buf);
154
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156}
157
158/**
159 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
160 * @kn: kernfs_node of interest
161 *
162 * This function can be called from any context.
163 */
164void pr_cont_kernfs_path(struct kernfs_node *kn)
165{
166 unsigned long flags;
167 char *p;
168
169 spin_lock_irqsave(&kernfs_rename_lock, flags);
170
171 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
172 sizeof(kernfs_pr_cont_buf));
173 if (p)
174 pr_cont("%s", p);
175 else
176 pr_cont("<name too long>");
177
178 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
179}
180
181/**
182 * kernfs_get_parent - determine the parent node and pin it
183 * @kn: kernfs_node of interest
184 *
185 * Determines @kn's parent, pins and returns it. This function can be
186 * called from any context.
187 */
188struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
189{
190 struct kernfs_node *parent;
191 unsigned long flags;
192
193 spin_lock_irqsave(&kernfs_rename_lock, flags);
194 parent = kn->parent;
195 kernfs_get(parent);
196 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
197
198 return parent;
199}
200
201/**
202 * kernfs_name_hash
203 * @name: Null terminated string to hash
204 * @ns: Namespace tag to hash
205 *
206 * Returns 31 bit hash of ns + name (so it fits in an off_t )
207 */
208static unsigned int kernfs_name_hash(const char *name, const void *ns)
209{
210 unsigned long hash = init_name_hash();
211 unsigned int len = strlen(name);
212 while (len--)
213 hash = partial_name_hash(*name++, hash);
214 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
215 hash &= 0x7fffffffU;
216 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
217 if (hash < 2)
218 hash += 2;
219 if (hash >= INT_MAX)
220 hash = INT_MAX - 1;
221 return hash;
222}
223
224static int kernfs_name_compare(unsigned int hash, const char *name,
225 const void *ns, const struct kernfs_node *kn)
226{
227 if (hash < kn->hash)
228 return -1;
229 if (hash > kn->hash)
230 return 1;
231 if (ns < kn->ns)
232 return -1;
233 if (ns > kn->ns)
234 return 1;
235 return strcmp(name, kn->name);
236}
237
238static int kernfs_sd_compare(const struct kernfs_node *left,
239 const struct kernfs_node *right)
240{
241 return kernfs_name_compare(left->hash, left->name, left->ns, right);
242}
243
244/**
245 * kernfs_link_sibling - link kernfs_node into sibling rbtree
246 * @kn: kernfs_node of interest
247 *
248 * Link @kn into its sibling rbtree which starts from
249 * @kn->parent->dir.children.
250 *
251 * Locking:
252 * mutex_lock(kernfs_mutex)
253 *
254 * RETURNS:
255 * 0 on susccess -EEXIST on failure.
256 */
257static int kernfs_link_sibling(struct kernfs_node *kn)
258{
259 struct rb_node **node = &kn->parent->dir.children.rb_node;
260 struct rb_node *parent = NULL;
261
262 while (*node) {
263 struct kernfs_node *pos;
264 int result;
265
266 pos = rb_to_kn(*node);
267 parent = *node;
268 result = kernfs_sd_compare(kn, pos);
269 if (result < 0)
270 node = &pos->rb.rb_left;
271 else if (result > 0)
272 node = &pos->rb.rb_right;
273 else
274 return -EEXIST;
275 }
276
277 /* add new node and rebalance the tree */
278 rb_link_node(&kn->rb, parent, node);
279 rb_insert_color(&kn->rb, &kn->parent->dir.children);
280
281 /* successfully added, account subdir number */
282 if (kernfs_type(kn) == KERNFS_DIR)
283 kn->parent->dir.subdirs++;
284
285 return 0;
286}
287
288/**
289 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
290 * @kn: kernfs_node of interest
291 *
292 * Try to unlink @kn from its sibling rbtree which starts from
293 * kn->parent->dir.children. Returns %true if @kn was actually
294 * removed, %false if @kn wasn't on the rbtree.
295 *
296 * Locking:
297 * mutex_lock(kernfs_mutex)
298 */
299static bool kernfs_unlink_sibling(struct kernfs_node *kn)
300{
301 if (RB_EMPTY_NODE(&kn->rb))
302 return false;
303
304 if (kernfs_type(kn) == KERNFS_DIR)
305 kn->parent->dir.subdirs--;
306
307 rb_erase(&kn->rb, &kn->parent->dir.children);
308 RB_CLEAR_NODE(&kn->rb);
309 return true;
310}
311
312/**
313 * kernfs_get_active - get an active reference to kernfs_node
314 * @kn: kernfs_node to get an active reference to
315 *
316 * Get an active reference of @kn. This function is noop if @kn
317 * is NULL.
318 *
319 * RETURNS:
320 * Pointer to @kn on success, NULL on failure.
321 */
322struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
323{
324 if (unlikely(!kn))
325 return NULL;
326
327 if (!atomic_inc_unless_negative(&kn->active))
328 return NULL;
329
330 if (kernfs_lockdep(kn))
331 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
332 return kn;
333}
334
335/**
336 * kernfs_put_active - put an active reference to kernfs_node
337 * @kn: kernfs_node to put an active reference to
338 *
339 * Put an active reference to @kn. This function is noop if @kn
340 * is NULL.
341 */
342void kernfs_put_active(struct kernfs_node *kn)
343{
344 struct kernfs_root *root = kernfs_root(kn);
345 int v;
346
347 if (unlikely(!kn))
348 return;
349
350 if (kernfs_lockdep(kn))
351 rwsem_release(&kn->dep_map, 1, _RET_IP_);
352 v = atomic_dec_return(&kn->active);
353 if (likely(v != KN_DEACTIVATED_BIAS))
354 return;
355
356 wake_up_all(&root->deactivate_waitq);
357}
358
359/**
360 * kernfs_drain - drain kernfs_node
361 * @kn: kernfs_node to drain
362 *
363 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
364 * removers may invoke this function concurrently on @kn and all will
365 * return after draining is complete.
366 */
367static void kernfs_drain(struct kernfs_node *kn)
368 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
369{
370 struct kernfs_root *root = kernfs_root(kn);
371
372 lockdep_assert_held(&kernfs_mutex);
373 WARN_ON_ONCE(kernfs_active(kn));
374
375 mutex_unlock(&kernfs_mutex);
376
377 if (kernfs_lockdep(kn)) {
378 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
379 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
380 lock_contended(&kn->dep_map, _RET_IP_);
381 }
382
383 /* but everyone should wait for draining */
384 wait_event(root->deactivate_waitq,
385 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
386
387 if (kernfs_lockdep(kn)) {
388 lock_acquired(&kn->dep_map, _RET_IP_);
389 rwsem_release(&kn->dep_map, 1, _RET_IP_);
390 }
391
392 kernfs_unmap_bin_file(kn);
393
394 mutex_lock(&kernfs_mutex);
395}
396
397/**
398 * kernfs_get - get a reference count on a kernfs_node
399 * @kn: the target kernfs_node
400 */
401void kernfs_get(struct kernfs_node *kn)
402{
403 if (kn) {
404 WARN_ON(!atomic_read(&kn->count));
405 atomic_inc(&kn->count);
406 }
407}
408EXPORT_SYMBOL_GPL(kernfs_get);
409
410/**
411 * kernfs_put - put a reference count on a kernfs_node
412 * @kn: the target kernfs_node
413 *
414 * Put a reference count of @kn and destroy it if it reached zero.
415 */
416void kernfs_put(struct kernfs_node *kn)
417{
418 struct kernfs_node *parent;
419 struct kernfs_root *root;
420
421 if (!kn || !atomic_dec_and_test(&kn->count))
422 return;
423 root = kernfs_root(kn);
424 repeat:
425 /*
426 * Moving/renaming is always done while holding reference.
427 * kn->parent won't change beneath us.
428 */
429 parent = kn->parent;
430
431 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
432 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
433 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
434
435 if (kernfs_type(kn) == KERNFS_LINK)
436 kernfs_put(kn->symlink.target_kn);
437
438 kfree_const(kn->name);
439
440 if (kn->iattr) {
441 if (kn->iattr->ia_secdata)
442 security_release_secctx(kn->iattr->ia_secdata,
443 kn->iattr->ia_secdata_len);
444 simple_xattrs_free(&kn->iattr->xattrs);
445 }
446 kfree(kn->iattr);
447 ida_simple_remove(&root->ino_ida, kn->ino);
448 kmem_cache_free(kernfs_node_cache, kn);
449
450 kn = parent;
451 if (kn) {
452 if (atomic_dec_and_test(&kn->count))
453 goto repeat;
454 } else {
455 /* just released the root kn, free @root too */
456 ida_destroy(&root->ino_ida);
457 kfree(root);
458 }
459}
460EXPORT_SYMBOL_GPL(kernfs_put);
461
462static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
463{
464 struct kernfs_node *kn;
465
466 if (flags & LOOKUP_RCU)
467 return -ECHILD;
468
469 /* Always perform fresh lookup for negatives */
470 if (d_really_is_negative(dentry))
471 goto out_bad_unlocked;
472
473 kn = dentry->d_fsdata;
474 mutex_lock(&kernfs_mutex);
475
476 /* The kernfs node has been deactivated */
477 if (!kernfs_active(kn))
478 goto out_bad;
479
480 /* The kernfs node has been moved? */
481 if (dentry->d_parent->d_fsdata != kn->parent)
482 goto out_bad;
483
484 /* The kernfs node has been renamed */
485 if (strcmp(dentry->d_name.name, kn->name) != 0)
486 goto out_bad;
487
488 /* The kernfs node has been moved to a different namespace */
489 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
490 kernfs_info(dentry->d_sb)->ns != kn->ns)
491 goto out_bad;
492
493 mutex_unlock(&kernfs_mutex);
494 return 1;
495out_bad:
496 mutex_unlock(&kernfs_mutex);
497out_bad_unlocked:
498 return 0;
499}
500
501static void kernfs_dop_release(struct dentry *dentry)
502{
503 kernfs_put(dentry->d_fsdata);
504}
505
506const struct dentry_operations kernfs_dops = {
507 .d_revalidate = kernfs_dop_revalidate,
508 .d_release = kernfs_dop_release,
509};
510
511/**
512 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
513 * @dentry: the dentry in question
514 *
515 * Return the kernfs_node associated with @dentry. If @dentry is not a
516 * kernfs one, %NULL is returned.
517 *
518 * While the returned kernfs_node will stay accessible as long as @dentry
519 * is accessible, the returned node can be in any state and the caller is
520 * fully responsible for determining what's accessible.
521 */
522struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
523{
524 if (dentry->d_sb->s_op == &kernfs_sops)
525 return dentry->d_fsdata;
526 return NULL;
527}
528
529static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
530 const char *name, umode_t mode,
531 unsigned flags)
532{
533 struct kernfs_node *kn;
534 int ret;
535
536 name = kstrdup_const(name, GFP_KERNEL);
537 if (!name)
538 return NULL;
539
540 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
541 if (!kn)
542 goto err_out1;
543
544 /*
545 * If the ino of the sysfs entry created for a kmem cache gets
546 * allocated from an ida layer, which is accounted to the memcg that
547 * owns the cache, the memcg will get pinned forever. So do not account
548 * ino ida allocations.
549 */
550 ret = ida_simple_get(&root->ino_ida, 1, 0,
551 GFP_KERNEL | __GFP_NOACCOUNT);
552 if (ret < 0)
553 goto err_out2;
554 kn->ino = ret;
555
556 atomic_set(&kn->count, 1);
557 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
558 RB_CLEAR_NODE(&kn->rb);
559
560 kn->name = name;
561 kn->mode = mode;
562 kn->flags = flags;
563
564 return kn;
565
566 err_out2:
567 kmem_cache_free(kernfs_node_cache, kn);
568 err_out1:
569 kfree_const(name);
570 return NULL;
571}
572
573struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
574 const char *name, umode_t mode,
575 unsigned flags)
576{
577 struct kernfs_node *kn;
578
579 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
580 if (kn) {
581 kernfs_get(parent);
582 kn->parent = parent;
583 }
584 return kn;
585}
586
587/**
588 * kernfs_add_one - add kernfs_node to parent without warning
589 * @kn: kernfs_node to be added
590 *
591 * The caller must already have initialized @kn->parent. This
592 * function increments nlink of the parent's inode if @kn is a
593 * directory and link into the children list of the parent.
594 *
595 * RETURNS:
596 * 0 on success, -EEXIST if entry with the given name already
597 * exists.
598 */
599int kernfs_add_one(struct kernfs_node *kn)
600{
601 struct kernfs_node *parent = kn->parent;
602 struct kernfs_iattrs *ps_iattr;
603 bool has_ns;
604 int ret;
605
606 mutex_lock(&kernfs_mutex);
607
608 ret = -EINVAL;
609 has_ns = kernfs_ns_enabled(parent);
610 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
611 has_ns ? "required" : "invalid", parent->name, kn->name))
612 goto out_unlock;
613
614 if (kernfs_type(parent) != KERNFS_DIR)
615 goto out_unlock;
616
617 ret = -ENOENT;
618 if (parent->flags & KERNFS_EMPTY_DIR)
619 goto out_unlock;
620
621 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
622 goto out_unlock;
623
624 kn->hash = kernfs_name_hash(kn->name, kn->ns);
625
626 ret = kernfs_link_sibling(kn);
627 if (ret)
628 goto out_unlock;
629
630 /* Update timestamps on the parent */
631 ps_iattr = parent->iattr;
632 if (ps_iattr) {
633 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
634 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
635 }
636
637 mutex_unlock(&kernfs_mutex);
638
639 /*
640 * Activate the new node unless CREATE_DEACTIVATED is requested.
641 * If not activated here, the kernfs user is responsible for
642 * activating the node with kernfs_activate(). A node which hasn't
643 * been activated is not visible to userland and its removal won't
644 * trigger deactivation.
645 */
646 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
647 kernfs_activate(kn);
648 return 0;
649
650out_unlock:
651 mutex_unlock(&kernfs_mutex);
652 return ret;
653}
654
655/**
656 * kernfs_find_ns - find kernfs_node with the given name
657 * @parent: kernfs_node to search under
658 * @name: name to look for
659 * @ns: the namespace tag to use
660 *
661 * Look for kernfs_node with name @name under @parent. Returns pointer to
662 * the found kernfs_node on success, %NULL on failure.
663 */
664static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
665 const unsigned char *name,
666 const void *ns)
667{
668 struct rb_node *node = parent->dir.children.rb_node;
669 bool has_ns = kernfs_ns_enabled(parent);
670 unsigned int hash;
671
672 lockdep_assert_held(&kernfs_mutex);
673
674 if (has_ns != (bool)ns) {
675 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
676 has_ns ? "required" : "invalid", parent->name, name);
677 return NULL;
678 }
679
680 hash = kernfs_name_hash(name, ns);
681 while (node) {
682 struct kernfs_node *kn;
683 int result;
684
685 kn = rb_to_kn(node);
686 result = kernfs_name_compare(hash, name, ns, kn);
687 if (result < 0)
688 node = node->rb_left;
689 else if (result > 0)
690 node = node->rb_right;
691 else
692 return kn;
693 }
694 return NULL;
695}
696
697static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
698 const unsigned char *path,
699 const void *ns)
700{
701 static char path_buf[PATH_MAX]; /* protected by kernfs_mutex */
702 size_t len = strlcpy(path_buf, path, PATH_MAX);
703 char *p = path_buf;
704 char *name;
705
706 lockdep_assert_held(&kernfs_mutex);
707
708 if (len >= PATH_MAX)
709 return NULL;
710
711 while ((name = strsep(&p, "/")) && parent) {
712 if (*name == '\0')
713 continue;
714 parent = kernfs_find_ns(parent, name, ns);
715 }
716
717 return parent;
718}
719
720/**
721 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
722 * @parent: kernfs_node to search under
723 * @name: name to look for
724 * @ns: the namespace tag to use
725 *
726 * Look for kernfs_node with name @name under @parent and get a reference
727 * if found. This function may sleep and returns pointer to the found
728 * kernfs_node on success, %NULL on failure.
729 */
730struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
731 const char *name, const void *ns)
732{
733 struct kernfs_node *kn;
734
735 mutex_lock(&kernfs_mutex);
736 kn = kernfs_find_ns(parent, name, ns);
737 kernfs_get(kn);
738 mutex_unlock(&kernfs_mutex);
739
740 return kn;
741}
742EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
743
744/**
745 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
746 * @parent: kernfs_node to search under
747 * @path: path to look for
748 * @ns: the namespace tag to use
749 *
750 * Look for kernfs_node with path @path under @parent and get a reference
751 * if found. This function may sleep and returns pointer to the found
752 * kernfs_node on success, %NULL on failure.
753 */
754struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
755 const char *path, const void *ns)
756{
757 struct kernfs_node *kn;
758
759 mutex_lock(&kernfs_mutex);
760 kn = kernfs_walk_ns(parent, path, ns);
761 kernfs_get(kn);
762 mutex_unlock(&kernfs_mutex);
763
764 return kn;
765}
766
767/**
768 * kernfs_create_root - create a new kernfs hierarchy
769 * @scops: optional syscall operations for the hierarchy
770 * @flags: KERNFS_ROOT_* flags
771 * @priv: opaque data associated with the new directory
772 *
773 * Returns the root of the new hierarchy on success, ERR_PTR() value on
774 * failure.
775 */
776struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
777 unsigned int flags, void *priv)
778{
779 struct kernfs_root *root;
780 struct kernfs_node *kn;
781
782 root = kzalloc(sizeof(*root), GFP_KERNEL);
783 if (!root)
784 return ERR_PTR(-ENOMEM);
785
786 ida_init(&root->ino_ida);
787 INIT_LIST_HEAD(&root->supers);
788
789 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
790 KERNFS_DIR);
791 if (!kn) {
792 ida_destroy(&root->ino_ida);
793 kfree(root);
794 return ERR_PTR(-ENOMEM);
795 }
796
797 kn->priv = priv;
798 kn->dir.root = root;
799
800 root->syscall_ops = scops;
801 root->flags = flags;
802 root->kn = kn;
803 init_waitqueue_head(&root->deactivate_waitq);
804
805 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
806 kernfs_activate(kn);
807
808 return root;
809}
810
811/**
812 * kernfs_destroy_root - destroy a kernfs hierarchy
813 * @root: root of the hierarchy to destroy
814 *
815 * Destroy the hierarchy anchored at @root by removing all existing
816 * directories and destroying @root.
817 */
818void kernfs_destroy_root(struct kernfs_root *root)
819{
820 kernfs_remove(root->kn); /* will also free @root */
821}
822
823/**
824 * kernfs_create_dir_ns - create a directory
825 * @parent: parent in which to create a new directory
826 * @name: name of the new directory
827 * @mode: mode of the new directory
828 * @priv: opaque data associated with the new directory
829 * @ns: optional namespace tag of the directory
830 *
831 * Returns the created node on success, ERR_PTR() value on failure.
832 */
833struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
834 const char *name, umode_t mode,
835 void *priv, const void *ns)
836{
837 struct kernfs_node *kn;
838 int rc;
839
840 /* allocate */
841 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
842 if (!kn)
843 return ERR_PTR(-ENOMEM);
844
845 kn->dir.root = parent->dir.root;
846 kn->ns = ns;
847 kn->priv = priv;
848
849 /* link in */
850 rc = kernfs_add_one(kn);
851 if (!rc)
852 return kn;
853
854 kernfs_put(kn);
855 return ERR_PTR(rc);
856}
857
858/**
859 * kernfs_create_empty_dir - create an always empty directory
860 * @parent: parent in which to create a new directory
861 * @name: name of the new directory
862 *
863 * Returns the created node on success, ERR_PTR() value on failure.
864 */
865struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
866 const char *name)
867{
868 struct kernfs_node *kn;
869 int rc;
870
871 /* allocate */
872 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
873 if (!kn)
874 return ERR_PTR(-ENOMEM);
875
876 kn->flags |= KERNFS_EMPTY_DIR;
877 kn->dir.root = parent->dir.root;
878 kn->ns = NULL;
879 kn->priv = NULL;
880
881 /* link in */
882 rc = kernfs_add_one(kn);
883 if (!rc)
884 return kn;
885
886 kernfs_put(kn);
887 return ERR_PTR(rc);
888}
889
890static struct dentry *kernfs_iop_lookup(struct inode *dir,
891 struct dentry *dentry,
892 unsigned int flags)
893{
894 struct dentry *ret;
895 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
896 struct kernfs_node *kn;
897 struct inode *inode;
898 const void *ns = NULL;
899
900 mutex_lock(&kernfs_mutex);
901
902 if (kernfs_ns_enabled(parent))
903 ns = kernfs_info(dir->i_sb)->ns;
904
905 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
906
907 /* no such entry */
908 if (!kn || !kernfs_active(kn)) {
909 ret = NULL;
910 goto out_unlock;
911 }
912 kernfs_get(kn);
913 dentry->d_fsdata = kn;
914
915 /* attach dentry and inode */
916 inode = kernfs_get_inode(dir->i_sb, kn);
917 if (!inode) {
918 ret = ERR_PTR(-ENOMEM);
919 goto out_unlock;
920 }
921
922 /* instantiate and hash dentry */
923 ret = d_splice_alias(inode, dentry);
924 out_unlock:
925 mutex_unlock(&kernfs_mutex);
926 return ret;
927}
928
929static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
930 umode_t mode)
931{
932 struct kernfs_node *parent = dir->i_private;
933 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
934 int ret;
935
936 if (!scops || !scops->mkdir)
937 return -EPERM;
938
939 if (!kernfs_get_active(parent))
940 return -ENODEV;
941
942 ret = scops->mkdir(parent, dentry->d_name.name, mode);
943
944 kernfs_put_active(parent);
945 return ret;
946}
947
948static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
949{
950 struct kernfs_node *kn = dentry->d_fsdata;
951 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
952 int ret;
953
954 if (!scops || !scops->rmdir)
955 return -EPERM;
956
957 if (!kernfs_get_active(kn))
958 return -ENODEV;
959
960 ret = scops->rmdir(kn);
961
962 kernfs_put_active(kn);
963 return ret;
964}
965
966static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
967 struct inode *new_dir, struct dentry *new_dentry)
968{
969 struct kernfs_node *kn = old_dentry->d_fsdata;
970 struct kernfs_node *new_parent = new_dir->i_private;
971 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
972 int ret;
973
974 if (!scops || !scops->rename)
975 return -EPERM;
976
977 if (!kernfs_get_active(kn))
978 return -ENODEV;
979
980 if (!kernfs_get_active(new_parent)) {
981 kernfs_put_active(kn);
982 return -ENODEV;
983 }
984
985 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
986
987 kernfs_put_active(new_parent);
988 kernfs_put_active(kn);
989 return ret;
990}
991
992const struct inode_operations kernfs_dir_iops = {
993 .lookup = kernfs_iop_lookup,
994 .permission = kernfs_iop_permission,
995 .setattr = kernfs_iop_setattr,
996 .getattr = kernfs_iop_getattr,
997 .setxattr = kernfs_iop_setxattr,
998 .removexattr = kernfs_iop_removexattr,
999 .getxattr = kernfs_iop_getxattr,
1000 .listxattr = kernfs_iop_listxattr,
1001
1002 .mkdir = kernfs_iop_mkdir,
1003 .rmdir = kernfs_iop_rmdir,
1004 .rename = kernfs_iop_rename,
1005};
1006
1007static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1008{
1009 struct kernfs_node *last;
1010
1011 while (true) {
1012 struct rb_node *rbn;
1013
1014 last = pos;
1015
1016 if (kernfs_type(pos) != KERNFS_DIR)
1017 break;
1018
1019 rbn = rb_first(&pos->dir.children);
1020 if (!rbn)
1021 break;
1022
1023 pos = rb_to_kn(rbn);
1024 }
1025
1026 return last;
1027}
1028
1029/**
1030 * kernfs_next_descendant_post - find the next descendant for post-order walk
1031 * @pos: the current position (%NULL to initiate traversal)
1032 * @root: kernfs_node whose descendants to walk
1033 *
1034 * Find the next descendant to visit for post-order traversal of @root's
1035 * descendants. @root is included in the iteration and the last node to be
1036 * visited.
1037 */
1038static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1039 struct kernfs_node *root)
1040{
1041 struct rb_node *rbn;
1042
1043 lockdep_assert_held(&kernfs_mutex);
1044
1045 /* if first iteration, visit leftmost descendant which may be root */
1046 if (!pos)
1047 return kernfs_leftmost_descendant(root);
1048
1049 /* if we visited @root, we're done */
1050 if (pos == root)
1051 return NULL;
1052
1053 /* if there's an unvisited sibling, visit its leftmost descendant */
1054 rbn = rb_next(&pos->rb);
1055 if (rbn)
1056 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1057
1058 /* no sibling left, visit parent */
1059 return pos->parent;
1060}
1061
1062/**
1063 * kernfs_activate - activate a node which started deactivated
1064 * @kn: kernfs_node whose subtree is to be activated
1065 *
1066 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1067 * needs to be explicitly activated. A node which hasn't been activated
1068 * isn't visible to userland and deactivation is skipped during its
1069 * removal. This is useful to construct atomic init sequences where
1070 * creation of multiple nodes should either succeed or fail atomically.
1071 *
1072 * The caller is responsible for ensuring that this function is not called
1073 * after kernfs_remove*() is invoked on @kn.
1074 */
1075void kernfs_activate(struct kernfs_node *kn)
1076{
1077 struct kernfs_node *pos;
1078
1079 mutex_lock(&kernfs_mutex);
1080
1081 pos = NULL;
1082 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1083 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1084 continue;
1085
1086 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1087 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1088
1089 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1090 pos->flags |= KERNFS_ACTIVATED;
1091 }
1092
1093 mutex_unlock(&kernfs_mutex);
1094}
1095
1096static void __kernfs_remove(struct kernfs_node *kn)
1097{
1098 struct kernfs_node *pos;
1099
1100 lockdep_assert_held(&kernfs_mutex);
1101
1102 /*
1103 * Short-circuit if non-root @kn has already finished removal.
1104 * This is for kernfs_remove_self() which plays with active ref
1105 * after removal.
1106 */
1107 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1108 return;
1109
1110 pr_debug("kernfs %s: removing\n", kn->name);
1111
1112 /* prevent any new usage under @kn by deactivating all nodes */
1113 pos = NULL;
1114 while ((pos = kernfs_next_descendant_post(pos, kn)))
1115 if (kernfs_active(pos))
1116 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1117
1118 /* deactivate and unlink the subtree node-by-node */
1119 do {
1120 pos = kernfs_leftmost_descendant(kn);
1121
1122 /*
1123 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1124 * base ref could have been put by someone else by the time
1125 * the function returns. Make sure it doesn't go away
1126 * underneath us.
1127 */
1128 kernfs_get(pos);
1129
1130 /*
1131 * Drain iff @kn was activated. This avoids draining and
1132 * its lockdep annotations for nodes which have never been
1133 * activated and allows embedding kernfs_remove() in create
1134 * error paths without worrying about draining.
1135 */
1136 if (kn->flags & KERNFS_ACTIVATED)
1137 kernfs_drain(pos);
1138 else
1139 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1140
1141 /*
1142 * kernfs_unlink_sibling() succeeds once per node. Use it
1143 * to decide who's responsible for cleanups.
1144 */
1145 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1146 struct kernfs_iattrs *ps_iattr =
1147 pos->parent ? pos->parent->iattr : NULL;
1148
1149 /* update timestamps on the parent */
1150 if (ps_iattr) {
1151 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1152 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1153 }
1154
1155 kernfs_put(pos);
1156 }
1157
1158 kernfs_put(pos);
1159 } while (pos != kn);
1160}
1161
1162/**
1163 * kernfs_remove - remove a kernfs_node recursively
1164 * @kn: the kernfs_node to remove
1165 *
1166 * Remove @kn along with all its subdirectories and files.
1167 */
1168void kernfs_remove(struct kernfs_node *kn)
1169{
1170 mutex_lock(&kernfs_mutex);
1171 __kernfs_remove(kn);
1172 mutex_unlock(&kernfs_mutex);
1173}
1174
1175/**
1176 * kernfs_break_active_protection - break out of active protection
1177 * @kn: the self kernfs_node
1178 *
1179 * The caller must be running off of a kernfs operation which is invoked
1180 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1181 * this function must also be matched with an invocation of
1182 * kernfs_unbreak_active_protection().
1183 *
1184 * This function releases the active reference of @kn the caller is
1185 * holding. Once this function is called, @kn may be removed at any point
1186 * and the caller is solely responsible for ensuring that the objects it
1187 * dereferences are accessible.
1188 */
1189void kernfs_break_active_protection(struct kernfs_node *kn)
1190{
1191 /*
1192 * Take out ourself out of the active ref dependency chain. If
1193 * we're called without an active ref, lockdep will complain.
1194 */
1195 kernfs_put_active(kn);
1196}
1197
1198/**
1199 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1200 * @kn: the self kernfs_node
1201 *
1202 * If kernfs_break_active_protection() was called, this function must be
1203 * invoked before finishing the kernfs operation. Note that while this
1204 * function restores the active reference, it doesn't and can't actually
1205 * restore the active protection - @kn may already or be in the process of
1206 * being removed. Once kernfs_break_active_protection() is invoked, that
1207 * protection is irreversibly gone for the kernfs operation instance.
1208 *
1209 * While this function may be called at any point after
1210 * kernfs_break_active_protection() is invoked, its most useful location
1211 * would be right before the enclosing kernfs operation returns.
1212 */
1213void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1214{
1215 /*
1216 * @kn->active could be in any state; however, the increment we do
1217 * here will be undone as soon as the enclosing kernfs operation
1218 * finishes and this temporary bump can't break anything. If @kn
1219 * is alive, nothing changes. If @kn is being deactivated, the
1220 * soon-to-follow put will either finish deactivation or restore
1221 * deactivated state. If @kn is already removed, the temporary
1222 * bump is guaranteed to be gone before @kn is released.
1223 */
1224 atomic_inc(&kn->active);
1225 if (kernfs_lockdep(kn))
1226 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1227}
1228
1229/**
1230 * kernfs_remove_self - remove a kernfs_node from its own method
1231 * @kn: the self kernfs_node to remove
1232 *
1233 * The caller must be running off of a kernfs operation which is invoked
1234 * with an active reference - e.g. one of kernfs_ops. This can be used to
1235 * implement a file operation which deletes itself.
1236 *
1237 * For example, the "delete" file for a sysfs device directory can be
1238 * implemented by invoking kernfs_remove_self() on the "delete" file
1239 * itself. This function breaks the circular dependency of trying to
1240 * deactivate self while holding an active ref itself. It isn't necessary
1241 * to modify the usual removal path to use kernfs_remove_self(). The
1242 * "delete" implementation can simply invoke kernfs_remove_self() on self
1243 * before proceeding with the usual removal path. kernfs will ignore later
1244 * kernfs_remove() on self.
1245 *
1246 * kernfs_remove_self() can be called multiple times concurrently on the
1247 * same kernfs_node. Only the first one actually performs removal and
1248 * returns %true. All others will wait until the kernfs operation which
1249 * won self-removal finishes and return %false. Note that the losers wait
1250 * for the completion of not only the winning kernfs_remove_self() but also
1251 * the whole kernfs_ops which won the arbitration. This can be used to
1252 * guarantee, for example, all concurrent writes to a "delete" file to
1253 * finish only after the whole operation is complete.
1254 */
1255bool kernfs_remove_self(struct kernfs_node *kn)
1256{
1257 bool ret;
1258
1259 mutex_lock(&kernfs_mutex);
1260 kernfs_break_active_protection(kn);
1261
1262 /*
1263 * SUICIDAL is used to arbitrate among competing invocations. Only
1264 * the first one will actually perform removal. When the removal
1265 * is complete, SUICIDED is set and the active ref is restored
1266 * while holding kernfs_mutex. The ones which lost arbitration
1267 * waits for SUICDED && drained which can happen only after the
1268 * enclosing kernfs operation which executed the winning instance
1269 * of kernfs_remove_self() finished.
1270 */
1271 if (!(kn->flags & KERNFS_SUICIDAL)) {
1272 kn->flags |= KERNFS_SUICIDAL;
1273 __kernfs_remove(kn);
1274 kn->flags |= KERNFS_SUICIDED;
1275 ret = true;
1276 } else {
1277 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1278 DEFINE_WAIT(wait);
1279
1280 while (true) {
1281 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1282
1283 if ((kn->flags & KERNFS_SUICIDED) &&
1284 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1285 break;
1286
1287 mutex_unlock(&kernfs_mutex);
1288 schedule();
1289 mutex_lock(&kernfs_mutex);
1290 }
1291 finish_wait(waitq, &wait);
1292 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1293 ret = false;
1294 }
1295
1296 /*
1297 * This must be done while holding kernfs_mutex; otherwise, waiting
1298 * for SUICIDED && deactivated could finish prematurely.
1299 */
1300 kernfs_unbreak_active_protection(kn);
1301
1302 mutex_unlock(&kernfs_mutex);
1303 return ret;
1304}
1305
1306/**
1307 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1308 * @parent: parent of the target
1309 * @name: name of the kernfs_node to remove
1310 * @ns: namespace tag of the kernfs_node to remove
1311 *
1312 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1313 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1314 */
1315int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1316 const void *ns)
1317{
1318 struct kernfs_node *kn;
1319
1320 if (!parent) {
1321 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1322 name);
1323 return -ENOENT;
1324 }
1325
1326 mutex_lock(&kernfs_mutex);
1327
1328 kn = kernfs_find_ns(parent, name, ns);
1329 if (kn)
1330 __kernfs_remove(kn);
1331
1332 mutex_unlock(&kernfs_mutex);
1333
1334 if (kn)
1335 return 0;
1336 else
1337 return -ENOENT;
1338}
1339
1340/**
1341 * kernfs_rename_ns - move and rename a kernfs_node
1342 * @kn: target node
1343 * @new_parent: new parent to put @sd under
1344 * @new_name: new name
1345 * @new_ns: new namespace tag
1346 */
1347int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1348 const char *new_name, const void *new_ns)
1349{
1350 struct kernfs_node *old_parent;
1351 const char *old_name = NULL;
1352 int error;
1353
1354 /* can't move or rename root */
1355 if (!kn->parent)
1356 return -EINVAL;
1357
1358 mutex_lock(&kernfs_mutex);
1359
1360 error = -ENOENT;
1361 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1362 (new_parent->flags & KERNFS_EMPTY_DIR))
1363 goto out;
1364
1365 error = 0;
1366 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1367 (strcmp(kn->name, new_name) == 0))
1368 goto out; /* nothing to rename */
1369
1370 error = -EEXIST;
1371 if (kernfs_find_ns(new_parent, new_name, new_ns))
1372 goto out;
1373
1374 /* rename kernfs_node */
1375 if (strcmp(kn->name, new_name) != 0) {
1376 error = -ENOMEM;
1377 new_name = kstrdup_const(new_name, GFP_KERNEL);
1378 if (!new_name)
1379 goto out;
1380 } else {
1381 new_name = NULL;
1382 }
1383
1384 /*
1385 * Move to the appropriate place in the appropriate directories rbtree.
1386 */
1387 kernfs_unlink_sibling(kn);
1388 kernfs_get(new_parent);
1389
1390 /* rename_lock protects ->parent and ->name accessors */
1391 spin_lock_irq(&kernfs_rename_lock);
1392
1393 old_parent = kn->parent;
1394 kn->parent = new_parent;
1395
1396 kn->ns = new_ns;
1397 if (new_name) {
1398 old_name = kn->name;
1399 kn->name = new_name;
1400 }
1401
1402 spin_unlock_irq(&kernfs_rename_lock);
1403
1404 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1405 kernfs_link_sibling(kn);
1406
1407 kernfs_put(old_parent);
1408 kfree_const(old_name);
1409
1410 error = 0;
1411 out:
1412 mutex_unlock(&kernfs_mutex);
1413 return error;
1414}
1415
1416/* Relationship between s_mode and the DT_xxx types */
1417static inline unsigned char dt_type(struct kernfs_node *kn)
1418{
1419 return (kn->mode >> 12) & 15;
1420}
1421
1422static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1423{
1424 kernfs_put(filp->private_data);
1425 return 0;
1426}
1427
1428static struct kernfs_node *kernfs_dir_pos(const void *ns,
1429 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1430{
1431 if (pos) {
1432 int valid = kernfs_active(pos) &&
1433 pos->parent == parent && hash == pos->hash;
1434 kernfs_put(pos);
1435 if (!valid)
1436 pos = NULL;
1437 }
1438 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1439 struct rb_node *node = parent->dir.children.rb_node;
1440 while (node) {
1441 pos = rb_to_kn(node);
1442
1443 if (hash < pos->hash)
1444 node = node->rb_left;
1445 else if (hash > pos->hash)
1446 node = node->rb_right;
1447 else
1448 break;
1449 }
1450 }
1451 /* Skip over entries which are dying/dead or in the wrong namespace */
1452 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1453 struct rb_node *node = rb_next(&pos->rb);
1454 if (!node)
1455 pos = NULL;
1456 else
1457 pos = rb_to_kn(node);
1458 }
1459 return pos;
1460}
1461
1462static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1463 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1464{
1465 pos = kernfs_dir_pos(ns, parent, ino, pos);
1466 if (pos) {
1467 do {
1468 struct rb_node *node = rb_next(&pos->rb);
1469 if (!node)
1470 pos = NULL;
1471 else
1472 pos = rb_to_kn(node);
1473 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1474 }
1475 return pos;
1476}
1477
1478static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1479{
1480 struct dentry *dentry = file->f_path.dentry;
1481 struct kernfs_node *parent = dentry->d_fsdata;
1482 struct kernfs_node *pos = file->private_data;
1483 const void *ns = NULL;
1484
1485 if (!dir_emit_dots(file, ctx))
1486 return 0;
1487 mutex_lock(&kernfs_mutex);
1488
1489 if (kernfs_ns_enabled(parent))
1490 ns = kernfs_info(dentry->d_sb)->ns;
1491
1492 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1493 pos;
1494 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1495 const char *name = pos->name;
1496 unsigned int type = dt_type(pos);
1497 int len = strlen(name);
1498 ino_t ino = pos->ino;
1499
1500 ctx->pos = pos->hash;
1501 file->private_data = pos;
1502 kernfs_get(pos);
1503
1504 mutex_unlock(&kernfs_mutex);
1505 if (!dir_emit(ctx, name, len, ino, type))
1506 return 0;
1507 mutex_lock(&kernfs_mutex);
1508 }
1509 mutex_unlock(&kernfs_mutex);
1510 file->private_data = NULL;
1511 ctx->pos = INT_MAX;
1512 return 0;
1513}
1514
1515static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1516 int whence)
1517{
1518 struct inode *inode = file_inode(file);
1519 loff_t ret;
1520
1521 mutex_lock(&inode->i_mutex);
1522 ret = generic_file_llseek(file, offset, whence);
1523 mutex_unlock(&inode->i_mutex);
1524
1525 return ret;
1526}
1527
1528const struct file_operations kernfs_dir_fops = {
1529 .read = generic_read_dir,
1530 .iterate = kernfs_fop_readdir,
1531 .release = kernfs_dir_fop_release,
1532 .llseek = kernfs_dir_fop_llseek,
1533};
This page took 0.029066 seconds and 5 git commands to generate.