kernfs: add struct dentry declaration in kernfs.h
[deliverable/linux.git] / fs / kernfs / dir.c
... / ...
CommitLineData
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11#include <linux/fs.h>
12#include <linux/namei.h>
13#include <linux/idr.h>
14#include <linux/slab.h>
15#include <linux/security.h>
16#include <linux/hash.h>
17
18#include "kernfs-internal.h"
19
20DEFINE_MUTEX(kernfs_mutex);
21
22#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
23
24/**
25 * kernfs_name_hash
26 * @name: Null terminated string to hash
27 * @ns: Namespace tag to hash
28 *
29 * Returns 31 bit hash of ns + name (so it fits in an off_t )
30 */
31static unsigned int kernfs_name_hash(const char *name, const void *ns)
32{
33 unsigned long hash = init_name_hash();
34 unsigned int len = strlen(name);
35 while (len--)
36 hash = partial_name_hash(*name++, hash);
37 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
38 hash &= 0x7fffffffU;
39 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
40 if (hash < 1)
41 hash += 2;
42 if (hash >= INT_MAX)
43 hash = INT_MAX - 1;
44 return hash;
45}
46
47static int kernfs_name_compare(unsigned int hash, const char *name,
48 const void *ns, const struct kernfs_node *kn)
49{
50 if (hash != kn->hash)
51 return hash - kn->hash;
52 if (ns != kn->ns)
53 return ns - kn->ns;
54 return strcmp(name, kn->name);
55}
56
57static int kernfs_sd_compare(const struct kernfs_node *left,
58 const struct kernfs_node *right)
59{
60 return kernfs_name_compare(left->hash, left->name, left->ns, right);
61}
62
63/**
64 * kernfs_link_sibling - link kernfs_node into sibling rbtree
65 * @kn: kernfs_node of interest
66 *
67 * Link @kn into its sibling rbtree which starts from
68 * @kn->parent->dir.children.
69 *
70 * Locking:
71 * mutex_lock(kernfs_mutex)
72 *
73 * RETURNS:
74 * 0 on susccess -EEXIST on failure.
75 */
76static int kernfs_link_sibling(struct kernfs_node *kn)
77{
78 struct rb_node **node = &kn->parent->dir.children.rb_node;
79 struct rb_node *parent = NULL;
80
81 if (kernfs_type(kn) == KERNFS_DIR)
82 kn->parent->dir.subdirs++;
83
84 while (*node) {
85 struct kernfs_node *pos;
86 int result;
87
88 pos = rb_to_kn(*node);
89 parent = *node;
90 result = kernfs_sd_compare(kn, pos);
91 if (result < 0)
92 node = &pos->rb.rb_left;
93 else if (result > 0)
94 node = &pos->rb.rb_right;
95 else
96 return -EEXIST;
97 }
98 /* add new node and rebalance the tree */
99 rb_link_node(&kn->rb, parent, node);
100 rb_insert_color(&kn->rb, &kn->parent->dir.children);
101 return 0;
102}
103
104/**
105 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
106 * @kn: kernfs_node of interest
107 *
108 * Unlink @kn from its sibling rbtree which starts from
109 * kn->parent->dir.children.
110 *
111 * Locking:
112 * mutex_lock(kernfs_mutex)
113 */
114static void kernfs_unlink_sibling(struct kernfs_node *kn)
115{
116 if (kernfs_type(kn) == KERNFS_DIR)
117 kn->parent->dir.subdirs--;
118
119 rb_erase(&kn->rb, &kn->parent->dir.children);
120}
121
122/**
123 * kernfs_get_active - get an active reference to kernfs_node
124 * @kn: kernfs_node to get an active reference to
125 *
126 * Get an active reference of @kn. This function is noop if @kn
127 * is NULL.
128 *
129 * RETURNS:
130 * Pointer to @kn on success, NULL on failure.
131 */
132struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
133{
134 if (unlikely(!kn))
135 return NULL;
136
137 if (!atomic_inc_unless_negative(&kn->active))
138 return NULL;
139
140 if (kn->flags & KERNFS_LOCKDEP)
141 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
142 return kn;
143}
144
145/**
146 * kernfs_put_active - put an active reference to kernfs_node
147 * @kn: kernfs_node to put an active reference to
148 *
149 * Put an active reference to @kn. This function is noop if @kn
150 * is NULL.
151 */
152void kernfs_put_active(struct kernfs_node *kn)
153{
154 int v;
155
156 if (unlikely(!kn))
157 return;
158
159 if (kn->flags & KERNFS_LOCKDEP)
160 rwsem_release(&kn->dep_map, 1, _RET_IP_);
161 v = atomic_dec_return(&kn->active);
162 if (likely(v != KN_DEACTIVATED_BIAS))
163 return;
164
165 /*
166 * atomic_dec_return() is a mb(), we'll always see the updated
167 * kn->u.completion.
168 */
169 complete(kn->u.completion);
170}
171
172/**
173 * kernfs_deactivate - deactivate kernfs_node
174 * @kn: kernfs_node to deactivate
175 *
176 * Deny new active references and drain existing ones.
177 */
178static void kernfs_deactivate(struct kernfs_node *kn)
179{
180 DECLARE_COMPLETION_ONSTACK(wait);
181 int v;
182
183 BUG_ON(!(kn->flags & KERNFS_REMOVED));
184
185 if (!(kernfs_type(kn) & KERNFS_ACTIVE_REF))
186 return;
187
188 kn->u.completion = (void *)&wait;
189
190 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
191 /* atomic_add_return() is a mb(), put_active() will always see
192 * the updated kn->u.completion.
193 */
194 v = atomic_add_return(KN_DEACTIVATED_BIAS, &kn->active);
195
196 if (v != KN_DEACTIVATED_BIAS) {
197 lock_contended(&kn->dep_map, _RET_IP_);
198 wait_for_completion(&wait);
199 }
200
201 lock_acquired(&kn->dep_map, _RET_IP_);
202 rwsem_release(&kn->dep_map, 1, _RET_IP_);
203}
204
205/**
206 * kernfs_get - get a reference count on a kernfs_node
207 * @kn: the target kernfs_node
208 */
209void kernfs_get(struct kernfs_node *kn)
210{
211 if (kn) {
212 WARN_ON(!atomic_read(&kn->count));
213 atomic_inc(&kn->count);
214 }
215}
216EXPORT_SYMBOL_GPL(kernfs_get);
217
218/**
219 * kernfs_put - put a reference count on a kernfs_node
220 * @kn: the target kernfs_node
221 *
222 * Put a reference count of @kn and destroy it if it reached zero.
223 */
224void kernfs_put(struct kernfs_node *kn)
225{
226 struct kernfs_node *parent;
227 struct kernfs_root *root;
228
229 if (!kn || !atomic_dec_and_test(&kn->count))
230 return;
231 root = kernfs_root(kn);
232 repeat:
233 /* Moving/renaming is always done while holding reference.
234 * kn->parent won't change beneath us.
235 */
236 parent = kn->parent;
237
238 WARN(!(kn->flags & KERNFS_REMOVED), "kernfs: free using entry: %s/%s\n",
239 parent ? parent->name : "", kn->name);
240
241 if (kernfs_type(kn) == KERNFS_LINK)
242 kernfs_put(kn->symlink.target_kn);
243 if (!(kn->flags & KERNFS_STATIC_NAME))
244 kfree(kn->name);
245 if (kn->iattr) {
246 if (kn->iattr->ia_secdata)
247 security_release_secctx(kn->iattr->ia_secdata,
248 kn->iattr->ia_secdata_len);
249 simple_xattrs_free(&kn->iattr->xattrs);
250 }
251 kfree(kn->iattr);
252 ida_simple_remove(&root->ino_ida, kn->ino);
253 kmem_cache_free(kernfs_node_cache, kn);
254
255 kn = parent;
256 if (kn) {
257 if (atomic_dec_and_test(&kn->count))
258 goto repeat;
259 } else {
260 /* just released the root kn, free @root too */
261 ida_destroy(&root->ino_ida);
262 kfree(root);
263 }
264}
265EXPORT_SYMBOL_GPL(kernfs_put);
266
267static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
268{
269 struct kernfs_node *kn;
270
271 if (flags & LOOKUP_RCU)
272 return -ECHILD;
273
274 /* Always perform fresh lookup for negatives */
275 if (!dentry->d_inode)
276 goto out_bad_unlocked;
277
278 kn = dentry->d_fsdata;
279 mutex_lock(&kernfs_mutex);
280
281 /* The kernfs node has been deleted */
282 if (kn->flags & KERNFS_REMOVED)
283 goto out_bad;
284
285 /* The kernfs node has been moved? */
286 if (dentry->d_parent->d_fsdata != kn->parent)
287 goto out_bad;
288
289 /* The kernfs node has been renamed */
290 if (strcmp(dentry->d_name.name, kn->name) != 0)
291 goto out_bad;
292
293 /* The kernfs node has been moved to a different namespace */
294 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
295 kernfs_info(dentry->d_sb)->ns != kn->ns)
296 goto out_bad;
297
298 mutex_unlock(&kernfs_mutex);
299out_valid:
300 return 1;
301out_bad:
302 mutex_unlock(&kernfs_mutex);
303out_bad_unlocked:
304 /*
305 * @dentry doesn't match the underlying kernfs node, drop the
306 * dentry and force lookup. If we have submounts we must allow the
307 * vfs caches to lie about the state of the filesystem to prevent
308 * leaks and other nasty things, so use check_submounts_and_drop()
309 * instead of d_drop().
310 */
311 if (check_submounts_and_drop(dentry) != 0)
312 goto out_valid;
313
314 return 0;
315}
316
317static void kernfs_dop_release(struct dentry *dentry)
318{
319 kernfs_put(dentry->d_fsdata);
320}
321
322const struct dentry_operations kernfs_dops = {
323 .d_revalidate = kernfs_dop_revalidate,
324 .d_release = kernfs_dop_release,
325};
326
327struct kernfs_node *kernfs_new_node(struct kernfs_root *root, const char *name,
328 umode_t mode, unsigned flags)
329{
330 char *dup_name = NULL;
331 struct kernfs_node *kn;
332 int ret;
333
334 if (!(flags & KERNFS_STATIC_NAME)) {
335 name = dup_name = kstrdup(name, GFP_KERNEL);
336 if (!name)
337 return NULL;
338 }
339
340 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
341 if (!kn)
342 goto err_out1;
343
344 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
345 if (ret < 0)
346 goto err_out2;
347 kn->ino = ret;
348
349 atomic_set(&kn->count, 1);
350 atomic_set(&kn->active, 0);
351
352 kn->name = name;
353 kn->mode = mode;
354 kn->flags = flags | KERNFS_REMOVED;
355
356 return kn;
357
358 err_out2:
359 kmem_cache_free(kernfs_node_cache, kn);
360 err_out1:
361 kfree(dup_name);
362 return NULL;
363}
364
365/**
366 * kernfs_addrm_start - prepare for kernfs_node add/remove
367 * @acxt: pointer to kernfs_addrm_cxt to be used
368 *
369 * This function is called when the caller is about to add or remove
370 * kernfs_node. This function acquires kernfs_mutex. @acxt is used
371 * to keep and pass context to other addrm functions.
372 *
373 * LOCKING:
374 * Kernel thread context (may sleep). kernfs_mutex is locked on
375 * return.
376 */
377void kernfs_addrm_start(struct kernfs_addrm_cxt *acxt)
378 __acquires(kernfs_mutex)
379{
380 memset(acxt, 0, sizeof(*acxt));
381
382 mutex_lock(&kernfs_mutex);
383}
384
385/**
386 * kernfs_add_one - add kernfs_node to parent without warning
387 * @acxt: addrm context to use
388 * @kn: kernfs_node to be added
389 * @parent: the parent kernfs_node to add @kn to
390 *
391 * Get @parent and set @kn->parent to it and increment nlink of the
392 * parent inode if @kn is a directory and link into the children list
393 * of the parent.
394 *
395 * This function should be called between calls to
396 * kernfs_addrm_start() and kernfs_addrm_finish() and should be passed
397 * the same @acxt as passed to kernfs_addrm_start().
398 *
399 * LOCKING:
400 * Determined by kernfs_addrm_start().
401 *
402 * RETURNS:
403 * 0 on success, -EEXIST if entry with the given name already
404 * exists.
405 */
406int kernfs_add_one(struct kernfs_addrm_cxt *acxt, struct kernfs_node *kn,
407 struct kernfs_node *parent)
408{
409 bool has_ns = kernfs_ns_enabled(parent);
410 struct kernfs_iattrs *ps_iattr;
411 int ret;
412
413 if (has_ns != (bool)kn->ns) {
414 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
415 has_ns ? "required" : "invalid", parent->name, kn->name);
416 return -EINVAL;
417 }
418
419 if (kernfs_type(parent) != KERNFS_DIR)
420 return -EINVAL;
421
422 if (parent->flags & KERNFS_REMOVED)
423 return -ENOENT;
424
425 kn->hash = kernfs_name_hash(kn->name, kn->ns);
426 kn->parent = parent;
427 kernfs_get(parent);
428
429 ret = kernfs_link_sibling(kn);
430 if (ret)
431 return ret;
432
433 /* Update timestamps on the parent */
434 ps_iattr = parent->iattr;
435 if (ps_iattr) {
436 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
437 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
438 }
439
440 /* Mark the entry added into directory tree */
441 kn->flags &= ~KERNFS_REMOVED;
442
443 return 0;
444}
445
446/**
447 * kernfs_remove_one - remove kernfs_node from parent
448 * @acxt: addrm context to use
449 * @kn: kernfs_node to be removed
450 *
451 * Mark @kn removed and drop nlink of parent inode if @kn is a
452 * directory. @kn is unlinked from the children list.
453 *
454 * This function should be called between calls to
455 * kernfs_addrm_start() and kernfs_addrm_finish() and should be
456 * passed the same @acxt as passed to kernfs_addrm_start().
457 *
458 * LOCKING:
459 * Determined by kernfs_addrm_start().
460 */
461static void kernfs_remove_one(struct kernfs_addrm_cxt *acxt,
462 struct kernfs_node *kn)
463{
464 struct kernfs_iattrs *ps_iattr;
465
466 /*
467 * Removal can be called multiple times on the same node. Only the
468 * first invocation is effective and puts the base ref.
469 */
470 if (kn->flags & KERNFS_REMOVED)
471 return;
472
473 if (kn->parent) {
474 kernfs_unlink_sibling(kn);
475
476 /* Update timestamps on the parent */
477 ps_iattr = kn->parent->iattr;
478 if (ps_iattr) {
479 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
480 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
481 }
482 }
483
484 kn->flags |= KERNFS_REMOVED;
485 kn->u.removed_list = acxt->removed;
486 acxt->removed = kn;
487}
488
489/**
490 * kernfs_addrm_finish - finish up kernfs_node add/remove
491 * @acxt: addrm context to finish up
492 *
493 * Finish up kernfs_node add/remove. Resources acquired by
494 * kernfs_addrm_start() are released and removed kernfs_nodes are
495 * cleaned up.
496 *
497 * LOCKING:
498 * kernfs_mutex is released.
499 */
500void kernfs_addrm_finish(struct kernfs_addrm_cxt *acxt)
501 __releases(kernfs_mutex)
502{
503 /* release resources acquired by kernfs_addrm_start() */
504 mutex_unlock(&kernfs_mutex);
505
506 /* kill removed kernfs_nodes */
507 while (acxt->removed) {
508 struct kernfs_node *kn = acxt->removed;
509
510 acxt->removed = kn->u.removed_list;
511
512 kernfs_deactivate(kn);
513 kernfs_unmap_bin_file(kn);
514 kernfs_put(kn);
515 }
516}
517
518/**
519 * kernfs_find_ns - find kernfs_node with the given name
520 * @parent: kernfs_node to search under
521 * @name: name to look for
522 * @ns: the namespace tag to use
523 *
524 * Look for kernfs_node with name @name under @parent. Returns pointer to
525 * the found kernfs_node on success, %NULL on failure.
526 */
527static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
528 const unsigned char *name,
529 const void *ns)
530{
531 struct rb_node *node = parent->dir.children.rb_node;
532 bool has_ns = kernfs_ns_enabled(parent);
533 unsigned int hash;
534
535 lockdep_assert_held(&kernfs_mutex);
536
537 if (has_ns != (bool)ns) {
538 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
539 has_ns ? "required" : "invalid", parent->name, name);
540 return NULL;
541 }
542
543 hash = kernfs_name_hash(name, ns);
544 while (node) {
545 struct kernfs_node *kn;
546 int result;
547
548 kn = rb_to_kn(node);
549 result = kernfs_name_compare(hash, name, ns, kn);
550 if (result < 0)
551 node = node->rb_left;
552 else if (result > 0)
553 node = node->rb_right;
554 else
555 return kn;
556 }
557 return NULL;
558}
559
560/**
561 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
562 * @parent: kernfs_node to search under
563 * @name: name to look for
564 * @ns: the namespace tag to use
565 *
566 * Look for kernfs_node with name @name under @parent and get a reference
567 * if found. This function may sleep and returns pointer to the found
568 * kernfs_node on success, %NULL on failure.
569 */
570struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
571 const char *name, const void *ns)
572{
573 struct kernfs_node *kn;
574
575 mutex_lock(&kernfs_mutex);
576 kn = kernfs_find_ns(parent, name, ns);
577 kernfs_get(kn);
578 mutex_unlock(&kernfs_mutex);
579
580 return kn;
581}
582EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
583
584/**
585 * kernfs_create_root - create a new kernfs hierarchy
586 * @kdops: optional directory syscall operations for the hierarchy
587 * @priv: opaque data associated with the new directory
588 *
589 * Returns the root of the new hierarchy on success, ERR_PTR() value on
590 * failure.
591 */
592struct kernfs_root *kernfs_create_root(struct kernfs_dir_ops *kdops, void *priv)
593{
594 struct kernfs_root *root;
595 struct kernfs_node *kn;
596
597 root = kzalloc(sizeof(*root), GFP_KERNEL);
598 if (!root)
599 return ERR_PTR(-ENOMEM);
600
601 ida_init(&root->ino_ida);
602
603 kn = kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, KERNFS_DIR);
604 if (!kn) {
605 ida_destroy(&root->ino_ida);
606 kfree(root);
607 return ERR_PTR(-ENOMEM);
608 }
609
610 kn->flags &= ~KERNFS_REMOVED;
611 kn->priv = priv;
612 kn->dir.root = root;
613
614 root->dir_ops = kdops;
615 root->kn = kn;
616
617 return root;
618}
619
620/**
621 * kernfs_destroy_root - destroy a kernfs hierarchy
622 * @root: root of the hierarchy to destroy
623 *
624 * Destroy the hierarchy anchored at @root by removing all existing
625 * directories and destroying @root.
626 */
627void kernfs_destroy_root(struct kernfs_root *root)
628{
629 kernfs_remove(root->kn); /* will also free @root */
630}
631
632/**
633 * kernfs_create_dir_ns - create a directory
634 * @parent: parent in which to create a new directory
635 * @name: name of the new directory
636 * @mode: mode of the new directory
637 * @priv: opaque data associated with the new directory
638 * @ns: optional namespace tag of the directory
639 *
640 * Returns the created node on success, ERR_PTR() value on failure.
641 */
642struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
643 const char *name, umode_t mode,
644 void *priv, const void *ns)
645{
646 struct kernfs_addrm_cxt acxt;
647 struct kernfs_node *kn;
648 int rc;
649
650 /* allocate */
651 kn = kernfs_new_node(kernfs_root(parent), name, mode | S_IFDIR,
652 KERNFS_DIR);
653 if (!kn)
654 return ERR_PTR(-ENOMEM);
655
656 kn->dir.root = parent->dir.root;
657 kn->ns = ns;
658 kn->priv = priv;
659
660 /* link in */
661 kernfs_addrm_start(&acxt);
662 rc = kernfs_add_one(&acxt, kn, parent);
663 kernfs_addrm_finish(&acxt);
664
665 if (!rc)
666 return kn;
667
668 kernfs_put(kn);
669 return ERR_PTR(rc);
670}
671
672static struct dentry *kernfs_iop_lookup(struct inode *dir,
673 struct dentry *dentry,
674 unsigned int flags)
675{
676 struct dentry *ret;
677 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
678 struct kernfs_node *kn;
679 struct inode *inode;
680 const void *ns = NULL;
681
682 mutex_lock(&kernfs_mutex);
683
684 if (kernfs_ns_enabled(parent))
685 ns = kernfs_info(dir->i_sb)->ns;
686
687 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
688
689 /* no such entry */
690 if (!kn) {
691 ret = NULL;
692 goto out_unlock;
693 }
694 kernfs_get(kn);
695 dentry->d_fsdata = kn;
696
697 /* attach dentry and inode */
698 inode = kernfs_get_inode(dir->i_sb, kn);
699 if (!inode) {
700 ret = ERR_PTR(-ENOMEM);
701 goto out_unlock;
702 }
703
704 /* instantiate and hash dentry */
705 ret = d_materialise_unique(dentry, inode);
706 out_unlock:
707 mutex_unlock(&kernfs_mutex);
708 return ret;
709}
710
711static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
712 umode_t mode)
713{
714 struct kernfs_node *parent = dir->i_private;
715 struct kernfs_dir_ops *kdops = kernfs_root(parent)->dir_ops;
716
717 if (!kdops || !kdops->mkdir)
718 return -EPERM;
719
720 return kdops->mkdir(parent, dentry->d_name.name, mode);
721}
722
723static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
724{
725 struct kernfs_node *kn = dentry->d_fsdata;
726 struct kernfs_dir_ops *kdops = kernfs_root(kn)->dir_ops;
727
728 if (!kdops || !kdops->rmdir)
729 return -EPERM;
730
731 return kdops->rmdir(kn);
732}
733
734static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
735 struct inode *new_dir, struct dentry *new_dentry)
736{
737 struct kernfs_node *kn = old_dentry->d_fsdata;
738 struct kernfs_node *new_parent = new_dir->i_private;
739 struct kernfs_dir_ops *kdops = kernfs_root(kn)->dir_ops;
740
741 if (!kdops || !kdops->rename)
742 return -EPERM;
743
744 return kdops->rename(kn, new_parent, new_dentry->d_name.name);
745}
746
747const struct inode_operations kernfs_dir_iops = {
748 .lookup = kernfs_iop_lookup,
749 .permission = kernfs_iop_permission,
750 .setattr = kernfs_iop_setattr,
751 .getattr = kernfs_iop_getattr,
752 .setxattr = kernfs_iop_setxattr,
753 .removexattr = kernfs_iop_removexattr,
754 .getxattr = kernfs_iop_getxattr,
755 .listxattr = kernfs_iop_listxattr,
756
757 .mkdir = kernfs_iop_mkdir,
758 .rmdir = kernfs_iop_rmdir,
759 .rename = kernfs_iop_rename,
760};
761
762static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
763{
764 struct kernfs_node *last;
765
766 while (true) {
767 struct rb_node *rbn;
768
769 last = pos;
770
771 if (kernfs_type(pos) != KERNFS_DIR)
772 break;
773
774 rbn = rb_first(&pos->dir.children);
775 if (!rbn)
776 break;
777
778 pos = rb_to_kn(rbn);
779 }
780
781 return last;
782}
783
784/**
785 * kernfs_next_descendant_post - find the next descendant for post-order walk
786 * @pos: the current position (%NULL to initiate traversal)
787 * @root: kernfs_node whose descendants to walk
788 *
789 * Find the next descendant to visit for post-order traversal of @root's
790 * descendants. @root is included in the iteration and the last node to be
791 * visited.
792 */
793static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
794 struct kernfs_node *root)
795{
796 struct rb_node *rbn;
797
798 lockdep_assert_held(&kernfs_mutex);
799
800 /* if first iteration, visit leftmost descendant which may be root */
801 if (!pos)
802 return kernfs_leftmost_descendant(root);
803
804 /* if we visited @root, we're done */
805 if (pos == root)
806 return NULL;
807
808 /* if there's an unvisited sibling, visit its leftmost descendant */
809 rbn = rb_next(&pos->rb);
810 if (rbn)
811 return kernfs_leftmost_descendant(rb_to_kn(rbn));
812
813 /* no sibling left, visit parent */
814 return pos->parent;
815}
816
817static void __kernfs_remove(struct kernfs_addrm_cxt *acxt,
818 struct kernfs_node *kn)
819{
820 struct kernfs_node *pos, *next;
821
822 if (!kn)
823 return;
824
825 pr_debug("kernfs %s: removing\n", kn->name);
826
827 next = NULL;
828 do {
829 pos = next;
830 next = kernfs_next_descendant_post(pos, kn);
831 if (pos)
832 kernfs_remove_one(acxt, pos);
833 } while (next);
834}
835
836/**
837 * kernfs_remove - remove a kernfs_node recursively
838 * @kn: the kernfs_node to remove
839 *
840 * Remove @kn along with all its subdirectories and files.
841 */
842void kernfs_remove(struct kernfs_node *kn)
843{
844 struct kernfs_addrm_cxt acxt;
845
846 kernfs_addrm_start(&acxt);
847 __kernfs_remove(&acxt, kn);
848 kernfs_addrm_finish(&acxt);
849}
850
851/**
852 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
853 * @parent: parent of the target
854 * @name: name of the kernfs_node to remove
855 * @ns: namespace tag of the kernfs_node to remove
856 *
857 * Look for the kernfs_node with @name and @ns under @parent and remove it.
858 * Returns 0 on success, -ENOENT if such entry doesn't exist.
859 */
860int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
861 const void *ns)
862{
863 struct kernfs_addrm_cxt acxt;
864 struct kernfs_node *kn;
865
866 if (!parent) {
867 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
868 name);
869 return -ENOENT;
870 }
871
872 kernfs_addrm_start(&acxt);
873
874 kn = kernfs_find_ns(parent, name, ns);
875 if (kn)
876 __kernfs_remove(&acxt, kn);
877
878 kernfs_addrm_finish(&acxt);
879
880 if (kn)
881 return 0;
882 else
883 return -ENOENT;
884}
885
886/**
887 * kernfs_rename_ns - move and rename a kernfs_node
888 * @kn: target node
889 * @new_parent: new parent to put @sd under
890 * @new_name: new name
891 * @new_ns: new namespace tag
892 */
893int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
894 const char *new_name, const void *new_ns)
895{
896 int error;
897
898 mutex_lock(&kernfs_mutex);
899
900 error = -ENOENT;
901 if ((kn->flags | new_parent->flags) & KERNFS_REMOVED)
902 goto out;
903
904 error = 0;
905 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
906 (strcmp(kn->name, new_name) == 0))
907 goto out; /* nothing to rename */
908
909 error = -EEXIST;
910 if (kernfs_find_ns(new_parent, new_name, new_ns))
911 goto out;
912
913 /* rename kernfs_node */
914 if (strcmp(kn->name, new_name) != 0) {
915 error = -ENOMEM;
916 new_name = kstrdup(new_name, GFP_KERNEL);
917 if (!new_name)
918 goto out;
919
920 if (kn->flags & KERNFS_STATIC_NAME)
921 kn->flags &= ~KERNFS_STATIC_NAME;
922 else
923 kfree(kn->name);
924
925 kn->name = new_name;
926 }
927
928 /*
929 * Move to the appropriate place in the appropriate directories rbtree.
930 */
931 kernfs_unlink_sibling(kn);
932 kernfs_get(new_parent);
933 kernfs_put(kn->parent);
934 kn->ns = new_ns;
935 kn->hash = kernfs_name_hash(kn->name, kn->ns);
936 kn->parent = new_parent;
937 kernfs_link_sibling(kn);
938
939 error = 0;
940 out:
941 mutex_unlock(&kernfs_mutex);
942 return error;
943}
944
945/* Relationship between s_mode and the DT_xxx types */
946static inline unsigned char dt_type(struct kernfs_node *kn)
947{
948 return (kn->mode >> 12) & 15;
949}
950
951static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
952{
953 kernfs_put(filp->private_data);
954 return 0;
955}
956
957static struct kernfs_node *kernfs_dir_pos(const void *ns,
958 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
959{
960 if (pos) {
961 int valid = !(pos->flags & KERNFS_REMOVED) &&
962 pos->parent == parent && hash == pos->hash;
963 kernfs_put(pos);
964 if (!valid)
965 pos = NULL;
966 }
967 if (!pos && (hash > 1) && (hash < INT_MAX)) {
968 struct rb_node *node = parent->dir.children.rb_node;
969 while (node) {
970 pos = rb_to_kn(node);
971
972 if (hash < pos->hash)
973 node = node->rb_left;
974 else if (hash > pos->hash)
975 node = node->rb_right;
976 else
977 break;
978 }
979 }
980 /* Skip over entries in the wrong namespace */
981 while (pos && pos->ns != ns) {
982 struct rb_node *node = rb_next(&pos->rb);
983 if (!node)
984 pos = NULL;
985 else
986 pos = rb_to_kn(node);
987 }
988 return pos;
989}
990
991static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
992 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
993{
994 pos = kernfs_dir_pos(ns, parent, ino, pos);
995 if (pos)
996 do {
997 struct rb_node *node = rb_next(&pos->rb);
998 if (!node)
999 pos = NULL;
1000 else
1001 pos = rb_to_kn(node);
1002 } while (pos && pos->ns != ns);
1003 return pos;
1004}
1005
1006static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1007{
1008 struct dentry *dentry = file->f_path.dentry;
1009 struct kernfs_node *parent = dentry->d_fsdata;
1010 struct kernfs_node *pos = file->private_data;
1011 const void *ns = NULL;
1012
1013 if (!dir_emit_dots(file, ctx))
1014 return 0;
1015 mutex_lock(&kernfs_mutex);
1016
1017 if (kernfs_ns_enabled(parent))
1018 ns = kernfs_info(dentry->d_sb)->ns;
1019
1020 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1021 pos;
1022 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1023 const char *name = pos->name;
1024 unsigned int type = dt_type(pos);
1025 int len = strlen(name);
1026 ino_t ino = pos->ino;
1027
1028 ctx->pos = pos->hash;
1029 file->private_data = pos;
1030 kernfs_get(pos);
1031
1032 mutex_unlock(&kernfs_mutex);
1033 if (!dir_emit(ctx, name, len, ino, type))
1034 return 0;
1035 mutex_lock(&kernfs_mutex);
1036 }
1037 mutex_unlock(&kernfs_mutex);
1038 file->private_data = NULL;
1039 ctx->pos = INT_MAX;
1040 return 0;
1041}
1042
1043static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1044 int whence)
1045{
1046 struct inode *inode = file_inode(file);
1047 loff_t ret;
1048
1049 mutex_lock(&inode->i_mutex);
1050 ret = generic_file_llseek(file, offset, whence);
1051 mutex_unlock(&inode->i_mutex);
1052
1053 return ret;
1054}
1055
1056const struct file_operations kernfs_dir_fops = {
1057 .read = generic_read_dir,
1058 .iterate = kernfs_fop_readdir,
1059 .release = kernfs_dir_fop_release,
1060 .llseek = kernfs_dir_fop_llseek,
1061};
This page took 0.027107 seconds and 5 git commands to generate.