powerpc: Split exception handling out of head_64.S
[deliverable/linux.git] / fs / pipe.c
... / ...
CommitLineData
1/*
2 * linux/fs/pipe.c
3 *
4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/file.h>
9#include <linux/poll.h>
10#include <linux/slab.h>
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/fs.h>
14#include <linux/mount.h>
15#include <linux/pipe_fs_i.h>
16#include <linux/uio.h>
17#include <linux/highmem.h>
18#include <linux/pagemap.h>
19#include <linux/audit.h>
20#include <linux/syscalls.h>
21
22#include <asm/uaccess.h>
23#include <asm/ioctls.h>
24
25/*
26 * We use a start+len construction, which provides full use of the
27 * allocated memory.
28 * -- Florian Coosmann (FGC)
29 *
30 * Reads with count = 0 should always return 0.
31 * -- Julian Bradfield 1999-06-07.
32 *
33 * FIFOs and Pipes now generate SIGIO for both readers and writers.
34 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
35 *
36 * pipe_read & write cleanup
37 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
38 */
39
40static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
41{
42 if (pipe->inode)
43 mutex_lock_nested(&pipe->inode->i_mutex, subclass);
44}
45
46void pipe_lock(struct pipe_inode_info *pipe)
47{
48 /*
49 * pipe_lock() nests non-pipe inode locks (for writing to a file)
50 */
51 pipe_lock_nested(pipe, I_MUTEX_PARENT);
52}
53EXPORT_SYMBOL(pipe_lock);
54
55void pipe_unlock(struct pipe_inode_info *pipe)
56{
57 if (pipe->inode)
58 mutex_unlock(&pipe->inode->i_mutex);
59}
60EXPORT_SYMBOL(pipe_unlock);
61
62void pipe_double_lock(struct pipe_inode_info *pipe1,
63 struct pipe_inode_info *pipe2)
64{
65 BUG_ON(pipe1 == pipe2);
66
67 if (pipe1 < pipe2) {
68 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
69 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
70 } else {
71 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
72 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
73 }
74}
75
76/* Drop the inode semaphore and wait for a pipe event, atomically */
77void pipe_wait(struct pipe_inode_info *pipe)
78{
79 DEFINE_WAIT(wait);
80
81 /*
82 * Pipes are system-local resources, so sleeping on them
83 * is considered a noninteractive wait:
84 */
85 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
86 pipe_unlock(pipe);
87 schedule();
88 finish_wait(&pipe->wait, &wait);
89 pipe_lock(pipe);
90}
91
92static int
93pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
94 int atomic)
95{
96 unsigned long copy;
97
98 while (len > 0) {
99 while (!iov->iov_len)
100 iov++;
101 copy = min_t(unsigned long, len, iov->iov_len);
102
103 if (atomic) {
104 if (__copy_from_user_inatomic(to, iov->iov_base, copy))
105 return -EFAULT;
106 } else {
107 if (copy_from_user(to, iov->iov_base, copy))
108 return -EFAULT;
109 }
110 to += copy;
111 len -= copy;
112 iov->iov_base += copy;
113 iov->iov_len -= copy;
114 }
115 return 0;
116}
117
118static int
119pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
120 int atomic)
121{
122 unsigned long copy;
123
124 while (len > 0) {
125 while (!iov->iov_len)
126 iov++;
127 copy = min_t(unsigned long, len, iov->iov_len);
128
129 if (atomic) {
130 if (__copy_to_user_inatomic(iov->iov_base, from, copy))
131 return -EFAULT;
132 } else {
133 if (copy_to_user(iov->iov_base, from, copy))
134 return -EFAULT;
135 }
136 from += copy;
137 len -= copy;
138 iov->iov_base += copy;
139 iov->iov_len -= copy;
140 }
141 return 0;
142}
143
144/*
145 * Attempt to pre-fault in the user memory, so we can use atomic copies.
146 * Returns the number of bytes not faulted in.
147 */
148static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
149{
150 while (!iov->iov_len)
151 iov++;
152
153 while (len > 0) {
154 unsigned long this_len;
155
156 this_len = min_t(unsigned long, len, iov->iov_len);
157 if (fault_in_pages_writeable(iov->iov_base, this_len))
158 break;
159
160 len -= this_len;
161 iov++;
162 }
163
164 return len;
165}
166
167/*
168 * Pre-fault in the user memory, so we can use atomic copies.
169 */
170static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
171{
172 while (!iov->iov_len)
173 iov++;
174
175 while (len > 0) {
176 unsigned long this_len;
177
178 this_len = min_t(unsigned long, len, iov->iov_len);
179 fault_in_pages_readable(iov->iov_base, this_len);
180 len -= this_len;
181 iov++;
182 }
183}
184
185static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
186 struct pipe_buffer *buf)
187{
188 struct page *page = buf->page;
189
190 /*
191 * If nobody else uses this page, and we don't already have a
192 * temporary page, let's keep track of it as a one-deep
193 * allocation cache. (Otherwise just release our reference to it)
194 */
195 if (page_count(page) == 1 && !pipe->tmp_page)
196 pipe->tmp_page = page;
197 else
198 page_cache_release(page);
199}
200
201/**
202 * generic_pipe_buf_map - virtually map a pipe buffer
203 * @pipe: the pipe that the buffer belongs to
204 * @buf: the buffer that should be mapped
205 * @atomic: whether to use an atomic map
206 *
207 * Description:
208 * This function returns a kernel virtual address mapping for the
209 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
210 * and the caller has to be careful not to fault before calling
211 * the unmap function.
212 *
213 * Note that this function occupies KM_USER0 if @atomic != 0.
214 */
215void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
216 struct pipe_buffer *buf, int atomic)
217{
218 if (atomic) {
219 buf->flags |= PIPE_BUF_FLAG_ATOMIC;
220 return kmap_atomic(buf->page, KM_USER0);
221 }
222
223 return kmap(buf->page);
224}
225
226/**
227 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
228 * @pipe: the pipe that the buffer belongs to
229 * @buf: the buffer that should be unmapped
230 * @map_data: the data that the mapping function returned
231 *
232 * Description:
233 * This function undoes the mapping that ->map() provided.
234 */
235void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
236 struct pipe_buffer *buf, void *map_data)
237{
238 if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
239 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
240 kunmap_atomic(map_data, KM_USER0);
241 } else
242 kunmap(buf->page);
243}
244
245/**
246 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
247 * @pipe: the pipe that the buffer belongs to
248 * @buf: the buffer to attempt to steal
249 *
250 * Description:
251 * This function attempts to steal the &struct page attached to
252 * @buf. If successful, this function returns 0 and returns with
253 * the page locked. The caller may then reuse the page for whatever
254 * he wishes; the typical use is insertion into a different file
255 * page cache.
256 */
257int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
258 struct pipe_buffer *buf)
259{
260 struct page *page = buf->page;
261
262 /*
263 * A reference of one is golden, that means that the owner of this
264 * page is the only one holding a reference to it. lock the page
265 * and return OK.
266 */
267 if (page_count(page) == 1) {
268 lock_page(page);
269 return 0;
270 }
271
272 return 1;
273}
274
275/**
276 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
277 * @pipe: the pipe that the buffer belongs to
278 * @buf: the buffer to get a reference to
279 *
280 * Description:
281 * This function grabs an extra reference to @buf. It's used in
282 * in the tee() system call, when we duplicate the buffers in one
283 * pipe into another.
284 */
285void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
286{
287 page_cache_get(buf->page);
288}
289
290/**
291 * generic_pipe_buf_confirm - verify contents of the pipe buffer
292 * @info: the pipe that the buffer belongs to
293 * @buf: the buffer to confirm
294 *
295 * Description:
296 * This function does nothing, because the generic pipe code uses
297 * pages that are always good when inserted into the pipe.
298 */
299int generic_pipe_buf_confirm(struct pipe_inode_info *info,
300 struct pipe_buffer *buf)
301{
302 return 0;
303}
304
305static const struct pipe_buf_operations anon_pipe_buf_ops = {
306 .can_merge = 1,
307 .map = generic_pipe_buf_map,
308 .unmap = generic_pipe_buf_unmap,
309 .confirm = generic_pipe_buf_confirm,
310 .release = anon_pipe_buf_release,
311 .steal = generic_pipe_buf_steal,
312 .get = generic_pipe_buf_get,
313};
314
315static ssize_t
316pipe_read(struct kiocb *iocb, const struct iovec *_iov,
317 unsigned long nr_segs, loff_t pos)
318{
319 struct file *filp = iocb->ki_filp;
320 struct inode *inode = filp->f_path.dentry->d_inode;
321 struct pipe_inode_info *pipe;
322 int do_wakeup;
323 ssize_t ret;
324 struct iovec *iov = (struct iovec *)_iov;
325 size_t total_len;
326
327 total_len = iov_length(iov, nr_segs);
328 /* Null read succeeds. */
329 if (unlikely(total_len == 0))
330 return 0;
331
332 do_wakeup = 0;
333 ret = 0;
334 mutex_lock(&inode->i_mutex);
335 pipe = inode->i_pipe;
336 for (;;) {
337 int bufs = pipe->nrbufs;
338 if (bufs) {
339 int curbuf = pipe->curbuf;
340 struct pipe_buffer *buf = pipe->bufs + curbuf;
341 const struct pipe_buf_operations *ops = buf->ops;
342 void *addr;
343 size_t chars = buf->len;
344 int error, atomic;
345
346 if (chars > total_len)
347 chars = total_len;
348
349 error = ops->confirm(pipe, buf);
350 if (error) {
351 if (!ret)
352 error = ret;
353 break;
354 }
355
356 atomic = !iov_fault_in_pages_write(iov, chars);
357redo:
358 addr = ops->map(pipe, buf, atomic);
359 error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
360 ops->unmap(pipe, buf, addr);
361 if (unlikely(error)) {
362 /*
363 * Just retry with the slow path if we failed.
364 */
365 if (atomic) {
366 atomic = 0;
367 goto redo;
368 }
369 if (!ret)
370 ret = error;
371 break;
372 }
373 ret += chars;
374 buf->offset += chars;
375 buf->len -= chars;
376 if (!buf->len) {
377 buf->ops = NULL;
378 ops->release(pipe, buf);
379 curbuf = (curbuf + 1) & (PIPE_BUFFERS-1);
380 pipe->curbuf = curbuf;
381 pipe->nrbufs = --bufs;
382 do_wakeup = 1;
383 }
384 total_len -= chars;
385 if (!total_len)
386 break; /* common path: read succeeded */
387 }
388 if (bufs) /* More to do? */
389 continue;
390 if (!pipe->writers)
391 break;
392 if (!pipe->waiting_writers) {
393 /* syscall merging: Usually we must not sleep
394 * if O_NONBLOCK is set, or if we got some data.
395 * But if a writer sleeps in kernel space, then
396 * we can wait for that data without violating POSIX.
397 */
398 if (ret)
399 break;
400 if (filp->f_flags & O_NONBLOCK) {
401 ret = -EAGAIN;
402 break;
403 }
404 }
405 if (signal_pending(current)) {
406 if (!ret)
407 ret = -ERESTARTSYS;
408 break;
409 }
410 if (do_wakeup) {
411 wake_up_interruptible_sync(&pipe->wait);
412 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
413 }
414 pipe_wait(pipe);
415 }
416 mutex_unlock(&inode->i_mutex);
417
418 /* Signal writers asynchronously that there is more room. */
419 if (do_wakeup) {
420 wake_up_interruptible_sync(&pipe->wait);
421 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
422 }
423 if (ret > 0)
424 file_accessed(filp);
425 return ret;
426}
427
428static ssize_t
429pipe_write(struct kiocb *iocb, const struct iovec *_iov,
430 unsigned long nr_segs, loff_t ppos)
431{
432 struct file *filp = iocb->ki_filp;
433 struct inode *inode = filp->f_path.dentry->d_inode;
434 struct pipe_inode_info *pipe;
435 ssize_t ret;
436 int do_wakeup;
437 struct iovec *iov = (struct iovec *)_iov;
438 size_t total_len;
439 ssize_t chars;
440
441 total_len = iov_length(iov, nr_segs);
442 /* Null write succeeds. */
443 if (unlikely(total_len == 0))
444 return 0;
445
446 do_wakeup = 0;
447 ret = 0;
448 mutex_lock(&inode->i_mutex);
449 pipe = inode->i_pipe;
450
451 if (!pipe->readers) {
452 send_sig(SIGPIPE, current, 0);
453 ret = -EPIPE;
454 goto out;
455 }
456
457 /* We try to merge small writes */
458 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
459 if (pipe->nrbufs && chars != 0) {
460 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
461 (PIPE_BUFFERS-1);
462 struct pipe_buffer *buf = pipe->bufs + lastbuf;
463 const struct pipe_buf_operations *ops = buf->ops;
464 int offset = buf->offset + buf->len;
465
466 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
467 int error, atomic = 1;
468 void *addr;
469
470 error = ops->confirm(pipe, buf);
471 if (error)
472 goto out;
473
474 iov_fault_in_pages_read(iov, chars);
475redo1:
476 addr = ops->map(pipe, buf, atomic);
477 error = pipe_iov_copy_from_user(offset + addr, iov,
478 chars, atomic);
479 ops->unmap(pipe, buf, addr);
480 ret = error;
481 do_wakeup = 1;
482 if (error) {
483 if (atomic) {
484 atomic = 0;
485 goto redo1;
486 }
487 goto out;
488 }
489 buf->len += chars;
490 total_len -= chars;
491 ret = chars;
492 if (!total_len)
493 goto out;
494 }
495 }
496
497 for (;;) {
498 int bufs;
499
500 if (!pipe->readers) {
501 send_sig(SIGPIPE, current, 0);
502 if (!ret)
503 ret = -EPIPE;
504 break;
505 }
506 bufs = pipe->nrbufs;
507 if (bufs < PIPE_BUFFERS) {
508 int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1);
509 struct pipe_buffer *buf = pipe->bufs + newbuf;
510 struct page *page = pipe->tmp_page;
511 char *src;
512 int error, atomic = 1;
513
514 if (!page) {
515 page = alloc_page(GFP_HIGHUSER);
516 if (unlikely(!page)) {
517 ret = ret ? : -ENOMEM;
518 break;
519 }
520 pipe->tmp_page = page;
521 }
522 /* Always wake up, even if the copy fails. Otherwise
523 * we lock up (O_NONBLOCK-)readers that sleep due to
524 * syscall merging.
525 * FIXME! Is this really true?
526 */
527 do_wakeup = 1;
528 chars = PAGE_SIZE;
529 if (chars > total_len)
530 chars = total_len;
531
532 iov_fault_in_pages_read(iov, chars);
533redo2:
534 if (atomic)
535 src = kmap_atomic(page, KM_USER0);
536 else
537 src = kmap(page);
538
539 error = pipe_iov_copy_from_user(src, iov, chars,
540 atomic);
541 if (atomic)
542 kunmap_atomic(src, KM_USER0);
543 else
544 kunmap(page);
545
546 if (unlikely(error)) {
547 if (atomic) {
548 atomic = 0;
549 goto redo2;
550 }
551 if (!ret)
552 ret = error;
553 break;
554 }
555 ret += chars;
556
557 /* Insert it into the buffer array */
558 buf->page = page;
559 buf->ops = &anon_pipe_buf_ops;
560 buf->offset = 0;
561 buf->len = chars;
562 pipe->nrbufs = ++bufs;
563 pipe->tmp_page = NULL;
564
565 total_len -= chars;
566 if (!total_len)
567 break;
568 }
569 if (bufs < PIPE_BUFFERS)
570 continue;
571 if (filp->f_flags & O_NONBLOCK) {
572 if (!ret)
573 ret = -EAGAIN;
574 break;
575 }
576 if (signal_pending(current)) {
577 if (!ret)
578 ret = -ERESTARTSYS;
579 break;
580 }
581 if (do_wakeup) {
582 wake_up_interruptible_sync(&pipe->wait);
583 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
584 do_wakeup = 0;
585 }
586 pipe->waiting_writers++;
587 pipe_wait(pipe);
588 pipe->waiting_writers--;
589 }
590out:
591 mutex_unlock(&inode->i_mutex);
592 if (do_wakeup) {
593 wake_up_interruptible_sync(&pipe->wait);
594 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
595 }
596 if (ret > 0)
597 file_update_time(filp);
598 return ret;
599}
600
601static ssize_t
602bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
603{
604 return -EBADF;
605}
606
607static ssize_t
608bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
609 loff_t *ppos)
610{
611 return -EBADF;
612}
613
614static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
615{
616 struct inode *inode = filp->f_path.dentry->d_inode;
617 struct pipe_inode_info *pipe;
618 int count, buf, nrbufs;
619
620 switch (cmd) {
621 case FIONREAD:
622 mutex_lock(&inode->i_mutex);
623 pipe = inode->i_pipe;
624 count = 0;
625 buf = pipe->curbuf;
626 nrbufs = pipe->nrbufs;
627 while (--nrbufs >= 0) {
628 count += pipe->bufs[buf].len;
629 buf = (buf+1) & (PIPE_BUFFERS-1);
630 }
631 mutex_unlock(&inode->i_mutex);
632
633 return put_user(count, (int __user *)arg);
634 default:
635 return -EINVAL;
636 }
637}
638
639/* No kernel lock held - fine */
640static unsigned int
641pipe_poll(struct file *filp, poll_table *wait)
642{
643 unsigned int mask;
644 struct inode *inode = filp->f_path.dentry->d_inode;
645 struct pipe_inode_info *pipe = inode->i_pipe;
646 int nrbufs;
647
648 poll_wait(filp, &pipe->wait, wait);
649
650 /* Reading only -- no need for acquiring the semaphore. */
651 nrbufs = pipe->nrbufs;
652 mask = 0;
653 if (filp->f_mode & FMODE_READ) {
654 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
655 if (!pipe->writers && filp->f_version != pipe->w_counter)
656 mask |= POLLHUP;
657 }
658
659 if (filp->f_mode & FMODE_WRITE) {
660 mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0;
661 /*
662 * Most Unices do not set POLLERR for FIFOs but on Linux they
663 * behave exactly like pipes for poll().
664 */
665 if (!pipe->readers)
666 mask |= POLLERR;
667 }
668
669 return mask;
670}
671
672static int
673pipe_release(struct inode *inode, int decr, int decw)
674{
675 struct pipe_inode_info *pipe;
676
677 mutex_lock(&inode->i_mutex);
678 pipe = inode->i_pipe;
679 pipe->readers -= decr;
680 pipe->writers -= decw;
681
682 if (!pipe->readers && !pipe->writers) {
683 free_pipe_info(inode);
684 } else {
685 wake_up_interruptible_sync(&pipe->wait);
686 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
687 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
688 }
689 mutex_unlock(&inode->i_mutex);
690
691 return 0;
692}
693
694static int
695pipe_read_fasync(int fd, struct file *filp, int on)
696{
697 struct inode *inode = filp->f_path.dentry->d_inode;
698 int retval;
699
700 mutex_lock(&inode->i_mutex);
701 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
702 mutex_unlock(&inode->i_mutex);
703
704 return retval;
705}
706
707
708static int
709pipe_write_fasync(int fd, struct file *filp, int on)
710{
711 struct inode *inode = filp->f_path.dentry->d_inode;
712 int retval;
713
714 mutex_lock(&inode->i_mutex);
715 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
716 mutex_unlock(&inode->i_mutex);
717
718 return retval;
719}
720
721
722static int
723pipe_rdwr_fasync(int fd, struct file *filp, int on)
724{
725 struct inode *inode = filp->f_path.dentry->d_inode;
726 struct pipe_inode_info *pipe = inode->i_pipe;
727 int retval;
728
729 mutex_lock(&inode->i_mutex);
730 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
731 if (retval >= 0) {
732 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
733 if (retval < 0) /* this can happen only if on == T */
734 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
735 }
736 mutex_unlock(&inode->i_mutex);
737 return retval;
738}
739
740
741static int
742pipe_read_release(struct inode *inode, struct file *filp)
743{
744 return pipe_release(inode, 1, 0);
745}
746
747static int
748pipe_write_release(struct inode *inode, struct file *filp)
749{
750 return pipe_release(inode, 0, 1);
751}
752
753static int
754pipe_rdwr_release(struct inode *inode, struct file *filp)
755{
756 int decr, decw;
757
758 decr = (filp->f_mode & FMODE_READ) != 0;
759 decw = (filp->f_mode & FMODE_WRITE) != 0;
760 return pipe_release(inode, decr, decw);
761}
762
763static int
764pipe_read_open(struct inode *inode, struct file *filp)
765{
766 /* We could have perhaps used atomic_t, but this and friends
767 below are the only places. So it doesn't seem worthwhile. */
768 mutex_lock(&inode->i_mutex);
769 inode->i_pipe->readers++;
770 mutex_unlock(&inode->i_mutex);
771
772 return 0;
773}
774
775static int
776pipe_write_open(struct inode *inode, struct file *filp)
777{
778 mutex_lock(&inode->i_mutex);
779 inode->i_pipe->writers++;
780 mutex_unlock(&inode->i_mutex);
781
782 return 0;
783}
784
785static int
786pipe_rdwr_open(struct inode *inode, struct file *filp)
787{
788 mutex_lock(&inode->i_mutex);
789 if (filp->f_mode & FMODE_READ)
790 inode->i_pipe->readers++;
791 if (filp->f_mode & FMODE_WRITE)
792 inode->i_pipe->writers++;
793 mutex_unlock(&inode->i_mutex);
794
795 return 0;
796}
797
798/*
799 * The file_operations structs are not static because they
800 * are also used in linux/fs/fifo.c to do operations on FIFOs.
801 *
802 * Pipes reuse fifos' file_operations structs.
803 */
804const struct file_operations read_pipefifo_fops = {
805 .llseek = no_llseek,
806 .read = do_sync_read,
807 .aio_read = pipe_read,
808 .write = bad_pipe_w,
809 .poll = pipe_poll,
810 .unlocked_ioctl = pipe_ioctl,
811 .open = pipe_read_open,
812 .release = pipe_read_release,
813 .fasync = pipe_read_fasync,
814};
815
816const struct file_operations write_pipefifo_fops = {
817 .llseek = no_llseek,
818 .read = bad_pipe_r,
819 .write = do_sync_write,
820 .aio_write = pipe_write,
821 .poll = pipe_poll,
822 .unlocked_ioctl = pipe_ioctl,
823 .open = pipe_write_open,
824 .release = pipe_write_release,
825 .fasync = pipe_write_fasync,
826};
827
828const struct file_operations rdwr_pipefifo_fops = {
829 .llseek = no_llseek,
830 .read = do_sync_read,
831 .aio_read = pipe_read,
832 .write = do_sync_write,
833 .aio_write = pipe_write,
834 .poll = pipe_poll,
835 .unlocked_ioctl = pipe_ioctl,
836 .open = pipe_rdwr_open,
837 .release = pipe_rdwr_release,
838 .fasync = pipe_rdwr_fasync,
839};
840
841struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
842{
843 struct pipe_inode_info *pipe;
844
845 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
846 if (pipe) {
847 init_waitqueue_head(&pipe->wait);
848 pipe->r_counter = pipe->w_counter = 1;
849 pipe->inode = inode;
850 }
851
852 return pipe;
853}
854
855void __free_pipe_info(struct pipe_inode_info *pipe)
856{
857 int i;
858
859 for (i = 0; i < PIPE_BUFFERS; i++) {
860 struct pipe_buffer *buf = pipe->bufs + i;
861 if (buf->ops)
862 buf->ops->release(pipe, buf);
863 }
864 if (pipe->tmp_page)
865 __free_page(pipe->tmp_page);
866 kfree(pipe);
867}
868
869void free_pipe_info(struct inode *inode)
870{
871 __free_pipe_info(inode->i_pipe);
872 inode->i_pipe = NULL;
873}
874
875static struct vfsmount *pipe_mnt __read_mostly;
876static int pipefs_delete_dentry(struct dentry *dentry)
877{
878 /*
879 * At creation time, we pretended this dentry was hashed
880 * (by clearing DCACHE_UNHASHED bit in d_flags)
881 * At delete time, we restore the truth : not hashed.
882 * (so that dput() can proceed correctly)
883 */
884 dentry->d_flags |= DCACHE_UNHASHED;
885 return 0;
886}
887
888/*
889 * pipefs_dname() is called from d_path().
890 */
891static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
892{
893 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
894 dentry->d_inode->i_ino);
895}
896
897static const struct dentry_operations pipefs_dentry_operations = {
898 .d_delete = pipefs_delete_dentry,
899 .d_dname = pipefs_dname,
900};
901
902static struct inode * get_pipe_inode(void)
903{
904 struct inode *inode = new_inode(pipe_mnt->mnt_sb);
905 struct pipe_inode_info *pipe;
906
907 if (!inode)
908 goto fail_inode;
909
910 pipe = alloc_pipe_info(inode);
911 if (!pipe)
912 goto fail_iput;
913 inode->i_pipe = pipe;
914
915 pipe->readers = pipe->writers = 1;
916 inode->i_fop = &rdwr_pipefifo_fops;
917
918 /*
919 * Mark the inode dirty from the very beginning,
920 * that way it will never be moved to the dirty
921 * list because "mark_inode_dirty()" will think
922 * that it already _is_ on the dirty list.
923 */
924 inode->i_state = I_DIRTY;
925 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
926 inode->i_uid = current_fsuid();
927 inode->i_gid = current_fsgid();
928 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
929
930 return inode;
931
932fail_iput:
933 iput(inode);
934
935fail_inode:
936 return NULL;
937}
938
939struct file *create_write_pipe(int flags)
940{
941 int err;
942 struct inode *inode;
943 struct file *f;
944 struct dentry *dentry;
945 struct qstr name = { .name = "" };
946
947 err = -ENFILE;
948 inode = get_pipe_inode();
949 if (!inode)
950 goto err;
951
952 err = -ENOMEM;
953 dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name);
954 if (!dentry)
955 goto err_inode;
956
957 dentry->d_op = &pipefs_dentry_operations;
958 /*
959 * We dont want to publish this dentry into global dentry hash table.
960 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
961 * This permits a working /proc/$pid/fd/XXX on pipes
962 */
963 dentry->d_flags &= ~DCACHE_UNHASHED;
964 d_instantiate(dentry, inode);
965
966 err = -ENFILE;
967 f = alloc_file(pipe_mnt, dentry, FMODE_WRITE, &write_pipefifo_fops);
968 if (!f)
969 goto err_dentry;
970 f->f_mapping = inode->i_mapping;
971
972 f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
973 f->f_version = 0;
974
975 return f;
976
977 err_dentry:
978 free_pipe_info(inode);
979 dput(dentry);
980 return ERR_PTR(err);
981
982 err_inode:
983 free_pipe_info(inode);
984 iput(inode);
985 err:
986 return ERR_PTR(err);
987}
988
989void free_write_pipe(struct file *f)
990{
991 free_pipe_info(f->f_dentry->d_inode);
992 path_put(&f->f_path);
993 put_filp(f);
994}
995
996struct file *create_read_pipe(struct file *wrf, int flags)
997{
998 struct file *f = get_empty_filp();
999 if (!f)
1000 return ERR_PTR(-ENFILE);
1001
1002 /* Grab pipe from the writer */
1003 f->f_path = wrf->f_path;
1004 path_get(&wrf->f_path);
1005 f->f_mapping = wrf->f_path.dentry->d_inode->i_mapping;
1006
1007 f->f_pos = 0;
1008 f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1009 f->f_op = &read_pipefifo_fops;
1010 f->f_mode = FMODE_READ;
1011 f->f_version = 0;
1012
1013 return f;
1014}
1015
1016int do_pipe_flags(int *fd, int flags)
1017{
1018 struct file *fw, *fr;
1019 int error;
1020 int fdw, fdr;
1021
1022 if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1023 return -EINVAL;
1024
1025 fw = create_write_pipe(flags);
1026 if (IS_ERR(fw))
1027 return PTR_ERR(fw);
1028 fr = create_read_pipe(fw, flags);
1029 error = PTR_ERR(fr);
1030 if (IS_ERR(fr))
1031 goto err_write_pipe;
1032
1033 error = get_unused_fd_flags(flags);
1034 if (error < 0)
1035 goto err_read_pipe;
1036 fdr = error;
1037
1038 error = get_unused_fd_flags(flags);
1039 if (error < 0)
1040 goto err_fdr;
1041 fdw = error;
1042
1043 audit_fd_pair(fdr, fdw);
1044 fd_install(fdr, fr);
1045 fd_install(fdw, fw);
1046 fd[0] = fdr;
1047 fd[1] = fdw;
1048
1049 return 0;
1050
1051 err_fdr:
1052 put_unused_fd(fdr);
1053 err_read_pipe:
1054 path_put(&fr->f_path);
1055 put_filp(fr);
1056 err_write_pipe:
1057 free_write_pipe(fw);
1058 return error;
1059}
1060
1061/*
1062 * sys_pipe() is the normal C calling standard for creating
1063 * a pipe. It's not the way Unix traditionally does this, though.
1064 */
1065SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1066{
1067 int fd[2];
1068 int error;
1069
1070 error = do_pipe_flags(fd, flags);
1071 if (!error) {
1072 if (copy_to_user(fildes, fd, sizeof(fd))) {
1073 sys_close(fd[0]);
1074 sys_close(fd[1]);
1075 error = -EFAULT;
1076 }
1077 }
1078 return error;
1079}
1080
1081SYSCALL_DEFINE1(pipe, int __user *, fildes)
1082{
1083 return sys_pipe2(fildes, 0);
1084}
1085
1086/*
1087 * pipefs should _never_ be mounted by userland - too much of security hassle,
1088 * no real gain from having the whole whorehouse mounted. So we don't need
1089 * any operations on the root directory. However, we need a non-trivial
1090 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1091 */
1092static int pipefs_get_sb(struct file_system_type *fs_type,
1093 int flags, const char *dev_name, void *data,
1094 struct vfsmount *mnt)
1095{
1096 return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
1097}
1098
1099static struct file_system_type pipe_fs_type = {
1100 .name = "pipefs",
1101 .get_sb = pipefs_get_sb,
1102 .kill_sb = kill_anon_super,
1103};
1104
1105static int __init init_pipe_fs(void)
1106{
1107 int err = register_filesystem(&pipe_fs_type);
1108
1109 if (!err) {
1110 pipe_mnt = kern_mount(&pipe_fs_type);
1111 if (IS_ERR(pipe_mnt)) {
1112 err = PTR_ERR(pipe_mnt);
1113 unregister_filesystem(&pipe_fs_type);
1114 }
1115 }
1116 return err;
1117}
1118
1119static void __exit exit_pipe_fs(void)
1120{
1121 unregister_filesystem(&pipe_fs_type);
1122 mntput(pipe_mnt);
1123}
1124
1125fs_initcall(init_pipe_fs);
1126module_exit(exit_pipe_fs);
This page took 0.0282 seconds and 5 git commands to generate.