xfs: rework xfs_buf_bio_endio error handling
[deliverable/linux.git] / fs / xfs / xfs_buf.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36
37#include "xfs_log_format.h"
38#include "xfs_trans_resv.h"
39#include "xfs_sb.h"
40#include "xfs_ag.h"
41#include "xfs_mount.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44
45static kmem_zone_t *xfs_buf_zone;
46
47static struct workqueue_struct *xfslogd_workqueue;
48
49#ifdef XFS_BUF_LOCK_TRACKING
50# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
51# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
52# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
53#else
54# define XB_SET_OWNER(bp) do { } while (0)
55# define XB_CLEAR_OWNER(bp) do { } while (0)
56# define XB_GET_OWNER(bp) do { } while (0)
57#endif
58
59#define xb_to_gfp(flags) \
60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
61
62
63static inline int
64xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66{
67 /*
68 * Return true if the buffer is vmapped.
69 *
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73 */
74 return bp->b_addr && bp->b_page_count > 1;
75}
76
77static inline int
78xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80{
81 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
82}
83
84/*
85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86 * b_lru_ref count so that the buffer is freed immediately when the buffer
87 * reference count falls to zero. If the buffer is already on the LRU, we need
88 * to remove the reference that LRU holds on the buffer.
89 *
90 * This prevents build-up of stale buffers on the LRU.
91 */
92void
93xfs_buf_stale(
94 struct xfs_buf *bp)
95{
96 ASSERT(xfs_buf_islocked(bp));
97
98 bp->b_flags |= XBF_STALE;
99
100 /*
101 * Clear the delwri status so that a delwri queue walker will not
102 * flush this buffer to disk now that it is stale. The delwri queue has
103 * a reference to the buffer, so this is safe to do.
104 */
105 bp->b_flags &= ~_XBF_DELWRI_Q;
106
107 spin_lock(&bp->b_lock);
108 atomic_set(&bp->b_lru_ref, 0);
109 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
110 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
111 atomic_dec(&bp->b_hold);
112
113 ASSERT(atomic_read(&bp->b_hold) >= 1);
114 spin_unlock(&bp->b_lock);
115}
116
117static int
118xfs_buf_get_maps(
119 struct xfs_buf *bp,
120 int map_count)
121{
122 ASSERT(bp->b_maps == NULL);
123 bp->b_map_count = map_count;
124
125 if (map_count == 1) {
126 bp->b_maps = &bp->__b_map;
127 return 0;
128 }
129
130 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
131 KM_NOFS);
132 if (!bp->b_maps)
133 return -ENOMEM;
134 return 0;
135}
136
137/*
138 * Frees b_pages if it was allocated.
139 */
140static void
141xfs_buf_free_maps(
142 struct xfs_buf *bp)
143{
144 if (bp->b_maps != &bp->__b_map) {
145 kmem_free(bp->b_maps);
146 bp->b_maps = NULL;
147 }
148}
149
150struct xfs_buf *
151_xfs_buf_alloc(
152 struct xfs_buftarg *target,
153 struct xfs_buf_map *map,
154 int nmaps,
155 xfs_buf_flags_t flags)
156{
157 struct xfs_buf *bp;
158 int error;
159 int i;
160
161 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
162 if (unlikely(!bp))
163 return NULL;
164
165 /*
166 * We don't want certain flags to appear in b_flags unless they are
167 * specifically set by later operations on the buffer.
168 */
169 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
170
171 atomic_set(&bp->b_hold, 1);
172 atomic_set(&bp->b_lru_ref, 1);
173 init_completion(&bp->b_iowait);
174 INIT_LIST_HEAD(&bp->b_lru);
175 INIT_LIST_HEAD(&bp->b_list);
176 RB_CLEAR_NODE(&bp->b_rbnode);
177 sema_init(&bp->b_sema, 0); /* held, no waiters */
178 spin_lock_init(&bp->b_lock);
179 XB_SET_OWNER(bp);
180 bp->b_target = target;
181 bp->b_flags = flags;
182
183 /*
184 * Set length and io_length to the same value initially.
185 * I/O routines should use io_length, which will be the same in
186 * most cases but may be reset (e.g. XFS recovery).
187 */
188 error = xfs_buf_get_maps(bp, nmaps);
189 if (error) {
190 kmem_zone_free(xfs_buf_zone, bp);
191 return NULL;
192 }
193
194 bp->b_bn = map[0].bm_bn;
195 bp->b_length = 0;
196 for (i = 0; i < nmaps; i++) {
197 bp->b_maps[i].bm_bn = map[i].bm_bn;
198 bp->b_maps[i].bm_len = map[i].bm_len;
199 bp->b_length += map[i].bm_len;
200 }
201 bp->b_io_length = bp->b_length;
202
203 atomic_set(&bp->b_pin_count, 0);
204 init_waitqueue_head(&bp->b_waiters);
205
206 XFS_STATS_INC(xb_create);
207 trace_xfs_buf_init(bp, _RET_IP_);
208
209 return bp;
210}
211
212/*
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
215 */
216STATIC int
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
219 int page_count)
220{
221 /* Make sure that we have a page list */
222 if (bp->b_pages == NULL) {
223 bp->b_page_count = page_count;
224 if (page_count <= XB_PAGES) {
225 bp->b_pages = bp->b_page_array;
226 } else {
227 bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 page_count, KM_NOFS);
229 if (bp->b_pages == NULL)
230 return -ENOMEM;
231 }
232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
233 }
234 return 0;
235}
236
237/*
238 * Frees b_pages if it was allocated.
239 */
240STATIC void
241_xfs_buf_free_pages(
242 xfs_buf_t *bp)
243{
244 if (bp->b_pages != bp->b_page_array) {
245 kmem_free(bp->b_pages);
246 bp->b_pages = NULL;
247 }
248}
249
250/*
251 * Releases the specified buffer.
252 *
253 * The modification state of any associated pages is left unchanged.
254 * The buffer must not be on any hash - use xfs_buf_rele instead for
255 * hashed and refcounted buffers
256 */
257void
258xfs_buf_free(
259 xfs_buf_t *bp)
260{
261 trace_xfs_buf_free(bp, _RET_IP_);
262
263 ASSERT(list_empty(&bp->b_lru));
264
265 if (bp->b_flags & _XBF_PAGES) {
266 uint i;
267
268 if (xfs_buf_is_vmapped(bp))
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
271
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
275 __free_page(page);
276 }
277 } else if (bp->b_flags & _XBF_KMEM)
278 kmem_free(bp->b_addr);
279 _xfs_buf_free_pages(bp);
280 xfs_buf_free_maps(bp);
281 kmem_zone_free(xfs_buf_zone, bp);
282}
283
284/*
285 * Allocates all the pages for buffer in question and builds it's page list.
286 */
287STATIC int
288xfs_buf_allocate_memory(
289 xfs_buf_t *bp,
290 uint flags)
291{
292 size_t size;
293 size_t nbytes, offset;
294 gfp_t gfp_mask = xb_to_gfp(flags);
295 unsigned short page_count, i;
296 xfs_off_t start, end;
297 int error;
298
299 /*
300 * for buffers that are contained within a single page, just allocate
301 * the memory from the heap - there's no need for the complexity of
302 * page arrays to keep allocation down to order 0.
303 */
304 size = BBTOB(bp->b_length);
305 if (size < PAGE_SIZE) {
306 bp->b_addr = kmem_alloc(size, KM_NOFS);
307 if (!bp->b_addr) {
308 /* low memory - use alloc_page loop instead */
309 goto use_alloc_page;
310 }
311
312 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
313 ((unsigned long)bp->b_addr & PAGE_MASK)) {
314 /* b_addr spans two pages - use alloc_page instead */
315 kmem_free(bp->b_addr);
316 bp->b_addr = NULL;
317 goto use_alloc_page;
318 }
319 bp->b_offset = offset_in_page(bp->b_addr);
320 bp->b_pages = bp->b_page_array;
321 bp->b_pages[0] = virt_to_page(bp->b_addr);
322 bp->b_page_count = 1;
323 bp->b_flags |= _XBF_KMEM;
324 return 0;
325 }
326
327use_alloc_page:
328 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
329 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
330 >> PAGE_SHIFT;
331 page_count = end - start;
332 error = _xfs_buf_get_pages(bp, page_count);
333 if (unlikely(error))
334 return error;
335
336 offset = bp->b_offset;
337 bp->b_flags |= _XBF_PAGES;
338
339 for (i = 0; i < bp->b_page_count; i++) {
340 struct page *page;
341 uint retries = 0;
342retry:
343 page = alloc_page(gfp_mask);
344 if (unlikely(page == NULL)) {
345 if (flags & XBF_READ_AHEAD) {
346 bp->b_page_count = i;
347 error = -ENOMEM;
348 goto out_free_pages;
349 }
350
351 /*
352 * This could deadlock.
353 *
354 * But until all the XFS lowlevel code is revamped to
355 * handle buffer allocation failures we can't do much.
356 */
357 if (!(++retries % 100))
358 xfs_err(NULL,
359 "possible memory allocation deadlock in %s (mode:0x%x)",
360 __func__, gfp_mask);
361
362 XFS_STATS_INC(xb_page_retries);
363 congestion_wait(BLK_RW_ASYNC, HZ/50);
364 goto retry;
365 }
366
367 XFS_STATS_INC(xb_page_found);
368
369 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
370 size -= nbytes;
371 bp->b_pages[i] = page;
372 offset = 0;
373 }
374 return 0;
375
376out_free_pages:
377 for (i = 0; i < bp->b_page_count; i++)
378 __free_page(bp->b_pages[i]);
379 return error;
380}
381
382/*
383 * Map buffer into kernel address-space if necessary.
384 */
385STATIC int
386_xfs_buf_map_pages(
387 xfs_buf_t *bp,
388 uint flags)
389{
390 ASSERT(bp->b_flags & _XBF_PAGES);
391 if (bp->b_page_count == 1) {
392 /* A single page buffer is always mappable */
393 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
394 } else if (flags & XBF_UNMAPPED) {
395 bp->b_addr = NULL;
396 } else {
397 int retried = 0;
398 unsigned noio_flag;
399
400 /*
401 * vm_map_ram() will allocate auxillary structures (e.g.
402 * pagetables) with GFP_KERNEL, yet we are likely to be under
403 * GFP_NOFS context here. Hence we need to tell memory reclaim
404 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
405 * memory reclaim re-entering the filesystem here and
406 * potentially deadlocking.
407 */
408 noio_flag = memalloc_noio_save();
409 do {
410 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
411 -1, PAGE_KERNEL);
412 if (bp->b_addr)
413 break;
414 vm_unmap_aliases();
415 } while (retried++ <= 1);
416 memalloc_noio_restore(noio_flag);
417
418 if (!bp->b_addr)
419 return -ENOMEM;
420 bp->b_addr += bp->b_offset;
421 }
422
423 return 0;
424}
425
426/*
427 * Finding and Reading Buffers
428 */
429
430/*
431 * Look up, and creates if absent, a lockable buffer for
432 * a given range of an inode. The buffer is returned
433 * locked. No I/O is implied by this call.
434 */
435xfs_buf_t *
436_xfs_buf_find(
437 struct xfs_buftarg *btp,
438 struct xfs_buf_map *map,
439 int nmaps,
440 xfs_buf_flags_t flags,
441 xfs_buf_t *new_bp)
442{
443 size_t numbytes;
444 struct xfs_perag *pag;
445 struct rb_node **rbp;
446 struct rb_node *parent;
447 xfs_buf_t *bp;
448 xfs_daddr_t blkno = map[0].bm_bn;
449 xfs_daddr_t eofs;
450 int numblks = 0;
451 int i;
452
453 for (i = 0; i < nmaps; i++)
454 numblks += map[i].bm_len;
455 numbytes = BBTOB(numblks);
456
457 /* Check for IOs smaller than the sector size / not sector aligned */
458 ASSERT(!(numbytes < btp->bt_meta_sectorsize));
459 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
460
461 /*
462 * Corrupted block numbers can get through to here, unfortunately, so we
463 * have to check that the buffer falls within the filesystem bounds.
464 */
465 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
466 if (blkno >= eofs) {
467 /*
468 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
469 * but none of the higher level infrastructure supports
470 * returning a specific error on buffer lookup failures.
471 */
472 xfs_alert(btp->bt_mount,
473 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
474 __func__, blkno, eofs);
475 WARN_ON(1);
476 return NULL;
477 }
478
479 /* get tree root */
480 pag = xfs_perag_get(btp->bt_mount,
481 xfs_daddr_to_agno(btp->bt_mount, blkno));
482
483 /* walk tree */
484 spin_lock(&pag->pag_buf_lock);
485 rbp = &pag->pag_buf_tree.rb_node;
486 parent = NULL;
487 bp = NULL;
488 while (*rbp) {
489 parent = *rbp;
490 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
491
492 if (blkno < bp->b_bn)
493 rbp = &(*rbp)->rb_left;
494 else if (blkno > bp->b_bn)
495 rbp = &(*rbp)->rb_right;
496 else {
497 /*
498 * found a block number match. If the range doesn't
499 * match, the only way this is allowed is if the buffer
500 * in the cache is stale and the transaction that made
501 * it stale has not yet committed. i.e. we are
502 * reallocating a busy extent. Skip this buffer and
503 * continue searching to the right for an exact match.
504 */
505 if (bp->b_length != numblks) {
506 ASSERT(bp->b_flags & XBF_STALE);
507 rbp = &(*rbp)->rb_right;
508 continue;
509 }
510 atomic_inc(&bp->b_hold);
511 goto found;
512 }
513 }
514
515 /* No match found */
516 if (new_bp) {
517 rb_link_node(&new_bp->b_rbnode, parent, rbp);
518 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
519 /* the buffer keeps the perag reference until it is freed */
520 new_bp->b_pag = pag;
521 spin_unlock(&pag->pag_buf_lock);
522 } else {
523 XFS_STATS_INC(xb_miss_locked);
524 spin_unlock(&pag->pag_buf_lock);
525 xfs_perag_put(pag);
526 }
527 return new_bp;
528
529found:
530 spin_unlock(&pag->pag_buf_lock);
531 xfs_perag_put(pag);
532
533 if (!xfs_buf_trylock(bp)) {
534 if (flags & XBF_TRYLOCK) {
535 xfs_buf_rele(bp);
536 XFS_STATS_INC(xb_busy_locked);
537 return NULL;
538 }
539 xfs_buf_lock(bp);
540 XFS_STATS_INC(xb_get_locked_waited);
541 }
542
543 /*
544 * if the buffer is stale, clear all the external state associated with
545 * it. We need to keep flags such as how we allocated the buffer memory
546 * intact here.
547 */
548 if (bp->b_flags & XBF_STALE) {
549 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
550 ASSERT(bp->b_iodone == NULL);
551 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
552 bp->b_ops = NULL;
553 }
554
555 trace_xfs_buf_find(bp, flags, _RET_IP_);
556 XFS_STATS_INC(xb_get_locked);
557 return bp;
558}
559
560/*
561 * Assembles a buffer covering the specified range. The code is optimised for
562 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
563 * more hits than misses.
564 */
565struct xfs_buf *
566xfs_buf_get_map(
567 struct xfs_buftarg *target,
568 struct xfs_buf_map *map,
569 int nmaps,
570 xfs_buf_flags_t flags)
571{
572 struct xfs_buf *bp;
573 struct xfs_buf *new_bp;
574 int error = 0;
575
576 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
577 if (likely(bp))
578 goto found;
579
580 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
581 if (unlikely(!new_bp))
582 return NULL;
583
584 error = xfs_buf_allocate_memory(new_bp, flags);
585 if (error) {
586 xfs_buf_free(new_bp);
587 return NULL;
588 }
589
590 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
591 if (!bp) {
592 xfs_buf_free(new_bp);
593 return NULL;
594 }
595
596 if (bp != new_bp)
597 xfs_buf_free(new_bp);
598
599found:
600 if (!bp->b_addr) {
601 error = _xfs_buf_map_pages(bp, flags);
602 if (unlikely(error)) {
603 xfs_warn(target->bt_mount,
604 "%s: failed to map pagesn", __func__);
605 xfs_buf_relse(bp);
606 return NULL;
607 }
608 }
609
610 XFS_STATS_INC(xb_get);
611 trace_xfs_buf_get(bp, flags, _RET_IP_);
612 return bp;
613}
614
615STATIC int
616_xfs_buf_read(
617 xfs_buf_t *bp,
618 xfs_buf_flags_t flags)
619{
620 ASSERT(!(flags & XBF_WRITE));
621 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
622
623 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
624 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
625
626 xfs_buf_iorequest(bp);
627 if (flags & XBF_ASYNC)
628 return 0;
629 return xfs_buf_iowait(bp);
630}
631
632xfs_buf_t *
633xfs_buf_read_map(
634 struct xfs_buftarg *target,
635 struct xfs_buf_map *map,
636 int nmaps,
637 xfs_buf_flags_t flags,
638 const struct xfs_buf_ops *ops)
639{
640 struct xfs_buf *bp;
641
642 flags |= XBF_READ;
643
644 bp = xfs_buf_get_map(target, map, nmaps, flags);
645 if (bp) {
646 trace_xfs_buf_read(bp, flags, _RET_IP_);
647
648 if (!XFS_BUF_ISDONE(bp)) {
649 XFS_STATS_INC(xb_get_read);
650 bp->b_ops = ops;
651 _xfs_buf_read(bp, flags);
652 } else if (flags & XBF_ASYNC) {
653 /*
654 * Read ahead call which is already satisfied,
655 * drop the buffer
656 */
657 xfs_buf_relse(bp);
658 return NULL;
659 } else {
660 /* We do not want read in the flags */
661 bp->b_flags &= ~XBF_READ;
662 }
663 }
664
665 return bp;
666}
667
668/*
669 * If we are not low on memory then do the readahead in a deadlock
670 * safe manner.
671 */
672void
673xfs_buf_readahead_map(
674 struct xfs_buftarg *target,
675 struct xfs_buf_map *map,
676 int nmaps,
677 const struct xfs_buf_ops *ops)
678{
679 if (bdi_read_congested(target->bt_bdi))
680 return;
681
682 xfs_buf_read_map(target, map, nmaps,
683 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
684}
685
686/*
687 * Read an uncached buffer from disk. Allocates and returns a locked
688 * buffer containing the disk contents or nothing.
689 */
690struct xfs_buf *
691xfs_buf_read_uncached(
692 struct xfs_buftarg *target,
693 xfs_daddr_t daddr,
694 size_t numblks,
695 int flags,
696 const struct xfs_buf_ops *ops)
697{
698 struct xfs_buf *bp;
699
700 bp = xfs_buf_get_uncached(target, numblks, flags);
701 if (!bp)
702 return NULL;
703
704 /* set up the buffer for a read IO */
705 ASSERT(bp->b_map_count == 1);
706 bp->b_bn = daddr;
707 bp->b_maps[0].bm_bn = daddr;
708 bp->b_flags |= XBF_READ;
709 bp->b_ops = ops;
710
711 if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
712 xfs_buf_relse(bp);
713 return NULL;
714 }
715 xfs_buf_iorequest(bp);
716 xfs_buf_iowait(bp);
717 return bp;
718}
719
720/*
721 * Return a buffer allocated as an empty buffer and associated to external
722 * memory via xfs_buf_associate_memory() back to it's empty state.
723 */
724void
725xfs_buf_set_empty(
726 struct xfs_buf *bp,
727 size_t numblks)
728{
729 if (bp->b_pages)
730 _xfs_buf_free_pages(bp);
731
732 bp->b_pages = NULL;
733 bp->b_page_count = 0;
734 bp->b_addr = NULL;
735 bp->b_length = numblks;
736 bp->b_io_length = numblks;
737
738 ASSERT(bp->b_map_count == 1);
739 bp->b_bn = XFS_BUF_DADDR_NULL;
740 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
741 bp->b_maps[0].bm_len = bp->b_length;
742}
743
744static inline struct page *
745mem_to_page(
746 void *addr)
747{
748 if ((!is_vmalloc_addr(addr))) {
749 return virt_to_page(addr);
750 } else {
751 return vmalloc_to_page(addr);
752 }
753}
754
755int
756xfs_buf_associate_memory(
757 xfs_buf_t *bp,
758 void *mem,
759 size_t len)
760{
761 int rval;
762 int i = 0;
763 unsigned long pageaddr;
764 unsigned long offset;
765 size_t buflen;
766 int page_count;
767
768 pageaddr = (unsigned long)mem & PAGE_MASK;
769 offset = (unsigned long)mem - pageaddr;
770 buflen = PAGE_ALIGN(len + offset);
771 page_count = buflen >> PAGE_SHIFT;
772
773 /* Free any previous set of page pointers */
774 if (bp->b_pages)
775 _xfs_buf_free_pages(bp);
776
777 bp->b_pages = NULL;
778 bp->b_addr = mem;
779
780 rval = _xfs_buf_get_pages(bp, page_count);
781 if (rval)
782 return rval;
783
784 bp->b_offset = offset;
785
786 for (i = 0; i < bp->b_page_count; i++) {
787 bp->b_pages[i] = mem_to_page((void *)pageaddr);
788 pageaddr += PAGE_SIZE;
789 }
790
791 bp->b_io_length = BTOBB(len);
792 bp->b_length = BTOBB(buflen);
793
794 return 0;
795}
796
797xfs_buf_t *
798xfs_buf_get_uncached(
799 struct xfs_buftarg *target,
800 size_t numblks,
801 int flags)
802{
803 unsigned long page_count;
804 int error, i;
805 struct xfs_buf *bp;
806 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
807
808 bp = _xfs_buf_alloc(target, &map, 1, 0);
809 if (unlikely(bp == NULL))
810 goto fail;
811
812 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
813 error = _xfs_buf_get_pages(bp, page_count);
814 if (error)
815 goto fail_free_buf;
816
817 for (i = 0; i < page_count; i++) {
818 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
819 if (!bp->b_pages[i])
820 goto fail_free_mem;
821 }
822 bp->b_flags |= _XBF_PAGES;
823
824 error = _xfs_buf_map_pages(bp, 0);
825 if (unlikely(error)) {
826 xfs_warn(target->bt_mount,
827 "%s: failed to map pages", __func__);
828 goto fail_free_mem;
829 }
830
831 trace_xfs_buf_get_uncached(bp, _RET_IP_);
832 return bp;
833
834 fail_free_mem:
835 while (--i >= 0)
836 __free_page(bp->b_pages[i]);
837 _xfs_buf_free_pages(bp);
838 fail_free_buf:
839 xfs_buf_free_maps(bp);
840 kmem_zone_free(xfs_buf_zone, bp);
841 fail:
842 return NULL;
843}
844
845/*
846 * Increment reference count on buffer, to hold the buffer concurrently
847 * with another thread which may release (free) the buffer asynchronously.
848 * Must hold the buffer already to call this function.
849 */
850void
851xfs_buf_hold(
852 xfs_buf_t *bp)
853{
854 trace_xfs_buf_hold(bp, _RET_IP_);
855 atomic_inc(&bp->b_hold);
856}
857
858/*
859 * Releases a hold on the specified buffer. If the
860 * the hold count is 1, calls xfs_buf_free.
861 */
862void
863xfs_buf_rele(
864 xfs_buf_t *bp)
865{
866 struct xfs_perag *pag = bp->b_pag;
867
868 trace_xfs_buf_rele(bp, _RET_IP_);
869
870 if (!pag) {
871 ASSERT(list_empty(&bp->b_lru));
872 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
873 if (atomic_dec_and_test(&bp->b_hold))
874 xfs_buf_free(bp);
875 return;
876 }
877
878 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
879
880 ASSERT(atomic_read(&bp->b_hold) > 0);
881 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
882 spin_lock(&bp->b_lock);
883 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
884 /*
885 * If the buffer is added to the LRU take a new
886 * reference to the buffer for the LRU and clear the
887 * (now stale) dispose list state flag
888 */
889 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
890 bp->b_state &= ~XFS_BSTATE_DISPOSE;
891 atomic_inc(&bp->b_hold);
892 }
893 spin_unlock(&bp->b_lock);
894 spin_unlock(&pag->pag_buf_lock);
895 } else {
896 /*
897 * most of the time buffers will already be removed from
898 * the LRU, so optimise that case by checking for the
899 * XFS_BSTATE_DISPOSE flag indicating the last list the
900 * buffer was on was the disposal list
901 */
902 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
903 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
904 } else {
905 ASSERT(list_empty(&bp->b_lru));
906 }
907 spin_unlock(&bp->b_lock);
908
909 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
910 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
911 spin_unlock(&pag->pag_buf_lock);
912 xfs_perag_put(pag);
913 xfs_buf_free(bp);
914 }
915 }
916}
917
918
919/*
920 * Lock a buffer object, if it is not already locked.
921 *
922 * If we come across a stale, pinned, locked buffer, we know that we are
923 * being asked to lock a buffer that has been reallocated. Because it is
924 * pinned, we know that the log has not been pushed to disk and hence it
925 * will still be locked. Rather than continuing to have trylock attempts
926 * fail until someone else pushes the log, push it ourselves before
927 * returning. This means that the xfsaild will not get stuck trying
928 * to push on stale inode buffers.
929 */
930int
931xfs_buf_trylock(
932 struct xfs_buf *bp)
933{
934 int locked;
935
936 locked = down_trylock(&bp->b_sema) == 0;
937 if (locked)
938 XB_SET_OWNER(bp);
939
940 trace_xfs_buf_trylock(bp, _RET_IP_);
941 return locked;
942}
943
944/*
945 * Lock a buffer object.
946 *
947 * If we come across a stale, pinned, locked buffer, we know that we
948 * are being asked to lock a buffer that has been reallocated. Because
949 * it is pinned, we know that the log has not been pushed to disk and
950 * hence it will still be locked. Rather than sleeping until someone
951 * else pushes the log, push it ourselves before trying to get the lock.
952 */
953void
954xfs_buf_lock(
955 struct xfs_buf *bp)
956{
957 trace_xfs_buf_lock(bp, _RET_IP_);
958
959 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
960 xfs_log_force(bp->b_target->bt_mount, 0);
961 down(&bp->b_sema);
962 XB_SET_OWNER(bp);
963
964 trace_xfs_buf_lock_done(bp, _RET_IP_);
965}
966
967void
968xfs_buf_unlock(
969 struct xfs_buf *bp)
970{
971 XB_CLEAR_OWNER(bp);
972 up(&bp->b_sema);
973
974 trace_xfs_buf_unlock(bp, _RET_IP_);
975}
976
977STATIC void
978xfs_buf_wait_unpin(
979 xfs_buf_t *bp)
980{
981 DECLARE_WAITQUEUE (wait, current);
982
983 if (atomic_read(&bp->b_pin_count) == 0)
984 return;
985
986 add_wait_queue(&bp->b_waiters, &wait);
987 for (;;) {
988 set_current_state(TASK_UNINTERRUPTIBLE);
989 if (atomic_read(&bp->b_pin_count) == 0)
990 break;
991 io_schedule();
992 }
993 remove_wait_queue(&bp->b_waiters, &wait);
994 set_current_state(TASK_RUNNING);
995}
996
997/*
998 * Buffer Utility Routines
999 */
1000
1001void
1002xfs_buf_ioend(
1003 struct xfs_buf *bp)
1004{
1005 bool read = bp->b_flags & XBF_READ;
1006
1007 trace_xfs_buf_iodone(bp, _RET_IP_);
1008
1009 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1010
1011 /*
1012 * Pull in IO completion errors now. We are guaranteed to be running
1013 * single threaded, so we don't need the lock to read b_io_error.
1014 */
1015 if (!bp->b_error && bp->b_io_error)
1016 xfs_buf_ioerror(bp, bp->b_io_error);
1017
1018 /* Only validate buffers that were read without errors */
1019 if (read && !bp->b_error && bp->b_ops) {
1020 ASSERT(!bp->b_iodone);
1021 bp->b_ops->verify_read(bp);
1022 }
1023
1024 if (!bp->b_error)
1025 bp->b_flags |= XBF_DONE;
1026
1027 if (bp->b_iodone)
1028 (*(bp->b_iodone))(bp);
1029 else if (bp->b_flags & XBF_ASYNC)
1030 xfs_buf_relse(bp);
1031 else {
1032 complete(&bp->b_iowait);
1033
1034 /* release the !XBF_ASYNC ref now we are done. */
1035 xfs_buf_rele(bp);
1036 }
1037}
1038
1039static void
1040xfs_buf_ioend_work(
1041 struct work_struct *work)
1042{
1043 struct xfs_buf *bp =
1044 container_of(work, xfs_buf_t, b_iodone_work);
1045
1046 xfs_buf_ioend(bp);
1047}
1048
1049void
1050xfs_buf_ioend_async(
1051 struct xfs_buf *bp)
1052{
1053 INIT_WORK(&bp->b_iodone_work, xfs_buf_ioend_work);
1054 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1055}
1056
1057void
1058xfs_buf_ioerror(
1059 xfs_buf_t *bp,
1060 int error)
1061{
1062 ASSERT(error <= 0 && error >= -1000);
1063 bp->b_error = error;
1064 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1065}
1066
1067void
1068xfs_buf_ioerror_alert(
1069 struct xfs_buf *bp,
1070 const char *func)
1071{
1072 xfs_alert(bp->b_target->bt_mount,
1073"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1074 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1075}
1076
1077/*
1078 * Called when we want to stop a buffer from getting written or read.
1079 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1080 * so that the proper iodone callbacks get called.
1081 */
1082STATIC int
1083xfs_bioerror(
1084 xfs_buf_t *bp)
1085{
1086#ifdef XFSERRORDEBUG
1087 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1088#endif
1089
1090 /*
1091 * No need to wait until the buffer is unpinned, we aren't flushing it.
1092 */
1093 xfs_buf_ioerror(bp, -EIO);
1094
1095 /*
1096 * We're calling xfs_buf_ioend, so delete XBF_DONE flag. For
1097 * sync IO, xfs_buf_ioend is going to remove a ref here.
1098 */
1099 if (!(bp->b_flags & XBF_ASYNC))
1100 xfs_buf_hold(bp);
1101 XFS_BUF_UNREAD(bp);
1102 XFS_BUF_UNDONE(bp);
1103 xfs_buf_stale(bp);
1104
1105 xfs_buf_ioend(bp);
1106
1107 return -EIO;
1108}
1109
1110/*
1111 * Same as xfs_bioerror, except that we are releasing the buffer
1112 * here ourselves, and avoiding the xfs_buf_ioend call.
1113 * This is meant for userdata errors; metadata bufs come with
1114 * iodone functions attached, so that we can track down errors.
1115 */
1116int
1117xfs_bioerror_relse(
1118 struct xfs_buf *bp)
1119{
1120 int64_t fl = bp->b_flags;
1121 /*
1122 * No need to wait until the buffer is unpinned.
1123 * We aren't flushing it.
1124 *
1125 * chunkhold expects B_DONE to be set, whether
1126 * we actually finish the I/O or not. We don't want to
1127 * change that interface.
1128 */
1129 XFS_BUF_UNREAD(bp);
1130 XFS_BUF_DONE(bp);
1131 xfs_buf_stale(bp);
1132 bp->b_iodone = NULL;
1133 if (!(fl & XBF_ASYNC)) {
1134 /*
1135 * Mark b_error and B_ERROR _both_.
1136 * Lot's of chunkcache code assumes that.
1137 * There's no reason to mark error for
1138 * ASYNC buffers.
1139 */
1140 xfs_buf_ioerror(bp, -EIO);
1141 complete(&bp->b_iowait);
1142 } else {
1143 xfs_buf_relse(bp);
1144 }
1145
1146 return -EIO;
1147}
1148
1149STATIC int
1150xfs_bdstrat_cb(
1151 struct xfs_buf *bp)
1152{
1153 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1154 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1155 /*
1156 * Metadata write that didn't get logged but
1157 * written delayed anyway. These aren't associated
1158 * with a transaction, and can be ignored.
1159 */
1160 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1161 return xfs_bioerror_relse(bp);
1162 else
1163 return xfs_bioerror(bp);
1164 }
1165
1166 xfs_buf_iorequest(bp);
1167 return 0;
1168}
1169
1170int
1171xfs_bwrite(
1172 struct xfs_buf *bp)
1173{
1174 int error;
1175
1176 ASSERT(xfs_buf_islocked(bp));
1177
1178 bp->b_flags |= XBF_WRITE;
1179 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
1180
1181 xfs_bdstrat_cb(bp);
1182
1183 error = xfs_buf_iowait(bp);
1184 if (error) {
1185 xfs_force_shutdown(bp->b_target->bt_mount,
1186 SHUTDOWN_META_IO_ERROR);
1187 }
1188 return error;
1189}
1190
1191STATIC void
1192xfs_buf_bio_end_io(
1193 struct bio *bio,
1194 int error)
1195{
1196 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1197
1198 /*
1199 * don't overwrite existing errors - otherwise we can lose errors on
1200 * buffers that require multiple bios to complete.
1201 */
1202 if (error) {
1203 spin_lock(&bp->b_lock);
1204 if (!bp->b_io_error)
1205 bp->b_io_error = error;
1206 spin_unlock(&bp->b_lock);
1207 }
1208
1209 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1210 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1211
1212 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1213 xfs_buf_ioend_async(bp);
1214 bio_put(bio);
1215}
1216
1217static void
1218xfs_buf_ioapply_map(
1219 struct xfs_buf *bp,
1220 int map,
1221 int *buf_offset,
1222 int *count,
1223 int rw)
1224{
1225 int page_index;
1226 int total_nr_pages = bp->b_page_count;
1227 int nr_pages;
1228 struct bio *bio;
1229 sector_t sector = bp->b_maps[map].bm_bn;
1230 int size;
1231 int offset;
1232
1233 total_nr_pages = bp->b_page_count;
1234
1235 /* skip the pages in the buffer before the start offset */
1236 page_index = 0;
1237 offset = *buf_offset;
1238 while (offset >= PAGE_SIZE) {
1239 page_index++;
1240 offset -= PAGE_SIZE;
1241 }
1242
1243 /*
1244 * Limit the IO size to the length of the current vector, and update the
1245 * remaining IO count for the next time around.
1246 */
1247 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1248 *count -= size;
1249 *buf_offset += size;
1250
1251next_chunk:
1252 atomic_inc(&bp->b_io_remaining);
1253 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1254 if (nr_pages > total_nr_pages)
1255 nr_pages = total_nr_pages;
1256
1257 bio = bio_alloc(GFP_NOIO, nr_pages);
1258 bio->bi_bdev = bp->b_target->bt_bdev;
1259 bio->bi_iter.bi_sector = sector;
1260 bio->bi_end_io = xfs_buf_bio_end_io;
1261 bio->bi_private = bp;
1262
1263
1264 for (; size && nr_pages; nr_pages--, page_index++) {
1265 int rbytes, nbytes = PAGE_SIZE - offset;
1266
1267 if (nbytes > size)
1268 nbytes = size;
1269
1270 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1271 offset);
1272 if (rbytes < nbytes)
1273 break;
1274
1275 offset = 0;
1276 sector += BTOBB(nbytes);
1277 size -= nbytes;
1278 total_nr_pages--;
1279 }
1280
1281 if (likely(bio->bi_iter.bi_size)) {
1282 if (xfs_buf_is_vmapped(bp)) {
1283 flush_kernel_vmap_range(bp->b_addr,
1284 xfs_buf_vmap_len(bp));
1285 }
1286 submit_bio(rw, bio);
1287 if (size)
1288 goto next_chunk;
1289 } else {
1290 /*
1291 * This is guaranteed not to be the last io reference count
1292 * because the caller (xfs_buf_iorequest) holds a count itself.
1293 */
1294 atomic_dec(&bp->b_io_remaining);
1295 xfs_buf_ioerror(bp, -EIO);
1296 bio_put(bio);
1297 }
1298
1299}
1300
1301STATIC void
1302_xfs_buf_ioapply(
1303 struct xfs_buf *bp)
1304{
1305 struct blk_plug plug;
1306 int rw;
1307 int offset;
1308 int size;
1309 int i;
1310
1311 /*
1312 * Make sure we capture only current IO errors rather than stale errors
1313 * left over from previous use of the buffer (e.g. failed readahead).
1314 */
1315 bp->b_error = 0;
1316
1317 if (bp->b_flags & XBF_WRITE) {
1318 if (bp->b_flags & XBF_SYNCIO)
1319 rw = WRITE_SYNC;
1320 else
1321 rw = WRITE;
1322 if (bp->b_flags & XBF_FUA)
1323 rw |= REQ_FUA;
1324 if (bp->b_flags & XBF_FLUSH)
1325 rw |= REQ_FLUSH;
1326
1327 /*
1328 * Run the write verifier callback function if it exists. If
1329 * this function fails it will mark the buffer with an error and
1330 * the IO should not be dispatched.
1331 */
1332 if (bp->b_ops) {
1333 bp->b_ops->verify_write(bp);
1334 if (bp->b_error) {
1335 xfs_force_shutdown(bp->b_target->bt_mount,
1336 SHUTDOWN_CORRUPT_INCORE);
1337 return;
1338 }
1339 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1340 struct xfs_mount *mp = bp->b_target->bt_mount;
1341
1342 /*
1343 * non-crc filesystems don't attach verifiers during
1344 * log recovery, so don't warn for such filesystems.
1345 */
1346 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1347 xfs_warn(mp,
1348 "%s: no ops on block 0x%llx/0x%x",
1349 __func__, bp->b_bn, bp->b_length);
1350 xfs_hex_dump(bp->b_addr, 64);
1351 dump_stack();
1352 }
1353 }
1354 } else if (bp->b_flags & XBF_READ_AHEAD) {
1355 rw = READA;
1356 } else {
1357 rw = READ;
1358 }
1359
1360 /* we only use the buffer cache for meta-data */
1361 rw |= REQ_META;
1362
1363 /*
1364 * Walk all the vectors issuing IO on them. Set up the initial offset
1365 * into the buffer and the desired IO size before we start -
1366 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1367 * subsequent call.
1368 */
1369 offset = bp->b_offset;
1370 size = BBTOB(bp->b_io_length);
1371 blk_start_plug(&plug);
1372 for (i = 0; i < bp->b_map_count; i++) {
1373 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1374 if (bp->b_error)
1375 break;
1376 if (size <= 0)
1377 break; /* all done */
1378 }
1379 blk_finish_plug(&plug);
1380}
1381
1382void
1383xfs_buf_iorequest(
1384 xfs_buf_t *bp)
1385{
1386 trace_xfs_buf_iorequest(bp, _RET_IP_);
1387
1388 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1389
1390 if (bp->b_flags & XBF_WRITE)
1391 xfs_buf_wait_unpin(bp);
1392
1393 /* clear the internal error state to avoid spurious errors */
1394 bp->b_io_error = 0;
1395
1396 /*
1397 * Take references to the buffer. For XBF_ASYNC buffers, holding a
1398 * reference for as long as submission takes is all that is necessary
1399 * here. The IO inherits the lock and hold count from the submitter,
1400 * and these are release during IO completion processing. Taking a hold
1401 * over submission ensures that the buffer is not freed until we have
1402 * completed all processing, regardless of when IO errors occur or are
1403 * reported.
1404 *
1405 * However, for synchronous IO, the IO does not inherit the submitters
1406 * reference count, nor the buffer lock. Hence we need to take an extra
1407 * reference to the buffer for the for the IO context so that we can
1408 * guarantee the buffer is not freed until all IO completion processing
1409 * is done. Otherwise the caller can drop their reference while the IO
1410 * is still in progress and hence trigger a use-after-free situation.
1411 */
1412 xfs_buf_hold(bp);
1413 if (!(bp->b_flags & XBF_ASYNC))
1414 xfs_buf_hold(bp);
1415
1416
1417 /*
1418 * Set the count to 1 initially, this will stop an I/O completion
1419 * callout which happens before we have started all the I/O from calling
1420 * xfs_buf_ioend too early.
1421 */
1422 atomic_set(&bp->b_io_remaining, 1);
1423 _xfs_buf_ioapply(bp);
1424
1425 /*
1426 * If _xfs_buf_ioapply failed or we are doing synchronous IO that
1427 * completes extremely quickly, we can get back here with only the IO
1428 * reference we took above. If we drop it to zero, run completion
1429 * processing synchronously so that we don't return to the caller with
1430 * completion still pending. This avoids unnecessary context switches
1431 * associated with the end_io workqueue.
1432 */
1433 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1434 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1435 xfs_buf_ioend(bp);
1436 else
1437 xfs_buf_ioend_async(bp);
1438 }
1439
1440 xfs_buf_rele(bp);
1441}
1442
1443/*
1444 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1445 * no I/O is pending or there is already a pending error on the buffer, in which
1446 * case nothing will ever complete. It returns the I/O error code, if any, or
1447 * 0 if there was no error.
1448 */
1449int
1450xfs_buf_iowait(
1451 xfs_buf_t *bp)
1452{
1453 trace_xfs_buf_iowait(bp, _RET_IP_);
1454
1455 if (!bp->b_error)
1456 wait_for_completion(&bp->b_iowait);
1457
1458 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1459 return bp->b_error;
1460}
1461
1462xfs_caddr_t
1463xfs_buf_offset(
1464 xfs_buf_t *bp,
1465 size_t offset)
1466{
1467 struct page *page;
1468
1469 if (bp->b_addr)
1470 return bp->b_addr + offset;
1471
1472 offset += bp->b_offset;
1473 page = bp->b_pages[offset >> PAGE_SHIFT];
1474 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1475}
1476
1477/*
1478 * Move data into or out of a buffer.
1479 */
1480void
1481xfs_buf_iomove(
1482 xfs_buf_t *bp, /* buffer to process */
1483 size_t boff, /* starting buffer offset */
1484 size_t bsize, /* length to copy */
1485 void *data, /* data address */
1486 xfs_buf_rw_t mode) /* read/write/zero flag */
1487{
1488 size_t bend;
1489
1490 bend = boff + bsize;
1491 while (boff < bend) {
1492 struct page *page;
1493 int page_index, page_offset, csize;
1494
1495 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1496 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1497 page = bp->b_pages[page_index];
1498 csize = min_t(size_t, PAGE_SIZE - page_offset,
1499 BBTOB(bp->b_io_length) - boff);
1500
1501 ASSERT((csize + page_offset) <= PAGE_SIZE);
1502
1503 switch (mode) {
1504 case XBRW_ZERO:
1505 memset(page_address(page) + page_offset, 0, csize);
1506 break;
1507 case XBRW_READ:
1508 memcpy(data, page_address(page) + page_offset, csize);
1509 break;
1510 case XBRW_WRITE:
1511 memcpy(page_address(page) + page_offset, data, csize);
1512 }
1513
1514 boff += csize;
1515 data += csize;
1516 }
1517}
1518
1519/*
1520 * Handling of buffer targets (buftargs).
1521 */
1522
1523/*
1524 * Wait for any bufs with callbacks that have been submitted but have not yet
1525 * returned. These buffers will have an elevated hold count, so wait on those
1526 * while freeing all the buffers only held by the LRU.
1527 */
1528static enum lru_status
1529xfs_buftarg_wait_rele(
1530 struct list_head *item,
1531 spinlock_t *lru_lock,
1532 void *arg)
1533
1534{
1535 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1536 struct list_head *dispose = arg;
1537
1538 if (atomic_read(&bp->b_hold) > 1) {
1539 /* need to wait, so skip it this pass */
1540 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1541 return LRU_SKIP;
1542 }
1543 if (!spin_trylock(&bp->b_lock))
1544 return LRU_SKIP;
1545
1546 /*
1547 * clear the LRU reference count so the buffer doesn't get
1548 * ignored in xfs_buf_rele().
1549 */
1550 atomic_set(&bp->b_lru_ref, 0);
1551 bp->b_state |= XFS_BSTATE_DISPOSE;
1552 list_move(item, dispose);
1553 spin_unlock(&bp->b_lock);
1554 return LRU_REMOVED;
1555}
1556
1557void
1558xfs_wait_buftarg(
1559 struct xfs_buftarg *btp)
1560{
1561 LIST_HEAD(dispose);
1562 int loop = 0;
1563
1564 /* loop until there is nothing left on the lru list. */
1565 while (list_lru_count(&btp->bt_lru)) {
1566 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1567 &dispose, LONG_MAX);
1568
1569 while (!list_empty(&dispose)) {
1570 struct xfs_buf *bp;
1571 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1572 list_del_init(&bp->b_lru);
1573 if (bp->b_flags & XBF_WRITE_FAIL) {
1574 xfs_alert(btp->bt_mount,
1575"Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1576"Please run xfs_repair to determine the extent of the problem.",
1577 (long long)bp->b_bn);
1578 }
1579 xfs_buf_rele(bp);
1580 }
1581 if (loop++ != 0)
1582 delay(100);
1583 }
1584}
1585
1586static enum lru_status
1587xfs_buftarg_isolate(
1588 struct list_head *item,
1589 spinlock_t *lru_lock,
1590 void *arg)
1591{
1592 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1593 struct list_head *dispose = arg;
1594
1595 /*
1596 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1597 * If we fail to get the lock, just skip it.
1598 */
1599 if (!spin_trylock(&bp->b_lock))
1600 return LRU_SKIP;
1601 /*
1602 * Decrement the b_lru_ref count unless the value is already
1603 * zero. If the value is already zero, we need to reclaim the
1604 * buffer, otherwise it gets another trip through the LRU.
1605 */
1606 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1607 spin_unlock(&bp->b_lock);
1608 return LRU_ROTATE;
1609 }
1610
1611 bp->b_state |= XFS_BSTATE_DISPOSE;
1612 list_move(item, dispose);
1613 spin_unlock(&bp->b_lock);
1614 return LRU_REMOVED;
1615}
1616
1617static unsigned long
1618xfs_buftarg_shrink_scan(
1619 struct shrinker *shrink,
1620 struct shrink_control *sc)
1621{
1622 struct xfs_buftarg *btp = container_of(shrink,
1623 struct xfs_buftarg, bt_shrinker);
1624 LIST_HEAD(dispose);
1625 unsigned long freed;
1626 unsigned long nr_to_scan = sc->nr_to_scan;
1627
1628 freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1629 &dispose, &nr_to_scan);
1630
1631 while (!list_empty(&dispose)) {
1632 struct xfs_buf *bp;
1633 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1634 list_del_init(&bp->b_lru);
1635 xfs_buf_rele(bp);
1636 }
1637
1638 return freed;
1639}
1640
1641static unsigned long
1642xfs_buftarg_shrink_count(
1643 struct shrinker *shrink,
1644 struct shrink_control *sc)
1645{
1646 struct xfs_buftarg *btp = container_of(shrink,
1647 struct xfs_buftarg, bt_shrinker);
1648 return list_lru_count_node(&btp->bt_lru, sc->nid);
1649}
1650
1651void
1652xfs_free_buftarg(
1653 struct xfs_mount *mp,
1654 struct xfs_buftarg *btp)
1655{
1656 unregister_shrinker(&btp->bt_shrinker);
1657 list_lru_destroy(&btp->bt_lru);
1658
1659 if (mp->m_flags & XFS_MOUNT_BARRIER)
1660 xfs_blkdev_issue_flush(btp);
1661
1662 kmem_free(btp);
1663}
1664
1665int
1666xfs_setsize_buftarg(
1667 xfs_buftarg_t *btp,
1668 unsigned int sectorsize)
1669{
1670 /* Set up metadata sector size info */
1671 btp->bt_meta_sectorsize = sectorsize;
1672 btp->bt_meta_sectormask = sectorsize - 1;
1673
1674 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1675 char name[BDEVNAME_SIZE];
1676
1677 bdevname(btp->bt_bdev, name);
1678
1679 xfs_warn(btp->bt_mount,
1680 "Cannot set_blocksize to %u on device %s",
1681 sectorsize, name);
1682 return -EINVAL;
1683 }
1684
1685 /* Set up device logical sector size mask */
1686 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1687 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1688
1689 return 0;
1690}
1691
1692/*
1693 * When allocating the initial buffer target we have not yet
1694 * read in the superblock, so don't know what sized sectors
1695 * are being used at this early stage. Play safe.
1696 */
1697STATIC int
1698xfs_setsize_buftarg_early(
1699 xfs_buftarg_t *btp,
1700 struct block_device *bdev)
1701{
1702 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1703}
1704
1705xfs_buftarg_t *
1706xfs_alloc_buftarg(
1707 struct xfs_mount *mp,
1708 struct block_device *bdev)
1709{
1710 xfs_buftarg_t *btp;
1711
1712 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1713
1714 btp->bt_mount = mp;
1715 btp->bt_dev = bdev->bd_dev;
1716 btp->bt_bdev = bdev;
1717 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1718 if (!btp->bt_bdi)
1719 goto error;
1720
1721 if (xfs_setsize_buftarg_early(btp, bdev))
1722 goto error;
1723
1724 if (list_lru_init(&btp->bt_lru))
1725 goto error;
1726
1727 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1728 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1729 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1730 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1731 register_shrinker(&btp->bt_shrinker);
1732 return btp;
1733
1734error:
1735 kmem_free(btp);
1736 return NULL;
1737}
1738
1739/*
1740 * Add a buffer to the delayed write list.
1741 *
1742 * This queues a buffer for writeout if it hasn't already been. Note that
1743 * neither this routine nor the buffer list submission functions perform
1744 * any internal synchronization. It is expected that the lists are thread-local
1745 * to the callers.
1746 *
1747 * Returns true if we queued up the buffer, or false if it already had
1748 * been on the buffer list.
1749 */
1750bool
1751xfs_buf_delwri_queue(
1752 struct xfs_buf *bp,
1753 struct list_head *list)
1754{
1755 ASSERT(xfs_buf_islocked(bp));
1756 ASSERT(!(bp->b_flags & XBF_READ));
1757
1758 /*
1759 * If the buffer is already marked delwri it already is queued up
1760 * by someone else for imediate writeout. Just ignore it in that
1761 * case.
1762 */
1763 if (bp->b_flags & _XBF_DELWRI_Q) {
1764 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1765 return false;
1766 }
1767
1768 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1769
1770 /*
1771 * If a buffer gets written out synchronously or marked stale while it
1772 * is on a delwri list we lazily remove it. To do this, the other party
1773 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1774 * It remains referenced and on the list. In a rare corner case it
1775 * might get readded to a delwri list after the synchronous writeout, in
1776 * which case we need just need to re-add the flag here.
1777 */
1778 bp->b_flags |= _XBF_DELWRI_Q;
1779 if (list_empty(&bp->b_list)) {
1780 atomic_inc(&bp->b_hold);
1781 list_add_tail(&bp->b_list, list);
1782 }
1783
1784 return true;
1785}
1786
1787/*
1788 * Compare function is more complex than it needs to be because
1789 * the return value is only 32 bits and we are doing comparisons
1790 * on 64 bit values
1791 */
1792static int
1793xfs_buf_cmp(
1794 void *priv,
1795 struct list_head *a,
1796 struct list_head *b)
1797{
1798 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1799 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1800 xfs_daddr_t diff;
1801
1802 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1803 if (diff < 0)
1804 return -1;
1805 if (diff > 0)
1806 return 1;
1807 return 0;
1808}
1809
1810static int
1811__xfs_buf_delwri_submit(
1812 struct list_head *buffer_list,
1813 struct list_head *io_list,
1814 bool wait)
1815{
1816 struct blk_plug plug;
1817 struct xfs_buf *bp, *n;
1818 int pinned = 0;
1819
1820 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1821 if (!wait) {
1822 if (xfs_buf_ispinned(bp)) {
1823 pinned++;
1824 continue;
1825 }
1826 if (!xfs_buf_trylock(bp))
1827 continue;
1828 } else {
1829 xfs_buf_lock(bp);
1830 }
1831
1832 /*
1833 * Someone else might have written the buffer synchronously or
1834 * marked it stale in the meantime. In that case only the
1835 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1836 * reference and remove it from the list here.
1837 */
1838 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1839 list_del_init(&bp->b_list);
1840 xfs_buf_relse(bp);
1841 continue;
1842 }
1843
1844 list_move_tail(&bp->b_list, io_list);
1845 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1846 }
1847
1848 list_sort(NULL, io_list, xfs_buf_cmp);
1849
1850 blk_start_plug(&plug);
1851 list_for_each_entry_safe(bp, n, io_list, b_list) {
1852 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1853 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1854
1855 /*
1856 * we do all Io submission async. This means if we need to wait
1857 * for IO completion we need to take an extra reference so the
1858 * buffer is still valid on the other side.
1859 */
1860 if (wait)
1861 xfs_buf_hold(bp);
1862 else
1863 list_del_init(&bp->b_list);
1864 xfs_bdstrat_cb(bp);
1865 }
1866 blk_finish_plug(&plug);
1867
1868 return pinned;
1869}
1870
1871/*
1872 * Write out a buffer list asynchronously.
1873 *
1874 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1875 * out and not wait for I/O completion on any of the buffers. This interface
1876 * is only safely useable for callers that can track I/O completion by higher
1877 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1878 * function.
1879 */
1880int
1881xfs_buf_delwri_submit_nowait(
1882 struct list_head *buffer_list)
1883{
1884 LIST_HEAD (io_list);
1885 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1886}
1887
1888/*
1889 * Write out a buffer list synchronously.
1890 *
1891 * This will take the @buffer_list, write all buffers out and wait for I/O
1892 * completion on all of the buffers. @buffer_list is consumed by the function,
1893 * so callers must have some other way of tracking buffers if they require such
1894 * functionality.
1895 */
1896int
1897xfs_buf_delwri_submit(
1898 struct list_head *buffer_list)
1899{
1900 LIST_HEAD (io_list);
1901 int error = 0, error2;
1902 struct xfs_buf *bp;
1903
1904 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1905
1906 /* Wait for IO to complete. */
1907 while (!list_empty(&io_list)) {
1908 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1909
1910 list_del_init(&bp->b_list);
1911
1912 /* locking the buffer will wait for async IO completion. */
1913 xfs_buf_lock(bp);
1914 error2 = bp->b_error;
1915 xfs_buf_relse(bp);
1916 if (!error)
1917 error = error2;
1918 }
1919
1920 return error;
1921}
1922
1923int __init
1924xfs_buf_init(void)
1925{
1926 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1927 KM_ZONE_HWALIGN, NULL);
1928 if (!xfs_buf_zone)
1929 goto out;
1930
1931 xfslogd_workqueue = alloc_workqueue("xfslogd",
1932 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1933 if (!xfslogd_workqueue)
1934 goto out_free_buf_zone;
1935
1936 return 0;
1937
1938 out_free_buf_zone:
1939 kmem_zone_destroy(xfs_buf_zone);
1940 out:
1941 return -ENOMEM;
1942}
1943
1944void
1945xfs_buf_terminate(void)
1946{
1947 destroy_workqueue(xfslogd_workqueue);
1948 kmem_zone_destroy(xfs_buf_zone);
1949}
This page took 0.030717 seconds and 5 git commands to generate.