Commit missing part of previous delta to add GNU_UNIQUE_FUNCTION support.
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
... / ...
CommitLineData
1/* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28#include "as.h"
29#include <limits.h>
30#include <stdarg.h>
31#define NO_RELOC 0
32#include "safe-ctype.h"
33#include "subsegs.h"
34#include "obstack.h"
35
36#include "opcode/arm.h"
37
38#ifdef OBJ_ELF
39#include "elf/arm.h"
40#include "dw2gencfi.h"
41#endif
42
43#include "dwarf2dbg.h"
44
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78} unwind;
79
80/* Bit N indicates that an R_ARM_NONE relocation has been output for
81 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
82 emitted only once per section, to save unnecessary bloat. */
83static unsigned int marked_pr_dependency = 0;
84
85#endif /* OBJ_ELF */
86
87/* Results from operand parsing worker functions. */
88
89typedef enum
90{
91 PARSE_OPERAND_SUCCESS,
92 PARSE_OPERAND_FAIL,
93 PARSE_OPERAND_FAIL_NO_BACKTRACK
94} parse_operand_result;
95
96enum arm_float_abi
97{
98 ARM_FLOAT_ABI_HARD,
99 ARM_FLOAT_ABI_SOFTFP,
100 ARM_FLOAT_ABI_SOFT
101};
102
103/* Types of processor to assemble for. */
104#ifndef CPU_DEFAULT
105#if defined __XSCALE__
106#define CPU_DEFAULT ARM_ARCH_XSCALE
107#else
108#if defined __thumb__
109#define CPU_DEFAULT ARM_ARCH_V5T
110#endif
111#endif
112#endif
113
114#ifndef FPU_DEFAULT
115# ifdef TE_LINUX
116# define FPU_DEFAULT FPU_ARCH_FPA
117# elif defined (TE_NetBSD)
118# ifdef OBJ_ELF
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
120# else
121 /* Legacy a.out format. */
122# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
123# endif
124# elif defined (TE_VXWORKS)
125# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
126# else
127 /* For backwards compatibility, default to FPA. */
128# define FPU_DEFAULT FPU_ARCH_FPA
129# endif
130#endif /* ifndef FPU_DEFAULT */
131
132#define streq(a, b) (strcmp (a, b) == 0)
133
134static arm_feature_set cpu_variant;
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
137
138/* Flags stored in private area of BFD structure. */
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
143static int pic_code = FALSE;
144static int fix_v4bx = FALSE;
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
148
149/* Variables that we set while parsing command-line options. Once all
150 options have been read we re-process these values to set the real
151 assembly flags. */
152static const arm_feature_set *legacy_cpu = NULL;
153static const arm_feature_set *legacy_fpu = NULL;
154
155static const arm_feature_set *mcpu_cpu_opt = NULL;
156static const arm_feature_set *mcpu_fpu_opt = NULL;
157static const arm_feature_set *march_cpu_opt = NULL;
158static const arm_feature_set *march_fpu_opt = NULL;
159static const arm_feature_set *mfpu_opt = NULL;
160static const arm_feature_set *object_arch = NULL;
161
162/* Constants for known architecture features. */
163static const arm_feature_set fpu_default = FPU_DEFAULT;
164static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
165static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
166static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
167static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
168static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
169static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
170static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
171static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
172
173#ifdef CPU_DEFAULT
174static const arm_feature_set cpu_default = CPU_DEFAULT;
175#endif
176
177static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
178static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
179static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
180static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
181static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
182static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
183static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
184static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
185static const arm_feature_set arm_ext_v4t_5 =
186 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
187static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
188static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
189static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
190static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
191static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
192static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
193static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
194static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
195static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
196static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
197static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
198static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
199static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
200static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
201static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
202static const arm_feature_set arm_ext_m =
203 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
204
205static const arm_feature_set arm_arch_any = ARM_ANY;
206static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
207static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
208static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
209
210static const arm_feature_set arm_cext_iwmmxt2 =
211 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
212static const arm_feature_set arm_cext_iwmmxt =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
214static const arm_feature_set arm_cext_xscale =
215 ARM_FEATURE (0, ARM_CEXT_XSCALE);
216static const arm_feature_set arm_cext_maverick =
217 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
218static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
219static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
220static const arm_feature_set fpu_vfp_ext_v1xd =
221 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
222static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
223static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
224static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
225static const arm_feature_set fpu_vfp_ext_d32 =
226 ARM_FEATURE (0, FPU_VFP_EXT_D32);
227static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
228static const arm_feature_set fpu_vfp_v3_or_neon_ext =
229 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
230static const arm_feature_set fpu_neon_fp16 = ARM_FEATURE (0, FPU_NEON_FP16);
231
232static int mfloat_abi_opt = -1;
233/* Record user cpu selection for object attributes. */
234static arm_feature_set selected_cpu = ARM_ARCH_NONE;
235/* Must be long enough to hold any of the names in arm_cpus. */
236static char selected_cpu_name[16];
237#ifdef OBJ_ELF
238# ifdef EABI_DEFAULT
239static int meabi_flags = EABI_DEFAULT;
240# else
241static int meabi_flags = EF_ARM_EABI_UNKNOWN;
242# endif
243
244static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
245
246bfd_boolean
247arm_is_eabi (void)
248{
249 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
250}
251#endif
252
253#ifdef OBJ_ELF
254/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
255symbolS * GOT_symbol;
256#endif
257
258/* 0: assemble for ARM,
259 1: assemble for Thumb,
260 2: assemble for Thumb even though target CPU does not support thumb
261 instructions. */
262static int thumb_mode = 0;
263/* A value distinct from the possible values for thumb_mode that we
264 can use to record whether thumb_mode has been copied into the
265 tc_frag_data field of a frag. */
266#define MODE_RECORDED (1 << 4)
267
268/* Specifies the intrinsic IT insn behavior mode. */
269enum implicit_it_mode
270{
271 IMPLICIT_IT_MODE_NEVER = 0x00,
272 IMPLICIT_IT_MODE_ARM = 0x01,
273 IMPLICIT_IT_MODE_THUMB = 0x02,
274 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
275};
276static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
277
278/* If unified_syntax is true, we are processing the new unified
279 ARM/Thumb syntax. Important differences from the old ARM mode:
280
281 - Immediate operands do not require a # prefix.
282 - Conditional affixes always appear at the end of the
283 instruction. (For backward compatibility, those instructions
284 that formerly had them in the middle, continue to accept them
285 there.)
286 - The IT instruction may appear, and if it does is validated
287 against subsequent conditional affixes. It does not generate
288 machine code.
289
290 Important differences from the old Thumb mode:
291
292 - Immediate operands do not require a # prefix.
293 - Most of the V6T2 instructions are only available in unified mode.
294 - The .N and .W suffixes are recognized and honored (it is an error
295 if they cannot be honored).
296 - All instructions set the flags if and only if they have an 's' affix.
297 - Conditional affixes may be used. They are validated against
298 preceding IT instructions. Unlike ARM mode, you cannot use a
299 conditional affix except in the scope of an IT instruction. */
300
301static bfd_boolean unified_syntax = FALSE;
302
303enum neon_el_type
304{
305 NT_invtype,
306 NT_untyped,
307 NT_integer,
308 NT_float,
309 NT_poly,
310 NT_signed,
311 NT_unsigned
312};
313
314struct neon_type_el
315{
316 enum neon_el_type type;
317 unsigned size;
318};
319
320#define NEON_MAX_TYPE_ELS 4
321
322struct neon_type
323{
324 struct neon_type_el el[NEON_MAX_TYPE_ELS];
325 unsigned elems;
326};
327
328enum it_instruction_type
329{
330 OUTSIDE_IT_INSN,
331 INSIDE_IT_INSN,
332 INSIDE_IT_LAST_INSN,
333 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
334 if inside, should be the last one. */
335 NEUTRAL_IT_INSN, /* This could be either inside or outside,
336 i.e. BKPT and NOP. */
337 IT_INSN /* The IT insn has been parsed. */
338};
339
340struct arm_it
341{
342 const char * error;
343 unsigned long instruction;
344 int size;
345 int size_req;
346 int cond;
347 /* "uncond_value" is set to the value in place of the conditional field in
348 unconditional versions of the instruction, or -1 if nothing is
349 appropriate. */
350 int uncond_value;
351 struct neon_type vectype;
352 /* Set to the opcode if the instruction needs relaxation.
353 Zero if the instruction is not relaxed. */
354 unsigned long relax;
355 struct
356 {
357 bfd_reloc_code_real_type type;
358 expressionS exp;
359 int pc_rel;
360 } reloc;
361
362 enum it_instruction_type it_insn_type;
363
364 struct
365 {
366 unsigned reg;
367 signed int imm;
368 struct neon_type_el vectype;
369 unsigned present : 1; /* Operand present. */
370 unsigned isreg : 1; /* Operand was a register. */
371 unsigned immisreg : 1; /* .imm field is a second register. */
372 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
373 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
374 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
375 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
376 instructions. This allows us to disambiguate ARM <-> vector insns. */
377 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
378 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
379 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
380 unsigned issingle : 1; /* Operand is VFP single-precision register. */
381 unsigned hasreloc : 1; /* Operand has relocation suffix. */
382 unsigned writeback : 1; /* Operand has trailing ! */
383 unsigned preind : 1; /* Preindexed address. */
384 unsigned postind : 1; /* Postindexed address. */
385 unsigned negative : 1; /* Index register was negated. */
386 unsigned shifted : 1; /* Shift applied to operation. */
387 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
388 } operands[6];
389};
390
391static struct arm_it inst;
392
393#define NUM_FLOAT_VALS 8
394
395const char * fp_const[] =
396{
397 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
398};
399
400/* Number of littlenums required to hold an extended precision number. */
401#define MAX_LITTLENUMS 6
402
403LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
404
405#define FAIL (-1)
406#define SUCCESS (0)
407
408#define SUFF_S 1
409#define SUFF_D 2
410#define SUFF_E 3
411#define SUFF_P 4
412
413#define CP_T_X 0x00008000
414#define CP_T_Y 0x00400000
415
416#define CONDS_BIT 0x00100000
417#define LOAD_BIT 0x00100000
418
419#define DOUBLE_LOAD_FLAG 0x00000001
420
421struct asm_cond
422{
423 const char * template;
424 unsigned long value;
425};
426
427#define COND_ALWAYS 0xE
428
429struct asm_psr
430{
431 const char * template;
432 unsigned long field;
433};
434
435struct asm_barrier_opt
436{
437 const char * template;
438 unsigned long value;
439};
440
441/* The bit that distinguishes CPSR and SPSR. */
442#define SPSR_BIT (1 << 22)
443
444/* The individual PSR flag bits. */
445#define PSR_c (1 << 16)
446#define PSR_x (1 << 17)
447#define PSR_s (1 << 18)
448#define PSR_f (1 << 19)
449
450struct reloc_entry
451{
452 char * name;
453 bfd_reloc_code_real_type reloc;
454};
455
456enum vfp_reg_pos
457{
458 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
459 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
460};
461
462enum vfp_ldstm_type
463{
464 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
465};
466
467/* Bits for DEFINED field in neon_typed_alias. */
468#define NTA_HASTYPE 1
469#define NTA_HASINDEX 2
470
471struct neon_typed_alias
472{
473 unsigned char defined;
474 unsigned char index;
475 struct neon_type_el eltype;
476};
477
478/* ARM register categories. This includes coprocessor numbers and various
479 architecture extensions' registers. */
480enum arm_reg_type
481{
482 REG_TYPE_RN,
483 REG_TYPE_CP,
484 REG_TYPE_CN,
485 REG_TYPE_FN,
486 REG_TYPE_VFS,
487 REG_TYPE_VFD,
488 REG_TYPE_NQ,
489 REG_TYPE_VFSD,
490 REG_TYPE_NDQ,
491 REG_TYPE_NSDQ,
492 REG_TYPE_VFC,
493 REG_TYPE_MVF,
494 REG_TYPE_MVD,
495 REG_TYPE_MVFX,
496 REG_TYPE_MVDX,
497 REG_TYPE_MVAX,
498 REG_TYPE_DSPSC,
499 REG_TYPE_MMXWR,
500 REG_TYPE_MMXWC,
501 REG_TYPE_MMXWCG,
502 REG_TYPE_XSCALE,
503};
504
505/* Structure for a hash table entry for a register.
506 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
507 information which states whether a vector type or index is specified (for a
508 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
509struct reg_entry
510{
511 const char * name;
512 unsigned char number;
513 unsigned char type;
514 unsigned char builtin;
515 struct neon_typed_alias * neon;
516};
517
518/* Diagnostics used when we don't get a register of the expected type. */
519const char * const reg_expected_msgs[] =
520{
521 N_("ARM register expected"),
522 N_("bad or missing co-processor number"),
523 N_("co-processor register expected"),
524 N_("FPA register expected"),
525 N_("VFP single precision register expected"),
526 N_("VFP/Neon double precision register expected"),
527 N_("Neon quad precision register expected"),
528 N_("VFP single or double precision register expected"),
529 N_("Neon double or quad precision register expected"),
530 N_("VFP single, double or Neon quad precision register expected"),
531 N_("VFP system register expected"),
532 N_("Maverick MVF register expected"),
533 N_("Maverick MVD register expected"),
534 N_("Maverick MVFX register expected"),
535 N_("Maverick MVDX register expected"),
536 N_("Maverick MVAX register expected"),
537 N_("Maverick DSPSC register expected"),
538 N_("iWMMXt data register expected"),
539 N_("iWMMXt control register expected"),
540 N_("iWMMXt scalar register expected"),
541 N_("XScale accumulator register expected"),
542};
543
544/* Some well known registers that we refer to directly elsewhere. */
545#define REG_SP 13
546#define REG_LR 14
547#define REG_PC 15
548
549/* ARM instructions take 4bytes in the object file, Thumb instructions
550 take 2: */
551#define INSN_SIZE 4
552
553struct asm_opcode
554{
555 /* Basic string to match. */
556 const char * template;
557
558 /* Parameters to instruction. */
559 unsigned char operands[8];
560
561 /* Conditional tag - see opcode_lookup. */
562 unsigned int tag : 4;
563
564 /* Basic instruction code. */
565 unsigned int avalue : 28;
566
567 /* Thumb-format instruction code. */
568 unsigned int tvalue;
569
570 /* Which architecture variant provides this instruction. */
571 const arm_feature_set * avariant;
572 const arm_feature_set * tvariant;
573
574 /* Function to call to encode instruction in ARM format. */
575 void (* aencode) (void);
576
577 /* Function to call to encode instruction in Thumb format. */
578 void (* tencode) (void);
579};
580
581/* Defines for various bits that we will want to toggle. */
582#define INST_IMMEDIATE 0x02000000
583#define OFFSET_REG 0x02000000
584#define HWOFFSET_IMM 0x00400000
585#define SHIFT_BY_REG 0x00000010
586#define PRE_INDEX 0x01000000
587#define INDEX_UP 0x00800000
588#define WRITE_BACK 0x00200000
589#define LDM_TYPE_2_OR_3 0x00400000
590#define CPSI_MMOD 0x00020000
591
592#define LITERAL_MASK 0xf000f000
593#define OPCODE_MASK 0xfe1fffff
594#define V4_STR_BIT 0x00000020
595
596#define T2_SUBS_PC_LR 0xf3de8f00
597
598#define DATA_OP_SHIFT 21
599
600#define T2_OPCODE_MASK 0xfe1fffff
601#define T2_DATA_OP_SHIFT 21
602
603/* Codes to distinguish the arithmetic instructions. */
604#define OPCODE_AND 0
605#define OPCODE_EOR 1
606#define OPCODE_SUB 2
607#define OPCODE_RSB 3
608#define OPCODE_ADD 4
609#define OPCODE_ADC 5
610#define OPCODE_SBC 6
611#define OPCODE_RSC 7
612#define OPCODE_TST 8
613#define OPCODE_TEQ 9
614#define OPCODE_CMP 10
615#define OPCODE_CMN 11
616#define OPCODE_ORR 12
617#define OPCODE_MOV 13
618#define OPCODE_BIC 14
619#define OPCODE_MVN 15
620
621#define T2_OPCODE_AND 0
622#define T2_OPCODE_BIC 1
623#define T2_OPCODE_ORR 2
624#define T2_OPCODE_ORN 3
625#define T2_OPCODE_EOR 4
626#define T2_OPCODE_ADD 8
627#define T2_OPCODE_ADC 10
628#define T2_OPCODE_SBC 11
629#define T2_OPCODE_SUB 13
630#define T2_OPCODE_RSB 14
631
632#define T_OPCODE_MUL 0x4340
633#define T_OPCODE_TST 0x4200
634#define T_OPCODE_CMN 0x42c0
635#define T_OPCODE_NEG 0x4240
636#define T_OPCODE_MVN 0x43c0
637
638#define T_OPCODE_ADD_R3 0x1800
639#define T_OPCODE_SUB_R3 0x1a00
640#define T_OPCODE_ADD_HI 0x4400
641#define T_OPCODE_ADD_ST 0xb000
642#define T_OPCODE_SUB_ST 0xb080
643#define T_OPCODE_ADD_SP 0xa800
644#define T_OPCODE_ADD_PC 0xa000
645#define T_OPCODE_ADD_I8 0x3000
646#define T_OPCODE_SUB_I8 0x3800
647#define T_OPCODE_ADD_I3 0x1c00
648#define T_OPCODE_SUB_I3 0x1e00
649
650#define T_OPCODE_ASR_R 0x4100
651#define T_OPCODE_LSL_R 0x4080
652#define T_OPCODE_LSR_R 0x40c0
653#define T_OPCODE_ROR_R 0x41c0
654#define T_OPCODE_ASR_I 0x1000
655#define T_OPCODE_LSL_I 0x0000
656#define T_OPCODE_LSR_I 0x0800
657
658#define T_OPCODE_MOV_I8 0x2000
659#define T_OPCODE_CMP_I8 0x2800
660#define T_OPCODE_CMP_LR 0x4280
661#define T_OPCODE_MOV_HR 0x4600
662#define T_OPCODE_CMP_HR 0x4500
663
664#define T_OPCODE_LDR_PC 0x4800
665#define T_OPCODE_LDR_SP 0x9800
666#define T_OPCODE_STR_SP 0x9000
667#define T_OPCODE_LDR_IW 0x6800
668#define T_OPCODE_STR_IW 0x6000
669#define T_OPCODE_LDR_IH 0x8800
670#define T_OPCODE_STR_IH 0x8000
671#define T_OPCODE_LDR_IB 0x7800
672#define T_OPCODE_STR_IB 0x7000
673#define T_OPCODE_LDR_RW 0x5800
674#define T_OPCODE_STR_RW 0x5000
675#define T_OPCODE_LDR_RH 0x5a00
676#define T_OPCODE_STR_RH 0x5200
677#define T_OPCODE_LDR_RB 0x5c00
678#define T_OPCODE_STR_RB 0x5400
679
680#define T_OPCODE_PUSH 0xb400
681#define T_OPCODE_POP 0xbc00
682
683#define T_OPCODE_BRANCH 0xe000
684
685#define THUMB_SIZE 2 /* Size of thumb instruction. */
686#define THUMB_PP_PC_LR 0x0100
687#define THUMB_LOAD_BIT 0x0800
688#define THUMB2_LOAD_BIT 0x00100000
689
690#define BAD_ARGS _("bad arguments to instruction")
691#define BAD_SP _("r13 not allowed here")
692#define BAD_PC _("r15 not allowed here")
693#define BAD_COND _("instruction cannot be conditional")
694#define BAD_OVERLAP _("registers may not be the same")
695#define BAD_HIREG _("lo register required")
696#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
697#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
698#define BAD_BRANCH _("branch must be last instruction in IT block")
699#define BAD_NOT_IT _("instruction not allowed in IT block")
700#define BAD_FPU _("selected FPU does not support instruction")
701#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
702#define BAD_IT_COND _("incorrect condition in IT block")
703#define BAD_IT_IT _("IT falling in the range of a previous IT block")
704#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
705
706static struct hash_control * arm_ops_hsh;
707static struct hash_control * arm_cond_hsh;
708static struct hash_control * arm_shift_hsh;
709static struct hash_control * arm_psr_hsh;
710static struct hash_control * arm_v7m_psr_hsh;
711static struct hash_control * arm_reg_hsh;
712static struct hash_control * arm_reloc_hsh;
713static struct hash_control * arm_barrier_opt_hsh;
714
715/* Stuff needed to resolve the label ambiguity
716 As:
717 ...
718 label: <insn>
719 may differ from:
720 ...
721 label:
722 <insn> */
723
724symbolS * last_label_seen;
725static int label_is_thumb_function_name = FALSE;
726
727/* Literal pool structure. Held on a per-section
728 and per-sub-section basis. */
729
730#define MAX_LITERAL_POOL_SIZE 1024
731typedef struct literal_pool
732{
733 expressionS literals [MAX_LITERAL_POOL_SIZE];
734 unsigned int next_free_entry;
735 unsigned int id;
736 symbolS * symbol;
737 segT section;
738 subsegT sub_section;
739 struct literal_pool * next;
740} literal_pool;
741
742/* Pointer to a linked list of literal pools. */
743literal_pool * list_of_pools = NULL;
744
745#ifdef OBJ_ELF
746# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
747#else
748static struct current_it now_it;
749#endif
750
751static inline int
752now_it_compatible (int cond)
753{
754 return (cond & ~1) == (now_it.cc & ~1);
755}
756
757static inline int
758conditional_insn (void)
759{
760 return inst.cond != COND_ALWAYS;
761}
762
763static int in_it_block (void);
764
765static int handle_it_state (void);
766
767static void force_automatic_it_block_close (void);
768
769static void it_fsm_post_encode (void);
770
771#define set_it_insn_type(type) \
772 do \
773 { \
774 inst.it_insn_type = type; \
775 if (handle_it_state () == FAIL) \
776 return; \
777 } \
778 while (0)
779
780#define set_it_insn_type_nonvoid(type, failret) \
781 do \
782 { \
783 inst.it_insn_type = type; \
784 if (handle_it_state () == FAIL) \
785 return failret; \
786 } \
787 while(0)
788
789#define set_it_insn_type_last() \
790 do \
791 { \
792 if (inst.cond == COND_ALWAYS) \
793 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
794 else \
795 set_it_insn_type (INSIDE_IT_LAST_INSN); \
796 } \
797 while (0)
798
799/* Pure syntax. */
800
801/* This array holds the chars that always start a comment. If the
802 pre-processor is disabled, these aren't very useful. */
803const char comment_chars[] = "@";
804
805/* This array holds the chars that only start a comment at the beginning of
806 a line. If the line seems to have the form '# 123 filename'
807 .line and .file directives will appear in the pre-processed output. */
808/* Note that input_file.c hand checks for '#' at the beginning of the
809 first line of the input file. This is because the compiler outputs
810 #NO_APP at the beginning of its output. */
811/* Also note that comments like this one will always work. */
812const char line_comment_chars[] = "#";
813
814const char line_separator_chars[] = ";";
815
816/* Chars that can be used to separate mant
817 from exp in floating point numbers. */
818const char EXP_CHARS[] = "eE";
819
820/* Chars that mean this number is a floating point constant. */
821/* As in 0f12.456 */
822/* or 0d1.2345e12 */
823
824const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
825
826/* Prefix characters that indicate the start of an immediate
827 value. */
828#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
829
830/* Separator character handling. */
831
832#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
833
834static inline int
835skip_past_char (char ** str, char c)
836{
837 if (**str == c)
838 {
839 (*str)++;
840 return SUCCESS;
841 }
842 else
843 return FAIL;
844}
845
846#define skip_past_comma(str) skip_past_char (str, ',')
847
848/* Arithmetic expressions (possibly involving symbols). */
849
850/* Return TRUE if anything in the expression is a bignum. */
851
852static int
853walk_no_bignums (symbolS * sp)
854{
855 if (symbol_get_value_expression (sp)->X_op == O_big)
856 return 1;
857
858 if (symbol_get_value_expression (sp)->X_add_symbol)
859 {
860 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
861 || (symbol_get_value_expression (sp)->X_op_symbol
862 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
863 }
864
865 return 0;
866}
867
868static int in_my_get_expression = 0;
869
870/* Third argument to my_get_expression. */
871#define GE_NO_PREFIX 0
872#define GE_IMM_PREFIX 1
873#define GE_OPT_PREFIX 2
874/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
875 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
876#define GE_OPT_PREFIX_BIG 3
877
878static int
879my_get_expression (expressionS * ep, char ** str, int prefix_mode)
880{
881 char * save_in;
882 segT seg;
883
884 /* In unified syntax, all prefixes are optional. */
885 if (unified_syntax)
886 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
887 : GE_OPT_PREFIX;
888
889 switch (prefix_mode)
890 {
891 case GE_NO_PREFIX: break;
892 case GE_IMM_PREFIX:
893 if (!is_immediate_prefix (**str))
894 {
895 inst.error = _("immediate expression requires a # prefix");
896 return FAIL;
897 }
898 (*str)++;
899 break;
900 case GE_OPT_PREFIX:
901 case GE_OPT_PREFIX_BIG:
902 if (is_immediate_prefix (**str))
903 (*str)++;
904 break;
905 default: abort ();
906 }
907
908 memset (ep, 0, sizeof (expressionS));
909
910 save_in = input_line_pointer;
911 input_line_pointer = *str;
912 in_my_get_expression = 1;
913 seg = expression (ep);
914 in_my_get_expression = 0;
915
916 if (ep->X_op == O_illegal)
917 {
918 /* We found a bad expression in md_operand(). */
919 *str = input_line_pointer;
920 input_line_pointer = save_in;
921 if (inst.error == NULL)
922 inst.error = _("bad expression");
923 return 1;
924 }
925
926#ifdef OBJ_AOUT
927 if (seg != absolute_section
928 && seg != text_section
929 && seg != data_section
930 && seg != bss_section
931 && seg != undefined_section)
932 {
933 inst.error = _("bad segment");
934 *str = input_line_pointer;
935 input_line_pointer = save_in;
936 return 1;
937 }
938#endif
939
940 /* Get rid of any bignums now, so that we don't generate an error for which
941 we can't establish a line number later on. Big numbers are never valid
942 in instructions, which is where this routine is always called. */
943 if (prefix_mode != GE_OPT_PREFIX_BIG
944 && (ep->X_op == O_big
945 || (ep->X_add_symbol
946 && (walk_no_bignums (ep->X_add_symbol)
947 || (ep->X_op_symbol
948 && walk_no_bignums (ep->X_op_symbol))))))
949 {
950 inst.error = _("invalid constant");
951 *str = input_line_pointer;
952 input_line_pointer = save_in;
953 return 1;
954 }
955
956 *str = input_line_pointer;
957 input_line_pointer = save_in;
958 return 0;
959}
960
961/* Turn a string in input_line_pointer into a floating point constant
962 of type TYPE, and store the appropriate bytes in *LITP. The number
963 of LITTLENUMS emitted is stored in *SIZEP. An error message is
964 returned, or NULL on OK.
965
966 Note that fp constants aren't represent in the normal way on the ARM.
967 In big endian mode, things are as expected. However, in little endian
968 mode fp constants are big-endian word-wise, and little-endian byte-wise
969 within the words. For example, (double) 1.1 in big endian mode is
970 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
971 the byte sequence 99 99 f1 3f 9a 99 99 99.
972
973 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
974
975char *
976md_atof (int type, char * litP, int * sizeP)
977{
978 int prec;
979 LITTLENUM_TYPE words[MAX_LITTLENUMS];
980 char *t;
981 int i;
982
983 switch (type)
984 {
985 case 'f':
986 case 'F':
987 case 's':
988 case 'S':
989 prec = 2;
990 break;
991
992 case 'd':
993 case 'D':
994 case 'r':
995 case 'R':
996 prec = 4;
997 break;
998
999 case 'x':
1000 case 'X':
1001 prec = 5;
1002 break;
1003
1004 case 'p':
1005 case 'P':
1006 prec = 5;
1007 break;
1008
1009 default:
1010 *sizeP = 0;
1011 return _("Unrecognized or unsupported floating point constant");
1012 }
1013
1014 t = atof_ieee (input_line_pointer, type, words);
1015 if (t)
1016 input_line_pointer = t;
1017 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1018
1019 if (target_big_endian)
1020 {
1021 for (i = 0; i < prec; i++)
1022 {
1023 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1024 litP += sizeof (LITTLENUM_TYPE);
1025 }
1026 }
1027 else
1028 {
1029 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1030 for (i = prec - 1; i >= 0; i--)
1031 {
1032 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1033 litP += sizeof (LITTLENUM_TYPE);
1034 }
1035 else
1036 /* For a 4 byte float the order of elements in `words' is 1 0.
1037 For an 8 byte float the order is 1 0 3 2. */
1038 for (i = 0; i < prec; i += 2)
1039 {
1040 md_number_to_chars (litP, (valueT) words[i + 1],
1041 sizeof (LITTLENUM_TYPE));
1042 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1043 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1044 litP += 2 * sizeof (LITTLENUM_TYPE);
1045 }
1046 }
1047
1048 return NULL;
1049}
1050
1051/* We handle all bad expressions here, so that we can report the faulty
1052 instruction in the error message. */
1053void
1054md_operand (expressionS * expr)
1055{
1056 if (in_my_get_expression)
1057 expr->X_op = O_illegal;
1058}
1059
1060/* Immediate values. */
1061
1062/* Generic immediate-value read function for use in directives.
1063 Accepts anything that 'expression' can fold to a constant.
1064 *val receives the number. */
1065#ifdef OBJ_ELF
1066static int
1067immediate_for_directive (int *val)
1068{
1069 expressionS exp;
1070 exp.X_op = O_illegal;
1071
1072 if (is_immediate_prefix (*input_line_pointer))
1073 {
1074 input_line_pointer++;
1075 expression (&exp);
1076 }
1077
1078 if (exp.X_op != O_constant)
1079 {
1080 as_bad (_("expected #constant"));
1081 ignore_rest_of_line ();
1082 return FAIL;
1083 }
1084 *val = exp.X_add_number;
1085 return SUCCESS;
1086}
1087#endif
1088
1089/* Register parsing. */
1090
1091/* Generic register parser. CCP points to what should be the
1092 beginning of a register name. If it is indeed a valid register
1093 name, advance CCP over it and return the reg_entry structure;
1094 otherwise return NULL. Does not issue diagnostics. */
1095
1096static struct reg_entry *
1097arm_reg_parse_multi (char **ccp)
1098{
1099 char *start = *ccp;
1100 char *p;
1101 struct reg_entry *reg;
1102
1103#ifdef REGISTER_PREFIX
1104 if (*start != REGISTER_PREFIX)
1105 return NULL;
1106 start++;
1107#endif
1108#ifdef OPTIONAL_REGISTER_PREFIX
1109 if (*start == OPTIONAL_REGISTER_PREFIX)
1110 start++;
1111#endif
1112
1113 p = start;
1114 if (!ISALPHA (*p) || !is_name_beginner (*p))
1115 return NULL;
1116
1117 do
1118 p++;
1119 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1120
1121 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1122
1123 if (!reg)
1124 return NULL;
1125
1126 *ccp = p;
1127 return reg;
1128}
1129
1130static int
1131arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1132 enum arm_reg_type type)
1133{
1134 /* Alternative syntaxes are accepted for a few register classes. */
1135 switch (type)
1136 {
1137 case REG_TYPE_MVF:
1138 case REG_TYPE_MVD:
1139 case REG_TYPE_MVFX:
1140 case REG_TYPE_MVDX:
1141 /* Generic coprocessor register names are allowed for these. */
1142 if (reg && reg->type == REG_TYPE_CN)
1143 return reg->number;
1144 break;
1145
1146 case REG_TYPE_CP:
1147 /* For backward compatibility, a bare number is valid here. */
1148 {
1149 unsigned long processor = strtoul (start, ccp, 10);
1150 if (*ccp != start && processor <= 15)
1151 return processor;
1152 }
1153
1154 case REG_TYPE_MMXWC:
1155 /* WC includes WCG. ??? I'm not sure this is true for all
1156 instructions that take WC registers. */
1157 if (reg && reg->type == REG_TYPE_MMXWCG)
1158 return reg->number;
1159 break;
1160
1161 default:
1162 break;
1163 }
1164
1165 return FAIL;
1166}
1167
1168/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1169 return value is the register number or FAIL. */
1170
1171static int
1172arm_reg_parse (char **ccp, enum arm_reg_type type)
1173{
1174 char *start = *ccp;
1175 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1176 int ret;
1177
1178 /* Do not allow a scalar (reg+index) to parse as a register. */
1179 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1180 return FAIL;
1181
1182 if (reg && reg->type == type)
1183 return reg->number;
1184
1185 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1186 return ret;
1187
1188 *ccp = start;
1189 return FAIL;
1190}
1191
1192/* Parse a Neon type specifier. *STR should point at the leading '.'
1193 character. Does no verification at this stage that the type fits the opcode
1194 properly. E.g.,
1195
1196 .i32.i32.s16
1197 .s32.f32
1198 .u16
1199
1200 Can all be legally parsed by this function.
1201
1202 Fills in neon_type struct pointer with parsed information, and updates STR
1203 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1204 type, FAIL if not. */
1205
1206static int
1207parse_neon_type (struct neon_type *type, char **str)
1208{
1209 char *ptr = *str;
1210
1211 if (type)
1212 type->elems = 0;
1213
1214 while (type->elems < NEON_MAX_TYPE_ELS)
1215 {
1216 enum neon_el_type thistype = NT_untyped;
1217 unsigned thissize = -1u;
1218
1219 if (*ptr != '.')
1220 break;
1221
1222 ptr++;
1223
1224 /* Just a size without an explicit type. */
1225 if (ISDIGIT (*ptr))
1226 goto parsesize;
1227
1228 switch (TOLOWER (*ptr))
1229 {
1230 case 'i': thistype = NT_integer; break;
1231 case 'f': thistype = NT_float; break;
1232 case 'p': thistype = NT_poly; break;
1233 case 's': thistype = NT_signed; break;
1234 case 'u': thistype = NT_unsigned; break;
1235 case 'd':
1236 thistype = NT_float;
1237 thissize = 64;
1238 ptr++;
1239 goto done;
1240 default:
1241 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1242 return FAIL;
1243 }
1244
1245 ptr++;
1246
1247 /* .f is an abbreviation for .f32. */
1248 if (thistype == NT_float && !ISDIGIT (*ptr))
1249 thissize = 32;
1250 else
1251 {
1252 parsesize:
1253 thissize = strtoul (ptr, &ptr, 10);
1254
1255 if (thissize != 8 && thissize != 16 && thissize != 32
1256 && thissize != 64)
1257 {
1258 as_bad (_("bad size %d in type specifier"), thissize);
1259 return FAIL;
1260 }
1261 }
1262
1263 done:
1264 if (type)
1265 {
1266 type->el[type->elems].type = thistype;
1267 type->el[type->elems].size = thissize;
1268 type->elems++;
1269 }
1270 }
1271
1272 /* Empty/missing type is not a successful parse. */
1273 if (type->elems == 0)
1274 return FAIL;
1275
1276 *str = ptr;
1277
1278 return SUCCESS;
1279}
1280
1281/* Errors may be set multiple times during parsing or bit encoding
1282 (particularly in the Neon bits), but usually the earliest error which is set
1283 will be the most meaningful. Avoid overwriting it with later (cascading)
1284 errors by calling this function. */
1285
1286static void
1287first_error (const char *err)
1288{
1289 if (!inst.error)
1290 inst.error = err;
1291}
1292
1293/* Parse a single type, e.g. ".s32", leading period included. */
1294static int
1295parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1296{
1297 char *str = *ccp;
1298 struct neon_type optype;
1299
1300 if (*str == '.')
1301 {
1302 if (parse_neon_type (&optype, &str) == SUCCESS)
1303 {
1304 if (optype.elems == 1)
1305 *vectype = optype.el[0];
1306 else
1307 {
1308 first_error (_("only one type should be specified for operand"));
1309 return FAIL;
1310 }
1311 }
1312 else
1313 {
1314 first_error (_("vector type expected"));
1315 return FAIL;
1316 }
1317 }
1318 else
1319 return FAIL;
1320
1321 *ccp = str;
1322
1323 return SUCCESS;
1324}
1325
1326/* Special meanings for indices (which have a range of 0-7), which will fit into
1327 a 4-bit integer. */
1328
1329#define NEON_ALL_LANES 15
1330#define NEON_INTERLEAVE_LANES 14
1331
1332/* Parse either a register or a scalar, with an optional type. Return the
1333 register number, and optionally fill in the actual type of the register
1334 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1335 type/index information in *TYPEINFO. */
1336
1337static int
1338parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1339 enum arm_reg_type *rtype,
1340 struct neon_typed_alias *typeinfo)
1341{
1342 char *str = *ccp;
1343 struct reg_entry *reg = arm_reg_parse_multi (&str);
1344 struct neon_typed_alias atype;
1345 struct neon_type_el parsetype;
1346
1347 atype.defined = 0;
1348 atype.index = -1;
1349 atype.eltype.type = NT_invtype;
1350 atype.eltype.size = -1;
1351
1352 /* Try alternate syntax for some types of register. Note these are mutually
1353 exclusive with the Neon syntax extensions. */
1354 if (reg == NULL)
1355 {
1356 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1357 if (altreg != FAIL)
1358 *ccp = str;
1359 if (typeinfo)
1360 *typeinfo = atype;
1361 return altreg;
1362 }
1363
1364 /* Undo polymorphism when a set of register types may be accepted. */
1365 if ((type == REG_TYPE_NDQ
1366 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1367 || (type == REG_TYPE_VFSD
1368 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1369 || (type == REG_TYPE_NSDQ
1370 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1371 || reg->type == REG_TYPE_NQ))
1372 || (type == REG_TYPE_MMXWC
1373 && (reg->type == REG_TYPE_MMXWCG)))
1374 type = reg->type;
1375
1376 if (type != reg->type)
1377 return FAIL;
1378
1379 if (reg->neon)
1380 atype = *reg->neon;
1381
1382 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1383 {
1384 if ((atype.defined & NTA_HASTYPE) != 0)
1385 {
1386 first_error (_("can't redefine type for operand"));
1387 return FAIL;
1388 }
1389 atype.defined |= NTA_HASTYPE;
1390 atype.eltype = parsetype;
1391 }
1392
1393 if (skip_past_char (&str, '[') == SUCCESS)
1394 {
1395 if (type != REG_TYPE_VFD)
1396 {
1397 first_error (_("only D registers may be indexed"));
1398 return FAIL;
1399 }
1400
1401 if ((atype.defined & NTA_HASINDEX) != 0)
1402 {
1403 first_error (_("can't change index for operand"));
1404 return FAIL;
1405 }
1406
1407 atype.defined |= NTA_HASINDEX;
1408
1409 if (skip_past_char (&str, ']') == SUCCESS)
1410 atype.index = NEON_ALL_LANES;
1411 else
1412 {
1413 expressionS exp;
1414
1415 my_get_expression (&exp, &str, GE_NO_PREFIX);
1416
1417 if (exp.X_op != O_constant)
1418 {
1419 first_error (_("constant expression required"));
1420 return FAIL;
1421 }
1422
1423 if (skip_past_char (&str, ']') == FAIL)
1424 return FAIL;
1425
1426 atype.index = exp.X_add_number;
1427 }
1428 }
1429
1430 if (typeinfo)
1431 *typeinfo = atype;
1432
1433 if (rtype)
1434 *rtype = type;
1435
1436 *ccp = str;
1437
1438 return reg->number;
1439}
1440
1441/* Like arm_reg_parse, but allow allow the following extra features:
1442 - If RTYPE is non-zero, return the (possibly restricted) type of the
1443 register (e.g. Neon double or quad reg when either has been requested).
1444 - If this is a Neon vector type with additional type information, fill
1445 in the struct pointed to by VECTYPE (if non-NULL).
1446 This function will fault on encountering a scalar. */
1447
1448static int
1449arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1450 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1451{
1452 struct neon_typed_alias atype;
1453 char *str = *ccp;
1454 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1455
1456 if (reg == FAIL)
1457 return FAIL;
1458
1459 /* Do not allow a scalar (reg+index) to parse as a register. */
1460 if ((atype.defined & NTA_HASINDEX) != 0)
1461 {
1462 first_error (_("register operand expected, but got scalar"));
1463 return FAIL;
1464 }
1465
1466 if (vectype)
1467 *vectype = atype.eltype;
1468
1469 *ccp = str;
1470
1471 return reg;
1472}
1473
1474#define NEON_SCALAR_REG(X) ((X) >> 4)
1475#define NEON_SCALAR_INDEX(X) ((X) & 15)
1476
1477/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1478 have enough information to be able to do a good job bounds-checking. So, we
1479 just do easy checks here, and do further checks later. */
1480
1481static int
1482parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1483{
1484 int reg;
1485 char *str = *ccp;
1486 struct neon_typed_alias atype;
1487
1488 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1489
1490 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1491 return FAIL;
1492
1493 if (atype.index == NEON_ALL_LANES)
1494 {
1495 first_error (_("scalar must have an index"));
1496 return FAIL;
1497 }
1498 else if (atype.index >= 64 / elsize)
1499 {
1500 first_error (_("scalar index out of range"));
1501 return FAIL;
1502 }
1503
1504 if (type)
1505 *type = atype.eltype;
1506
1507 *ccp = str;
1508
1509 return reg * 16 + atype.index;
1510}
1511
1512/* Parse an ARM register list. Returns the bitmask, or FAIL. */
1513
1514static long
1515parse_reg_list (char ** strp)
1516{
1517 char * str = * strp;
1518 long range = 0;
1519 int another_range;
1520
1521 /* We come back here if we get ranges concatenated by '+' or '|'. */
1522 do
1523 {
1524 another_range = 0;
1525
1526 if (*str == '{')
1527 {
1528 int in_range = 0;
1529 int cur_reg = -1;
1530
1531 str++;
1532 do
1533 {
1534 int reg;
1535
1536 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1537 {
1538 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1539 return FAIL;
1540 }
1541
1542 if (in_range)
1543 {
1544 int i;
1545
1546 if (reg <= cur_reg)
1547 {
1548 first_error (_("bad range in register list"));
1549 return FAIL;
1550 }
1551
1552 for (i = cur_reg + 1; i < reg; i++)
1553 {
1554 if (range & (1 << i))
1555 as_tsktsk
1556 (_("Warning: duplicated register (r%d) in register list"),
1557 i);
1558 else
1559 range |= 1 << i;
1560 }
1561 in_range = 0;
1562 }
1563
1564 if (range & (1 << reg))
1565 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1566 reg);
1567 else if (reg <= cur_reg)
1568 as_tsktsk (_("Warning: register range not in ascending order"));
1569
1570 range |= 1 << reg;
1571 cur_reg = reg;
1572 }
1573 while (skip_past_comma (&str) != FAIL
1574 || (in_range = 1, *str++ == '-'));
1575 str--;
1576
1577 if (*str++ != '}')
1578 {
1579 first_error (_("missing `}'"));
1580 return FAIL;
1581 }
1582 }
1583 else
1584 {
1585 expressionS expr;
1586
1587 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1588 return FAIL;
1589
1590 if (expr.X_op == O_constant)
1591 {
1592 if (expr.X_add_number
1593 != (expr.X_add_number & 0x0000ffff))
1594 {
1595 inst.error = _("invalid register mask");
1596 return FAIL;
1597 }
1598
1599 if ((range & expr.X_add_number) != 0)
1600 {
1601 int regno = range & expr.X_add_number;
1602
1603 regno &= -regno;
1604 regno = (1 << regno) - 1;
1605 as_tsktsk
1606 (_("Warning: duplicated register (r%d) in register list"),
1607 regno);
1608 }
1609
1610 range |= expr.X_add_number;
1611 }
1612 else
1613 {
1614 if (inst.reloc.type != 0)
1615 {
1616 inst.error = _("expression too complex");
1617 return FAIL;
1618 }
1619
1620 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1621 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1622 inst.reloc.pc_rel = 0;
1623 }
1624 }
1625
1626 if (*str == '|' || *str == '+')
1627 {
1628 str++;
1629 another_range = 1;
1630 }
1631 }
1632 while (another_range);
1633
1634 *strp = str;
1635 return range;
1636}
1637
1638/* Types of registers in a list. */
1639
1640enum reg_list_els
1641{
1642 REGLIST_VFP_S,
1643 REGLIST_VFP_D,
1644 REGLIST_NEON_D
1645};
1646
1647/* Parse a VFP register list. If the string is invalid return FAIL.
1648 Otherwise return the number of registers, and set PBASE to the first
1649 register. Parses registers of type ETYPE.
1650 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1651 - Q registers can be used to specify pairs of D registers
1652 - { } can be omitted from around a singleton register list
1653 FIXME: This is not implemented, as it would require backtracking in
1654 some cases, e.g.:
1655 vtbl.8 d3,d4,d5
1656 This could be done (the meaning isn't really ambiguous), but doesn't
1657 fit in well with the current parsing framework.
1658 - 32 D registers may be used (also true for VFPv3).
1659 FIXME: Types are ignored in these register lists, which is probably a
1660 bug. */
1661
1662static int
1663parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1664{
1665 char *str = *ccp;
1666 int base_reg;
1667 int new_base;
1668 enum arm_reg_type regtype = 0;
1669 int max_regs = 0;
1670 int count = 0;
1671 int warned = 0;
1672 unsigned long mask = 0;
1673 int i;
1674
1675 if (*str != '{')
1676 {
1677 inst.error = _("expecting {");
1678 return FAIL;
1679 }
1680
1681 str++;
1682
1683 switch (etype)
1684 {
1685 case REGLIST_VFP_S:
1686 regtype = REG_TYPE_VFS;
1687 max_regs = 32;
1688 break;
1689
1690 case REGLIST_VFP_D:
1691 regtype = REG_TYPE_VFD;
1692 break;
1693
1694 case REGLIST_NEON_D:
1695 regtype = REG_TYPE_NDQ;
1696 break;
1697 }
1698
1699 if (etype != REGLIST_VFP_S)
1700 {
1701 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1702 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1703 {
1704 max_regs = 32;
1705 if (thumb_mode)
1706 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1707 fpu_vfp_ext_d32);
1708 else
1709 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1710 fpu_vfp_ext_d32);
1711 }
1712 else
1713 max_regs = 16;
1714 }
1715
1716 base_reg = max_regs;
1717
1718 do
1719 {
1720 int setmask = 1, addregs = 1;
1721
1722 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1723
1724 if (new_base == FAIL)
1725 {
1726 first_error (_(reg_expected_msgs[regtype]));
1727 return FAIL;
1728 }
1729
1730 if (new_base >= max_regs)
1731 {
1732 first_error (_("register out of range in list"));
1733 return FAIL;
1734 }
1735
1736 /* Note: a value of 2 * n is returned for the register Q<n>. */
1737 if (regtype == REG_TYPE_NQ)
1738 {
1739 setmask = 3;
1740 addregs = 2;
1741 }
1742
1743 if (new_base < base_reg)
1744 base_reg = new_base;
1745
1746 if (mask & (setmask << new_base))
1747 {
1748 first_error (_("invalid register list"));
1749 return FAIL;
1750 }
1751
1752 if ((mask >> new_base) != 0 && ! warned)
1753 {
1754 as_tsktsk (_("register list not in ascending order"));
1755 warned = 1;
1756 }
1757
1758 mask |= setmask << new_base;
1759 count += addregs;
1760
1761 if (*str == '-') /* We have the start of a range expression */
1762 {
1763 int high_range;
1764
1765 str++;
1766
1767 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1768 == FAIL)
1769 {
1770 inst.error = gettext (reg_expected_msgs[regtype]);
1771 return FAIL;
1772 }
1773
1774 if (high_range >= max_regs)
1775 {
1776 first_error (_("register out of range in list"));
1777 return FAIL;
1778 }
1779
1780 if (regtype == REG_TYPE_NQ)
1781 high_range = high_range + 1;
1782
1783 if (high_range <= new_base)
1784 {
1785 inst.error = _("register range not in ascending order");
1786 return FAIL;
1787 }
1788
1789 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1790 {
1791 if (mask & (setmask << new_base))
1792 {
1793 inst.error = _("invalid register list");
1794 return FAIL;
1795 }
1796
1797 mask |= setmask << new_base;
1798 count += addregs;
1799 }
1800 }
1801 }
1802 while (skip_past_comma (&str) != FAIL);
1803
1804 str++;
1805
1806 /* Sanity check -- should have raised a parse error above. */
1807 if (count == 0 || count > max_regs)
1808 abort ();
1809
1810 *pbase = base_reg;
1811
1812 /* Final test -- the registers must be consecutive. */
1813 mask >>= base_reg;
1814 for (i = 0; i < count; i++)
1815 {
1816 if ((mask & (1u << i)) == 0)
1817 {
1818 inst.error = _("non-contiguous register range");
1819 return FAIL;
1820 }
1821 }
1822
1823 *ccp = str;
1824
1825 return count;
1826}
1827
1828/* True if two alias types are the same. */
1829
1830static bfd_boolean
1831neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1832{
1833 if (!a && !b)
1834 return TRUE;
1835
1836 if (!a || !b)
1837 return FALSE;
1838
1839 if (a->defined != b->defined)
1840 return FALSE;
1841
1842 if ((a->defined & NTA_HASTYPE) != 0
1843 && (a->eltype.type != b->eltype.type
1844 || a->eltype.size != b->eltype.size))
1845 return FALSE;
1846
1847 if ((a->defined & NTA_HASINDEX) != 0
1848 && (a->index != b->index))
1849 return FALSE;
1850
1851 return TRUE;
1852}
1853
1854/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1855 The base register is put in *PBASE.
1856 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1857 the return value.
1858 The register stride (minus one) is put in bit 4 of the return value.
1859 Bits [6:5] encode the list length (minus one).
1860 The type of the list elements is put in *ELTYPE, if non-NULL. */
1861
1862#define NEON_LANE(X) ((X) & 0xf)
1863#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1864#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1865
1866static int
1867parse_neon_el_struct_list (char **str, unsigned *pbase,
1868 struct neon_type_el *eltype)
1869{
1870 char *ptr = *str;
1871 int base_reg = -1;
1872 int reg_incr = -1;
1873 int count = 0;
1874 int lane = -1;
1875 int leading_brace = 0;
1876 enum arm_reg_type rtype = REG_TYPE_NDQ;
1877 int addregs = 1;
1878 const char *const incr_error = "register stride must be 1 or 2";
1879 const char *const type_error = "mismatched element/structure types in list";
1880 struct neon_typed_alias firsttype;
1881
1882 if (skip_past_char (&ptr, '{') == SUCCESS)
1883 leading_brace = 1;
1884
1885 do
1886 {
1887 struct neon_typed_alias atype;
1888 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1889
1890 if (getreg == FAIL)
1891 {
1892 first_error (_(reg_expected_msgs[rtype]));
1893 return FAIL;
1894 }
1895
1896 if (base_reg == -1)
1897 {
1898 base_reg = getreg;
1899 if (rtype == REG_TYPE_NQ)
1900 {
1901 reg_incr = 1;
1902 addregs = 2;
1903 }
1904 firsttype = atype;
1905 }
1906 else if (reg_incr == -1)
1907 {
1908 reg_incr = getreg - base_reg;
1909 if (reg_incr < 1 || reg_incr > 2)
1910 {
1911 first_error (_(incr_error));
1912 return FAIL;
1913 }
1914 }
1915 else if (getreg != base_reg + reg_incr * count)
1916 {
1917 first_error (_(incr_error));
1918 return FAIL;
1919 }
1920
1921 if (! neon_alias_types_same (&atype, &firsttype))
1922 {
1923 first_error (_(type_error));
1924 return FAIL;
1925 }
1926
1927 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1928 modes. */
1929 if (ptr[0] == '-')
1930 {
1931 struct neon_typed_alias htype;
1932 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1933 if (lane == -1)
1934 lane = NEON_INTERLEAVE_LANES;
1935 else if (lane != NEON_INTERLEAVE_LANES)
1936 {
1937 first_error (_(type_error));
1938 return FAIL;
1939 }
1940 if (reg_incr == -1)
1941 reg_incr = 1;
1942 else if (reg_incr != 1)
1943 {
1944 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1945 return FAIL;
1946 }
1947 ptr++;
1948 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1949 if (hireg == FAIL)
1950 {
1951 first_error (_(reg_expected_msgs[rtype]));
1952 return FAIL;
1953 }
1954 if (! neon_alias_types_same (&htype, &firsttype))
1955 {
1956 first_error (_(type_error));
1957 return FAIL;
1958 }
1959 count += hireg + dregs - getreg;
1960 continue;
1961 }
1962
1963 /* If we're using Q registers, we can't use [] or [n] syntax. */
1964 if (rtype == REG_TYPE_NQ)
1965 {
1966 count += 2;
1967 continue;
1968 }
1969
1970 if ((atype.defined & NTA_HASINDEX) != 0)
1971 {
1972 if (lane == -1)
1973 lane = atype.index;
1974 else if (lane != atype.index)
1975 {
1976 first_error (_(type_error));
1977 return FAIL;
1978 }
1979 }
1980 else if (lane == -1)
1981 lane = NEON_INTERLEAVE_LANES;
1982 else if (lane != NEON_INTERLEAVE_LANES)
1983 {
1984 first_error (_(type_error));
1985 return FAIL;
1986 }
1987 count++;
1988 }
1989 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1990
1991 /* No lane set by [x]. We must be interleaving structures. */
1992 if (lane == -1)
1993 lane = NEON_INTERLEAVE_LANES;
1994
1995 /* Sanity check. */
1996 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1997 || (count > 1 && reg_incr == -1))
1998 {
1999 first_error (_("error parsing element/structure list"));
2000 return FAIL;
2001 }
2002
2003 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2004 {
2005 first_error (_("expected }"));
2006 return FAIL;
2007 }
2008
2009 if (reg_incr == -1)
2010 reg_incr = 1;
2011
2012 if (eltype)
2013 *eltype = firsttype.eltype;
2014
2015 *pbase = base_reg;
2016 *str = ptr;
2017
2018 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2019}
2020
2021/* Parse an explicit relocation suffix on an expression. This is
2022 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2023 arm_reloc_hsh contains no entries, so this function can only
2024 succeed if there is no () after the word. Returns -1 on error,
2025 BFD_RELOC_UNUSED if there wasn't any suffix. */
2026static int
2027parse_reloc (char **str)
2028{
2029 struct reloc_entry *r;
2030 char *p, *q;
2031
2032 if (**str != '(')
2033 return BFD_RELOC_UNUSED;
2034
2035 p = *str + 1;
2036 q = p;
2037
2038 while (*q && *q != ')' && *q != ',')
2039 q++;
2040 if (*q != ')')
2041 return -1;
2042
2043 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2044 return -1;
2045
2046 *str = q + 1;
2047 return r->reloc;
2048}
2049
2050/* Directives: register aliases. */
2051
2052static struct reg_entry *
2053insert_reg_alias (char *str, int number, int type)
2054{
2055 struct reg_entry *new;
2056 const char *name;
2057
2058 if ((new = hash_find (arm_reg_hsh, str)) != 0)
2059 {
2060 if (new->builtin)
2061 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2062
2063 /* Only warn about a redefinition if it's not defined as the
2064 same register. */
2065 else if (new->number != number || new->type != type)
2066 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2067
2068 return NULL;
2069 }
2070
2071 name = xstrdup (str);
2072 new = xmalloc (sizeof (struct reg_entry));
2073
2074 new->name = name;
2075 new->number = number;
2076 new->type = type;
2077 new->builtin = FALSE;
2078 new->neon = NULL;
2079
2080 if (hash_insert (arm_reg_hsh, name, (void *) new))
2081 abort ();
2082
2083 return new;
2084}
2085
2086static void
2087insert_neon_reg_alias (char *str, int number, int type,
2088 struct neon_typed_alias *atype)
2089{
2090 struct reg_entry *reg = insert_reg_alias (str, number, type);
2091
2092 if (!reg)
2093 {
2094 first_error (_("attempt to redefine typed alias"));
2095 return;
2096 }
2097
2098 if (atype)
2099 {
2100 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2101 *reg->neon = *atype;
2102 }
2103}
2104
2105/* Look for the .req directive. This is of the form:
2106
2107 new_register_name .req existing_register_name
2108
2109 If we find one, or if it looks sufficiently like one that we want to
2110 handle any error here, return TRUE. Otherwise return FALSE. */
2111
2112static bfd_boolean
2113create_register_alias (char * newname, char *p)
2114{
2115 struct reg_entry *old;
2116 char *oldname, *nbuf;
2117 size_t nlen;
2118
2119 /* The input scrubber ensures that whitespace after the mnemonic is
2120 collapsed to single spaces. */
2121 oldname = p;
2122 if (strncmp (oldname, " .req ", 6) != 0)
2123 return FALSE;
2124
2125 oldname += 6;
2126 if (*oldname == '\0')
2127 return FALSE;
2128
2129 old = hash_find (arm_reg_hsh, oldname);
2130 if (!old)
2131 {
2132 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2133 return TRUE;
2134 }
2135
2136 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2137 the desired alias name, and p points to its end. If not, then
2138 the desired alias name is in the global original_case_string. */
2139#ifdef TC_CASE_SENSITIVE
2140 nlen = p - newname;
2141#else
2142 newname = original_case_string;
2143 nlen = strlen (newname);
2144#endif
2145
2146 nbuf = alloca (nlen + 1);
2147 memcpy (nbuf, newname, nlen);
2148 nbuf[nlen] = '\0';
2149
2150 /* Create aliases under the new name as stated; an all-lowercase
2151 version of the new name; and an all-uppercase version of the new
2152 name. */
2153 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2154 {
2155 for (p = nbuf; *p; p++)
2156 *p = TOUPPER (*p);
2157
2158 if (strncmp (nbuf, newname, nlen))
2159 {
2160 /* If this attempt to create an additional alias fails, do not bother
2161 trying to create the all-lower case alias. We will fail and issue
2162 a second, duplicate error message. This situation arises when the
2163 programmer does something like:
2164 foo .req r0
2165 Foo .req r1
2166 The second .req creates the "Foo" alias but then fails to create
2167 the artificial FOO alias because it has already been created by the
2168 first .req. */
2169 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2170 return TRUE;
2171 }
2172
2173 for (p = nbuf; *p; p++)
2174 *p = TOLOWER (*p);
2175
2176 if (strncmp (nbuf, newname, nlen))
2177 insert_reg_alias (nbuf, old->number, old->type);
2178 }
2179
2180 return TRUE;
2181}
2182
2183/* Create a Neon typed/indexed register alias using directives, e.g.:
2184 X .dn d5.s32[1]
2185 Y .qn 6.s16
2186 Z .dn d7
2187 T .dn Z[0]
2188 These typed registers can be used instead of the types specified after the
2189 Neon mnemonic, so long as all operands given have types. Types can also be
2190 specified directly, e.g.:
2191 vadd d0.s32, d1.s32, d2.s32 */
2192
2193static bfd_boolean
2194create_neon_reg_alias (char *newname, char *p)
2195{
2196 enum arm_reg_type basetype;
2197 struct reg_entry *basereg;
2198 struct reg_entry mybasereg;
2199 struct neon_type ntype;
2200 struct neon_typed_alias typeinfo;
2201 char *namebuf, *nameend;
2202 int namelen;
2203
2204 typeinfo.defined = 0;
2205 typeinfo.eltype.type = NT_invtype;
2206 typeinfo.eltype.size = -1;
2207 typeinfo.index = -1;
2208
2209 nameend = p;
2210
2211 if (strncmp (p, " .dn ", 5) == 0)
2212 basetype = REG_TYPE_VFD;
2213 else if (strncmp (p, " .qn ", 5) == 0)
2214 basetype = REG_TYPE_NQ;
2215 else
2216 return FALSE;
2217
2218 p += 5;
2219
2220 if (*p == '\0')
2221 return FALSE;
2222
2223 basereg = arm_reg_parse_multi (&p);
2224
2225 if (basereg && basereg->type != basetype)
2226 {
2227 as_bad (_("bad type for register"));
2228 return FALSE;
2229 }
2230
2231 if (basereg == NULL)
2232 {
2233 expressionS exp;
2234 /* Try parsing as an integer. */
2235 my_get_expression (&exp, &p, GE_NO_PREFIX);
2236 if (exp.X_op != O_constant)
2237 {
2238 as_bad (_("expression must be constant"));
2239 return FALSE;
2240 }
2241 basereg = &mybasereg;
2242 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2243 : exp.X_add_number;
2244 basereg->neon = 0;
2245 }
2246
2247 if (basereg->neon)
2248 typeinfo = *basereg->neon;
2249
2250 if (parse_neon_type (&ntype, &p) == SUCCESS)
2251 {
2252 /* We got a type. */
2253 if (typeinfo.defined & NTA_HASTYPE)
2254 {
2255 as_bad (_("can't redefine the type of a register alias"));
2256 return FALSE;
2257 }
2258
2259 typeinfo.defined |= NTA_HASTYPE;
2260 if (ntype.elems != 1)
2261 {
2262 as_bad (_("you must specify a single type only"));
2263 return FALSE;
2264 }
2265 typeinfo.eltype = ntype.el[0];
2266 }
2267
2268 if (skip_past_char (&p, '[') == SUCCESS)
2269 {
2270 expressionS exp;
2271 /* We got a scalar index. */
2272
2273 if (typeinfo.defined & NTA_HASINDEX)
2274 {
2275 as_bad (_("can't redefine the index of a scalar alias"));
2276 return FALSE;
2277 }
2278
2279 my_get_expression (&exp, &p, GE_NO_PREFIX);
2280
2281 if (exp.X_op != O_constant)
2282 {
2283 as_bad (_("scalar index must be constant"));
2284 return FALSE;
2285 }
2286
2287 typeinfo.defined |= NTA_HASINDEX;
2288 typeinfo.index = exp.X_add_number;
2289
2290 if (skip_past_char (&p, ']') == FAIL)
2291 {
2292 as_bad (_("expecting ]"));
2293 return FALSE;
2294 }
2295 }
2296
2297 namelen = nameend - newname;
2298 namebuf = alloca (namelen + 1);
2299 strncpy (namebuf, newname, namelen);
2300 namebuf[namelen] = '\0';
2301
2302 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2303 typeinfo.defined != 0 ? &typeinfo : NULL);
2304
2305 /* Insert name in all uppercase. */
2306 for (p = namebuf; *p; p++)
2307 *p = TOUPPER (*p);
2308
2309 if (strncmp (namebuf, newname, namelen))
2310 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2311 typeinfo.defined != 0 ? &typeinfo : NULL);
2312
2313 /* Insert name in all lowercase. */
2314 for (p = namebuf; *p; p++)
2315 *p = TOLOWER (*p);
2316
2317 if (strncmp (namebuf, newname, namelen))
2318 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2319 typeinfo.defined != 0 ? &typeinfo : NULL);
2320
2321 return TRUE;
2322}
2323
2324/* Should never be called, as .req goes between the alias and the
2325 register name, not at the beginning of the line. */
2326
2327static void
2328s_req (int a ATTRIBUTE_UNUSED)
2329{
2330 as_bad (_("invalid syntax for .req directive"));
2331}
2332
2333static void
2334s_dn (int a ATTRIBUTE_UNUSED)
2335{
2336 as_bad (_("invalid syntax for .dn directive"));
2337}
2338
2339static void
2340s_qn (int a ATTRIBUTE_UNUSED)
2341{
2342 as_bad (_("invalid syntax for .qn directive"));
2343}
2344
2345/* The .unreq directive deletes an alias which was previously defined
2346 by .req. For example:
2347
2348 my_alias .req r11
2349 .unreq my_alias */
2350
2351static void
2352s_unreq (int a ATTRIBUTE_UNUSED)
2353{
2354 char * name;
2355 char saved_char;
2356
2357 name = input_line_pointer;
2358
2359 while (*input_line_pointer != 0
2360 && *input_line_pointer != ' '
2361 && *input_line_pointer != '\n')
2362 ++input_line_pointer;
2363
2364 saved_char = *input_line_pointer;
2365 *input_line_pointer = 0;
2366
2367 if (!*name)
2368 as_bad (_("invalid syntax for .unreq directive"));
2369 else
2370 {
2371 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2372
2373 if (!reg)
2374 as_bad (_("unknown register alias '%s'"), name);
2375 else if (reg->builtin)
2376 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2377 name);
2378 else
2379 {
2380 char * p;
2381 char * nbuf;
2382
2383 hash_delete (arm_reg_hsh, name, FALSE);
2384 free ((char *) reg->name);
2385 if (reg->neon)
2386 free (reg->neon);
2387 free (reg);
2388
2389 /* Also locate the all upper case and all lower case versions.
2390 Do not complain if we cannot find one or the other as it
2391 was probably deleted above. */
2392
2393 nbuf = strdup (name);
2394 for (p = nbuf; *p; p++)
2395 *p = TOUPPER (*p);
2396 reg = hash_find (arm_reg_hsh, nbuf);
2397 if (reg)
2398 {
2399 hash_delete (arm_reg_hsh, nbuf, FALSE);
2400 free ((char *) reg->name);
2401 if (reg->neon)
2402 free (reg->neon);
2403 free (reg);
2404 }
2405
2406 for (p = nbuf; *p; p++)
2407 *p = TOLOWER (*p);
2408 reg = hash_find (arm_reg_hsh, nbuf);
2409 if (reg)
2410 {
2411 hash_delete (arm_reg_hsh, nbuf, FALSE);
2412 free ((char *) reg->name);
2413 if (reg->neon)
2414 free (reg->neon);
2415 free (reg);
2416 }
2417
2418 free (nbuf);
2419 }
2420 }
2421
2422 *input_line_pointer = saved_char;
2423 demand_empty_rest_of_line ();
2424}
2425
2426/* Directives: Instruction set selection. */
2427
2428#ifdef OBJ_ELF
2429/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2430 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2431 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2432 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2433
2434static enum mstate mapstate = MAP_UNDEFINED;
2435
2436void
2437mapping_state (enum mstate state)
2438{
2439 symbolS * symbolP;
2440 const char * symname;
2441 int type;
2442
2443 if (mapstate == state)
2444 /* The mapping symbol has already been emitted.
2445 There is nothing else to do. */
2446 return;
2447
2448 mapstate = state;
2449
2450 switch (state)
2451 {
2452 case MAP_DATA:
2453 symname = "$d";
2454 type = BSF_NO_FLAGS;
2455 break;
2456 case MAP_ARM:
2457 symname = "$a";
2458 type = BSF_NO_FLAGS;
2459 break;
2460 case MAP_THUMB:
2461 symname = "$t";
2462 type = BSF_NO_FLAGS;
2463 break;
2464 case MAP_UNDEFINED:
2465 return;
2466 default:
2467 abort ();
2468 }
2469
2470 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2471
2472 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2473 symbol_table_insert (symbolP);
2474 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2475
2476 switch (state)
2477 {
2478 case MAP_ARM:
2479 THUMB_SET_FUNC (symbolP, 0);
2480 ARM_SET_THUMB (symbolP, 0);
2481 ARM_SET_INTERWORK (symbolP, support_interwork);
2482 break;
2483
2484 case MAP_THUMB:
2485 THUMB_SET_FUNC (symbolP, 1);
2486 ARM_SET_THUMB (symbolP, 1);
2487 ARM_SET_INTERWORK (symbolP, support_interwork);
2488 break;
2489
2490 case MAP_DATA:
2491 default:
2492 return;
2493 }
2494}
2495#else
2496#define mapping_state(x) /* nothing */
2497#endif
2498
2499/* Find the real, Thumb encoded start of a Thumb function. */
2500
2501#ifdef OBJ_COFF
2502static symbolS *
2503find_real_start (symbolS * symbolP)
2504{
2505 char * real_start;
2506 const char * name = S_GET_NAME (symbolP);
2507 symbolS * new_target;
2508
2509 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2510#define STUB_NAME ".real_start_of"
2511
2512 if (name == NULL)
2513 abort ();
2514
2515 /* The compiler may generate BL instructions to local labels because
2516 it needs to perform a branch to a far away location. These labels
2517 do not have a corresponding ".real_start_of" label. We check
2518 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2519 the ".real_start_of" convention for nonlocal branches. */
2520 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2521 return symbolP;
2522
2523 real_start = ACONCAT ((STUB_NAME, name, NULL));
2524 new_target = symbol_find (real_start);
2525
2526 if (new_target == NULL)
2527 {
2528 as_warn (_("Failed to find real start of function: %s\n"), name);
2529 new_target = symbolP;
2530 }
2531
2532 return new_target;
2533}
2534#endif
2535
2536static void
2537opcode_select (int width)
2538{
2539 switch (width)
2540 {
2541 case 16:
2542 if (! thumb_mode)
2543 {
2544 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2545 as_bad (_("selected processor does not support THUMB opcodes"));
2546
2547 thumb_mode = 1;
2548 /* No need to force the alignment, since we will have been
2549 coming from ARM mode, which is word-aligned. */
2550 record_alignment (now_seg, 1);
2551 }
2552 mapping_state (MAP_THUMB);
2553 break;
2554
2555 case 32:
2556 if (thumb_mode)
2557 {
2558 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2559 as_bad (_("selected processor does not support ARM opcodes"));
2560
2561 thumb_mode = 0;
2562
2563 if (!need_pass_2)
2564 frag_align (2, 0, 0);
2565
2566 record_alignment (now_seg, 1);
2567 }
2568 mapping_state (MAP_ARM);
2569 break;
2570
2571 default:
2572 as_bad (_("invalid instruction size selected (%d)"), width);
2573 }
2574}
2575
2576static void
2577s_arm (int ignore ATTRIBUTE_UNUSED)
2578{
2579 opcode_select (32);
2580 demand_empty_rest_of_line ();
2581}
2582
2583static void
2584s_thumb (int ignore ATTRIBUTE_UNUSED)
2585{
2586 opcode_select (16);
2587 demand_empty_rest_of_line ();
2588}
2589
2590static void
2591s_code (int unused ATTRIBUTE_UNUSED)
2592{
2593 int temp;
2594
2595 temp = get_absolute_expression ();
2596 switch (temp)
2597 {
2598 case 16:
2599 case 32:
2600 opcode_select (temp);
2601 break;
2602
2603 default:
2604 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2605 }
2606}
2607
2608static void
2609s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2610{
2611 /* If we are not already in thumb mode go into it, EVEN if
2612 the target processor does not support thumb instructions.
2613 This is used by gcc/config/arm/lib1funcs.asm for example
2614 to compile interworking support functions even if the
2615 target processor should not support interworking. */
2616 if (! thumb_mode)
2617 {
2618 thumb_mode = 2;
2619 record_alignment (now_seg, 1);
2620 }
2621
2622 demand_empty_rest_of_line ();
2623}
2624
2625static void
2626s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2627{
2628 s_thumb (0);
2629
2630 /* The following label is the name/address of the start of a Thumb function.
2631 We need to know this for the interworking support. */
2632 label_is_thumb_function_name = TRUE;
2633}
2634
2635/* Perform a .set directive, but also mark the alias as
2636 being a thumb function. */
2637
2638static void
2639s_thumb_set (int equiv)
2640{
2641 /* XXX the following is a duplicate of the code for s_set() in read.c
2642 We cannot just call that code as we need to get at the symbol that
2643 is created. */
2644 char * name;
2645 char delim;
2646 char * end_name;
2647 symbolS * symbolP;
2648
2649 /* Especial apologies for the random logic:
2650 This just grew, and could be parsed much more simply!
2651 Dean - in haste. */
2652 name = input_line_pointer;
2653 delim = get_symbol_end ();
2654 end_name = input_line_pointer;
2655 *end_name = delim;
2656
2657 if (*input_line_pointer != ',')
2658 {
2659 *end_name = 0;
2660 as_bad (_("expected comma after name \"%s\""), name);
2661 *end_name = delim;
2662 ignore_rest_of_line ();
2663 return;
2664 }
2665
2666 input_line_pointer++;
2667 *end_name = 0;
2668
2669 if (name[0] == '.' && name[1] == '\0')
2670 {
2671 /* XXX - this should not happen to .thumb_set. */
2672 abort ();
2673 }
2674
2675 if ((symbolP = symbol_find (name)) == NULL
2676 && (symbolP = md_undefined_symbol (name)) == NULL)
2677 {
2678#ifndef NO_LISTING
2679 /* When doing symbol listings, play games with dummy fragments living
2680 outside the normal fragment chain to record the file and line info
2681 for this symbol. */
2682 if (listing & LISTING_SYMBOLS)
2683 {
2684 extern struct list_info_struct * listing_tail;
2685 fragS * dummy_frag = xmalloc (sizeof (fragS));
2686
2687 memset (dummy_frag, 0, sizeof (fragS));
2688 dummy_frag->fr_type = rs_fill;
2689 dummy_frag->line = listing_tail;
2690 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2691 dummy_frag->fr_symbol = symbolP;
2692 }
2693 else
2694#endif
2695 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2696
2697#ifdef OBJ_COFF
2698 /* "set" symbols are local unless otherwise specified. */
2699 SF_SET_LOCAL (symbolP);
2700#endif /* OBJ_COFF */
2701 } /* Make a new symbol. */
2702
2703 symbol_table_insert (symbolP);
2704
2705 * end_name = delim;
2706
2707 if (equiv
2708 && S_IS_DEFINED (symbolP)
2709 && S_GET_SEGMENT (symbolP) != reg_section)
2710 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2711
2712 pseudo_set (symbolP);
2713
2714 demand_empty_rest_of_line ();
2715
2716 /* XXX Now we come to the Thumb specific bit of code. */
2717
2718 THUMB_SET_FUNC (symbolP, 1);
2719 ARM_SET_THUMB (symbolP, 1);
2720#if defined OBJ_ELF || defined OBJ_COFF
2721 ARM_SET_INTERWORK (symbolP, support_interwork);
2722#endif
2723}
2724
2725/* Directives: Mode selection. */
2726
2727/* .syntax [unified|divided] - choose the new unified syntax
2728 (same for Arm and Thumb encoding, modulo slight differences in what
2729 can be represented) or the old divergent syntax for each mode. */
2730static void
2731s_syntax (int unused ATTRIBUTE_UNUSED)
2732{
2733 char *name, delim;
2734
2735 name = input_line_pointer;
2736 delim = get_symbol_end ();
2737
2738 if (!strcasecmp (name, "unified"))
2739 unified_syntax = TRUE;
2740 else if (!strcasecmp (name, "divided"))
2741 unified_syntax = FALSE;
2742 else
2743 {
2744 as_bad (_("unrecognized syntax mode \"%s\""), name);
2745 return;
2746 }
2747 *input_line_pointer = delim;
2748 demand_empty_rest_of_line ();
2749}
2750
2751/* Directives: sectioning and alignment. */
2752
2753/* Same as s_align_ptwo but align 0 => align 2. */
2754
2755static void
2756s_align (int unused ATTRIBUTE_UNUSED)
2757{
2758 int temp;
2759 bfd_boolean fill_p;
2760 long temp_fill;
2761 long max_alignment = 15;
2762
2763 temp = get_absolute_expression ();
2764 if (temp > max_alignment)
2765 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2766 else if (temp < 0)
2767 {
2768 as_bad (_("alignment negative. 0 assumed."));
2769 temp = 0;
2770 }
2771
2772 if (*input_line_pointer == ',')
2773 {
2774 input_line_pointer++;
2775 temp_fill = get_absolute_expression ();
2776 fill_p = TRUE;
2777 }
2778 else
2779 {
2780 fill_p = FALSE;
2781 temp_fill = 0;
2782 }
2783
2784 if (!temp)
2785 temp = 2;
2786
2787 /* Only make a frag if we HAVE to. */
2788 if (temp && !need_pass_2)
2789 {
2790 if (!fill_p && subseg_text_p (now_seg))
2791 frag_align_code (temp, 0);
2792 else
2793 frag_align (temp, (int) temp_fill, 0);
2794 }
2795 demand_empty_rest_of_line ();
2796
2797 record_alignment (now_seg, temp);
2798}
2799
2800static void
2801s_bss (int ignore ATTRIBUTE_UNUSED)
2802{
2803 /* We don't support putting frags in the BSS segment, we fake it by
2804 marking in_bss, then looking at s_skip for clues. */
2805 subseg_set (bss_section, 0);
2806 demand_empty_rest_of_line ();
2807 mapping_state (MAP_DATA);
2808}
2809
2810static void
2811s_even (int ignore ATTRIBUTE_UNUSED)
2812{
2813 /* Never make frag if expect extra pass. */
2814 if (!need_pass_2)
2815 frag_align (1, 0, 0);
2816
2817 record_alignment (now_seg, 1);
2818
2819 demand_empty_rest_of_line ();
2820}
2821
2822/* Directives: Literal pools. */
2823
2824static literal_pool *
2825find_literal_pool (void)
2826{
2827 literal_pool * pool;
2828
2829 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2830 {
2831 if (pool->section == now_seg
2832 && pool->sub_section == now_subseg)
2833 break;
2834 }
2835
2836 return pool;
2837}
2838
2839static literal_pool *
2840find_or_make_literal_pool (void)
2841{
2842 /* Next literal pool ID number. */
2843 static unsigned int latest_pool_num = 1;
2844 literal_pool * pool;
2845
2846 pool = find_literal_pool ();
2847
2848 if (pool == NULL)
2849 {
2850 /* Create a new pool. */
2851 pool = xmalloc (sizeof (* pool));
2852 if (! pool)
2853 return NULL;
2854
2855 pool->next_free_entry = 0;
2856 pool->section = now_seg;
2857 pool->sub_section = now_subseg;
2858 pool->next = list_of_pools;
2859 pool->symbol = NULL;
2860
2861 /* Add it to the list. */
2862 list_of_pools = pool;
2863 }
2864
2865 /* New pools, and emptied pools, will have a NULL symbol. */
2866 if (pool->symbol == NULL)
2867 {
2868 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2869 (valueT) 0, &zero_address_frag);
2870 pool->id = latest_pool_num ++;
2871 }
2872
2873 /* Done. */
2874 return pool;
2875}
2876
2877/* Add the literal in the global 'inst'
2878 structure to the relevant literal pool. */
2879
2880static int
2881add_to_lit_pool (void)
2882{
2883 literal_pool * pool;
2884 unsigned int entry;
2885
2886 pool = find_or_make_literal_pool ();
2887
2888 /* Check if this literal value is already in the pool. */
2889 for (entry = 0; entry < pool->next_free_entry; entry ++)
2890 {
2891 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2892 && (inst.reloc.exp.X_op == O_constant)
2893 && (pool->literals[entry].X_add_number
2894 == inst.reloc.exp.X_add_number)
2895 && (pool->literals[entry].X_unsigned
2896 == inst.reloc.exp.X_unsigned))
2897 break;
2898
2899 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2900 && (inst.reloc.exp.X_op == O_symbol)
2901 && (pool->literals[entry].X_add_number
2902 == inst.reloc.exp.X_add_number)
2903 && (pool->literals[entry].X_add_symbol
2904 == inst.reloc.exp.X_add_symbol)
2905 && (pool->literals[entry].X_op_symbol
2906 == inst.reloc.exp.X_op_symbol))
2907 break;
2908 }
2909
2910 /* Do we need to create a new entry? */
2911 if (entry == pool->next_free_entry)
2912 {
2913 if (entry >= MAX_LITERAL_POOL_SIZE)
2914 {
2915 inst.error = _("literal pool overflow");
2916 return FAIL;
2917 }
2918
2919 pool->literals[entry] = inst.reloc.exp;
2920 pool->next_free_entry += 1;
2921 }
2922
2923 inst.reloc.exp.X_op = O_symbol;
2924 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2925 inst.reloc.exp.X_add_symbol = pool->symbol;
2926
2927 return SUCCESS;
2928}
2929
2930/* Can't use symbol_new here, so have to create a symbol and then at
2931 a later date assign it a value. Thats what these functions do. */
2932
2933static void
2934symbol_locate (symbolS * symbolP,
2935 const char * name, /* It is copied, the caller can modify. */
2936 segT segment, /* Segment identifier (SEG_<something>). */
2937 valueT valu, /* Symbol value. */
2938 fragS * frag) /* Associated fragment. */
2939{
2940 unsigned int name_length;
2941 char * preserved_copy_of_name;
2942
2943 name_length = strlen (name) + 1; /* +1 for \0. */
2944 obstack_grow (&notes, name, name_length);
2945 preserved_copy_of_name = obstack_finish (&notes);
2946
2947#ifdef tc_canonicalize_symbol_name
2948 preserved_copy_of_name =
2949 tc_canonicalize_symbol_name (preserved_copy_of_name);
2950#endif
2951
2952 S_SET_NAME (symbolP, preserved_copy_of_name);
2953
2954 S_SET_SEGMENT (symbolP, segment);
2955 S_SET_VALUE (symbolP, valu);
2956 symbol_clear_list_pointers (symbolP);
2957
2958 symbol_set_frag (symbolP, frag);
2959
2960 /* Link to end of symbol chain. */
2961 {
2962 extern int symbol_table_frozen;
2963
2964 if (symbol_table_frozen)
2965 abort ();
2966 }
2967
2968 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2969
2970 obj_symbol_new_hook (symbolP);
2971
2972#ifdef tc_symbol_new_hook
2973 tc_symbol_new_hook (symbolP);
2974#endif
2975
2976#ifdef DEBUG_SYMS
2977 verify_symbol_chain (symbol_rootP, symbol_lastP);
2978#endif /* DEBUG_SYMS */
2979}
2980
2981
2982static void
2983s_ltorg (int ignored ATTRIBUTE_UNUSED)
2984{
2985 unsigned int entry;
2986 literal_pool * pool;
2987 char sym_name[20];
2988
2989 pool = find_literal_pool ();
2990 if (pool == NULL
2991 || pool->symbol == NULL
2992 || pool->next_free_entry == 0)
2993 return;
2994
2995 mapping_state (MAP_DATA);
2996
2997 /* Align pool as you have word accesses.
2998 Only make a frag if we have to. */
2999 if (!need_pass_2)
3000 frag_align (2, 0, 0);
3001
3002 record_alignment (now_seg, 2);
3003
3004 sprintf (sym_name, "$$lit_\002%x", pool->id);
3005
3006 symbol_locate (pool->symbol, sym_name, now_seg,
3007 (valueT) frag_now_fix (), frag_now);
3008 symbol_table_insert (pool->symbol);
3009
3010 ARM_SET_THUMB (pool->symbol, thumb_mode);
3011
3012#if defined OBJ_COFF || defined OBJ_ELF
3013 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3014#endif
3015
3016 for (entry = 0; entry < pool->next_free_entry; entry ++)
3017 /* First output the expression in the instruction to the pool. */
3018 emit_expr (&(pool->literals[entry]), 4); /* .word */
3019
3020 /* Mark the pool as empty. */
3021 pool->next_free_entry = 0;
3022 pool->symbol = NULL;
3023}
3024
3025#ifdef OBJ_ELF
3026/* Forward declarations for functions below, in the MD interface
3027 section. */
3028static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3029static valueT create_unwind_entry (int);
3030static void start_unwind_section (const segT, int);
3031static void add_unwind_opcode (valueT, int);
3032static void flush_pending_unwind (void);
3033
3034/* Directives: Data. */
3035
3036static void
3037s_arm_elf_cons (int nbytes)
3038{
3039 expressionS exp;
3040
3041#ifdef md_flush_pending_output
3042 md_flush_pending_output ();
3043#endif
3044
3045 if (is_it_end_of_statement ())
3046 {
3047 demand_empty_rest_of_line ();
3048 return;
3049 }
3050
3051#ifdef md_cons_align
3052 md_cons_align (nbytes);
3053#endif
3054
3055 mapping_state (MAP_DATA);
3056 do
3057 {
3058 int reloc;
3059 char *base = input_line_pointer;
3060
3061 expression (& exp);
3062
3063 if (exp.X_op != O_symbol)
3064 emit_expr (&exp, (unsigned int) nbytes);
3065 else
3066 {
3067 char *before_reloc = input_line_pointer;
3068 reloc = parse_reloc (&input_line_pointer);
3069 if (reloc == -1)
3070 {
3071 as_bad (_("unrecognized relocation suffix"));
3072 ignore_rest_of_line ();
3073 return;
3074 }
3075 else if (reloc == BFD_RELOC_UNUSED)
3076 emit_expr (&exp, (unsigned int) nbytes);
3077 else
3078 {
3079 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
3080 int size = bfd_get_reloc_size (howto);
3081
3082 if (reloc == BFD_RELOC_ARM_PLT32)
3083 {
3084 as_bad (_("(plt) is only valid on branch targets"));
3085 reloc = BFD_RELOC_UNUSED;
3086 size = 0;
3087 }
3088
3089 if (size > nbytes)
3090 as_bad (_("%s relocations do not fit in %d bytes"),
3091 howto->name, nbytes);
3092 else
3093 {
3094 /* We've parsed an expression stopping at O_symbol.
3095 But there may be more expression left now that we
3096 have parsed the relocation marker. Parse it again.
3097 XXX Surely there is a cleaner way to do this. */
3098 char *p = input_line_pointer;
3099 int offset;
3100 char *save_buf = alloca (input_line_pointer - base);
3101 memcpy (save_buf, base, input_line_pointer - base);
3102 memmove (base + (input_line_pointer - before_reloc),
3103 base, before_reloc - base);
3104
3105 input_line_pointer = base + (input_line_pointer-before_reloc);
3106 expression (&exp);
3107 memcpy (base, save_buf, p - base);
3108
3109 offset = nbytes - size;
3110 p = frag_more ((int) nbytes);
3111 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3112 size, &exp, 0, reloc);
3113 }
3114 }
3115 }
3116 }
3117 while (*input_line_pointer++ == ',');
3118
3119 /* Put terminator back into stream. */
3120 input_line_pointer --;
3121 demand_empty_rest_of_line ();
3122}
3123
3124/* Emit an expression containing a 32-bit thumb instruction.
3125 Implementation based on put_thumb32_insn. */
3126
3127static void
3128emit_thumb32_expr (expressionS * exp)
3129{
3130 expressionS exp_high = *exp;
3131
3132 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3133 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3134 exp->X_add_number &= 0xffff;
3135 emit_expr (exp, (unsigned int) THUMB_SIZE);
3136}
3137
3138/* Guess the instruction size based on the opcode. */
3139
3140static int
3141thumb_insn_size (int opcode)
3142{
3143 if ((unsigned int) opcode < 0xe800u)
3144 return 2;
3145 else if ((unsigned int) opcode >= 0xe8000000u)
3146 return 4;
3147 else
3148 return 0;
3149}
3150
3151static bfd_boolean
3152emit_insn (expressionS *exp, int nbytes)
3153{
3154 int size = 0;
3155
3156 if (exp->X_op == O_constant)
3157 {
3158 size = nbytes;
3159
3160 if (size == 0)
3161 size = thumb_insn_size (exp->X_add_number);
3162
3163 if (size != 0)
3164 {
3165 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3166 {
3167 as_bad (_(".inst.n operand too big. "\
3168 "Use .inst.w instead"));
3169 size = 0;
3170 }
3171 else
3172 {
3173 if (now_it.state == AUTOMATIC_IT_BLOCK)
3174 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3175 else
3176 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3177
3178 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3179 emit_thumb32_expr (exp);
3180 else
3181 emit_expr (exp, (unsigned int) size);
3182
3183 it_fsm_post_encode ();
3184 }
3185 }
3186 else
3187 as_bad (_("cannot determine Thumb instruction size. " \
3188 "Use .inst.n/.inst.w instead"));
3189 }
3190 else
3191 as_bad (_("constant expression required"));
3192
3193 return (size != 0);
3194}
3195
3196/* Like s_arm_elf_cons but do not use md_cons_align and
3197 set the mapping state to MAP_ARM/MAP_THUMB. */
3198
3199static void
3200s_arm_elf_inst (int nbytes)
3201{
3202 if (is_it_end_of_statement ())
3203 {
3204 demand_empty_rest_of_line ();
3205 return;
3206 }
3207
3208 /* Calling mapping_state () here will not change ARM/THUMB,
3209 but will ensure not to be in DATA state. */
3210
3211 if (thumb_mode)
3212 mapping_state (MAP_THUMB);
3213 else
3214 {
3215 if (nbytes != 0)
3216 {
3217 as_bad (_("width suffixes are invalid in ARM mode"));
3218 ignore_rest_of_line ();
3219 return;
3220 }
3221
3222 nbytes = 4;
3223
3224 mapping_state (MAP_ARM);
3225 }
3226
3227 do
3228 {
3229 expressionS exp;
3230
3231 expression (& exp);
3232
3233 if (! emit_insn (& exp, nbytes))
3234 {
3235 ignore_rest_of_line ();
3236 return;
3237 }
3238 }
3239 while (*input_line_pointer++ == ',');
3240
3241 /* Put terminator back into stream. */
3242 input_line_pointer --;
3243 demand_empty_rest_of_line ();
3244}
3245
3246/* Parse a .rel31 directive. */
3247
3248static void
3249s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3250{
3251 expressionS exp;
3252 char *p;
3253 valueT highbit;
3254
3255 highbit = 0;
3256 if (*input_line_pointer == '1')
3257 highbit = 0x80000000;
3258 else if (*input_line_pointer != '0')
3259 as_bad (_("expected 0 or 1"));
3260
3261 input_line_pointer++;
3262 if (*input_line_pointer != ',')
3263 as_bad (_("missing comma"));
3264 input_line_pointer++;
3265
3266#ifdef md_flush_pending_output
3267 md_flush_pending_output ();
3268#endif
3269
3270#ifdef md_cons_align
3271 md_cons_align (4);
3272#endif
3273
3274 mapping_state (MAP_DATA);
3275
3276 expression (&exp);
3277
3278 p = frag_more (4);
3279 md_number_to_chars (p, highbit, 4);
3280 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3281 BFD_RELOC_ARM_PREL31);
3282
3283 demand_empty_rest_of_line ();
3284}
3285
3286/* Directives: AEABI stack-unwind tables. */
3287
3288/* Parse an unwind_fnstart directive. Simply records the current location. */
3289
3290static void
3291s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3292{
3293 demand_empty_rest_of_line ();
3294 if (unwind.proc_start)
3295 {
3296 as_bad (_("duplicate .fnstart directive"));
3297 return;
3298 }
3299
3300 /* Mark the start of the function. */
3301 unwind.proc_start = expr_build_dot ();
3302
3303 /* Reset the rest of the unwind info. */
3304 unwind.opcode_count = 0;
3305 unwind.table_entry = NULL;
3306 unwind.personality_routine = NULL;
3307 unwind.personality_index = -1;
3308 unwind.frame_size = 0;
3309 unwind.fp_offset = 0;
3310 unwind.fp_reg = REG_SP;
3311 unwind.fp_used = 0;
3312 unwind.sp_restored = 0;
3313}
3314
3315
3316/* Parse a handlerdata directive. Creates the exception handling table entry
3317 for the function. */
3318
3319static void
3320s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3321{
3322 demand_empty_rest_of_line ();
3323 if (!unwind.proc_start)
3324 as_bad (MISSING_FNSTART);
3325
3326 if (unwind.table_entry)
3327 as_bad (_("duplicate .handlerdata directive"));
3328
3329 create_unwind_entry (1);
3330}
3331
3332/* Parse an unwind_fnend directive. Generates the index table entry. */
3333
3334static void
3335s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3336{
3337 long where;
3338 char *ptr;
3339 valueT val;
3340
3341 demand_empty_rest_of_line ();
3342
3343 if (!unwind.proc_start)
3344 {
3345 as_bad (_(".fnend directive without .fnstart"));
3346 return;
3347 }
3348
3349 /* Add eh table entry. */
3350 if (unwind.table_entry == NULL)
3351 val = create_unwind_entry (0);
3352 else
3353 val = 0;
3354
3355 /* Add index table entry. This is two words. */
3356 start_unwind_section (unwind.saved_seg, 1);
3357 frag_align (2, 0, 0);
3358 record_alignment (now_seg, 2);
3359
3360 ptr = frag_more (8);
3361 where = frag_now_fix () - 8;
3362
3363 /* Self relative offset of the function start. */
3364 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3365 BFD_RELOC_ARM_PREL31);
3366
3367 /* Indicate dependency on EHABI-defined personality routines to the
3368 linker, if it hasn't been done already. */
3369 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3370 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3371 {
3372 static const char *const name[] =
3373 {
3374 "__aeabi_unwind_cpp_pr0",
3375 "__aeabi_unwind_cpp_pr1",
3376 "__aeabi_unwind_cpp_pr2"
3377 };
3378 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3379 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3380 marked_pr_dependency |= 1 << unwind.personality_index;
3381 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3382 = marked_pr_dependency;
3383 }
3384
3385 if (val)
3386 /* Inline exception table entry. */
3387 md_number_to_chars (ptr + 4, val, 4);
3388 else
3389 /* Self relative offset of the table entry. */
3390 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3391 BFD_RELOC_ARM_PREL31);
3392
3393 /* Restore the original section. */
3394 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3395
3396 unwind.proc_start = NULL;
3397}
3398
3399
3400/* Parse an unwind_cantunwind directive. */
3401
3402static void
3403s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3404{
3405 demand_empty_rest_of_line ();
3406 if (!unwind.proc_start)
3407 as_bad (MISSING_FNSTART);
3408
3409 if (unwind.personality_routine || unwind.personality_index != -1)
3410 as_bad (_("personality routine specified for cantunwind frame"));
3411
3412 unwind.personality_index = -2;
3413}
3414
3415
3416/* Parse a personalityindex directive. */
3417
3418static void
3419s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3420{
3421 expressionS exp;
3422
3423 if (!unwind.proc_start)
3424 as_bad (MISSING_FNSTART);
3425
3426 if (unwind.personality_routine || unwind.personality_index != -1)
3427 as_bad (_("duplicate .personalityindex directive"));
3428
3429 expression (&exp);
3430
3431 if (exp.X_op != O_constant
3432 || exp.X_add_number < 0 || exp.X_add_number > 15)
3433 {
3434 as_bad (_("bad personality routine number"));
3435 ignore_rest_of_line ();
3436 return;
3437 }
3438
3439 unwind.personality_index = exp.X_add_number;
3440
3441 demand_empty_rest_of_line ();
3442}
3443
3444
3445/* Parse a personality directive. */
3446
3447static void
3448s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3449{
3450 char *name, *p, c;
3451
3452 if (!unwind.proc_start)
3453 as_bad (MISSING_FNSTART);
3454
3455 if (unwind.personality_routine || unwind.personality_index != -1)
3456 as_bad (_("duplicate .personality directive"));
3457
3458 name = input_line_pointer;
3459 c = get_symbol_end ();
3460 p = input_line_pointer;
3461 unwind.personality_routine = symbol_find_or_make (name);
3462 *p = c;
3463 demand_empty_rest_of_line ();
3464}
3465
3466
3467/* Parse a directive saving core registers. */
3468
3469static void
3470s_arm_unwind_save_core (void)
3471{
3472 valueT op;
3473 long range;
3474 int n;
3475
3476 range = parse_reg_list (&input_line_pointer);
3477 if (range == FAIL)
3478 {
3479 as_bad (_("expected register list"));
3480 ignore_rest_of_line ();
3481 return;
3482 }
3483
3484 demand_empty_rest_of_line ();
3485
3486 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3487 into .unwind_save {..., sp...}. We aren't bothered about the value of
3488 ip because it is clobbered by calls. */
3489 if (unwind.sp_restored && unwind.fp_reg == 12
3490 && (range & 0x3000) == 0x1000)
3491 {
3492 unwind.opcode_count--;
3493 unwind.sp_restored = 0;
3494 range = (range | 0x2000) & ~0x1000;
3495 unwind.pending_offset = 0;
3496 }
3497
3498 /* Pop r4-r15. */
3499 if (range & 0xfff0)
3500 {
3501 /* See if we can use the short opcodes. These pop a block of up to 8
3502 registers starting with r4, plus maybe r14. */
3503 for (n = 0; n < 8; n++)
3504 {
3505 /* Break at the first non-saved register. */
3506 if ((range & (1 << (n + 4))) == 0)
3507 break;
3508 }
3509 /* See if there are any other bits set. */
3510 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3511 {
3512 /* Use the long form. */
3513 op = 0x8000 | ((range >> 4) & 0xfff);
3514 add_unwind_opcode (op, 2);
3515 }
3516 else
3517 {
3518 /* Use the short form. */
3519 if (range & 0x4000)
3520 op = 0xa8; /* Pop r14. */
3521 else
3522 op = 0xa0; /* Do not pop r14. */
3523 op |= (n - 1);
3524 add_unwind_opcode (op, 1);
3525 }
3526 }
3527
3528 /* Pop r0-r3. */
3529 if (range & 0xf)
3530 {
3531 op = 0xb100 | (range & 0xf);
3532 add_unwind_opcode (op, 2);
3533 }
3534
3535 /* Record the number of bytes pushed. */
3536 for (n = 0; n < 16; n++)
3537 {
3538 if (range & (1 << n))
3539 unwind.frame_size += 4;
3540 }
3541}
3542
3543
3544/* Parse a directive saving FPA registers. */
3545
3546static void
3547s_arm_unwind_save_fpa (int reg)
3548{
3549 expressionS exp;
3550 int num_regs;
3551 valueT op;
3552
3553 /* Get Number of registers to transfer. */
3554 if (skip_past_comma (&input_line_pointer) != FAIL)
3555 expression (&exp);
3556 else
3557 exp.X_op = O_illegal;
3558
3559 if (exp.X_op != O_constant)
3560 {
3561 as_bad (_("expected , <constant>"));
3562 ignore_rest_of_line ();
3563 return;
3564 }
3565
3566 num_regs = exp.X_add_number;
3567
3568 if (num_regs < 1 || num_regs > 4)
3569 {
3570 as_bad (_("number of registers must be in the range [1:4]"));
3571 ignore_rest_of_line ();
3572 return;
3573 }
3574
3575 demand_empty_rest_of_line ();
3576
3577 if (reg == 4)
3578 {
3579 /* Short form. */
3580 op = 0xb4 | (num_regs - 1);
3581 add_unwind_opcode (op, 1);
3582 }
3583 else
3584 {
3585 /* Long form. */
3586 op = 0xc800 | (reg << 4) | (num_regs - 1);
3587 add_unwind_opcode (op, 2);
3588 }
3589 unwind.frame_size += num_regs * 12;
3590}
3591
3592
3593/* Parse a directive saving VFP registers for ARMv6 and above. */
3594
3595static void
3596s_arm_unwind_save_vfp_armv6 (void)
3597{
3598 int count;
3599 unsigned int start;
3600 valueT op;
3601 int num_vfpv3_regs = 0;
3602 int num_regs_below_16;
3603
3604 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3605 if (count == FAIL)
3606 {
3607 as_bad (_("expected register list"));
3608 ignore_rest_of_line ();
3609 return;
3610 }
3611
3612 demand_empty_rest_of_line ();
3613
3614 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3615 than FSTMX/FLDMX-style ones). */
3616
3617 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3618 if (start >= 16)
3619 num_vfpv3_regs = count;
3620 else if (start + count > 16)
3621 num_vfpv3_regs = start + count - 16;
3622
3623 if (num_vfpv3_regs > 0)
3624 {
3625 int start_offset = start > 16 ? start - 16 : 0;
3626 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3627 add_unwind_opcode (op, 2);
3628 }
3629
3630 /* Generate opcode for registers numbered in the range 0 .. 15. */
3631 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3632 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3633 if (num_regs_below_16 > 0)
3634 {
3635 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3636 add_unwind_opcode (op, 2);
3637 }
3638
3639 unwind.frame_size += count * 8;
3640}
3641
3642
3643/* Parse a directive saving VFP registers for pre-ARMv6. */
3644
3645static void
3646s_arm_unwind_save_vfp (void)
3647{
3648 int count;
3649 unsigned int reg;
3650 valueT op;
3651
3652 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3653 if (count == FAIL)
3654 {
3655 as_bad (_("expected register list"));
3656 ignore_rest_of_line ();
3657 return;
3658 }
3659
3660 demand_empty_rest_of_line ();
3661
3662 if (reg == 8)
3663 {
3664 /* Short form. */
3665 op = 0xb8 | (count - 1);
3666 add_unwind_opcode (op, 1);
3667 }
3668 else
3669 {
3670 /* Long form. */
3671 op = 0xb300 | (reg << 4) | (count - 1);
3672 add_unwind_opcode (op, 2);
3673 }
3674 unwind.frame_size += count * 8 + 4;
3675}
3676
3677
3678/* Parse a directive saving iWMMXt data registers. */
3679
3680static void
3681s_arm_unwind_save_mmxwr (void)
3682{
3683 int reg;
3684 int hi_reg;
3685 int i;
3686 unsigned mask = 0;
3687 valueT op;
3688
3689 if (*input_line_pointer == '{')
3690 input_line_pointer++;
3691
3692 do
3693 {
3694 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3695
3696 if (reg == FAIL)
3697 {
3698 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3699 goto error;
3700 }
3701
3702 if (mask >> reg)
3703 as_tsktsk (_("register list not in ascending order"));
3704 mask |= 1 << reg;
3705
3706 if (*input_line_pointer == '-')
3707 {
3708 input_line_pointer++;
3709 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3710 if (hi_reg == FAIL)
3711 {
3712 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3713 goto error;
3714 }
3715 else if (reg >= hi_reg)
3716 {
3717 as_bad (_("bad register range"));
3718 goto error;
3719 }
3720 for (; reg < hi_reg; reg++)
3721 mask |= 1 << reg;
3722 }
3723 }
3724 while (skip_past_comma (&input_line_pointer) != FAIL);
3725
3726 if (*input_line_pointer == '}')
3727 input_line_pointer++;
3728
3729 demand_empty_rest_of_line ();
3730
3731 /* Generate any deferred opcodes because we're going to be looking at
3732 the list. */
3733 flush_pending_unwind ();
3734
3735 for (i = 0; i < 16; i++)
3736 {
3737 if (mask & (1 << i))
3738 unwind.frame_size += 8;
3739 }
3740
3741 /* Attempt to combine with a previous opcode. We do this because gcc
3742 likes to output separate unwind directives for a single block of
3743 registers. */
3744 if (unwind.opcode_count > 0)
3745 {
3746 i = unwind.opcodes[unwind.opcode_count - 1];
3747 if ((i & 0xf8) == 0xc0)
3748 {
3749 i &= 7;
3750 /* Only merge if the blocks are contiguous. */
3751 if (i < 6)
3752 {
3753 if ((mask & 0xfe00) == (1 << 9))
3754 {
3755 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3756 unwind.opcode_count--;
3757 }
3758 }
3759 else if (i == 6 && unwind.opcode_count >= 2)
3760 {
3761 i = unwind.opcodes[unwind.opcode_count - 2];
3762 reg = i >> 4;
3763 i &= 0xf;
3764
3765 op = 0xffff << (reg - 1);
3766 if (reg > 0
3767 && ((mask & op) == (1u << (reg - 1))))
3768 {
3769 op = (1 << (reg + i + 1)) - 1;
3770 op &= ~((1 << reg) - 1);
3771 mask |= op;
3772 unwind.opcode_count -= 2;
3773 }
3774 }
3775 }
3776 }
3777
3778 hi_reg = 15;
3779 /* We want to generate opcodes in the order the registers have been
3780 saved, ie. descending order. */
3781 for (reg = 15; reg >= -1; reg--)
3782 {
3783 /* Save registers in blocks. */
3784 if (reg < 0
3785 || !(mask & (1 << reg)))
3786 {
3787 /* We found an unsaved reg. Generate opcodes to save the
3788 preceding block. */
3789 if (reg != hi_reg)
3790 {
3791 if (reg == 9)
3792 {
3793 /* Short form. */
3794 op = 0xc0 | (hi_reg - 10);
3795 add_unwind_opcode (op, 1);
3796 }
3797 else
3798 {
3799 /* Long form. */
3800 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3801 add_unwind_opcode (op, 2);
3802 }
3803 }
3804 hi_reg = reg - 1;
3805 }
3806 }
3807
3808 return;
3809error:
3810 ignore_rest_of_line ();
3811}
3812
3813static void
3814s_arm_unwind_save_mmxwcg (void)
3815{
3816 int reg;
3817 int hi_reg;
3818 unsigned mask = 0;
3819 valueT op;
3820
3821 if (*input_line_pointer == '{')
3822 input_line_pointer++;
3823
3824 do
3825 {
3826 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3827
3828 if (reg == FAIL)
3829 {
3830 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3831 goto error;
3832 }
3833
3834 reg -= 8;
3835 if (mask >> reg)
3836 as_tsktsk (_("register list not in ascending order"));
3837 mask |= 1 << reg;
3838
3839 if (*input_line_pointer == '-')
3840 {
3841 input_line_pointer++;
3842 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3843 if (hi_reg == FAIL)
3844 {
3845 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3846 goto error;
3847 }
3848 else if (reg >= hi_reg)
3849 {
3850 as_bad (_("bad register range"));
3851 goto error;
3852 }
3853 for (; reg < hi_reg; reg++)
3854 mask |= 1 << reg;
3855 }
3856 }
3857 while (skip_past_comma (&input_line_pointer) != FAIL);
3858
3859 if (*input_line_pointer == '}')
3860 input_line_pointer++;
3861
3862 demand_empty_rest_of_line ();
3863
3864 /* Generate any deferred opcodes because we're going to be looking at
3865 the list. */
3866 flush_pending_unwind ();
3867
3868 for (reg = 0; reg < 16; reg++)
3869 {
3870 if (mask & (1 << reg))
3871 unwind.frame_size += 4;
3872 }
3873 op = 0xc700 | mask;
3874 add_unwind_opcode (op, 2);
3875 return;
3876error:
3877 ignore_rest_of_line ();
3878}
3879
3880
3881/* Parse an unwind_save directive.
3882 If the argument is non-zero, this is a .vsave directive. */
3883
3884static void
3885s_arm_unwind_save (int arch_v6)
3886{
3887 char *peek;
3888 struct reg_entry *reg;
3889 bfd_boolean had_brace = FALSE;
3890
3891 if (!unwind.proc_start)
3892 as_bad (MISSING_FNSTART);
3893
3894 /* Figure out what sort of save we have. */
3895 peek = input_line_pointer;
3896
3897 if (*peek == '{')
3898 {
3899 had_brace = TRUE;
3900 peek++;
3901 }
3902
3903 reg = arm_reg_parse_multi (&peek);
3904
3905 if (!reg)
3906 {
3907 as_bad (_("register expected"));
3908 ignore_rest_of_line ();
3909 return;
3910 }
3911
3912 switch (reg->type)
3913 {
3914 case REG_TYPE_FN:
3915 if (had_brace)
3916 {
3917 as_bad (_("FPA .unwind_save does not take a register list"));
3918 ignore_rest_of_line ();
3919 return;
3920 }
3921 input_line_pointer = peek;
3922 s_arm_unwind_save_fpa (reg->number);
3923 return;
3924
3925 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
3926 case REG_TYPE_VFD:
3927 if (arch_v6)
3928 s_arm_unwind_save_vfp_armv6 ();
3929 else
3930 s_arm_unwind_save_vfp ();
3931 return;
3932 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3933 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3934
3935 default:
3936 as_bad (_(".unwind_save does not support this kind of register"));
3937 ignore_rest_of_line ();
3938 }
3939}
3940
3941
3942/* Parse an unwind_movsp directive. */
3943
3944static void
3945s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3946{
3947 int reg;
3948 valueT op;
3949 int offset;
3950
3951 if (!unwind.proc_start)
3952 as_bad (MISSING_FNSTART);
3953
3954 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3955 if (reg == FAIL)
3956 {
3957 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
3958 ignore_rest_of_line ();
3959 return;
3960 }
3961
3962 /* Optional constant. */
3963 if (skip_past_comma (&input_line_pointer) != FAIL)
3964 {
3965 if (immediate_for_directive (&offset) == FAIL)
3966 return;
3967 }
3968 else
3969 offset = 0;
3970
3971 demand_empty_rest_of_line ();
3972
3973 if (reg == REG_SP || reg == REG_PC)
3974 {
3975 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3976 return;
3977 }
3978
3979 if (unwind.fp_reg != REG_SP)
3980 as_bad (_("unexpected .unwind_movsp directive"));
3981
3982 /* Generate opcode to restore the value. */
3983 op = 0x90 | reg;
3984 add_unwind_opcode (op, 1);
3985
3986 /* Record the information for later. */
3987 unwind.fp_reg = reg;
3988 unwind.fp_offset = unwind.frame_size - offset;
3989 unwind.sp_restored = 1;
3990}
3991
3992/* Parse an unwind_pad directive. */
3993
3994static void
3995s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
3996{
3997 int offset;
3998
3999 if (!unwind.proc_start)
4000 as_bad (MISSING_FNSTART);
4001
4002 if (immediate_for_directive (&offset) == FAIL)
4003 return;
4004
4005 if (offset & 3)
4006 {
4007 as_bad (_("stack increment must be multiple of 4"));
4008 ignore_rest_of_line ();
4009 return;
4010 }
4011
4012 /* Don't generate any opcodes, just record the details for later. */
4013 unwind.frame_size += offset;
4014 unwind.pending_offset += offset;
4015
4016 demand_empty_rest_of_line ();
4017}
4018
4019/* Parse an unwind_setfp directive. */
4020
4021static void
4022s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4023{
4024 int sp_reg;
4025 int fp_reg;
4026 int offset;
4027
4028 if (!unwind.proc_start)
4029 as_bad (MISSING_FNSTART);
4030
4031 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4032 if (skip_past_comma (&input_line_pointer) == FAIL)
4033 sp_reg = FAIL;
4034 else
4035 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4036
4037 if (fp_reg == FAIL || sp_reg == FAIL)
4038 {
4039 as_bad (_("expected <reg>, <reg>"));
4040 ignore_rest_of_line ();
4041 return;
4042 }
4043
4044 /* Optional constant. */
4045 if (skip_past_comma (&input_line_pointer) != FAIL)
4046 {
4047 if (immediate_for_directive (&offset) == FAIL)
4048 return;
4049 }
4050 else
4051 offset = 0;
4052
4053 demand_empty_rest_of_line ();
4054
4055 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4056 {
4057 as_bad (_("register must be either sp or set by a previous"
4058 "unwind_movsp directive"));
4059 return;
4060 }
4061
4062 /* Don't generate any opcodes, just record the information for later. */
4063 unwind.fp_reg = fp_reg;
4064 unwind.fp_used = 1;
4065 if (sp_reg == REG_SP)
4066 unwind.fp_offset = unwind.frame_size - offset;
4067 else
4068 unwind.fp_offset -= offset;
4069}
4070
4071/* Parse an unwind_raw directive. */
4072
4073static void
4074s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4075{
4076 expressionS exp;
4077 /* This is an arbitrary limit. */
4078 unsigned char op[16];
4079 int count;
4080
4081 if (!unwind.proc_start)
4082 as_bad (MISSING_FNSTART);
4083
4084 expression (&exp);
4085 if (exp.X_op == O_constant
4086 && skip_past_comma (&input_line_pointer) != FAIL)
4087 {
4088 unwind.frame_size += exp.X_add_number;
4089 expression (&exp);
4090 }
4091 else
4092 exp.X_op = O_illegal;
4093
4094 if (exp.X_op != O_constant)
4095 {
4096 as_bad (_("expected <offset>, <opcode>"));
4097 ignore_rest_of_line ();
4098 return;
4099 }
4100
4101 count = 0;
4102
4103 /* Parse the opcode. */
4104 for (;;)
4105 {
4106 if (count >= 16)
4107 {
4108 as_bad (_("unwind opcode too long"));
4109 ignore_rest_of_line ();
4110 }
4111 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4112 {
4113 as_bad (_("invalid unwind opcode"));
4114 ignore_rest_of_line ();
4115 return;
4116 }
4117 op[count++] = exp.X_add_number;
4118
4119 /* Parse the next byte. */
4120 if (skip_past_comma (&input_line_pointer) == FAIL)
4121 break;
4122
4123 expression (&exp);
4124 }
4125
4126 /* Add the opcode bytes in reverse order. */
4127 while (count--)
4128 add_unwind_opcode (op[count], 1);
4129
4130 demand_empty_rest_of_line ();
4131}
4132
4133
4134/* Parse a .eabi_attribute directive. */
4135
4136static void
4137s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4138{
4139 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4140
4141 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4142 attributes_set_explicitly[tag] = 1;
4143}
4144#endif /* OBJ_ELF */
4145
4146static void s_arm_arch (int);
4147static void s_arm_object_arch (int);
4148static void s_arm_cpu (int);
4149static void s_arm_fpu (int);
4150
4151#ifdef TE_PE
4152
4153static void
4154pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4155{
4156 expressionS exp;
4157
4158 do
4159 {
4160 expression (&exp);
4161 if (exp.X_op == O_symbol)
4162 exp.X_op = O_secrel;
4163
4164 emit_expr (&exp, 4);
4165 }
4166 while (*input_line_pointer++ == ',');
4167
4168 input_line_pointer--;
4169 demand_empty_rest_of_line ();
4170}
4171#endif /* TE_PE */
4172
4173/* This table describes all the machine specific pseudo-ops the assembler
4174 has to support. The fields are:
4175 pseudo-op name without dot
4176 function to call to execute this pseudo-op
4177 Integer arg to pass to the function. */
4178
4179const pseudo_typeS md_pseudo_table[] =
4180{
4181 /* Never called because '.req' does not start a line. */
4182 { "req", s_req, 0 },
4183 /* Following two are likewise never called. */
4184 { "dn", s_dn, 0 },
4185 { "qn", s_qn, 0 },
4186 { "unreq", s_unreq, 0 },
4187 { "bss", s_bss, 0 },
4188 { "align", s_align, 0 },
4189 { "arm", s_arm, 0 },
4190 { "thumb", s_thumb, 0 },
4191 { "code", s_code, 0 },
4192 { "force_thumb", s_force_thumb, 0 },
4193 { "thumb_func", s_thumb_func, 0 },
4194 { "thumb_set", s_thumb_set, 0 },
4195 { "even", s_even, 0 },
4196 { "ltorg", s_ltorg, 0 },
4197 { "pool", s_ltorg, 0 },
4198 { "syntax", s_syntax, 0 },
4199 { "cpu", s_arm_cpu, 0 },
4200 { "arch", s_arm_arch, 0 },
4201 { "object_arch", s_arm_object_arch, 0 },
4202 { "fpu", s_arm_fpu, 0 },
4203#ifdef OBJ_ELF
4204 { "word", s_arm_elf_cons, 4 },
4205 { "long", s_arm_elf_cons, 4 },
4206 { "inst.n", s_arm_elf_inst, 2 },
4207 { "inst.w", s_arm_elf_inst, 4 },
4208 { "inst", s_arm_elf_inst, 0 },
4209 { "rel31", s_arm_rel31, 0 },
4210 { "fnstart", s_arm_unwind_fnstart, 0 },
4211 { "fnend", s_arm_unwind_fnend, 0 },
4212 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4213 { "personality", s_arm_unwind_personality, 0 },
4214 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4215 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4216 { "save", s_arm_unwind_save, 0 },
4217 { "vsave", s_arm_unwind_save, 1 },
4218 { "movsp", s_arm_unwind_movsp, 0 },
4219 { "pad", s_arm_unwind_pad, 0 },
4220 { "setfp", s_arm_unwind_setfp, 0 },
4221 { "unwind_raw", s_arm_unwind_raw, 0 },
4222 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4223#else
4224 { "word", cons, 4},
4225
4226 /* These are used for dwarf. */
4227 {"2byte", cons, 2},
4228 {"4byte", cons, 4},
4229 {"8byte", cons, 8},
4230 /* These are used for dwarf2. */
4231 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4232 { "loc", dwarf2_directive_loc, 0 },
4233 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4234#endif
4235 { "extend", float_cons, 'x' },
4236 { "ldouble", float_cons, 'x' },
4237 { "packed", float_cons, 'p' },
4238#ifdef TE_PE
4239 {"secrel32", pe_directive_secrel, 0},
4240#endif
4241 { 0, 0, 0 }
4242};
4243\f
4244/* Parser functions used exclusively in instruction operands. */
4245
4246/* Generic immediate-value read function for use in insn parsing.
4247 STR points to the beginning of the immediate (the leading #);
4248 VAL receives the value; if the value is outside [MIN, MAX]
4249 issue an error. PREFIX_OPT is true if the immediate prefix is
4250 optional. */
4251
4252static int
4253parse_immediate (char **str, int *val, int min, int max,
4254 bfd_boolean prefix_opt)
4255{
4256 expressionS exp;
4257 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4258 if (exp.X_op != O_constant)
4259 {
4260 inst.error = _("constant expression required");
4261 return FAIL;
4262 }
4263
4264 if (exp.X_add_number < min || exp.X_add_number > max)
4265 {
4266 inst.error = _("immediate value out of range");
4267 return FAIL;
4268 }
4269
4270 *val = exp.X_add_number;
4271 return SUCCESS;
4272}
4273
4274/* Less-generic immediate-value read function with the possibility of loading a
4275 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4276 instructions. Puts the result directly in inst.operands[i]. */
4277
4278static int
4279parse_big_immediate (char **str, int i)
4280{
4281 expressionS exp;
4282 char *ptr = *str;
4283
4284 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4285
4286 if (exp.X_op == O_constant)
4287 {
4288 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4289 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4290 O_constant. We have to be careful not to break compilation for
4291 32-bit X_add_number, though. */
4292 if ((exp.X_add_number & ~0xffffffffl) != 0)
4293 {
4294 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4295 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4296 inst.operands[i].regisimm = 1;
4297 }
4298 }
4299 else if (exp.X_op == O_big
4300 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4301 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4302 {
4303 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4304 /* Bignums have their least significant bits in
4305 generic_bignum[0]. Make sure we put 32 bits in imm and
4306 32 bits in reg, in a (hopefully) portable way. */
4307 gas_assert (parts != 0);
4308 inst.operands[i].imm = 0;
4309 for (j = 0; j < parts; j++, idx++)
4310 inst.operands[i].imm |= generic_bignum[idx]
4311 << (LITTLENUM_NUMBER_OF_BITS * j);
4312 inst.operands[i].reg = 0;
4313 for (j = 0; j < parts; j++, idx++)
4314 inst.operands[i].reg |= generic_bignum[idx]
4315 << (LITTLENUM_NUMBER_OF_BITS * j);
4316 inst.operands[i].regisimm = 1;
4317 }
4318 else
4319 return FAIL;
4320
4321 *str = ptr;
4322
4323 return SUCCESS;
4324}
4325
4326/* Returns the pseudo-register number of an FPA immediate constant,
4327 or FAIL if there isn't a valid constant here. */
4328
4329static int
4330parse_fpa_immediate (char ** str)
4331{
4332 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4333 char * save_in;
4334 expressionS exp;
4335 int i;
4336 int j;
4337
4338 /* First try and match exact strings, this is to guarantee
4339 that some formats will work even for cross assembly. */
4340
4341 for (i = 0; fp_const[i]; i++)
4342 {
4343 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4344 {
4345 char *start = *str;
4346
4347 *str += strlen (fp_const[i]);
4348 if (is_end_of_line[(unsigned char) **str])
4349 return i + 8;
4350 *str = start;
4351 }
4352 }
4353
4354 /* Just because we didn't get a match doesn't mean that the constant
4355 isn't valid, just that it is in a format that we don't
4356 automatically recognize. Try parsing it with the standard
4357 expression routines. */
4358
4359 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4360
4361 /* Look for a raw floating point number. */
4362 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4363 && is_end_of_line[(unsigned char) *save_in])
4364 {
4365 for (i = 0; i < NUM_FLOAT_VALS; i++)
4366 {
4367 for (j = 0; j < MAX_LITTLENUMS; j++)
4368 {
4369 if (words[j] != fp_values[i][j])
4370 break;
4371 }
4372
4373 if (j == MAX_LITTLENUMS)
4374 {
4375 *str = save_in;
4376 return i + 8;
4377 }
4378 }
4379 }
4380
4381 /* Try and parse a more complex expression, this will probably fail
4382 unless the code uses a floating point prefix (eg "0f"). */
4383 save_in = input_line_pointer;
4384 input_line_pointer = *str;
4385 if (expression (&exp) == absolute_section
4386 && exp.X_op == O_big
4387 && exp.X_add_number < 0)
4388 {
4389 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4390 Ditto for 15. */
4391 if (gen_to_words (words, 5, (long) 15) == 0)
4392 {
4393 for (i = 0; i < NUM_FLOAT_VALS; i++)
4394 {
4395 for (j = 0; j < MAX_LITTLENUMS; j++)
4396 {
4397 if (words[j] != fp_values[i][j])
4398 break;
4399 }
4400
4401 if (j == MAX_LITTLENUMS)
4402 {
4403 *str = input_line_pointer;
4404 input_line_pointer = save_in;
4405 return i + 8;
4406 }
4407 }
4408 }
4409 }
4410
4411 *str = input_line_pointer;
4412 input_line_pointer = save_in;
4413 inst.error = _("invalid FPA immediate expression");
4414 return FAIL;
4415}
4416
4417/* Returns 1 if a number has "quarter-precision" float format
4418 0baBbbbbbc defgh000 00000000 00000000. */
4419
4420static int
4421is_quarter_float (unsigned imm)
4422{
4423 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4424 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4425}
4426
4427/* Parse an 8-bit "quarter-precision" floating point number of the form:
4428 0baBbbbbbc defgh000 00000000 00000000.
4429 The zero and minus-zero cases need special handling, since they can't be
4430 encoded in the "quarter-precision" float format, but can nonetheless be
4431 loaded as integer constants. */
4432
4433static unsigned
4434parse_qfloat_immediate (char **ccp, int *immed)
4435{
4436 char *str = *ccp;
4437 char *fpnum;
4438 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4439 int found_fpchar = 0;
4440
4441 skip_past_char (&str, '#');
4442
4443 /* We must not accidentally parse an integer as a floating-point number. Make
4444 sure that the value we parse is not an integer by checking for special
4445 characters '.' or 'e'.
4446 FIXME: This is a horrible hack, but doing better is tricky because type
4447 information isn't in a very usable state at parse time. */
4448 fpnum = str;
4449 skip_whitespace (fpnum);
4450
4451 if (strncmp (fpnum, "0x", 2) == 0)
4452 return FAIL;
4453 else
4454 {
4455 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4456 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4457 {
4458 found_fpchar = 1;
4459 break;
4460 }
4461
4462 if (!found_fpchar)
4463 return FAIL;
4464 }
4465
4466 if ((str = atof_ieee (str, 's', words)) != NULL)
4467 {
4468 unsigned fpword = 0;
4469 int i;
4470
4471 /* Our FP word must be 32 bits (single-precision FP). */
4472 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4473 {
4474 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4475 fpword |= words[i];
4476 }
4477
4478 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4479 *immed = fpword;
4480 else
4481 return FAIL;
4482
4483 *ccp = str;
4484
4485 return SUCCESS;
4486 }
4487
4488 return FAIL;
4489}
4490
4491/* Shift operands. */
4492enum shift_kind
4493{
4494 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4495};
4496
4497struct asm_shift_name
4498{
4499 const char *name;
4500 enum shift_kind kind;
4501};
4502
4503/* Third argument to parse_shift. */
4504enum parse_shift_mode
4505{
4506 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4507 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4508 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4509 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4510 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4511};
4512
4513/* Parse a <shift> specifier on an ARM data processing instruction.
4514 This has three forms:
4515
4516 (LSL|LSR|ASL|ASR|ROR) Rs
4517 (LSL|LSR|ASL|ASR|ROR) #imm
4518 RRX
4519
4520 Note that ASL is assimilated to LSL in the instruction encoding, and
4521 RRX to ROR #0 (which cannot be written as such). */
4522
4523static int
4524parse_shift (char **str, int i, enum parse_shift_mode mode)
4525{
4526 const struct asm_shift_name *shift_name;
4527 enum shift_kind shift;
4528 char *s = *str;
4529 char *p = s;
4530 int reg;
4531
4532 for (p = *str; ISALPHA (*p); p++)
4533 ;
4534
4535 if (p == *str)
4536 {
4537 inst.error = _("shift expression expected");
4538 return FAIL;
4539 }
4540
4541 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4542
4543 if (shift_name == NULL)
4544 {
4545 inst.error = _("shift expression expected");
4546 return FAIL;
4547 }
4548
4549 shift = shift_name->kind;
4550
4551 switch (mode)
4552 {
4553 case NO_SHIFT_RESTRICT:
4554 case SHIFT_IMMEDIATE: break;
4555
4556 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4557 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4558 {
4559 inst.error = _("'LSL' or 'ASR' required");
4560 return FAIL;
4561 }
4562 break;
4563
4564 case SHIFT_LSL_IMMEDIATE:
4565 if (shift != SHIFT_LSL)
4566 {
4567 inst.error = _("'LSL' required");
4568 return FAIL;
4569 }
4570 break;
4571
4572 case SHIFT_ASR_IMMEDIATE:
4573 if (shift != SHIFT_ASR)
4574 {
4575 inst.error = _("'ASR' required");
4576 return FAIL;
4577 }
4578 break;
4579
4580 default: abort ();
4581 }
4582
4583 if (shift != SHIFT_RRX)
4584 {
4585 /* Whitespace can appear here if the next thing is a bare digit. */
4586 skip_whitespace (p);
4587
4588 if (mode == NO_SHIFT_RESTRICT
4589 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4590 {
4591 inst.operands[i].imm = reg;
4592 inst.operands[i].immisreg = 1;
4593 }
4594 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4595 return FAIL;
4596 }
4597 inst.operands[i].shift_kind = shift;
4598 inst.operands[i].shifted = 1;
4599 *str = p;
4600 return SUCCESS;
4601}
4602
4603/* Parse a <shifter_operand> for an ARM data processing instruction:
4604
4605 #<immediate>
4606 #<immediate>, <rotate>
4607 <Rm>
4608 <Rm>, <shift>
4609
4610 where <shift> is defined by parse_shift above, and <rotate> is a
4611 multiple of 2 between 0 and 30. Validation of immediate operands
4612 is deferred to md_apply_fix. */
4613
4614static int
4615parse_shifter_operand (char **str, int i)
4616{
4617 int value;
4618 expressionS expr;
4619
4620 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4621 {
4622 inst.operands[i].reg = value;
4623 inst.operands[i].isreg = 1;
4624
4625 /* parse_shift will override this if appropriate */
4626 inst.reloc.exp.X_op = O_constant;
4627 inst.reloc.exp.X_add_number = 0;
4628
4629 if (skip_past_comma (str) == FAIL)
4630 return SUCCESS;
4631
4632 /* Shift operation on register. */
4633 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4634 }
4635
4636 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4637 return FAIL;
4638
4639 if (skip_past_comma (str) == SUCCESS)
4640 {
4641 /* #x, y -- ie explicit rotation by Y. */
4642 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4643 return FAIL;
4644
4645 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4646 {
4647 inst.error = _("constant expression expected");
4648 return FAIL;
4649 }
4650
4651 value = expr.X_add_number;
4652 if (value < 0 || value > 30 || value % 2 != 0)
4653 {
4654 inst.error = _("invalid rotation");
4655 return FAIL;
4656 }
4657 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4658 {
4659 inst.error = _("invalid constant");
4660 return FAIL;
4661 }
4662
4663 /* Convert to decoded value. md_apply_fix will put it back. */
4664 inst.reloc.exp.X_add_number
4665 = (((inst.reloc.exp.X_add_number << (32 - value))
4666 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4667 }
4668
4669 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4670 inst.reloc.pc_rel = 0;
4671 return SUCCESS;
4672}
4673
4674/* Group relocation information. Each entry in the table contains the
4675 textual name of the relocation as may appear in assembler source
4676 and must end with a colon.
4677 Along with this textual name are the relocation codes to be used if
4678 the corresponding instruction is an ALU instruction (ADD or SUB only),
4679 an LDR, an LDRS, or an LDC. */
4680
4681struct group_reloc_table_entry
4682{
4683 const char *name;
4684 int alu_code;
4685 int ldr_code;
4686 int ldrs_code;
4687 int ldc_code;
4688};
4689
4690typedef enum
4691{
4692 /* Varieties of non-ALU group relocation. */
4693
4694 GROUP_LDR,
4695 GROUP_LDRS,
4696 GROUP_LDC
4697} group_reloc_type;
4698
4699static struct group_reloc_table_entry group_reloc_table[] =
4700 { /* Program counter relative: */
4701 { "pc_g0_nc",
4702 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4703 0, /* LDR */
4704 0, /* LDRS */
4705 0 }, /* LDC */
4706 { "pc_g0",
4707 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4708 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4709 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4710 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4711 { "pc_g1_nc",
4712 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4713 0, /* LDR */
4714 0, /* LDRS */
4715 0 }, /* LDC */
4716 { "pc_g1",
4717 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4718 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4719 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4720 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4721 { "pc_g2",
4722 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4723 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4724 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4725 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4726 /* Section base relative */
4727 { "sb_g0_nc",
4728 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4729 0, /* LDR */
4730 0, /* LDRS */
4731 0 }, /* LDC */
4732 { "sb_g0",
4733 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4734 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4735 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4736 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4737 { "sb_g1_nc",
4738 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4739 0, /* LDR */
4740 0, /* LDRS */
4741 0 }, /* LDC */
4742 { "sb_g1",
4743 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4744 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4745 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4746 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4747 { "sb_g2",
4748 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4749 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4750 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4751 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4752
4753/* Given the address of a pointer pointing to the textual name of a group
4754 relocation as may appear in assembler source, attempt to find its details
4755 in group_reloc_table. The pointer will be updated to the character after
4756 the trailing colon. On failure, FAIL will be returned; SUCCESS
4757 otherwise. On success, *entry will be updated to point at the relevant
4758 group_reloc_table entry. */
4759
4760static int
4761find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4762{
4763 unsigned int i;
4764 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4765 {
4766 int length = strlen (group_reloc_table[i].name);
4767
4768 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4769 && (*str)[length] == ':')
4770 {
4771 *out = &group_reloc_table[i];
4772 *str += (length + 1);
4773 return SUCCESS;
4774 }
4775 }
4776
4777 return FAIL;
4778}
4779
4780/* Parse a <shifter_operand> for an ARM data processing instruction
4781 (as for parse_shifter_operand) where group relocations are allowed:
4782
4783 #<immediate>
4784 #<immediate>, <rotate>
4785 #:<group_reloc>:<expression>
4786 <Rm>
4787 <Rm>, <shift>
4788
4789 where <group_reloc> is one of the strings defined in group_reloc_table.
4790 The hashes are optional.
4791
4792 Everything else is as for parse_shifter_operand. */
4793
4794static parse_operand_result
4795parse_shifter_operand_group_reloc (char **str, int i)
4796{
4797 /* Determine if we have the sequence of characters #: or just :
4798 coming next. If we do, then we check for a group relocation.
4799 If we don't, punt the whole lot to parse_shifter_operand. */
4800
4801 if (((*str)[0] == '#' && (*str)[1] == ':')
4802 || (*str)[0] == ':')
4803 {
4804 struct group_reloc_table_entry *entry;
4805
4806 if ((*str)[0] == '#')
4807 (*str) += 2;
4808 else
4809 (*str)++;
4810
4811 /* Try to parse a group relocation. Anything else is an error. */
4812 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4813 {
4814 inst.error = _("unknown group relocation");
4815 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4816 }
4817
4818 /* We now have the group relocation table entry corresponding to
4819 the name in the assembler source. Next, we parse the expression. */
4820 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4821 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4822
4823 /* Record the relocation type (always the ALU variant here). */
4824 inst.reloc.type = entry->alu_code;
4825 gas_assert (inst.reloc.type != 0);
4826
4827 return PARSE_OPERAND_SUCCESS;
4828 }
4829 else
4830 return parse_shifter_operand (str, i) == SUCCESS
4831 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4832
4833 /* Never reached. */
4834}
4835
4836/* Parse all forms of an ARM address expression. Information is written
4837 to inst.operands[i] and/or inst.reloc.
4838
4839 Preindexed addressing (.preind=1):
4840
4841 [Rn, #offset] .reg=Rn .reloc.exp=offset
4842 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4843 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4844 .shift_kind=shift .reloc.exp=shift_imm
4845
4846 These three may have a trailing ! which causes .writeback to be set also.
4847
4848 Postindexed addressing (.postind=1, .writeback=1):
4849
4850 [Rn], #offset .reg=Rn .reloc.exp=offset
4851 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4852 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4853 .shift_kind=shift .reloc.exp=shift_imm
4854
4855 Unindexed addressing (.preind=0, .postind=0):
4856
4857 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4858
4859 Other:
4860
4861 [Rn]{!} shorthand for [Rn,#0]{!}
4862 =immediate .isreg=0 .reloc.exp=immediate
4863 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4864
4865 It is the caller's responsibility to check for addressing modes not
4866 supported by the instruction, and to set inst.reloc.type. */
4867
4868static parse_operand_result
4869parse_address_main (char **str, int i, int group_relocations,
4870 group_reloc_type group_type)
4871{
4872 char *p = *str;
4873 int reg;
4874
4875 if (skip_past_char (&p, '[') == FAIL)
4876 {
4877 if (skip_past_char (&p, '=') == FAIL)
4878 {
4879 /* bare address - translate to PC-relative offset */
4880 inst.reloc.pc_rel = 1;
4881 inst.operands[i].reg = REG_PC;
4882 inst.operands[i].isreg = 1;
4883 inst.operands[i].preind = 1;
4884 }
4885 /* else a load-constant pseudo op, no special treatment needed here */
4886
4887 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4888 return PARSE_OPERAND_FAIL;
4889
4890 *str = p;
4891 return PARSE_OPERAND_SUCCESS;
4892 }
4893
4894 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4895 {
4896 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4897 return PARSE_OPERAND_FAIL;
4898 }
4899 inst.operands[i].reg = reg;
4900 inst.operands[i].isreg = 1;
4901
4902 if (skip_past_comma (&p) == SUCCESS)
4903 {
4904 inst.operands[i].preind = 1;
4905
4906 if (*p == '+') p++;
4907 else if (*p == '-') p++, inst.operands[i].negative = 1;
4908
4909 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4910 {
4911 inst.operands[i].imm = reg;
4912 inst.operands[i].immisreg = 1;
4913
4914 if (skip_past_comma (&p) == SUCCESS)
4915 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4916 return PARSE_OPERAND_FAIL;
4917 }
4918 else if (skip_past_char (&p, ':') == SUCCESS)
4919 {
4920 /* FIXME: '@' should be used here, but it's filtered out by generic
4921 code before we get to see it here. This may be subject to
4922 change. */
4923 expressionS exp;
4924 my_get_expression (&exp, &p, GE_NO_PREFIX);
4925 if (exp.X_op != O_constant)
4926 {
4927 inst.error = _("alignment must be constant");
4928 return PARSE_OPERAND_FAIL;
4929 }
4930 inst.operands[i].imm = exp.X_add_number << 8;
4931 inst.operands[i].immisalign = 1;
4932 /* Alignments are not pre-indexes. */
4933 inst.operands[i].preind = 0;
4934 }
4935 else
4936 {
4937 if (inst.operands[i].negative)
4938 {
4939 inst.operands[i].negative = 0;
4940 p--;
4941 }
4942
4943 if (group_relocations
4944 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4945 {
4946 struct group_reloc_table_entry *entry;
4947
4948 /* Skip over the #: or : sequence. */
4949 if (*p == '#')
4950 p += 2;
4951 else
4952 p++;
4953
4954 /* Try to parse a group relocation. Anything else is an
4955 error. */
4956 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4957 {
4958 inst.error = _("unknown group relocation");
4959 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4960 }
4961
4962 /* We now have the group relocation table entry corresponding to
4963 the name in the assembler source. Next, we parse the
4964 expression. */
4965 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4966 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4967
4968 /* Record the relocation type. */
4969 switch (group_type)
4970 {
4971 case GROUP_LDR:
4972 inst.reloc.type = entry->ldr_code;
4973 break;
4974
4975 case GROUP_LDRS:
4976 inst.reloc.type = entry->ldrs_code;
4977 break;
4978
4979 case GROUP_LDC:
4980 inst.reloc.type = entry->ldc_code;
4981 break;
4982
4983 default:
4984 gas_assert (0);
4985 }
4986
4987 if (inst.reloc.type == 0)
4988 {
4989 inst.error = _("this group relocation is not allowed on this instruction");
4990 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4991 }
4992 }
4993 else
4994 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4995 return PARSE_OPERAND_FAIL;
4996 }
4997 }
4998
4999 if (skip_past_char (&p, ']') == FAIL)
5000 {
5001 inst.error = _("']' expected");
5002 return PARSE_OPERAND_FAIL;
5003 }
5004
5005 if (skip_past_char (&p, '!') == SUCCESS)
5006 inst.operands[i].writeback = 1;
5007
5008 else if (skip_past_comma (&p) == SUCCESS)
5009 {
5010 if (skip_past_char (&p, '{') == SUCCESS)
5011 {
5012 /* [Rn], {expr} - unindexed, with option */
5013 if (parse_immediate (&p, &inst.operands[i].imm,
5014 0, 255, TRUE) == FAIL)
5015 return PARSE_OPERAND_FAIL;
5016
5017 if (skip_past_char (&p, '}') == FAIL)
5018 {
5019 inst.error = _("'}' expected at end of 'option' field");
5020 return PARSE_OPERAND_FAIL;
5021 }
5022 if (inst.operands[i].preind)
5023 {
5024 inst.error = _("cannot combine index with option");
5025 return PARSE_OPERAND_FAIL;
5026 }
5027 *str = p;
5028 return PARSE_OPERAND_SUCCESS;
5029 }
5030 else
5031 {
5032 inst.operands[i].postind = 1;
5033 inst.operands[i].writeback = 1;
5034
5035 if (inst.operands[i].preind)
5036 {
5037 inst.error = _("cannot combine pre- and post-indexing");
5038 return PARSE_OPERAND_FAIL;
5039 }
5040
5041 if (*p == '+') p++;
5042 else if (*p == '-') p++, inst.operands[i].negative = 1;
5043
5044 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5045 {
5046 /* We might be using the immediate for alignment already. If we
5047 are, OR the register number into the low-order bits. */
5048 if (inst.operands[i].immisalign)
5049 inst.operands[i].imm |= reg;
5050 else
5051 inst.operands[i].imm = reg;
5052 inst.operands[i].immisreg = 1;
5053
5054 if (skip_past_comma (&p) == SUCCESS)
5055 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5056 return PARSE_OPERAND_FAIL;
5057 }
5058 else
5059 {
5060 if (inst.operands[i].negative)
5061 {
5062 inst.operands[i].negative = 0;
5063 p--;
5064 }
5065 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5066 return PARSE_OPERAND_FAIL;
5067 }
5068 }
5069 }
5070
5071 /* If at this point neither .preind nor .postind is set, we have a
5072 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5073 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5074 {
5075 inst.operands[i].preind = 1;
5076 inst.reloc.exp.X_op = O_constant;
5077 inst.reloc.exp.X_add_number = 0;
5078 }
5079 *str = p;
5080 return PARSE_OPERAND_SUCCESS;
5081}
5082
5083static int
5084parse_address (char **str, int i)
5085{
5086 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
5087 ? SUCCESS : FAIL;
5088}
5089
5090static parse_operand_result
5091parse_address_group_reloc (char **str, int i, group_reloc_type type)
5092{
5093 return parse_address_main (str, i, 1, type);
5094}
5095
5096/* Parse an operand for a MOVW or MOVT instruction. */
5097static int
5098parse_half (char **str)
5099{
5100 char * p;
5101
5102 p = *str;
5103 skip_past_char (&p, '#');
5104 if (strncasecmp (p, ":lower16:", 9) == 0)
5105 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5106 else if (strncasecmp (p, ":upper16:", 9) == 0)
5107 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5108
5109 if (inst.reloc.type != BFD_RELOC_UNUSED)
5110 {
5111 p += 9;
5112 skip_whitespace (p);
5113 }
5114
5115 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5116 return FAIL;
5117
5118 if (inst.reloc.type == BFD_RELOC_UNUSED)
5119 {
5120 if (inst.reloc.exp.X_op != O_constant)
5121 {
5122 inst.error = _("constant expression expected");
5123 return FAIL;
5124 }
5125 if (inst.reloc.exp.X_add_number < 0
5126 || inst.reloc.exp.X_add_number > 0xffff)
5127 {
5128 inst.error = _("immediate value out of range");
5129 return FAIL;
5130 }
5131 }
5132 *str = p;
5133 return SUCCESS;
5134}
5135
5136/* Miscellaneous. */
5137
5138/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5139 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5140static int
5141parse_psr (char **str)
5142{
5143 char *p;
5144 unsigned long psr_field;
5145 const struct asm_psr *psr;
5146 char *start;
5147
5148 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5149 feature for ease of use and backwards compatibility. */
5150 p = *str;
5151 if (strncasecmp (p, "SPSR", 4) == 0)
5152 psr_field = SPSR_BIT;
5153 else if (strncasecmp (p, "CPSR", 4) == 0)
5154 psr_field = 0;
5155 else
5156 {
5157 start = p;
5158 do
5159 p++;
5160 while (ISALNUM (*p) || *p == '_');
5161
5162 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
5163 if (!psr)
5164 return FAIL;
5165
5166 *str = p;
5167 return psr->field;
5168 }
5169
5170 p += 4;
5171 if (*p == '_')
5172 {
5173 /* A suffix follows. */
5174 p++;
5175 start = p;
5176
5177 do
5178 p++;
5179 while (ISALNUM (*p) || *p == '_');
5180
5181 psr = hash_find_n (arm_psr_hsh, start, p - start);
5182 if (!psr)
5183 goto error;
5184
5185 psr_field |= psr->field;
5186 }
5187 else
5188 {
5189 if (ISALNUM (*p))
5190 goto error; /* Garbage after "[CS]PSR". */
5191
5192 psr_field |= (PSR_c | PSR_f);
5193 }
5194 *str = p;
5195 return psr_field;
5196
5197 error:
5198 inst.error = _("flag for {c}psr instruction expected");
5199 return FAIL;
5200}
5201
5202/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5203 value suitable for splatting into the AIF field of the instruction. */
5204
5205static int
5206parse_cps_flags (char **str)
5207{
5208 int val = 0;
5209 int saw_a_flag = 0;
5210 char *s = *str;
5211
5212 for (;;)
5213 switch (*s++)
5214 {
5215 case '\0': case ',':
5216 goto done;
5217
5218 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5219 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5220 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5221
5222 default:
5223 inst.error = _("unrecognized CPS flag");
5224 return FAIL;
5225 }
5226
5227 done:
5228 if (saw_a_flag == 0)
5229 {
5230 inst.error = _("missing CPS flags");
5231 return FAIL;
5232 }
5233
5234 *str = s - 1;
5235 return val;
5236}
5237
5238/* Parse an endian specifier ("BE" or "LE", case insensitive);
5239 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5240
5241static int
5242parse_endian_specifier (char **str)
5243{
5244 int little_endian;
5245 char *s = *str;
5246
5247 if (strncasecmp (s, "BE", 2))
5248 little_endian = 0;
5249 else if (strncasecmp (s, "LE", 2))
5250 little_endian = 1;
5251 else
5252 {
5253 inst.error = _("valid endian specifiers are be or le");
5254 return FAIL;
5255 }
5256
5257 if (ISALNUM (s[2]) || s[2] == '_')
5258 {
5259 inst.error = _("valid endian specifiers are be or le");
5260 return FAIL;
5261 }
5262
5263 *str = s + 2;
5264 return little_endian;
5265}
5266
5267/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5268 value suitable for poking into the rotate field of an sxt or sxta
5269 instruction, or FAIL on error. */
5270
5271static int
5272parse_ror (char **str)
5273{
5274 int rot;
5275 char *s = *str;
5276
5277 if (strncasecmp (s, "ROR", 3) == 0)
5278 s += 3;
5279 else
5280 {
5281 inst.error = _("missing rotation field after comma");
5282 return FAIL;
5283 }
5284
5285 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5286 return FAIL;
5287
5288 switch (rot)
5289 {
5290 case 0: *str = s; return 0x0;
5291 case 8: *str = s; return 0x1;
5292 case 16: *str = s; return 0x2;
5293 case 24: *str = s; return 0x3;
5294
5295 default:
5296 inst.error = _("rotation can only be 0, 8, 16, or 24");
5297 return FAIL;
5298 }
5299}
5300
5301/* Parse a conditional code (from conds[] below). The value returned is in the
5302 range 0 .. 14, or FAIL. */
5303static int
5304parse_cond (char **str)
5305{
5306 char *q;
5307 const struct asm_cond *c;
5308 int n;
5309 /* Condition codes are always 2 characters, so matching up to
5310 3 characters is sufficient. */
5311 char cond[3];
5312
5313 q = *str;
5314 n = 0;
5315 while (ISALPHA (*q) && n < 3)
5316 {
5317 cond[n] = TOLOWER (*q);
5318 q++;
5319 n++;
5320 }
5321
5322 c = hash_find_n (arm_cond_hsh, cond, n);
5323 if (!c)
5324 {
5325 inst.error = _("condition required");
5326 return FAIL;
5327 }
5328
5329 *str = q;
5330 return c->value;
5331}
5332
5333/* Parse an option for a barrier instruction. Returns the encoding for the
5334 option, or FAIL. */
5335static int
5336parse_barrier (char **str)
5337{
5338 char *p, *q;
5339 const struct asm_barrier_opt *o;
5340
5341 p = q = *str;
5342 while (ISALPHA (*q))
5343 q++;
5344
5345 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5346 if (!o)
5347 return FAIL;
5348
5349 *str = q;
5350 return o->value;
5351}
5352
5353/* Parse the operands of a table branch instruction. Similar to a memory
5354 operand. */
5355static int
5356parse_tb (char **str)
5357{
5358 char * p = *str;
5359 int reg;
5360
5361 if (skip_past_char (&p, '[') == FAIL)
5362 {
5363 inst.error = _("'[' expected");
5364 return FAIL;
5365 }
5366
5367 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5368 {
5369 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5370 return FAIL;
5371 }
5372 inst.operands[0].reg = reg;
5373
5374 if (skip_past_comma (&p) == FAIL)
5375 {
5376 inst.error = _("',' expected");
5377 return FAIL;
5378 }
5379
5380 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5381 {
5382 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5383 return FAIL;
5384 }
5385 inst.operands[0].imm = reg;
5386
5387 if (skip_past_comma (&p) == SUCCESS)
5388 {
5389 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5390 return FAIL;
5391 if (inst.reloc.exp.X_add_number != 1)
5392 {
5393 inst.error = _("invalid shift");
5394 return FAIL;
5395 }
5396 inst.operands[0].shifted = 1;
5397 }
5398
5399 if (skip_past_char (&p, ']') == FAIL)
5400 {
5401 inst.error = _("']' expected");
5402 return FAIL;
5403 }
5404 *str = p;
5405 return SUCCESS;
5406}
5407
5408/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5409 information on the types the operands can take and how they are encoded.
5410 Up to four operands may be read; this function handles setting the
5411 ".present" field for each read operand itself.
5412 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5413 else returns FAIL. */
5414
5415static int
5416parse_neon_mov (char **str, int *which_operand)
5417{
5418 int i = *which_operand, val;
5419 enum arm_reg_type rtype;
5420 char *ptr = *str;
5421 struct neon_type_el optype;
5422
5423 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5424 {
5425 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5426 inst.operands[i].reg = val;
5427 inst.operands[i].isscalar = 1;
5428 inst.operands[i].vectype = optype;
5429 inst.operands[i++].present = 1;
5430
5431 if (skip_past_comma (&ptr) == FAIL)
5432 goto wanted_comma;
5433
5434 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5435 goto wanted_arm;
5436
5437 inst.operands[i].reg = val;
5438 inst.operands[i].isreg = 1;
5439 inst.operands[i].present = 1;
5440 }
5441 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5442 != FAIL)
5443 {
5444 /* Cases 0, 1, 2, 3, 5 (D only). */
5445 if (skip_past_comma (&ptr) == FAIL)
5446 goto wanted_comma;
5447
5448 inst.operands[i].reg = val;
5449 inst.operands[i].isreg = 1;
5450 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5451 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5452 inst.operands[i].isvec = 1;
5453 inst.operands[i].vectype = optype;
5454 inst.operands[i++].present = 1;
5455
5456 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5457 {
5458 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5459 Case 13: VMOV <Sd>, <Rm> */
5460 inst.operands[i].reg = val;
5461 inst.operands[i].isreg = 1;
5462 inst.operands[i].present = 1;
5463
5464 if (rtype == REG_TYPE_NQ)
5465 {
5466 first_error (_("can't use Neon quad register here"));
5467 return FAIL;
5468 }
5469 else if (rtype != REG_TYPE_VFS)
5470 {
5471 i++;
5472 if (skip_past_comma (&ptr) == FAIL)
5473 goto wanted_comma;
5474 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5475 goto wanted_arm;
5476 inst.operands[i].reg = val;
5477 inst.operands[i].isreg = 1;
5478 inst.operands[i].present = 1;
5479 }
5480 }
5481 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5482 &optype)) != FAIL)
5483 {
5484 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5485 Case 1: VMOV<c><q> <Dd>, <Dm>
5486 Case 8: VMOV.F32 <Sd>, <Sm>
5487 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5488
5489 inst.operands[i].reg = val;
5490 inst.operands[i].isreg = 1;
5491 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5492 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5493 inst.operands[i].isvec = 1;
5494 inst.operands[i].vectype = optype;
5495 inst.operands[i].present = 1;
5496
5497 if (skip_past_comma (&ptr) == SUCCESS)
5498 {
5499 /* Case 15. */
5500 i++;
5501
5502 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5503 goto wanted_arm;
5504
5505 inst.operands[i].reg = val;
5506 inst.operands[i].isreg = 1;
5507 inst.operands[i++].present = 1;
5508
5509 if (skip_past_comma (&ptr) == FAIL)
5510 goto wanted_comma;
5511
5512 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5513 goto wanted_arm;
5514
5515 inst.operands[i].reg = val;
5516 inst.operands[i].isreg = 1;
5517 inst.operands[i++].present = 1;
5518 }
5519 }
5520 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5521 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5522 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5523 Case 10: VMOV.F32 <Sd>, #<imm>
5524 Case 11: VMOV.F64 <Dd>, #<imm> */
5525 inst.operands[i].immisfloat = 1;
5526 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5527 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5528 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5529 ;
5530 else
5531 {
5532 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5533 return FAIL;
5534 }
5535 }
5536 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5537 {
5538 /* Cases 6, 7. */
5539 inst.operands[i].reg = val;
5540 inst.operands[i].isreg = 1;
5541 inst.operands[i++].present = 1;
5542
5543 if (skip_past_comma (&ptr) == FAIL)
5544 goto wanted_comma;
5545
5546 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5547 {
5548 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5549 inst.operands[i].reg = val;
5550 inst.operands[i].isscalar = 1;
5551 inst.operands[i].present = 1;
5552 inst.operands[i].vectype = optype;
5553 }
5554 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5555 {
5556 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5557 inst.operands[i].reg = val;
5558 inst.operands[i].isreg = 1;
5559 inst.operands[i++].present = 1;
5560
5561 if (skip_past_comma (&ptr) == FAIL)
5562 goto wanted_comma;
5563
5564 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5565 == FAIL)
5566 {
5567 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5568 return FAIL;
5569 }
5570
5571 inst.operands[i].reg = val;
5572 inst.operands[i].isreg = 1;
5573 inst.operands[i].isvec = 1;
5574 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5575 inst.operands[i].vectype = optype;
5576 inst.operands[i].present = 1;
5577
5578 if (rtype == REG_TYPE_VFS)
5579 {
5580 /* Case 14. */
5581 i++;
5582 if (skip_past_comma (&ptr) == FAIL)
5583 goto wanted_comma;
5584 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5585 &optype)) == FAIL)
5586 {
5587 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5588 return FAIL;
5589 }
5590 inst.operands[i].reg = val;
5591 inst.operands[i].isreg = 1;
5592 inst.operands[i].isvec = 1;
5593 inst.operands[i].issingle = 1;
5594 inst.operands[i].vectype = optype;
5595 inst.operands[i].present = 1;
5596 }
5597 }
5598 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5599 != FAIL)
5600 {
5601 /* Case 13. */
5602 inst.operands[i].reg = val;
5603 inst.operands[i].isreg = 1;
5604 inst.operands[i].isvec = 1;
5605 inst.operands[i].issingle = 1;
5606 inst.operands[i].vectype = optype;
5607 inst.operands[i++].present = 1;
5608 }
5609 }
5610 else
5611 {
5612 first_error (_("parse error"));
5613 return FAIL;
5614 }
5615
5616 /* Successfully parsed the operands. Update args. */
5617 *which_operand = i;
5618 *str = ptr;
5619 return SUCCESS;
5620
5621 wanted_comma:
5622 first_error (_("expected comma"));
5623 return FAIL;
5624
5625 wanted_arm:
5626 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5627 return FAIL;
5628}
5629
5630/* Matcher codes for parse_operands. */
5631enum operand_parse_code
5632{
5633 OP_stop, /* end of line */
5634
5635 OP_RR, /* ARM register */
5636 OP_RRnpc, /* ARM register, not r15 */
5637 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5638 OP_RRw, /* ARM register, not r15, optional trailing ! */
5639 OP_RCP, /* Coprocessor number */
5640 OP_RCN, /* Coprocessor register */
5641 OP_RF, /* FPA register */
5642 OP_RVS, /* VFP single precision register */
5643 OP_RVD, /* VFP double precision register (0..15) */
5644 OP_RND, /* Neon double precision register (0..31) */
5645 OP_RNQ, /* Neon quad precision register */
5646 OP_RVSD, /* VFP single or double precision register */
5647 OP_RNDQ, /* Neon double or quad precision register */
5648 OP_RNSDQ, /* Neon single, double or quad precision register */
5649 OP_RNSC, /* Neon scalar D[X] */
5650 OP_RVC, /* VFP control register */
5651 OP_RMF, /* Maverick F register */
5652 OP_RMD, /* Maverick D register */
5653 OP_RMFX, /* Maverick FX register */
5654 OP_RMDX, /* Maverick DX register */
5655 OP_RMAX, /* Maverick AX register */
5656 OP_RMDS, /* Maverick DSPSC register */
5657 OP_RIWR, /* iWMMXt wR register */
5658 OP_RIWC, /* iWMMXt wC register */
5659 OP_RIWG, /* iWMMXt wCG register */
5660 OP_RXA, /* XScale accumulator register */
5661
5662 OP_REGLST, /* ARM register list */
5663 OP_VRSLST, /* VFP single-precision register list */
5664 OP_VRDLST, /* VFP double-precision register list */
5665 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5666 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5667 OP_NSTRLST, /* Neon element/structure list */
5668
5669 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5670 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5671 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5672 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5673 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5674 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5675 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5676 OP_VMOV, /* Neon VMOV operands. */
5677 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5678 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5679 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5680
5681 OP_I0, /* immediate zero */
5682 OP_I7, /* immediate value 0 .. 7 */
5683 OP_I15, /* 0 .. 15 */
5684 OP_I16, /* 1 .. 16 */
5685 OP_I16z, /* 0 .. 16 */
5686 OP_I31, /* 0 .. 31 */
5687 OP_I31w, /* 0 .. 31, optional trailing ! */
5688 OP_I32, /* 1 .. 32 */
5689 OP_I32z, /* 0 .. 32 */
5690 OP_I63, /* 0 .. 63 */
5691 OP_I63s, /* -64 .. 63 */
5692 OP_I64, /* 1 .. 64 */
5693 OP_I64z, /* 0 .. 64 */
5694 OP_I255, /* 0 .. 255 */
5695
5696 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5697 OP_I7b, /* 0 .. 7 */
5698 OP_I15b, /* 0 .. 15 */
5699 OP_I31b, /* 0 .. 31 */
5700
5701 OP_SH, /* shifter operand */
5702 OP_SHG, /* shifter operand with possible group relocation */
5703 OP_ADDR, /* Memory address expression (any mode) */
5704 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5705 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5706 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5707 OP_EXP, /* arbitrary expression */
5708 OP_EXPi, /* same, with optional immediate prefix */
5709 OP_EXPr, /* same, with optional relocation suffix */
5710 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5711
5712 OP_CPSF, /* CPS flags */
5713 OP_ENDI, /* Endianness specifier */
5714 OP_PSR, /* CPSR/SPSR mask for msr */
5715 OP_COND, /* conditional code */
5716 OP_TB, /* Table branch. */
5717
5718 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5719 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5720
5721 OP_RRnpc_I0, /* ARM register or literal 0 */
5722 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5723 OP_RR_EXi, /* ARM register or expression with imm prefix */
5724 OP_RF_IF, /* FPA register or immediate */
5725 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5726 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5727
5728 /* Optional operands. */
5729 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5730 OP_oI31b, /* 0 .. 31 */
5731 OP_oI32b, /* 1 .. 32 */
5732 OP_oIffffb, /* 0 .. 65535 */
5733 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5734
5735 OP_oRR, /* ARM register */
5736 OP_oRRnpc, /* ARM register, not the PC */
5737 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5738 OP_oRND, /* Optional Neon double precision register */
5739 OP_oRNQ, /* Optional Neon quad precision register */
5740 OP_oRNDQ, /* Optional Neon double or quad precision register */
5741 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5742 OP_oSHll, /* LSL immediate */
5743 OP_oSHar, /* ASR immediate */
5744 OP_oSHllar, /* LSL or ASR immediate */
5745 OP_oROR, /* ROR 0/8/16/24 */
5746 OP_oBARRIER, /* Option argument for a barrier instruction. */
5747
5748 OP_FIRST_OPTIONAL = OP_oI7b
5749};
5750
5751/* Generic instruction operand parser. This does no encoding and no
5752 semantic validation; it merely squirrels values away in the inst
5753 structure. Returns SUCCESS or FAIL depending on whether the
5754 specified grammar matched. */
5755static int
5756parse_operands (char *str, const unsigned char *pattern)
5757{
5758 unsigned const char *upat = pattern;
5759 char *backtrack_pos = 0;
5760 const char *backtrack_error = 0;
5761 int i, val, backtrack_index = 0;
5762 enum arm_reg_type rtype;
5763 parse_operand_result result;
5764
5765#define po_char_or_fail(chr) \
5766 do \
5767 { \
5768 if (skip_past_char (&str, chr) == FAIL) \
5769 goto bad_args; \
5770 } \
5771 while (0)
5772
5773#define po_reg_or_fail(regtype) \
5774 do \
5775 { \
5776 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5777 & inst.operands[i].vectype); \
5778 if (val == FAIL) \
5779 { \
5780 first_error (_(reg_expected_msgs[regtype])); \
5781 goto failure; \
5782 } \
5783 inst.operands[i].reg = val; \
5784 inst.operands[i].isreg = 1; \
5785 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5786 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5787 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5788 || rtype == REG_TYPE_VFD \
5789 || rtype == REG_TYPE_NQ); \
5790 } \
5791 while (0)
5792
5793#define po_reg_or_goto(regtype, label) \
5794 do \
5795 { \
5796 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5797 & inst.operands[i].vectype); \
5798 if (val == FAIL) \
5799 goto label; \
5800 \
5801 inst.operands[i].reg = val; \
5802 inst.operands[i].isreg = 1; \
5803 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5804 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5805 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5806 || rtype == REG_TYPE_VFD \
5807 || rtype == REG_TYPE_NQ); \
5808 } \
5809 while (0)
5810
5811#define po_imm_or_fail(min, max, popt) \
5812 do \
5813 { \
5814 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5815 goto failure; \
5816 inst.operands[i].imm = val; \
5817 } \
5818 while (0)
5819
5820#define po_scalar_or_goto(elsz, label) \
5821 do \
5822 { \
5823 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5824 if (val == FAIL) \
5825 goto label; \
5826 inst.operands[i].reg = val; \
5827 inst.operands[i].isscalar = 1; \
5828 } \
5829 while (0)
5830
5831#define po_misc_or_fail(expr) \
5832 do \
5833 { \
5834 if (expr) \
5835 goto failure; \
5836 } \
5837 while (0)
5838
5839#define po_misc_or_fail_no_backtrack(expr) \
5840 do \
5841 { \
5842 result = expr; \
5843 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
5844 backtrack_pos = 0; \
5845 if (result != PARSE_OPERAND_SUCCESS) \
5846 goto failure; \
5847 } \
5848 while (0)
5849
5850 skip_whitespace (str);
5851
5852 for (i = 0; upat[i] != OP_stop; i++)
5853 {
5854 if (upat[i] >= OP_FIRST_OPTIONAL)
5855 {
5856 /* Remember where we are in case we need to backtrack. */
5857 gas_assert (!backtrack_pos);
5858 backtrack_pos = str;
5859 backtrack_error = inst.error;
5860 backtrack_index = i;
5861 }
5862
5863 if (i > 0 && (i > 1 || inst.operands[0].present))
5864 po_char_or_fail (',');
5865
5866 switch (upat[i])
5867 {
5868 /* Registers */
5869 case OP_oRRnpc:
5870 case OP_RRnpc:
5871 case OP_oRR:
5872 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5873 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5874 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5875 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5876 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5877 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5878 case OP_oRND:
5879 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5880 case OP_RVC:
5881 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5882 break;
5883 /* Also accept generic coprocessor regs for unknown registers. */
5884 coproc_reg:
5885 po_reg_or_fail (REG_TYPE_CN);
5886 break;
5887 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5888 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5889 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5890 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5891 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5892 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5893 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5894 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5895 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5896 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5897 case OP_oRNQ:
5898 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5899 case OP_oRNDQ:
5900 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5901 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5902 case OP_oRNSDQ:
5903 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5904
5905 /* Neon scalar. Using an element size of 8 means that some invalid
5906 scalars are accepted here, so deal with those in later code. */
5907 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5908
5909 /* WARNING: We can expand to two operands here. This has the potential
5910 to totally confuse the backtracking mechanism! It will be OK at
5911 least as long as we don't try to use optional args as well,
5912 though. */
5913 case OP_NILO:
5914 {
5915 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5916 inst.operands[i].present = 1;
5917 i++;
5918 skip_past_comma (&str);
5919 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5920 break;
5921 one_reg_only:
5922 /* Optional register operand was omitted. Unfortunately, it's in
5923 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5924 here (this is a bit grotty). */
5925 inst.operands[i] = inst.operands[i-1];
5926 inst.operands[i-1].present = 0;
5927 break;
5928 try_imm:
5929 /* There's a possibility of getting a 64-bit immediate here, so
5930 we need special handling. */
5931 if (parse_big_immediate (&str, i) == FAIL)
5932 {
5933 inst.error = _("immediate value is out of range");
5934 goto failure;
5935 }
5936 }
5937 break;
5938
5939 case OP_RNDQ_I0:
5940 {
5941 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5942 break;
5943 try_imm0:
5944 po_imm_or_fail (0, 0, TRUE);
5945 }
5946 break;
5947
5948 case OP_RVSD_I0:
5949 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5950 break;
5951
5952 case OP_RR_RNSC:
5953 {
5954 po_scalar_or_goto (8, try_rr);
5955 break;
5956 try_rr:
5957 po_reg_or_fail (REG_TYPE_RN);
5958 }
5959 break;
5960
5961 case OP_RNSDQ_RNSC:
5962 {
5963 po_scalar_or_goto (8, try_nsdq);
5964 break;
5965 try_nsdq:
5966 po_reg_or_fail (REG_TYPE_NSDQ);
5967 }
5968 break;
5969
5970 case OP_RNDQ_RNSC:
5971 {
5972 po_scalar_or_goto (8, try_ndq);
5973 break;
5974 try_ndq:
5975 po_reg_or_fail (REG_TYPE_NDQ);
5976 }
5977 break;
5978
5979 case OP_RND_RNSC:
5980 {
5981 po_scalar_or_goto (8, try_vfd);
5982 break;
5983 try_vfd:
5984 po_reg_or_fail (REG_TYPE_VFD);
5985 }
5986 break;
5987
5988 case OP_VMOV:
5989 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5990 not careful then bad things might happen. */
5991 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5992 break;
5993
5994 case OP_RNDQ_IMVNb:
5995 {
5996 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5997 break;
5998 try_mvnimm:
5999 /* There's a possibility of getting a 64-bit immediate here, so
6000 we need special handling. */
6001 if (parse_big_immediate (&str, i) == FAIL)
6002 {
6003 inst.error = _("immediate value is out of range");
6004 goto failure;
6005 }
6006 }
6007 break;
6008
6009 case OP_RNDQ_I63b:
6010 {
6011 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6012 break;
6013 try_shimm:
6014 po_imm_or_fail (0, 63, TRUE);
6015 }
6016 break;
6017
6018 case OP_RRnpcb:
6019 po_char_or_fail ('[');
6020 po_reg_or_fail (REG_TYPE_RN);
6021 po_char_or_fail (']');
6022 break;
6023
6024 case OP_RRw:
6025 case OP_oRRw:
6026 po_reg_or_fail (REG_TYPE_RN);
6027 if (skip_past_char (&str, '!') == SUCCESS)
6028 inst.operands[i].writeback = 1;
6029 break;
6030
6031 /* Immediates */
6032 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6033 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6034 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6035 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6036 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6037 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6038 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6039 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6040 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6041 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6042 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6043 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6044
6045 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6046 case OP_oI7b:
6047 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6048 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6049 case OP_oI31b:
6050 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6051 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6052 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6053
6054 /* Immediate variants */
6055 case OP_oI255c:
6056 po_char_or_fail ('{');
6057 po_imm_or_fail (0, 255, TRUE);
6058 po_char_or_fail ('}');
6059 break;
6060
6061 case OP_I31w:
6062 /* The expression parser chokes on a trailing !, so we have
6063 to find it first and zap it. */
6064 {
6065 char *s = str;
6066 while (*s && *s != ',')
6067 s++;
6068 if (s[-1] == '!')
6069 {
6070 s[-1] = '\0';
6071 inst.operands[i].writeback = 1;
6072 }
6073 po_imm_or_fail (0, 31, TRUE);
6074 if (str == s - 1)
6075 str = s;
6076 }
6077 break;
6078
6079 /* Expressions */
6080 case OP_EXPi: EXPi:
6081 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6082 GE_OPT_PREFIX));
6083 break;
6084
6085 case OP_EXP:
6086 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6087 GE_NO_PREFIX));
6088 break;
6089
6090 case OP_EXPr: EXPr:
6091 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6092 GE_NO_PREFIX));
6093 if (inst.reloc.exp.X_op == O_symbol)
6094 {
6095 val = parse_reloc (&str);
6096 if (val == -1)
6097 {
6098 inst.error = _("unrecognized relocation suffix");
6099 goto failure;
6100 }
6101 else if (val != BFD_RELOC_UNUSED)
6102 {
6103 inst.operands[i].imm = val;
6104 inst.operands[i].hasreloc = 1;
6105 }
6106 }
6107 break;
6108
6109 /* Operand for MOVW or MOVT. */
6110 case OP_HALF:
6111 po_misc_or_fail (parse_half (&str));
6112 break;
6113
6114 /* Register or expression. */
6115 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6116 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6117
6118 /* Register or immediate. */
6119 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6120 I0: po_imm_or_fail (0, 0, FALSE); break;
6121
6122 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6123 IF:
6124 if (!is_immediate_prefix (*str))
6125 goto bad_args;
6126 str++;
6127 val = parse_fpa_immediate (&str);
6128 if (val == FAIL)
6129 goto failure;
6130 /* FPA immediates are encoded as registers 8-15.
6131 parse_fpa_immediate has already applied the offset. */
6132 inst.operands[i].reg = val;
6133 inst.operands[i].isreg = 1;
6134 break;
6135
6136 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6137 I32z: po_imm_or_fail (0, 32, FALSE); break;
6138
6139 /* Two kinds of register. */
6140 case OP_RIWR_RIWC:
6141 {
6142 struct reg_entry *rege = arm_reg_parse_multi (&str);
6143 if (!rege
6144 || (rege->type != REG_TYPE_MMXWR
6145 && rege->type != REG_TYPE_MMXWC
6146 && rege->type != REG_TYPE_MMXWCG))
6147 {
6148 inst.error = _("iWMMXt data or control register expected");
6149 goto failure;
6150 }
6151 inst.operands[i].reg = rege->number;
6152 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6153 }
6154 break;
6155
6156 case OP_RIWC_RIWG:
6157 {
6158 struct reg_entry *rege = arm_reg_parse_multi (&str);
6159 if (!rege
6160 || (rege->type != REG_TYPE_MMXWC
6161 && rege->type != REG_TYPE_MMXWCG))
6162 {
6163 inst.error = _("iWMMXt control register expected");
6164 goto failure;
6165 }
6166 inst.operands[i].reg = rege->number;
6167 inst.operands[i].isreg = 1;
6168 }
6169 break;
6170
6171 /* Misc */
6172 case OP_CPSF: val = parse_cps_flags (&str); break;
6173 case OP_ENDI: val = parse_endian_specifier (&str); break;
6174 case OP_oROR: val = parse_ror (&str); break;
6175 case OP_PSR: val = parse_psr (&str); break;
6176 case OP_COND: val = parse_cond (&str); break;
6177 case OP_oBARRIER:val = parse_barrier (&str); break;
6178
6179 case OP_RVC_PSR:
6180 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6181 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6182 break;
6183 try_psr:
6184 val = parse_psr (&str);
6185 break;
6186
6187 case OP_APSR_RR:
6188 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6189 break;
6190 try_apsr:
6191 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6192 instruction). */
6193 if (strncasecmp (str, "APSR_", 5) == 0)
6194 {
6195 unsigned found = 0;
6196 str += 5;
6197 while (found < 15)
6198 switch (*str++)
6199 {
6200 case 'c': found = (found & 1) ? 16 : found | 1; break;
6201 case 'n': found = (found & 2) ? 16 : found | 2; break;
6202 case 'z': found = (found & 4) ? 16 : found | 4; break;
6203 case 'v': found = (found & 8) ? 16 : found | 8; break;
6204 default: found = 16;
6205 }
6206 if (found != 15)
6207 goto failure;
6208 inst.operands[i].isvec = 1;
6209 }
6210 else
6211 goto failure;
6212 break;
6213
6214 case OP_TB:
6215 po_misc_or_fail (parse_tb (&str));
6216 break;
6217
6218 /* Register lists. */
6219 case OP_REGLST:
6220 val = parse_reg_list (&str);
6221 if (*str == '^')
6222 {
6223 inst.operands[1].writeback = 1;
6224 str++;
6225 }
6226 break;
6227
6228 case OP_VRSLST:
6229 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6230 break;
6231
6232 case OP_VRDLST:
6233 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6234 break;
6235
6236 case OP_VRSDLST:
6237 /* Allow Q registers too. */
6238 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6239 REGLIST_NEON_D);
6240 if (val == FAIL)
6241 {
6242 inst.error = NULL;
6243 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6244 REGLIST_VFP_S);
6245 inst.operands[i].issingle = 1;
6246 }
6247 break;
6248
6249 case OP_NRDLST:
6250 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6251 REGLIST_NEON_D);
6252 break;
6253
6254 case OP_NSTRLST:
6255 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6256 &inst.operands[i].vectype);
6257 break;
6258
6259 /* Addressing modes */
6260 case OP_ADDR:
6261 po_misc_or_fail (parse_address (&str, i));
6262 break;
6263
6264 case OP_ADDRGLDR:
6265 po_misc_or_fail_no_backtrack (
6266 parse_address_group_reloc (&str, i, GROUP_LDR));
6267 break;
6268
6269 case OP_ADDRGLDRS:
6270 po_misc_or_fail_no_backtrack (
6271 parse_address_group_reloc (&str, i, GROUP_LDRS));
6272 break;
6273
6274 case OP_ADDRGLDC:
6275 po_misc_or_fail_no_backtrack (
6276 parse_address_group_reloc (&str, i, GROUP_LDC));
6277 break;
6278
6279 case OP_SH:
6280 po_misc_or_fail (parse_shifter_operand (&str, i));
6281 break;
6282
6283 case OP_SHG:
6284 po_misc_or_fail_no_backtrack (
6285 parse_shifter_operand_group_reloc (&str, i));
6286 break;
6287
6288 case OP_oSHll:
6289 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6290 break;
6291
6292 case OP_oSHar:
6293 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6294 break;
6295
6296 case OP_oSHllar:
6297 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6298 break;
6299
6300 default:
6301 as_fatal (_("unhandled operand code %d"), upat[i]);
6302 }
6303
6304 /* Various value-based sanity checks and shared operations. We
6305 do not signal immediate failures for the register constraints;
6306 this allows a syntax error to take precedence. */
6307 switch (upat[i])
6308 {
6309 case OP_oRRnpc:
6310 case OP_RRnpc:
6311 case OP_RRnpcb:
6312 case OP_RRw:
6313 case OP_oRRw:
6314 case OP_RRnpc_I0:
6315 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6316 inst.error = BAD_PC;
6317 break;
6318
6319 case OP_CPSF:
6320 case OP_ENDI:
6321 case OP_oROR:
6322 case OP_PSR:
6323 case OP_RVC_PSR:
6324 case OP_COND:
6325 case OP_oBARRIER:
6326 case OP_REGLST:
6327 case OP_VRSLST:
6328 case OP_VRDLST:
6329 case OP_VRSDLST:
6330 case OP_NRDLST:
6331 case OP_NSTRLST:
6332 if (val == FAIL)
6333 goto failure;
6334 inst.operands[i].imm = val;
6335 break;
6336
6337 default:
6338 break;
6339 }
6340
6341 /* If we get here, this operand was successfully parsed. */
6342 inst.operands[i].present = 1;
6343 continue;
6344
6345 bad_args:
6346 inst.error = BAD_ARGS;
6347
6348 failure:
6349 if (!backtrack_pos)
6350 {
6351 /* The parse routine should already have set inst.error, but set a
6352 default here just in case. */
6353 if (!inst.error)
6354 inst.error = _("syntax error");
6355 return FAIL;
6356 }
6357
6358 /* Do not backtrack over a trailing optional argument that
6359 absorbed some text. We will only fail again, with the
6360 'garbage following instruction' error message, which is
6361 probably less helpful than the current one. */
6362 if (backtrack_index == i && backtrack_pos != str
6363 && upat[i+1] == OP_stop)
6364 {
6365 if (!inst.error)
6366 inst.error = _("syntax error");
6367 return FAIL;
6368 }
6369
6370 /* Try again, skipping the optional argument at backtrack_pos. */
6371 str = backtrack_pos;
6372 inst.error = backtrack_error;
6373 inst.operands[backtrack_index].present = 0;
6374 i = backtrack_index;
6375 backtrack_pos = 0;
6376 }
6377
6378 /* Check that we have parsed all the arguments. */
6379 if (*str != '\0' && !inst.error)
6380 inst.error = _("garbage following instruction");
6381
6382 return inst.error ? FAIL : SUCCESS;
6383}
6384
6385#undef po_char_or_fail
6386#undef po_reg_or_fail
6387#undef po_reg_or_goto
6388#undef po_imm_or_fail
6389#undef po_scalar_or_fail
6390
6391/* Shorthand macro for instruction encoding functions issuing errors. */
6392#define constraint(expr, err) \
6393 do \
6394 { \
6395 if (expr) \
6396 { \
6397 inst.error = err; \
6398 return; \
6399 } \
6400 } \
6401 while (0)
6402
6403/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6404 instructions are unpredictable if these registers are used. This
6405 is the BadReg predicate in ARM's Thumb-2 documentation. */
6406#define reject_bad_reg(reg) \
6407 do \
6408 if (reg == REG_SP || reg == REG_PC) \
6409 { \
6410 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6411 return; \
6412 } \
6413 while (0)
6414
6415/* If REG is R13 (the stack pointer), warn that its use is
6416 deprecated. */
6417#define warn_deprecated_sp(reg) \
6418 do \
6419 if (warn_on_deprecated && reg == REG_SP) \
6420 as_warn (_("use of r13 is deprecated")); \
6421 while (0)
6422
6423/* Functions for operand encoding. ARM, then Thumb. */
6424
6425#define rotate_left(v, n) (v << n | v >> (32 - n))
6426
6427/* If VAL can be encoded in the immediate field of an ARM instruction,
6428 return the encoded form. Otherwise, return FAIL. */
6429
6430static unsigned int
6431encode_arm_immediate (unsigned int val)
6432{
6433 unsigned int a, i;
6434
6435 for (i = 0; i < 32; i += 2)
6436 if ((a = rotate_left (val, i)) <= 0xff)
6437 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6438
6439 return FAIL;
6440}
6441
6442/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6443 return the encoded form. Otherwise, return FAIL. */
6444static unsigned int
6445encode_thumb32_immediate (unsigned int val)
6446{
6447 unsigned int a, i;
6448
6449 if (val <= 0xff)
6450 return val;
6451
6452 for (i = 1; i <= 24; i++)
6453 {
6454 a = val >> i;
6455 if ((val & ~(0xff << i)) == 0)
6456 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6457 }
6458
6459 a = val & 0xff;
6460 if (val == ((a << 16) | a))
6461 return 0x100 | a;
6462 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6463 return 0x300 | a;
6464
6465 a = val & 0xff00;
6466 if (val == ((a << 16) | a))
6467 return 0x200 | (a >> 8);
6468
6469 return FAIL;
6470}
6471/* Encode a VFP SP or DP register number into inst.instruction. */
6472
6473static void
6474encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6475{
6476 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6477 && reg > 15)
6478 {
6479 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6480 {
6481 if (thumb_mode)
6482 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6483 fpu_vfp_ext_d32);
6484 else
6485 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6486 fpu_vfp_ext_d32);
6487 }
6488 else
6489 {
6490 first_error (_("D register out of range for selected VFP version"));
6491 return;
6492 }
6493 }
6494
6495 switch (pos)
6496 {
6497 case VFP_REG_Sd:
6498 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6499 break;
6500
6501 case VFP_REG_Sn:
6502 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6503 break;
6504
6505 case VFP_REG_Sm:
6506 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6507 break;
6508
6509 case VFP_REG_Dd:
6510 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6511 break;
6512
6513 case VFP_REG_Dn:
6514 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6515 break;
6516
6517 case VFP_REG_Dm:
6518 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6519 break;
6520
6521 default:
6522 abort ();
6523 }
6524}
6525
6526/* Encode a <shift> in an ARM-format instruction. The immediate,
6527 if any, is handled by md_apply_fix. */
6528static void
6529encode_arm_shift (int i)
6530{
6531 if (inst.operands[i].shift_kind == SHIFT_RRX)
6532 inst.instruction |= SHIFT_ROR << 5;
6533 else
6534 {
6535 inst.instruction |= inst.operands[i].shift_kind << 5;
6536 if (inst.operands[i].immisreg)
6537 {
6538 inst.instruction |= SHIFT_BY_REG;
6539 inst.instruction |= inst.operands[i].imm << 8;
6540 }
6541 else
6542 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6543 }
6544}
6545
6546static void
6547encode_arm_shifter_operand (int i)
6548{
6549 if (inst.operands[i].isreg)
6550 {
6551 inst.instruction |= inst.operands[i].reg;
6552 encode_arm_shift (i);
6553 }
6554 else
6555 inst.instruction |= INST_IMMEDIATE;
6556}
6557
6558/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6559static void
6560encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6561{
6562 gas_assert (inst.operands[i].isreg);
6563 inst.instruction |= inst.operands[i].reg << 16;
6564
6565 if (inst.operands[i].preind)
6566 {
6567 if (is_t)
6568 {
6569 inst.error = _("instruction does not accept preindexed addressing");
6570 return;
6571 }
6572 inst.instruction |= PRE_INDEX;
6573 if (inst.operands[i].writeback)
6574 inst.instruction |= WRITE_BACK;
6575
6576 }
6577 else if (inst.operands[i].postind)
6578 {
6579 gas_assert (inst.operands[i].writeback);
6580 if (is_t)
6581 inst.instruction |= WRITE_BACK;
6582 }
6583 else /* unindexed - only for coprocessor */
6584 {
6585 inst.error = _("instruction does not accept unindexed addressing");
6586 return;
6587 }
6588
6589 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6590 && (((inst.instruction & 0x000f0000) >> 16)
6591 == ((inst.instruction & 0x0000f000) >> 12)))
6592 as_warn ((inst.instruction & LOAD_BIT)
6593 ? _("destination register same as write-back base")
6594 : _("source register same as write-back base"));
6595}
6596
6597/* inst.operands[i] was set up by parse_address. Encode it into an
6598 ARM-format mode 2 load or store instruction. If is_t is true,
6599 reject forms that cannot be used with a T instruction (i.e. not
6600 post-indexed). */
6601static void
6602encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6603{
6604 encode_arm_addr_mode_common (i, is_t);
6605
6606 if (inst.operands[i].immisreg)
6607 {
6608 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6609 inst.instruction |= inst.operands[i].imm;
6610 if (!inst.operands[i].negative)
6611 inst.instruction |= INDEX_UP;
6612 if (inst.operands[i].shifted)
6613 {
6614 if (inst.operands[i].shift_kind == SHIFT_RRX)
6615 inst.instruction |= SHIFT_ROR << 5;
6616 else
6617 {
6618 inst.instruction |= inst.operands[i].shift_kind << 5;
6619 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6620 }
6621 }
6622 }
6623 else /* immediate offset in inst.reloc */
6624 {
6625 if (inst.reloc.type == BFD_RELOC_UNUSED)
6626 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6627 }
6628}
6629
6630/* inst.operands[i] was set up by parse_address. Encode it into an
6631 ARM-format mode 3 load or store instruction. Reject forms that
6632 cannot be used with such instructions. If is_t is true, reject
6633 forms that cannot be used with a T instruction (i.e. not
6634 post-indexed). */
6635static void
6636encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6637{
6638 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6639 {
6640 inst.error = _("instruction does not accept scaled register index");
6641 return;
6642 }
6643
6644 encode_arm_addr_mode_common (i, is_t);
6645
6646 if (inst.operands[i].immisreg)
6647 {
6648 inst.instruction |= inst.operands[i].imm;
6649 if (!inst.operands[i].negative)
6650 inst.instruction |= INDEX_UP;
6651 }
6652 else /* immediate offset in inst.reloc */
6653 {
6654 inst.instruction |= HWOFFSET_IMM;
6655 if (inst.reloc.type == BFD_RELOC_UNUSED)
6656 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6657 }
6658}
6659
6660/* inst.operands[i] was set up by parse_address. Encode it into an
6661 ARM-format instruction. Reject all forms which cannot be encoded
6662 into a coprocessor load/store instruction. If wb_ok is false,
6663 reject use of writeback; if unind_ok is false, reject use of
6664 unindexed addressing. If reloc_override is not 0, use it instead
6665 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6666 (in which case it is preserved). */
6667
6668static int
6669encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6670{
6671 inst.instruction |= inst.operands[i].reg << 16;
6672
6673 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
6674
6675 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6676 {
6677 gas_assert (!inst.operands[i].writeback);
6678 if (!unind_ok)
6679 {
6680 inst.error = _("instruction does not support unindexed addressing");
6681 return FAIL;
6682 }
6683 inst.instruction |= inst.operands[i].imm;
6684 inst.instruction |= INDEX_UP;
6685 return SUCCESS;
6686 }
6687
6688 if (inst.operands[i].preind)
6689 inst.instruction |= PRE_INDEX;
6690
6691 if (inst.operands[i].writeback)
6692 {
6693 if (inst.operands[i].reg == REG_PC)
6694 {
6695 inst.error = _("pc may not be used with write-back");
6696 return FAIL;
6697 }
6698 if (!wb_ok)
6699 {
6700 inst.error = _("instruction does not support writeback");
6701 return FAIL;
6702 }
6703 inst.instruction |= WRITE_BACK;
6704 }
6705
6706 if (reloc_override)
6707 inst.reloc.type = reloc_override;
6708 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6709 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6710 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6711 {
6712 if (thumb_mode)
6713 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6714 else
6715 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6716 }
6717
6718 return SUCCESS;
6719}
6720
6721/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6722 Determine whether it can be performed with a move instruction; if
6723 it can, convert inst.instruction to that move instruction and
6724 return TRUE; if it can't, convert inst.instruction to a literal-pool
6725 load and return FALSE. If this is not a valid thing to do in the
6726 current context, set inst.error and return TRUE.
6727
6728 inst.operands[i] describes the destination register. */
6729
6730static bfd_boolean
6731move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6732{
6733 unsigned long tbit;
6734
6735 if (thumb_p)
6736 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6737 else
6738 tbit = LOAD_BIT;
6739
6740 if ((inst.instruction & tbit) == 0)
6741 {
6742 inst.error = _("invalid pseudo operation");
6743 return TRUE;
6744 }
6745 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6746 {
6747 inst.error = _("constant expression expected");
6748 return TRUE;
6749 }
6750 if (inst.reloc.exp.X_op == O_constant)
6751 {
6752 if (thumb_p)
6753 {
6754 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6755 {
6756 /* This can be done with a mov(1) instruction. */
6757 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6758 inst.instruction |= inst.reloc.exp.X_add_number;
6759 return TRUE;
6760 }
6761 }
6762 else
6763 {
6764 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6765 if (value != FAIL)
6766 {
6767 /* This can be done with a mov instruction. */
6768 inst.instruction &= LITERAL_MASK;
6769 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6770 inst.instruction |= value & 0xfff;
6771 return TRUE;
6772 }
6773
6774 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6775 if (value != FAIL)
6776 {
6777 /* This can be done with a mvn instruction. */
6778 inst.instruction &= LITERAL_MASK;
6779 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6780 inst.instruction |= value & 0xfff;
6781 return TRUE;
6782 }
6783 }
6784 }
6785
6786 if (add_to_lit_pool () == FAIL)
6787 {
6788 inst.error = _("literal pool insertion failed");
6789 return TRUE;
6790 }
6791 inst.operands[1].reg = REG_PC;
6792 inst.operands[1].isreg = 1;
6793 inst.operands[1].preind = 1;
6794 inst.reloc.pc_rel = 1;
6795 inst.reloc.type = (thumb_p
6796 ? BFD_RELOC_ARM_THUMB_OFFSET
6797 : (mode_3
6798 ? BFD_RELOC_ARM_HWLITERAL
6799 : BFD_RELOC_ARM_LITERAL));
6800 return FALSE;
6801}
6802
6803/* Functions for instruction encoding, sorted by sub-architecture.
6804 First some generics; their names are taken from the conventional
6805 bit positions for register arguments in ARM format instructions. */
6806
6807static void
6808do_noargs (void)
6809{
6810}
6811
6812static void
6813do_rd (void)
6814{
6815 inst.instruction |= inst.operands[0].reg << 12;
6816}
6817
6818static void
6819do_rd_rm (void)
6820{
6821 inst.instruction |= inst.operands[0].reg << 12;
6822 inst.instruction |= inst.operands[1].reg;
6823}
6824
6825static void
6826do_rd_rn (void)
6827{
6828 inst.instruction |= inst.operands[0].reg << 12;
6829 inst.instruction |= inst.operands[1].reg << 16;
6830}
6831
6832static void
6833do_rn_rd (void)
6834{
6835 inst.instruction |= inst.operands[0].reg << 16;
6836 inst.instruction |= inst.operands[1].reg << 12;
6837}
6838
6839static void
6840do_rd_rm_rn (void)
6841{
6842 unsigned Rn = inst.operands[2].reg;
6843 /* Enforce restrictions on SWP instruction. */
6844 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6845 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6846 _("Rn must not overlap other operands"));
6847 inst.instruction |= inst.operands[0].reg << 12;
6848 inst.instruction |= inst.operands[1].reg;
6849 inst.instruction |= Rn << 16;
6850}
6851
6852static void
6853do_rd_rn_rm (void)
6854{
6855 inst.instruction |= inst.operands[0].reg << 12;
6856 inst.instruction |= inst.operands[1].reg << 16;
6857 inst.instruction |= inst.operands[2].reg;
6858}
6859
6860static void
6861do_rm_rd_rn (void)
6862{
6863 inst.instruction |= inst.operands[0].reg;
6864 inst.instruction |= inst.operands[1].reg << 12;
6865 inst.instruction |= inst.operands[2].reg << 16;
6866}
6867
6868static void
6869do_imm0 (void)
6870{
6871 inst.instruction |= inst.operands[0].imm;
6872}
6873
6874static void
6875do_rd_cpaddr (void)
6876{
6877 inst.instruction |= inst.operands[0].reg << 12;
6878 encode_arm_cp_address (1, TRUE, TRUE, 0);
6879}
6880
6881/* ARM instructions, in alphabetical order by function name (except
6882 that wrapper functions appear immediately after the function they
6883 wrap). */
6884
6885/* This is a pseudo-op of the form "adr rd, label" to be converted
6886 into a relative address of the form "add rd, pc, #label-.-8". */
6887
6888static void
6889do_adr (void)
6890{
6891 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6892
6893 /* Frag hacking will turn this into a sub instruction if the offset turns
6894 out to be negative. */
6895 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6896 inst.reloc.pc_rel = 1;
6897 inst.reloc.exp.X_add_number -= 8;
6898}
6899
6900/* This is a pseudo-op of the form "adrl rd, label" to be converted
6901 into a relative address of the form:
6902 add rd, pc, #low(label-.-8)"
6903 add rd, rd, #high(label-.-8)" */
6904
6905static void
6906do_adrl (void)
6907{
6908 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6909
6910 /* Frag hacking will turn this into a sub instruction if the offset turns
6911 out to be negative. */
6912 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6913 inst.reloc.pc_rel = 1;
6914 inst.size = INSN_SIZE * 2;
6915 inst.reloc.exp.X_add_number -= 8;
6916}
6917
6918static void
6919do_arit (void)
6920{
6921 if (!inst.operands[1].present)
6922 inst.operands[1].reg = inst.operands[0].reg;
6923 inst.instruction |= inst.operands[0].reg << 12;
6924 inst.instruction |= inst.operands[1].reg << 16;
6925 encode_arm_shifter_operand (2);
6926}
6927
6928static void
6929do_barrier (void)
6930{
6931 if (inst.operands[0].present)
6932 {
6933 constraint ((inst.instruction & 0xf0) != 0x40
6934 && inst.operands[0].imm != 0xf,
6935 _("bad barrier type"));
6936 inst.instruction |= inst.operands[0].imm;
6937 }
6938 else
6939 inst.instruction |= 0xf;
6940}
6941
6942static void
6943do_bfc (void)
6944{
6945 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6946 constraint (msb > 32, _("bit-field extends past end of register"));
6947 /* The instruction encoding stores the LSB and MSB,
6948 not the LSB and width. */
6949 inst.instruction |= inst.operands[0].reg << 12;
6950 inst.instruction |= inst.operands[1].imm << 7;
6951 inst.instruction |= (msb - 1) << 16;
6952}
6953
6954static void
6955do_bfi (void)
6956{
6957 unsigned int msb;
6958
6959 /* #0 in second position is alternative syntax for bfc, which is
6960 the same instruction but with REG_PC in the Rm field. */
6961 if (!inst.operands[1].isreg)
6962 inst.operands[1].reg = REG_PC;
6963
6964 msb = inst.operands[2].imm + inst.operands[3].imm;
6965 constraint (msb > 32, _("bit-field extends past end of register"));
6966 /* The instruction encoding stores the LSB and MSB,
6967 not the LSB and width. */
6968 inst.instruction |= inst.operands[0].reg << 12;
6969 inst.instruction |= inst.operands[1].reg;
6970 inst.instruction |= inst.operands[2].imm << 7;
6971 inst.instruction |= (msb - 1) << 16;
6972}
6973
6974static void
6975do_bfx (void)
6976{
6977 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6978 _("bit-field extends past end of register"));
6979 inst.instruction |= inst.operands[0].reg << 12;
6980 inst.instruction |= inst.operands[1].reg;
6981 inst.instruction |= inst.operands[2].imm << 7;
6982 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6983}
6984
6985/* ARM V5 breakpoint instruction (argument parse)
6986 BKPT <16 bit unsigned immediate>
6987 Instruction is not conditional.
6988 The bit pattern given in insns[] has the COND_ALWAYS condition,
6989 and it is an error if the caller tried to override that. */
6990
6991static void
6992do_bkpt (void)
6993{
6994 /* Top 12 of 16 bits to bits 19:8. */
6995 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
6996
6997 /* Bottom 4 of 16 bits to bits 3:0. */
6998 inst.instruction |= inst.operands[0].imm & 0xf;
6999}
7000
7001static void
7002encode_branch (int default_reloc)
7003{
7004 if (inst.operands[0].hasreloc)
7005 {
7006 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7007 _("the only suffix valid here is '(plt)'"));
7008 inst.reloc.type = BFD_RELOC_ARM_PLT32;
7009 }
7010 else
7011 {
7012 inst.reloc.type = default_reloc;
7013 }
7014 inst.reloc.pc_rel = 1;
7015}
7016
7017static void
7018do_branch (void)
7019{
7020#ifdef OBJ_ELF
7021 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7022 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7023 else
7024#endif
7025 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7026}
7027
7028static void
7029do_bl (void)
7030{
7031#ifdef OBJ_ELF
7032 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7033 {
7034 if (inst.cond == COND_ALWAYS)
7035 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7036 else
7037 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7038 }
7039 else
7040#endif
7041 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7042}
7043
7044/* ARM V5 branch-link-exchange instruction (argument parse)
7045 BLX <target_addr> ie BLX(1)
7046 BLX{<condition>} <Rm> ie BLX(2)
7047 Unfortunately, there are two different opcodes for this mnemonic.
7048 So, the insns[].value is not used, and the code here zaps values
7049 into inst.instruction.
7050 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7051
7052static void
7053do_blx (void)
7054{
7055 if (inst.operands[0].isreg)
7056 {
7057 /* Arg is a register; the opcode provided by insns[] is correct.
7058 It is not illegal to do "blx pc", just useless. */
7059 if (inst.operands[0].reg == REG_PC)
7060 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7061
7062 inst.instruction |= inst.operands[0].reg;
7063 }
7064 else
7065 {
7066 /* Arg is an address; this instruction cannot be executed
7067 conditionally, and the opcode must be adjusted.
7068 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7069 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7070 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7071 inst.instruction = 0xfa000000;
7072 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7073 }
7074}
7075
7076static void
7077do_bx (void)
7078{
7079 bfd_boolean want_reloc;
7080
7081 if (inst.operands[0].reg == REG_PC)
7082 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7083
7084 inst.instruction |= inst.operands[0].reg;
7085 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7086 it is for ARMv4t or earlier. */
7087 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7088 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7089 want_reloc = TRUE;
7090
7091#ifdef OBJ_ELF
7092 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7093#endif
7094 want_reloc = FALSE;
7095
7096 if (want_reloc)
7097 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7098}
7099
7100
7101/* ARM v5TEJ. Jump to Jazelle code. */
7102
7103static void
7104do_bxj (void)
7105{
7106 if (inst.operands[0].reg == REG_PC)
7107 as_tsktsk (_("use of r15 in bxj is not really useful"));
7108
7109 inst.instruction |= inst.operands[0].reg;
7110}
7111
7112/* Co-processor data operation:
7113 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7114 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7115static void
7116do_cdp (void)
7117{
7118 inst.instruction |= inst.operands[0].reg << 8;
7119 inst.instruction |= inst.operands[1].imm << 20;
7120 inst.instruction |= inst.operands[2].reg << 12;
7121 inst.instruction |= inst.operands[3].reg << 16;
7122 inst.instruction |= inst.operands[4].reg;
7123 inst.instruction |= inst.operands[5].imm << 5;
7124}
7125
7126static void
7127do_cmp (void)
7128{
7129 inst.instruction |= inst.operands[0].reg << 16;
7130 encode_arm_shifter_operand (1);
7131}
7132
7133/* Transfer between coprocessor and ARM registers.
7134 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7135 MRC2
7136 MCR{cond}
7137 MCR2
7138
7139 No special properties. */
7140
7141static void
7142do_co_reg (void)
7143{
7144 unsigned Rd;
7145
7146 Rd = inst.operands[2].reg;
7147 if (thumb_mode)
7148 {
7149 if (inst.instruction == 0xee000010
7150 || inst.instruction == 0xfe000010)
7151 /* MCR, MCR2 */
7152 reject_bad_reg (Rd);
7153 else
7154 /* MRC, MRC2 */
7155 constraint (Rd == REG_SP, BAD_SP);
7156 }
7157 else
7158 {
7159 /* MCR */
7160 if (inst.instruction == 0xe000010)
7161 constraint (Rd == REG_PC, BAD_PC);
7162 }
7163
7164
7165 inst.instruction |= inst.operands[0].reg << 8;
7166 inst.instruction |= inst.operands[1].imm << 21;
7167 inst.instruction |= Rd << 12;
7168 inst.instruction |= inst.operands[3].reg << 16;
7169 inst.instruction |= inst.operands[4].reg;
7170 inst.instruction |= inst.operands[5].imm << 5;
7171}
7172
7173/* Transfer between coprocessor register and pair of ARM registers.
7174 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7175 MCRR2
7176 MRRC{cond}
7177 MRRC2
7178
7179 Two XScale instructions are special cases of these:
7180
7181 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7182 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7183
7184 Result unpredictable if Rd or Rn is R15. */
7185
7186static void
7187do_co_reg2c (void)
7188{
7189 unsigned Rd, Rn;
7190
7191 Rd = inst.operands[2].reg;
7192 Rn = inst.operands[3].reg;
7193
7194 if (thumb_mode)
7195 {
7196 reject_bad_reg (Rd);
7197 reject_bad_reg (Rn);
7198 }
7199 else
7200 {
7201 constraint (Rd == REG_PC, BAD_PC);
7202 constraint (Rn == REG_PC, BAD_PC);
7203 }
7204
7205 inst.instruction |= inst.operands[0].reg << 8;
7206 inst.instruction |= inst.operands[1].imm << 4;
7207 inst.instruction |= Rd << 12;
7208 inst.instruction |= Rn << 16;
7209 inst.instruction |= inst.operands[4].reg;
7210}
7211
7212static void
7213do_cpsi (void)
7214{
7215 inst.instruction |= inst.operands[0].imm << 6;
7216 if (inst.operands[1].present)
7217 {
7218 inst.instruction |= CPSI_MMOD;
7219 inst.instruction |= inst.operands[1].imm;
7220 }
7221}
7222
7223static void
7224do_dbg (void)
7225{
7226 inst.instruction |= inst.operands[0].imm;
7227}
7228
7229static void
7230do_it (void)
7231{
7232 /* There is no IT instruction in ARM mode. We
7233 process it to do the validation as if in
7234 thumb mode, just in case the code gets
7235 assembled for thumb using the unified syntax. */
7236
7237 inst.size = 0;
7238 if (unified_syntax)
7239 {
7240 set_it_insn_type (IT_INSN);
7241 now_it.mask = (inst.instruction & 0xf) | 0x10;
7242 now_it.cc = inst.operands[0].imm;
7243 }
7244}
7245
7246static void
7247do_ldmstm (void)
7248{
7249 int base_reg = inst.operands[0].reg;
7250 int range = inst.operands[1].imm;
7251
7252 inst.instruction |= base_reg << 16;
7253 inst.instruction |= range;
7254
7255 if (inst.operands[1].writeback)
7256 inst.instruction |= LDM_TYPE_2_OR_3;
7257
7258 if (inst.operands[0].writeback)
7259 {
7260 inst.instruction |= WRITE_BACK;
7261 /* Check for unpredictable uses of writeback. */
7262 if (inst.instruction & LOAD_BIT)
7263 {
7264 /* Not allowed in LDM type 2. */
7265 if ((inst.instruction & LDM_TYPE_2_OR_3)
7266 && ((range & (1 << REG_PC)) == 0))
7267 as_warn (_("writeback of base register is UNPREDICTABLE"));
7268 /* Only allowed if base reg not in list for other types. */
7269 else if (range & (1 << base_reg))
7270 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7271 }
7272 else /* STM. */
7273 {
7274 /* Not allowed for type 2. */
7275 if (inst.instruction & LDM_TYPE_2_OR_3)
7276 as_warn (_("writeback of base register is UNPREDICTABLE"));
7277 /* Only allowed if base reg not in list, or first in list. */
7278 else if ((range & (1 << base_reg))
7279 && (range & ((1 << base_reg) - 1)))
7280 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7281 }
7282 }
7283}
7284
7285/* ARMv5TE load-consecutive (argument parse)
7286 Mode is like LDRH.
7287
7288 LDRccD R, mode
7289 STRccD R, mode. */
7290
7291static void
7292do_ldrd (void)
7293{
7294 constraint (inst.operands[0].reg % 2 != 0,
7295 _("first destination register must be even"));
7296 constraint (inst.operands[1].present
7297 && inst.operands[1].reg != inst.operands[0].reg + 1,
7298 _("can only load two consecutive registers"));
7299 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7300 constraint (!inst.operands[2].isreg, _("'[' expected"));
7301
7302 if (!inst.operands[1].present)
7303 inst.operands[1].reg = inst.operands[0].reg + 1;
7304
7305 if (inst.instruction & LOAD_BIT)
7306 {
7307 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7308 register and the first register written; we have to diagnose
7309 overlap between the base and the second register written here. */
7310
7311 if (inst.operands[2].reg == inst.operands[1].reg
7312 && (inst.operands[2].writeback || inst.operands[2].postind))
7313 as_warn (_("base register written back, and overlaps "
7314 "second destination register"));
7315
7316 /* For an index-register load, the index register must not overlap the
7317 destination (even if not write-back). */
7318 else if (inst.operands[2].immisreg
7319 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7320 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7321 as_warn (_("index register overlaps destination register"));
7322 }
7323
7324 inst.instruction |= inst.operands[0].reg << 12;
7325 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7326}
7327
7328static void
7329do_ldrex (void)
7330{
7331 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7332 || inst.operands[1].postind || inst.operands[1].writeback
7333 || inst.operands[1].immisreg || inst.operands[1].shifted
7334 || inst.operands[1].negative
7335 /* This can arise if the programmer has written
7336 strex rN, rM, foo
7337 or if they have mistakenly used a register name as the last
7338 operand, eg:
7339 strex rN, rM, rX
7340 It is very difficult to distinguish between these two cases
7341 because "rX" might actually be a label. ie the register
7342 name has been occluded by a symbol of the same name. So we
7343 just generate a general 'bad addressing mode' type error
7344 message and leave it up to the programmer to discover the
7345 true cause and fix their mistake. */
7346 || (inst.operands[1].reg == REG_PC),
7347 BAD_ADDR_MODE);
7348
7349 constraint (inst.reloc.exp.X_op != O_constant
7350 || inst.reloc.exp.X_add_number != 0,
7351 _("offset must be zero in ARM encoding"));
7352
7353 inst.instruction |= inst.operands[0].reg << 12;
7354 inst.instruction |= inst.operands[1].reg << 16;
7355 inst.reloc.type = BFD_RELOC_UNUSED;
7356}
7357
7358static void
7359do_ldrexd (void)
7360{
7361 constraint (inst.operands[0].reg % 2 != 0,
7362 _("even register required"));
7363 constraint (inst.operands[1].present
7364 && inst.operands[1].reg != inst.operands[0].reg + 1,
7365 _("can only load two consecutive registers"));
7366 /* If op 1 were present and equal to PC, this function wouldn't
7367 have been called in the first place. */
7368 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7369
7370 inst.instruction |= inst.operands[0].reg << 12;
7371 inst.instruction |= inst.operands[2].reg << 16;
7372}
7373
7374static void
7375do_ldst (void)
7376{
7377 inst.instruction |= inst.operands[0].reg << 12;
7378 if (!inst.operands[1].isreg)
7379 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7380 return;
7381 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7382}
7383
7384static void
7385do_ldstt (void)
7386{
7387 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7388 reject [Rn,...]. */
7389 if (inst.operands[1].preind)
7390 {
7391 constraint (inst.reloc.exp.X_op != O_constant
7392 || inst.reloc.exp.X_add_number != 0,
7393 _("this instruction requires a post-indexed address"));
7394
7395 inst.operands[1].preind = 0;
7396 inst.operands[1].postind = 1;
7397 inst.operands[1].writeback = 1;
7398 }
7399 inst.instruction |= inst.operands[0].reg << 12;
7400 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7401}
7402
7403/* Halfword and signed-byte load/store operations. */
7404
7405static void
7406do_ldstv4 (void)
7407{
7408 inst.instruction |= inst.operands[0].reg << 12;
7409 if (!inst.operands[1].isreg)
7410 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7411 return;
7412 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7413}
7414
7415static void
7416do_ldsttv4 (void)
7417{
7418 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7419 reject [Rn,...]. */
7420 if (inst.operands[1].preind)
7421 {
7422 constraint (inst.reloc.exp.X_op != O_constant
7423 || inst.reloc.exp.X_add_number != 0,
7424 _("this instruction requires a post-indexed address"));
7425
7426 inst.operands[1].preind = 0;
7427 inst.operands[1].postind = 1;
7428 inst.operands[1].writeback = 1;
7429 }
7430 inst.instruction |= inst.operands[0].reg << 12;
7431 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7432}
7433
7434/* Co-processor register load/store.
7435 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7436static void
7437do_lstc (void)
7438{
7439 inst.instruction |= inst.operands[0].reg << 8;
7440 inst.instruction |= inst.operands[1].reg << 12;
7441 encode_arm_cp_address (2, TRUE, TRUE, 0);
7442}
7443
7444static void
7445do_mlas (void)
7446{
7447 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7448 if (inst.operands[0].reg == inst.operands[1].reg
7449 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7450 && !(inst.instruction & 0x00400000))
7451 as_tsktsk (_("Rd and Rm should be different in mla"));
7452
7453 inst.instruction |= inst.operands[0].reg << 16;
7454 inst.instruction |= inst.operands[1].reg;
7455 inst.instruction |= inst.operands[2].reg << 8;
7456 inst.instruction |= inst.operands[3].reg << 12;
7457}
7458
7459static void
7460do_mov (void)
7461{
7462 inst.instruction |= inst.operands[0].reg << 12;
7463 encode_arm_shifter_operand (1);
7464}
7465
7466/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7467static void
7468do_mov16 (void)
7469{
7470 bfd_vma imm;
7471 bfd_boolean top;
7472
7473 top = (inst.instruction & 0x00400000) != 0;
7474 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7475 _(":lower16: not allowed this instruction"));
7476 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7477 _(":upper16: not allowed instruction"));
7478 inst.instruction |= inst.operands[0].reg << 12;
7479 if (inst.reloc.type == BFD_RELOC_UNUSED)
7480 {
7481 imm = inst.reloc.exp.X_add_number;
7482 /* The value is in two pieces: 0:11, 16:19. */
7483 inst.instruction |= (imm & 0x00000fff);
7484 inst.instruction |= (imm & 0x0000f000) << 4;
7485 }
7486}
7487
7488static void do_vfp_nsyn_opcode (const char *);
7489
7490static int
7491do_vfp_nsyn_mrs (void)
7492{
7493 if (inst.operands[0].isvec)
7494 {
7495 if (inst.operands[1].reg != 1)
7496 first_error (_("operand 1 must be FPSCR"));
7497 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7498 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7499 do_vfp_nsyn_opcode ("fmstat");
7500 }
7501 else if (inst.operands[1].isvec)
7502 do_vfp_nsyn_opcode ("fmrx");
7503 else
7504 return FAIL;
7505
7506 return SUCCESS;
7507}
7508
7509static int
7510do_vfp_nsyn_msr (void)
7511{
7512 if (inst.operands[0].isvec)
7513 do_vfp_nsyn_opcode ("fmxr");
7514 else
7515 return FAIL;
7516
7517 return SUCCESS;
7518}
7519
7520static void
7521do_mrs (void)
7522{
7523 if (do_vfp_nsyn_mrs () == SUCCESS)
7524 return;
7525
7526 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7527 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7528 != (PSR_c|PSR_f),
7529 _("'CPSR' or 'SPSR' expected"));
7530 inst.instruction |= inst.operands[0].reg << 12;
7531 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7532}
7533
7534/* Two possible forms:
7535 "{C|S}PSR_<field>, Rm",
7536 "{C|S}PSR_f, #expression". */
7537
7538static void
7539do_msr (void)
7540{
7541 if (do_vfp_nsyn_msr () == SUCCESS)
7542 return;
7543
7544 inst.instruction |= inst.operands[0].imm;
7545 if (inst.operands[1].isreg)
7546 inst.instruction |= inst.operands[1].reg;
7547 else
7548 {
7549 inst.instruction |= INST_IMMEDIATE;
7550 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7551 inst.reloc.pc_rel = 0;
7552 }
7553}
7554
7555static void
7556do_mul (void)
7557{
7558 if (!inst.operands[2].present)
7559 inst.operands[2].reg = inst.operands[0].reg;
7560 inst.instruction |= inst.operands[0].reg << 16;
7561 inst.instruction |= inst.operands[1].reg;
7562 inst.instruction |= inst.operands[2].reg << 8;
7563
7564 if (inst.operands[0].reg == inst.operands[1].reg
7565 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7566 as_tsktsk (_("Rd and Rm should be different in mul"));
7567}
7568
7569/* Long Multiply Parser
7570 UMULL RdLo, RdHi, Rm, Rs
7571 SMULL RdLo, RdHi, Rm, Rs
7572 UMLAL RdLo, RdHi, Rm, Rs
7573 SMLAL RdLo, RdHi, Rm, Rs. */
7574
7575static void
7576do_mull (void)
7577{
7578 inst.instruction |= inst.operands[0].reg << 12;
7579 inst.instruction |= inst.operands[1].reg << 16;
7580 inst.instruction |= inst.operands[2].reg;
7581 inst.instruction |= inst.operands[3].reg << 8;
7582
7583 /* rdhi and rdlo must be different. */
7584 if (inst.operands[0].reg == inst.operands[1].reg)
7585 as_tsktsk (_("rdhi and rdlo must be different"));
7586
7587 /* rdhi, rdlo and rm must all be different before armv6. */
7588 if ((inst.operands[0].reg == inst.operands[2].reg
7589 || inst.operands[1].reg == inst.operands[2].reg)
7590 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7591 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7592}
7593
7594static void
7595do_nop (void)
7596{
7597 if (inst.operands[0].present
7598 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7599 {
7600 /* Architectural NOP hints are CPSR sets with no bits selected. */
7601 inst.instruction &= 0xf0000000;
7602 inst.instruction |= 0x0320f000;
7603 if (inst.operands[0].present)
7604 inst.instruction |= inst.operands[0].imm;
7605 }
7606}
7607
7608/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7609 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7610 Condition defaults to COND_ALWAYS.
7611 Error if Rd, Rn or Rm are R15. */
7612
7613static void
7614do_pkhbt (void)
7615{
7616 inst.instruction |= inst.operands[0].reg << 12;
7617 inst.instruction |= inst.operands[1].reg << 16;
7618 inst.instruction |= inst.operands[2].reg;
7619 if (inst.operands[3].present)
7620 encode_arm_shift (3);
7621}
7622
7623/* ARM V6 PKHTB (Argument Parse). */
7624
7625static void
7626do_pkhtb (void)
7627{
7628 if (!inst.operands[3].present)
7629 {
7630 /* If the shift specifier is omitted, turn the instruction
7631 into pkhbt rd, rm, rn. */
7632 inst.instruction &= 0xfff00010;
7633 inst.instruction |= inst.operands[0].reg << 12;
7634 inst.instruction |= inst.operands[1].reg;
7635 inst.instruction |= inst.operands[2].reg << 16;
7636 }
7637 else
7638 {
7639 inst.instruction |= inst.operands[0].reg << 12;
7640 inst.instruction |= inst.operands[1].reg << 16;
7641 inst.instruction |= inst.operands[2].reg;
7642 encode_arm_shift (3);
7643 }
7644}
7645
7646/* ARMv5TE: Preload-Cache
7647
7648 PLD <addr_mode>
7649
7650 Syntactically, like LDR with B=1, W=0, L=1. */
7651
7652static void
7653do_pld (void)
7654{
7655 constraint (!inst.operands[0].isreg,
7656 _("'[' expected after PLD mnemonic"));
7657 constraint (inst.operands[0].postind,
7658 _("post-indexed expression used in preload instruction"));
7659 constraint (inst.operands[0].writeback,
7660 _("writeback used in preload instruction"));
7661 constraint (!inst.operands[0].preind,
7662 _("unindexed addressing used in preload instruction"));
7663 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7664}
7665
7666/* ARMv7: PLI <addr_mode> */
7667static void
7668do_pli (void)
7669{
7670 constraint (!inst.operands[0].isreg,
7671 _("'[' expected after PLI mnemonic"));
7672 constraint (inst.operands[0].postind,
7673 _("post-indexed expression used in preload instruction"));
7674 constraint (inst.operands[0].writeback,
7675 _("writeback used in preload instruction"));
7676 constraint (!inst.operands[0].preind,
7677 _("unindexed addressing used in preload instruction"));
7678 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7679 inst.instruction &= ~PRE_INDEX;
7680}
7681
7682static void
7683do_push_pop (void)
7684{
7685 inst.operands[1] = inst.operands[0];
7686 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7687 inst.operands[0].isreg = 1;
7688 inst.operands[0].writeback = 1;
7689 inst.operands[0].reg = REG_SP;
7690 do_ldmstm ();
7691}
7692
7693/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7694 word at the specified address and the following word
7695 respectively.
7696 Unconditionally executed.
7697 Error if Rn is R15. */
7698
7699static void
7700do_rfe (void)
7701{
7702 inst.instruction |= inst.operands[0].reg << 16;
7703 if (inst.operands[0].writeback)
7704 inst.instruction |= WRITE_BACK;
7705}
7706
7707/* ARM V6 ssat (argument parse). */
7708
7709static void
7710do_ssat (void)
7711{
7712 inst.instruction |= inst.operands[0].reg << 12;
7713 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7714 inst.instruction |= inst.operands[2].reg;
7715
7716 if (inst.operands[3].present)
7717 encode_arm_shift (3);
7718}
7719
7720/* ARM V6 usat (argument parse). */
7721
7722static void
7723do_usat (void)
7724{
7725 inst.instruction |= inst.operands[0].reg << 12;
7726 inst.instruction |= inst.operands[1].imm << 16;
7727 inst.instruction |= inst.operands[2].reg;
7728
7729 if (inst.operands[3].present)
7730 encode_arm_shift (3);
7731}
7732
7733/* ARM V6 ssat16 (argument parse). */
7734
7735static void
7736do_ssat16 (void)
7737{
7738 inst.instruction |= inst.operands[0].reg << 12;
7739 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7740 inst.instruction |= inst.operands[2].reg;
7741}
7742
7743static void
7744do_usat16 (void)
7745{
7746 inst.instruction |= inst.operands[0].reg << 12;
7747 inst.instruction |= inst.operands[1].imm << 16;
7748 inst.instruction |= inst.operands[2].reg;
7749}
7750
7751/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7752 preserving the other bits.
7753
7754 setend <endian_specifier>, where <endian_specifier> is either
7755 BE or LE. */
7756
7757static void
7758do_setend (void)
7759{
7760 if (inst.operands[0].imm)
7761 inst.instruction |= 0x200;
7762}
7763
7764static void
7765do_shift (void)
7766{
7767 unsigned int Rm = (inst.operands[1].present
7768 ? inst.operands[1].reg
7769 : inst.operands[0].reg);
7770
7771 inst.instruction |= inst.operands[0].reg << 12;
7772 inst.instruction |= Rm;
7773 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7774 {
7775 inst.instruction |= inst.operands[2].reg << 8;
7776 inst.instruction |= SHIFT_BY_REG;
7777 }
7778 else
7779 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7780}
7781
7782static void
7783do_smc (void)
7784{
7785 inst.reloc.type = BFD_RELOC_ARM_SMC;
7786 inst.reloc.pc_rel = 0;
7787}
7788
7789static void
7790do_swi (void)
7791{
7792 inst.reloc.type = BFD_RELOC_ARM_SWI;
7793 inst.reloc.pc_rel = 0;
7794}
7795
7796/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7797 SMLAxy{cond} Rd,Rm,Rs,Rn
7798 SMLAWy{cond} Rd,Rm,Rs,Rn
7799 Error if any register is R15. */
7800
7801static void
7802do_smla (void)
7803{
7804 inst.instruction |= inst.operands[0].reg << 16;
7805 inst.instruction |= inst.operands[1].reg;
7806 inst.instruction |= inst.operands[2].reg << 8;
7807 inst.instruction |= inst.operands[3].reg << 12;
7808}
7809
7810/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7811 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7812 Error if any register is R15.
7813 Warning if Rdlo == Rdhi. */
7814
7815static void
7816do_smlal (void)
7817{
7818 inst.instruction |= inst.operands[0].reg << 12;
7819 inst.instruction |= inst.operands[1].reg << 16;
7820 inst.instruction |= inst.operands[2].reg;
7821 inst.instruction |= inst.operands[3].reg << 8;
7822
7823 if (inst.operands[0].reg == inst.operands[1].reg)
7824 as_tsktsk (_("rdhi and rdlo must be different"));
7825}
7826
7827/* ARM V5E (El Segundo) signed-multiply (argument parse)
7828 SMULxy{cond} Rd,Rm,Rs
7829 Error if any register is R15. */
7830
7831static void
7832do_smul (void)
7833{
7834 inst.instruction |= inst.operands[0].reg << 16;
7835 inst.instruction |= inst.operands[1].reg;
7836 inst.instruction |= inst.operands[2].reg << 8;
7837}
7838
7839/* ARM V6 srs (argument parse). The variable fields in the encoding are
7840 the same for both ARM and Thumb-2. */
7841
7842static void
7843do_srs (void)
7844{
7845 int reg;
7846
7847 if (inst.operands[0].present)
7848 {
7849 reg = inst.operands[0].reg;
7850 constraint (reg != REG_SP, _("SRS base register must be r13"));
7851 }
7852 else
7853 reg = REG_SP;
7854
7855 inst.instruction |= reg << 16;
7856 inst.instruction |= inst.operands[1].imm;
7857 if (inst.operands[0].writeback || inst.operands[1].writeback)
7858 inst.instruction |= WRITE_BACK;
7859}
7860
7861/* ARM V6 strex (argument parse). */
7862
7863static void
7864do_strex (void)
7865{
7866 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7867 || inst.operands[2].postind || inst.operands[2].writeback
7868 || inst.operands[2].immisreg || inst.operands[2].shifted
7869 || inst.operands[2].negative
7870 /* See comment in do_ldrex(). */
7871 || (inst.operands[2].reg == REG_PC),
7872 BAD_ADDR_MODE);
7873
7874 constraint (inst.operands[0].reg == inst.operands[1].reg
7875 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7876
7877 constraint (inst.reloc.exp.X_op != O_constant
7878 || inst.reloc.exp.X_add_number != 0,
7879 _("offset must be zero in ARM encoding"));
7880
7881 inst.instruction |= inst.operands[0].reg << 12;
7882 inst.instruction |= inst.operands[1].reg;
7883 inst.instruction |= inst.operands[2].reg << 16;
7884 inst.reloc.type = BFD_RELOC_UNUSED;
7885}
7886
7887static void
7888do_strexd (void)
7889{
7890 constraint (inst.operands[1].reg % 2 != 0,
7891 _("even register required"));
7892 constraint (inst.operands[2].present
7893 && inst.operands[2].reg != inst.operands[1].reg + 1,
7894 _("can only store two consecutive registers"));
7895 /* If op 2 were present and equal to PC, this function wouldn't
7896 have been called in the first place. */
7897 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7898
7899 constraint (inst.operands[0].reg == inst.operands[1].reg
7900 || inst.operands[0].reg == inst.operands[1].reg + 1
7901 || inst.operands[0].reg == inst.operands[3].reg,
7902 BAD_OVERLAP);
7903
7904 inst.instruction |= inst.operands[0].reg << 12;
7905 inst.instruction |= inst.operands[1].reg;
7906 inst.instruction |= inst.operands[3].reg << 16;
7907}
7908
7909/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7910 extends it to 32-bits, and adds the result to a value in another
7911 register. You can specify a rotation by 0, 8, 16, or 24 bits
7912 before extracting the 16-bit value.
7913 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7914 Condition defaults to COND_ALWAYS.
7915 Error if any register uses R15. */
7916
7917static void
7918do_sxtah (void)
7919{
7920 inst.instruction |= inst.operands[0].reg << 12;
7921 inst.instruction |= inst.operands[1].reg << 16;
7922 inst.instruction |= inst.operands[2].reg;
7923 inst.instruction |= inst.operands[3].imm << 10;
7924}
7925
7926/* ARM V6 SXTH.
7927
7928 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7929 Condition defaults to COND_ALWAYS.
7930 Error if any register uses R15. */
7931
7932static void
7933do_sxth (void)
7934{
7935 inst.instruction |= inst.operands[0].reg << 12;
7936 inst.instruction |= inst.operands[1].reg;
7937 inst.instruction |= inst.operands[2].imm << 10;
7938}
7939\f
7940/* VFP instructions. In a logical order: SP variant first, monad
7941 before dyad, arithmetic then move then load/store. */
7942
7943static void
7944do_vfp_sp_monadic (void)
7945{
7946 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7947 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7948}
7949
7950static void
7951do_vfp_sp_dyadic (void)
7952{
7953 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7954 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7955 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7956}
7957
7958static void
7959do_vfp_sp_compare_z (void)
7960{
7961 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7962}
7963
7964static void
7965do_vfp_dp_sp_cvt (void)
7966{
7967 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7968 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7969}
7970
7971static void
7972do_vfp_sp_dp_cvt (void)
7973{
7974 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7975 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7976}
7977
7978static void
7979do_vfp_reg_from_sp (void)
7980{
7981 inst.instruction |= inst.operands[0].reg << 12;
7982 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7983}
7984
7985static void
7986do_vfp_reg2_from_sp2 (void)
7987{
7988 constraint (inst.operands[2].imm != 2,
7989 _("only two consecutive VFP SP registers allowed here"));
7990 inst.instruction |= inst.operands[0].reg << 12;
7991 inst.instruction |= inst.operands[1].reg << 16;
7992 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7993}
7994
7995static void
7996do_vfp_sp_from_reg (void)
7997{
7998 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
7999 inst.instruction |= inst.operands[1].reg << 12;
8000}
8001
8002static void
8003do_vfp_sp2_from_reg2 (void)
8004{
8005 constraint (inst.operands[0].imm != 2,
8006 _("only two consecutive VFP SP registers allowed here"));
8007 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8008 inst.instruction |= inst.operands[1].reg << 12;
8009 inst.instruction |= inst.operands[2].reg << 16;
8010}
8011
8012static void
8013do_vfp_sp_ldst (void)
8014{
8015 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8016 encode_arm_cp_address (1, FALSE, TRUE, 0);
8017}
8018
8019static void
8020do_vfp_dp_ldst (void)
8021{
8022 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8023 encode_arm_cp_address (1, FALSE, TRUE, 0);
8024}
8025
8026
8027static void
8028vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8029{
8030 if (inst.operands[0].writeback)
8031 inst.instruction |= WRITE_BACK;
8032 else
8033 constraint (ldstm_type != VFP_LDSTMIA,
8034 _("this addressing mode requires base-register writeback"));
8035 inst.instruction |= inst.operands[0].reg << 16;
8036 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8037 inst.instruction |= inst.operands[1].imm;
8038}
8039
8040static void
8041vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8042{
8043 int count;
8044
8045 if (inst.operands[0].writeback)
8046 inst.instruction |= WRITE_BACK;
8047 else
8048 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8049 _("this addressing mode requires base-register writeback"));
8050
8051 inst.instruction |= inst.operands[0].reg << 16;
8052 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8053
8054 count = inst.operands[1].imm << 1;
8055 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8056 count += 1;
8057
8058 inst.instruction |= count;
8059}
8060
8061static void
8062do_vfp_sp_ldstmia (void)
8063{
8064 vfp_sp_ldstm (VFP_LDSTMIA);
8065}
8066
8067static void
8068do_vfp_sp_ldstmdb (void)
8069{
8070 vfp_sp_ldstm (VFP_LDSTMDB);
8071}
8072
8073static void
8074do_vfp_dp_ldstmia (void)
8075{
8076 vfp_dp_ldstm (VFP_LDSTMIA);
8077}
8078
8079static void
8080do_vfp_dp_ldstmdb (void)
8081{
8082 vfp_dp_ldstm (VFP_LDSTMDB);
8083}
8084
8085static void
8086do_vfp_xp_ldstmia (void)
8087{
8088 vfp_dp_ldstm (VFP_LDSTMIAX);
8089}
8090
8091static void
8092do_vfp_xp_ldstmdb (void)
8093{
8094 vfp_dp_ldstm (VFP_LDSTMDBX);
8095}
8096
8097static void
8098do_vfp_dp_rd_rm (void)
8099{
8100 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8101 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8102}
8103
8104static void
8105do_vfp_dp_rn_rd (void)
8106{
8107 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8108 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8109}
8110
8111static void
8112do_vfp_dp_rd_rn (void)
8113{
8114 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8115 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8116}
8117
8118static void
8119do_vfp_dp_rd_rn_rm (void)
8120{
8121 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8122 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8123 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8124}
8125
8126static void
8127do_vfp_dp_rd (void)
8128{
8129 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8130}
8131
8132static void
8133do_vfp_dp_rm_rd_rn (void)
8134{
8135 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8136 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8137 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8138}
8139
8140/* VFPv3 instructions. */
8141static void
8142do_vfp_sp_const (void)
8143{
8144 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8145 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8146 inst.instruction |= (inst.operands[1].imm & 0x0f);
8147}
8148
8149static void
8150do_vfp_dp_const (void)
8151{
8152 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8153 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8154 inst.instruction |= (inst.operands[1].imm & 0x0f);
8155}
8156
8157static void
8158vfp_conv (int srcsize)
8159{
8160 unsigned immbits = srcsize - inst.operands[1].imm;
8161 inst.instruction |= (immbits & 1) << 5;
8162 inst.instruction |= (immbits >> 1);
8163}
8164
8165static void
8166do_vfp_sp_conv_16 (void)
8167{
8168 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8169 vfp_conv (16);
8170}
8171
8172static void
8173do_vfp_dp_conv_16 (void)
8174{
8175 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8176 vfp_conv (16);
8177}
8178
8179static void
8180do_vfp_sp_conv_32 (void)
8181{
8182 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8183 vfp_conv (32);
8184}
8185
8186static void
8187do_vfp_dp_conv_32 (void)
8188{
8189 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8190 vfp_conv (32);
8191}
8192\f
8193/* FPA instructions. Also in a logical order. */
8194
8195static void
8196do_fpa_cmp (void)
8197{
8198 inst.instruction |= inst.operands[0].reg << 16;
8199 inst.instruction |= inst.operands[1].reg;
8200}
8201
8202static void
8203do_fpa_ldmstm (void)
8204{
8205 inst.instruction |= inst.operands[0].reg << 12;
8206 switch (inst.operands[1].imm)
8207 {
8208 case 1: inst.instruction |= CP_T_X; break;
8209 case 2: inst.instruction |= CP_T_Y; break;
8210 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8211 case 4: break;
8212 default: abort ();
8213 }
8214
8215 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8216 {
8217 /* The instruction specified "ea" or "fd", so we can only accept
8218 [Rn]{!}. The instruction does not really support stacking or
8219 unstacking, so we have to emulate these by setting appropriate
8220 bits and offsets. */
8221 constraint (inst.reloc.exp.X_op != O_constant
8222 || inst.reloc.exp.X_add_number != 0,
8223 _("this instruction does not support indexing"));
8224
8225 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8226 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8227
8228 if (!(inst.instruction & INDEX_UP))
8229 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8230
8231 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8232 {
8233 inst.operands[2].preind = 0;
8234 inst.operands[2].postind = 1;
8235 }
8236 }
8237
8238 encode_arm_cp_address (2, TRUE, TRUE, 0);
8239}
8240\f
8241/* iWMMXt instructions: strictly in alphabetical order. */
8242
8243static void
8244do_iwmmxt_tandorc (void)
8245{
8246 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8247}
8248
8249static void
8250do_iwmmxt_textrc (void)
8251{
8252 inst.instruction |= inst.operands[0].reg << 12;
8253 inst.instruction |= inst.operands[1].imm;
8254}
8255
8256static void
8257do_iwmmxt_textrm (void)
8258{
8259 inst.instruction |= inst.operands[0].reg << 12;
8260 inst.instruction |= inst.operands[1].reg << 16;
8261 inst.instruction |= inst.operands[2].imm;
8262}
8263
8264static void
8265do_iwmmxt_tinsr (void)
8266{
8267 inst.instruction |= inst.operands[0].reg << 16;
8268 inst.instruction |= inst.operands[1].reg << 12;
8269 inst.instruction |= inst.operands[2].imm;
8270}
8271
8272static void
8273do_iwmmxt_tmia (void)
8274{
8275 inst.instruction |= inst.operands[0].reg << 5;
8276 inst.instruction |= inst.operands[1].reg;
8277 inst.instruction |= inst.operands[2].reg << 12;
8278}
8279
8280static void
8281do_iwmmxt_waligni (void)
8282{
8283 inst.instruction |= inst.operands[0].reg << 12;
8284 inst.instruction |= inst.operands[1].reg << 16;
8285 inst.instruction |= inst.operands[2].reg;
8286 inst.instruction |= inst.operands[3].imm << 20;
8287}
8288
8289static void
8290do_iwmmxt_wmerge (void)
8291{
8292 inst.instruction |= inst.operands[0].reg << 12;
8293 inst.instruction |= inst.operands[1].reg << 16;
8294 inst.instruction |= inst.operands[2].reg;
8295 inst.instruction |= inst.operands[3].imm << 21;
8296}
8297
8298static void
8299do_iwmmxt_wmov (void)
8300{
8301 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8302 inst.instruction |= inst.operands[0].reg << 12;
8303 inst.instruction |= inst.operands[1].reg << 16;
8304 inst.instruction |= inst.operands[1].reg;
8305}
8306
8307static void
8308do_iwmmxt_wldstbh (void)
8309{
8310 int reloc;
8311 inst.instruction |= inst.operands[0].reg << 12;
8312 if (thumb_mode)
8313 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8314 else
8315 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8316 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8317}
8318
8319static void
8320do_iwmmxt_wldstw (void)
8321{
8322 /* RIWR_RIWC clears .isreg for a control register. */
8323 if (!inst.operands[0].isreg)
8324 {
8325 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8326 inst.instruction |= 0xf0000000;
8327 }
8328
8329 inst.instruction |= inst.operands[0].reg << 12;
8330 encode_arm_cp_address (1, TRUE, TRUE, 0);
8331}
8332
8333static void
8334do_iwmmxt_wldstd (void)
8335{
8336 inst.instruction |= inst.operands[0].reg << 12;
8337 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8338 && inst.operands[1].immisreg)
8339 {
8340 inst.instruction &= ~0x1a000ff;
8341 inst.instruction |= (0xf << 28);
8342 if (inst.operands[1].preind)
8343 inst.instruction |= PRE_INDEX;
8344 if (!inst.operands[1].negative)
8345 inst.instruction |= INDEX_UP;
8346 if (inst.operands[1].writeback)
8347 inst.instruction |= WRITE_BACK;
8348 inst.instruction |= inst.operands[1].reg << 16;
8349 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8350 inst.instruction |= inst.operands[1].imm;
8351 }
8352 else
8353 encode_arm_cp_address (1, TRUE, FALSE, 0);
8354}
8355
8356static void
8357do_iwmmxt_wshufh (void)
8358{
8359 inst.instruction |= inst.operands[0].reg << 12;
8360 inst.instruction |= inst.operands[1].reg << 16;
8361 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8362 inst.instruction |= (inst.operands[2].imm & 0x0f);
8363}
8364
8365static void
8366do_iwmmxt_wzero (void)
8367{
8368 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8369 inst.instruction |= inst.operands[0].reg;
8370 inst.instruction |= inst.operands[0].reg << 12;
8371 inst.instruction |= inst.operands[0].reg << 16;
8372}
8373
8374static void
8375do_iwmmxt_wrwrwr_or_imm5 (void)
8376{
8377 if (inst.operands[2].isreg)
8378 do_rd_rn_rm ();
8379 else {
8380 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8381 _("immediate operand requires iWMMXt2"));
8382 do_rd_rn ();
8383 if (inst.operands[2].imm == 0)
8384 {
8385 switch ((inst.instruction >> 20) & 0xf)
8386 {
8387 case 4:
8388 case 5:
8389 case 6:
8390 case 7:
8391 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8392 inst.operands[2].imm = 16;
8393 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8394 break;
8395 case 8:
8396 case 9:
8397 case 10:
8398 case 11:
8399 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8400 inst.operands[2].imm = 32;
8401 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8402 break;
8403 case 12:
8404 case 13:
8405 case 14:
8406 case 15:
8407 {
8408 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8409 unsigned long wrn;
8410 wrn = (inst.instruction >> 16) & 0xf;
8411 inst.instruction &= 0xff0fff0f;
8412 inst.instruction |= wrn;
8413 /* Bail out here; the instruction is now assembled. */
8414 return;
8415 }
8416 }
8417 }
8418 /* Map 32 -> 0, etc. */
8419 inst.operands[2].imm &= 0x1f;
8420 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8421 }
8422}
8423\f
8424/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8425 operations first, then control, shift, and load/store. */
8426
8427/* Insns like "foo X,Y,Z". */
8428
8429static void
8430do_mav_triple (void)
8431{
8432 inst.instruction |= inst.operands[0].reg << 16;
8433 inst.instruction |= inst.operands[1].reg;
8434 inst.instruction |= inst.operands[2].reg << 12;
8435}
8436
8437/* Insns like "foo W,X,Y,Z".
8438 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8439
8440static void
8441do_mav_quad (void)
8442{
8443 inst.instruction |= inst.operands[0].reg << 5;
8444 inst.instruction |= inst.operands[1].reg << 12;
8445 inst.instruction |= inst.operands[2].reg << 16;
8446 inst.instruction |= inst.operands[3].reg;
8447}
8448
8449/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8450static void
8451do_mav_dspsc (void)
8452{
8453 inst.instruction |= inst.operands[1].reg << 12;
8454}
8455
8456/* Maverick shift immediate instructions.
8457 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8458 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8459
8460static void
8461do_mav_shift (void)
8462{
8463 int imm = inst.operands[2].imm;
8464
8465 inst.instruction |= inst.operands[0].reg << 12;
8466 inst.instruction |= inst.operands[1].reg << 16;
8467
8468 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8469 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8470 Bit 4 should be 0. */
8471 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8472
8473 inst.instruction |= imm;
8474}
8475\f
8476/* XScale instructions. Also sorted arithmetic before move. */
8477
8478/* Xscale multiply-accumulate (argument parse)
8479 MIAcc acc0,Rm,Rs
8480 MIAPHcc acc0,Rm,Rs
8481 MIAxycc acc0,Rm,Rs. */
8482
8483static void
8484do_xsc_mia (void)
8485{
8486 inst.instruction |= inst.operands[1].reg;
8487 inst.instruction |= inst.operands[2].reg << 12;
8488}
8489
8490/* Xscale move-accumulator-register (argument parse)
8491
8492 MARcc acc0,RdLo,RdHi. */
8493
8494static void
8495do_xsc_mar (void)
8496{
8497 inst.instruction |= inst.operands[1].reg << 12;
8498 inst.instruction |= inst.operands[2].reg << 16;
8499}
8500
8501/* Xscale move-register-accumulator (argument parse)
8502
8503 MRAcc RdLo,RdHi,acc0. */
8504
8505static void
8506do_xsc_mra (void)
8507{
8508 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8509 inst.instruction |= inst.operands[0].reg << 12;
8510 inst.instruction |= inst.operands[1].reg << 16;
8511}
8512\f
8513/* Encoding functions relevant only to Thumb. */
8514
8515/* inst.operands[i] is a shifted-register operand; encode
8516 it into inst.instruction in the format used by Thumb32. */
8517
8518static void
8519encode_thumb32_shifted_operand (int i)
8520{
8521 unsigned int value = inst.reloc.exp.X_add_number;
8522 unsigned int shift = inst.operands[i].shift_kind;
8523
8524 constraint (inst.operands[i].immisreg,
8525 _("shift by register not allowed in thumb mode"));
8526 inst.instruction |= inst.operands[i].reg;
8527 if (shift == SHIFT_RRX)
8528 inst.instruction |= SHIFT_ROR << 4;
8529 else
8530 {
8531 constraint (inst.reloc.exp.X_op != O_constant,
8532 _("expression too complex"));
8533
8534 constraint (value > 32
8535 || (value == 32 && (shift == SHIFT_LSL
8536 || shift == SHIFT_ROR)),
8537 _("shift expression is too large"));
8538
8539 if (value == 0)
8540 shift = SHIFT_LSL;
8541 else if (value == 32)
8542 value = 0;
8543
8544 inst.instruction |= shift << 4;
8545 inst.instruction |= (value & 0x1c) << 10;
8546 inst.instruction |= (value & 0x03) << 6;
8547 }
8548}
8549
8550
8551/* inst.operands[i] was set up by parse_address. Encode it into a
8552 Thumb32 format load or store instruction. Reject forms that cannot
8553 be used with such instructions. If is_t is true, reject forms that
8554 cannot be used with a T instruction; if is_d is true, reject forms
8555 that cannot be used with a D instruction. */
8556
8557static void
8558encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8559{
8560 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8561
8562 constraint (!inst.operands[i].isreg,
8563 _("Instruction does not support =N addresses"));
8564
8565 inst.instruction |= inst.operands[i].reg << 16;
8566 if (inst.operands[i].immisreg)
8567 {
8568 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8569 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8570 constraint (inst.operands[i].negative,
8571 _("Thumb does not support negative register indexing"));
8572 constraint (inst.operands[i].postind,
8573 _("Thumb does not support register post-indexing"));
8574 constraint (inst.operands[i].writeback,
8575 _("Thumb does not support register indexing with writeback"));
8576 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8577 _("Thumb supports only LSL in shifted register indexing"));
8578
8579 inst.instruction |= inst.operands[i].imm;
8580 if (inst.operands[i].shifted)
8581 {
8582 constraint (inst.reloc.exp.X_op != O_constant,
8583 _("expression too complex"));
8584 constraint (inst.reloc.exp.X_add_number < 0
8585 || inst.reloc.exp.X_add_number > 3,
8586 _("shift out of range"));
8587 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8588 }
8589 inst.reloc.type = BFD_RELOC_UNUSED;
8590 }
8591 else if (inst.operands[i].preind)
8592 {
8593 constraint (is_pc && inst.operands[i].writeback,
8594 _("cannot use writeback with PC-relative addressing"));
8595 constraint (is_t && inst.operands[i].writeback,
8596 _("cannot use writeback with this instruction"));
8597
8598 if (is_d)
8599 {
8600 inst.instruction |= 0x01000000;
8601 if (inst.operands[i].writeback)
8602 inst.instruction |= 0x00200000;
8603 }
8604 else
8605 {
8606 inst.instruction |= 0x00000c00;
8607 if (inst.operands[i].writeback)
8608 inst.instruction |= 0x00000100;
8609 }
8610 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8611 }
8612 else if (inst.operands[i].postind)
8613 {
8614 gas_assert (inst.operands[i].writeback);
8615 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8616 constraint (is_t, _("cannot use post-indexing with this instruction"));
8617
8618 if (is_d)
8619 inst.instruction |= 0x00200000;
8620 else
8621 inst.instruction |= 0x00000900;
8622 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8623 }
8624 else /* unindexed - only for coprocessor */
8625 inst.error = _("instruction does not accept unindexed addressing");
8626}
8627
8628/* Table of Thumb instructions which exist in both 16- and 32-bit
8629 encodings (the latter only in post-V6T2 cores). The index is the
8630 value used in the insns table below. When there is more than one
8631 possible 16-bit encoding for the instruction, this table always
8632 holds variant (1).
8633 Also contains several pseudo-instructions used during relaxation. */
8634#define T16_32_TAB \
8635 X(adc, 4140, eb400000), \
8636 X(adcs, 4140, eb500000), \
8637 X(add, 1c00, eb000000), \
8638 X(adds, 1c00, eb100000), \
8639 X(addi, 0000, f1000000), \
8640 X(addis, 0000, f1100000), \
8641 X(add_pc,000f, f20f0000), \
8642 X(add_sp,000d, f10d0000), \
8643 X(adr, 000f, f20f0000), \
8644 X(and, 4000, ea000000), \
8645 X(ands, 4000, ea100000), \
8646 X(asr, 1000, fa40f000), \
8647 X(asrs, 1000, fa50f000), \
8648 X(b, e000, f000b000), \
8649 X(bcond, d000, f0008000), \
8650 X(bic, 4380, ea200000), \
8651 X(bics, 4380, ea300000), \
8652 X(cmn, 42c0, eb100f00), \
8653 X(cmp, 2800, ebb00f00), \
8654 X(cpsie, b660, f3af8400), \
8655 X(cpsid, b670, f3af8600), \
8656 X(cpy, 4600, ea4f0000), \
8657 X(dec_sp,80dd, f1ad0d00), \
8658 X(eor, 4040, ea800000), \
8659 X(eors, 4040, ea900000), \
8660 X(inc_sp,00dd, f10d0d00), \
8661 X(ldmia, c800, e8900000), \
8662 X(ldr, 6800, f8500000), \
8663 X(ldrb, 7800, f8100000), \
8664 X(ldrh, 8800, f8300000), \
8665 X(ldrsb, 5600, f9100000), \
8666 X(ldrsh, 5e00, f9300000), \
8667 X(ldr_pc,4800, f85f0000), \
8668 X(ldr_pc2,4800, f85f0000), \
8669 X(ldr_sp,9800, f85d0000), \
8670 X(lsl, 0000, fa00f000), \
8671 X(lsls, 0000, fa10f000), \
8672 X(lsr, 0800, fa20f000), \
8673 X(lsrs, 0800, fa30f000), \
8674 X(mov, 2000, ea4f0000), \
8675 X(movs, 2000, ea5f0000), \
8676 X(mul, 4340, fb00f000), \
8677 X(muls, 4340, ffffffff), /* no 32b muls */ \
8678 X(mvn, 43c0, ea6f0000), \
8679 X(mvns, 43c0, ea7f0000), \
8680 X(neg, 4240, f1c00000), /* rsb #0 */ \
8681 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8682 X(orr, 4300, ea400000), \
8683 X(orrs, 4300, ea500000), \
8684 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8685 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8686 X(rev, ba00, fa90f080), \
8687 X(rev16, ba40, fa90f090), \
8688 X(revsh, bac0, fa90f0b0), \
8689 X(ror, 41c0, fa60f000), \
8690 X(rors, 41c0, fa70f000), \
8691 X(sbc, 4180, eb600000), \
8692 X(sbcs, 4180, eb700000), \
8693 X(stmia, c000, e8800000), \
8694 X(str, 6000, f8400000), \
8695 X(strb, 7000, f8000000), \
8696 X(strh, 8000, f8200000), \
8697 X(str_sp,9000, f84d0000), \
8698 X(sub, 1e00, eba00000), \
8699 X(subs, 1e00, ebb00000), \
8700 X(subi, 8000, f1a00000), \
8701 X(subis, 8000, f1b00000), \
8702 X(sxtb, b240, fa4ff080), \
8703 X(sxth, b200, fa0ff080), \
8704 X(tst, 4200, ea100f00), \
8705 X(uxtb, b2c0, fa5ff080), \
8706 X(uxth, b280, fa1ff080), \
8707 X(nop, bf00, f3af8000), \
8708 X(yield, bf10, f3af8001), \
8709 X(wfe, bf20, f3af8002), \
8710 X(wfi, bf30, f3af8003), \
8711 X(sev, bf40, f3af8004),
8712
8713/* To catch errors in encoding functions, the codes are all offset by
8714 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8715 as 16-bit instructions. */
8716#define X(a,b,c) T_MNEM_##a
8717enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8718#undef X
8719
8720#define X(a,b,c) 0x##b
8721static const unsigned short thumb_op16[] = { T16_32_TAB };
8722#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8723#undef X
8724
8725#define X(a,b,c) 0x##c
8726static const unsigned int thumb_op32[] = { T16_32_TAB };
8727#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8728#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8729#undef X
8730#undef T16_32_TAB
8731
8732/* Thumb instruction encoders, in alphabetical order. */
8733
8734/* ADDW or SUBW. */
8735
8736static void
8737do_t_add_sub_w (void)
8738{
8739 int Rd, Rn;
8740
8741 Rd = inst.operands[0].reg;
8742 Rn = inst.operands[1].reg;
8743
8744 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this is the
8745 SP-{plus,minute}-immediate form of the instruction. */
8746 reject_bad_reg (Rd);
8747
8748 inst.instruction |= (Rn << 16) | (Rd << 8);
8749 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8750}
8751
8752/* Parse an add or subtract instruction. We get here with inst.instruction
8753 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8754
8755static void
8756do_t_add_sub (void)
8757{
8758 int Rd, Rs, Rn;
8759
8760 Rd = inst.operands[0].reg;
8761 Rs = (inst.operands[1].present
8762 ? inst.operands[1].reg /* Rd, Rs, foo */
8763 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8764
8765 if (Rd == REG_PC)
8766 set_it_insn_type_last ();
8767
8768 if (unified_syntax)
8769 {
8770 bfd_boolean flags;
8771 bfd_boolean narrow;
8772 int opcode;
8773
8774 flags = (inst.instruction == T_MNEM_adds
8775 || inst.instruction == T_MNEM_subs);
8776 if (flags)
8777 narrow = !in_it_block ();
8778 else
8779 narrow = in_it_block ();
8780 if (!inst.operands[2].isreg)
8781 {
8782 int add;
8783
8784 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8785
8786 add = (inst.instruction == T_MNEM_add
8787 || inst.instruction == T_MNEM_adds);
8788 opcode = 0;
8789 if (inst.size_req != 4)
8790 {
8791 /* Attempt to use a narrow opcode, with relaxation if
8792 appropriate. */
8793 if (Rd == REG_SP && Rs == REG_SP && !flags)
8794 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8795 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8796 opcode = T_MNEM_add_sp;
8797 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8798 opcode = T_MNEM_add_pc;
8799 else if (Rd <= 7 && Rs <= 7 && narrow)
8800 {
8801 if (flags)
8802 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8803 else
8804 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8805 }
8806 if (opcode)
8807 {
8808 inst.instruction = THUMB_OP16(opcode);
8809 inst.instruction |= (Rd << 4) | Rs;
8810 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8811 if (inst.size_req != 2)
8812 inst.relax = opcode;
8813 }
8814 else
8815 constraint (inst.size_req == 2, BAD_HIREG);
8816 }
8817 if (inst.size_req == 4
8818 || (inst.size_req != 2 && !opcode))
8819 {
8820 if (Rd == REG_PC)
8821 {
8822 constraint (add, BAD_PC);
8823 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8824 _("only SUBS PC, LR, #const allowed"));
8825 constraint (inst.reloc.exp.X_op != O_constant,
8826 _("expression too complex"));
8827 constraint (inst.reloc.exp.X_add_number < 0
8828 || inst.reloc.exp.X_add_number > 0xff,
8829 _("immediate value out of range"));
8830 inst.instruction = T2_SUBS_PC_LR
8831 | inst.reloc.exp.X_add_number;
8832 inst.reloc.type = BFD_RELOC_UNUSED;
8833 return;
8834 }
8835 else if (Rs == REG_PC)
8836 {
8837 /* Always use addw/subw. */
8838 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8839 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8840 }
8841 else
8842 {
8843 inst.instruction = THUMB_OP32 (inst.instruction);
8844 inst.instruction = (inst.instruction & 0xe1ffffff)
8845 | 0x10000000;
8846 if (flags)
8847 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8848 else
8849 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8850 }
8851 inst.instruction |= Rd << 8;
8852 inst.instruction |= Rs << 16;
8853 }
8854 }
8855 else
8856 {
8857 Rn = inst.operands[2].reg;
8858 /* See if we can do this with a 16-bit instruction. */
8859 if (!inst.operands[2].shifted && inst.size_req != 4)
8860 {
8861 if (Rd > 7 || Rs > 7 || Rn > 7)
8862 narrow = FALSE;
8863
8864 if (narrow)
8865 {
8866 inst.instruction = ((inst.instruction == T_MNEM_adds
8867 || inst.instruction == T_MNEM_add)
8868 ? T_OPCODE_ADD_R3
8869 : T_OPCODE_SUB_R3);
8870 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8871 return;
8872 }
8873
8874 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
8875 {
8876 /* Thumb-1 cores (except v6-M) require at least one high
8877 register in a narrow non flag setting add. */
8878 if (Rd > 7 || Rn > 7
8879 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
8880 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
8881 {
8882 if (Rd == Rn)
8883 {
8884 Rn = Rs;
8885 Rs = Rd;
8886 }
8887 inst.instruction = T_OPCODE_ADD_HI;
8888 inst.instruction |= (Rd & 8) << 4;
8889 inst.instruction |= (Rd & 7);
8890 inst.instruction |= Rn << 3;
8891 return;
8892 }
8893 }
8894 }
8895
8896 constraint (Rd == REG_PC, BAD_PC);
8897 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8898 constraint (Rs == REG_PC, BAD_PC);
8899 reject_bad_reg (Rn);
8900
8901 /* If we get here, it can't be done in 16 bits. */
8902 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8903 _("shift must be constant"));
8904 inst.instruction = THUMB_OP32 (inst.instruction);
8905 inst.instruction |= Rd << 8;
8906 inst.instruction |= Rs << 16;
8907 encode_thumb32_shifted_operand (2);
8908 }
8909 }
8910 else
8911 {
8912 constraint (inst.instruction == T_MNEM_adds
8913 || inst.instruction == T_MNEM_subs,
8914 BAD_THUMB32);
8915
8916 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
8917 {
8918 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8919 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8920 BAD_HIREG);
8921
8922 inst.instruction = (inst.instruction == T_MNEM_add
8923 ? 0x0000 : 0x8000);
8924 inst.instruction |= (Rd << 4) | Rs;
8925 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8926 return;
8927 }
8928
8929 Rn = inst.operands[2].reg;
8930 constraint (inst.operands[2].shifted, _("unshifted register required"));
8931
8932 /* We now have Rd, Rs, and Rn set to registers. */
8933 if (Rd > 7 || Rs > 7 || Rn > 7)
8934 {
8935 /* Can't do this for SUB. */
8936 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8937 inst.instruction = T_OPCODE_ADD_HI;
8938 inst.instruction |= (Rd & 8) << 4;
8939 inst.instruction |= (Rd & 7);
8940 if (Rs == Rd)
8941 inst.instruction |= Rn << 3;
8942 else if (Rn == Rd)
8943 inst.instruction |= Rs << 3;
8944 else
8945 constraint (1, _("dest must overlap one source register"));
8946 }
8947 else
8948 {
8949 inst.instruction = (inst.instruction == T_MNEM_add
8950 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8951 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8952 }
8953 }
8954}
8955
8956static void
8957do_t_adr (void)
8958{
8959 unsigned Rd;
8960
8961 Rd = inst.operands[0].reg;
8962 reject_bad_reg (Rd);
8963
8964 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
8965 {
8966 /* Defer to section relaxation. */
8967 inst.relax = inst.instruction;
8968 inst.instruction = THUMB_OP16 (inst.instruction);
8969 inst.instruction |= Rd << 4;
8970 }
8971 else if (unified_syntax && inst.size_req != 2)
8972 {
8973 /* Generate a 32-bit opcode. */
8974 inst.instruction = THUMB_OP32 (inst.instruction);
8975 inst.instruction |= Rd << 8;
8976 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8977 inst.reloc.pc_rel = 1;
8978 }
8979 else
8980 {
8981 /* Generate a 16-bit opcode. */
8982 inst.instruction = THUMB_OP16 (inst.instruction);
8983 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8984 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8985 inst.reloc.pc_rel = 1;
8986
8987 inst.instruction |= Rd << 4;
8988 }
8989}
8990
8991/* Arithmetic instructions for which there is just one 16-bit
8992 instruction encoding, and it allows only two low registers.
8993 For maximal compatibility with ARM syntax, we allow three register
8994 operands even when Thumb-32 instructions are not available, as long
8995 as the first two are identical. For instance, both "sbc r0,r1" and
8996 "sbc r0,r0,r1" are allowed. */
8997static void
8998do_t_arit3 (void)
8999{
9000 int Rd, Rs, Rn;
9001
9002 Rd = inst.operands[0].reg;
9003 Rs = (inst.operands[1].present
9004 ? inst.operands[1].reg /* Rd, Rs, foo */
9005 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9006 Rn = inst.operands[2].reg;
9007
9008 reject_bad_reg (Rd);
9009 reject_bad_reg (Rs);
9010 if (inst.operands[2].isreg)
9011 reject_bad_reg (Rn);
9012
9013 if (unified_syntax)
9014 {
9015 if (!inst.operands[2].isreg)
9016 {
9017 /* For an immediate, we always generate a 32-bit opcode;
9018 section relaxation will shrink it later if possible. */
9019 inst.instruction = THUMB_OP32 (inst.instruction);
9020 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9021 inst.instruction |= Rd << 8;
9022 inst.instruction |= Rs << 16;
9023 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9024 }
9025 else
9026 {
9027 bfd_boolean narrow;
9028
9029 /* See if we can do this with a 16-bit instruction. */
9030 if (THUMB_SETS_FLAGS (inst.instruction))
9031 narrow = !in_it_block ();
9032 else
9033 narrow = in_it_block ();
9034
9035 if (Rd > 7 || Rn > 7 || Rs > 7)
9036 narrow = FALSE;
9037 if (inst.operands[2].shifted)
9038 narrow = FALSE;
9039 if (inst.size_req == 4)
9040 narrow = FALSE;
9041
9042 if (narrow
9043 && Rd == Rs)
9044 {
9045 inst.instruction = THUMB_OP16 (inst.instruction);
9046 inst.instruction |= Rd;
9047 inst.instruction |= Rn << 3;
9048 return;
9049 }
9050
9051 /* If we get here, it can't be done in 16 bits. */
9052 constraint (inst.operands[2].shifted
9053 && inst.operands[2].immisreg,
9054 _("shift must be constant"));
9055 inst.instruction = THUMB_OP32 (inst.instruction);
9056 inst.instruction |= Rd << 8;
9057 inst.instruction |= Rs << 16;
9058 encode_thumb32_shifted_operand (2);
9059 }
9060 }
9061 else
9062 {
9063 /* On its face this is a lie - the instruction does set the
9064 flags. However, the only supported mnemonic in this mode
9065 says it doesn't. */
9066 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9067
9068 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9069 _("unshifted register required"));
9070 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9071 constraint (Rd != Rs,
9072 _("dest and source1 must be the same register"));
9073
9074 inst.instruction = THUMB_OP16 (inst.instruction);
9075 inst.instruction |= Rd;
9076 inst.instruction |= Rn << 3;
9077 }
9078}
9079
9080/* Similarly, but for instructions where the arithmetic operation is
9081 commutative, so we can allow either of them to be different from
9082 the destination operand in a 16-bit instruction. For instance, all
9083 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9084 accepted. */
9085static void
9086do_t_arit3c (void)
9087{
9088 int Rd, Rs, Rn;
9089
9090 Rd = inst.operands[0].reg;
9091 Rs = (inst.operands[1].present
9092 ? inst.operands[1].reg /* Rd, Rs, foo */
9093 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9094 Rn = inst.operands[2].reg;
9095
9096 reject_bad_reg (Rd);
9097 reject_bad_reg (Rs);
9098 if (inst.operands[2].isreg)
9099 reject_bad_reg (Rn);
9100
9101 if (unified_syntax)
9102 {
9103 if (!inst.operands[2].isreg)
9104 {
9105 /* For an immediate, we always generate a 32-bit opcode;
9106 section relaxation will shrink it later if possible. */
9107 inst.instruction = THUMB_OP32 (inst.instruction);
9108 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9109 inst.instruction |= Rd << 8;
9110 inst.instruction |= Rs << 16;
9111 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9112 }
9113 else
9114 {
9115 bfd_boolean narrow;
9116
9117 /* See if we can do this with a 16-bit instruction. */
9118 if (THUMB_SETS_FLAGS (inst.instruction))
9119 narrow = !in_it_block ();
9120 else
9121 narrow = in_it_block ();
9122
9123 if (Rd > 7 || Rn > 7 || Rs > 7)
9124 narrow = FALSE;
9125 if (inst.operands[2].shifted)
9126 narrow = FALSE;
9127 if (inst.size_req == 4)
9128 narrow = FALSE;
9129
9130 if (narrow)
9131 {
9132 if (Rd == Rs)
9133 {
9134 inst.instruction = THUMB_OP16 (inst.instruction);
9135 inst.instruction |= Rd;
9136 inst.instruction |= Rn << 3;
9137 return;
9138 }
9139 if (Rd == Rn)
9140 {
9141 inst.instruction = THUMB_OP16 (inst.instruction);
9142 inst.instruction |= Rd;
9143 inst.instruction |= Rs << 3;
9144 return;
9145 }
9146 }
9147
9148 /* If we get here, it can't be done in 16 bits. */
9149 constraint (inst.operands[2].shifted
9150 && inst.operands[2].immisreg,
9151 _("shift must be constant"));
9152 inst.instruction = THUMB_OP32 (inst.instruction);
9153 inst.instruction |= Rd << 8;
9154 inst.instruction |= Rs << 16;
9155 encode_thumb32_shifted_operand (2);
9156 }
9157 }
9158 else
9159 {
9160 /* On its face this is a lie - the instruction does set the
9161 flags. However, the only supported mnemonic in this mode
9162 says it doesn't. */
9163 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9164
9165 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9166 _("unshifted register required"));
9167 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9168
9169 inst.instruction = THUMB_OP16 (inst.instruction);
9170 inst.instruction |= Rd;
9171
9172 if (Rd == Rs)
9173 inst.instruction |= Rn << 3;
9174 else if (Rd == Rn)
9175 inst.instruction |= Rs << 3;
9176 else
9177 constraint (1, _("dest must overlap one source register"));
9178 }
9179}
9180
9181static void
9182do_t_barrier (void)
9183{
9184 if (inst.operands[0].present)
9185 {
9186 constraint ((inst.instruction & 0xf0) != 0x40
9187 && inst.operands[0].imm != 0xf,
9188 _("bad barrier type"));
9189 inst.instruction |= inst.operands[0].imm;
9190 }
9191 else
9192 inst.instruction |= 0xf;
9193}
9194
9195static void
9196do_t_bfc (void)
9197{
9198 unsigned Rd;
9199 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9200 constraint (msb > 32, _("bit-field extends past end of register"));
9201 /* The instruction encoding stores the LSB and MSB,
9202 not the LSB and width. */
9203 Rd = inst.operands[0].reg;
9204 reject_bad_reg (Rd);
9205 inst.instruction |= Rd << 8;
9206 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9207 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9208 inst.instruction |= msb - 1;
9209}
9210
9211static void
9212do_t_bfi (void)
9213{
9214 int Rd, Rn;
9215 unsigned int msb;
9216
9217 Rd = inst.operands[0].reg;
9218 reject_bad_reg (Rd);
9219
9220 /* #0 in second position is alternative syntax for bfc, which is
9221 the same instruction but with REG_PC in the Rm field. */
9222 if (!inst.operands[1].isreg)
9223 Rn = REG_PC;
9224 else
9225 {
9226 Rn = inst.operands[1].reg;
9227 reject_bad_reg (Rn);
9228 }
9229
9230 msb = inst.operands[2].imm + inst.operands[3].imm;
9231 constraint (msb > 32, _("bit-field extends past end of register"));
9232 /* The instruction encoding stores the LSB and MSB,
9233 not the LSB and width. */
9234 inst.instruction |= Rd << 8;
9235 inst.instruction |= Rn << 16;
9236 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9237 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9238 inst.instruction |= msb - 1;
9239}
9240
9241static void
9242do_t_bfx (void)
9243{
9244 unsigned Rd, Rn;
9245
9246 Rd = inst.operands[0].reg;
9247 Rn = inst.operands[1].reg;
9248
9249 reject_bad_reg (Rd);
9250 reject_bad_reg (Rn);
9251
9252 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9253 _("bit-field extends past end of register"));
9254 inst.instruction |= Rd << 8;
9255 inst.instruction |= Rn << 16;
9256 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9257 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9258 inst.instruction |= inst.operands[3].imm - 1;
9259}
9260
9261/* ARM V5 Thumb BLX (argument parse)
9262 BLX <target_addr> which is BLX(1)
9263 BLX <Rm> which is BLX(2)
9264 Unfortunately, there are two different opcodes for this mnemonic.
9265 So, the insns[].value is not used, and the code here zaps values
9266 into inst.instruction.
9267
9268 ??? How to take advantage of the additional two bits of displacement
9269 available in Thumb32 mode? Need new relocation? */
9270
9271static void
9272do_t_blx (void)
9273{
9274 set_it_insn_type_last ();
9275
9276 if (inst.operands[0].isreg)
9277 {
9278 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9279 /* We have a register, so this is BLX(2). */
9280 inst.instruction |= inst.operands[0].reg << 3;
9281 }
9282 else
9283 {
9284 /* No register. This must be BLX(1). */
9285 inst.instruction = 0xf000e800;
9286 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9287 inst.reloc.pc_rel = 1;
9288 }
9289}
9290
9291static void
9292do_t_branch (void)
9293{
9294 int opcode;
9295 int cond;
9296
9297 cond = inst.cond;
9298 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9299
9300 if (in_it_block ())
9301 {
9302 /* Conditional branches inside IT blocks are encoded as unconditional
9303 branches. */
9304 cond = COND_ALWAYS;
9305 }
9306 else
9307 cond = inst.cond;
9308
9309 if (cond != COND_ALWAYS)
9310 opcode = T_MNEM_bcond;
9311 else
9312 opcode = inst.instruction;
9313
9314 if (unified_syntax && inst.size_req == 4)
9315 {
9316 inst.instruction = THUMB_OP32(opcode);
9317 if (cond == COND_ALWAYS)
9318 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9319 else
9320 {
9321 gas_assert (cond != 0xF);
9322 inst.instruction |= cond << 22;
9323 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9324 }
9325 }
9326 else
9327 {
9328 inst.instruction = THUMB_OP16(opcode);
9329 if (cond == COND_ALWAYS)
9330 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9331 else
9332 {
9333 inst.instruction |= cond << 8;
9334 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9335 }
9336 /* Allow section relaxation. */
9337 if (unified_syntax && inst.size_req != 2)
9338 inst.relax = opcode;
9339 }
9340
9341 inst.reloc.pc_rel = 1;
9342}
9343
9344static void
9345do_t_bkpt (void)
9346{
9347 constraint (inst.cond != COND_ALWAYS,
9348 _("instruction is always unconditional"));
9349 if (inst.operands[0].present)
9350 {
9351 constraint (inst.operands[0].imm > 255,
9352 _("immediate value out of range"));
9353 inst.instruction |= inst.operands[0].imm;
9354 set_it_insn_type (NEUTRAL_IT_INSN);
9355 }
9356}
9357
9358static void
9359do_t_branch23 (void)
9360{
9361 set_it_insn_type_last ();
9362 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9363 inst.reloc.pc_rel = 1;
9364
9365#if defined(OBJ_COFF)
9366 /* If the destination of the branch is a defined symbol which does not have
9367 the THUMB_FUNC attribute, then we must be calling a function which has
9368 the (interfacearm) attribute. We look for the Thumb entry point to that
9369 function and change the branch to refer to that function instead. */
9370 if ( inst.reloc.exp.X_op == O_symbol
9371 && inst.reloc.exp.X_add_symbol != NULL
9372 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9373 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9374 inst.reloc.exp.X_add_symbol =
9375 find_real_start (inst.reloc.exp.X_add_symbol);
9376#endif
9377}
9378
9379static void
9380do_t_bx (void)
9381{
9382 set_it_insn_type_last ();
9383 inst.instruction |= inst.operands[0].reg << 3;
9384 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9385 should cause the alignment to be checked once it is known. This is
9386 because BX PC only works if the instruction is word aligned. */
9387}
9388
9389static void
9390do_t_bxj (void)
9391{
9392 int Rm;
9393
9394 set_it_insn_type_last ();
9395 Rm = inst.operands[0].reg;
9396 reject_bad_reg (Rm);
9397 inst.instruction |= Rm << 16;
9398}
9399
9400static void
9401do_t_clz (void)
9402{
9403 unsigned Rd;
9404 unsigned Rm;
9405
9406 Rd = inst.operands[0].reg;
9407 Rm = inst.operands[1].reg;
9408
9409 reject_bad_reg (Rd);
9410 reject_bad_reg (Rm);
9411
9412 inst.instruction |= Rd << 8;
9413 inst.instruction |= Rm << 16;
9414 inst.instruction |= Rm;
9415}
9416
9417static void
9418do_t_cps (void)
9419{
9420 set_it_insn_type (OUTSIDE_IT_INSN);
9421 inst.instruction |= inst.operands[0].imm;
9422}
9423
9424static void
9425do_t_cpsi (void)
9426{
9427 set_it_insn_type (OUTSIDE_IT_INSN);
9428 if (unified_syntax
9429 && (inst.operands[1].present || inst.size_req == 4)
9430 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9431 {
9432 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9433 inst.instruction = 0xf3af8000;
9434 inst.instruction |= imod << 9;
9435 inst.instruction |= inst.operands[0].imm << 5;
9436 if (inst.operands[1].present)
9437 inst.instruction |= 0x100 | inst.operands[1].imm;
9438 }
9439 else
9440 {
9441 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9442 && (inst.operands[0].imm & 4),
9443 _("selected processor does not support 'A' form "
9444 "of this instruction"));
9445 constraint (inst.operands[1].present || inst.size_req == 4,
9446 _("Thumb does not support the 2-argument "
9447 "form of this instruction"));
9448 inst.instruction |= inst.operands[0].imm;
9449 }
9450}
9451
9452/* THUMB CPY instruction (argument parse). */
9453
9454static void
9455do_t_cpy (void)
9456{
9457 if (inst.size_req == 4)
9458 {
9459 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9460 inst.instruction |= inst.operands[0].reg << 8;
9461 inst.instruction |= inst.operands[1].reg;
9462 }
9463 else
9464 {
9465 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9466 inst.instruction |= (inst.operands[0].reg & 0x7);
9467 inst.instruction |= inst.operands[1].reg << 3;
9468 }
9469}
9470
9471static void
9472do_t_cbz (void)
9473{
9474 set_it_insn_type (OUTSIDE_IT_INSN);
9475 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9476 inst.instruction |= inst.operands[0].reg;
9477 inst.reloc.pc_rel = 1;
9478 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9479}
9480
9481static void
9482do_t_dbg (void)
9483{
9484 inst.instruction |= inst.operands[0].imm;
9485}
9486
9487static void
9488do_t_div (void)
9489{
9490 unsigned Rd, Rn, Rm;
9491
9492 Rd = inst.operands[0].reg;
9493 Rn = (inst.operands[1].present
9494 ? inst.operands[1].reg : Rd);
9495 Rm = inst.operands[2].reg;
9496
9497 reject_bad_reg (Rd);
9498 reject_bad_reg (Rn);
9499 reject_bad_reg (Rm);
9500
9501 inst.instruction |= Rd << 8;
9502 inst.instruction |= Rn << 16;
9503 inst.instruction |= Rm;
9504}
9505
9506static void
9507do_t_hint (void)
9508{
9509 if (unified_syntax && inst.size_req == 4)
9510 inst.instruction = THUMB_OP32 (inst.instruction);
9511 else
9512 inst.instruction = THUMB_OP16 (inst.instruction);
9513}
9514
9515static void
9516do_t_it (void)
9517{
9518 unsigned int cond = inst.operands[0].imm;
9519
9520 set_it_insn_type (IT_INSN);
9521 now_it.mask = (inst.instruction & 0xf) | 0x10;
9522 now_it.cc = cond;
9523
9524 /* If the condition is a negative condition, invert the mask. */
9525 if ((cond & 0x1) == 0x0)
9526 {
9527 unsigned int mask = inst.instruction & 0x000f;
9528
9529 if ((mask & 0x7) == 0)
9530 /* no conversion needed */;
9531 else if ((mask & 0x3) == 0)
9532 mask ^= 0x8;
9533 else if ((mask & 0x1) == 0)
9534 mask ^= 0xC;
9535 else
9536 mask ^= 0xE;
9537
9538 inst.instruction &= 0xfff0;
9539 inst.instruction |= mask;
9540 }
9541
9542 inst.instruction |= cond << 4;
9543}
9544
9545/* Helper function used for both push/pop and ldm/stm. */
9546static void
9547encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9548{
9549 bfd_boolean load;
9550
9551 load = (inst.instruction & (1 << 20)) != 0;
9552
9553 if (mask & (1 << 13))
9554 inst.error = _("SP not allowed in register list");
9555 if (load)
9556 {
9557 if (mask & (1 << 15))
9558 {
9559 if (mask & (1 << 14))
9560 inst.error = _("LR and PC should not both be in register list");
9561 else
9562 set_it_insn_type_last ();
9563 }
9564
9565 if ((mask & (1 << base)) != 0
9566 && writeback)
9567 as_warn (_("base register should not be in register list "
9568 "when written back"));
9569 }
9570 else
9571 {
9572 if (mask & (1 << 15))
9573 inst.error = _("PC not allowed in register list");
9574
9575 if (mask & (1 << base))
9576 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9577 }
9578
9579 if ((mask & (mask - 1)) == 0)
9580 {
9581 /* Single register transfers implemented as str/ldr. */
9582 if (writeback)
9583 {
9584 if (inst.instruction & (1 << 23))
9585 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9586 else
9587 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9588 }
9589 else
9590 {
9591 if (inst.instruction & (1 << 23))
9592 inst.instruction = 0x00800000; /* ia -> [base] */
9593 else
9594 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9595 }
9596
9597 inst.instruction |= 0xf8400000;
9598 if (load)
9599 inst.instruction |= 0x00100000;
9600
9601 mask = ffs (mask) - 1;
9602 mask <<= 12;
9603 }
9604 else if (writeback)
9605 inst.instruction |= WRITE_BACK;
9606
9607 inst.instruction |= mask;
9608 inst.instruction |= base << 16;
9609}
9610
9611static void
9612do_t_ldmstm (void)
9613{
9614 /* This really doesn't seem worth it. */
9615 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9616 _("expression too complex"));
9617 constraint (inst.operands[1].writeback,
9618 _("Thumb load/store multiple does not support {reglist}^"));
9619
9620 if (unified_syntax)
9621 {
9622 bfd_boolean narrow;
9623 unsigned mask;
9624
9625 narrow = FALSE;
9626 /* See if we can use a 16-bit instruction. */
9627 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9628 && inst.size_req != 4
9629 && !(inst.operands[1].imm & ~0xff))
9630 {
9631 mask = 1 << inst.operands[0].reg;
9632
9633 if (inst.operands[0].reg <= 7
9634 && (inst.instruction == T_MNEM_stmia
9635 ? inst.operands[0].writeback
9636 : (inst.operands[0].writeback
9637 == !(inst.operands[1].imm & mask))))
9638 {
9639 if (inst.instruction == T_MNEM_stmia
9640 && (inst.operands[1].imm & mask)
9641 && (inst.operands[1].imm & (mask - 1)))
9642 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9643 inst.operands[0].reg);
9644
9645 inst.instruction = THUMB_OP16 (inst.instruction);
9646 inst.instruction |= inst.operands[0].reg << 8;
9647 inst.instruction |= inst.operands[1].imm;
9648 narrow = TRUE;
9649 }
9650 else if (inst.operands[0] .reg == REG_SP
9651 && inst.operands[0].writeback)
9652 {
9653 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9654 ? T_MNEM_push : T_MNEM_pop);
9655 inst.instruction |= inst.operands[1].imm;
9656 narrow = TRUE;
9657 }
9658 }
9659
9660 if (!narrow)
9661 {
9662 if (inst.instruction < 0xffff)
9663 inst.instruction = THUMB_OP32 (inst.instruction);
9664
9665 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9666 inst.operands[0].writeback);
9667 }
9668 }
9669 else
9670 {
9671 constraint (inst.operands[0].reg > 7
9672 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9673 constraint (inst.instruction != T_MNEM_ldmia
9674 && inst.instruction != T_MNEM_stmia,
9675 _("Thumb-2 instruction only valid in unified syntax"));
9676 if (inst.instruction == T_MNEM_stmia)
9677 {
9678 if (!inst.operands[0].writeback)
9679 as_warn (_("this instruction will write back the base register"));
9680 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9681 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9682 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9683 inst.operands[0].reg);
9684 }
9685 else
9686 {
9687 if (!inst.operands[0].writeback
9688 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9689 as_warn (_("this instruction will write back the base register"));
9690 else if (inst.operands[0].writeback
9691 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9692 as_warn (_("this instruction will not write back the base register"));
9693 }
9694
9695 inst.instruction = THUMB_OP16 (inst.instruction);
9696 inst.instruction |= inst.operands[0].reg << 8;
9697 inst.instruction |= inst.operands[1].imm;
9698 }
9699}
9700
9701static void
9702do_t_ldrex (void)
9703{
9704 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9705 || inst.operands[1].postind || inst.operands[1].writeback
9706 || inst.operands[1].immisreg || inst.operands[1].shifted
9707 || inst.operands[1].negative,
9708 BAD_ADDR_MODE);
9709
9710 inst.instruction |= inst.operands[0].reg << 12;
9711 inst.instruction |= inst.operands[1].reg << 16;
9712 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9713}
9714
9715static void
9716do_t_ldrexd (void)
9717{
9718 if (!inst.operands[1].present)
9719 {
9720 constraint (inst.operands[0].reg == REG_LR,
9721 _("r14 not allowed as first register "
9722 "when second register is omitted"));
9723 inst.operands[1].reg = inst.operands[0].reg + 1;
9724 }
9725 constraint (inst.operands[0].reg == inst.operands[1].reg,
9726 BAD_OVERLAP);
9727
9728 inst.instruction |= inst.operands[0].reg << 12;
9729 inst.instruction |= inst.operands[1].reg << 8;
9730 inst.instruction |= inst.operands[2].reg << 16;
9731}
9732
9733static void
9734do_t_ldst (void)
9735{
9736 unsigned long opcode;
9737 int Rn;
9738
9739 if (inst.operands[0].isreg
9740 && !inst.operands[0].preind
9741 && inst.operands[0].reg == REG_PC)
9742 set_it_insn_type_last ();
9743
9744 opcode = inst.instruction;
9745 if (unified_syntax)
9746 {
9747 if (!inst.operands[1].isreg)
9748 {
9749 if (opcode <= 0xffff)
9750 inst.instruction = THUMB_OP32 (opcode);
9751 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9752 return;
9753 }
9754 if (inst.operands[1].isreg
9755 && !inst.operands[1].writeback
9756 && !inst.operands[1].shifted && !inst.operands[1].postind
9757 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9758 && opcode <= 0xffff
9759 && inst.size_req != 4)
9760 {
9761 /* Insn may have a 16-bit form. */
9762 Rn = inst.operands[1].reg;
9763 if (inst.operands[1].immisreg)
9764 {
9765 inst.instruction = THUMB_OP16 (opcode);
9766 /* [Rn, Rik] */
9767 if (Rn <= 7 && inst.operands[1].imm <= 7)
9768 goto op16;
9769 }
9770 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9771 && opcode != T_MNEM_ldrsb)
9772 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9773 || (Rn == REG_SP && opcode == T_MNEM_str))
9774 {
9775 /* [Rn, #const] */
9776 if (Rn > 7)
9777 {
9778 if (Rn == REG_PC)
9779 {
9780 if (inst.reloc.pc_rel)
9781 opcode = T_MNEM_ldr_pc2;
9782 else
9783 opcode = T_MNEM_ldr_pc;
9784 }
9785 else
9786 {
9787 if (opcode == T_MNEM_ldr)
9788 opcode = T_MNEM_ldr_sp;
9789 else
9790 opcode = T_MNEM_str_sp;
9791 }
9792 inst.instruction = inst.operands[0].reg << 8;
9793 }
9794 else
9795 {
9796 inst.instruction = inst.operands[0].reg;
9797 inst.instruction |= inst.operands[1].reg << 3;
9798 }
9799 inst.instruction |= THUMB_OP16 (opcode);
9800 if (inst.size_req == 2)
9801 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9802 else
9803 inst.relax = opcode;
9804 return;
9805 }
9806 }
9807 /* Definitely a 32-bit variant. */
9808 inst.instruction = THUMB_OP32 (opcode);
9809 inst.instruction |= inst.operands[0].reg << 12;
9810 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9811 return;
9812 }
9813
9814 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9815
9816 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9817 {
9818 /* Only [Rn,Rm] is acceptable. */
9819 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9820 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9821 || inst.operands[1].postind || inst.operands[1].shifted
9822 || inst.operands[1].negative,
9823 _("Thumb does not support this addressing mode"));
9824 inst.instruction = THUMB_OP16 (inst.instruction);
9825 goto op16;
9826 }
9827
9828 inst.instruction = THUMB_OP16 (inst.instruction);
9829 if (!inst.operands[1].isreg)
9830 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9831 return;
9832
9833 constraint (!inst.operands[1].preind
9834 || inst.operands[1].shifted
9835 || inst.operands[1].writeback,
9836 _("Thumb does not support this addressing mode"));
9837 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9838 {
9839 constraint (inst.instruction & 0x0600,
9840 _("byte or halfword not valid for base register"));
9841 constraint (inst.operands[1].reg == REG_PC
9842 && !(inst.instruction & THUMB_LOAD_BIT),
9843 _("r15 based store not allowed"));
9844 constraint (inst.operands[1].immisreg,
9845 _("invalid base register for register offset"));
9846
9847 if (inst.operands[1].reg == REG_PC)
9848 inst.instruction = T_OPCODE_LDR_PC;
9849 else if (inst.instruction & THUMB_LOAD_BIT)
9850 inst.instruction = T_OPCODE_LDR_SP;
9851 else
9852 inst.instruction = T_OPCODE_STR_SP;
9853
9854 inst.instruction |= inst.operands[0].reg << 8;
9855 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9856 return;
9857 }
9858
9859 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9860 if (!inst.operands[1].immisreg)
9861 {
9862 /* Immediate offset. */
9863 inst.instruction |= inst.operands[0].reg;
9864 inst.instruction |= inst.operands[1].reg << 3;
9865 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9866 return;
9867 }
9868
9869 /* Register offset. */
9870 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9871 constraint (inst.operands[1].negative,
9872 _("Thumb does not support this addressing mode"));
9873
9874 op16:
9875 switch (inst.instruction)
9876 {
9877 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9878 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9879 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9880 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9881 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9882 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9883 case 0x5600 /* ldrsb */:
9884 case 0x5e00 /* ldrsh */: break;
9885 default: abort ();
9886 }
9887
9888 inst.instruction |= inst.operands[0].reg;
9889 inst.instruction |= inst.operands[1].reg << 3;
9890 inst.instruction |= inst.operands[1].imm << 6;
9891}
9892
9893static void
9894do_t_ldstd (void)
9895{
9896 if (!inst.operands[1].present)
9897 {
9898 inst.operands[1].reg = inst.operands[0].reg + 1;
9899 constraint (inst.operands[0].reg == REG_LR,
9900 _("r14 not allowed here"));
9901 }
9902 inst.instruction |= inst.operands[0].reg << 12;
9903 inst.instruction |= inst.operands[1].reg << 8;
9904 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9905}
9906
9907static void
9908do_t_ldstt (void)
9909{
9910 inst.instruction |= inst.operands[0].reg << 12;
9911 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9912}
9913
9914static void
9915do_t_mla (void)
9916{
9917 unsigned Rd, Rn, Rm, Ra;
9918
9919 Rd = inst.operands[0].reg;
9920 Rn = inst.operands[1].reg;
9921 Rm = inst.operands[2].reg;
9922 Ra = inst.operands[3].reg;
9923
9924 reject_bad_reg (Rd);
9925 reject_bad_reg (Rn);
9926 reject_bad_reg (Rm);
9927 reject_bad_reg (Ra);
9928
9929 inst.instruction |= Rd << 8;
9930 inst.instruction |= Rn << 16;
9931 inst.instruction |= Rm;
9932 inst.instruction |= Ra << 12;
9933}
9934
9935static void
9936do_t_mlal (void)
9937{
9938 unsigned RdLo, RdHi, Rn, Rm;
9939
9940 RdLo = inst.operands[0].reg;
9941 RdHi = inst.operands[1].reg;
9942 Rn = inst.operands[2].reg;
9943 Rm = inst.operands[3].reg;
9944
9945 reject_bad_reg (RdLo);
9946 reject_bad_reg (RdHi);
9947 reject_bad_reg (Rn);
9948 reject_bad_reg (Rm);
9949
9950 inst.instruction |= RdLo << 12;
9951 inst.instruction |= RdHi << 8;
9952 inst.instruction |= Rn << 16;
9953 inst.instruction |= Rm;
9954}
9955
9956static void
9957do_t_mov_cmp (void)
9958{
9959 unsigned Rn, Rm;
9960
9961 Rn = inst.operands[0].reg;
9962 Rm = inst.operands[1].reg;
9963
9964 if (Rn == REG_PC)
9965 set_it_insn_type_last ();
9966
9967 if (unified_syntax)
9968 {
9969 int r0off = (inst.instruction == T_MNEM_mov
9970 || inst.instruction == T_MNEM_movs) ? 8 : 16;
9971 unsigned long opcode;
9972 bfd_boolean narrow;
9973 bfd_boolean low_regs;
9974
9975 low_regs = (Rn <= 7 && Rm <= 7);
9976 opcode = inst.instruction;
9977 if (in_it_block ())
9978 narrow = opcode != T_MNEM_movs;
9979 else
9980 narrow = opcode != T_MNEM_movs || low_regs;
9981 if (inst.size_req == 4
9982 || inst.operands[1].shifted)
9983 narrow = FALSE;
9984
9985 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9986 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9987 && !inst.operands[1].shifted
9988 && Rn == REG_PC
9989 && Rm == REG_LR)
9990 {
9991 inst.instruction = T2_SUBS_PC_LR;
9992 return;
9993 }
9994
9995 if (opcode == T_MNEM_cmp)
9996 {
9997 constraint (Rn == REG_PC, BAD_PC);
9998 if (narrow)
9999 {
10000 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10001 but valid. */
10002 warn_deprecated_sp (Rm);
10003 /* R15 was documented as a valid choice for Rm in ARMv6,
10004 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10005 tools reject R15, so we do too. */
10006 constraint (Rm == REG_PC, BAD_PC);
10007 }
10008 else
10009 reject_bad_reg (Rm);
10010 }
10011 else if (opcode == T_MNEM_mov
10012 || opcode == T_MNEM_movs)
10013 {
10014 if (inst.operands[1].isreg)
10015 {
10016 if (opcode == T_MNEM_movs)
10017 {
10018 reject_bad_reg (Rn);
10019 reject_bad_reg (Rm);
10020 }
10021 else if ((Rn == REG_SP || Rn == REG_PC)
10022 && (Rm == REG_SP || Rm == REG_PC))
10023 reject_bad_reg (Rm);
10024 }
10025 else
10026 reject_bad_reg (Rn);
10027 }
10028
10029 if (!inst.operands[1].isreg)
10030 {
10031 /* Immediate operand. */
10032 if (!in_it_block () && opcode == T_MNEM_mov)
10033 narrow = 0;
10034 if (low_regs && narrow)
10035 {
10036 inst.instruction = THUMB_OP16 (opcode);
10037 inst.instruction |= Rn << 8;
10038 if (inst.size_req == 2)
10039 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10040 else
10041 inst.relax = opcode;
10042 }
10043 else
10044 {
10045 inst.instruction = THUMB_OP32 (inst.instruction);
10046 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10047 inst.instruction |= Rn << r0off;
10048 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10049 }
10050 }
10051 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10052 && (inst.instruction == T_MNEM_mov
10053 || inst.instruction == T_MNEM_movs))
10054 {
10055 /* Register shifts are encoded as separate shift instructions. */
10056 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10057
10058 if (in_it_block ())
10059 narrow = !flags;
10060 else
10061 narrow = flags;
10062
10063 if (inst.size_req == 4)
10064 narrow = FALSE;
10065
10066 if (!low_regs || inst.operands[1].imm > 7)
10067 narrow = FALSE;
10068
10069 if (Rn != Rm)
10070 narrow = FALSE;
10071
10072 switch (inst.operands[1].shift_kind)
10073 {
10074 case SHIFT_LSL:
10075 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10076 break;
10077 case SHIFT_ASR:
10078 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10079 break;
10080 case SHIFT_LSR:
10081 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10082 break;
10083 case SHIFT_ROR:
10084 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10085 break;
10086 default:
10087 abort ();
10088 }
10089
10090 inst.instruction = opcode;
10091 if (narrow)
10092 {
10093 inst.instruction |= Rn;
10094 inst.instruction |= inst.operands[1].imm << 3;
10095 }
10096 else
10097 {
10098 if (flags)
10099 inst.instruction |= CONDS_BIT;
10100
10101 inst.instruction |= Rn << 8;
10102 inst.instruction |= Rm << 16;
10103 inst.instruction |= inst.operands[1].imm;
10104 }
10105 }
10106 else if (!narrow)
10107 {
10108 /* Some mov with immediate shift have narrow variants.
10109 Register shifts are handled above. */
10110 if (low_regs && inst.operands[1].shifted
10111 && (inst.instruction == T_MNEM_mov
10112 || inst.instruction == T_MNEM_movs))
10113 {
10114 if (in_it_block ())
10115 narrow = (inst.instruction == T_MNEM_mov);
10116 else
10117 narrow = (inst.instruction == T_MNEM_movs);
10118 }
10119
10120 if (narrow)
10121 {
10122 switch (inst.operands[1].shift_kind)
10123 {
10124 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10125 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10126 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10127 default: narrow = FALSE; break;
10128 }
10129 }
10130
10131 if (narrow)
10132 {
10133 inst.instruction |= Rn;
10134 inst.instruction |= Rm << 3;
10135 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10136 }
10137 else
10138 {
10139 inst.instruction = THUMB_OP32 (inst.instruction);
10140 inst.instruction |= Rn << r0off;
10141 encode_thumb32_shifted_operand (1);
10142 }
10143 }
10144 else
10145 switch (inst.instruction)
10146 {
10147 case T_MNEM_mov:
10148 inst.instruction = T_OPCODE_MOV_HR;
10149 inst.instruction |= (Rn & 0x8) << 4;
10150 inst.instruction |= (Rn & 0x7);
10151 inst.instruction |= Rm << 3;
10152 break;
10153
10154 case T_MNEM_movs:
10155 /* We know we have low registers at this point.
10156 Generate ADD Rd, Rs, #0. */
10157 inst.instruction = T_OPCODE_ADD_I3;
10158 inst.instruction |= Rn;
10159 inst.instruction |= Rm << 3;
10160 break;
10161
10162 case T_MNEM_cmp:
10163 if (low_regs)
10164 {
10165 inst.instruction = T_OPCODE_CMP_LR;
10166 inst.instruction |= Rn;
10167 inst.instruction |= Rm << 3;
10168 }
10169 else
10170 {
10171 inst.instruction = T_OPCODE_CMP_HR;
10172 inst.instruction |= (Rn & 0x8) << 4;
10173 inst.instruction |= (Rn & 0x7);
10174 inst.instruction |= Rm << 3;
10175 }
10176 break;
10177 }
10178 return;
10179 }
10180
10181 inst.instruction = THUMB_OP16 (inst.instruction);
10182 if (inst.operands[1].isreg)
10183 {
10184 if (Rn < 8 && Rm < 8)
10185 {
10186 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10187 since a MOV instruction produces unpredictable results. */
10188 if (inst.instruction == T_OPCODE_MOV_I8)
10189 inst.instruction = T_OPCODE_ADD_I3;
10190 else
10191 inst.instruction = T_OPCODE_CMP_LR;
10192
10193 inst.instruction |= Rn;
10194 inst.instruction |= Rm << 3;
10195 }
10196 else
10197 {
10198 if (inst.instruction == T_OPCODE_MOV_I8)
10199 inst.instruction = T_OPCODE_MOV_HR;
10200 else
10201 inst.instruction = T_OPCODE_CMP_HR;
10202 do_t_cpy ();
10203 }
10204 }
10205 else
10206 {
10207 constraint (Rn > 7,
10208 _("only lo regs allowed with immediate"));
10209 inst.instruction |= Rn << 8;
10210 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10211 }
10212}
10213
10214static void
10215do_t_mov16 (void)
10216{
10217 unsigned Rd;
10218 bfd_vma imm;
10219 bfd_boolean top;
10220
10221 top = (inst.instruction & 0x00800000) != 0;
10222 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10223 {
10224 constraint (top, _(":lower16: not allowed this instruction"));
10225 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10226 }
10227 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10228 {
10229 constraint (!top, _(":upper16: not allowed this instruction"));
10230 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10231 }
10232
10233 Rd = inst.operands[0].reg;
10234 reject_bad_reg (Rd);
10235
10236 inst.instruction |= Rd << 8;
10237 if (inst.reloc.type == BFD_RELOC_UNUSED)
10238 {
10239 imm = inst.reloc.exp.X_add_number;
10240 inst.instruction |= (imm & 0xf000) << 4;
10241 inst.instruction |= (imm & 0x0800) << 15;
10242 inst.instruction |= (imm & 0x0700) << 4;
10243 inst.instruction |= (imm & 0x00ff);
10244 }
10245}
10246
10247static void
10248do_t_mvn_tst (void)
10249{
10250 unsigned Rn, Rm;
10251
10252 Rn = inst.operands[0].reg;
10253 Rm = inst.operands[1].reg;
10254
10255 if (inst.instruction == T_MNEM_cmp
10256 || inst.instruction == T_MNEM_cmn)
10257 constraint (Rn == REG_PC, BAD_PC);
10258 else
10259 reject_bad_reg (Rn);
10260 reject_bad_reg (Rm);
10261
10262 if (unified_syntax)
10263 {
10264 int r0off = (inst.instruction == T_MNEM_mvn
10265 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10266 bfd_boolean narrow;
10267
10268 if (inst.size_req == 4
10269 || inst.instruction > 0xffff
10270 || inst.operands[1].shifted
10271 || Rn > 7 || Rm > 7)
10272 narrow = FALSE;
10273 else if (inst.instruction == T_MNEM_cmn)
10274 narrow = TRUE;
10275 else if (THUMB_SETS_FLAGS (inst.instruction))
10276 narrow = !in_it_block ();
10277 else
10278 narrow = in_it_block ();
10279
10280 if (!inst.operands[1].isreg)
10281 {
10282 /* For an immediate, we always generate a 32-bit opcode;
10283 section relaxation will shrink it later if possible. */
10284 if (inst.instruction < 0xffff)
10285 inst.instruction = THUMB_OP32 (inst.instruction);
10286 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10287 inst.instruction |= Rn << r0off;
10288 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10289 }
10290 else
10291 {
10292 /* See if we can do this with a 16-bit instruction. */
10293 if (narrow)
10294 {
10295 inst.instruction = THUMB_OP16 (inst.instruction);
10296 inst.instruction |= Rn;
10297 inst.instruction |= Rm << 3;
10298 }
10299 else
10300 {
10301 constraint (inst.operands[1].shifted
10302 && inst.operands[1].immisreg,
10303 _("shift must be constant"));
10304 if (inst.instruction < 0xffff)
10305 inst.instruction = THUMB_OP32 (inst.instruction);
10306 inst.instruction |= Rn << r0off;
10307 encode_thumb32_shifted_operand (1);
10308 }
10309 }
10310 }
10311 else
10312 {
10313 constraint (inst.instruction > 0xffff
10314 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10315 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10316 _("unshifted register required"));
10317 constraint (Rn > 7 || Rm > 7,
10318 BAD_HIREG);
10319
10320 inst.instruction = THUMB_OP16 (inst.instruction);
10321 inst.instruction |= Rn;
10322 inst.instruction |= Rm << 3;
10323 }
10324}
10325
10326static void
10327do_t_mrs (void)
10328{
10329 unsigned Rd;
10330 int flags;
10331
10332 if (do_vfp_nsyn_mrs () == SUCCESS)
10333 return;
10334
10335 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10336 if (flags == 0)
10337 {
10338 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10339 _("selected processor does not support "
10340 "requested special purpose register"));
10341 }
10342 else
10343 {
10344 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10345 _("selected processor does not support "
10346 "requested special purpose register"));
10347 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10348 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10349 _("'CPSR' or 'SPSR' expected"));
10350 }
10351
10352 Rd = inst.operands[0].reg;
10353 reject_bad_reg (Rd);
10354
10355 inst.instruction |= Rd << 8;
10356 inst.instruction |= (flags & SPSR_BIT) >> 2;
10357 inst.instruction |= inst.operands[1].imm & 0xff;
10358}
10359
10360static void
10361do_t_msr (void)
10362{
10363 int flags;
10364 unsigned Rn;
10365
10366 if (do_vfp_nsyn_msr () == SUCCESS)
10367 return;
10368
10369 constraint (!inst.operands[1].isreg,
10370 _("Thumb encoding does not support an immediate here"));
10371 flags = inst.operands[0].imm;
10372 if (flags & ~0xff)
10373 {
10374 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10375 _("selected processor does not support "
10376 "requested special purpose register"));
10377 }
10378 else
10379 {
10380 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10381 _("selected processor does not support "
10382 "requested special purpose register"));
10383 flags |= PSR_f;
10384 }
10385
10386 Rn = inst.operands[1].reg;
10387 reject_bad_reg (Rn);
10388
10389 inst.instruction |= (flags & SPSR_BIT) >> 2;
10390 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10391 inst.instruction |= (flags & 0xff);
10392 inst.instruction |= Rn << 16;
10393}
10394
10395static void
10396do_t_mul (void)
10397{
10398 bfd_boolean narrow;
10399 unsigned Rd, Rn, Rm;
10400
10401 if (!inst.operands[2].present)
10402 inst.operands[2].reg = inst.operands[0].reg;
10403
10404 Rd = inst.operands[0].reg;
10405 Rn = inst.operands[1].reg;
10406 Rm = inst.operands[2].reg;
10407
10408 if (unified_syntax)
10409 {
10410 if (inst.size_req == 4
10411 || (Rd != Rn
10412 && Rd != Rm)
10413 || Rn > 7
10414 || Rm > 7)
10415 narrow = FALSE;
10416 else if (inst.instruction == T_MNEM_muls)
10417 narrow = !in_it_block ();
10418 else
10419 narrow = in_it_block ();
10420 }
10421 else
10422 {
10423 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10424 constraint (Rn > 7 || Rm > 7,
10425 BAD_HIREG);
10426 narrow = TRUE;
10427 }
10428
10429 if (narrow)
10430 {
10431 /* 16-bit MULS/Conditional MUL. */
10432 inst.instruction = THUMB_OP16 (inst.instruction);
10433 inst.instruction |= Rd;
10434
10435 if (Rd == Rn)
10436 inst.instruction |= Rm << 3;
10437 else if (Rd == Rm)
10438 inst.instruction |= Rn << 3;
10439 else
10440 constraint (1, _("dest must overlap one source register"));
10441 }
10442 else
10443 {
10444 constraint (inst.instruction != T_MNEM_mul,
10445 _("Thumb-2 MUL must not set flags"));
10446 /* 32-bit MUL. */
10447 inst.instruction = THUMB_OP32 (inst.instruction);
10448 inst.instruction |= Rd << 8;
10449 inst.instruction |= Rn << 16;
10450 inst.instruction |= Rm << 0;
10451
10452 reject_bad_reg (Rd);
10453 reject_bad_reg (Rn);
10454 reject_bad_reg (Rm);
10455 }
10456}
10457
10458static void
10459do_t_mull (void)
10460{
10461 unsigned RdLo, RdHi, Rn, Rm;
10462
10463 RdLo = inst.operands[0].reg;
10464 RdHi = inst.operands[1].reg;
10465 Rn = inst.operands[2].reg;
10466 Rm = inst.operands[3].reg;
10467
10468 reject_bad_reg (RdLo);
10469 reject_bad_reg (RdHi);
10470 reject_bad_reg (Rn);
10471 reject_bad_reg (Rm);
10472
10473 inst.instruction |= RdLo << 12;
10474 inst.instruction |= RdHi << 8;
10475 inst.instruction |= Rn << 16;
10476 inst.instruction |= Rm;
10477
10478 if (RdLo == RdHi)
10479 as_tsktsk (_("rdhi and rdlo must be different"));
10480}
10481
10482static void
10483do_t_nop (void)
10484{
10485 set_it_insn_type (NEUTRAL_IT_INSN);
10486
10487 if (unified_syntax)
10488 {
10489 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10490 {
10491 inst.instruction = THUMB_OP32 (inst.instruction);
10492 inst.instruction |= inst.operands[0].imm;
10493 }
10494 else
10495 {
10496 /* PR9722: Check for Thumb2 availability before
10497 generating a thumb2 nop instruction. */
10498 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
10499 {
10500 inst.instruction = THUMB_OP16 (inst.instruction);
10501 inst.instruction |= inst.operands[0].imm << 4;
10502 }
10503 else
10504 inst.instruction = 0x46c0;
10505 }
10506 }
10507 else
10508 {
10509 constraint (inst.operands[0].present,
10510 _("Thumb does not support NOP with hints"));
10511 inst.instruction = 0x46c0;
10512 }
10513}
10514
10515static void
10516do_t_neg (void)
10517{
10518 if (unified_syntax)
10519 {
10520 bfd_boolean narrow;
10521
10522 if (THUMB_SETS_FLAGS (inst.instruction))
10523 narrow = !in_it_block ();
10524 else
10525 narrow = in_it_block ();
10526 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10527 narrow = FALSE;
10528 if (inst.size_req == 4)
10529 narrow = FALSE;
10530
10531 if (!narrow)
10532 {
10533 inst.instruction = THUMB_OP32 (inst.instruction);
10534 inst.instruction |= inst.operands[0].reg << 8;
10535 inst.instruction |= inst.operands[1].reg << 16;
10536 }
10537 else
10538 {
10539 inst.instruction = THUMB_OP16 (inst.instruction);
10540 inst.instruction |= inst.operands[0].reg;
10541 inst.instruction |= inst.operands[1].reg << 3;
10542 }
10543 }
10544 else
10545 {
10546 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10547 BAD_HIREG);
10548 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10549
10550 inst.instruction = THUMB_OP16 (inst.instruction);
10551 inst.instruction |= inst.operands[0].reg;
10552 inst.instruction |= inst.operands[1].reg << 3;
10553 }
10554}
10555
10556static void
10557do_t_orn (void)
10558{
10559 unsigned Rd, Rn;
10560
10561 Rd = inst.operands[0].reg;
10562 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10563
10564 reject_bad_reg (Rd);
10565 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10566 reject_bad_reg (Rn);
10567
10568 inst.instruction |= Rd << 8;
10569 inst.instruction |= Rn << 16;
10570
10571 if (!inst.operands[2].isreg)
10572 {
10573 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10574 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10575 }
10576 else
10577 {
10578 unsigned Rm;
10579
10580 Rm = inst.operands[2].reg;
10581 reject_bad_reg (Rm);
10582
10583 constraint (inst.operands[2].shifted
10584 && inst.operands[2].immisreg,
10585 _("shift must be constant"));
10586 encode_thumb32_shifted_operand (2);
10587 }
10588}
10589
10590static void
10591do_t_pkhbt (void)
10592{
10593 unsigned Rd, Rn, Rm;
10594
10595 Rd = inst.operands[0].reg;
10596 Rn = inst.operands[1].reg;
10597 Rm = inst.operands[2].reg;
10598
10599 reject_bad_reg (Rd);
10600 reject_bad_reg (Rn);
10601 reject_bad_reg (Rm);
10602
10603 inst.instruction |= Rd << 8;
10604 inst.instruction |= Rn << 16;
10605 inst.instruction |= Rm;
10606 if (inst.operands[3].present)
10607 {
10608 unsigned int val = inst.reloc.exp.X_add_number;
10609 constraint (inst.reloc.exp.X_op != O_constant,
10610 _("expression too complex"));
10611 inst.instruction |= (val & 0x1c) << 10;
10612 inst.instruction |= (val & 0x03) << 6;
10613 }
10614}
10615
10616static void
10617do_t_pkhtb (void)
10618{
10619 if (!inst.operands[3].present)
10620 {
10621 unsigned Rtmp;
10622
10623 inst.instruction &= ~0x00000020;
10624
10625 /* PR 10168. Swap the Rm and Rn registers. */
10626 Rtmp = inst.operands[1].reg;
10627 inst.operands[1].reg = inst.operands[2].reg;
10628 inst.operands[2].reg = Rtmp;
10629 }
10630 do_t_pkhbt ();
10631}
10632
10633static void
10634do_t_pld (void)
10635{
10636 if (inst.operands[0].immisreg)
10637 reject_bad_reg (inst.operands[0].imm);
10638
10639 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10640}
10641
10642static void
10643do_t_push_pop (void)
10644{
10645 unsigned mask;
10646
10647 constraint (inst.operands[0].writeback,
10648 _("push/pop do not support {reglist}^"));
10649 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10650 _("expression too complex"));
10651
10652 mask = inst.operands[0].imm;
10653 if ((mask & ~0xff) == 0)
10654 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10655 else if ((inst.instruction == T_MNEM_push
10656 && (mask & ~0xff) == 1 << REG_LR)
10657 || (inst.instruction == T_MNEM_pop
10658 && (mask & ~0xff) == 1 << REG_PC))
10659 {
10660 inst.instruction = THUMB_OP16 (inst.instruction);
10661 inst.instruction |= THUMB_PP_PC_LR;
10662 inst.instruction |= mask & 0xff;
10663 }
10664 else if (unified_syntax)
10665 {
10666 inst.instruction = THUMB_OP32 (inst.instruction);
10667 encode_thumb2_ldmstm (13, mask, TRUE);
10668 }
10669 else
10670 {
10671 inst.error = _("invalid register list to push/pop instruction");
10672 return;
10673 }
10674}
10675
10676static void
10677do_t_rbit (void)
10678{
10679 unsigned Rd, Rm;
10680
10681 Rd = inst.operands[0].reg;
10682 Rm = inst.operands[1].reg;
10683
10684 reject_bad_reg (Rd);
10685 reject_bad_reg (Rm);
10686
10687 inst.instruction |= Rd << 8;
10688 inst.instruction |= Rm << 16;
10689 inst.instruction |= Rm;
10690}
10691
10692static void
10693do_t_rev (void)
10694{
10695 unsigned Rd, Rm;
10696
10697 Rd = inst.operands[0].reg;
10698 Rm = inst.operands[1].reg;
10699
10700 reject_bad_reg (Rd);
10701 reject_bad_reg (Rm);
10702
10703 if (Rd <= 7 && Rm <= 7
10704 && inst.size_req != 4)
10705 {
10706 inst.instruction = THUMB_OP16 (inst.instruction);
10707 inst.instruction |= Rd;
10708 inst.instruction |= Rm << 3;
10709 }
10710 else if (unified_syntax)
10711 {
10712 inst.instruction = THUMB_OP32 (inst.instruction);
10713 inst.instruction |= Rd << 8;
10714 inst.instruction |= Rm << 16;
10715 inst.instruction |= Rm;
10716 }
10717 else
10718 inst.error = BAD_HIREG;
10719}
10720
10721static void
10722do_t_rrx (void)
10723{
10724 unsigned Rd, Rm;
10725
10726 Rd = inst.operands[0].reg;
10727 Rm = inst.operands[1].reg;
10728
10729 reject_bad_reg (Rd);
10730 reject_bad_reg (Rm);
10731
10732 inst.instruction |= Rd << 8;
10733 inst.instruction |= Rm;
10734}
10735
10736static void
10737do_t_rsb (void)
10738{
10739 unsigned Rd, Rs;
10740
10741 Rd = inst.operands[0].reg;
10742 Rs = (inst.operands[1].present
10743 ? inst.operands[1].reg /* Rd, Rs, foo */
10744 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10745
10746 reject_bad_reg (Rd);
10747 reject_bad_reg (Rs);
10748 if (inst.operands[2].isreg)
10749 reject_bad_reg (inst.operands[2].reg);
10750
10751 inst.instruction |= Rd << 8;
10752 inst.instruction |= Rs << 16;
10753 if (!inst.operands[2].isreg)
10754 {
10755 bfd_boolean narrow;
10756
10757 if ((inst.instruction & 0x00100000) != 0)
10758 narrow = !in_it_block ();
10759 else
10760 narrow = in_it_block ();
10761
10762 if (Rd > 7 || Rs > 7)
10763 narrow = FALSE;
10764
10765 if (inst.size_req == 4 || !unified_syntax)
10766 narrow = FALSE;
10767
10768 if (inst.reloc.exp.X_op != O_constant
10769 || inst.reloc.exp.X_add_number != 0)
10770 narrow = FALSE;
10771
10772 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10773 relaxation, but it doesn't seem worth the hassle. */
10774 if (narrow)
10775 {
10776 inst.reloc.type = BFD_RELOC_UNUSED;
10777 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10778 inst.instruction |= Rs << 3;
10779 inst.instruction |= Rd;
10780 }
10781 else
10782 {
10783 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10784 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10785 }
10786 }
10787 else
10788 encode_thumb32_shifted_operand (2);
10789}
10790
10791static void
10792do_t_setend (void)
10793{
10794 set_it_insn_type (OUTSIDE_IT_INSN);
10795 if (inst.operands[0].imm)
10796 inst.instruction |= 0x8;
10797}
10798
10799static void
10800do_t_shift (void)
10801{
10802 if (!inst.operands[1].present)
10803 inst.operands[1].reg = inst.operands[0].reg;
10804
10805 if (unified_syntax)
10806 {
10807 bfd_boolean narrow;
10808 int shift_kind;
10809
10810 switch (inst.instruction)
10811 {
10812 case T_MNEM_asr:
10813 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10814 case T_MNEM_lsl:
10815 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10816 case T_MNEM_lsr:
10817 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10818 case T_MNEM_ror:
10819 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10820 default: abort ();
10821 }
10822
10823 if (THUMB_SETS_FLAGS (inst.instruction))
10824 narrow = !in_it_block ();
10825 else
10826 narrow = in_it_block ();
10827 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10828 narrow = FALSE;
10829 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10830 narrow = FALSE;
10831 if (inst.operands[2].isreg
10832 && (inst.operands[1].reg != inst.operands[0].reg
10833 || inst.operands[2].reg > 7))
10834 narrow = FALSE;
10835 if (inst.size_req == 4)
10836 narrow = FALSE;
10837
10838 reject_bad_reg (inst.operands[0].reg);
10839 reject_bad_reg (inst.operands[1].reg);
10840
10841 if (!narrow)
10842 {
10843 if (inst.operands[2].isreg)
10844 {
10845 reject_bad_reg (inst.operands[2].reg);
10846 inst.instruction = THUMB_OP32 (inst.instruction);
10847 inst.instruction |= inst.operands[0].reg << 8;
10848 inst.instruction |= inst.operands[1].reg << 16;
10849 inst.instruction |= inst.operands[2].reg;
10850 }
10851 else
10852 {
10853 inst.operands[1].shifted = 1;
10854 inst.operands[1].shift_kind = shift_kind;
10855 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10856 ? T_MNEM_movs : T_MNEM_mov);
10857 inst.instruction |= inst.operands[0].reg << 8;
10858 encode_thumb32_shifted_operand (1);
10859 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10860 inst.reloc.type = BFD_RELOC_UNUSED;
10861 }
10862 }
10863 else
10864 {
10865 if (inst.operands[2].isreg)
10866 {
10867 switch (shift_kind)
10868 {
10869 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10870 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10871 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10872 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
10873 default: abort ();
10874 }
10875
10876 inst.instruction |= inst.operands[0].reg;
10877 inst.instruction |= inst.operands[2].reg << 3;
10878 }
10879 else
10880 {
10881 switch (shift_kind)
10882 {
10883 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10884 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10885 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10886 default: abort ();
10887 }
10888 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10889 inst.instruction |= inst.operands[0].reg;
10890 inst.instruction |= inst.operands[1].reg << 3;
10891 }
10892 }
10893 }
10894 else
10895 {
10896 constraint (inst.operands[0].reg > 7
10897 || inst.operands[1].reg > 7, BAD_HIREG);
10898 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10899
10900 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10901 {
10902 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10903 constraint (inst.operands[0].reg != inst.operands[1].reg,
10904 _("source1 and dest must be same register"));
10905
10906 switch (inst.instruction)
10907 {
10908 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10909 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10910 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10911 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10912 default: abort ();
10913 }
10914
10915 inst.instruction |= inst.operands[0].reg;
10916 inst.instruction |= inst.operands[2].reg << 3;
10917 }
10918 else
10919 {
10920 switch (inst.instruction)
10921 {
10922 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10923 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10924 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10925 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10926 default: abort ();
10927 }
10928 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10929 inst.instruction |= inst.operands[0].reg;
10930 inst.instruction |= inst.operands[1].reg << 3;
10931 }
10932 }
10933}
10934
10935static void
10936do_t_simd (void)
10937{
10938 unsigned Rd, Rn, Rm;
10939
10940 Rd = inst.operands[0].reg;
10941 Rn = inst.operands[1].reg;
10942 Rm = inst.operands[2].reg;
10943
10944 reject_bad_reg (Rd);
10945 reject_bad_reg (Rn);
10946 reject_bad_reg (Rm);
10947
10948 inst.instruction |= Rd << 8;
10949 inst.instruction |= Rn << 16;
10950 inst.instruction |= Rm;
10951}
10952
10953static void
10954do_t_smc (void)
10955{
10956 unsigned int value = inst.reloc.exp.X_add_number;
10957 constraint (inst.reloc.exp.X_op != O_constant,
10958 _("expression too complex"));
10959 inst.reloc.type = BFD_RELOC_UNUSED;
10960 inst.instruction |= (value & 0xf000) >> 12;
10961 inst.instruction |= (value & 0x0ff0);
10962 inst.instruction |= (value & 0x000f) << 16;
10963}
10964
10965static void
10966do_t_ssat_usat (int bias)
10967{
10968 unsigned Rd, Rn;
10969
10970 Rd = inst.operands[0].reg;
10971 Rn = inst.operands[2].reg;
10972
10973 reject_bad_reg (Rd);
10974 reject_bad_reg (Rn);
10975
10976 inst.instruction |= Rd << 8;
10977 inst.instruction |= inst.operands[1].imm - bias;
10978 inst.instruction |= Rn << 16;
10979
10980 if (inst.operands[3].present)
10981 {
10982 offsetT shift_amount = inst.reloc.exp.X_add_number;
10983
10984 inst.reloc.type = BFD_RELOC_UNUSED;
10985
10986 constraint (inst.reloc.exp.X_op != O_constant,
10987 _("expression too complex"));
10988
10989 if (shift_amount != 0)
10990 {
10991 constraint (shift_amount > 31,
10992 _("shift expression is too large"));
10993
10994 if (inst.operands[3].shift_kind == SHIFT_ASR)
10995 inst.instruction |= 0x00200000; /* sh bit. */
10996
10997 inst.instruction |= (shift_amount & 0x1c) << 10;
10998 inst.instruction |= (shift_amount & 0x03) << 6;
10999 }
11000 }
11001}
11002
11003static void
11004do_t_ssat (void)
11005{
11006 do_t_ssat_usat (1);
11007}
11008
11009static void
11010do_t_ssat16 (void)
11011{
11012 unsigned Rd, Rn;
11013
11014 Rd = inst.operands[0].reg;
11015 Rn = inst.operands[2].reg;
11016
11017 reject_bad_reg (Rd);
11018 reject_bad_reg (Rn);
11019
11020 inst.instruction |= Rd << 8;
11021 inst.instruction |= inst.operands[1].imm - 1;
11022 inst.instruction |= Rn << 16;
11023}
11024
11025static void
11026do_t_strex (void)
11027{
11028 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11029 || inst.operands[2].postind || inst.operands[2].writeback
11030 || inst.operands[2].immisreg || inst.operands[2].shifted
11031 || inst.operands[2].negative,
11032 BAD_ADDR_MODE);
11033
11034 inst.instruction |= inst.operands[0].reg << 8;
11035 inst.instruction |= inst.operands[1].reg << 12;
11036 inst.instruction |= inst.operands[2].reg << 16;
11037 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11038}
11039
11040static void
11041do_t_strexd (void)
11042{
11043 if (!inst.operands[2].present)
11044 inst.operands[2].reg = inst.operands[1].reg + 1;
11045
11046 constraint (inst.operands[0].reg == inst.operands[1].reg
11047 || inst.operands[0].reg == inst.operands[2].reg
11048 || inst.operands[0].reg == inst.operands[3].reg
11049 || inst.operands[1].reg == inst.operands[2].reg,
11050 BAD_OVERLAP);
11051
11052 inst.instruction |= inst.operands[0].reg;
11053 inst.instruction |= inst.operands[1].reg << 12;
11054 inst.instruction |= inst.operands[2].reg << 8;
11055 inst.instruction |= inst.operands[3].reg << 16;
11056}
11057
11058static void
11059do_t_sxtah (void)
11060{
11061 unsigned Rd, Rn, Rm;
11062
11063 Rd = inst.operands[0].reg;
11064 Rn = inst.operands[1].reg;
11065 Rm = inst.operands[2].reg;
11066
11067 reject_bad_reg (Rd);
11068 reject_bad_reg (Rn);
11069 reject_bad_reg (Rm);
11070
11071 inst.instruction |= Rd << 8;
11072 inst.instruction |= Rn << 16;
11073 inst.instruction |= Rm;
11074 inst.instruction |= inst.operands[3].imm << 4;
11075}
11076
11077static void
11078do_t_sxth (void)
11079{
11080 unsigned Rd, Rm;
11081
11082 Rd = inst.operands[0].reg;
11083 Rm = inst.operands[1].reg;
11084
11085 reject_bad_reg (Rd);
11086 reject_bad_reg (Rm);
11087
11088 if (inst.instruction <= 0xffff
11089 && inst.size_req != 4
11090 && Rd <= 7 && Rm <= 7
11091 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11092 {
11093 inst.instruction = THUMB_OP16 (inst.instruction);
11094 inst.instruction |= Rd;
11095 inst.instruction |= Rm << 3;
11096 }
11097 else if (unified_syntax)
11098 {
11099 if (inst.instruction <= 0xffff)
11100 inst.instruction = THUMB_OP32 (inst.instruction);
11101 inst.instruction |= Rd << 8;
11102 inst.instruction |= Rm;
11103 inst.instruction |= inst.operands[2].imm << 4;
11104 }
11105 else
11106 {
11107 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11108 _("Thumb encoding does not support rotation"));
11109 constraint (1, BAD_HIREG);
11110 }
11111}
11112
11113static void
11114do_t_swi (void)
11115{
11116 inst.reloc.type = BFD_RELOC_ARM_SWI;
11117}
11118
11119static void
11120do_t_tb (void)
11121{
11122 unsigned Rn, Rm;
11123 int half;
11124
11125 half = (inst.instruction & 0x10) != 0;
11126 set_it_insn_type_last ();
11127 constraint (inst.operands[0].immisreg,
11128 _("instruction requires register index"));
11129
11130 Rn = inst.operands[0].reg;
11131 Rm = inst.operands[0].imm;
11132
11133 constraint (Rn == REG_SP, BAD_SP);
11134 reject_bad_reg (Rm);
11135
11136 constraint (!half && inst.operands[0].shifted,
11137 _("instruction does not allow shifted index"));
11138 inst.instruction |= (Rn << 16) | Rm;
11139}
11140
11141static void
11142do_t_usat (void)
11143{
11144 do_t_ssat_usat (0);
11145}
11146
11147static void
11148do_t_usat16 (void)
11149{
11150 unsigned Rd, Rn;
11151
11152 Rd = inst.operands[0].reg;
11153 Rn = inst.operands[2].reg;
11154
11155 reject_bad_reg (Rd);
11156 reject_bad_reg (Rn);
11157
11158 inst.instruction |= Rd << 8;
11159 inst.instruction |= inst.operands[1].imm;
11160 inst.instruction |= Rn << 16;
11161}
11162
11163/* Neon instruction encoder helpers. */
11164
11165/* Encodings for the different types for various Neon opcodes. */
11166
11167/* An "invalid" code for the following tables. */
11168#define N_INV -1u
11169
11170struct neon_tab_entry
11171{
11172 unsigned integer;
11173 unsigned float_or_poly;
11174 unsigned scalar_or_imm;
11175};
11176
11177/* Map overloaded Neon opcodes to their respective encodings. */
11178#define NEON_ENC_TAB \
11179 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11180 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11181 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11182 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11183 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11184 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11185 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11186 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11187 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11188 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11189 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11190 /* Register variants of the following two instructions are encoded as
11191 vcge / vcgt with the operands reversed. */ \
11192 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11193 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11194 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11195 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11196 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11197 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11198 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11199 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11200 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11201 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11202 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11203 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11204 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11205 X(vshl, 0x0000400, N_INV, 0x0800510), \
11206 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11207 X(vand, 0x0000110, N_INV, 0x0800030), \
11208 X(vbic, 0x0100110, N_INV, 0x0800030), \
11209 X(veor, 0x1000110, N_INV, N_INV), \
11210 X(vorn, 0x0300110, N_INV, 0x0800010), \
11211 X(vorr, 0x0200110, N_INV, 0x0800010), \
11212 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11213 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11214 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11215 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11216 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11217 X(vst1, 0x0000000, 0x0800000, N_INV), \
11218 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11219 X(vst2, 0x0000100, 0x0800100, N_INV), \
11220 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11221 X(vst3, 0x0000200, 0x0800200, N_INV), \
11222 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11223 X(vst4, 0x0000300, 0x0800300, N_INV), \
11224 X(vmovn, 0x1b20200, N_INV, N_INV), \
11225 X(vtrn, 0x1b20080, N_INV, N_INV), \
11226 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11227 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11228 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11229 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
11230 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
11231 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11232 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11233 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11234 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11235
11236enum neon_opc
11237{
11238#define X(OPC,I,F,S) N_MNEM_##OPC
11239NEON_ENC_TAB
11240#undef X
11241};
11242
11243static const struct neon_tab_entry neon_enc_tab[] =
11244{
11245#define X(OPC,I,F,S) { (I), (F), (S) }
11246NEON_ENC_TAB
11247#undef X
11248};
11249
11250#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11251#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11252#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11253#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11254#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11255#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11256#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11257#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11258#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11259#define NEON_ENC_SINGLE(X) \
11260 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11261#define NEON_ENC_DOUBLE(X) \
11262 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11263
11264/* Define shapes for instruction operands. The following mnemonic characters
11265 are used in this table:
11266
11267 F - VFP S<n> register
11268 D - Neon D<n> register
11269 Q - Neon Q<n> register
11270 I - Immediate
11271 S - Scalar
11272 R - ARM register
11273 L - D<n> register list
11274
11275 This table is used to generate various data:
11276 - enumerations of the form NS_DDR to be used as arguments to
11277 neon_select_shape.
11278 - a table classifying shapes into single, double, quad, mixed.
11279 - a table used to drive neon_select_shape. */
11280
11281#define NEON_SHAPE_DEF \
11282 X(3, (D, D, D), DOUBLE), \
11283 X(3, (Q, Q, Q), QUAD), \
11284 X(3, (D, D, I), DOUBLE), \
11285 X(3, (Q, Q, I), QUAD), \
11286 X(3, (D, D, S), DOUBLE), \
11287 X(3, (Q, Q, S), QUAD), \
11288 X(2, (D, D), DOUBLE), \
11289 X(2, (Q, Q), QUAD), \
11290 X(2, (D, S), DOUBLE), \
11291 X(2, (Q, S), QUAD), \
11292 X(2, (D, R), DOUBLE), \
11293 X(2, (Q, R), QUAD), \
11294 X(2, (D, I), DOUBLE), \
11295 X(2, (Q, I), QUAD), \
11296 X(3, (D, L, D), DOUBLE), \
11297 X(2, (D, Q), MIXED), \
11298 X(2, (Q, D), MIXED), \
11299 X(3, (D, Q, I), MIXED), \
11300 X(3, (Q, D, I), MIXED), \
11301 X(3, (Q, D, D), MIXED), \
11302 X(3, (D, Q, Q), MIXED), \
11303 X(3, (Q, Q, D), MIXED), \
11304 X(3, (Q, D, S), MIXED), \
11305 X(3, (D, Q, S), MIXED), \
11306 X(4, (D, D, D, I), DOUBLE), \
11307 X(4, (Q, Q, Q, I), QUAD), \
11308 X(2, (F, F), SINGLE), \
11309 X(3, (F, F, F), SINGLE), \
11310 X(2, (F, I), SINGLE), \
11311 X(2, (F, D), MIXED), \
11312 X(2, (D, F), MIXED), \
11313 X(3, (F, F, I), MIXED), \
11314 X(4, (R, R, F, F), SINGLE), \
11315 X(4, (F, F, R, R), SINGLE), \
11316 X(3, (D, R, R), DOUBLE), \
11317 X(3, (R, R, D), DOUBLE), \
11318 X(2, (S, R), SINGLE), \
11319 X(2, (R, S), SINGLE), \
11320 X(2, (F, R), SINGLE), \
11321 X(2, (R, F), SINGLE)
11322
11323#define S2(A,B) NS_##A##B
11324#define S3(A,B,C) NS_##A##B##C
11325#define S4(A,B,C,D) NS_##A##B##C##D
11326
11327#define X(N, L, C) S##N L
11328
11329enum neon_shape
11330{
11331 NEON_SHAPE_DEF,
11332 NS_NULL
11333};
11334
11335#undef X
11336#undef S2
11337#undef S3
11338#undef S4
11339
11340enum neon_shape_class
11341{
11342 SC_SINGLE,
11343 SC_DOUBLE,
11344 SC_QUAD,
11345 SC_MIXED
11346};
11347
11348#define X(N, L, C) SC_##C
11349
11350static enum neon_shape_class neon_shape_class[] =
11351{
11352 NEON_SHAPE_DEF
11353};
11354
11355#undef X
11356
11357enum neon_shape_el
11358{
11359 SE_F,
11360 SE_D,
11361 SE_Q,
11362 SE_I,
11363 SE_S,
11364 SE_R,
11365 SE_L
11366};
11367
11368/* Register widths of above. */
11369static unsigned neon_shape_el_size[] =
11370{
11371 32,
11372 64,
11373 128,
11374 0,
11375 32,
11376 32,
11377 0
11378};
11379
11380struct neon_shape_info
11381{
11382 unsigned els;
11383 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11384};
11385
11386#define S2(A,B) { SE_##A, SE_##B }
11387#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11388#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11389
11390#define X(N, L, C) { N, S##N L }
11391
11392static struct neon_shape_info neon_shape_tab[] =
11393{
11394 NEON_SHAPE_DEF
11395};
11396
11397#undef X
11398#undef S2
11399#undef S3
11400#undef S4
11401
11402/* Bit masks used in type checking given instructions.
11403 'N_EQK' means the type must be the same as (or based on in some way) the key
11404 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11405 set, various other bits can be set as well in order to modify the meaning of
11406 the type constraint. */
11407
11408enum neon_type_mask
11409{
11410 N_S8 = 0x0000001,
11411 N_S16 = 0x0000002,
11412 N_S32 = 0x0000004,
11413 N_S64 = 0x0000008,
11414 N_U8 = 0x0000010,
11415 N_U16 = 0x0000020,
11416 N_U32 = 0x0000040,
11417 N_U64 = 0x0000080,
11418 N_I8 = 0x0000100,
11419 N_I16 = 0x0000200,
11420 N_I32 = 0x0000400,
11421 N_I64 = 0x0000800,
11422 N_8 = 0x0001000,
11423 N_16 = 0x0002000,
11424 N_32 = 0x0004000,
11425 N_64 = 0x0008000,
11426 N_P8 = 0x0010000,
11427 N_P16 = 0x0020000,
11428 N_F16 = 0x0040000,
11429 N_F32 = 0x0080000,
11430 N_F64 = 0x0100000,
11431 N_KEY = 0x1000000, /* Key element (main type specifier). */
11432 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
11433 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11434 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11435 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11436 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11437 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11438 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11439 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11440 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
11441 N_UTYP = 0,
11442 N_MAX_NONSPECIAL = N_F64
11443};
11444
11445#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11446
11447#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11448#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11449#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11450#define N_SUF_32 (N_SU_32 | N_F32)
11451#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11452#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11453
11454/* Pass this as the first type argument to neon_check_type to ignore types
11455 altogether. */
11456#define N_IGNORE_TYPE (N_KEY | N_EQK)
11457
11458/* Select a "shape" for the current instruction (describing register types or
11459 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11460 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11461 function of operand parsing, so this function doesn't need to be called.
11462 Shapes should be listed in order of decreasing length. */
11463
11464static enum neon_shape
11465neon_select_shape (enum neon_shape shape, ...)
11466{
11467 va_list ap;
11468 enum neon_shape first_shape = shape;
11469
11470 /* Fix missing optional operands. FIXME: we don't know at this point how
11471 many arguments we should have, so this makes the assumption that we have
11472 > 1. This is true of all current Neon opcodes, I think, but may not be
11473 true in the future. */
11474 if (!inst.operands[1].present)
11475 inst.operands[1] = inst.operands[0];
11476
11477 va_start (ap, shape);
11478
11479 for (; shape != NS_NULL; shape = va_arg (ap, int))
11480 {
11481 unsigned j;
11482 int matches = 1;
11483
11484 for (j = 0; j < neon_shape_tab[shape].els; j++)
11485 {
11486 if (!inst.operands[j].present)
11487 {
11488 matches = 0;
11489 break;
11490 }
11491
11492 switch (neon_shape_tab[shape].el[j])
11493 {
11494 case SE_F:
11495 if (!(inst.operands[j].isreg
11496 && inst.operands[j].isvec
11497 && inst.operands[j].issingle
11498 && !inst.operands[j].isquad))
11499 matches = 0;
11500 break;
11501
11502 case SE_D:
11503 if (!(inst.operands[j].isreg
11504 && inst.operands[j].isvec
11505 && !inst.operands[j].isquad
11506 && !inst.operands[j].issingle))
11507 matches = 0;
11508 break;
11509
11510 case SE_R:
11511 if (!(inst.operands[j].isreg
11512 && !inst.operands[j].isvec))
11513 matches = 0;
11514 break;
11515
11516 case SE_Q:
11517 if (!(inst.operands[j].isreg
11518 && inst.operands[j].isvec
11519 && inst.operands[j].isquad
11520 && !inst.operands[j].issingle))
11521 matches = 0;
11522 break;
11523
11524 case SE_I:
11525 if (!(!inst.operands[j].isreg
11526 && !inst.operands[j].isscalar))
11527 matches = 0;
11528 break;
11529
11530 case SE_S:
11531 if (!(!inst.operands[j].isreg
11532 && inst.operands[j].isscalar))
11533 matches = 0;
11534 break;
11535
11536 case SE_L:
11537 break;
11538 }
11539 }
11540 if (matches)
11541 break;
11542 }
11543
11544 va_end (ap);
11545
11546 if (shape == NS_NULL && first_shape != NS_NULL)
11547 first_error (_("invalid instruction shape"));
11548
11549 return shape;
11550}
11551
11552/* True if SHAPE is predominantly a quadword operation (most of the time, this
11553 means the Q bit should be set). */
11554
11555static int
11556neon_quad (enum neon_shape shape)
11557{
11558 return neon_shape_class[shape] == SC_QUAD;
11559}
11560
11561static void
11562neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11563 unsigned *g_size)
11564{
11565 /* Allow modification to be made to types which are constrained to be
11566 based on the key element, based on bits set alongside N_EQK. */
11567 if ((typebits & N_EQK) != 0)
11568 {
11569 if ((typebits & N_HLF) != 0)
11570 *g_size /= 2;
11571 else if ((typebits & N_DBL) != 0)
11572 *g_size *= 2;
11573 if ((typebits & N_SGN) != 0)
11574 *g_type = NT_signed;
11575 else if ((typebits & N_UNS) != 0)
11576 *g_type = NT_unsigned;
11577 else if ((typebits & N_INT) != 0)
11578 *g_type = NT_integer;
11579 else if ((typebits & N_FLT) != 0)
11580 *g_type = NT_float;
11581 else if ((typebits & N_SIZ) != 0)
11582 *g_type = NT_untyped;
11583 }
11584}
11585
11586/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11587 operand type, i.e. the single type specified in a Neon instruction when it
11588 is the only one given. */
11589
11590static struct neon_type_el
11591neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11592{
11593 struct neon_type_el dest = *key;
11594
11595 gas_assert ((thisarg & N_EQK) != 0);
11596
11597 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11598
11599 return dest;
11600}
11601
11602/* Convert Neon type and size into compact bitmask representation. */
11603
11604static enum neon_type_mask
11605type_chk_of_el_type (enum neon_el_type type, unsigned size)
11606{
11607 switch (type)
11608 {
11609 case NT_untyped:
11610 switch (size)
11611 {
11612 case 8: return N_8;
11613 case 16: return N_16;
11614 case 32: return N_32;
11615 case 64: return N_64;
11616 default: ;
11617 }
11618 break;
11619
11620 case NT_integer:
11621 switch (size)
11622 {
11623 case 8: return N_I8;
11624 case 16: return N_I16;
11625 case 32: return N_I32;
11626 case 64: return N_I64;
11627 default: ;
11628 }
11629 break;
11630
11631 case NT_float:
11632 switch (size)
11633 {
11634 case 16: return N_F16;
11635 case 32: return N_F32;
11636 case 64: return N_F64;
11637 default: ;
11638 }
11639 break;
11640
11641 case NT_poly:
11642 switch (size)
11643 {
11644 case 8: return N_P8;
11645 case 16: return N_P16;
11646 default: ;
11647 }
11648 break;
11649
11650 case NT_signed:
11651 switch (size)
11652 {
11653 case 8: return N_S8;
11654 case 16: return N_S16;
11655 case 32: return N_S32;
11656 case 64: return N_S64;
11657 default: ;
11658 }
11659 break;
11660
11661 case NT_unsigned:
11662 switch (size)
11663 {
11664 case 8: return N_U8;
11665 case 16: return N_U16;
11666 case 32: return N_U32;
11667 case 64: return N_U64;
11668 default: ;
11669 }
11670 break;
11671
11672 default: ;
11673 }
11674
11675 return N_UTYP;
11676}
11677
11678/* Convert compact Neon bitmask type representation to a type and size. Only
11679 handles the case where a single bit is set in the mask. */
11680
11681static int
11682el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11683 enum neon_type_mask mask)
11684{
11685 if ((mask & N_EQK) != 0)
11686 return FAIL;
11687
11688 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11689 *size = 8;
11690 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
11691 *size = 16;
11692 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
11693 *size = 32;
11694 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
11695 *size = 64;
11696 else
11697 return FAIL;
11698
11699 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11700 *type = NT_signed;
11701 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
11702 *type = NT_unsigned;
11703 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
11704 *type = NT_integer;
11705 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
11706 *type = NT_untyped;
11707 else if ((mask & (N_P8 | N_P16)) != 0)
11708 *type = NT_poly;
11709 else if ((mask & (N_F32 | N_F64)) != 0)
11710 *type = NT_float;
11711 else
11712 return FAIL;
11713
11714 return SUCCESS;
11715}
11716
11717/* Modify a bitmask of allowed types. This is only needed for type
11718 relaxation. */
11719
11720static unsigned
11721modify_types_allowed (unsigned allowed, unsigned mods)
11722{
11723 unsigned size;
11724 enum neon_el_type type;
11725 unsigned destmask;
11726 int i;
11727
11728 destmask = 0;
11729
11730 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11731 {
11732 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
11733 {
11734 neon_modify_type_size (mods, &type, &size);
11735 destmask |= type_chk_of_el_type (type, size);
11736 }
11737 }
11738
11739 return destmask;
11740}
11741
11742/* Check type and return type classification.
11743 The manual states (paraphrase): If one datatype is given, it indicates the
11744 type given in:
11745 - the second operand, if there is one
11746 - the operand, if there is no second operand
11747 - the result, if there are no operands.
11748 This isn't quite good enough though, so we use a concept of a "key" datatype
11749 which is set on a per-instruction basis, which is the one which matters when
11750 only one data type is written.
11751 Note: this function has side-effects (e.g. filling in missing operands). All
11752 Neon instructions should call it before performing bit encoding. */
11753
11754static struct neon_type_el
11755neon_check_type (unsigned els, enum neon_shape ns, ...)
11756{
11757 va_list ap;
11758 unsigned i, pass, key_el = 0;
11759 unsigned types[NEON_MAX_TYPE_ELS];
11760 enum neon_el_type k_type = NT_invtype;
11761 unsigned k_size = -1u;
11762 struct neon_type_el badtype = {NT_invtype, -1};
11763 unsigned key_allowed = 0;
11764
11765 /* Optional registers in Neon instructions are always (not) in operand 1.
11766 Fill in the missing operand here, if it was omitted. */
11767 if (els > 1 && !inst.operands[1].present)
11768 inst.operands[1] = inst.operands[0];
11769
11770 /* Suck up all the varargs. */
11771 va_start (ap, ns);
11772 for (i = 0; i < els; i++)
11773 {
11774 unsigned thisarg = va_arg (ap, unsigned);
11775 if (thisarg == N_IGNORE_TYPE)
11776 {
11777 va_end (ap);
11778 return badtype;
11779 }
11780 types[i] = thisarg;
11781 if ((thisarg & N_KEY) != 0)
11782 key_el = i;
11783 }
11784 va_end (ap);
11785
11786 if (inst.vectype.elems > 0)
11787 for (i = 0; i < els; i++)
11788 if (inst.operands[i].vectype.type != NT_invtype)
11789 {
11790 first_error (_("types specified in both the mnemonic and operands"));
11791 return badtype;
11792 }
11793
11794 /* Duplicate inst.vectype elements here as necessary.
11795 FIXME: No idea if this is exactly the same as the ARM assembler,
11796 particularly when an insn takes one register and one non-register
11797 operand. */
11798 if (inst.vectype.elems == 1 && els > 1)
11799 {
11800 unsigned j;
11801 inst.vectype.elems = els;
11802 inst.vectype.el[key_el] = inst.vectype.el[0];
11803 for (j = 0; j < els; j++)
11804 if (j != key_el)
11805 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11806 types[j]);
11807 }
11808 else if (inst.vectype.elems == 0 && els > 0)
11809 {
11810 unsigned j;
11811 /* No types were given after the mnemonic, so look for types specified
11812 after each operand. We allow some flexibility here; as long as the
11813 "key" operand has a type, we can infer the others. */
11814 for (j = 0; j < els; j++)
11815 if (inst.operands[j].vectype.type != NT_invtype)
11816 inst.vectype.el[j] = inst.operands[j].vectype;
11817
11818 if (inst.operands[key_el].vectype.type != NT_invtype)
11819 {
11820 for (j = 0; j < els; j++)
11821 if (inst.operands[j].vectype.type == NT_invtype)
11822 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11823 types[j]);
11824 }
11825 else
11826 {
11827 first_error (_("operand types can't be inferred"));
11828 return badtype;
11829 }
11830 }
11831 else if (inst.vectype.elems != els)
11832 {
11833 first_error (_("type specifier has the wrong number of parts"));
11834 return badtype;
11835 }
11836
11837 for (pass = 0; pass < 2; pass++)
11838 {
11839 for (i = 0; i < els; i++)
11840 {
11841 unsigned thisarg = types[i];
11842 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11843 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11844 enum neon_el_type g_type = inst.vectype.el[i].type;
11845 unsigned g_size = inst.vectype.el[i].size;
11846
11847 /* Decay more-specific signed & unsigned types to sign-insensitive
11848 integer types if sign-specific variants are unavailable. */
11849 if ((g_type == NT_signed || g_type == NT_unsigned)
11850 && (types_allowed & N_SU_ALL) == 0)
11851 g_type = NT_integer;
11852
11853 /* If only untyped args are allowed, decay any more specific types to
11854 them. Some instructions only care about signs for some element
11855 sizes, so handle that properly. */
11856 if ((g_size == 8 && (types_allowed & N_8) != 0)
11857 || (g_size == 16 && (types_allowed & N_16) != 0)
11858 || (g_size == 32 && (types_allowed & N_32) != 0)
11859 || (g_size == 64 && (types_allowed & N_64) != 0))
11860 g_type = NT_untyped;
11861
11862 if (pass == 0)
11863 {
11864 if ((thisarg & N_KEY) != 0)
11865 {
11866 k_type = g_type;
11867 k_size = g_size;
11868 key_allowed = thisarg & ~N_KEY;
11869 }
11870 }
11871 else
11872 {
11873 if ((thisarg & N_VFP) != 0)
11874 {
11875 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11876 unsigned regwidth = neon_shape_el_size[regshape], match;
11877
11878 /* In VFP mode, operands must match register widths. If we
11879 have a key operand, use its width, else use the width of
11880 the current operand. */
11881 if (k_size != -1u)
11882 match = k_size;
11883 else
11884 match = g_size;
11885
11886 if (regwidth != match)
11887 {
11888 first_error (_("operand size must match register width"));
11889 return badtype;
11890 }
11891 }
11892
11893 if ((thisarg & N_EQK) == 0)
11894 {
11895 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11896
11897 if ((given_type & types_allowed) == 0)
11898 {
11899 first_error (_("bad type in Neon instruction"));
11900 return badtype;
11901 }
11902 }
11903 else
11904 {
11905 enum neon_el_type mod_k_type = k_type;
11906 unsigned mod_k_size = k_size;
11907 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11908 if (g_type != mod_k_type || g_size != mod_k_size)
11909 {
11910 first_error (_("inconsistent types in Neon instruction"));
11911 return badtype;
11912 }
11913 }
11914 }
11915 }
11916 }
11917
11918 return inst.vectype.el[key_el];
11919}
11920
11921/* Neon-style VFP instruction forwarding. */
11922
11923/* Thumb VFP instructions have 0xE in the condition field. */
11924
11925static void
11926do_vfp_cond_or_thumb (void)
11927{
11928 if (thumb_mode)
11929 inst.instruction |= 0xe0000000;
11930 else
11931 inst.instruction |= inst.cond << 28;
11932}
11933
11934/* Look up and encode a simple mnemonic, for use as a helper function for the
11935 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11936 etc. It is assumed that operand parsing has already been done, and that the
11937 operands are in the form expected by the given opcode (this isn't necessarily
11938 the same as the form in which they were parsed, hence some massaging must
11939 take place before this function is called).
11940 Checks current arch version against that in the looked-up opcode. */
11941
11942static void
11943do_vfp_nsyn_opcode (const char *opname)
11944{
11945 const struct asm_opcode *opcode;
11946
11947 opcode = hash_find (arm_ops_hsh, opname);
11948
11949 if (!opcode)
11950 abort ();
11951
11952 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11953 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11954 _(BAD_FPU));
11955
11956 if (thumb_mode)
11957 {
11958 inst.instruction = opcode->tvalue;
11959 opcode->tencode ();
11960 }
11961 else
11962 {
11963 inst.instruction = (inst.cond << 28) | opcode->avalue;
11964 opcode->aencode ();
11965 }
11966}
11967
11968static void
11969do_vfp_nsyn_add_sub (enum neon_shape rs)
11970{
11971 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11972
11973 if (rs == NS_FFF)
11974 {
11975 if (is_add)
11976 do_vfp_nsyn_opcode ("fadds");
11977 else
11978 do_vfp_nsyn_opcode ("fsubs");
11979 }
11980 else
11981 {
11982 if (is_add)
11983 do_vfp_nsyn_opcode ("faddd");
11984 else
11985 do_vfp_nsyn_opcode ("fsubd");
11986 }
11987}
11988
11989/* Check operand types to see if this is a VFP instruction, and if so call
11990 PFN (). */
11991
11992static int
11993try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11994{
11995 enum neon_shape rs;
11996 struct neon_type_el et;
11997
11998 switch (args)
11999 {
12000 case 2:
12001 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12002 et = neon_check_type (2, rs,
12003 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12004 break;
12005
12006 case 3:
12007 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12008 et = neon_check_type (3, rs,
12009 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12010 break;
12011
12012 default:
12013 abort ();
12014 }
12015
12016 if (et.type != NT_invtype)
12017 {
12018 pfn (rs);
12019 return SUCCESS;
12020 }
12021 else
12022 inst.error = NULL;
12023
12024 return FAIL;
12025}
12026
12027static void
12028do_vfp_nsyn_mla_mls (enum neon_shape rs)
12029{
12030 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12031
12032 if (rs == NS_FFF)
12033 {
12034 if (is_mla)
12035 do_vfp_nsyn_opcode ("fmacs");
12036 else
12037 do_vfp_nsyn_opcode ("fmscs");
12038 }
12039 else
12040 {
12041 if (is_mla)
12042 do_vfp_nsyn_opcode ("fmacd");
12043 else
12044 do_vfp_nsyn_opcode ("fmscd");
12045 }
12046}
12047
12048static void
12049do_vfp_nsyn_mul (enum neon_shape rs)
12050{
12051 if (rs == NS_FFF)
12052 do_vfp_nsyn_opcode ("fmuls");
12053 else
12054 do_vfp_nsyn_opcode ("fmuld");
12055}
12056
12057static void
12058do_vfp_nsyn_abs_neg (enum neon_shape rs)
12059{
12060 int is_neg = (inst.instruction & 0x80) != 0;
12061 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12062
12063 if (rs == NS_FF)
12064 {
12065 if (is_neg)
12066 do_vfp_nsyn_opcode ("fnegs");
12067 else
12068 do_vfp_nsyn_opcode ("fabss");
12069 }
12070 else
12071 {
12072 if (is_neg)
12073 do_vfp_nsyn_opcode ("fnegd");
12074 else
12075 do_vfp_nsyn_opcode ("fabsd");
12076 }
12077}
12078
12079/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12080 insns belong to Neon, and are handled elsewhere. */
12081
12082static void
12083do_vfp_nsyn_ldm_stm (int is_dbmode)
12084{
12085 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12086 if (is_ldm)
12087 {
12088 if (is_dbmode)
12089 do_vfp_nsyn_opcode ("fldmdbs");
12090 else
12091 do_vfp_nsyn_opcode ("fldmias");
12092 }
12093 else
12094 {
12095 if (is_dbmode)
12096 do_vfp_nsyn_opcode ("fstmdbs");
12097 else
12098 do_vfp_nsyn_opcode ("fstmias");
12099 }
12100}
12101
12102static void
12103do_vfp_nsyn_sqrt (void)
12104{
12105 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12106 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12107
12108 if (rs == NS_FF)
12109 do_vfp_nsyn_opcode ("fsqrts");
12110 else
12111 do_vfp_nsyn_opcode ("fsqrtd");
12112}
12113
12114static void
12115do_vfp_nsyn_div (void)
12116{
12117 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12118 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12119 N_F32 | N_F64 | N_KEY | N_VFP);
12120
12121 if (rs == NS_FFF)
12122 do_vfp_nsyn_opcode ("fdivs");
12123 else
12124 do_vfp_nsyn_opcode ("fdivd");
12125}
12126
12127static void
12128do_vfp_nsyn_nmul (void)
12129{
12130 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12131 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12132 N_F32 | N_F64 | N_KEY | N_VFP);
12133
12134 if (rs == NS_FFF)
12135 {
12136 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12137 do_vfp_sp_dyadic ();
12138 }
12139 else
12140 {
12141 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12142 do_vfp_dp_rd_rn_rm ();
12143 }
12144 do_vfp_cond_or_thumb ();
12145}
12146
12147static void
12148do_vfp_nsyn_cmp (void)
12149{
12150 if (inst.operands[1].isreg)
12151 {
12152 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12153 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12154
12155 if (rs == NS_FF)
12156 {
12157 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12158 do_vfp_sp_monadic ();
12159 }
12160 else
12161 {
12162 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12163 do_vfp_dp_rd_rm ();
12164 }
12165 }
12166 else
12167 {
12168 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12169 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12170
12171 switch (inst.instruction & 0x0fffffff)
12172 {
12173 case N_MNEM_vcmp:
12174 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12175 break;
12176 case N_MNEM_vcmpe:
12177 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12178 break;
12179 default:
12180 abort ();
12181 }
12182
12183 if (rs == NS_FI)
12184 {
12185 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12186 do_vfp_sp_compare_z ();
12187 }
12188 else
12189 {
12190 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12191 do_vfp_dp_rd ();
12192 }
12193 }
12194 do_vfp_cond_or_thumb ();
12195}
12196
12197static void
12198nsyn_insert_sp (void)
12199{
12200 inst.operands[1] = inst.operands[0];
12201 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12202 inst.operands[0].reg = REG_SP;
12203 inst.operands[0].isreg = 1;
12204 inst.operands[0].writeback = 1;
12205 inst.operands[0].present = 1;
12206}
12207
12208static void
12209do_vfp_nsyn_push (void)
12210{
12211 nsyn_insert_sp ();
12212 if (inst.operands[1].issingle)
12213 do_vfp_nsyn_opcode ("fstmdbs");
12214 else
12215 do_vfp_nsyn_opcode ("fstmdbd");
12216}
12217
12218static void
12219do_vfp_nsyn_pop (void)
12220{
12221 nsyn_insert_sp ();
12222 if (inst.operands[1].issingle)
12223 do_vfp_nsyn_opcode ("fldmias");
12224 else
12225 do_vfp_nsyn_opcode ("fldmiad");
12226}
12227
12228/* Fix up Neon data-processing instructions, ORing in the correct bits for
12229 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12230
12231static unsigned
12232neon_dp_fixup (unsigned i)
12233{
12234 if (thumb_mode)
12235 {
12236 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12237 if (i & (1 << 24))
12238 i |= 1 << 28;
12239
12240 i &= ~(1 << 24);
12241
12242 i |= 0xef000000;
12243 }
12244 else
12245 i |= 0xf2000000;
12246
12247 return i;
12248}
12249
12250/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12251 (0, 1, 2, 3). */
12252
12253static unsigned
12254neon_logbits (unsigned x)
12255{
12256 return ffs (x) - 4;
12257}
12258
12259#define LOW4(R) ((R) & 0xf)
12260#define HI1(R) (((R) >> 4) & 1)
12261
12262/* Encode insns with bit pattern:
12263
12264 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12265 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12266
12267 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12268 different meaning for some instruction. */
12269
12270static void
12271neon_three_same (int isquad, int ubit, int size)
12272{
12273 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12274 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12275 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12276 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12277 inst.instruction |= LOW4 (inst.operands[2].reg);
12278 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12279 inst.instruction |= (isquad != 0) << 6;
12280 inst.instruction |= (ubit != 0) << 24;
12281 if (size != -1)
12282 inst.instruction |= neon_logbits (size) << 20;
12283
12284 inst.instruction = neon_dp_fixup (inst.instruction);
12285}
12286
12287/* Encode instructions of the form:
12288
12289 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12290 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12291
12292 Don't write size if SIZE == -1. */
12293
12294static void
12295neon_two_same (int qbit, int ubit, int size)
12296{
12297 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12298 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12299 inst.instruction |= LOW4 (inst.operands[1].reg);
12300 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12301 inst.instruction |= (qbit != 0) << 6;
12302 inst.instruction |= (ubit != 0) << 24;
12303
12304 if (size != -1)
12305 inst.instruction |= neon_logbits (size) << 18;
12306
12307 inst.instruction = neon_dp_fixup (inst.instruction);
12308}
12309
12310/* Neon instruction encoders, in approximate order of appearance. */
12311
12312static void
12313do_neon_dyadic_i_su (void)
12314{
12315 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12316 struct neon_type_el et = neon_check_type (3, rs,
12317 N_EQK, N_EQK, N_SU_32 | N_KEY);
12318 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12319}
12320
12321static void
12322do_neon_dyadic_i64_su (void)
12323{
12324 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12325 struct neon_type_el et = neon_check_type (3, rs,
12326 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12327 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12328}
12329
12330static void
12331neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12332 unsigned immbits)
12333{
12334 unsigned size = et.size >> 3;
12335 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12336 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12337 inst.instruction |= LOW4 (inst.operands[1].reg);
12338 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12339 inst.instruction |= (isquad != 0) << 6;
12340 inst.instruction |= immbits << 16;
12341 inst.instruction |= (size >> 3) << 7;
12342 inst.instruction |= (size & 0x7) << 19;
12343 if (write_ubit)
12344 inst.instruction |= (uval != 0) << 24;
12345
12346 inst.instruction = neon_dp_fixup (inst.instruction);
12347}
12348
12349static void
12350do_neon_shl_imm (void)
12351{
12352 if (!inst.operands[2].isreg)
12353 {
12354 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12355 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12356 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12357 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12358 }
12359 else
12360 {
12361 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12362 struct neon_type_el et = neon_check_type (3, rs,
12363 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12364 unsigned int tmp;
12365
12366 /* VSHL/VQSHL 3-register variants have syntax such as:
12367 vshl.xx Dd, Dm, Dn
12368 whereas other 3-register operations encoded by neon_three_same have
12369 syntax like:
12370 vadd.xx Dd, Dn, Dm
12371 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12372 here. */
12373 tmp = inst.operands[2].reg;
12374 inst.operands[2].reg = inst.operands[1].reg;
12375 inst.operands[1].reg = tmp;
12376 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12377 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12378 }
12379}
12380
12381static void
12382do_neon_qshl_imm (void)
12383{
12384 if (!inst.operands[2].isreg)
12385 {
12386 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12387 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12388
12389 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12390 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12391 inst.operands[2].imm);
12392 }
12393 else
12394 {
12395 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12396 struct neon_type_el et = neon_check_type (3, rs,
12397 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12398 unsigned int tmp;
12399
12400 /* See note in do_neon_shl_imm. */
12401 tmp = inst.operands[2].reg;
12402 inst.operands[2].reg = inst.operands[1].reg;
12403 inst.operands[1].reg = tmp;
12404 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12405 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12406 }
12407}
12408
12409static void
12410do_neon_rshl (void)
12411{
12412 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12413 struct neon_type_el et = neon_check_type (3, rs,
12414 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12415 unsigned int tmp;
12416
12417 tmp = inst.operands[2].reg;
12418 inst.operands[2].reg = inst.operands[1].reg;
12419 inst.operands[1].reg = tmp;
12420 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12421}
12422
12423static int
12424neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12425{
12426 /* Handle .I8 pseudo-instructions. */
12427 if (size == 8)
12428 {
12429 /* Unfortunately, this will make everything apart from zero out-of-range.
12430 FIXME is this the intended semantics? There doesn't seem much point in
12431 accepting .I8 if so. */
12432 immediate |= immediate << 8;
12433 size = 16;
12434 }
12435
12436 if (size >= 32)
12437 {
12438 if (immediate == (immediate & 0x000000ff))
12439 {
12440 *immbits = immediate;
12441 return 0x1;
12442 }
12443 else if (immediate == (immediate & 0x0000ff00))
12444 {
12445 *immbits = immediate >> 8;
12446 return 0x3;
12447 }
12448 else if (immediate == (immediate & 0x00ff0000))
12449 {
12450 *immbits = immediate >> 16;
12451 return 0x5;
12452 }
12453 else if (immediate == (immediate & 0xff000000))
12454 {
12455 *immbits = immediate >> 24;
12456 return 0x7;
12457 }
12458 if ((immediate & 0xffff) != (immediate >> 16))
12459 goto bad_immediate;
12460 immediate &= 0xffff;
12461 }
12462
12463 if (immediate == (immediate & 0x000000ff))
12464 {
12465 *immbits = immediate;
12466 return 0x9;
12467 }
12468 else if (immediate == (immediate & 0x0000ff00))
12469 {
12470 *immbits = immediate >> 8;
12471 return 0xb;
12472 }
12473
12474 bad_immediate:
12475 first_error (_("immediate value out of range"));
12476 return FAIL;
12477}
12478
12479/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12480 A, B, C, D. */
12481
12482static int
12483neon_bits_same_in_bytes (unsigned imm)
12484{
12485 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12486 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12487 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12488 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12489}
12490
12491/* For immediate of above form, return 0bABCD. */
12492
12493static unsigned
12494neon_squash_bits (unsigned imm)
12495{
12496 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12497 | ((imm & 0x01000000) >> 21);
12498}
12499
12500/* Compress quarter-float representation to 0b...000 abcdefgh. */
12501
12502static unsigned
12503neon_qfloat_bits (unsigned imm)
12504{
12505 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
12506}
12507
12508/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12509 the instruction. *OP is passed as the initial value of the op field, and
12510 may be set to a different value depending on the constant (i.e.
12511 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
12512 MVN). If the immediate looks like a repeated pattern then also
12513 try smaller element sizes. */
12514
12515static int
12516neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12517 unsigned *immbits, int *op, int size,
12518 enum neon_el_type type)
12519{
12520 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12521 float. */
12522 if (type == NT_float && !float_p)
12523 return FAIL;
12524
12525 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12526 {
12527 if (size != 32 || *op == 1)
12528 return FAIL;
12529 *immbits = neon_qfloat_bits (immlo);
12530 return 0xf;
12531 }
12532
12533 if (size == 64)
12534 {
12535 if (neon_bits_same_in_bytes (immhi)
12536 && neon_bits_same_in_bytes (immlo))
12537 {
12538 if (*op == 1)
12539 return FAIL;
12540 *immbits = (neon_squash_bits (immhi) << 4)
12541 | neon_squash_bits (immlo);
12542 *op = 1;
12543 return 0xe;
12544 }
12545
12546 if (immhi != immlo)
12547 return FAIL;
12548 }
12549
12550 if (size >= 32)
12551 {
12552 if (immlo == (immlo & 0x000000ff))
12553 {
12554 *immbits = immlo;
12555 return 0x0;
12556 }
12557 else if (immlo == (immlo & 0x0000ff00))
12558 {
12559 *immbits = immlo >> 8;
12560 return 0x2;
12561 }
12562 else if (immlo == (immlo & 0x00ff0000))
12563 {
12564 *immbits = immlo >> 16;
12565 return 0x4;
12566 }
12567 else if (immlo == (immlo & 0xff000000))
12568 {
12569 *immbits = immlo >> 24;
12570 return 0x6;
12571 }
12572 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12573 {
12574 *immbits = (immlo >> 8) & 0xff;
12575 return 0xc;
12576 }
12577 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12578 {
12579 *immbits = (immlo >> 16) & 0xff;
12580 return 0xd;
12581 }
12582
12583 if ((immlo & 0xffff) != (immlo >> 16))
12584 return FAIL;
12585 immlo &= 0xffff;
12586 }
12587
12588 if (size >= 16)
12589 {
12590 if (immlo == (immlo & 0x000000ff))
12591 {
12592 *immbits = immlo;
12593 return 0x8;
12594 }
12595 else if (immlo == (immlo & 0x0000ff00))
12596 {
12597 *immbits = immlo >> 8;
12598 return 0xa;
12599 }
12600
12601 if ((immlo & 0xff) != (immlo >> 8))
12602 return FAIL;
12603 immlo &= 0xff;
12604 }
12605
12606 if (immlo == (immlo & 0x000000ff))
12607 {
12608 /* Don't allow MVN with 8-bit immediate. */
12609 if (*op == 1)
12610 return FAIL;
12611 *immbits = immlo;
12612 return 0xe;
12613 }
12614
12615 return FAIL;
12616}
12617
12618/* Write immediate bits [7:0] to the following locations:
12619
12620 |28/24|23 19|18 16|15 4|3 0|
12621 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12622
12623 This function is used by VMOV/VMVN/VORR/VBIC. */
12624
12625static void
12626neon_write_immbits (unsigned immbits)
12627{
12628 inst.instruction |= immbits & 0xf;
12629 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12630 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12631}
12632
12633/* Invert low-order SIZE bits of XHI:XLO. */
12634
12635static void
12636neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12637{
12638 unsigned immlo = xlo ? *xlo : 0;
12639 unsigned immhi = xhi ? *xhi : 0;
12640
12641 switch (size)
12642 {
12643 case 8:
12644 immlo = (~immlo) & 0xff;
12645 break;
12646
12647 case 16:
12648 immlo = (~immlo) & 0xffff;
12649 break;
12650
12651 case 64:
12652 immhi = (~immhi) & 0xffffffff;
12653 /* fall through. */
12654
12655 case 32:
12656 immlo = (~immlo) & 0xffffffff;
12657 break;
12658
12659 default:
12660 abort ();
12661 }
12662
12663 if (xlo)
12664 *xlo = immlo;
12665
12666 if (xhi)
12667 *xhi = immhi;
12668}
12669
12670static void
12671do_neon_logic (void)
12672{
12673 if (inst.operands[2].present && inst.operands[2].isreg)
12674 {
12675 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12676 neon_check_type (3, rs, N_IGNORE_TYPE);
12677 /* U bit and size field were set as part of the bitmask. */
12678 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12679 neon_three_same (neon_quad (rs), 0, -1);
12680 }
12681 else
12682 {
12683 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12684 struct neon_type_el et = neon_check_type (2, rs,
12685 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12686 enum neon_opc opcode = inst.instruction & 0x0fffffff;
12687 unsigned immbits;
12688 int cmode;
12689
12690 if (et.type == NT_invtype)
12691 return;
12692
12693 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12694
12695 immbits = inst.operands[1].imm;
12696 if (et.size == 64)
12697 {
12698 /* .i64 is a pseudo-op, so the immediate must be a repeating
12699 pattern. */
12700 if (immbits != (inst.operands[1].regisimm ?
12701 inst.operands[1].reg : 0))
12702 {
12703 /* Set immbits to an invalid constant. */
12704 immbits = 0xdeadbeef;
12705 }
12706 }
12707
12708 switch (opcode)
12709 {
12710 case N_MNEM_vbic:
12711 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12712 break;
12713
12714 case N_MNEM_vorr:
12715 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12716 break;
12717
12718 case N_MNEM_vand:
12719 /* Pseudo-instruction for VBIC. */
12720 neon_invert_size (&immbits, 0, et.size);
12721 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12722 break;
12723
12724 case N_MNEM_vorn:
12725 /* Pseudo-instruction for VORR. */
12726 neon_invert_size (&immbits, 0, et.size);
12727 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12728 break;
12729
12730 default:
12731 abort ();
12732 }
12733
12734 if (cmode == FAIL)
12735 return;
12736
12737 inst.instruction |= neon_quad (rs) << 6;
12738 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12739 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12740 inst.instruction |= cmode << 8;
12741 neon_write_immbits (immbits);
12742
12743 inst.instruction = neon_dp_fixup (inst.instruction);
12744 }
12745}
12746
12747static void
12748do_neon_bitfield (void)
12749{
12750 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12751 neon_check_type (3, rs, N_IGNORE_TYPE);
12752 neon_three_same (neon_quad (rs), 0, -1);
12753}
12754
12755static void
12756neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12757 unsigned destbits)
12758{
12759 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12760 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12761 types | N_KEY);
12762 if (et.type == NT_float)
12763 {
12764 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
12765 neon_three_same (neon_quad (rs), 0, -1);
12766 }
12767 else
12768 {
12769 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12770 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
12771 }
12772}
12773
12774static void
12775do_neon_dyadic_if_su (void)
12776{
12777 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12778}
12779
12780static void
12781do_neon_dyadic_if_su_d (void)
12782{
12783 /* This version only allow D registers, but that constraint is enforced during
12784 operand parsing so we don't need to do anything extra here. */
12785 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12786}
12787
12788static void
12789do_neon_dyadic_if_i_d (void)
12790{
12791 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12792 affected if we specify unsigned args. */
12793 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12794}
12795
12796enum vfp_or_neon_is_neon_bits
12797{
12798 NEON_CHECK_CC = 1,
12799 NEON_CHECK_ARCH = 2
12800};
12801
12802/* Call this function if an instruction which may have belonged to the VFP or
12803 Neon instruction sets, but turned out to be a Neon instruction (due to the
12804 operand types involved, etc.). We have to check and/or fix-up a couple of
12805 things:
12806
12807 - Make sure the user hasn't attempted to make a Neon instruction
12808 conditional.
12809 - Alter the value in the condition code field if necessary.
12810 - Make sure that the arch supports Neon instructions.
12811
12812 Which of these operations take place depends on bits from enum
12813 vfp_or_neon_is_neon_bits.
12814
12815 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12816 current instruction's condition is COND_ALWAYS, the condition field is
12817 changed to inst.uncond_value. This is necessary because instructions shared
12818 between VFP and Neon may be conditional for the VFP variants only, and the
12819 unconditional Neon version must have, e.g., 0xF in the condition field. */
12820
12821static int
12822vfp_or_neon_is_neon (unsigned check)
12823{
12824 /* Conditions are always legal in Thumb mode (IT blocks). */
12825 if (!thumb_mode && (check & NEON_CHECK_CC))
12826 {
12827 if (inst.cond != COND_ALWAYS)
12828 {
12829 first_error (_(BAD_COND));
12830 return FAIL;
12831 }
12832 if (inst.uncond_value != -1)
12833 inst.instruction |= inst.uncond_value << 28;
12834 }
12835
12836 if ((check & NEON_CHECK_ARCH)
12837 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12838 {
12839 first_error (_(BAD_FPU));
12840 return FAIL;
12841 }
12842
12843 return SUCCESS;
12844}
12845
12846static void
12847do_neon_addsub_if_i (void)
12848{
12849 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12850 return;
12851
12852 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12853 return;
12854
12855 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12856 affected if we specify unsigned args. */
12857 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
12858}
12859
12860/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12861 result to be:
12862 V<op> A,B (A is operand 0, B is operand 2)
12863 to mean:
12864 V<op> A,B,A
12865 not:
12866 V<op> A,B,B
12867 so handle that case specially. */
12868
12869static void
12870neon_exchange_operands (void)
12871{
12872 void *scratch = alloca (sizeof (inst.operands[0]));
12873 if (inst.operands[1].present)
12874 {
12875 /* Swap operands[1] and operands[2]. */
12876 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12877 inst.operands[1] = inst.operands[2];
12878 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12879 }
12880 else
12881 {
12882 inst.operands[1] = inst.operands[2];
12883 inst.operands[2] = inst.operands[0];
12884 }
12885}
12886
12887static void
12888neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12889{
12890 if (inst.operands[2].isreg)
12891 {
12892 if (invert)
12893 neon_exchange_operands ();
12894 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
12895 }
12896 else
12897 {
12898 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12899 struct neon_type_el et = neon_check_type (2, rs,
12900 N_EQK | N_SIZ, immtypes | N_KEY);
12901
12902 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12903 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12904 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12905 inst.instruction |= LOW4 (inst.operands[1].reg);
12906 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12907 inst.instruction |= neon_quad (rs) << 6;
12908 inst.instruction |= (et.type == NT_float) << 10;
12909 inst.instruction |= neon_logbits (et.size) << 18;
12910
12911 inst.instruction = neon_dp_fixup (inst.instruction);
12912 }
12913}
12914
12915static void
12916do_neon_cmp (void)
12917{
12918 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12919}
12920
12921static void
12922do_neon_cmp_inv (void)
12923{
12924 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12925}
12926
12927static void
12928do_neon_ceq (void)
12929{
12930 neon_compare (N_IF_32, N_IF_32, FALSE);
12931}
12932
12933/* For multiply instructions, we have the possibility of 16-bit or 32-bit
12934 scalars, which are encoded in 5 bits, M : Rm.
12935 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12936 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12937 index in M. */
12938
12939static unsigned
12940neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12941{
12942 unsigned regno = NEON_SCALAR_REG (scalar);
12943 unsigned elno = NEON_SCALAR_INDEX (scalar);
12944
12945 switch (elsize)
12946 {
12947 case 16:
12948 if (regno > 7 || elno > 3)
12949 goto bad_scalar;
12950 return regno | (elno << 3);
12951
12952 case 32:
12953 if (regno > 15 || elno > 1)
12954 goto bad_scalar;
12955 return regno | (elno << 4);
12956
12957 default:
12958 bad_scalar:
12959 first_error (_("scalar out of range for multiply instruction"));
12960 }
12961
12962 return 0;
12963}
12964
12965/* Encode multiply / multiply-accumulate scalar instructions. */
12966
12967static void
12968neon_mul_mac (struct neon_type_el et, int ubit)
12969{
12970 unsigned scalar;
12971
12972 /* Give a more helpful error message if we have an invalid type. */
12973 if (et.type == NT_invtype)
12974 return;
12975
12976 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
12977 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12978 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12979 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12980 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12981 inst.instruction |= LOW4 (scalar);
12982 inst.instruction |= HI1 (scalar) << 5;
12983 inst.instruction |= (et.type == NT_float) << 8;
12984 inst.instruction |= neon_logbits (et.size) << 20;
12985 inst.instruction |= (ubit != 0) << 24;
12986
12987 inst.instruction = neon_dp_fixup (inst.instruction);
12988}
12989
12990static void
12991do_neon_mac_maybe_scalar (void)
12992{
12993 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12994 return;
12995
12996 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12997 return;
12998
12999 if (inst.operands[2].isscalar)
13000 {
13001 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13002 struct neon_type_el et = neon_check_type (3, rs,
13003 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13004 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13005 neon_mul_mac (et, neon_quad (rs));
13006 }
13007 else
13008 {
13009 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13010 affected if we specify unsigned args. */
13011 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13012 }
13013}
13014
13015static void
13016do_neon_tst (void)
13017{
13018 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13019 struct neon_type_el et = neon_check_type (3, rs,
13020 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13021 neon_three_same (neon_quad (rs), 0, et.size);
13022}
13023
13024/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13025 same types as the MAC equivalents. The polynomial type for this instruction
13026 is encoded the same as the integer type. */
13027
13028static void
13029do_neon_mul (void)
13030{
13031 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13032 return;
13033
13034 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13035 return;
13036
13037 if (inst.operands[2].isscalar)
13038 do_neon_mac_maybe_scalar ();
13039 else
13040 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13041}
13042
13043static void
13044do_neon_qdmulh (void)
13045{
13046 if (inst.operands[2].isscalar)
13047 {
13048 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13049 struct neon_type_el et = neon_check_type (3, rs,
13050 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13051 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13052 neon_mul_mac (et, neon_quad (rs));
13053 }
13054 else
13055 {
13056 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13057 struct neon_type_el et = neon_check_type (3, rs,
13058 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13059 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13060 /* The U bit (rounding) comes from bit mask. */
13061 neon_three_same (neon_quad (rs), 0, et.size);
13062 }
13063}
13064
13065static void
13066do_neon_fcmp_absolute (void)
13067{
13068 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13069 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13070 /* Size field comes from bit mask. */
13071 neon_three_same (neon_quad (rs), 1, -1);
13072}
13073
13074static void
13075do_neon_fcmp_absolute_inv (void)
13076{
13077 neon_exchange_operands ();
13078 do_neon_fcmp_absolute ();
13079}
13080
13081static void
13082do_neon_step (void)
13083{
13084 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13085 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13086 neon_three_same (neon_quad (rs), 0, -1);
13087}
13088
13089static void
13090do_neon_abs_neg (void)
13091{
13092 enum neon_shape rs;
13093 struct neon_type_el et;
13094
13095 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13096 return;
13097
13098 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13099 return;
13100
13101 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13102 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13103
13104 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13105 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13106 inst.instruction |= LOW4 (inst.operands[1].reg);
13107 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13108 inst.instruction |= neon_quad (rs) << 6;
13109 inst.instruction |= (et.type == NT_float) << 10;
13110 inst.instruction |= neon_logbits (et.size) << 18;
13111
13112 inst.instruction = neon_dp_fixup (inst.instruction);
13113}
13114
13115static void
13116do_neon_sli (void)
13117{
13118 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13119 struct neon_type_el et = neon_check_type (2, rs,
13120 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13121 int imm = inst.operands[2].imm;
13122 constraint (imm < 0 || (unsigned)imm >= et.size,
13123 _("immediate out of range for insert"));
13124 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13125}
13126
13127static void
13128do_neon_sri (void)
13129{
13130 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13131 struct neon_type_el et = neon_check_type (2, rs,
13132 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13133 int imm = inst.operands[2].imm;
13134 constraint (imm < 1 || (unsigned)imm > et.size,
13135 _("immediate out of range for insert"));
13136 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13137}
13138
13139static void
13140do_neon_qshlu_imm (void)
13141{
13142 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13143 struct neon_type_el et = neon_check_type (2, rs,
13144 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13145 int imm = inst.operands[2].imm;
13146 constraint (imm < 0 || (unsigned)imm >= et.size,
13147 _("immediate out of range for shift"));
13148 /* Only encodes the 'U present' variant of the instruction.
13149 In this case, signed types have OP (bit 8) set to 0.
13150 Unsigned types have OP set to 1. */
13151 inst.instruction |= (et.type == NT_unsigned) << 8;
13152 /* The rest of the bits are the same as other immediate shifts. */
13153 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13154}
13155
13156static void
13157do_neon_qmovn (void)
13158{
13159 struct neon_type_el et = neon_check_type (2, NS_DQ,
13160 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13161 /* Saturating move where operands can be signed or unsigned, and the
13162 destination has the same signedness. */
13163 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13164 if (et.type == NT_unsigned)
13165 inst.instruction |= 0xc0;
13166 else
13167 inst.instruction |= 0x80;
13168 neon_two_same (0, 1, et.size / 2);
13169}
13170
13171static void
13172do_neon_qmovun (void)
13173{
13174 struct neon_type_el et = neon_check_type (2, NS_DQ,
13175 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13176 /* Saturating move with unsigned results. Operands must be signed. */
13177 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13178 neon_two_same (0, 1, et.size / 2);
13179}
13180
13181static void
13182do_neon_rshift_sat_narrow (void)
13183{
13184 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13185 or unsigned. If operands are unsigned, results must also be unsigned. */
13186 struct neon_type_el et = neon_check_type (2, NS_DQI,
13187 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13188 int imm = inst.operands[2].imm;
13189 /* This gets the bounds check, size encoding and immediate bits calculation
13190 right. */
13191 et.size /= 2;
13192
13193 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13194 VQMOVN.I<size> <Dd>, <Qm>. */
13195 if (imm == 0)
13196 {
13197 inst.operands[2].present = 0;
13198 inst.instruction = N_MNEM_vqmovn;
13199 do_neon_qmovn ();
13200 return;
13201 }
13202
13203 constraint (imm < 1 || (unsigned)imm > et.size,
13204 _("immediate out of range"));
13205 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13206}
13207
13208static void
13209do_neon_rshift_sat_narrow_u (void)
13210{
13211 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13212 or unsigned. If operands are unsigned, results must also be unsigned. */
13213 struct neon_type_el et = neon_check_type (2, NS_DQI,
13214 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13215 int imm = inst.operands[2].imm;
13216 /* This gets the bounds check, size encoding and immediate bits calculation
13217 right. */
13218 et.size /= 2;
13219
13220 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13221 VQMOVUN.I<size> <Dd>, <Qm>. */
13222 if (imm == 0)
13223 {
13224 inst.operands[2].present = 0;
13225 inst.instruction = N_MNEM_vqmovun;
13226 do_neon_qmovun ();
13227 return;
13228 }
13229
13230 constraint (imm < 1 || (unsigned)imm > et.size,
13231 _("immediate out of range"));
13232 /* FIXME: The manual is kind of unclear about what value U should have in
13233 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13234 must be 1. */
13235 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13236}
13237
13238static void
13239do_neon_movn (void)
13240{
13241 struct neon_type_el et = neon_check_type (2, NS_DQ,
13242 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13243 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13244 neon_two_same (0, 1, et.size / 2);
13245}
13246
13247static void
13248do_neon_rshift_narrow (void)
13249{
13250 struct neon_type_el et = neon_check_type (2, NS_DQI,
13251 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13252 int imm = inst.operands[2].imm;
13253 /* This gets the bounds check, size encoding and immediate bits calculation
13254 right. */
13255 et.size /= 2;
13256
13257 /* If immediate is zero then we are a pseudo-instruction for
13258 VMOVN.I<size> <Dd>, <Qm> */
13259 if (imm == 0)
13260 {
13261 inst.operands[2].present = 0;
13262 inst.instruction = N_MNEM_vmovn;
13263 do_neon_movn ();
13264 return;
13265 }
13266
13267 constraint (imm < 1 || (unsigned)imm > et.size,
13268 _("immediate out of range for narrowing operation"));
13269 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13270}
13271
13272static void
13273do_neon_shll (void)
13274{
13275 /* FIXME: Type checking when lengthening. */
13276 struct neon_type_el et = neon_check_type (2, NS_QDI,
13277 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13278 unsigned imm = inst.operands[2].imm;
13279
13280 if (imm == et.size)
13281 {
13282 /* Maximum shift variant. */
13283 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13284 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13285 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13286 inst.instruction |= LOW4 (inst.operands[1].reg);
13287 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13288 inst.instruction |= neon_logbits (et.size) << 18;
13289
13290 inst.instruction = neon_dp_fixup (inst.instruction);
13291 }
13292 else
13293 {
13294 /* A more-specific type check for non-max versions. */
13295 et = neon_check_type (2, NS_QDI,
13296 N_EQK | N_DBL, N_SU_32 | N_KEY);
13297 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13298 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13299 }
13300}
13301
13302/* Check the various types for the VCVT instruction, and return which version
13303 the current instruction is. */
13304
13305static int
13306neon_cvt_flavour (enum neon_shape rs)
13307{
13308#define CVT_VAR(C,X,Y) \
13309 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13310 if (et.type != NT_invtype) \
13311 { \
13312 inst.error = NULL; \
13313 return (C); \
13314 }
13315 struct neon_type_el et;
13316 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13317 || rs == NS_FF) ? N_VFP : 0;
13318 /* The instruction versions which take an immediate take one register
13319 argument, which is extended to the width of the full register. Thus the
13320 "source" and "destination" registers must have the same width. Hack that
13321 here by making the size equal to the key (wider, in this case) operand. */
13322 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13323
13324 CVT_VAR (0, N_S32, N_F32);
13325 CVT_VAR (1, N_U32, N_F32);
13326 CVT_VAR (2, N_F32, N_S32);
13327 CVT_VAR (3, N_F32, N_U32);
13328 /* Half-precision conversions. */
13329 CVT_VAR (4, N_F32, N_F16);
13330 CVT_VAR (5, N_F16, N_F32);
13331
13332 whole_reg = N_VFP;
13333
13334 /* VFP instructions. */
13335 CVT_VAR (6, N_F32, N_F64);
13336 CVT_VAR (7, N_F64, N_F32);
13337 CVT_VAR (8, N_S32, N_F64 | key);
13338 CVT_VAR (9, N_U32, N_F64 | key);
13339 CVT_VAR (10, N_F64 | key, N_S32);
13340 CVT_VAR (11, N_F64 | key, N_U32);
13341 /* VFP instructions with bitshift. */
13342 CVT_VAR (12, N_F32 | key, N_S16);
13343 CVT_VAR (13, N_F32 | key, N_U16);
13344 CVT_VAR (14, N_F64 | key, N_S16);
13345 CVT_VAR (15, N_F64 | key, N_U16);
13346 CVT_VAR (16, N_S16, N_F32 | key);
13347 CVT_VAR (17, N_U16, N_F32 | key);
13348 CVT_VAR (18, N_S16, N_F64 | key);
13349 CVT_VAR (19, N_U16, N_F64 | key);
13350
13351 return -1;
13352#undef CVT_VAR
13353}
13354
13355/* Neon-syntax VFP conversions. */
13356
13357static void
13358do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13359{
13360 const char *opname = 0;
13361
13362 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13363 {
13364 /* Conversions with immediate bitshift. */
13365 const char *enc[] =
13366 {
13367 "ftosls",
13368 "ftouls",
13369 "fsltos",
13370 "fultos",
13371 NULL,
13372 NULL,
13373 NULL,
13374 NULL,
13375 "ftosld",
13376 "ftould",
13377 "fsltod",
13378 "fultod",
13379 "fshtos",
13380 "fuhtos",
13381 "fshtod",
13382 "fuhtod",
13383 "ftoshs",
13384 "ftouhs",
13385 "ftoshd",
13386 "ftouhd"
13387 };
13388
13389 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13390 {
13391 opname = enc[flavour];
13392 constraint (inst.operands[0].reg != inst.operands[1].reg,
13393 _("operands 0 and 1 must be the same register"));
13394 inst.operands[1] = inst.operands[2];
13395 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13396 }
13397 }
13398 else
13399 {
13400 /* Conversions without bitshift. */
13401 const char *enc[] =
13402 {
13403 "ftosis",
13404 "ftouis",
13405 "fsitos",
13406 "fuitos",
13407 "NULL",
13408 "NULL",
13409 "fcvtsd",
13410 "fcvtds",
13411 "ftosid",
13412 "ftouid",
13413 "fsitod",
13414 "fuitod"
13415 };
13416
13417 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13418 opname = enc[flavour];
13419 }
13420
13421 if (opname)
13422 do_vfp_nsyn_opcode (opname);
13423}
13424
13425static void
13426do_vfp_nsyn_cvtz (void)
13427{
13428 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13429 int flavour = neon_cvt_flavour (rs);
13430 const char *enc[] =
13431 {
13432 "ftosizs",
13433 "ftouizs",
13434 NULL,
13435 NULL,
13436 NULL,
13437 NULL,
13438 NULL,
13439 NULL,
13440 "ftosizd",
13441 "ftouizd"
13442 };
13443
13444 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13445 do_vfp_nsyn_opcode (enc[flavour]);
13446}
13447
13448static void
13449do_neon_cvt (void)
13450{
13451 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
13452 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
13453 int flavour = neon_cvt_flavour (rs);
13454
13455 /* VFP rather than Neon conversions. */
13456 if (flavour >= 6)
13457 {
13458 do_vfp_nsyn_cvt (rs, flavour);
13459 return;
13460 }
13461
13462 switch (rs)
13463 {
13464 case NS_DDI:
13465 case NS_QQI:
13466 {
13467 unsigned immbits;
13468 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13469
13470 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13471 return;
13472
13473 /* Fixed-point conversion with #0 immediate is encoded as an
13474 integer conversion. */
13475 if (inst.operands[2].present && inst.operands[2].imm == 0)
13476 goto int_encode;
13477 immbits = 32 - inst.operands[2].imm;
13478 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13479 if (flavour != -1)
13480 inst.instruction |= enctab[flavour];
13481 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13482 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13483 inst.instruction |= LOW4 (inst.operands[1].reg);
13484 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13485 inst.instruction |= neon_quad (rs) << 6;
13486 inst.instruction |= 1 << 21;
13487 inst.instruction |= immbits << 16;
13488
13489 inst.instruction = neon_dp_fixup (inst.instruction);
13490 }
13491 break;
13492
13493 case NS_DD:
13494 case NS_QQ:
13495 int_encode:
13496 {
13497 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13498
13499 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13500
13501 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13502 return;
13503
13504 if (flavour != -1)
13505 inst.instruction |= enctab[flavour];
13506
13507 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13508 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13509 inst.instruction |= LOW4 (inst.operands[1].reg);
13510 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13511 inst.instruction |= neon_quad (rs) << 6;
13512 inst.instruction |= 2 << 18;
13513
13514 inst.instruction = neon_dp_fixup (inst.instruction);
13515 }
13516 break;
13517
13518 /* Half-precision conversions for Advanced SIMD -- neon. */
13519 case NS_QD:
13520 case NS_DQ:
13521
13522 if ((rs == NS_DQ)
13523 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13524 {
13525 as_bad (_("operand size must match register width"));
13526 break;
13527 }
13528
13529 if ((rs == NS_QD)
13530 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13531 {
13532 as_bad (_("operand size must match register width"));
13533 break;
13534 }
13535
13536 if (rs == NS_DQ)
13537 inst.instruction = 0x3b60600;
13538 else
13539 inst.instruction = 0x3b60700;
13540
13541 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13542 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13543 inst.instruction |= LOW4 (inst.operands[1].reg);
13544 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13545 inst.instruction = neon_dp_fixup (inst.instruction);
13546 break;
13547
13548 default:
13549 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13550 do_vfp_nsyn_cvt (rs, flavour);
13551 }
13552}
13553
13554static void
13555do_neon_cvtb (void)
13556{
13557 inst.instruction = 0xeb20a40;
13558
13559 /* The sizes are attached to the mnemonic. */
13560 if (inst.vectype.el[0].type != NT_invtype
13561 && inst.vectype.el[0].size == 16)
13562 inst.instruction |= 0x00010000;
13563
13564 /* Programmer's syntax: the sizes are attached to the operands. */
13565 else if (inst.operands[0].vectype.type != NT_invtype
13566 && inst.operands[0].vectype.size == 16)
13567 inst.instruction |= 0x00010000;
13568
13569 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13570 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13571 do_vfp_cond_or_thumb ();
13572}
13573
13574
13575static void
13576do_neon_cvtt (void)
13577{
13578 do_neon_cvtb ();
13579 inst.instruction |= 0x80;
13580}
13581
13582static void
13583neon_move_immediate (void)
13584{
13585 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13586 struct neon_type_el et = neon_check_type (2, rs,
13587 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13588 unsigned immlo, immhi = 0, immbits;
13589 int op, cmode, float_p;
13590
13591 constraint (et.type == NT_invtype,
13592 _("operand size must be specified for immediate VMOV"));
13593
13594 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13595 op = (inst.instruction & (1 << 5)) != 0;
13596
13597 immlo = inst.operands[1].imm;
13598 if (inst.operands[1].regisimm)
13599 immhi = inst.operands[1].reg;
13600
13601 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13602 _("immediate has bits set outside the operand size"));
13603
13604 float_p = inst.operands[1].immisfloat;
13605
13606 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
13607 et.size, et.type)) == FAIL)
13608 {
13609 /* Invert relevant bits only. */
13610 neon_invert_size (&immlo, &immhi, et.size);
13611 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13612 with one or the other; those cases are caught by
13613 neon_cmode_for_move_imm. */
13614 op = !op;
13615 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13616 &op, et.size, et.type)) == FAIL)
13617 {
13618 first_error (_("immediate out of range"));
13619 return;
13620 }
13621 }
13622
13623 inst.instruction &= ~(1 << 5);
13624 inst.instruction |= op << 5;
13625
13626 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13627 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13628 inst.instruction |= neon_quad (rs) << 6;
13629 inst.instruction |= cmode << 8;
13630
13631 neon_write_immbits (immbits);
13632}
13633
13634static void
13635do_neon_mvn (void)
13636{
13637 if (inst.operands[1].isreg)
13638 {
13639 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13640
13641 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13642 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13643 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13644 inst.instruction |= LOW4 (inst.operands[1].reg);
13645 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13646 inst.instruction |= neon_quad (rs) << 6;
13647 }
13648 else
13649 {
13650 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13651 neon_move_immediate ();
13652 }
13653
13654 inst.instruction = neon_dp_fixup (inst.instruction);
13655}
13656
13657/* Encode instructions of form:
13658
13659 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13660 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
13661
13662static void
13663neon_mixed_length (struct neon_type_el et, unsigned size)
13664{
13665 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13666 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13667 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13668 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13669 inst.instruction |= LOW4 (inst.operands[2].reg);
13670 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13671 inst.instruction |= (et.type == NT_unsigned) << 24;
13672 inst.instruction |= neon_logbits (size) << 20;
13673
13674 inst.instruction = neon_dp_fixup (inst.instruction);
13675}
13676
13677static void
13678do_neon_dyadic_long (void)
13679{
13680 /* FIXME: Type checking for lengthening op. */
13681 struct neon_type_el et = neon_check_type (3, NS_QDD,
13682 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
13683 neon_mixed_length (et, et.size);
13684}
13685
13686static void
13687do_neon_abal (void)
13688{
13689 struct neon_type_el et = neon_check_type (3, NS_QDD,
13690 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
13691 neon_mixed_length (et, et.size);
13692}
13693
13694static void
13695neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
13696{
13697 if (inst.operands[2].isscalar)
13698 {
13699 struct neon_type_el et = neon_check_type (3, NS_QDS,
13700 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
13701 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13702 neon_mul_mac (et, et.type == NT_unsigned);
13703 }
13704 else
13705 {
13706 struct neon_type_el et = neon_check_type (3, NS_QDD,
13707 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
13708 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13709 neon_mixed_length (et, et.size);
13710 }
13711}
13712
13713static void
13714do_neon_mac_maybe_scalar_long (void)
13715{
13716 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13717}
13718
13719static void
13720do_neon_dyadic_wide (void)
13721{
13722 struct neon_type_el et = neon_check_type (3, NS_QQD,
13723 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13724 neon_mixed_length (et, et.size);
13725}
13726
13727static void
13728do_neon_dyadic_narrow (void)
13729{
13730 struct neon_type_el et = neon_check_type (3, NS_QDD,
13731 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
13732 /* Operand sign is unimportant, and the U bit is part of the opcode,
13733 so force the operand type to integer. */
13734 et.type = NT_integer;
13735 neon_mixed_length (et, et.size / 2);
13736}
13737
13738static void
13739do_neon_mul_sat_scalar_long (void)
13740{
13741 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13742}
13743
13744static void
13745do_neon_vmull (void)
13746{
13747 if (inst.operands[2].isscalar)
13748 do_neon_mac_maybe_scalar_long ();
13749 else
13750 {
13751 struct neon_type_el et = neon_check_type (3, NS_QDD,
13752 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13753 if (et.type == NT_poly)
13754 inst.instruction = NEON_ENC_POLY (inst.instruction);
13755 else
13756 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13757 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13758 zero. Should be OK as-is. */
13759 neon_mixed_length (et, et.size);
13760 }
13761}
13762
13763static void
13764do_neon_ext (void)
13765{
13766 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
13767 struct neon_type_el et = neon_check_type (3, rs,
13768 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13769 unsigned imm = (inst.operands[3].imm * et.size) / 8;
13770
13771 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13772 _("shift out of range"));
13773 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13774 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13775 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13776 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13777 inst.instruction |= LOW4 (inst.operands[2].reg);
13778 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13779 inst.instruction |= neon_quad (rs) << 6;
13780 inst.instruction |= imm << 8;
13781
13782 inst.instruction = neon_dp_fixup (inst.instruction);
13783}
13784
13785static void
13786do_neon_rev (void)
13787{
13788 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13789 struct neon_type_el et = neon_check_type (2, rs,
13790 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13791 unsigned op = (inst.instruction >> 7) & 3;
13792 /* N (width of reversed regions) is encoded as part of the bitmask. We
13793 extract it here to check the elements to be reversed are smaller.
13794 Otherwise we'd get a reserved instruction. */
13795 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
13796 gas_assert (elsize != 0);
13797 constraint (et.size >= elsize,
13798 _("elements must be smaller than reversal region"));
13799 neon_two_same (neon_quad (rs), 1, et.size);
13800}
13801
13802static void
13803do_neon_dup (void)
13804{
13805 if (inst.operands[1].isscalar)
13806 {
13807 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
13808 struct neon_type_el et = neon_check_type (2, rs,
13809 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13810 unsigned sizebits = et.size >> 3;
13811 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
13812 int logsize = neon_logbits (et.size);
13813 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
13814
13815 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
13816 return;
13817
13818 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13819 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13820 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13821 inst.instruction |= LOW4 (dm);
13822 inst.instruction |= HI1 (dm) << 5;
13823 inst.instruction |= neon_quad (rs) << 6;
13824 inst.instruction |= x << 17;
13825 inst.instruction |= sizebits << 16;
13826
13827 inst.instruction = neon_dp_fixup (inst.instruction);
13828 }
13829 else
13830 {
13831 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13832 struct neon_type_el et = neon_check_type (2, rs,
13833 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13834 /* Duplicate ARM register to lanes of vector. */
13835 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13836 switch (et.size)
13837 {
13838 case 8: inst.instruction |= 0x400000; break;
13839 case 16: inst.instruction |= 0x000020; break;
13840 case 32: inst.instruction |= 0x000000; break;
13841 default: break;
13842 }
13843 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13844 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13845 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
13846 inst.instruction |= neon_quad (rs) << 21;
13847 /* The encoding for this instruction is identical for the ARM and Thumb
13848 variants, except for the condition field. */
13849 do_vfp_cond_or_thumb ();
13850 }
13851}
13852
13853/* VMOV has particularly many variations. It can be one of:
13854 0. VMOV<c><q> <Qd>, <Qm>
13855 1. VMOV<c><q> <Dd>, <Dm>
13856 (Register operations, which are VORR with Rm = Rn.)
13857 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13858 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13859 (Immediate loads.)
13860 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13861 (ARM register to scalar.)
13862 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13863 (Two ARM registers to vector.)
13864 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13865 (Scalar to ARM register.)
13866 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13867 (Vector to two ARM registers.)
13868 8. VMOV.F32 <Sd>, <Sm>
13869 9. VMOV.F64 <Dd>, <Dm>
13870 (VFP register moves.)
13871 10. VMOV.F32 <Sd>, #imm
13872 11. VMOV.F64 <Dd>, #imm
13873 (VFP float immediate load.)
13874 12. VMOV <Rd>, <Sm>
13875 (VFP single to ARM reg.)
13876 13. VMOV <Sd>, <Rm>
13877 (ARM reg to VFP single.)
13878 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13879 (Two ARM regs to two VFP singles.)
13880 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13881 (Two VFP singles to two ARM regs.)
13882
13883 These cases can be disambiguated using neon_select_shape, except cases 1/9
13884 and 3/11 which depend on the operand type too.
13885
13886 All the encoded bits are hardcoded by this function.
13887
13888 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13889 Cases 5, 7 may be used with VFPv2 and above.
13890
13891 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
13892 can specify a type where it doesn't make sense to, and is ignored). */
13893
13894static void
13895do_neon_mov (void)
13896{
13897 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13898 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13899 NS_NULL);
13900 struct neon_type_el et;
13901 const char *ldconst = 0;
13902
13903 switch (rs)
13904 {
13905 case NS_DD: /* case 1/9. */
13906 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13907 /* It is not an error here if no type is given. */
13908 inst.error = NULL;
13909 if (et.type == NT_float && et.size == 64)
13910 {
13911 do_vfp_nsyn_opcode ("fcpyd");
13912 break;
13913 }
13914 /* fall through. */
13915
13916 case NS_QQ: /* case 0/1. */
13917 {
13918 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13919 return;
13920 /* The architecture manual I have doesn't explicitly state which
13921 value the U bit should have for register->register moves, but
13922 the equivalent VORR instruction has U = 0, so do that. */
13923 inst.instruction = 0x0200110;
13924 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13925 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13926 inst.instruction |= LOW4 (inst.operands[1].reg);
13927 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13928 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13929 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13930 inst.instruction |= neon_quad (rs) << 6;
13931
13932 inst.instruction = neon_dp_fixup (inst.instruction);
13933 }
13934 break;
13935
13936 case NS_DI: /* case 3/11. */
13937 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13938 inst.error = NULL;
13939 if (et.type == NT_float && et.size == 64)
13940 {
13941 /* case 11 (fconstd). */
13942 ldconst = "fconstd";
13943 goto encode_fconstd;
13944 }
13945 /* fall through. */
13946
13947 case NS_QI: /* case 2/3. */
13948 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13949 return;
13950 inst.instruction = 0x0800010;
13951 neon_move_immediate ();
13952 inst.instruction = neon_dp_fixup (inst.instruction);
13953 break;
13954
13955 case NS_SR: /* case 4. */
13956 {
13957 unsigned bcdebits = 0;
13958 struct neon_type_el et = neon_check_type (2, NS_NULL,
13959 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13960 int logsize = neon_logbits (et.size);
13961 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13962 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13963
13964 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13965 _(BAD_FPU));
13966 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13967 && et.size != 32, _(BAD_FPU));
13968 constraint (et.type == NT_invtype, _("bad type for scalar"));
13969 constraint (x >= 64 / et.size, _("scalar index out of range"));
13970
13971 switch (et.size)
13972 {
13973 case 8: bcdebits = 0x8; break;
13974 case 16: bcdebits = 0x1; break;
13975 case 32: bcdebits = 0x0; break;
13976 default: ;
13977 }
13978
13979 bcdebits |= x << logsize;
13980
13981 inst.instruction = 0xe000b10;
13982 do_vfp_cond_or_thumb ();
13983 inst.instruction |= LOW4 (dn) << 16;
13984 inst.instruction |= HI1 (dn) << 7;
13985 inst.instruction |= inst.operands[1].reg << 12;
13986 inst.instruction |= (bcdebits & 3) << 5;
13987 inst.instruction |= (bcdebits >> 2) << 21;
13988 }
13989 break;
13990
13991 case NS_DRR: /* case 5 (fmdrr). */
13992 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13993 _(BAD_FPU));
13994
13995 inst.instruction = 0xc400b10;
13996 do_vfp_cond_or_thumb ();
13997 inst.instruction |= LOW4 (inst.operands[0].reg);
13998 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13999 inst.instruction |= inst.operands[1].reg << 12;
14000 inst.instruction |= inst.operands[2].reg << 16;
14001 break;
14002
14003 case NS_RS: /* case 6. */
14004 {
14005 struct neon_type_el et = neon_check_type (2, NS_NULL,
14006 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14007 unsigned logsize = neon_logbits (et.size);
14008 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14009 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14010 unsigned abcdebits = 0;
14011
14012 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14013 _(BAD_FPU));
14014 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14015 && et.size != 32, _(BAD_FPU));
14016 constraint (et.type == NT_invtype, _("bad type for scalar"));
14017 constraint (x >= 64 / et.size, _("scalar index out of range"));
14018
14019 switch (et.size)
14020 {
14021 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14022 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14023 case 32: abcdebits = 0x00; break;
14024 default: ;
14025 }
14026
14027 abcdebits |= x << logsize;
14028 inst.instruction = 0xe100b10;
14029 do_vfp_cond_or_thumb ();
14030 inst.instruction |= LOW4 (dn) << 16;
14031 inst.instruction |= HI1 (dn) << 7;
14032 inst.instruction |= inst.operands[0].reg << 12;
14033 inst.instruction |= (abcdebits & 3) << 5;
14034 inst.instruction |= (abcdebits >> 2) << 21;
14035 }
14036 break;
14037
14038 case NS_RRD: /* case 7 (fmrrd). */
14039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14040 _(BAD_FPU));
14041
14042 inst.instruction = 0xc500b10;
14043 do_vfp_cond_or_thumb ();
14044 inst.instruction |= inst.operands[0].reg << 12;
14045 inst.instruction |= inst.operands[1].reg << 16;
14046 inst.instruction |= LOW4 (inst.operands[2].reg);
14047 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14048 break;
14049
14050 case NS_FF: /* case 8 (fcpys). */
14051 do_vfp_nsyn_opcode ("fcpys");
14052 break;
14053
14054 case NS_FI: /* case 10 (fconsts). */
14055 ldconst = "fconsts";
14056 encode_fconstd:
14057 if (is_quarter_float (inst.operands[1].imm))
14058 {
14059 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14060 do_vfp_nsyn_opcode (ldconst);
14061 }
14062 else
14063 first_error (_("immediate out of range"));
14064 break;
14065
14066 case NS_RF: /* case 12 (fmrs). */
14067 do_vfp_nsyn_opcode ("fmrs");
14068 break;
14069
14070 case NS_FR: /* case 13 (fmsr). */
14071 do_vfp_nsyn_opcode ("fmsr");
14072 break;
14073
14074 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14075 (one of which is a list), but we have parsed four. Do some fiddling to
14076 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14077 expect. */
14078 case NS_RRFF: /* case 14 (fmrrs). */
14079 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14080 _("VFP registers must be adjacent"));
14081 inst.operands[2].imm = 2;
14082 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14083 do_vfp_nsyn_opcode ("fmrrs");
14084 break;
14085
14086 case NS_FFRR: /* case 15 (fmsrr). */
14087 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14088 _("VFP registers must be adjacent"));
14089 inst.operands[1] = inst.operands[2];
14090 inst.operands[2] = inst.operands[3];
14091 inst.operands[0].imm = 2;
14092 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14093 do_vfp_nsyn_opcode ("fmsrr");
14094 break;
14095
14096 default:
14097 abort ();
14098 }
14099}
14100
14101static void
14102do_neon_rshift_round_imm (void)
14103{
14104 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14105 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14106 int imm = inst.operands[2].imm;
14107
14108 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14109 if (imm == 0)
14110 {
14111 inst.operands[2].present = 0;
14112 do_neon_mov ();
14113 return;
14114 }
14115
14116 constraint (imm < 1 || (unsigned)imm > et.size,
14117 _("immediate out of range for shift"));
14118 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14119 et.size - imm);
14120}
14121
14122static void
14123do_neon_movl (void)
14124{
14125 struct neon_type_el et = neon_check_type (2, NS_QD,
14126 N_EQK | N_DBL, N_SU_32 | N_KEY);
14127 unsigned sizebits = et.size >> 3;
14128 inst.instruction |= sizebits << 19;
14129 neon_two_same (0, et.type == NT_unsigned, -1);
14130}
14131
14132static void
14133do_neon_trn (void)
14134{
14135 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14136 struct neon_type_el et = neon_check_type (2, rs,
14137 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14138 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
14139 neon_two_same (neon_quad (rs), 1, et.size);
14140}
14141
14142static void
14143do_neon_zip_uzp (void)
14144{
14145 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14146 struct neon_type_el et = neon_check_type (2, rs,
14147 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14148 if (rs == NS_DD && et.size == 32)
14149 {
14150 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14151 inst.instruction = N_MNEM_vtrn;
14152 do_neon_trn ();
14153 return;
14154 }
14155 neon_two_same (neon_quad (rs), 1, et.size);
14156}
14157
14158static void
14159do_neon_sat_abs_neg (void)
14160{
14161 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14162 struct neon_type_el et = neon_check_type (2, rs,
14163 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14164 neon_two_same (neon_quad (rs), 1, et.size);
14165}
14166
14167static void
14168do_neon_pair_long (void)
14169{
14170 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14171 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14172 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14173 inst.instruction |= (et.type == NT_unsigned) << 7;
14174 neon_two_same (neon_quad (rs), 1, et.size);
14175}
14176
14177static void
14178do_neon_recip_est (void)
14179{
14180 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14181 struct neon_type_el et = neon_check_type (2, rs,
14182 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14183 inst.instruction |= (et.type == NT_float) << 8;
14184 neon_two_same (neon_quad (rs), 1, et.size);
14185}
14186
14187static void
14188do_neon_cls (void)
14189{
14190 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14191 struct neon_type_el et = neon_check_type (2, rs,
14192 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14193 neon_two_same (neon_quad (rs), 1, et.size);
14194}
14195
14196static void
14197do_neon_clz (void)
14198{
14199 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14200 struct neon_type_el et = neon_check_type (2, rs,
14201 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14202 neon_two_same (neon_quad (rs), 1, et.size);
14203}
14204
14205static void
14206do_neon_cnt (void)
14207{
14208 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14209 struct neon_type_el et = neon_check_type (2, rs,
14210 N_EQK | N_INT, N_8 | N_KEY);
14211 neon_two_same (neon_quad (rs), 1, et.size);
14212}
14213
14214static void
14215do_neon_swp (void)
14216{
14217 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14218 neon_two_same (neon_quad (rs), 1, -1);
14219}
14220
14221static void
14222do_neon_tbl_tbx (void)
14223{
14224 unsigned listlenbits;
14225 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14226
14227 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14228 {
14229 first_error (_("bad list length for table lookup"));
14230 return;
14231 }
14232
14233 listlenbits = inst.operands[1].imm - 1;
14234 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14235 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14236 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14237 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14238 inst.instruction |= LOW4 (inst.operands[2].reg);
14239 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14240 inst.instruction |= listlenbits << 8;
14241
14242 inst.instruction = neon_dp_fixup (inst.instruction);
14243}
14244
14245static void
14246do_neon_ldm_stm (void)
14247{
14248 /* P, U and L bits are part of bitmask. */
14249 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14250 unsigned offsetbits = inst.operands[1].imm * 2;
14251
14252 if (inst.operands[1].issingle)
14253 {
14254 do_vfp_nsyn_ldm_stm (is_dbmode);
14255 return;
14256 }
14257
14258 constraint (is_dbmode && !inst.operands[0].writeback,
14259 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14260
14261 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14262 _("register list must contain at least 1 and at most 16 "
14263 "registers"));
14264
14265 inst.instruction |= inst.operands[0].reg << 16;
14266 inst.instruction |= inst.operands[0].writeback << 21;
14267 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14268 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14269
14270 inst.instruction |= offsetbits;
14271
14272 do_vfp_cond_or_thumb ();
14273}
14274
14275static void
14276do_neon_ldr_str (void)
14277{
14278 int is_ldr = (inst.instruction & (1 << 20)) != 0;
14279
14280 if (inst.operands[0].issingle)
14281 {
14282 if (is_ldr)
14283 do_vfp_nsyn_opcode ("flds");
14284 else
14285 do_vfp_nsyn_opcode ("fsts");
14286 }
14287 else
14288 {
14289 if (is_ldr)
14290 do_vfp_nsyn_opcode ("fldd");
14291 else
14292 do_vfp_nsyn_opcode ("fstd");
14293 }
14294}
14295
14296/* "interleave" version also handles non-interleaving register VLD1/VST1
14297 instructions. */
14298
14299static void
14300do_neon_ld_st_interleave (void)
14301{
14302 struct neon_type_el et = neon_check_type (1, NS_NULL,
14303 N_8 | N_16 | N_32 | N_64);
14304 unsigned alignbits = 0;
14305 unsigned idx;
14306 /* The bits in this table go:
14307 0: register stride of one (0) or two (1)
14308 1,2: register list length, minus one (1, 2, 3, 4).
14309 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14310 We use -1 for invalid entries. */
14311 const int typetable[] =
14312 {
14313 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14314 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14315 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14316 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14317 };
14318 int typebits;
14319
14320 if (et.type == NT_invtype)
14321 return;
14322
14323 if (inst.operands[1].immisalign)
14324 switch (inst.operands[1].imm >> 8)
14325 {
14326 case 64: alignbits = 1; break;
14327 case 128:
14328 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14329 goto bad_alignment;
14330 alignbits = 2;
14331 break;
14332 case 256:
14333 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14334 goto bad_alignment;
14335 alignbits = 3;
14336 break;
14337 default:
14338 bad_alignment:
14339 first_error (_("bad alignment"));
14340 return;
14341 }
14342
14343 inst.instruction |= alignbits << 4;
14344 inst.instruction |= neon_logbits (et.size) << 6;
14345
14346 /* Bits [4:6] of the immediate in a list specifier encode register stride
14347 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14348 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14349 up the right value for "type" in a table based on this value and the given
14350 list style, then stick it back. */
14351 idx = ((inst.operands[0].imm >> 4) & 7)
14352 | (((inst.instruction >> 8) & 3) << 3);
14353
14354 typebits = typetable[idx];
14355
14356 constraint (typebits == -1, _("bad list type for instruction"));
14357
14358 inst.instruction &= ~0xf00;
14359 inst.instruction |= typebits << 8;
14360}
14361
14362/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14363 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14364 otherwise. The variable arguments are a list of pairs of legal (size, align)
14365 values, terminated with -1. */
14366
14367static int
14368neon_alignment_bit (int size, int align, int *do_align, ...)
14369{
14370 va_list ap;
14371 int result = FAIL, thissize, thisalign;
14372
14373 if (!inst.operands[1].immisalign)
14374 {
14375 *do_align = 0;
14376 return SUCCESS;
14377 }
14378
14379 va_start (ap, do_align);
14380
14381 do
14382 {
14383 thissize = va_arg (ap, int);
14384 if (thissize == -1)
14385 break;
14386 thisalign = va_arg (ap, int);
14387
14388 if (size == thissize && align == thisalign)
14389 result = SUCCESS;
14390 }
14391 while (result != SUCCESS);
14392
14393 va_end (ap);
14394
14395 if (result == SUCCESS)
14396 *do_align = 1;
14397 else
14398 first_error (_("unsupported alignment for instruction"));
14399
14400 return result;
14401}
14402
14403static void
14404do_neon_ld_st_lane (void)
14405{
14406 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14407 int align_good, do_align = 0;
14408 int logsize = neon_logbits (et.size);
14409 int align = inst.operands[1].imm >> 8;
14410 int n = (inst.instruction >> 8) & 3;
14411 int max_el = 64 / et.size;
14412
14413 if (et.type == NT_invtype)
14414 return;
14415
14416 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14417 _("bad list length"));
14418 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14419 _("scalar index out of range"));
14420 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14421 && et.size == 8,
14422 _("stride of 2 unavailable when element size is 8"));
14423
14424 switch (n)
14425 {
14426 case 0: /* VLD1 / VST1. */
14427 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14428 32, 32, -1);
14429 if (align_good == FAIL)
14430 return;
14431 if (do_align)
14432 {
14433 unsigned alignbits = 0;
14434 switch (et.size)
14435 {
14436 case 16: alignbits = 0x1; break;
14437 case 32: alignbits = 0x3; break;
14438 default: ;
14439 }
14440 inst.instruction |= alignbits << 4;
14441 }
14442 break;
14443
14444 case 1: /* VLD2 / VST2. */
14445 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14446 32, 64, -1);
14447 if (align_good == FAIL)
14448 return;
14449 if (do_align)
14450 inst.instruction |= 1 << 4;
14451 break;
14452
14453 case 2: /* VLD3 / VST3. */
14454 constraint (inst.operands[1].immisalign,
14455 _("can't use alignment with this instruction"));
14456 break;
14457
14458 case 3: /* VLD4 / VST4. */
14459 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14460 16, 64, 32, 64, 32, 128, -1);
14461 if (align_good == FAIL)
14462 return;
14463 if (do_align)
14464 {
14465 unsigned alignbits = 0;
14466 switch (et.size)
14467 {
14468 case 8: alignbits = 0x1; break;
14469 case 16: alignbits = 0x1; break;
14470 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14471 default: ;
14472 }
14473 inst.instruction |= alignbits << 4;
14474 }
14475 break;
14476
14477 default: ;
14478 }
14479
14480 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14481 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14482 inst.instruction |= 1 << (4 + logsize);
14483
14484 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14485 inst.instruction |= logsize << 10;
14486}
14487
14488/* Encode single n-element structure to all lanes VLD<n> instructions. */
14489
14490static void
14491do_neon_ld_dup (void)
14492{
14493 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14494 int align_good, do_align = 0;
14495
14496 if (et.type == NT_invtype)
14497 return;
14498
14499 switch ((inst.instruction >> 8) & 3)
14500 {
14501 case 0: /* VLD1. */
14502 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14503 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14504 &do_align, 16, 16, 32, 32, -1);
14505 if (align_good == FAIL)
14506 return;
14507 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14508 {
14509 case 1: break;
14510 case 2: inst.instruction |= 1 << 5; break;
14511 default: first_error (_("bad list length")); return;
14512 }
14513 inst.instruction |= neon_logbits (et.size) << 6;
14514 break;
14515
14516 case 1: /* VLD2. */
14517 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14518 &do_align, 8, 16, 16, 32, 32, 64, -1);
14519 if (align_good == FAIL)
14520 return;
14521 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14522 _("bad list length"));
14523 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14524 inst.instruction |= 1 << 5;
14525 inst.instruction |= neon_logbits (et.size) << 6;
14526 break;
14527
14528 case 2: /* VLD3. */
14529 constraint (inst.operands[1].immisalign,
14530 _("can't use alignment with this instruction"));
14531 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14532 _("bad list length"));
14533 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14534 inst.instruction |= 1 << 5;
14535 inst.instruction |= neon_logbits (et.size) << 6;
14536 break;
14537
14538 case 3: /* VLD4. */
14539 {
14540 int align = inst.operands[1].imm >> 8;
14541 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14542 16, 64, 32, 64, 32, 128, -1);
14543 if (align_good == FAIL)
14544 return;
14545 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14546 _("bad list length"));
14547 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14548 inst.instruction |= 1 << 5;
14549 if (et.size == 32 && align == 128)
14550 inst.instruction |= 0x3 << 6;
14551 else
14552 inst.instruction |= neon_logbits (et.size) << 6;
14553 }
14554 break;
14555
14556 default: ;
14557 }
14558
14559 inst.instruction |= do_align << 4;
14560}
14561
14562/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14563 apart from bits [11:4]. */
14564
14565static void
14566do_neon_ldx_stx (void)
14567{
14568 switch (NEON_LANE (inst.operands[0].imm))
14569 {
14570 case NEON_INTERLEAVE_LANES:
14571 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
14572 do_neon_ld_st_interleave ();
14573 break;
14574
14575 case NEON_ALL_LANES:
14576 inst.instruction = NEON_ENC_DUP (inst.instruction);
14577 do_neon_ld_dup ();
14578 break;
14579
14580 default:
14581 inst.instruction = NEON_ENC_LANE (inst.instruction);
14582 do_neon_ld_st_lane ();
14583 }
14584
14585 /* L bit comes from bit mask. */
14586 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14587 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14588 inst.instruction |= inst.operands[1].reg << 16;
14589
14590 if (inst.operands[1].postind)
14591 {
14592 int postreg = inst.operands[1].imm & 0xf;
14593 constraint (!inst.operands[1].immisreg,
14594 _("post-index must be a register"));
14595 constraint (postreg == 0xd || postreg == 0xf,
14596 _("bad register for post-index"));
14597 inst.instruction |= postreg;
14598 }
14599 else if (inst.operands[1].writeback)
14600 {
14601 inst.instruction |= 0xd;
14602 }
14603 else
14604 inst.instruction |= 0xf;
14605
14606 if (thumb_mode)
14607 inst.instruction |= 0xf9000000;
14608 else
14609 inst.instruction |= 0xf4000000;
14610}
14611\f
14612/* Overall per-instruction processing. */
14613
14614/* We need to be able to fix up arbitrary expressions in some statements.
14615 This is so that we can handle symbols that are an arbitrary distance from
14616 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14617 which returns part of an address in a form which will be valid for
14618 a data instruction. We do this by pushing the expression into a symbol
14619 in the expr_section, and creating a fix for that. */
14620
14621static void
14622fix_new_arm (fragS * frag,
14623 int where,
14624 short int size,
14625 expressionS * exp,
14626 int pc_rel,
14627 int reloc)
14628{
14629 fixS * new_fix;
14630
14631 switch (exp->X_op)
14632 {
14633 case O_constant:
14634 case O_symbol:
14635 case O_add:
14636 case O_subtract:
14637 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
14638 break;
14639
14640 default:
14641 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
14642 pc_rel, reloc);
14643 break;
14644 }
14645
14646 /* Mark whether the fix is to a THUMB instruction, or an ARM
14647 instruction. */
14648 new_fix->tc_fix_data = thumb_mode;
14649}
14650
14651/* Create a frg for an instruction requiring relaxation. */
14652static void
14653output_relax_insn (void)
14654{
14655 char * to;
14656 symbolS *sym;
14657 int offset;
14658
14659 /* The size of the instruction is unknown, so tie the debug info to the
14660 start of the instruction. */
14661 dwarf2_emit_insn (0);
14662
14663 switch (inst.reloc.exp.X_op)
14664 {
14665 case O_symbol:
14666 sym = inst.reloc.exp.X_add_symbol;
14667 offset = inst.reloc.exp.X_add_number;
14668 break;
14669 case O_constant:
14670 sym = NULL;
14671 offset = inst.reloc.exp.X_add_number;
14672 break;
14673 default:
14674 sym = make_expr_symbol (&inst.reloc.exp);
14675 offset = 0;
14676 break;
14677 }
14678 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
14679 inst.relax, sym, offset, NULL/*offset, opcode*/);
14680 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
14681}
14682
14683/* Write a 32-bit thumb instruction to buf. */
14684static void
14685put_thumb32_insn (char * buf, unsigned long insn)
14686{
14687 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
14688 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
14689}
14690
14691static void
14692output_inst (const char * str)
14693{
14694 char * to = NULL;
14695
14696 if (inst.error)
14697 {
14698 as_bad ("%s -- `%s'", inst.error, str);
14699 return;
14700 }
14701 if (inst.relax)
14702 {
14703 output_relax_insn ();
14704 return;
14705 }
14706 if (inst.size == 0)
14707 return;
14708
14709 to = frag_more (inst.size);
14710 /* PR 9814: Record the thumb mode into the current frag so that we know
14711 what type of NOP padding to use, if necessary. We override any previous
14712 setting so that if the mode has changed then the NOPS that we use will
14713 match the encoding of the last instruction in the frag. */
14714 frag_now->tc_frag_data = thumb_mode | MODE_RECORDED;
14715
14716 if (thumb_mode && (inst.size > THUMB_SIZE))
14717 {
14718 gas_assert (inst.size == (2 * THUMB_SIZE));
14719 put_thumb32_insn (to, inst.instruction);
14720 }
14721 else if (inst.size > INSN_SIZE)
14722 {
14723 gas_assert (inst.size == (2 * INSN_SIZE));
14724 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14725 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
14726 }
14727 else
14728 md_number_to_chars (to, inst.instruction, inst.size);
14729
14730 if (inst.reloc.type != BFD_RELOC_UNUSED)
14731 fix_new_arm (frag_now, to - frag_now->fr_literal,
14732 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14733 inst.reloc.type);
14734
14735 dwarf2_emit_insn (inst.size);
14736}
14737
14738static char *
14739output_it_inst (int cond, int mask, char * to)
14740{
14741 unsigned long instruction = 0xbf00;
14742
14743 mask &= 0xf;
14744 instruction |= mask;
14745 instruction |= cond << 4;
14746
14747 if (to == NULL)
14748 {
14749 to = frag_more (2);
14750#ifdef OBJ_ELF
14751 dwarf2_emit_insn (2);
14752#endif
14753 }
14754
14755 md_number_to_chars (to, instruction, 2);
14756
14757 return to;
14758}
14759
14760/* Tag values used in struct asm_opcode's tag field. */
14761enum opcode_tag
14762{
14763 OT_unconditional, /* Instruction cannot be conditionalized.
14764 The ARM condition field is still 0xE. */
14765 OT_unconditionalF, /* Instruction cannot be conditionalized
14766 and carries 0xF in its ARM condition field. */
14767 OT_csuffix, /* Instruction takes a conditional suffix. */
14768 OT_csuffixF, /* Some forms of the instruction take a conditional
14769 suffix, others place 0xF where the condition field
14770 would be. */
14771 OT_cinfix3, /* Instruction takes a conditional infix,
14772 beginning at character index 3. (In
14773 unified mode, it becomes a suffix.) */
14774 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14775 tsts, cmps, cmns, and teqs. */
14776 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14777 character index 3, even in unified mode. Used for
14778 legacy instructions where suffix and infix forms
14779 may be ambiguous. */
14780 OT_csuf_or_in3, /* Instruction takes either a conditional
14781 suffix or an infix at character index 3. */
14782 OT_odd_infix_unc, /* This is the unconditional variant of an
14783 instruction that takes a conditional infix
14784 at an unusual position. In unified mode,
14785 this variant will accept a suffix. */
14786 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
14787 are the conditional variants of instructions that
14788 take conditional infixes in unusual positions.
14789 The infix appears at character index
14790 (tag - OT_odd_infix_0). These are not accepted
14791 in unified mode. */
14792};
14793
14794/* Subroutine of md_assemble, responsible for looking up the primary
14795 opcode from the mnemonic the user wrote. STR points to the
14796 beginning of the mnemonic.
14797
14798 This is not simply a hash table lookup, because of conditional
14799 variants. Most instructions have conditional variants, which are
14800 expressed with a _conditional affix_ to the mnemonic. If we were
14801 to encode each conditional variant as a literal string in the opcode
14802 table, it would have approximately 20,000 entries.
14803
14804 Most mnemonics take this affix as a suffix, and in unified syntax,
14805 'most' is upgraded to 'all'. However, in the divided syntax, some
14806 instructions take the affix as an infix, notably the s-variants of
14807 the arithmetic instructions. Of those instructions, all but six
14808 have the infix appear after the third character of the mnemonic.
14809
14810 Accordingly, the algorithm for looking up primary opcodes given
14811 an identifier is:
14812
14813 1. Look up the identifier in the opcode table.
14814 If we find a match, go to step U.
14815
14816 2. Look up the last two characters of the identifier in the
14817 conditions table. If we find a match, look up the first N-2
14818 characters of the identifier in the opcode table. If we
14819 find a match, go to step CE.
14820
14821 3. Look up the fourth and fifth characters of the identifier in
14822 the conditions table. If we find a match, extract those
14823 characters from the identifier, and look up the remaining
14824 characters in the opcode table. If we find a match, go
14825 to step CM.
14826
14827 4. Fail.
14828
14829 U. Examine the tag field of the opcode structure, in case this is
14830 one of the six instructions with its conditional infix in an
14831 unusual place. If it is, the tag tells us where to find the
14832 infix; look it up in the conditions table and set inst.cond
14833 accordingly. Otherwise, this is an unconditional instruction.
14834 Again set inst.cond accordingly. Return the opcode structure.
14835
14836 CE. Examine the tag field to make sure this is an instruction that
14837 should receive a conditional suffix. If it is not, fail.
14838 Otherwise, set inst.cond from the suffix we already looked up,
14839 and return the opcode structure.
14840
14841 CM. Examine the tag field to make sure this is an instruction that
14842 should receive a conditional infix after the third character.
14843 If it is not, fail. Otherwise, undo the edits to the current
14844 line of input and proceed as for case CE. */
14845
14846static const struct asm_opcode *
14847opcode_lookup (char **str)
14848{
14849 char *end, *base;
14850 char *affix;
14851 const struct asm_opcode *opcode;
14852 const struct asm_cond *cond;
14853 char save[2];
14854 bfd_boolean neon_supported;
14855
14856 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
14857
14858 /* Scan up to the end of the mnemonic, which must end in white space,
14859 '.' (in unified mode, or for Neon instructions), or end of string. */
14860 for (base = end = *str; *end != '\0'; end++)
14861 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
14862 break;
14863
14864 if (end == base)
14865 return NULL;
14866
14867 /* Handle a possible width suffix and/or Neon type suffix. */
14868 if (end[0] == '.')
14869 {
14870 int offset = 2;
14871
14872 /* The .w and .n suffixes are only valid if the unified syntax is in
14873 use. */
14874 if (unified_syntax && end[1] == 'w')
14875 inst.size_req = 4;
14876 else if (unified_syntax && end[1] == 'n')
14877 inst.size_req = 2;
14878 else
14879 offset = 0;
14880
14881 inst.vectype.elems = 0;
14882
14883 *str = end + offset;
14884
14885 if (end[offset] == '.')
14886 {
14887 /* See if we have a Neon type suffix (possible in either unified or
14888 non-unified ARM syntax mode). */
14889 if (parse_neon_type (&inst.vectype, str) == FAIL)
14890 return NULL;
14891 }
14892 else if (end[offset] != '\0' && end[offset] != ' ')
14893 return NULL;
14894 }
14895 else
14896 *str = end;
14897
14898 /* Look for unaffixed or special-case affixed mnemonic. */
14899 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14900 if (opcode)
14901 {
14902 /* step U */
14903 if (opcode->tag < OT_odd_infix_0)
14904 {
14905 inst.cond = COND_ALWAYS;
14906 return opcode;
14907 }
14908
14909 if (warn_on_deprecated && unified_syntax)
14910 as_warn (_("conditional infixes are deprecated in unified syntax"));
14911 affix = base + (opcode->tag - OT_odd_infix_0);
14912 cond = hash_find_n (arm_cond_hsh, affix, 2);
14913 gas_assert (cond);
14914
14915 inst.cond = cond->value;
14916 return opcode;
14917 }
14918
14919 /* Cannot have a conditional suffix on a mnemonic of less than two
14920 characters. */
14921 if (end - base < 3)
14922 return NULL;
14923
14924 /* Look for suffixed mnemonic. */
14925 affix = end - 2;
14926 cond = hash_find_n (arm_cond_hsh, affix, 2);
14927 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14928 if (opcode && cond)
14929 {
14930 /* step CE */
14931 switch (opcode->tag)
14932 {
14933 case OT_cinfix3_legacy:
14934 /* Ignore conditional suffixes matched on infix only mnemonics. */
14935 break;
14936
14937 case OT_cinfix3:
14938 case OT_cinfix3_deprecated:
14939 case OT_odd_infix_unc:
14940 if (!unified_syntax)
14941 return 0;
14942 /* else fall through */
14943
14944 case OT_csuffix:
14945 case OT_csuffixF:
14946 case OT_csuf_or_in3:
14947 inst.cond = cond->value;
14948 return opcode;
14949
14950 case OT_unconditional:
14951 case OT_unconditionalF:
14952 if (thumb_mode)
14953 inst.cond = cond->value;
14954 else
14955 {
14956 /* Delayed diagnostic. */
14957 inst.error = BAD_COND;
14958 inst.cond = COND_ALWAYS;
14959 }
14960 return opcode;
14961
14962 default:
14963 return NULL;
14964 }
14965 }
14966
14967 /* Cannot have a usual-position infix on a mnemonic of less than
14968 six characters (five would be a suffix). */
14969 if (end - base < 6)
14970 return NULL;
14971
14972 /* Look for infixed mnemonic in the usual position. */
14973 affix = base + 3;
14974 cond = hash_find_n (arm_cond_hsh, affix, 2);
14975 if (!cond)
14976 return NULL;
14977
14978 memcpy (save, affix, 2);
14979 memmove (affix, affix + 2, (end - affix) - 2);
14980 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14981 memmove (affix + 2, affix, (end - affix) - 2);
14982 memcpy (affix, save, 2);
14983
14984 if (opcode
14985 && (opcode->tag == OT_cinfix3
14986 || opcode->tag == OT_cinfix3_deprecated
14987 || opcode->tag == OT_csuf_or_in3
14988 || opcode->tag == OT_cinfix3_legacy))
14989 {
14990 /* Step CM. */
14991 if (warn_on_deprecated && unified_syntax
14992 && (opcode->tag == OT_cinfix3
14993 || opcode->tag == OT_cinfix3_deprecated))
14994 as_warn (_("conditional infixes are deprecated in unified syntax"));
14995
14996 inst.cond = cond->value;
14997 return opcode;
14998 }
14999
15000 return NULL;
15001}
15002
15003/* This function generates an initial IT instruction, leaving its block
15004 virtually open for the new instructions. Eventually,
15005 the mask will be updated by now_it_add_mask () each time
15006 a new instruction needs to be included in the IT block.
15007 Finally, the block is closed with close_automatic_it_block ().
15008 The block closure can be requested either from md_assemble (),
15009 a tencode (), or due to a label hook. */
15010
15011static void
15012new_automatic_it_block (int cond)
15013{
15014 now_it.state = AUTOMATIC_IT_BLOCK;
15015 now_it.mask = 0x18;
15016 now_it.cc = cond;
15017 now_it.block_length = 1;
15018 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15019}
15020
15021/* Close an automatic IT block.
15022 See comments in new_automatic_it_block (). */
15023
15024static void
15025close_automatic_it_block (void)
15026{
15027 now_it.mask = 0x10;
15028 now_it.block_length = 0;
15029}
15030
15031/* Update the mask of the current automatically-generated IT
15032 instruction. See comments in new_automatic_it_block (). */
15033
15034static void
15035now_it_add_mask (int cond)
15036{
15037#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15038#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15039 | ((bitvalue) << (nbit)))
15040 const int resulting_bit = (cond & 1);
15041
15042 now_it.mask &= 0xf;
15043 now_it.mask = SET_BIT_VALUE (now_it.mask,
15044 resulting_bit,
15045 (5 - now_it.block_length));
15046 now_it.mask = SET_BIT_VALUE (now_it.mask,
15047 1,
15048 ((5 - now_it.block_length) - 1) );
15049 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15050
15051#undef CLEAR_BIT
15052#undef SET_BIT_VALUE
15053}
15054
15055/* The IT blocks handling machinery is accessed through the these functions:
15056 it_fsm_pre_encode () from md_assemble ()
15057 set_it_insn_type () optional, from the tencode functions
15058 set_it_insn_type_last () ditto
15059 in_it_block () ditto
15060 it_fsm_post_encode () from md_assemble ()
15061 force_automatic_it_block_close () from label habdling functions
15062
15063 Rationale:
15064 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15065 initializing the IT insn type with a generic initial value depending
15066 on the inst.condition.
15067 2) During the tencode function, two things may happen:
15068 a) The tencode function overrides the IT insn type by
15069 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15070 b) The tencode function queries the IT block state by
15071 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15072
15073 Both set_it_insn_type and in_it_block run the internal FSM state
15074 handling function (handle_it_state), because: a) setting the IT insn
15075 type may incur in an invalid state (exiting the function),
15076 and b) querying the state requires the FSM to be updated.
15077 Specifically we want to avoid creating an IT block for conditional
15078 branches, so it_fsm_pre_encode is actually a guess and we can't
15079 determine whether an IT block is required until the tencode () routine
15080 has decided what type of instruction this actually it.
15081 Because of this, if set_it_insn_type and in_it_block have to be used,
15082 set_it_insn_type has to be called first.
15083
15084 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15085 determines the insn IT type depending on the inst.cond code.
15086 When a tencode () routine encodes an instruction that can be
15087 either outside an IT block, or, in the case of being inside, has to be
15088 the last one, set_it_insn_type_last () will determine the proper
15089 IT instruction type based on the inst.cond code. Otherwise,
15090 set_it_insn_type can be called for overriding that logic or
15091 for covering other cases.
15092
15093 Calling handle_it_state () may not transition the IT block state to
15094 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15095 still queried. Instead, if the FSM determines that the state should
15096 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15097 after the tencode () function: that's what it_fsm_post_encode () does.
15098
15099 Since in_it_block () calls the state handling function to get an
15100 updated state, an error may occur (due to invalid insns combination).
15101 In that case, inst.error is set.
15102 Therefore, inst.error has to be checked after the execution of
15103 the tencode () routine.
15104
15105 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15106 any pending state change (if any) that didn't take place in
15107 handle_it_state () as explained above. */
15108
15109static void
15110it_fsm_pre_encode (void)
15111{
15112 if (inst.cond != COND_ALWAYS)
15113 inst.it_insn_type = INSIDE_IT_INSN;
15114 else
15115 inst.it_insn_type = OUTSIDE_IT_INSN;
15116
15117 now_it.state_handled = 0;
15118}
15119
15120/* IT state FSM handling function. */
15121
15122static int
15123handle_it_state (void)
15124{
15125 now_it.state_handled = 1;
15126
15127 switch (now_it.state)
15128 {
15129 case OUTSIDE_IT_BLOCK:
15130 switch (inst.it_insn_type)
15131 {
15132 case OUTSIDE_IT_INSN:
15133 break;
15134
15135 case INSIDE_IT_INSN:
15136 case INSIDE_IT_LAST_INSN:
15137 if (thumb_mode == 0)
15138 {
15139 if (unified_syntax
15140 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15141 as_tsktsk (_("Warning: conditional outside an IT block"\
15142 " for Thumb."));
15143 }
15144 else
15145 {
15146 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15147 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15148 {
15149 /* Automatically generate the IT instruction. */
15150 new_automatic_it_block (inst.cond);
15151 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15152 close_automatic_it_block ();
15153 }
15154 else
15155 {
15156 inst.error = BAD_OUT_IT;
15157 return FAIL;
15158 }
15159 }
15160 break;
15161
15162 case IF_INSIDE_IT_LAST_INSN:
15163 case NEUTRAL_IT_INSN:
15164 break;
15165
15166 case IT_INSN:
15167 now_it.state = MANUAL_IT_BLOCK;
15168 now_it.block_length = 0;
15169 break;
15170 }
15171 break;
15172
15173 case AUTOMATIC_IT_BLOCK:
15174 /* Three things may happen now:
15175 a) We should increment current it block size;
15176 b) We should close current it block (closing insn or 4 insns);
15177 c) We should close current it block and start a new one (due
15178 to incompatible conditions or
15179 4 insns-length block reached). */
15180
15181 switch (inst.it_insn_type)
15182 {
15183 case OUTSIDE_IT_INSN:
15184 /* The closure of the block shall happen immediatelly,
15185 so any in_it_block () call reports the block as closed. */
15186 force_automatic_it_block_close ();
15187 break;
15188
15189 case INSIDE_IT_INSN:
15190 case INSIDE_IT_LAST_INSN:
15191 case IF_INSIDE_IT_LAST_INSN:
15192 now_it.block_length++;
15193
15194 if (now_it.block_length > 4
15195 || !now_it_compatible (inst.cond))
15196 {
15197 force_automatic_it_block_close ();
15198 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15199 new_automatic_it_block (inst.cond);
15200 }
15201 else
15202 {
15203 now_it_add_mask (inst.cond);
15204 }
15205
15206 if (now_it.state == AUTOMATIC_IT_BLOCK
15207 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15208 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15209 close_automatic_it_block ();
15210 break;
15211
15212 case NEUTRAL_IT_INSN:
15213 now_it.block_length++;
15214
15215 if (now_it.block_length > 4)
15216 force_automatic_it_block_close ();
15217 else
15218 now_it_add_mask (now_it.cc & 1);
15219 break;
15220
15221 case IT_INSN:
15222 close_automatic_it_block ();
15223 now_it.state = MANUAL_IT_BLOCK;
15224 break;
15225 }
15226 break;
15227
15228 case MANUAL_IT_BLOCK:
15229 {
15230 /* Check conditional suffixes. */
15231 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15232 int is_last;
15233 now_it.mask <<= 1;
15234 now_it.mask &= 0x1f;
15235 is_last = (now_it.mask == 0x10);
15236
15237 switch (inst.it_insn_type)
15238 {
15239 case OUTSIDE_IT_INSN:
15240 inst.error = BAD_NOT_IT;
15241 return FAIL;
15242
15243 case INSIDE_IT_INSN:
15244 if (cond != inst.cond)
15245 {
15246 inst.error = BAD_IT_COND;
15247 return FAIL;
15248 }
15249 break;
15250
15251 case INSIDE_IT_LAST_INSN:
15252 case IF_INSIDE_IT_LAST_INSN:
15253 if (cond != inst.cond)
15254 {
15255 inst.error = BAD_IT_COND;
15256 return FAIL;
15257 }
15258 if (!is_last)
15259 {
15260 inst.error = BAD_BRANCH;
15261 return FAIL;
15262 }
15263 break;
15264
15265 case NEUTRAL_IT_INSN:
15266 /* The BKPT instruction is unconditional even in an IT block. */
15267 break;
15268
15269 case IT_INSN:
15270 inst.error = BAD_IT_IT;
15271 return FAIL;
15272 }
15273 }
15274 break;
15275 }
15276
15277 return SUCCESS;
15278}
15279
15280static void
15281it_fsm_post_encode (void)
15282{
15283 int is_last;
15284
15285 if (!now_it.state_handled)
15286 handle_it_state ();
15287
15288 is_last = (now_it.mask == 0x10);
15289 if (is_last)
15290 {
15291 now_it.state = OUTSIDE_IT_BLOCK;
15292 now_it.mask = 0;
15293 }
15294}
15295
15296static void
15297force_automatic_it_block_close (void)
15298{
15299 if (now_it.state == AUTOMATIC_IT_BLOCK)
15300 {
15301 close_automatic_it_block ();
15302 now_it.state = OUTSIDE_IT_BLOCK;
15303 now_it.mask = 0;
15304 }
15305}
15306
15307static int
15308in_it_block (void)
15309{
15310 if (!now_it.state_handled)
15311 handle_it_state ();
15312
15313 return now_it.state != OUTSIDE_IT_BLOCK;
15314}
15315
15316void
15317md_assemble (char *str)
15318{
15319 char *p = str;
15320 const struct asm_opcode * opcode;
15321
15322 /* Align the previous label if needed. */
15323 if (last_label_seen != NULL)
15324 {
15325 symbol_set_frag (last_label_seen, frag_now);
15326 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15327 S_SET_SEGMENT (last_label_seen, now_seg);
15328 }
15329
15330 memset (&inst, '\0', sizeof (inst));
15331 inst.reloc.type = BFD_RELOC_UNUSED;
15332
15333 opcode = opcode_lookup (&p);
15334 if (!opcode)
15335 {
15336 /* It wasn't an instruction, but it might be a register alias of
15337 the form alias .req reg, or a Neon .dn/.qn directive. */
15338 if (! create_register_alias (str, p)
15339 && ! create_neon_reg_alias (str, p))
15340 as_bad (_("bad instruction `%s'"), str);
15341
15342 return;
15343 }
15344
15345 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
15346 as_warn (_("s suffix on comparison instruction is deprecated"));
15347
15348 /* The value which unconditional instructions should have in place of the
15349 condition field. */
15350 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15351
15352 if (thumb_mode)
15353 {
15354 arm_feature_set variant;
15355
15356 variant = cpu_variant;
15357 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
15358 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15359 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
15360 /* Check that this instruction is supported for this CPU. */
15361 if (!opcode->tvariant
15362 || (thumb_mode == 1
15363 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
15364 {
15365 as_bad (_("selected processor does not support `%s'"), str);
15366 return;
15367 }
15368 if (inst.cond != COND_ALWAYS && !unified_syntax
15369 && opcode->tencode != do_t_branch)
15370 {
15371 as_bad (_("Thumb does not support conditional execution"));
15372 return;
15373 }
15374
15375 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
15376 {
15377 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
15378 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15379 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15380 {
15381 /* Two things are addressed here.
15382 1) Implicit require narrow instructions on Thumb-1.
15383 This avoids relaxation accidentally introducing Thumb-2
15384 instructions.
15385 2) Reject wide instructions in non Thumb-2 cores. */
15386 if (inst.size_req == 0)
15387 inst.size_req = 2;
15388 else if (inst.size_req == 4)
15389 {
15390 as_bad (_("selected processor does not support `%s'"), str);
15391 return;
15392 }
15393 }
15394 }
15395
15396 mapping_state (MAP_THUMB);
15397 inst.instruction = opcode->tvalue;
15398
15399 if (!parse_operands (p, opcode->operands))
15400 {
15401 /* Prepare the it_insn_type for those encodings that don't set
15402 it. */
15403 it_fsm_pre_encode ();
15404
15405 opcode->tencode ();
15406
15407 it_fsm_post_encode ();
15408 }
15409
15410 if (!(inst.error || inst.relax))
15411 {
15412 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
15413 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15414 if (inst.size_req && inst.size_req != inst.size)
15415 {
15416 as_bad (_("cannot honor width suffix -- `%s'"), str);
15417 return;
15418 }
15419 }
15420
15421 /* Something has gone badly wrong if we try to relax a fixed size
15422 instruction. */
15423 gas_assert (inst.size_req == 0 || !inst.relax);
15424
15425 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15426 *opcode->tvariant);
15427 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
15428 set those bits when Thumb-2 32-bit instructions are seen. ie.
15429 anything other than bl/blx and v6-M instructions.
15430 This is overly pessimistic for relaxable instructions. */
15431 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15432 || inst.relax)
15433 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15434 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
15435 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15436 arm_ext_v6t2);
15437 }
15438 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
15439 {
15440 bfd_boolean is_bx;
15441
15442 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15443 is_bx = (opcode->aencode == do_bx);
15444
15445 /* Check that this instruction is supported for this CPU. */
15446 if (!(is_bx && fix_v4bx)
15447 && !(opcode->avariant &&
15448 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
15449 {
15450 as_bad (_("selected processor does not support `%s'"), str);
15451 return;
15452 }
15453 if (inst.size_req)
15454 {
15455 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15456 return;
15457 }
15458
15459 mapping_state (MAP_ARM);
15460 inst.instruction = opcode->avalue;
15461 if (opcode->tag == OT_unconditionalF)
15462 inst.instruction |= 0xF << 28;
15463 else
15464 inst.instruction |= inst.cond << 28;
15465 inst.size = INSN_SIZE;
15466 if (!parse_operands (p, opcode->operands))
15467 {
15468 it_fsm_pre_encode ();
15469 opcode->aencode ();
15470 it_fsm_post_encode ();
15471 }
15472 /* Arm mode bx is marked as both v4T and v5 because it's still required
15473 on a hypothetical non-thumb v5 core. */
15474 if (is_bx)
15475 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
15476 else
15477 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15478 *opcode->avariant);
15479 }
15480 else
15481 {
15482 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15483 "-- `%s'"), str);
15484 return;
15485 }
15486 output_inst (str);
15487}
15488
15489static void
15490check_it_blocks_finished (void)
15491{
15492#ifdef OBJ_ELF
15493 asection *sect;
15494
15495 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15496 if (seg_info (sect)->tc_segment_info_data.current_it.state
15497 == MANUAL_IT_BLOCK)
15498 {
15499 as_warn (_("section '%s' finished with an open IT block."),
15500 sect->name);
15501 }
15502#else
15503 if (now_it.state == MANUAL_IT_BLOCK)
15504 as_warn (_("file finished with an open IT block."));
15505#endif
15506}
15507
15508/* Various frobbings of labels and their addresses. */
15509
15510void
15511arm_start_line_hook (void)
15512{
15513 last_label_seen = NULL;
15514}
15515
15516void
15517arm_frob_label (symbolS * sym)
15518{
15519 last_label_seen = sym;
15520
15521 ARM_SET_THUMB (sym, thumb_mode);
15522
15523#if defined OBJ_COFF || defined OBJ_ELF
15524 ARM_SET_INTERWORK (sym, support_interwork);
15525#endif
15526
15527 force_automatic_it_block_close ();
15528
15529 /* Note - do not allow local symbols (.Lxxx) to be labelled
15530 as Thumb functions. This is because these labels, whilst
15531 they exist inside Thumb code, are not the entry points for
15532 possible ARM->Thumb calls. Also, these labels can be used
15533 as part of a computed goto or switch statement. eg gcc
15534 can generate code that looks like this:
15535
15536 ldr r2, [pc, .Laaa]
15537 lsl r3, r3, #2
15538 ldr r2, [r3, r2]
15539 mov pc, r2
15540
15541 .Lbbb: .word .Lxxx
15542 .Lccc: .word .Lyyy
15543 ..etc...
15544 .Laaa: .word Lbbb
15545
15546 The first instruction loads the address of the jump table.
15547 The second instruction converts a table index into a byte offset.
15548 The third instruction gets the jump address out of the table.
15549 The fourth instruction performs the jump.
15550
15551 If the address stored at .Laaa is that of a symbol which has the
15552 Thumb_Func bit set, then the linker will arrange for this address
15553 to have the bottom bit set, which in turn would mean that the
15554 address computation performed by the third instruction would end
15555 up with the bottom bit set. Since the ARM is capable of unaligned
15556 word loads, the instruction would then load the incorrect address
15557 out of the jump table, and chaos would ensue. */
15558 if (label_is_thumb_function_name
15559 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
15560 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
15561 {
15562 /* When the address of a Thumb function is taken the bottom
15563 bit of that address should be set. This will allow
15564 interworking between Arm and Thumb functions to work
15565 correctly. */
15566
15567 THUMB_SET_FUNC (sym, 1);
15568
15569 label_is_thumb_function_name = FALSE;
15570 }
15571
15572 dwarf2_emit_label (sym);
15573}
15574
15575bfd_boolean
15576arm_data_in_code (void)
15577{
15578 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
15579 {
15580 *input_line_pointer = '/';
15581 input_line_pointer += 5;
15582 *input_line_pointer = 0;
15583 return TRUE;
15584 }
15585
15586 return FALSE;
15587}
15588
15589char *
15590arm_canonicalize_symbol_name (char * name)
15591{
15592 int len;
15593
15594 if (thumb_mode && (len = strlen (name)) > 5
15595 && streq (name + len - 5, "/data"))
15596 *(name + len - 5) = 0;
15597
15598 return name;
15599}
15600\f
15601/* Table of all register names defined by default. The user can
15602 define additional names with .req. Note that all register names
15603 should appear in both upper and lowercase variants. Some registers
15604 also have mixed-case names. */
15605
15606#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
15607#define REGNUM(p,n,t) REGDEF(p##n, n, t)
15608#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
15609#define REGSET(p,t) \
15610 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
15611 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
15612 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
15613 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
15614#define REGSETH(p,t) \
15615 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
15616 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
15617 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
15618 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
15619#define REGSET2(p,t) \
15620 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
15621 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
15622 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
15623 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
15624
15625static const struct reg_entry reg_names[] =
15626{
15627 /* ARM integer registers. */
15628 REGSET(r, RN), REGSET(R, RN),
15629
15630 /* ATPCS synonyms. */
15631 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
15632 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
15633 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
15634
15635 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
15636 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
15637 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
15638
15639 /* Well-known aliases. */
15640 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
15641 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
15642
15643 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
15644 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
15645
15646 /* Coprocessor numbers. */
15647 REGSET(p, CP), REGSET(P, CP),
15648
15649 /* Coprocessor register numbers. The "cr" variants are for backward
15650 compatibility. */
15651 REGSET(c, CN), REGSET(C, CN),
15652 REGSET(cr, CN), REGSET(CR, CN),
15653
15654 /* FPA registers. */
15655 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
15656 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
15657
15658 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
15659 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
15660
15661 /* VFP SP registers. */
15662 REGSET(s,VFS), REGSET(S,VFS),
15663 REGSETH(s,VFS), REGSETH(S,VFS),
15664
15665 /* VFP DP Registers. */
15666 REGSET(d,VFD), REGSET(D,VFD),
15667 /* Extra Neon DP registers. */
15668 REGSETH(d,VFD), REGSETH(D,VFD),
15669
15670 /* Neon QP registers. */
15671 REGSET2(q,NQ), REGSET2(Q,NQ),
15672
15673 /* VFP control registers. */
15674 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
15675 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
15676 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
15677 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
15678 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
15679 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
15680
15681 /* Maverick DSP coprocessor registers. */
15682 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
15683 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
15684
15685 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
15686 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
15687 REGDEF(dspsc,0,DSPSC),
15688
15689 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
15690 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
15691 REGDEF(DSPSC,0,DSPSC),
15692
15693 /* iWMMXt data registers - p0, c0-15. */
15694 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
15695
15696 /* iWMMXt control registers - p1, c0-3. */
15697 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
15698 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
15699 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
15700 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
15701
15702 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
15703 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
15704 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
15705 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
15706 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
15707
15708 /* XScale accumulator registers. */
15709 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
15710};
15711#undef REGDEF
15712#undef REGNUM
15713#undef REGSET
15714
15715/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
15716 within psr_required_here. */
15717static const struct asm_psr psrs[] =
15718{
15719 /* Backward compatibility notation. Note that "all" is no longer
15720 truly all possible PSR bits. */
15721 {"all", PSR_c | PSR_f},
15722 {"flg", PSR_f},
15723 {"ctl", PSR_c},
15724
15725 /* Individual flags. */
15726 {"f", PSR_f},
15727 {"c", PSR_c},
15728 {"x", PSR_x},
15729 {"s", PSR_s},
15730 /* Combinations of flags. */
15731 {"fs", PSR_f | PSR_s},
15732 {"fx", PSR_f | PSR_x},
15733 {"fc", PSR_f | PSR_c},
15734 {"sf", PSR_s | PSR_f},
15735 {"sx", PSR_s | PSR_x},
15736 {"sc", PSR_s | PSR_c},
15737 {"xf", PSR_x | PSR_f},
15738 {"xs", PSR_x | PSR_s},
15739 {"xc", PSR_x | PSR_c},
15740 {"cf", PSR_c | PSR_f},
15741 {"cs", PSR_c | PSR_s},
15742 {"cx", PSR_c | PSR_x},
15743 {"fsx", PSR_f | PSR_s | PSR_x},
15744 {"fsc", PSR_f | PSR_s | PSR_c},
15745 {"fxs", PSR_f | PSR_x | PSR_s},
15746 {"fxc", PSR_f | PSR_x | PSR_c},
15747 {"fcs", PSR_f | PSR_c | PSR_s},
15748 {"fcx", PSR_f | PSR_c | PSR_x},
15749 {"sfx", PSR_s | PSR_f | PSR_x},
15750 {"sfc", PSR_s | PSR_f | PSR_c},
15751 {"sxf", PSR_s | PSR_x | PSR_f},
15752 {"sxc", PSR_s | PSR_x | PSR_c},
15753 {"scf", PSR_s | PSR_c | PSR_f},
15754 {"scx", PSR_s | PSR_c | PSR_x},
15755 {"xfs", PSR_x | PSR_f | PSR_s},
15756 {"xfc", PSR_x | PSR_f | PSR_c},
15757 {"xsf", PSR_x | PSR_s | PSR_f},
15758 {"xsc", PSR_x | PSR_s | PSR_c},
15759 {"xcf", PSR_x | PSR_c | PSR_f},
15760 {"xcs", PSR_x | PSR_c | PSR_s},
15761 {"cfs", PSR_c | PSR_f | PSR_s},
15762 {"cfx", PSR_c | PSR_f | PSR_x},
15763 {"csf", PSR_c | PSR_s | PSR_f},
15764 {"csx", PSR_c | PSR_s | PSR_x},
15765 {"cxf", PSR_c | PSR_x | PSR_f},
15766 {"cxs", PSR_c | PSR_x | PSR_s},
15767 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
15768 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
15769 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
15770 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
15771 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
15772 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
15773 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
15774 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
15775 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
15776 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
15777 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
15778 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
15779 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
15780 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
15781 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
15782 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
15783 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
15784 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
15785 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
15786 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
15787 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
15788 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
15789 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
15790 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
15791};
15792
15793/* Table of V7M psr names. */
15794static const struct asm_psr v7m_psrs[] =
15795{
15796 {"apsr", 0 }, {"APSR", 0 },
15797 {"iapsr", 1 }, {"IAPSR", 1 },
15798 {"eapsr", 2 }, {"EAPSR", 2 },
15799 {"psr", 3 }, {"PSR", 3 },
15800 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
15801 {"ipsr", 5 }, {"IPSR", 5 },
15802 {"epsr", 6 }, {"EPSR", 6 },
15803 {"iepsr", 7 }, {"IEPSR", 7 },
15804 {"msp", 8 }, {"MSP", 8 },
15805 {"psp", 9 }, {"PSP", 9 },
15806 {"primask", 16}, {"PRIMASK", 16},
15807 {"basepri", 17}, {"BASEPRI", 17},
15808 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
15809 {"faultmask", 19}, {"FAULTMASK", 19},
15810 {"control", 20}, {"CONTROL", 20}
15811};
15812
15813/* Table of all shift-in-operand names. */
15814static const struct asm_shift_name shift_names [] =
15815{
15816 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
15817 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
15818 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
15819 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
15820 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
15821 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
15822};
15823
15824/* Table of all explicit relocation names. */
15825#ifdef OBJ_ELF
15826static struct reloc_entry reloc_names[] =
15827{
15828 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
15829 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
15830 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
15831 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
15832 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
15833 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
15834 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
15835 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
15836 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
15837 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
15838 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
15839};
15840#endif
15841
15842/* Table of all conditional affixes. 0xF is not defined as a condition code. */
15843static const struct asm_cond conds[] =
15844{
15845 {"eq", 0x0},
15846 {"ne", 0x1},
15847 {"cs", 0x2}, {"hs", 0x2},
15848 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
15849 {"mi", 0x4},
15850 {"pl", 0x5},
15851 {"vs", 0x6},
15852 {"vc", 0x7},
15853 {"hi", 0x8},
15854 {"ls", 0x9},
15855 {"ge", 0xa},
15856 {"lt", 0xb},
15857 {"gt", 0xc},
15858 {"le", 0xd},
15859 {"al", 0xe}
15860};
15861
15862static struct asm_barrier_opt barrier_opt_names[] =
15863{
15864 { "sy", 0xf },
15865 { "un", 0x7 },
15866 { "st", 0xe },
15867 { "unst", 0x6 }
15868};
15869
15870/* Table of ARM-format instructions. */
15871
15872/* Macros for gluing together operand strings. N.B. In all cases
15873 other than OPS0, the trailing OP_stop comes from default
15874 zero-initialization of the unspecified elements of the array. */
15875#define OPS0() { OP_stop, }
15876#define OPS1(a) { OP_##a, }
15877#define OPS2(a,b) { OP_##a,OP_##b, }
15878#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
15879#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
15880#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
15881#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
15882
15883/* These macros abstract out the exact format of the mnemonic table and
15884 save some repeated characters. */
15885
15886/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
15887#define TxCE(mnem, op, top, nops, ops, ae, te) \
15888 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
15889 THUMB_VARIANT, do_##ae, do_##te }
15890
15891/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
15892 a T_MNEM_xyz enumerator. */
15893#define TCE(mnem, aop, top, nops, ops, ae, te) \
15894 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
15895#define tCE(mnem, aop, top, nops, ops, ae, te) \
15896 TxCE (mnem, aop, T_MNEM_##top, nops, ops, ae, te)
15897
15898/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
15899 infix after the third character. */
15900#define TxC3(mnem, op, top, nops, ops, ae, te) \
15901 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
15902 THUMB_VARIANT, do_##ae, do_##te }
15903#define TxC3w(mnem, op, top, nops, ops, ae, te) \
15904 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
15905 THUMB_VARIANT, do_##ae, do_##te }
15906#define TC3(mnem, aop, top, nops, ops, ae, te) \
15907 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
15908#define TC3w(mnem, aop, top, nops, ops, ae, te) \
15909 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
15910#define tC3(mnem, aop, top, nops, ops, ae, te) \
15911 TxC3 (mnem, aop, T_MNEM_##top, nops, ops, ae, te)
15912#define tC3w(mnem, aop, top, nops, ops, ae, te) \
15913 TxC3w (mnem, aop, T_MNEM_##top, nops, ops, ae, te)
15914
15915/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
15916 appear in the condition table. */
15917#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
15918 { #m1 #m2 #m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (#m1) - 1, \
15919 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
15920
15921#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
15922 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
15923 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
15924 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
15925 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
15926 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
15927 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
15928 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
15929 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
15930 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
15931 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
15932 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
15933 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
15934 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
15935 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
15936 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
15937 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
15938 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
15939 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
15940 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
15941
15942#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
15943 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
15944#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
15945 TxCM (m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
15946
15947/* Mnemonic that cannot be conditionalized. The ARM condition-code
15948 field is still 0xE. Many of the Thumb variants can be executed
15949 conditionally, so this is checked separately. */
15950#define TUE(mnem, op, top, nops, ops, ae, te) \
15951 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
15952 THUMB_VARIANT, do_##ae, do_##te }
15953
15954/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
15955 condition code field. */
15956#define TUF(mnem, op, top, nops, ops, ae, te) \
15957 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
15958 THUMB_VARIANT, do_##ae, do_##te }
15959
15960/* ARM-only variants of all the above. */
15961#define CE(mnem, op, nops, ops, ae) \
15962 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15963
15964#define C3(mnem, op, nops, ops, ae) \
15965 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15966
15967/* Legacy mnemonics that always have conditional infix after the third
15968 character. */
15969#define CL(mnem, op, nops, ops, ae) \
15970 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
15971 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15972
15973/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
15974#define cCE(mnem, op, nops, ops, ae) \
15975 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15976
15977/* Legacy coprocessor instructions where conditional infix and conditional
15978 suffix are ambiguous. For consistency this includes all FPA instructions,
15979 not just the potentially ambiguous ones. */
15980#define cCL(mnem, op, nops, ops, ae) \
15981 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
15982 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15983
15984/* Coprocessor, takes either a suffix or a position-3 infix
15985 (for an FPA corner case). */
15986#define C3E(mnem, op, nops, ops, ae) \
15987 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
15988 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15989
15990#define xCM_(m1, m2, m3, op, nops, ops, ae) \
15991 { #m1 #m2 #m3, OPS##nops ops, \
15992 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (#m1) - 1, \
15993 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15994
15995#define CM(m1, m2, op, nops, ops, ae) \
15996 xCM_ (m1, , m2, op, nops, ops, ae), \
15997 xCM_ (m1, eq, m2, op, nops, ops, ae), \
15998 xCM_ (m1, ne, m2, op, nops, ops, ae), \
15999 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16000 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16001 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16002 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16003 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16004 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16005 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16006 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16007 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16008 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16009 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16010 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16011 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16012 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16013 xCM_ (m1, le, m2, op, nops, ops, ae), \
16014 xCM_ (m1, al, m2, op, nops, ops, ae)
16015
16016#define UE(mnem, op, nops, ops, ae) \
16017 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16018
16019#define UF(mnem, op, nops, ops, ae) \
16020 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16021
16022/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16023 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16024 use the same encoding function for each. */
16025#define NUF(mnem, op, nops, ops, enc) \
16026 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16027 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16028
16029/* Neon data processing, version which indirects through neon_enc_tab for
16030 the various overloaded versions of opcodes. */
16031#define nUF(mnem, op, nops, ops, enc) \
16032 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
16033 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16034
16035/* Neon insn with conditional suffix for the ARM version, non-overloaded
16036 version. */
16037#define NCE_tag(mnem, op, nops, ops, enc, tag) \
16038 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16039 THUMB_VARIANT, do_##enc, do_##enc }
16040
16041#define NCE(mnem, op, nops, ops, enc) \
16042 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16043
16044#define NCEF(mnem, op, nops, ops, enc) \
16045 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16046
16047/* Neon insn with conditional suffix for the ARM version, overloaded types. */
16048#define nCE_tag(mnem, op, nops, ops, enc, tag) \
16049 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
16050 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16051
16052#define nCE(mnem, op, nops, ops, enc) \
16053 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16054
16055#define nCEF(mnem, op, nops, ops, enc) \
16056 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16057
16058#define do_0 0
16059
16060/* Thumb-only, unconditional. */
16061#define UT(mnem, op, nops, ops, te) TUE (mnem, 0, op, nops, ops, 0, te)
16062
16063static const struct asm_opcode insns[] =
16064{
16065#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16066#define THUMB_VARIANT &arm_ext_v4t
16067 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
16068 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
16069 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
16070 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
16071 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
16072 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
16073 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
16074 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16075 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
16076 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16077 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
16078 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16079 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
16080 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16081 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
16082 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
16083
16084 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16085 for setting PSR flag bits. They are obsolete in V6 and do not
16086 have Thumb equivalents. */
16087 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
16088 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
16089 CL(tstp, 110f000, 2, (RR, SH), cmp),
16090 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
16091 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
16092 CL(cmpp, 150f000, 2, (RR, SH), cmp),
16093 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
16094 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
16095 CL(cmnp, 170f000, 2, (RR, SH), cmp),
16096
16097 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
16098 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
16099 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
16100 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
16101
16102 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16103 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16104 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
16105 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16106
16107 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16108 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16109 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16110 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16111 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16112 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16113
16114 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
16115 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
16116 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
16117 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
16118
16119 /* Pseudo ops. */
16120 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
16121 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16122 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
16123
16124 /* Thumb-compatibility pseudo ops. */
16125 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
16126 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
16127 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
16128 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
16129 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
16130 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
16131 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
16132 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
16133 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
16134 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
16135 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
16136 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
16137
16138 /* These may simplify to neg. */
16139 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16140 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16141
16142#undef THUMB_VARIANT
16143#define THUMB_VARIANT & arm_ext_v6
16144
16145 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
16146
16147 /* V1 instructions with no Thumb analogue prior to V6T2. */
16148#undef THUMB_VARIANT
16149#define THUMB_VARIANT & arm_ext_v6t2
16150
16151 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16152 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16153 CL(teqp, 130f000, 2, (RR, SH), cmp),
16154
16155 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
16156 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
16157 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
16158 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
16159
16160 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16161 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16162
16163 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16164 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16165
16166 /* V1 instructions with no Thumb analogue at all. */
16167 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
16168 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16169
16170 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16171 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16172 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16173 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16174 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16175 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16176 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16177 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16178
16179#undef ARM_VARIANT
16180#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16181#undef THUMB_VARIANT
16182#define THUMB_VARIANT & arm_ext_v4t
16183
16184 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16185 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16186
16187#undef THUMB_VARIANT
16188#define THUMB_VARIANT & arm_ext_v6t2
16189
16190 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16191 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16192
16193 /* Generic coprocessor instructions. */
16194 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16195 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16196 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16197 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16198 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16199 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16200 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16201
16202#undef ARM_VARIANT
16203#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16204
16205 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16206 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16207
16208#undef ARM_VARIANT
16209#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16210#undef THUMB_VARIANT
16211#define THUMB_VARIANT & arm_ext_msr
16212
16213 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16214 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
16215
16216#undef ARM_VARIANT
16217#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16218#undef THUMB_VARIANT
16219#define THUMB_VARIANT & arm_ext_v6t2
16220
16221 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16222 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16223 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16224 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16225 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16226 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16227 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16228 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16229
16230#undef ARM_VARIANT
16231#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16232#undef THUMB_VARIANT
16233#define THUMB_VARIANT & arm_ext_v4t
16234
16235 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16236 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16237 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16238 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16239 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16240 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16241
16242#undef ARM_VARIANT
16243#define ARM_VARIANT & arm_ext_v4t_5
16244
16245 /* ARM Architecture 4T. */
16246 /* Note: bx (and blx) are required on V5, even if the processor does
16247 not support Thumb. */
16248 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
16249
16250#undef ARM_VARIANT
16251#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16252#undef THUMB_VARIANT
16253#define THUMB_VARIANT & arm_ext_v5t
16254
16255 /* Note: blx has 2 variants; the .value coded here is for
16256 BLX(2). Only this variant has conditional execution. */
16257 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16258 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
16259
16260#undef THUMB_VARIANT
16261#define THUMB_VARIANT & arm_ext_v6t2
16262
16263 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16264 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16265 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16266 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16267 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16268 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16269 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16270 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16271
16272#undef ARM_VARIANT
16273#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16274
16275 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16276 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16277 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16278 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16279
16280 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16281 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16282
16283 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16284 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16285 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16286 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16287
16288 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16289 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16290 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16291 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16292
16293 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16294 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16295
16296 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16297 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16298 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16299 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16300
16301#undef ARM_VARIANT
16302#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
16303
16304 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
16305 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
16306 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
16307
16308 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16309 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16310
16311#undef ARM_VARIANT
16312#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16313
16314 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
16315
16316#undef ARM_VARIANT
16317#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16318#undef THUMB_VARIANT
16319#define THUMB_VARIANT & arm_ext_v6
16320
16321 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16322 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16323 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16324 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16325 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16326 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16327 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16328 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16329 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16330 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
16331
16332#undef THUMB_VARIANT
16333#define THUMB_VARIANT & arm_ext_v6t2
16334
16335 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
16336 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
16337 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16338 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16339
16340 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16341 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
16342
16343/* ARM V6 not included in V7M (eg. integer SIMD). */
16344#undef THUMB_VARIANT
16345#define THUMB_VARIANT & arm_ext_v6_notm
16346
16347 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16348 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16349 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16350 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16351 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16352 TCE(qasx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16353 /* Old name for QASX. */
16354 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16355 TCE(qsax, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16356 /* Old name for QSAX. */
16357 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16358 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16359 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16360 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16361 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16362 TCE(sasx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16363 /* Old name for SASX. */
16364 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16365 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16366 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16367 TCE(shasx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16368 /* Old name for SHASX. */
16369 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16370 TCE(shsax, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16371 /* Old name for SHSAX. */
16372 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16373 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16374 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16375 TCE(ssax, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16376 /* Old name for SSAX. */
16377 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16378 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16379 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16380 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16381 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16382 TCE(uasx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16383 /* Old name for UASX. */
16384 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16385 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16386 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16387 TCE(uhasx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16388 /* Old name for UHASX. */
16389 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16390 TCE(uhsax, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16391 /* Old name for UHSAX. */
16392 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16393 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16394 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16395 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16396 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16397 TCE(uqasx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16398 /* Old name for UQASX. */
16399 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16400 TCE(uqsax, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16401 /* Old name for UQSAX. */
16402 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16403 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16404 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16405 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16406 TCE(usax, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16407 /* Old name for USAX. */
16408 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16409 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16410 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
16411 UF(rfeib, 9900a00, 1, (RRw), rfe),
16412 UF(rfeda, 8100a00, 1, (RRw), rfe),
16413 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
16414 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
16415 UF(rfefa, 9900a00, 1, (RRw), rfe),
16416 UF(rfeea, 8100a00, 1, (RRw), rfe),
16417 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
16418 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16419 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16420 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16421 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16422 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16423 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16424 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16425 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16426 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16427 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16428 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16429 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16430 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16431 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16432 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16433 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16434 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16435 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16436 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16437 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16438 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16439 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16440 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16441 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16442 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16443 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16444 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16445 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16446 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16447 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16448 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
16449 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16450 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16451 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16452 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16453 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
16454
16455#undef ARM_VARIANT
16456#define ARM_VARIANT & arm_ext_v6k
16457#undef THUMB_VARIANT
16458#define THUMB_VARIANT & arm_ext_v6k
16459
16460 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
16461 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
16462 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
16463 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
16464
16465#undef THUMB_VARIANT
16466#define THUMB_VARIANT & arm_ext_v6_notm
16467
16468 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
16469 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
16470
16471#undef THUMB_VARIANT
16472#define THUMB_VARIANT & arm_ext_v6t2
16473
16474 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16475 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16476 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16477 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16478 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
16479
16480#undef ARM_VARIANT
16481#define ARM_VARIANT & arm_ext_v6z
16482
16483 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
16484
16485#undef ARM_VARIANT
16486#define ARM_VARIANT & arm_ext_v6t2
16487
16488 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16489 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16490 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16491 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16492
16493 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16494 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16495 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16496 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
16497
16498 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16499 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16500 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16501 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16502
16503 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
16504 UT(cbz, b100, 2, (RR, EXP), t_cbz),
16505
16506 /* ARM does not really have an IT instruction, so always allow it.
16507 The opcode is copied from Thumb in order to allow warnings in
16508 -mimplicit-it=[never | arm] modes. */
16509#undef ARM_VARIANT
16510#define ARM_VARIANT & arm_ext_v1
16511
16512 TUE(it, bf08, bf08, 1, (COND), it, t_it),
16513 TUE(itt, bf0c, bf0c, 1, (COND), it, t_it),
16514 TUE(ite, bf04, bf04, 1, (COND), it, t_it),
16515 TUE(ittt, bf0e, bf0e, 1, (COND), it, t_it),
16516 TUE(itet, bf06, bf06, 1, (COND), it, t_it),
16517 TUE(itte, bf0a, bf0a, 1, (COND), it, t_it),
16518 TUE(itee, bf02, bf02, 1, (COND), it, t_it),
16519 TUE(itttt, bf0f, bf0f, 1, (COND), it, t_it),
16520 TUE(itett, bf07, bf07, 1, (COND), it, t_it),
16521 TUE(ittet, bf0b, bf0b, 1, (COND), it, t_it),
16522 TUE(iteet, bf03, bf03, 1, (COND), it, t_it),
16523 TUE(ittte, bf0d, bf0d, 1, (COND), it, t_it),
16524 TUE(itete, bf05, bf05, 1, (COND), it, t_it),
16525 TUE(ittee, bf09, bf09, 1, (COND), it, t_it),
16526 TUE(iteee, bf01, bf01, 1, (COND), it, t_it),
16527 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
16528 TC3(rrx, 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
16529 TC3(rrxs, 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
16530
16531 /* Thumb2 only instructions. */
16532#undef ARM_VARIANT
16533#define ARM_VARIANT NULL
16534
16535 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16536 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16537 TCE(orn, 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
16538 TCE(orns, 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
16539 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
16540 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
16541
16542 /* Thumb-2 hardware division instructions (R and M profiles only). */
16543#undef THUMB_VARIANT
16544#define THUMB_VARIANT & arm_ext_div
16545
16546 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
16547 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
16548
16549 /* ARM V6M/V7 instructions. */
16550#undef ARM_VARIANT
16551#define ARM_VARIANT & arm_ext_barrier
16552#undef THUMB_VARIANT
16553#define THUMB_VARIANT & arm_ext_barrier
16554
16555 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
16556 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
16557 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
16558
16559 /* ARM V7 instructions. */
16560#undef ARM_VARIANT
16561#define ARM_VARIANT & arm_ext_v7
16562#undef THUMB_VARIANT
16563#define THUMB_VARIANT & arm_ext_v7
16564
16565 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
16566 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
16567
16568#undef ARM_VARIANT
16569#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
16570
16571 cCE(wfs, e200110, 1, (RR), rd),
16572 cCE(rfs, e300110, 1, (RR), rd),
16573 cCE(wfc, e400110, 1, (RR), rd),
16574 cCE(rfc, e500110, 1, (RR), rd),
16575
16576 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
16577 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
16578 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
16579 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
16580
16581 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
16582 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
16583 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
16584 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
16585
16586 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
16587 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
16588 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
16589 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
16590 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
16591 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
16592 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
16593 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
16594 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
16595 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
16596 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
16597 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
16598
16599 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
16600 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
16601 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
16602 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
16603 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
16604 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
16605 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
16606 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
16607 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
16608 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
16609 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
16610 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
16611
16612 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
16613 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
16614 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
16615 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
16616 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
16617 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
16618 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
16619 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
16620 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
16621 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
16622 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
16623 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
16624
16625 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
16626 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
16627 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
16628 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
16629 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
16630 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
16631 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
16632 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
16633 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
16634 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
16635 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
16636 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
16637
16638 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
16639 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
16640 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
16641 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
16642 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
16643 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
16644 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
16645 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
16646 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
16647 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
16648 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
16649 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
16650
16651 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
16652 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
16653 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
16654 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
16655 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
16656 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
16657 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
16658 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
16659 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
16660 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
16661 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
16662 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
16663
16664 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
16665 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
16666 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
16667 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
16668 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
16669 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
16670 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
16671 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
16672 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
16673 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
16674 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
16675 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
16676
16677 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
16678 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
16679 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
16680 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
16681 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
16682 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
16683 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
16684 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
16685 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
16686 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
16687 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
16688 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
16689
16690 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
16691 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
16692 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
16693 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
16694 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
16695 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
16696 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
16697 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
16698 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
16699 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
16700 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
16701 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
16702
16703 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
16704 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
16705 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
16706 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
16707 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
16708 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
16709 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
16710 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
16711 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
16712 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
16713 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
16714 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
16715
16716 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
16717 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
16718 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
16719 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
16720 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
16721 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
16722 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
16723 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
16724 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
16725 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
16726 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
16727 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
16728
16729 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
16730 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
16731 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
16732 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
16733 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
16734 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
16735 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
16736 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
16737 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
16738 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
16739 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
16740 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
16741
16742 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
16743 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
16744 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
16745 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
16746 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
16747 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
16748 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
16749 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
16750 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
16751 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
16752 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
16753 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
16754
16755 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
16756 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
16757 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
16758 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
16759 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
16760 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
16761 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
16762 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
16763 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
16764 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
16765 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
16766 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
16767
16768 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
16769 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
16770 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
16771 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
16772 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
16773 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
16774 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
16775 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
16776 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
16777 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
16778 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
16779 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
16780
16781 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
16782 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
16783 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
16784 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
16785 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
16786 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
16787 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
16788 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
16789 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
16790 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
16791 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
16792 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
16793
16794 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
16795 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
16796 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
16797 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
16798 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
16799 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16800 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16801 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16802 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
16803 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
16804 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
16805 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
16806
16807 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
16808 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
16809 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
16810 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
16811 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
16812 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16813 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16814 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16815 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
16816 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
16817 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
16818 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
16819
16820 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
16821 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
16822 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
16823 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
16824 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
16825 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16826 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16827 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16828 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
16829 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
16830 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
16831 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
16832
16833 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
16834 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
16835 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
16836 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
16837 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
16838 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16839 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16840 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16841 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
16842 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
16843 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
16844 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
16845
16846 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
16847 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
16848 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
16849 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
16850 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
16851 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16852 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16853 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16854 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
16855 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
16856 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
16857 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
16858
16859 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
16860 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
16861 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
16862 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
16863 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
16864 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16865 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16866 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16867 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
16868 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
16869 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
16870 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
16871
16872 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
16873 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
16874 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
16875 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
16876 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
16877 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16878 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16879 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16880 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
16881 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
16882 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
16883 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
16884
16885 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
16886 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
16887 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
16888 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
16889 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
16890 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16891 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16892 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16893 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
16894 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
16895 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
16896 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
16897
16898 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
16899 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
16900 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
16901 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
16902 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
16903 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16904 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16905 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16906 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
16907 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
16908 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
16909 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
16910
16911 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
16912 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
16913 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
16914 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
16915 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
16916 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16917 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16918 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16919 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
16920 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
16921 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
16922 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
16923
16924 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16925 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16926 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16927 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16928 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16929 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16930 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16931 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16932 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16933 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16934 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16935 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16936
16937 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16938 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16939 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16940 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16941 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16942 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16943 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16944 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16945 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16946 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16947 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16948 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16949
16950 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16951 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16952 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16953 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16954 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16955 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16956 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16957 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16958 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16959 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16960 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16961 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16962
16963 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
16964 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
16965 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
16966 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
16967
16968 cCL(flts, e000110, 2, (RF, RR), rn_rd),
16969 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
16970 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
16971 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
16972 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
16973 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
16974 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
16975 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
16976 cCL(flte, e080110, 2, (RF, RR), rn_rd),
16977 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
16978 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
16979 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
16980
16981 /* The implementation of the FIX instruction is broken on some
16982 assemblers, in that it accepts a precision specifier as well as a
16983 rounding specifier, despite the fact that this is meaningless.
16984 To be more compatible, we accept it as well, though of course it
16985 does not set any bits. */
16986 cCE(fix, e100110, 2, (RR, RF), rd_rm),
16987 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
16988 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
16989 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
16990 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
16991 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
16992 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
16993 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
16994 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
16995 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
16996 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
16997 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
16998 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
16999
17000 /* Instructions that were new with the real FPA, call them V2. */
17001#undef ARM_VARIANT
17002#define ARM_VARIANT & fpu_fpa_ext_v2
17003
17004 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17005 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17006 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17007 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17008 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17009 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17010
17011#undef ARM_VARIANT
17012#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17013
17014 /* Moves and type conversions. */
17015 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17016 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17017 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17018 cCE(fmstat, ef1fa10, 0, (), noargs),
17019 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17020 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17021 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17022 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17023 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17024 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17025 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
17026 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
17027
17028 /* Memory operations. */
17029 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17030 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17031 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17032 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17033 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17034 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17035 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17036 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17037 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17038 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17039 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17040 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17041 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17042 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17043 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17044 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17045 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17046 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17047
17048 /* Monadic operations. */
17049 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17050 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17051 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17052
17053 /* Dyadic operations. */
17054 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17055 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17056 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17057 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17058 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17059 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17060 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17061 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17062 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17063
17064 /* Comparisons. */
17065 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17066 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
17067 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17068 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
17069
17070#undef ARM_VARIANT
17071#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17072
17073 /* Moves and type conversions. */
17074 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17075 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17076 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17077 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17078 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17079 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17080 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17081 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17082 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17083 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17084 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17085 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17086 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17087
17088 /* Memory operations. */
17089 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17090 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17091 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17092 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17093 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17094 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17095 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17096 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17097 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17098 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17099
17100 /* Monadic operations. */
17101 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17102 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17103 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17104
17105 /* Dyadic operations. */
17106 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17107 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17108 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17109 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17110 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17111 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17112 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17113 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17114 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17115
17116 /* Comparisons. */
17117 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17118 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
17119 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17120 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
17121
17122#undef ARM_VARIANT
17123#define ARM_VARIANT & fpu_vfp_ext_v2
17124
17125 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17126 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17127 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17128 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
17129
17130/* Instructions which may belong to either the Neon or VFP instruction sets.
17131 Individual encoder functions perform additional architecture checks. */
17132#undef ARM_VARIANT
17133#define ARM_VARIANT & fpu_vfp_ext_v1xd
17134#undef THUMB_VARIANT
17135#define THUMB_VARIANT & fpu_vfp_ext_v1xd
17136
17137 /* These mnemonics are unique to VFP. */
17138 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17139 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
17140 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17141 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17142 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17143 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17144 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17145 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17146 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17147 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17148
17149 /* Mnemonics shared by Neon and VFP. */
17150 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17151 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17152 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17153
17154 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17155 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17156
17157 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17158 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17159
17160 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17161 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17162 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17163 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17164 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17165 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17166 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17167 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17168
17169 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17170 nCEF(vcvtb, vcvt, 2, (RVS, RVS), neon_cvtb),
17171 nCEF(vcvtt, vcvt, 2, (RVS, RVS), neon_cvtt),
17172
17173
17174 /* NOTE: All VMOV encoding is special-cased! */
17175 NCE(vmov, 0, 1, (VMOV), neon_mov),
17176 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17177
17178#undef THUMB_VARIANT
17179#define THUMB_VARIANT & fpu_neon_ext_v1
17180#undef ARM_VARIANT
17181#define ARM_VARIANT & fpu_neon_ext_v1
17182
17183 /* Data processing with three registers of the same length. */
17184 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17185 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17186 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17187 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17188 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17189 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17190 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17191 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17192 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17193 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17194 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17195 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17196 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17197 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17198 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17199 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17200 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17201 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17202 /* If not immediate, fall back to neon_dyadic_i64_su.
17203 shl_imm should accept I8 I16 I32 I64,
17204 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17205 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17206 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17207 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17208 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
17209 /* Logic ops, types optional & ignored. */
17210 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
17211 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
17212 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
17213 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
17214 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
17215 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
17216 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
17217 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
17218 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17219 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
17220 /* Bitfield ops, untyped. */
17221 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17222 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17223 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17224 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17225 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17226 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17227 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
17228 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17229 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17230 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17231 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17232 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17233 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17234 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17235 back to neon_dyadic_if_su. */
17236 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17237 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17238 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17239 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17240 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17241 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17242 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17243 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17244 /* Comparison. Type I8 I16 I32 F32. */
17245 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17246 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
17247 /* As above, D registers only. */
17248 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17249 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17250 /* Int and float variants, signedness unimportant. */
17251 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17252 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17253 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
17254 /* Add/sub take types I8 I16 I32 I64 F32. */
17255 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17256 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17257 /* vtst takes sizes 8, 16, 32. */
17258 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17259 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17260 /* VMUL takes I8 I16 I32 F32 P8. */
17261 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
17262 /* VQD{R}MULH takes S16 S32. */
17263 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17264 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17265 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17266 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17267 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17268 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17269 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17270 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17271 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17272 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17273 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17274 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17275 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17276 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17277 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17278 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17279
17280 /* Two address, int/float. Types S8 S16 S32 F32. */
17281 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
17282 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17283
17284 /* Data processing with two registers and a shift amount. */
17285 /* Right shifts, and variants with rounding.
17286 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17287 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17288 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17289 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17290 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17291 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17292 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17293 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17294 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17295 /* Shift and insert. Sizes accepted 8 16 32 64. */
17296 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17297 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17298 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17299 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17300 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17301 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17302 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17303 /* Right shift immediate, saturating & narrowing, with rounding variants.
17304 Types accepted S16 S32 S64 U16 U32 U64. */
17305 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17306 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17307 /* As above, unsigned. Types accepted S16 S32 S64. */
17308 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17309 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17310 /* Right shift narrowing. Types accepted I16 I32 I64. */
17311 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17312 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17313 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
17314 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
17315 /* CVT with optional immediate for fixed-point variant. */
17316 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
17317
17318 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
17319 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
17320
17321 /* Data processing, three registers of different lengths. */
17322 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17323 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17324 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17325 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17326 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17327 /* If not scalar, fall back to neon_dyadic_long.
17328 Vector types as above, scalar types S16 S32 U16 U32. */
17329 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17330 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17331 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17332 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17333 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17334 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17335 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17336 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17337 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17338 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17339 /* Saturating doubling multiplies. Types S16 S32. */
17340 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17341 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17342 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17343 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17344 S16 S32 U16 U32. */
17345 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
17346
17347 /* Extract. Size 8. */
17348 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17349 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
17350
17351 /* Two registers, miscellaneous. */
17352 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17353 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17354 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17355 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17356 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17357 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17358 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17359 /* Vector replicate. Sizes 8 16 32. */
17360 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17361 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
17362 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17363 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17364 /* VMOVN. Types I16 I32 I64. */
17365 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
17366 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
17367 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
17368 /* VQMOVUN. Types S16 S32 S64. */
17369 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
17370 /* VZIP / VUZP. Sizes 8 16 32. */
17371 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17372 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17373 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17374 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17375 /* VQABS / VQNEG. Types S8 S16 S32. */
17376 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17377 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17378 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17379 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17380 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17381 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17382 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17383 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17384 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17385 /* Reciprocal estimates. Types U32 F32. */
17386 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17387 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17388 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17389 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17390 /* VCLS. Types S8 S16 S32. */
17391 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17392 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17393 /* VCLZ. Types I8 I16 I32. */
17394 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17395 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17396 /* VCNT. Size 8. */
17397 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17398 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17399 /* Two address, untyped. */
17400 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17401 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17402 /* VTRN. Sizes 8 16 32. */
17403 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
17404 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
17405
17406 /* Table lookup. Size 8. */
17407 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17408 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17409
17410#undef THUMB_VARIANT
17411#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17412#undef ARM_VARIANT
17413#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17414
17415 /* Neon element/structure load/store. */
17416 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17417 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17418 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17419 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17420 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17421 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17422 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17423 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17424
17425#undef THUMB_VARIANT
17426#define THUMB_VARIANT & fpu_vfp_ext_v3
17427#undef ARM_VARIANT
17428#define ARM_VARIANT & fpu_vfp_ext_v3
17429
17430 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
17431 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
17432 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17433 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17434 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17435 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17436 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17437 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17438 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17439 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17440 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17441 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17442 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17443 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17444 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17445 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17446 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17447 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17448
17449#undef THUMB_VARIANT
17450#undef ARM_VARIANT
17451#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17452
17453 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17454 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17455 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17456 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17457 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17458 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17459 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17460 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
17461
17462#undef ARM_VARIANT
17463#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17464
17465 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
17466 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
17467 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
17468 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
17469 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
17470 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
17471 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
17472 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
17473 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
17474 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17475 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17476 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17477 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17478 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17479 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17480 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17481 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17482 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17483 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
17484 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
17485 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17486 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17487 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17488 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17489 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17490 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17491 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
17492 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
17493 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
17494 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
17495 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
17496 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
17497 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
17498 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
17499 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
17500 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
17501 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
17502 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17503 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17504 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17505 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17506 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17507 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17508 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17509 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17510 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17511 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
17512 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17513 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17514 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17515 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17516 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17517 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17518 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17519 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17520 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17521 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17522 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17523 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17524 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17525 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17526 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17527 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17528 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17529 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17530 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17531 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17532 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17533 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17534 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17535 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17536 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17537 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17538 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17539 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17540 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17541 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17542 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17543 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17544 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17545 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17546 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17547 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17548 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17549 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17550 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17551 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17552 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17553 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
17554 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17555 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17556 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17557 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17558 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17559 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17560 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17561 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17562 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17563 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17564 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17565 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17566 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17567 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17568 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17569 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17570 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17571 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17572 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17573 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17574 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17575 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
17576 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17577 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17578 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17579 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17580 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17581 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17582 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17583 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17584 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17585 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17586 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17587 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17588 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17589 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17590 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17591 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17592 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17593 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17594 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17595 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17596 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17597 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17598 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17599 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17600 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17601 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17602 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17603 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17604 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17605 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17606 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17607 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
17608 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
17609 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
17610 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
17611 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
17612 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
17613 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17614 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17615 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17616 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
17617 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
17618 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
17619 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
17620 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
17621 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
17622 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17623 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17624 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17625 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17626 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
17627
17628#undef ARM_VARIANT
17629#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
17630
17631 cCE(torvscb, e12f190, 1, (RR), iwmmxt_tandorc),
17632 cCE(torvsch, e52f190, 1, (RR), iwmmxt_tandorc),
17633 cCE(torvscw, e92f190, 1, (RR), iwmmxt_tandorc),
17634 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
17635 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
17636 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
17637 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17638 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17639 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17640 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17641 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17642 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17643 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17644 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17645 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17646 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17647 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17648 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17649 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17650 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17651 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
17652 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17653 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17654 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17655 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17656 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17657 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17658 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17659 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17660 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17661 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17662 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17663 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17664 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17665 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17666 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17667 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17668 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17669 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17670 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17671 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17672 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17673 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17674 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17675 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17676 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17677 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17678 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17679 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17680 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17681 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17682 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17683 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17684 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17685 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17686 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17687 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17688
17689#undef ARM_VARIANT
17690#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
17691
17692 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17693 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17694 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17695 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17696 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17697 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17698 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17699 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17700 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
17701 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
17702 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
17703 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
17704 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
17705 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
17706 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
17707 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
17708 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
17709 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
17710 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
17711 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
17712 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
17713 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
17714 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
17715 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
17716 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
17717 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
17718 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
17719 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
17720 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
17721 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
17722 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
17723 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
17724 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
17725 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
17726 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
17727 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
17728 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
17729 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
17730 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
17731 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
17732 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
17733 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
17734 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
17735 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
17736 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
17737 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
17738 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
17739 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
17740 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
17741 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
17742 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
17743 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
17744 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
17745 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
17746 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
17747 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
17748 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
17749 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
17750 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
17751 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
17752 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
17753 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
17754 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
17755 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
17756 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17757 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17758 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17759 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17760 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17761 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17762 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17763 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17764 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17765 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17766 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17767 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17768};
17769#undef ARM_VARIANT
17770#undef THUMB_VARIANT
17771#undef TCE
17772#undef TCM
17773#undef TUE
17774#undef TUF
17775#undef TCC
17776#undef cCE
17777#undef cCL
17778#undef C3E
17779#undef CE
17780#undef CM
17781#undef UE
17782#undef UF
17783#undef UT
17784#undef NUF
17785#undef nUF
17786#undef NCE
17787#undef nCE
17788#undef OPS0
17789#undef OPS1
17790#undef OPS2
17791#undef OPS3
17792#undef OPS4
17793#undef OPS5
17794#undef OPS6
17795#undef do_0
17796\f
17797/* MD interface: bits in the object file. */
17798
17799/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
17800 for use in the a.out file, and stores them in the array pointed to by buf.
17801 This knows about the endian-ness of the target machine and does
17802 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
17803 2 (short) and 4 (long) Floating numbers are put out as a series of
17804 LITTLENUMS (shorts, here at least). */
17805
17806void
17807md_number_to_chars (char * buf, valueT val, int n)
17808{
17809 if (target_big_endian)
17810 number_to_chars_bigendian (buf, val, n);
17811 else
17812 number_to_chars_littleendian (buf, val, n);
17813}
17814
17815static valueT
17816md_chars_to_number (char * buf, int n)
17817{
17818 valueT result = 0;
17819 unsigned char * where = (unsigned char *) buf;
17820
17821 if (target_big_endian)
17822 {
17823 while (n--)
17824 {
17825 result <<= 8;
17826 result |= (*where++ & 255);
17827 }
17828 }
17829 else
17830 {
17831 while (n--)
17832 {
17833 result <<= 8;
17834 result |= (where[n] & 255);
17835 }
17836 }
17837
17838 return result;
17839}
17840
17841/* MD interface: Sections. */
17842
17843/* Estimate the size of a frag before relaxing. Assume everything fits in
17844 2 bytes. */
17845
17846int
17847md_estimate_size_before_relax (fragS * fragp,
17848 segT segtype ATTRIBUTE_UNUSED)
17849{
17850 fragp->fr_var = 2;
17851 return 2;
17852}
17853
17854/* Convert a machine dependent frag. */
17855
17856void
17857md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
17858{
17859 unsigned long insn;
17860 unsigned long old_op;
17861 char *buf;
17862 expressionS exp;
17863 fixS *fixp;
17864 int reloc_type;
17865 int pc_rel;
17866 int opcode;
17867
17868 buf = fragp->fr_literal + fragp->fr_fix;
17869
17870 old_op = bfd_get_16(abfd, buf);
17871 if (fragp->fr_symbol)
17872 {
17873 exp.X_op = O_symbol;
17874 exp.X_add_symbol = fragp->fr_symbol;
17875 }
17876 else
17877 {
17878 exp.X_op = O_constant;
17879 }
17880 exp.X_add_number = fragp->fr_offset;
17881 opcode = fragp->fr_subtype;
17882 switch (opcode)
17883 {
17884 case T_MNEM_ldr_pc:
17885 case T_MNEM_ldr_pc2:
17886 case T_MNEM_ldr_sp:
17887 case T_MNEM_str_sp:
17888 case T_MNEM_ldr:
17889 case T_MNEM_ldrb:
17890 case T_MNEM_ldrh:
17891 case T_MNEM_str:
17892 case T_MNEM_strb:
17893 case T_MNEM_strh:
17894 if (fragp->fr_var == 4)
17895 {
17896 insn = THUMB_OP32 (opcode);
17897 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
17898 {
17899 insn |= (old_op & 0x700) << 4;
17900 }
17901 else
17902 {
17903 insn |= (old_op & 7) << 12;
17904 insn |= (old_op & 0x38) << 13;
17905 }
17906 insn |= 0x00000c00;
17907 put_thumb32_insn (buf, insn);
17908 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
17909 }
17910 else
17911 {
17912 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
17913 }
17914 pc_rel = (opcode == T_MNEM_ldr_pc2);
17915 break;
17916 case T_MNEM_adr:
17917 if (fragp->fr_var == 4)
17918 {
17919 insn = THUMB_OP32 (opcode);
17920 insn |= (old_op & 0xf0) << 4;
17921 put_thumb32_insn (buf, insn);
17922 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
17923 }
17924 else
17925 {
17926 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17927 exp.X_add_number -= 4;
17928 }
17929 pc_rel = 1;
17930 break;
17931 case T_MNEM_mov:
17932 case T_MNEM_movs:
17933 case T_MNEM_cmp:
17934 case T_MNEM_cmn:
17935 if (fragp->fr_var == 4)
17936 {
17937 int r0off = (opcode == T_MNEM_mov
17938 || opcode == T_MNEM_movs) ? 0 : 8;
17939 insn = THUMB_OP32 (opcode);
17940 insn = (insn & 0xe1ffffff) | 0x10000000;
17941 insn |= (old_op & 0x700) << r0off;
17942 put_thumb32_insn (buf, insn);
17943 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
17944 }
17945 else
17946 {
17947 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
17948 }
17949 pc_rel = 0;
17950 break;
17951 case T_MNEM_b:
17952 if (fragp->fr_var == 4)
17953 {
17954 insn = THUMB_OP32(opcode);
17955 put_thumb32_insn (buf, insn);
17956 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
17957 }
17958 else
17959 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
17960 pc_rel = 1;
17961 break;
17962 case T_MNEM_bcond:
17963 if (fragp->fr_var == 4)
17964 {
17965 insn = THUMB_OP32(opcode);
17966 insn |= (old_op & 0xf00) << 14;
17967 put_thumb32_insn (buf, insn);
17968 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
17969 }
17970 else
17971 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
17972 pc_rel = 1;
17973 break;
17974 case T_MNEM_add_sp:
17975 case T_MNEM_add_pc:
17976 case T_MNEM_inc_sp:
17977 case T_MNEM_dec_sp:
17978 if (fragp->fr_var == 4)
17979 {
17980 /* ??? Choose between add and addw. */
17981 insn = THUMB_OP32 (opcode);
17982 insn |= (old_op & 0xf0) << 4;
17983 put_thumb32_insn (buf, insn);
17984 if (opcode == T_MNEM_add_pc)
17985 reloc_type = BFD_RELOC_ARM_T32_IMM12;
17986 else
17987 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
17988 }
17989 else
17990 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17991 pc_rel = 0;
17992 break;
17993
17994 case T_MNEM_addi:
17995 case T_MNEM_addis:
17996 case T_MNEM_subi:
17997 case T_MNEM_subis:
17998 if (fragp->fr_var == 4)
17999 {
18000 insn = THUMB_OP32 (opcode);
18001 insn |= (old_op & 0xf0) << 4;
18002 insn |= (old_op & 0xf) << 16;
18003 put_thumb32_insn (buf, insn);
18004 if (insn & (1 << 20))
18005 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18006 else
18007 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18008 }
18009 else
18010 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18011 pc_rel = 0;
18012 break;
18013 default:
18014 abort ();
18015 }
18016 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18017 reloc_type);
18018 fixp->fx_file = fragp->fr_file;
18019 fixp->fx_line = fragp->fr_line;
18020 fragp->fr_fix += fragp->fr_var;
18021}
18022
18023/* Return the size of a relaxable immediate operand instruction.
18024 SHIFT and SIZE specify the form of the allowable immediate. */
18025static int
18026relax_immediate (fragS *fragp, int size, int shift)
18027{
18028 offsetT offset;
18029 offsetT mask;
18030 offsetT low;
18031
18032 /* ??? Should be able to do better than this. */
18033 if (fragp->fr_symbol)
18034 return 4;
18035
18036 low = (1 << shift) - 1;
18037 mask = (1 << (shift + size)) - (1 << shift);
18038 offset = fragp->fr_offset;
18039 /* Force misaligned offsets to 32-bit variant. */
18040 if (offset & low)
18041 return 4;
18042 if (offset & ~mask)
18043 return 4;
18044 return 2;
18045}
18046
18047/* Get the address of a symbol during relaxation. */
18048static addressT
18049relaxed_symbol_addr (fragS *fragp, long stretch)
18050{
18051 fragS *sym_frag;
18052 addressT addr;
18053 symbolS *sym;
18054
18055 sym = fragp->fr_symbol;
18056 sym_frag = symbol_get_frag (sym);
18057 know (S_GET_SEGMENT (sym) != absolute_section
18058 || sym_frag == &zero_address_frag);
18059 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18060
18061 /* If frag has yet to be reached on this pass, assume it will
18062 move by STRETCH just as we did. If this is not so, it will
18063 be because some frag between grows, and that will force
18064 another pass. */
18065
18066 if (stretch != 0
18067 && sym_frag->relax_marker != fragp->relax_marker)
18068 {
18069 fragS *f;
18070
18071 /* Adjust stretch for any alignment frag. Note that if have
18072 been expanding the earlier code, the symbol may be
18073 defined in what appears to be an earlier frag. FIXME:
18074 This doesn't handle the fr_subtype field, which specifies
18075 a maximum number of bytes to skip when doing an
18076 alignment. */
18077 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18078 {
18079 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18080 {
18081 if (stretch < 0)
18082 stretch = - ((- stretch)
18083 & ~ ((1 << (int) f->fr_offset) - 1));
18084 else
18085 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18086 if (stretch == 0)
18087 break;
18088 }
18089 }
18090 if (f != NULL)
18091 addr += stretch;
18092 }
18093
18094 return addr;
18095}
18096
18097/* Return the size of a relaxable adr pseudo-instruction or PC-relative
18098 load. */
18099static int
18100relax_adr (fragS *fragp, asection *sec, long stretch)
18101{
18102 addressT addr;
18103 offsetT val;
18104
18105 /* Assume worst case for symbols not known to be in the same section. */
18106 if (!S_IS_DEFINED (fragp->fr_symbol)
18107 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18108 return 4;
18109
18110 val = relaxed_symbol_addr (fragp, stretch);
18111 addr = fragp->fr_address + fragp->fr_fix;
18112 addr = (addr + 4) & ~3;
18113 /* Force misaligned targets to 32-bit variant. */
18114 if (val & 3)
18115 return 4;
18116 val -= addr;
18117 if (val < 0 || val > 1020)
18118 return 4;
18119 return 2;
18120}
18121
18122/* Return the size of a relaxable add/sub immediate instruction. */
18123static int
18124relax_addsub (fragS *fragp, asection *sec)
18125{
18126 char *buf;
18127 int op;
18128
18129 buf = fragp->fr_literal + fragp->fr_fix;
18130 op = bfd_get_16(sec->owner, buf);
18131 if ((op & 0xf) == ((op >> 4) & 0xf))
18132 return relax_immediate (fragp, 8, 0);
18133 else
18134 return relax_immediate (fragp, 3, 0);
18135}
18136
18137
18138/* Return the size of a relaxable branch instruction. BITS is the
18139 size of the offset field in the narrow instruction. */
18140
18141static int
18142relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
18143{
18144 addressT addr;
18145 offsetT val;
18146 offsetT limit;
18147
18148 /* Assume worst case for symbols not known to be in the same section. */
18149 if (!S_IS_DEFINED (fragp->fr_symbol)
18150 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18151 return 4;
18152
18153#ifdef OBJ_ELF
18154 if (S_IS_DEFINED (fragp->fr_symbol)
18155 && ARM_IS_FUNC (fragp->fr_symbol))
18156 return 4;
18157#endif
18158
18159 val = relaxed_symbol_addr (fragp, stretch);
18160 addr = fragp->fr_address + fragp->fr_fix + 4;
18161 val -= addr;
18162
18163 /* Offset is a signed value *2 */
18164 limit = 1 << bits;
18165 if (val >= limit || val < -limit)
18166 return 4;
18167 return 2;
18168}
18169
18170
18171/* Relax a machine dependent frag. This returns the amount by which
18172 the current size of the frag should change. */
18173
18174int
18175arm_relax_frag (asection *sec, fragS *fragp, long stretch)
18176{
18177 int oldsize;
18178 int newsize;
18179
18180 oldsize = fragp->fr_var;
18181 switch (fragp->fr_subtype)
18182 {
18183 case T_MNEM_ldr_pc2:
18184 newsize = relax_adr (fragp, sec, stretch);
18185 break;
18186 case T_MNEM_ldr_pc:
18187 case T_MNEM_ldr_sp:
18188 case T_MNEM_str_sp:
18189 newsize = relax_immediate (fragp, 8, 2);
18190 break;
18191 case T_MNEM_ldr:
18192 case T_MNEM_str:
18193 newsize = relax_immediate (fragp, 5, 2);
18194 break;
18195 case T_MNEM_ldrh:
18196 case T_MNEM_strh:
18197 newsize = relax_immediate (fragp, 5, 1);
18198 break;
18199 case T_MNEM_ldrb:
18200 case T_MNEM_strb:
18201 newsize = relax_immediate (fragp, 5, 0);
18202 break;
18203 case T_MNEM_adr:
18204 newsize = relax_adr (fragp, sec, stretch);
18205 break;
18206 case T_MNEM_mov:
18207 case T_MNEM_movs:
18208 case T_MNEM_cmp:
18209 case T_MNEM_cmn:
18210 newsize = relax_immediate (fragp, 8, 0);
18211 break;
18212 case T_MNEM_b:
18213 newsize = relax_branch (fragp, sec, 11, stretch);
18214 break;
18215 case T_MNEM_bcond:
18216 newsize = relax_branch (fragp, sec, 8, stretch);
18217 break;
18218 case T_MNEM_add_sp:
18219 case T_MNEM_add_pc:
18220 newsize = relax_immediate (fragp, 8, 2);
18221 break;
18222 case T_MNEM_inc_sp:
18223 case T_MNEM_dec_sp:
18224 newsize = relax_immediate (fragp, 7, 2);
18225 break;
18226 case T_MNEM_addi:
18227 case T_MNEM_addis:
18228 case T_MNEM_subi:
18229 case T_MNEM_subis:
18230 newsize = relax_addsub (fragp, sec);
18231 break;
18232 default:
18233 abort ();
18234 }
18235
18236 fragp->fr_var = newsize;
18237 /* Freeze wide instructions that are at or before the same location as
18238 in the previous pass. This avoids infinite loops.
18239 Don't freeze them unconditionally because targets may be artificially
18240 misaligned by the expansion of preceding frags. */
18241 if (stretch <= 0 && newsize > 2)
18242 {
18243 md_convert_frag (sec->owner, sec, fragp);
18244 frag_wane (fragp);
18245 }
18246
18247 return newsize - oldsize;
18248}
18249
18250/* Round up a section size to the appropriate boundary. */
18251
18252valueT
18253md_section_align (segT segment ATTRIBUTE_UNUSED,
18254 valueT size)
18255{
18256#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18257 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18258 {
18259 /* For a.out, force the section size to be aligned. If we don't do
18260 this, BFD will align it for us, but it will not write out the
18261 final bytes of the section. This may be a bug in BFD, but it is
18262 easier to fix it here since that is how the other a.out targets
18263 work. */
18264 int align;
18265
18266 align = bfd_get_section_alignment (stdoutput, segment);
18267 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18268 }
18269#endif
18270
18271 return size;
18272}
18273
18274/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18275 of an rs_align_code fragment. */
18276
18277void
18278arm_handle_align (fragS * fragP)
18279{
18280 static char const arm_noop[2][2][4] =
18281 {
18282 { /* ARMv1 */
18283 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18284 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18285 },
18286 { /* ARMv6k */
18287 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18288 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18289 },
18290 };
18291 static char const thumb_noop[2][2][2] =
18292 {
18293 { /* Thumb-1 */
18294 {0xc0, 0x46}, /* LE */
18295 {0x46, 0xc0}, /* BE */
18296 },
18297 { /* Thumb-2 */
18298 {0x00, 0xbf}, /* LE */
18299 {0xbf, 0x00} /* BE */
18300 }
18301 };
18302 static char const wide_thumb_noop[2][4] =
18303 { /* Wide Thumb-2 */
18304 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18305 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18306 };
18307
18308 unsigned bytes, fix, noop_size;
18309 char * p;
18310 const char * noop;
18311 const char *narrow_noop = NULL;
18312
18313 if (fragP->fr_type != rs_align_code)
18314 return;
18315
18316 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18317 p = fragP->fr_literal + fragP->fr_fix;
18318 fix = 0;
18319
18320 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18321 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
18322
18323 gas_assert ((fragP->tc_frag_data & MODE_RECORDED) != 0);
18324
18325 if (fragP->tc_frag_data & (~ MODE_RECORDED))
18326 {
18327 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18328 {
18329 narrow_noop = thumb_noop[1][target_big_endian];
18330 noop = wide_thumb_noop[target_big_endian];
18331 }
18332 else
18333 noop = thumb_noop[0][target_big_endian];
18334 noop_size = 2;
18335 }
18336 else
18337 {
18338 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18339 [target_big_endian];
18340 noop_size = 4;
18341 }
18342
18343 fragP->fr_var = noop_size;
18344
18345 if (bytes & (noop_size - 1))
18346 {
18347 fix = bytes & (noop_size - 1);
18348 memset (p, 0, fix);
18349 p += fix;
18350 bytes -= fix;
18351 }
18352
18353 if (narrow_noop)
18354 {
18355 if (bytes & noop_size)
18356 {
18357 /* Insert a narrow noop. */
18358 memcpy (p, narrow_noop, noop_size);
18359 p += noop_size;
18360 bytes -= noop_size;
18361 fix += noop_size;
18362 }
18363
18364 /* Use wide noops for the remainder */
18365 noop_size = 4;
18366 }
18367
18368 while (bytes >= noop_size)
18369 {
18370 memcpy (p, noop, noop_size);
18371 p += noop_size;
18372 bytes -= noop_size;
18373 fix += noop_size;
18374 }
18375
18376 fragP->fr_fix += fix;
18377}
18378
18379/* Called from md_do_align. Used to create an alignment
18380 frag in a code section. */
18381
18382void
18383arm_frag_align_code (int n, int max)
18384{
18385 char * p;
18386
18387 /* We assume that there will never be a requirement
18388 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
18389 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
18390 {
18391 char err_msg[128];
18392
18393 sprintf (err_msg,
18394 _("alignments greater than %d bytes not supported in .text sections."),
18395 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
18396 as_fatal (err_msg);
18397 }
18398
18399 p = frag_var (rs_align_code,
18400 MAX_MEM_FOR_RS_ALIGN_CODE,
18401 1,
18402 (relax_substateT) max,
18403 (symbolS *) NULL,
18404 (offsetT) n,
18405 (char *) NULL);
18406 *p = 0;
18407}
18408
18409/* Perform target specific initialisation of a frag.
18410 Note - despite the name this initialisation is not done when the frag
18411 is created, but only when its type is assigned. A frag can be created
18412 and used a long time before its type is set, so beware of assuming that
18413 this initialisationis performed first. */
18414
18415void
18416arm_init_frag (fragS * fragP)
18417{
18418 /* If the current ARM vs THUMB mode has not already
18419 been recorded into this frag then do so now. */
18420 if ((fragP->tc_frag_data & MODE_RECORDED) == 0)
18421 fragP->tc_frag_data = thumb_mode | MODE_RECORDED;
18422}
18423
18424#ifdef OBJ_ELF
18425/* When we change sections we need to issue a new mapping symbol. */
18426
18427void
18428arm_elf_change_section (void)
18429{
18430 flagword flags;
18431 segment_info_type *seginfo;
18432
18433 /* Link an unlinked unwind index table section to the .text section. */
18434 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18435 && elf_linked_to_section (now_seg) == NULL)
18436 elf_linked_to_section (now_seg) = text_section;
18437
18438 if (!SEG_NORMAL (now_seg))
18439 return;
18440
18441 flags = bfd_get_section_flags (stdoutput, now_seg);
18442
18443 /* We can ignore sections that only contain debug info. */
18444 if ((flags & SEC_ALLOC) == 0)
18445 return;
18446
18447 seginfo = seg_info (now_seg);
18448 mapstate = seginfo->tc_segment_info_data.mapstate;
18449 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
18450}
18451
18452int
18453arm_elf_section_type (const char * str, size_t len)
18454{
18455 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18456 return SHT_ARM_EXIDX;
18457
18458 return -1;
18459}
18460\f
18461/* Code to deal with unwinding tables. */
18462
18463static void add_unwind_adjustsp (offsetT);
18464
18465/* Generate any deferred unwind frame offset. */
18466
18467static void
18468flush_pending_unwind (void)
18469{
18470 offsetT offset;
18471
18472 offset = unwind.pending_offset;
18473 unwind.pending_offset = 0;
18474 if (offset != 0)
18475 add_unwind_adjustsp (offset);
18476}
18477
18478/* Add an opcode to this list for this function. Two-byte opcodes should
18479 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18480 order. */
18481
18482static void
18483add_unwind_opcode (valueT op, int length)
18484{
18485 /* Add any deferred stack adjustment. */
18486 if (unwind.pending_offset)
18487 flush_pending_unwind ();
18488
18489 unwind.sp_restored = 0;
18490
18491 if (unwind.opcode_count + length > unwind.opcode_alloc)
18492 {
18493 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
18494 if (unwind.opcodes)
18495 unwind.opcodes = xrealloc (unwind.opcodes,
18496 unwind.opcode_alloc);
18497 else
18498 unwind.opcodes = xmalloc (unwind.opcode_alloc);
18499 }
18500 while (length > 0)
18501 {
18502 length--;
18503 unwind.opcodes[unwind.opcode_count] = op & 0xff;
18504 op >>= 8;
18505 unwind.opcode_count++;
18506 }
18507}
18508
18509/* Add unwind opcodes to adjust the stack pointer. */
18510
18511static void
18512add_unwind_adjustsp (offsetT offset)
18513{
18514 valueT op;
18515
18516 if (offset > 0x200)
18517 {
18518 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
18519 char bytes[5];
18520 int n;
18521 valueT o;
18522
18523 /* Long form: 0xb2, uleb128. */
18524 /* This might not fit in a word so add the individual bytes,
18525 remembering the list is built in reverse order. */
18526 o = (valueT) ((offset - 0x204) >> 2);
18527 if (o == 0)
18528 add_unwind_opcode (0, 1);
18529
18530 /* Calculate the uleb128 encoding of the offset. */
18531 n = 0;
18532 while (o)
18533 {
18534 bytes[n] = o & 0x7f;
18535 o >>= 7;
18536 if (o)
18537 bytes[n] |= 0x80;
18538 n++;
18539 }
18540 /* Add the insn. */
18541 for (; n; n--)
18542 add_unwind_opcode (bytes[n - 1], 1);
18543 add_unwind_opcode (0xb2, 1);
18544 }
18545 else if (offset > 0x100)
18546 {
18547 /* Two short opcodes. */
18548 add_unwind_opcode (0x3f, 1);
18549 op = (offset - 0x104) >> 2;
18550 add_unwind_opcode (op, 1);
18551 }
18552 else if (offset > 0)
18553 {
18554 /* Short opcode. */
18555 op = (offset - 4) >> 2;
18556 add_unwind_opcode (op, 1);
18557 }
18558 else if (offset < 0)
18559 {
18560 offset = -offset;
18561 while (offset > 0x100)
18562 {
18563 add_unwind_opcode (0x7f, 1);
18564 offset -= 0x100;
18565 }
18566 op = ((offset - 4) >> 2) | 0x40;
18567 add_unwind_opcode (op, 1);
18568 }
18569}
18570
18571/* Finish the list of unwind opcodes for this function. */
18572static void
18573finish_unwind_opcodes (void)
18574{
18575 valueT op;
18576
18577 if (unwind.fp_used)
18578 {
18579 /* Adjust sp as necessary. */
18580 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
18581 flush_pending_unwind ();
18582
18583 /* After restoring sp from the frame pointer. */
18584 op = 0x90 | unwind.fp_reg;
18585 add_unwind_opcode (op, 1);
18586 }
18587 else
18588 flush_pending_unwind ();
18589}
18590
18591
18592/* Start an exception table entry. If idx is nonzero this is an index table
18593 entry. */
18594
18595static void
18596start_unwind_section (const segT text_seg, int idx)
18597{
18598 const char * text_name;
18599 const char * prefix;
18600 const char * prefix_once;
18601 const char * group_name;
18602 size_t prefix_len;
18603 size_t text_len;
18604 char * sec_name;
18605 size_t sec_name_len;
18606 int type;
18607 int flags;
18608 int linkonce;
18609
18610 if (idx)
18611 {
18612 prefix = ELF_STRING_ARM_unwind;
18613 prefix_once = ELF_STRING_ARM_unwind_once;
18614 type = SHT_ARM_EXIDX;
18615 }
18616 else
18617 {
18618 prefix = ELF_STRING_ARM_unwind_info;
18619 prefix_once = ELF_STRING_ARM_unwind_info_once;
18620 type = SHT_PROGBITS;
18621 }
18622
18623 text_name = segment_name (text_seg);
18624 if (streq (text_name, ".text"))
18625 text_name = "";
18626
18627 if (strncmp (text_name, ".gnu.linkonce.t.",
18628 strlen (".gnu.linkonce.t.")) == 0)
18629 {
18630 prefix = prefix_once;
18631 text_name += strlen (".gnu.linkonce.t.");
18632 }
18633
18634 prefix_len = strlen (prefix);
18635 text_len = strlen (text_name);
18636 sec_name_len = prefix_len + text_len;
18637 sec_name = xmalloc (sec_name_len + 1);
18638 memcpy (sec_name, prefix, prefix_len);
18639 memcpy (sec_name + prefix_len, text_name, text_len);
18640 sec_name[prefix_len + text_len] = '\0';
18641
18642 flags = SHF_ALLOC;
18643 linkonce = 0;
18644 group_name = 0;
18645
18646 /* Handle COMDAT group. */
18647 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
18648 {
18649 group_name = elf_group_name (text_seg);
18650 if (group_name == NULL)
18651 {
18652 as_bad (_("Group section `%s' has no group signature"),
18653 segment_name (text_seg));
18654 ignore_rest_of_line ();
18655 return;
18656 }
18657 flags |= SHF_GROUP;
18658 linkonce = 1;
18659 }
18660
18661 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
18662
18663 /* Set the section link for index tables. */
18664 if (idx)
18665 elf_linked_to_section (now_seg) = text_seg;
18666}
18667
18668
18669/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
18670 personality routine data. Returns zero, or the index table value for
18671 and inline entry. */
18672
18673static valueT
18674create_unwind_entry (int have_data)
18675{
18676 int size;
18677 addressT where;
18678 char *ptr;
18679 /* The current word of data. */
18680 valueT data;
18681 /* The number of bytes left in this word. */
18682 int n;
18683
18684 finish_unwind_opcodes ();
18685
18686 /* Remember the current text section. */
18687 unwind.saved_seg = now_seg;
18688 unwind.saved_subseg = now_subseg;
18689
18690 start_unwind_section (now_seg, 0);
18691
18692 if (unwind.personality_routine == NULL)
18693 {
18694 if (unwind.personality_index == -2)
18695 {
18696 if (have_data)
18697 as_bad (_("handlerdata in cantunwind frame"));
18698 return 1; /* EXIDX_CANTUNWIND. */
18699 }
18700
18701 /* Use a default personality routine if none is specified. */
18702 if (unwind.personality_index == -1)
18703 {
18704 if (unwind.opcode_count > 3)
18705 unwind.personality_index = 1;
18706 else
18707 unwind.personality_index = 0;
18708 }
18709
18710 /* Space for the personality routine entry. */
18711 if (unwind.personality_index == 0)
18712 {
18713 if (unwind.opcode_count > 3)
18714 as_bad (_("too many unwind opcodes for personality routine 0"));
18715
18716 if (!have_data)
18717 {
18718 /* All the data is inline in the index table. */
18719 data = 0x80;
18720 n = 3;
18721 while (unwind.opcode_count > 0)
18722 {
18723 unwind.opcode_count--;
18724 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
18725 n--;
18726 }
18727
18728 /* Pad with "finish" opcodes. */
18729 while (n--)
18730 data = (data << 8) | 0xb0;
18731
18732 return data;
18733 }
18734 size = 0;
18735 }
18736 else
18737 /* We get two opcodes "free" in the first word. */
18738 size = unwind.opcode_count - 2;
18739 }
18740 else
18741 /* An extra byte is required for the opcode count. */
18742 size = unwind.opcode_count + 1;
18743
18744 size = (size + 3) >> 2;
18745 if (size > 0xff)
18746 as_bad (_("too many unwind opcodes"));
18747
18748 frag_align (2, 0, 0);
18749 record_alignment (now_seg, 2);
18750 unwind.table_entry = expr_build_dot ();
18751
18752 /* Allocate the table entry. */
18753 ptr = frag_more ((size << 2) + 4);
18754 where = frag_now_fix () - ((size << 2) + 4);
18755
18756 switch (unwind.personality_index)
18757 {
18758 case -1:
18759 /* ??? Should this be a PLT generating relocation? */
18760 /* Custom personality routine. */
18761 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
18762 BFD_RELOC_ARM_PREL31);
18763
18764 where += 4;
18765 ptr += 4;
18766
18767 /* Set the first byte to the number of additional words. */
18768 data = size - 1;
18769 n = 3;
18770 break;
18771
18772 /* ABI defined personality routines. */
18773 case 0:
18774 /* Three opcodes bytes are packed into the first word. */
18775 data = 0x80;
18776 n = 3;
18777 break;
18778
18779 case 1:
18780 case 2:
18781 /* The size and first two opcode bytes go in the first word. */
18782 data = ((0x80 + unwind.personality_index) << 8) | size;
18783 n = 2;
18784 break;
18785
18786 default:
18787 /* Should never happen. */
18788 abort ();
18789 }
18790
18791 /* Pack the opcodes into words (MSB first), reversing the list at the same
18792 time. */
18793 while (unwind.opcode_count > 0)
18794 {
18795 if (n == 0)
18796 {
18797 md_number_to_chars (ptr, data, 4);
18798 ptr += 4;
18799 n = 4;
18800 data = 0;
18801 }
18802 unwind.opcode_count--;
18803 n--;
18804 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
18805 }
18806
18807 /* Finish off the last word. */
18808 if (n < 4)
18809 {
18810 /* Pad with "finish" opcodes. */
18811 while (n--)
18812 data = (data << 8) | 0xb0;
18813
18814 md_number_to_chars (ptr, data, 4);
18815 }
18816
18817 if (!have_data)
18818 {
18819 /* Add an empty descriptor if there is no user-specified data. */
18820 ptr = frag_more (4);
18821 md_number_to_chars (ptr, 0, 4);
18822 }
18823
18824 return 0;
18825}
18826
18827
18828/* Initialize the DWARF-2 unwind information for this procedure. */
18829
18830void
18831tc_arm_frame_initial_instructions (void)
18832{
18833 cfi_add_CFA_def_cfa (REG_SP, 0);
18834}
18835#endif /* OBJ_ELF */
18836
18837/* Convert REGNAME to a DWARF-2 register number. */
18838
18839int
18840tc_arm_regname_to_dw2regnum (char *regname)
18841{
18842 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
18843
18844 if (reg == FAIL)
18845 return -1;
18846
18847 return reg;
18848}
18849
18850#ifdef TE_PE
18851void
18852tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
18853{
18854 expressionS expr;
18855
18856 expr.X_op = O_secrel;
18857 expr.X_add_symbol = symbol;
18858 expr.X_add_number = 0;
18859 emit_expr (&expr, size);
18860}
18861#endif
18862
18863/* MD interface: Symbol and relocation handling. */
18864
18865/* Return the address within the segment that a PC-relative fixup is
18866 relative to. For ARM, PC-relative fixups applied to instructions
18867 are generally relative to the location of the fixup plus 8 bytes.
18868 Thumb branches are offset by 4, and Thumb loads relative to PC
18869 require special handling. */
18870
18871long
18872md_pcrel_from_section (fixS * fixP, segT seg)
18873{
18874 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
18875
18876 /* If this is pc-relative and we are going to emit a relocation
18877 then we just want to put out any pipeline compensation that the linker
18878 will need. Otherwise we want to use the calculated base.
18879 For WinCE we skip the bias for externals as well, since this
18880 is how the MS ARM-CE assembler behaves and we want to be compatible. */
18881 if (fixP->fx_pcrel
18882 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
18883 || (arm_force_relocation (fixP)
18884#ifdef TE_WINCE
18885 && !S_IS_EXTERNAL (fixP->fx_addsy)
18886#endif
18887 )))
18888 base = 0;
18889
18890
18891 switch (fixP->fx_r_type)
18892 {
18893 /* PC relative addressing on the Thumb is slightly odd as the
18894 bottom two bits of the PC are forced to zero for the
18895 calculation. This happens *after* application of the
18896 pipeline offset. However, Thumb adrl already adjusts for
18897 this, so we need not do it again. */
18898 case BFD_RELOC_ARM_THUMB_ADD:
18899 return base & ~3;
18900
18901 case BFD_RELOC_ARM_THUMB_OFFSET:
18902 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18903 case BFD_RELOC_ARM_T32_ADD_PC12:
18904 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
18905 return (base + 4) & ~3;
18906
18907 /* Thumb branches are simply offset by +4. */
18908 case BFD_RELOC_THUMB_PCREL_BRANCH7:
18909 case BFD_RELOC_THUMB_PCREL_BRANCH9:
18910 case BFD_RELOC_THUMB_PCREL_BRANCH12:
18911 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18912 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18913 return base + 4;
18914
18915 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18916 if (fixP->fx_addsy
18917 && ARM_IS_FUNC (fixP->fx_addsy)
18918 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
18919 base = fixP->fx_where + fixP->fx_frag->fr_address;
18920 return base + 4;
18921
18922 /* BLX is like branches above, but forces the low two bits of PC to
18923 zero. */
18924 case BFD_RELOC_THUMB_PCREL_BLX:
18925 if (fixP->fx_addsy
18926 && THUMB_IS_FUNC (fixP->fx_addsy)
18927 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
18928 base = fixP->fx_where + fixP->fx_frag->fr_address;
18929 return (base + 4) & ~3;
18930
18931 /* ARM mode branches are offset by +8. However, the Windows CE
18932 loader expects the relocation not to take this into account. */
18933 case BFD_RELOC_ARM_PCREL_BLX:
18934 if (fixP->fx_addsy
18935 && ARM_IS_FUNC (fixP->fx_addsy)
18936 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
18937 base = fixP->fx_where + fixP->fx_frag->fr_address;
18938 return base + 8;
18939
18940 case BFD_RELOC_ARM_PCREL_CALL:
18941 if (fixP->fx_addsy
18942 && THUMB_IS_FUNC (fixP->fx_addsy)
18943 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
18944 base = fixP->fx_where + fixP->fx_frag->fr_address;
18945 return base + 8;
18946
18947 case BFD_RELOC_ARM_PCREL_BRANCH:
18948 case BFD_RELOC_ARM_PCREL_JUMP:
18949 case BFD_RELOC_ARM_PLT32:
18950#ifdef TE_WINCE
18951 /* When handling fixups immediately, because we have already
18952 discovered the value of a symbol, or the address of the frag involved
18953 we must account for the offset by +8, as the OS loader will never see the reloc.
18954 see fixup_segment() in write.c
18955 The S_IS_EXTERNAL test handles the case of global symbols.
18956 Those need the calculated base, not just the pipe compensation the linker will need. */
18957 if (fixP->fx_pcrel
18958 && fixP->fx_addsy != NULL
18959 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
18960 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
18961 return base + 8;
18962 return base;
18963#else
18964 return base + 8;
18965#endif
18966
18967
18968 /* ARM mode loads relative to PC are also offset by +8. Unlike
18969 branches, the Windows CE loader *does* expect the relocation
18970 to take this into account. */
18971 case BFD_RELOC_ARM_OFFSET_IMM:
18972 case BFD_RELOC_ARM_OFFSET_IMM8:
18973 case BFD_RELOC_ARM_HWLITERAL:
18974 case BFD_RELOC_ARM_LITERAL:
18975 case BFD_RELOC_ARM_CP_OFF_IMM:
18976 return base + 8;
18977
18978
18979 /* Other PC-relative relocations are un-offset. */
18980 default:
18981 return base;
18982 }
18983}
18984
18985/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
18986 Otherwise we have no need to default values of symbols. */
18987
18988symbolS *
18989md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
18990{
18991#ifdef OBJ_ELF
18992 if (name[0] == '_' && name[1] == 'G'
18993 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
18994 {
18995 if (!GOT_symbol)
18996 {
18997 if (symbol_find (name))
18998 as_bad (_("GOT already in the symbol table"));
18999
19000 GOT_symbol = symbol_new (name, undefined_section,
19001 (valueT) 0, & zero_address_frag);
19002 }
19003
19004 return GOT_symbol;
19005 }
19006#endif
19007
19008 return NULL;
19009}
19010
19011/* Subroutine of md_apply_fix. Check to see if an immediate can be
19012 computed as two separate immediate values, added together. We
19013 already know that this value cannot be computed by just one ARM
19014 instruction. */
19015
19016static unsigned int
19017validate_immediate_twopart (unsigned int val,
19018 unsigned int * highpart)
19019{
19020 unsigned int a;
19021 unsigned int i;
19022
19023 for (i = 0; i < 32; i += 2)
19024 if (((a = rotate_left (val, i)) & 0xff) != 0)
19025 {
19026 if (a & 0xff00)
19027 {
19028 if (a & ~ 0xffff)
19029 continue;
19030 * highpart = (a >> 8) | ((i + 24) << 7);
19031 }
19032 else if (a & 0xff0000)
19033 {
19034 if (a & 0xff000000)
19035 continue;
19036 * highpart = (a >> 16) | ((i + 16) << 7);
19037 }
19038 else
19039 {
19040 gas_assert (a & 0xff000000);
19041 * highpart = (a >> 24) | ((i + 8) << 7);
19042 }
19043
19044 return (a & 0xff) | (i << 7);
19045 }
19046
19047 return FAIL;
19048}
19049
19050static int
19051validate_offset_imm (unsigned int val, int hwse)
19052{
19053 if ((hwse && val > 255) || val > 4095)
19054 return FAIL;
19055 return val;
19056}
19057
19058/* Subroutine of md_apply_fix. Do those data_ops which can take a
19059 negative immediate constant by altering the instruction. A bit of
19060 a hack really.
19061 MOV <-> MVN
19062 AND <-> BIC
19063 ADC <-> SBC
19064 by inverting the second operand, and
19065 ADD <-> SUB
19066 CMP <-> CMN
19067 by negating the second operand. */
19068
19069static int
19070negate_data_op (unsigned long * instruction,
19071 unsigned long value)
19072{
19073 int op, new_inst;
19074 unsigned long negated, inverted;
19075
19076 negated = encode_arm_immediate (-value);
19077 inverted = encode_arm_immediate (~value);
19078
19079 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19080 switch (op)
19081 {
19082 /* First negates. */
19083 case OPCODE_SUB: /* ADD <-> SUB */
19084 new_inst = OPCODE_ADD;
19085 value = negated;
19086 break;
19087
19088 case OPCODE_ADD:
19089 new_inst = OPCODE_SUB;
19090 value = negated;
19091 break;
19092
19093 case OPCODE_CMP: /* CMP <-> CMN */
19094 new_inst = OPCODE_CMN;
19095 value = negated;
19096 break;
19097
19098 case OPCODE_CMN:
19099 new_inst = OPCODE_CMP;
19100 value = negated;
19101 break;
19102
19103 /* Now Inverted ops. */
19104 case OPCODE_MOV: /* MOV <-> MVN */
19105 new_inst = OPCODE_MVN;
19106 value = inverted;
19107 break;
19108
19109 case OPCODE_MVN:
19110 new_inst = OPCODE_MOV;
19111 value = inverted;
19112 break;
19113
19114 case OPCODE_AND: /* AND <-> BIC */
19115 new_inst = OPCODE_BIC;
19116 value = inverted;
19117 break;
19118
19119 case OPCODE_BIC:
19120 new_inst = OPCODE_AND;
19121 value = inverted;
19122 break;
19123
19124 case OPCODE_ADC: /* ADC <-> SBC */
19125 new_inst = OPCODE_SBC;
19126 value = inverted;
19127 break;
19128
19129 case OPCODE_SBC:
19130 new_inst = OPCODE_ADC;
19131 value = inverted;
19132 break;
19133
19134 /* We cannot do anything. */
19135 default:
19136 return FAIL;
19137 }
19138
19139 if (value == (unsigned) FAIL)
19140 return FAIL;
19141
19142 *instruction &= OPCODE_MASK;
19143 *instruction |= new_inst << DATA_OP_SHIFT;
19144 return value;
19145}
19146
19147/* Like negate_data_op, but for Thumb-2. */
19148
19149static unsigned int
19150thumb32_negate_data_op (offsetT *instruction, unsigned int value)
19151{
19152 int op, new_inst;
19153 int rd;
19154 unsigned int negated, inverted;
19155
19156 negated = encode_thumb32_immediate (-value);
19157 inverted = encode_thumb32_immediate (~value);
19158
19159 rd = (*instruction >> 8) & 0xf;
19160 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19161 switch (op)
19162 {
19163 /* ADD <-> SUB. Includes CMP <-> CMN. */
19164 case T2_OPCODE_SUB:
19165 new_inst = T2_OPCODE_ADD;
19166 value = negated;
19167 break;
19168
19169 case T2_OPCODE_ADD:
19170 new_inst = T2_OPCODE_SUB;
19171 value = negated;
19172 break;
19173
19174 /* ORR <-> ORN. Includes MOV <-> MVN. */
19175 case T2_OPCODE_ORR:
19176 new_inst = T2_OPCODE_ORN;
19177 value = inverted;
19178 break;
19179
19180 case T2_OPCODE_ORN:
19181 new_inst = T2_OPCODE_ORR;
19182 value = inverted;
19183 break;
19184
19185 /* AND <-> BIC. TST has no inverted equivalent. */
19186 case T2_OPCODE_AND:
19187 new_inst = T2_OPCODE_BIC;
19188 if (rd == 15)
19189 value = FAIL;
19190 else
19191 value = inverted;
19192 break;
19193
19194 case T2_OPCODE_BIC:
19195 new_inst = T2_OPCODE_AND;
19196 value = inverted;
19197 break;
19198
19199 /* ADC <-> SBC */
19200 case T2_OPCODE_ADC:
19201 new_inst = T2_OPCODE_SBC;
19202 value = inverted;
19203 break;
19204
19205 case T2_OPCODE_SBC:
19206 new_inst = T2_OPCODE_ADC;
19207 value = inverted;
19208 break;
19209
19210 /* We cannot do anything. */
19211 default:
19212 return FAIL;
19213 }
19214
19215 if (value == (unsigned int)FAIL)
19216 return FAIL;
19217
19218 *instruction &= T2_OPCODE_MASK;
19219 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19220 return value;
19221}
19222
19223/* Read a 32-bit thumb instruction from buf. */
19224static unsigned long
19225get_thumb32_insn (char * buf)
19226{
19227 unsigned long insn;
19228 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19229 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19230
19231 return insn;
19232}
19233
19234
19235/* We usually want to set the low bit on the address of thumb function
19236 symbols. In particular .word foo - . should have the low bit set.
19237 Generic code tries to fold the difference of two symbols to
19238 a constant. Prevent this and force a relocation when the first symbols
19239 is a thumb function. */
19240
19241bfd_boolean
19242arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19243{
19244 if (op == O_subtract
19245 && l->X_op == O_symbol
19246 && r->X_op == O_symbol
19247 && THUMB_IS_FUNC (l->X_add_symbol))
19248 {
19249 l->X_op = O_subtract;
19250 l->X_op_symbol = r->X_add_symbol;
19251 l->X_add_number -= r->X_add_number;
19252 return TRUE;
19253 }
19254
19255 /* Process as normal. */
19256 return FALSE;
19257}
19258
19259void
19260md_apply_fix (fixS * fixP,
19261 valueT * valP,
19262 segT seg)
19263{
19264 offsetT value = * valP;
19265 offsetT newval;
19266 unsigned int newimm;
19267 unsigned long temp;
19268 int sign;
19269 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
19270
19271 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
19272
19273 /* Note whether this will delete the relocation. */
19274
19275 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19276 fixP->fx_done = 1;
19277
19278 /* On a 64-bit host, silently truncate 'value' to 32 bits for
19279 consistency with the behaviour on 32-bit hosts. Remember value
19280 for emit_reloc. */
19281 value &= 0xffffffff;
19282 value ^= 0x80000000;
19283 value -= 0x80000000;
19284
19285 *valP = value;
19286 fixP->fx_addnumber = value;
19287
19288 /* Same treatment for fixP->fx_offset. */
19289 fixP->fx_offset &= 0xffffffff;
19290 fixP->fx_offset ^= 0x80000000;
19291 fixP->fx_offset -= 0x80000000;
19292
19293 switch (fixP->fx_r_type)
19294 {
19295 case BFD_RELOC_NONE:
19296 /* This will need to go in the object file. */
19297 fixP->fx_done = 0;
19298 break;
19299
19300 case BFD_RELOC_ARM_IMMEDIATE:
19301 /* We claim that this fixup has been processed here,
19302 even if in fact we generate an error because we do
19303 not have a reloc for it, so tc_gen_reloc will reject it. */
19304 fixP->fx_done = 1;
19305
19306 if (fixP->fx_addsy
19307 && ! S_IS_DEFINED (fixP->fx_addsy))
19308 {
19309 as_bad_where (fixP->fx_file, fixP->fx_line,
19310 _("undefined symbol %s used as an immediate value"),
19311 S_GET_NAME (fixP->fx_addsy));
19312 break;
19313 }
19314
19315 if (fixP->fx_addsy
19316 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19317 {
19318 as_bad_where (fixP->fx_file, fixP->fx_line,
19319 _("symbol %s is in a different section"),
19320 S_GET_NAME (fixP->fx_addsy));
19321 break;
19322 }
19323
19324 newimm = encode_arm_immediate (value);
19325 temp = md_chars_to_number (buf, INSN_SIZE);
19326
19327 /* If the instruction will fail, see if we can fix things up by
19328 changing the opcode. */
19329 if (newimm == (unsigned int) FAIL
19330 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
19331 {
19332 as_bad_where (fixP->fx_file, fixP->fx_line,
19333 _("invalid constant (%lx) after fixup"),
19334 (unsigned long) value);
19335 break;
19336 }
19337
19338 newimm |= (temp & 0xfffff000);
19339 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19340 break;
19341
19342 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19343 {
19344 unsigned int highpart = 0;
19345 unsigned int newinsn = 0xe1a00000; /* nop. */
19346
19347 if (fixP->fx_addsy
19348 && ! S_IS_DEFINED (fixP->fx_addsy))
19349 {
19350 as_bad_where (fixP->fx_file, fixP->fx_line,
19351 _("undefined symbol %s used as an immediate value"),
19352 S_GET_NAME (fixP->fx_addsy));
19353 break;
19354 }
19355
19356 if (fixP->fx_addsy
19357 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19358 {
19359 as_bad_where (fixP->fx_file, fixP->fx_line,
19360 _("symbol %s is in a different section"),
19361 S_GET_NAME (fixP->fx_addsy));
19362 break;
19363 }
19364
19365 newimm = encode_arm_immediate (value);
19366 temp = md_chars_to_number (buf, INSN_SIZE);
19367
19368 /* If the instruction will fail, see if we can fix things up by
19369 changing the opcode. */
19370 if (newimm == (unsigned int) FAIL
19371 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19372 {
19373 /* No ? OK - try using two ADD instructions to generate
19374 the value. */
19375 newimm = validate_immediate_twopart (value, & highpart);
19376
19377 /* Yes - then make sure that the second instruction is
19378 also an add. */
19379 if (newimm != (unsigned int) FAIL)
19380 newinsn = temp;
19381 /* Still No ? Try using a negated value. */
19382 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19383 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19384 /* Otherwise - give up. */
19385 else
19386 {
19387 as_bad_where (fixP->fx_file, fixP->fx_line,
19388 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19389 (long) value);
19390 break;
19391 }
19392
19393 /* Replace the first operand in the 2nd instruction (which
19394 is the PC) with the destination register. We have
19395 already added in the PC in the first instruction and we
19396 do not want to do it again. */
19397 newinsn &= ~ 0xf0000;
19398 newinsn |= ((newinsn & 0x0f000) << 4);
19399 }
19400
19401 newimm |= (temp & 0xfffff000);
19402 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19403
19404 highpart |= (newinsn & 0xfffff000);
19405 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19406 }
19407 break;
19408
19409 case BFD_RELOC_ARM_OFFSET_IMM:
19410 if (!fixP->fx_done && seg->use_rela_p)
19411 value = 0;
19412
19413 case BFD_RELOC_ARM_LITERAL:
19414 sign = value >= 0;
19415
19416 if (value < 0)
19417 value = - value;
19418
19419 if (validate_offset_imm (value, 0) == FAIL)
19420 {
19421 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19422 as_bad_where (fixP->fx_file, fixP->fx_line,
19423 _("invalid literal constant: pool needs to be closer"));
19424 else
19425 as_bad_where (fixP->fx_file, fixP->fx_line,
19426 _("bad immediate value for offset (%ld)"),
19427 (long) value);
19428 break;
19429 }
19430
19431 newval = md_chars_to_number (buf, INSN_SIZE);
19432 newval &= 0xff7ff000;
19433 newval |= value | (sign ? INDEX_UP : 0);
19434 md_number_to_chars (buf, newval, INSN_SIZE);
19435 break;
19436
19437 case BFD_RELOC_ARM_OFFSET_IMM8:
19438 case BFD_RELOC_ARM_HWLITERAL:
19439 sign = value >= 0;
19440
19441 if (value < 0)
19442 value = - value;
19443
19444 if (validate_offset_imm (value, 1) == FAIL)
19445 {
19446 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
19447 as_bad_where (fixP->fx_file, fixP->fx_line,
19448 _("invalid literal constant: pool needs to be closer"));
19449 else
19450 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
19451 (long) value);
19452 break;
19453 }
19454
19455 newval = md_chars_to_number (buf, INSN_SIZE);
19456 newval &= 0xff7ff0f0;
19457 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
19458 md_number_to_chars (buf, newval, INSN_SIZE);
19459 break;
19460
19461 case BFD_RELOC_ARM_T32_OFFSET_U8:
19462 if (value < 0 || value > 1020 || value % 4 != 0)
19463 as_bad_where (fixP->fx_file, fixP->fx_line,
19464 _("bad immediate value for offset (%ld)"), (long) value);
19465 value /= 4;
19466
19467 newval = md_chars_to_number (buf+2, THUMB_SIZE);
19468 newval |= value;
19469 md_number_to_chars (buf+2, newval, THUMB_SIZE);
19470 break;
19471
19472 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19473 /* This is a complicated relocation used for all varieties of Thumb32
19474 load/store instruction with immediate offset:
19475
19476 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
19477 *4, optional writeback(W)
19478 (doubleword load/store)
19479
19480 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
19481 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
19482 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
19483 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
19484 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
19485
19486 Uppercase letters indicate bits that are already encoded at
19487 this point. Lowercase letters are our problem. For the
19488 second block of instructions, the secondary opcode nybble
19489 (bits 8..11) is present, and bit 23 is zero, even if this is
19490 a PC-relative operation. */
19491 newval = md_chars_to_number (buf, THUMB_SIZE);
19492 newval <<= 16;
19493 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
19494
19495 if ((newval & 0xf0000000) == 0xe0000000)
19496 {
19497 /* Doubleword load/store: 8-bit offset, scaled by 4. */
19498 if (value >= 0)
19499 newval |= (1 << 23);
19500 else
19501 value = -value;
19502 if (value % 4 != 0)
19503 {
19504 as_bad_where (fixP->fx_file, fixP->fx_line,
19505 _("offset not a multiple of 4"));
19506 break;
19507 }
19508 value /= 4;
19509 if (value > 0xff)
19510 {
19511 as_bad_where (fixP->fx_file, fixP->fx_line,
19512 _("offset out of range"));
19513 break;
19514 }
19515 newval &= ~0xff;
19516 }
19517 else if ((newval & 0x000f0000) == 0x000f0000)
19518 {
19519 /* PC-relative, 12-bit offset. */
19520 if (value >= 0)
19521 newval |= (1 << 23);
19522 else
19523 value = -value;
19524 if (value > 0xfff)
19525 {
19526 as_bad_where (fixP->fx_file, fixP->fx_line,
19527 _("offset out of range"));
19528 break;
19529 }
19530 newval &= ~0xfff;
19531 }
19532 else if ((newval & 0x00000100) == 0x00000100)
19533 {
19534 /* Writeback: 8-bit, +/- offset. */
19535 if (value >= 0)
19536 newval |= (1 << 9);
19537 else
19538 value = -value;
19539 if (value > 0xff)
19540 {
19541 as_bad_where (fixP->fx_file, fixP->fx_line,
19542 _("offset out of range"));
19543 break;
19544 }
19545 newval &= ~0xff;
19546 }
19547 else if ((newval & 0x00000f00) == 0x00000e00)
19548 {
19549 /* T-instruction: positive 8-bit offset. */
19550 if (value < 0 || value > 0xff)
19551 {
19552 as_bad_where (fixP->fx_file, fixP->fx_line,
19553 _("offset out of range"));
19554 break;
19555 }
19556 newval &= ~0xff;
19557 newval |= value;
19558 }
19559 else
19560 {
19561 /* Positive 12-bit or negative 8-bit offset. */
19562 int limit;
19563 if (value >= 0)
19564 {
19565 newval |= (1 << 23);
19566 limit = 0xfff;
19567 }
19568 else
19569 {
19570 value = -value;
19571 limit = 0xff;
19572 }
19573 if (value > limit)
19574 {
19575 as_bad_where (fixP->fx_file, fixP->fx_line,
19576 _("offset out of range"));
19577 break;
19578 }
19579 newval &= ~limit;
19580 }
19581
19582 newval |= value;
19583 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
19584 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
19585 break;
19586
19587 case BFD_RELOC_ARM_SHIFT_IMM:
19588 newval = md_chars_to_number (buf, INSN_SIZE);
19589 if (((unsigned long) value) > 32
19590 || (value == 32
19591 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
19592 {
19593 as_bad_where (fixP->fx_file, fixP->fx_line,
19594 _("shift expression is too large"));
19595 break;
19596 }
19597
19598 if (value == 0)
19599 /* Shifts of zero must be done as lsl. */
19600 newval &= ~0x60;
19601 else if (value == 32)
19602 value = 0;
19603 newval &= 0xfffff07f;
19604 newval |= (value & 0x1f) << 7;
19605 md_number_to_chars (buf, newval, INSN_SIZE);
19606 break;
19607
19608 case BFD_RELOC_ARM_T32_IMMEDIATE:
19609 case BFD_RELOC_ARM_T32_ADD_IMM:
19610 case BFD_RELOC_ARM_T32_IMM12:
19611 case BFD_RELOC_ARM_T32_ADD_PC12:
19612 /* We claim that this fixup has been processed here,
19613 even if in fact we generate an error because we do
19614 not have a reloc for it, so tc_gen_reloc will reject it. */
19615 fixP->fx_done = 1;
19616
19617 if (fixP->fx_addsy
19618 && ! S_IS_DEFINED (fixP->fx_addsy))
19619 {
19620 as_bad_where (fixP->fx_file, fixP->fx_line,
19621 _("undefined symbol %s used as an immediate value"),
19622 S_GET_NAME (fixP->fx_addsy));
19623 break;
19624 }
19625
19626 newval = md_chars_to_number (buf, THUMB_SIZE);
19627 newval <<= 16;
19628 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
19629
19630 newimm = FAIL;
19631 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19632 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
19633 {
19634 newimm = encode_thumb32_immediate (value);
19635 if (newimm == (unsigned int) FAIL)
19636 newimm = thumb32_negate_data_op (&newval, value);
19637 }
19638 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
19639 && newimm == (unsigned int) FAIL)
19640 {
19641 /* Turn add/sum into addw/subw. */
19642 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
19643 newval = (newval & 0xfeffffff) | 0x02000000;
19644
19645 /* 12 bit immediate for addw/subw. */
19646 if (value < 0)
19647 {
19648 value = -value;
19649 newval ^= 0x00a00000;
19650 }
19651 if (value > 0xfff)
19652 newimm = (unsigned int) FAIL;
19653 else
19654 newimm = value;
19655 }
19656
19657 if (newimm == (unsigned int)FAIL)
19658 {
19659 as_bad_where (fixP->fx_file, fixP->fx_line,
19660 _("invalid constant (%lx) after fixup"),
19661 (unsigned long) value);
19662 break;
19663 }
19664
19665 newval |= (newimm & 0x800) << 15;
19666 newval |= (newimm & 0x700) << 4;
19667 newval |= (newimm & 0x0ff);
19668
19669 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
19670 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
19671 break;
19672
19673 case BFD_RELOC_ARM_SMC:
19674 if (((unsigned long) value) > 0xffff)
19675 as_bad_where (fixP->fx_file, fixP->fx_line,
19676 _("invalid smc expression"));
19677 newval = md_chars_to_number (buf, INSN_SIZE);
19678 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
19679 md_number_to_chars (buf, newval, INSN_SIZE);
19680 break;
19681
19682 case BFD_RELOC_ARM_SWI:
19683 if (fixP->tc_fix_data != 0)
19684 {
19685 if (((unsigned long) value) > 0xff)
19686 as_bad_where (fixP->fx_file, fixP->fx_line,
19687 _("invalid swi expression"));
19688 newval = md_chars_to_number (buf, THUMB_SIZE);
19689 newval |= value;
19690 md_number_to_chars (buf, newval, THUMB_SIZE);
19691 }
19692 else
19693 {
19694 if (((unsigned long) value) > 0x00ffffff)
19695 as_bad_where (fixP->fx_file, fixP->fx_line,
19696 _("invalid swi expression"));
19697 newval = md_chars_to_number (buf, INSN_SIZE);
19698 newval |= value;
19699 md_number_to_chars (buf, newval, INSN_SIZE);
19700 }
19701 break;
19702
19703 case BFD_RELOC_ARM_MULTI:
19704 if (((unsigned long) value) > 0xffff)
19705 as_bad_where (fixP->fx_file, fixP->fx_line,
19706 _("invalid expression in load/store multiple"));
19707 newval = value | md_chars_to_number (buf, INSN_SIZE);
19708 md_number_to_chars (buf, newval, INSN_SIZE);
19709 break;
19710
19711#ifdef OBJ_ELF
19712 case BFD_RELOC_ARM_PCREL_CALL:
19713
19714 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19715 && fixP->fx_addsy
19716 && !S_IS_EXTERNAL (fixP->fx_addsy)
19717 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19718 && THUMB_IS_FUNC (fixP->fx_addsy))
19719 /* Flip the bl to blx. This is a simple flip
19720 bit here because we generate PCREL_CALL for
19721 unconditional bls. */
19722 {
19723 newval = md_chars_to_number (buf, INSN_SIZE);
19724 newval = newval | 0x10000000;
19725 md_number_to_chars (buf, newval, INSN_SIZE);
19726 temp = 1;
19727 fixP->fx_done = 1;
19728 }
19729 else
19730 temp = 3;
19731 goto arm_branch_common;
19732
19733 case BFD_RELOC_ARM_PCREL_JUMP:
19734 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19735 && fixP->fx_addsy
19736 && !S_IS_EXTERNAL (fixP->fx_addsy)
19737 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19738 && THUMB_IS_FUNC (fixP->fx_addsy))
19739 {
19740 /* This would map to a bl<cond>, b<cond>,
19741 b<always> to a Thumb function. We
19742 need to force a relocation for this particular
19743 case. */
19744 newval = md_chars_to_number (buf, INSN_SIZE);
19745 fixP->fx_done = 0;
19746 }
19747
19748 case BFD_RELOC_ARM_PLT32:
19749#endif
19750 case BFD_RELOC_ARM_PCREL_BRANCH:
19751 temp = 3;
19752 goto arm_branch_common;
19753
19754 case BFD_RELOC_ARM_PCREL_BLX:
19755
19756 temp = 1;
19757 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19758 && fixP->fx_addsy
19759 && !S_IS_EXTERNAL (fixP->fx_addsy)
19760 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19761 && ARM_IS_FUNC (fixP->fx_addsy))
19762 {
19763 /* Flip the blx to a bl and warn. */
19764 const char *name = S_GET_NAME (fixP->fx_addsy);
19765 newval = 0xeb000000;
19766 as_warn_where (fixP->fx_file, fixP->fx_line,
19767 _("blx to '%s' an ARM ISA state function changed to bl"),
19768 name);
19769 md_number_to_chars (buf, newval, INSN_SIZE);
19770 temp = 3;
19771 fixP->fx_done = 1;
19772 }
19773
19774#ifdef OBJ_ELF
19775 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
19776 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
19777#endif
19778
19779 arm_branch_common:
19780 /* We are going to store value (shifted right by two) in the
19781 instruction, in a 24 bit, signed field. Bits 26 through 32 either
19782 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
19783 also be be clear. */
19784 if (value & temp)
19785 as_bad_where (fixP->fx_file, fixP->fx_line,
19786 _("misaligned branch destination"));
19787 if ((value & (offsetT)0xfe000000) != (offsetT)0
19788 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
19789 as_bad_where (fixP->fx_file, fixP->fx_line,
19790 _("branch out of range"));
19791
19792 if (fixP->fx_done || !seg->use_rela_p)
19793 {
19794 newval = md_chars_to_number (buf, INSN_SIZE);
19795 newval |= (value >> 2) & 0x00ffffff;
19796 /* Set the H bit on BLX instructions. */
19797 if (temp == 1)
19798 {
19799 if (value & 2)
19800 newval |= 0x01000000;
19801 else
19802 newval &= ~0x01000000;
19803 }
19804 md_number_to_chars (buf, newval, INSN_SIZE);
19805 }
19806 break;
19807
19808 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
19809 /* CBZ can only branch forward. */
19810
19811 /* Attempts to use CBZ to branch to the next instruction
19812 (which, strictly speaking, are prohibited) will be turned into
19813 no-ops.
19814
19815 FIXME: It may be better to remove the instruction completely and
19816 perform relaxation. */
19817 if (value == -2)
19818 {
19819 newval = md_chars_to_number (buf, THUMB_SIZE);
19820 newval = 0xbf00; /* NOP encoding T1 */
19821 md_number_to_chars (buf, newval, THUMB_SIZE);
19822 }
19823 else
19824 {
19825 if (value & ~0x7e)
19826 as_bad_where (fixP->fx_file, fixP->fx_line,
19827 _("branch out of range"));
19828
19829 if (fixP->fx_done || !seg->use_rela_p)
19830 {
19831 newval = md_chars_to_number (buf, THUMB_SIZE);
19832 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
19833 md_number_to_chars (buf, newval, THUMB_SIZE);
19834 }
19835 }
19836 break;
19837
19838 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
19839 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
19840 as_bad_where (fixP->fx_file, fixP->fx_line,
19841 _("branch out of range"));
19842
19843 if (fixP->fx_done || !seg->use_rela_p)
19844 {
19845 newval = md_chars_to_number (buf, THUMB_SIZE);
19846 newval |= (value & 0x1ff) >> 1;
19847 md_number_to_chars (buf, newval, THUMB_SIZE);
19848 }
19849 break;
19850
19851 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
19852 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
19853 as_bad_where (fixP->fx_file, fixP->fx_line,
19854 _("branch out of range"));
19855
19856 if (fixP->fx_done || !seg->use_rela_p)
19857 {
19858 newval = md_chars_to_number (buf, THUMB_SIZE);
19859 newval |= (value & 0xfff) >> 1;
19860 md_number_to_chars (buf, newval, THUMB_SIZE);
19861 }
19862 break;
19863
19864 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19865 if (fixP->fx_addsy
19866 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19867 && !S_IS_EXTERNAL (fixP->fx_addsy)
19868 && S_IS_DEFINED (fixP->fx_addsy)
19869 && ARM_IS_FUNC (fixP->fx_addsy)
19870 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19871 {
19872 /* Force a relocation for a branch 20 bits wide. */
19873 fixP->fx_done = 0;
19874 }
19875 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
19876 as_bad_where (fixP->fx_file, fixP->fx_line,
19877 _("conditional branch out of range"));
19878
19879 if (fixP->fx_done || !seg->use_rela_p)
19880 {
19881 offsetT newval2;
19882 addressT S, J1, J2, lo, hi;
19883
19884 S = (value & 0x00100000) >> 20;
19885 J2 = (value & 0x00080000) >> 19;
19886 J1 = (value & 0x00040000) >> 18;
19887 hi = (value & 0x0003f000) >> 12;
19888 lo = (value & 0x00000ffe) >> 1;
19889
19890 newval = md_chars_to_number (buf, THUMB_SIZE);
19891 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19892 newval |= (S << 10) | hi;
19893 newval2 |= (J1 << 13) | (J2 << 11) | lo;
19894 md_number_to_chars (buf, newval, THUMB_SIZE);
19895 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19896 }
19897 break;
19898
19899 case BFD_RELOC_THUMB_PCREL_BLX:
19900
19901 /* If there is a blx from a thumb state function to
19902 another thumb function flip this to a bl and warn
19903 about it. */
19904
19905 if (fixP->fx_addsy
19906 && S_IS_DEFINED (fixP->fx_addsy)
19907 && !S_IS_EXTERNAL (fixP->fx_addsy)
19908 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19909 && THUMB_IS_FUNC (fixP->fx_addsy))
19910 {
19911 const char *name = S_GET_NAME (fixP->fx_addsy);
19912 as_warn_where (fixP->fx_file, fixP->fx_line,
19913 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
19914 name);
19915 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19916 newval = newval | 0x1000;
19917 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
19918 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
19919 fixP->fx_done = 1;
19920 }
19921
19922
19923 goto thumb_bl_common;
19924
19925 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19926
19927 /* A bl from Thumb state ISA to an internal ARM state function
19928 is converted to a blx. */
19929 if (fixP->fx_addsy
19930 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19931 && !S_IS_EXTERNAL (fixP->fx_addsy)
19932 && S_IS_DEFINED (fixP->fx_addsy)
19933 && ARM_IS_FUNC (fixP->fx_addsy)
19934 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19935 {
19936 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19937 newval = newval & ~0x1000;
19938 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
19939 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
19940 fixP->fx_done = 1;
19941 }
19942
19943 thumb_bl_common:
19944
19945#ifdef OBJ_ELF
19946 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
19947 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
19948 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
19949#endif
19950
19951 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
19952 as_bad_where (fixP->fx_file, fixP->fx_line,
19953 _("branch out of range"));
19954
19955 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
19956 /* For a BLX instruction, make sure that the relocation is rounded up
19957 to a word boundary. This follows the semantics of the instruction
19958 which specifies that bit 1 of the target address will come from bit
19959 1 of the base address. */
19960 value = (value + 1) & ~ 1;
19961
19962 if (fixP->fx_done || !seg->use_rela_p)
19963 {
19964 offsetT newval2;
19965
19966 newval = md_chars_to_number (buf, THUMB_SIZE);
19967 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19968 newval |= (value & 0x7fffff) >> 12;
19969 newval2 |= (value & 0xfff) >> 1;
19970 md_number_to_chars (buf, newval, THUMB_SIZE);
19971 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19972 }
19973 break;
19974
19975 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19976 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
19977 as_bad_where (fixP->fx_file, fixP->fx_line,
19978 _("branch out of range"));
19979
19980 if (fixP->fx_done || !seg->use_rela_p)
19981 {
19982 offsetT newval2;
19983 addressT S, I1, I2, lo, hi;
19984
19985 S = (value & 0x01000000) >> 24;
19986 I1 = (value & 0x00800000) >> 23;
19987 I2 = (value & 0x00400000) >> 22;
19988 hi = (value & 0x003ff000) >> 12;
19989 lo = (value & 0x00000ffe) >> 1;
19990
19991 I1 = !(I1 ^ S);
19992 I2 = !(I2 ^ S);
19993
19994 newval = md_chars_to_number (buf, THUMB_SIZE);
19995 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19996 newval |= (S << 10) | hi;
19997 newval2 |= (I1 << 13) | (I2 << 11) | lo;
19998 md_number_to_chars (buf, newval, THUMB_SIZE);
19999 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20000 }
20001 break;
20002
20003 case BFD_RELOC_8:
20004 if (fixP->fx_done || !seg->use_rela_p)
20005 md_number_to_chars (buf, value, 1);
20006 break;
20007
20008 case BFD_RELOC_16:
20009 if (fixP->fx_done || !seg->use_rela_p)
20010 md_number_to_chars (buf, value, 2);
20011 break;
20012
20013#ifdef OBJ_ELF
20014 case BFD_RELOC_ARM_TLS_GD32:
20015 case BFD_RELOC_ARM_TLS_LE32:
20016 case BFD_RELOC_ARM_TLS_IE32:
20017 case BFD_RELOC_ARM_TLS_LDM32:
20018 case BFD_RELOC_ARM_TLS_LDO32:
20019 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20020 /* fall through */
20021
20022 case BFD_RELOC_ARM_GOT32:
20023 case BFD_RELOC_ARM_GOTOFF:
20024 if (fixP->fx_done || !seg->use_rela_p)
20025 md_number_to_chars (buf, 0, 4);
20026 break;
20027
20028 case BFD_RELOC_ARM_TARGET2:
20029 /* TARGET2 is not partial-inplace, so we need to write the
20030 addend here for REL targets, because it won't be written out
20031 during reloc processing later. */
20032 if (fixP->fx_done || !seg->use_rela_p)
20033 md_number_to_chars (buf, fixP->fx_offset, 4);
20034 break;
20035#endif
20036
20037 case BFD_RELOC_RVA:
20038 case BFD_RELOC_32:
20039 case BFD_RELOC_ARM_TARGET1:
20040 case BFD_RELOC_ARM_ROSEGREL32:
20041 case BFD_RELOC_ARM_SBREL32:
20042 case BFD_RELOC_32_PCREL:
20043#ifdef TE_PE
20044 case BFD_RELOC_32_SECREL:
20045#endif
20046 if (fixP->fx_done || !seg->use_rela_p)
20047#ifdef TE_WINCE
20048 /* For WinCE we only do this for pcrel fixups. */
20049 if (fixP->fx_done || fixP->fx_pcrel)
20050#endif
20051 md_number_to_chars (buf, value, 4);
20052 break;
20053
20054#ifdef OBJ_ELF
20055 case BFD_RELOC_ARM_PREL31:
20056 if (fixP->fx_done || !seg->use_rela_p)
20057 {
20058 newval = md_chars_to_number (buf, 4) & 0x80000000;
20059 if ((value ^ (value >> 1)) & 0x40000000)
20060 {
20061 as_bad_where (fixP->fx_file, fixP->fx_line,
20062 _("rel31 relocation overflow"));
20063 }
20064 newval |= value & 0x7fffffff;
20065 md_number_to_chars (buf, newval, 4);
20066 }
20067 break;
20068#endif
20069
20070 case BFD_RELOC_ARM_CP_OFF_IMM:
20071 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20072 if (value < -1023 || value > 1023 || (value & 3))
20073 as_bad_where (fixP->fx_file, fixP->fx_line,
20074 _("co-processor offset out of range"));
20075 cp_off_common:
20076 sign = value >= 0;
20077 if (value < 0)
20078 value = -value;
20079 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20080 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20081 newval = md_chars_to_number (buf, INSN_SIZE);
20082 else
20083 newval = get_thumb32_insn (buf);
20084 newval &= 0xff7fff00;
20085 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
20086 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20087 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20088 md_number_to_chars (buf, newval, INSN_SIZE);
20089 else
20090 put_thumb32_insn (buf, newval);
20091 break;
20092
20093 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
20094 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
20095 if (value < -255 || value > 255)
20096 as_bad_where (fixP->fx_file, fixP->fx_line,
20097 _("co-processor offset out of range"));
20098 value *= 4;
20099 goto cp_off_common;
20100
20101 case BFD_RELOC_ARM_THUMB_OFFSET:
20102 newval = md_chars_to_number (buf, THUMB_SIZE);
20103 /* Exactly what ranges, and where the offset is inserted depends
20104 on the type of instruction, we can establish this from the
20105 top 4 bits. */
20106 switch (newval >> 12)
20107 {
20108 case 4: /* PC load. */
20109 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20110 forced to zero for these loads; md_pcrel_from has already
20111 compensated for this. */
20112 if (value & 3)
20113 as_bad_where (fixP->fx_file, fixP->fx_line,
20114 _("invalid offset, target not word aligned (0x%08lX)"),
20115 (((unsigned long) fixP->fx_frag->fr_address
20116 + (unsigned long) fixP->fx_where) & ~3)
20117 + (unsigned long) value);
20118
20119 if (value & ~0x3fc)
20120 as_bad_where (fixP->fx_file, fixP->fx_line,
20121 _("invalid offset, value too big (0x%08lX)"),
20122 (long) value);
20123
20124 newval |= value >> 2;
20125 break;
20126
20127 case 9: /* SP load/store. */
20128 if (value & ~0x3fc)
20129 as_bad_where (fixP->fx_file, fixP->fx_line,
20130 _("invalid offset, value too big (0x%08lX)"),
20131 (long) value);
20132 newval |= value >> 2;
20133 break;
20134
20135 case 6: /* Word load/store. */
20136 if (value & ~0x7c)
20137 as_bad_where (fixP->fx_file, fixP->fx_line,
20138 _("invalid offset, value too big (0x%08lX)"),
20139 (long) value);
20140 newval |= value << 4; /* 6 - 2. */
20141 break;
20142
20143 case 7: /* Byte load/store. */
20144 if (value & ~0x1f)
20145 as_bad_where (fixP->fx_file, fixP->fx_line,
20146 _("invalid offset, value too big (0x%08lX)"),
20147 (long) value);
20148 newval |= value << 6;
20149 break;
20150
20151 case 8: /* Halfword load/store. */
20152 if (value & ~0x3e)
20153 as_bad_where (fixP->fx_file, fixP->fx_line,
20154 _("invalid offset, value too big (0x%08lX)"),
20155 (long) value);
20156 newval |= value << 5; /* 6 - 1. */
20157 break;
20158
20159 default:
20160 as_bad_where (fixP->fx_file, fixP->fx_line,
20161 "Unable to process relocation for thumb opcode: %lx",
20162 (unsigned long) newval);
20163 break;
20164 }
20165 md_number_to_chars (buf, newval, THUMB_SIZE);
20166 break;
20167
20168 case BFD_RELOC_ARM_THUMB_ADD:
20169 /* This is a complicated relocation, since we use it for all of
20170 the following immediate relocations:
20171
20172 3bit ADD/SUB
20173 8bit ADD/SUB
20174 9bit ADD/SUB SP word-aligned
20175 10bit ADD PC/SP word-aligned
20176
20177 The type of instruction being processed is encoded in the
20178 instruction field:
20179
20180 0x8000 SUB
20181 0x00F0 Rd
20182 0x000F Rs
20183 */
20184 newval = md_chars_to_number (buf, THUMB_SIZE);
20185 {
20186 int rd = (newval >> 4) & 0xf;
20187 int rs = newval & 0xf;
20188 int subtract = !!(newval & 0x8000);
20189
20190 /* Check for HI regs, only very restricted cases allowed:
20191 Adjusting SP, and using PC or SP to get an address. */
20192 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20193 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20194 as_bad_where (fixP->fx_file, fixP->fx_line,
20195 _("invalid Hi register with immediate"));
20196
20197 /* If value is negative, choose the opposite instruction. */
20198 if (value < 0)
20199 {
20200 value = -value;
20201 subtract = !subtract;
20202 if (value < 0)
20203 as_bad_where (fixP->fx_file, fixP->fx_line,
20204 _("immediate value out of range"));
20205 }
20206
20207 if (rd == REG_SP)
20208 {
20209 if (value & ~0x1fc)
20210 as_bad_where (fixP->fx_file, fixP->fx_line,
20211 _("invalid immediate for stack address calculation"));
20212 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20213 newval |= value >> 2;
20214 }
20215 else if (rs == REG_PC || rs == REG_SP)
20216 {
20217 if (subtract || value & ~0x3fc)
20218 as_bad_where (fixP->fx_file, fixP->fx_line,
20219 _("invalid immediate for address calculation (value = 0x%08lX)"),
20220 (unsigned long) value);
20221 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20222 newval |= rd << 8;
20223 newval |= value >> 2;
20224 }
20225 else if (rs == rd)
20226 {
20227 if (value & ~0xff)
20228 as_bad_where (fixP->fx_file, fixP->fx_line,
20229 _("immediate value out of range"));
20230 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20231 newval |= (rd << 8) | value;
20232 }
20233 else
20234 {
20235 if (value & ~0x7)
20236 as_bad_where (fixP->fx_file, fixP->fx_line,
20237 _("immediate value out of range"));
20238 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20239 newval |= rd | (rs << 3) | (value << 6);
20240 }
20241 }
20242 md_number_to_chars (buf, newval, THUMB_SIZE);
20243 break;
20244
20245 case BFD_RELOC_ARM_THUMB_IMM:
20246 newval = md_chars_to_number (buf, THUMB_SIZE);
20247 if (value < 0 || value > 255)
20248 as_bad_where (fixP->fx_file, fixP->fx_line,
20249 _("invalid immediate: %ld is out of range"),
20250 (long) value);
20251 newval |= value;
20252 md_number_to_chars (buf, newval, THUMB_SIZE);
20253 break;
20254
20255 case BFD_RELOC_ARM_THUMB_SHIFT:
20256 /* 5bit shift value (0..32). LSL cannot take 32. */
20257 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20258 temp = newval & 0xf800;
20259 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20260 as_bad_where (fixP->fx_file, fixP->fx_line,
20261 _("invalid shift value: %ld"), (long) value);
20262 /* Shifts of zero must be encoded as LSL. */
20263 if (value == 0)
20264 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20265 /* Shifts of 32 are encoded as zero. */
20266 else if (value == 32)
20267 value = 0;
20268 newval |= value << 6;
20269 md_number_to_chars (buf, newval, THUMB_SIZE);
20270 break;
20271
20272 case BFD_RELOC_VTABLE_INHERIT:
20273 case BFD_RELOC_VTABLE_ENTRY:
20274 fixP->fx_done = 0;
20275 return;
20276
20277 case BFD_RELOC_ARM_MOVW:
20278 case BFD_RELOC_ARM_MOVT:
20279 case BFD_RELOC_ARM_THUMB_MOVW:
20280 case BFD_RELOC_ARM_THUMB_MOVT:
20281 if (fixP->fx_done || !seg->use_rela_p)
20282 {
20283 /* REL format relocations are limited to a 16-bit addend. */
20284 if (!fixP->fx_done)
20285 {
20286 if (value < -0x8000 || value > 0x7fff)
20287 as_bad_where (fixP->fx_file, fixP->fx_line,
20288 _("offset out of range"));
20289 }
20290 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20291 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20292 {
20293 value >>= 16;
20294 }
20295
20296 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20297 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20298 {
20299 newval = get_thumb32_insn (buf);
20300 newval &= 0xfbf08f00;
20301 newval |= (value & 0xf000) << 4;
20302 newval |= (value & 0x0800) << 15;
20303 newval |= (value & 0x0700) << 4;
20304 newval |= (value & 0x00ff);
20305 put_thumb32_insn (buf, newval);
20306 }
20307 else
20308 {
20309 newval = md_chars_to_number (buf, 4);
20310 newval &= 0xfff0f000;
20311 newval |= value & 0x0fff;
20312 newval |= (value & 0xf000) << 4;
20313 md_number_to_chars (buf, newval, 4);
20314 }
20315 }
20316 return;
20317
20318 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20319 case BFD_RELOC_ARM_ALU_PC_G0:
20320 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20321 case BFD_RELOC_ARM_ALU_PC_G1:
20322 case BFD_RELOC_ARM_ALU_PC_G2:
20323 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20324 case BFD_RELOC_ARM_ALU_SB_G0:
20325 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20326 case BFD_RELOC_ARM_ALU_SB_G1:
20327 case BFD_RELOC_ARM_ALU_SB_G2:
20328 gas_assert (!fixP->fx_done);
20329 if (!seg->use_rela_p)
20330 {
20331 bfd_vma insn;
20332 bfd_vma encoded_addend;
20333 bfd_vma addend_abs = abs (value);
20334
20335 /* Check that the absolute value of the addend can be
20336 expressed as an 8-bit constant plus a rotation. */
20337 encoded_addend = encode_arm_immediate (addend_abs);
20338 if (encoded_addend == (unsigned int) FAIL)
20339 as_bad_where (fixP->fx_file, fixP->fx_line,
20340 _("the offset 0x%08lX is not representable"),
20341 (unsigned long) addend_abs);
20342
20343 /* Extract the instruction. */
20344 insn = md_chars_to_number (buf, INSN_SIZE);
20345
20346 /* If the addend is positive, use an ADD instruction.
20347 Otherwise use a SUB. Take care not to destroy the S bit. */
20348 insn &= 0xff1fffff;
20349 if (value < 0)
20350 insn |= 1 << 22;
20351 else
20352 insn |= 1 << 23;
20353
20354 /* Place the encoded addend into the first 12 bits of the
20355 instruction. */
20356 insn &= 0xfffff000;
20357 insn |= encoded_addend;
20358
20359 /* Update the instruction. */
20360 md_number_to_chars (buf, insn, INSN_SIZE);
20361 }
20362 break;
20363
20364 case BFD_RELOC_ARM_LDR_PC_G0:
20365 case BFD_RELOC_ARM_LDR_PC_G1:
20366 case BFD_RELOC_ARM_LDR_PC_G2:
20367 case BFD_RELOC_ARM_LDR_SB_G0:
20368 case BFD_RELOC_ARM_LDR_SB_G1:
20369 case BFD_RELOC_ARM_LDR_SB_G2:
20370 gas_assert (!fixP->fx_done);
20371 if (!seg->use_rela_p)
20372 {
20373 bfd_vma insn;
20374 bfd_vma addend_abs = abs (value);
20375
20376 /* Check that the absolute value of the addend can be
20377 encoded in 12 bits. */
20378 if (addend_abs >= 0x1000)
20379 as_bad_where (fixP->fx_file, fixP->fx_line,
20380 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
20381 (unsigned long) addend_abs);
20382
20383 /* Extract the instruction. */
20384 insn = md_chars_to_number (buf, INSN_SIZE);
20385
20386 /* If the addend is negative, clear bit 23 of the instruction.
20387 Otherwise set it. */
20388 if (value < 0)
20389 insn &= ~(1 << 23);
20390 else
20391 insn |= 1 << 23;
20392
20393 /* Place the absolute value of the addend into the first 12 bits
20394 of the instruction. */
20395 insn &= 0xfffff000;
20396 insn |= addend_abs;
20397
20398 /* Update the instruction. */
20399 md_number_to_chars (buf, insn, INSN_SIZE);
20400 }
20401 break;
20402
20403 case BFD_RELOC_ARM_LDRS_PC_G0:
20404 case BFD_RELOC_ARM_LDRS_PC_G1:
20405 case BFD_RELOC_ARM_LDRS_PC_G2:
20406 case BFD_RELOC_ARM_LDRS_SB_G0:
20407 case BFD_RELOC_ARM_LDRS_SB_G1:
20408 case BFD_RELOC_ARM_LDRS_SB_G2:
20409 gas_assert (!fixP->fx_done);
20410 if (!seg->use_rela_p)
20411 {
20412 bfd_vma insn;
20413 bfd_vma addend_abs = abs (value);
20414
20415 /* Check that the absolute value of the addend can be
20416 encoded in 8 bits. */
20417 if (addend_abs >= 0x100)
20418 as_bad_where (fixP->fx_file, fixP->fx_line,
20419 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
20420 (unsigned long) addend_abs);
20421
20422 /* Extract the instruction. */
20423 insn = md_chars_to_number (buf, INSN_SIZE);
20424
20425 /* If the addend is negative, clear bit 23 of the instruction.
20426 Otherwise set it. */
20427 if (value < 0)
20428 insn &= ~(1 << 23);
20429 else
20430 insn |= 1 << 23;
20431
20432 /* Place the first four bits of the absolute value of the addend
20433 into the first 4 bits of the instruction, and the remaining
20434 four into bits 8 .. 11. */
20435 insn &= 0xfffff0f0;
20436 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
20437
20438 /* Update the instruction. */
20439 md_number_to_chars (buf, insn, INSN_SIZE);
20440 }
20441 break;
20442
20443 case BFD_RELOC_ARM_LDC_PC_G0:
20444 case BFD_RELOC_ARM_LDC_PC_G1:
20445 case BFD_RELOC_ARM_LDC_PC_G2:
20446 case BFD_RELOC_ARM_LDC_SB_G0:
20447 case BFD_RELOC_ARM_LDC_SB_G1:
20448 case BFD_RELOC_ARM_LDC_SB_G2:
20449 gas_assert (!fixP->fx_done);
20450 if (!seg->use_rela_p)
20451 {
20452 bfd_vma insn;
20453 bfd_vma addend_abs = abs (value);
20454
20455 /* Check that the absolute value of the addend is a multiple of
20456 four and, when divided by four, fits in 8 bits. */
20457 if (addend_abs & 0x3)
20458 as_bad_where (fixP->fx_file, fixP->fx_line,
20459 _("bad offset 0x%08lX (must be word-aligned)"),
20460 (unsigned long) addend_abs);
20461
20462 if ((addend_abs >> 2) > 0xff)
20463 as_bad_where (fixP->fx_file, fixP->fx_line,
20464 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
20465 (unsigned long) addend_abs);
20466
20467 /* Extract the instruction. */
20468 insn = md_chars_to_number (buf, INSN_SIZE);
20469
20470 /* If the addend is negative, clear bit 23 of the instruction.
20471 Otherwise set it. */
20472 if (value < 0)
20473 insn &= ~(1 << 23);
20474 else
20475 insn |= 1 << 23;
20476
20477 /* Place the addend (divided by four) into the first eight
20478 bits of the instruction. */
20479 insn &= 0xfffffff0;
20480 insn |= addend_abs >> 2;
20481
20482 /* Update the instruction. */
20483 md_number_to_chars (buf, insn, INSN_SIZE);
20484 }
20485 break;
20486
20487 case BFD_RELOC_ARM_V4BX:
20488 /* This will need to go in the object file. */
20489 fixP->fx_done = 0;
20490 break;
20491
20492 case BFD_RELOC_UNUSED:
20493 default:
20494 as_bad_where (fixP->fx_file, fixP->fx_line,
20495 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
20496 }
20497}
20498
20499/* Translate internal representation of relocation info to BFD target
20500 format. */
20501
20502arelent *
20503tc_gen_reloc (asection *section, fixS *fixp)
20504{
20505 arelent * reloc;
20506 bfd_reloc_code_real_type code;
20507
20508 reloc = xmalloc (sizeof (arelent));
20509
20510 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
20511 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
20512 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
20513
20514 if (fixp->fx_pcrel)
20515 {
20516 if (section->use_rela_p)
20517 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
20518 else
20519 fixp->fx_offset = reloc->address;
20520 }
20521 reloc->addend = fixp->fx_offset;
20522
20523 switch (fixp->fx_r_type)
20524 {
20525 case BFD_RELOC_8:
20526 if (fixp->fx_pcrel)
20527 {
20528 code = BFD_RELOC_8_PCREL;
20529 break;
20530 }
20531
20532 case BFD_RELOC_16:
20533 if (fixp->fx_pcrel)
20534 {
20535 code = BFD_RELOC_16_PCREL;
20536 break;
20537 }
20538
20539 case BFD_RELOC_32:
20540 if (fixp->fx_pcrel)
20541 {
20542 code = BFD_RELOC_32_PCREL;
20543 break;
20544 }
20545
20546 case BFD_RELOC_ARM_MOVW:
20547 if (fixp->fx_pcrel)
20548 {
20549 code = BFD_RELOC_ARM_MOVW_PCREL;
20550 break;
20551 }
20552
20553 case BFD_RELOC_ARM_MOVT:
20554 if (fixp->fx_pcrel)
20555 {
20556 code = BFD_RELOC_ARM_MOVT_PCREL;
20557 break;
20558 }
20559
20560 case BFD_RELOC_ARM_THUMB_MOVW:
20561 if (fixp->fx_pcrel)
20562 {
20563 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
20564 break;
20565 }
20566
20567 case BFD_RELOC_ARM_THUMB_MOVT:
20568 if (fixp->fx_pcrel)
20569 {
20570 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
20571 break;
20572 }
20573
20574 case BFD_RELOC_NONE:
20575 case BFD_RELOC_ARM_PCREL_BRANCH:
20576 case BFD_RELOC_ARM_PCREL_BLX:
20577 case BFD_RELOC_RVA:
20578 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20579 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20580 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20581 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20582 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20583 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20584 case BFD_RELOC_VTABLE_ENTRY:
20585 case BFD_RELOC_VTABLE_INHERIT:
20586#ifdef TE_PE
20587 case BFD_RELOC_32_SECREL:
20588#endif
20589 code = fixp->fx_r_type;
20590 break;
20591
20592 case BFD_RELOC_THUMB_PCREL_BLX:
20593#ifdef OBJ_ELF
20594 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20595 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
20596 else
20597#endif
20598 code = BFD_RELOC_THUMB_PCREL_BLX;
20599 break;
20600
20601 case BFD_RELOC_ARM_LITERAL:
20602 case BFD_RELOC_ARM_HWLITERAL:
20603 /* If this is called then the a literal has
20604 been referenced across a section boundary. */
20605 as_bad_where (fixp->fx_file, fixp->fx_line,
20606 _("literal referenced across section boundary"));
20607 return NULL;
20608
20609#ifdef OBJ_ELF
20610 case BFD_RELOC_ARM_GOT32:
20611 case BFD_RELOC_ARM_GOTOFF:
20612 case BFD_RELOC_ARM_PLT32:
20613 case BFD_RELOC_ARM_TARGET1:
20614 case BFD_RELOC_ARM_ROSEGREL32:
20615 case BFD_RELOC_ARM_SBREL32:
20616 case BFD_RELOC_ARM_PREL31:
20617 case BFD_RELOC_ARM_TARGET2:
20618 case BFD_RELOC_ARM_TLS_LE32:
20619 case BFD_RELOC_ARM_TLS_LDO32:
20620 case BFD_RELOC_ARM_PCREL_CALL:
20621 case BFD_RELOC_ARM_PCREL_JUMP:
20622 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20623 case BFD_RELOC_ARM_ALU_PC_G0:
20624 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20625 case BFD_RELOC_ARM_ALU_PC_G1:
20626 case BFD_RELOC_ARM_ALU_PC_G2:
20627 case BFD_RELOC_ARM_LDR_PC_G0:
20628 case BFD_RELOC_ARM_LDR_PC_G1:
20629 case BFD_RELOC_ARM_LDR_PC_G2:
20630 case BFD_RELOC_ARM_LDRS_PC_G0:
20631 case BFD_RELOC_ARM_LDRS_PC_G1:
20632 case BFD_RELOC_ARM_LDRS_PC_G2:
20633 case BFD_RELOC_ARM_LDC_PC_G0:
20634 case BFD_RELOC_ARM_LDC_PC_G1:
20635 case BFD_RELOC_ARM_LDC_PC_G2:
20636 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20637 case BFD_RELOC_ARM_ALU_SB_G0:
20638 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20639 case BFD_RELOC_ARM_ALU_SB_G1:
20640 case BFD_RELOC_ARM_ALU_SB_G2:
20641 case BFD_RELOC_ARM_LDR_SB_G0:
20642 case BFD_RELOC_ARM_LDR_SB_G1:
20643 case BFD_RELOC_ARM_LDR_SB_G2:
20644 case BFD_RELOC_ARM_LDRS_SB_G0:
20645 case BFD_RELOC_ARM_LDRS_SB_G1:
20646 case BFD_RELOC_ARM_LDRS_SB_G2:
20647 case BFD_RELOC_ARM_LDC_SB_G0:
20648 case BFD_RELOC_ARM_LDC_SB_G1:
20649 case BFD_RELOC_ARM_LDC_SB_G2:
20650 case BFD_RELOC_ARM_V4BX:
20651 code = fixp->fx_r_type;
20652 break;
20653
20654 case BFD_RELOC_ARM_TLS_GD32:
20655 case BFD_RELOC_ARM_TLS_IE32:
20656 case BFD_RELOC_ARM_TLS_LDM32:
20657 /* BFD will include the symbol's address in the addend.
20658 But we don't want that, so subtract it out again here. */
20659 if (!S_IS_COMMON (fixp->fx_addsy))
20660 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
20661 code = fixp->fx_r_type;
20662 break;
20663#endif
20664
20665 case BFD_RELOC_ARM_IMMEDIATE:
20666 as_bad_where (fixp->fx_file, fixp->fx_line,
20667 _("internal relocation (type: IMMEDIATE) not fixed up"));
20668 return NULL;
20669
20670 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20671 as_bad_where (fixp->fx_file, fixp->fx_line,
20672 _("ADRL used for a symbol not defined in the same file"));
20673 return NULL;
20674
20675 case BFD_RELOC_ARM_OFFSET_IMM:
20676 if (section->use_rela_p)
20677 {
20678 code = fixp->fx_r_type;
20679 break;
20680 }
20681
20682 if (fixp->fx_addsy != NULL
20683 && !S_IS_DEFINED (fixp->fx_addsy)
20684 && S_IS_LOCAL (fixp->fx_addsy))
20685 {
20686 as_bad_where (fixp->fx_file, fixp->fx_line,
20687 _("undefined local label `%s'"),
20688 S_GET_NAME (fixp->fx_addsy));
20689 return NULL;
20690 }
20691
20692 as_bad_where (fixp->fx_file, fixp->fx_line,
20693 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
20694 return NULL;
20695
20696 default:
20697 {
20698 char * type;
20699
20700 switch (fixp->fx_r_type)
20701 {
20702 case BFD_RELOC_NONE: type = "NONE"; break;
20703 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
20704 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
20705 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
20706 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
20707 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
20708 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
20709 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
20710 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
20711 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
20712 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
20713 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
20714 default: type = _("<unknown>"); break;
20715 }
20716 as_bad_where (fixp->fx_file, fixp->fx_line,
20717 _("cannot represent %s relocation in this object file format"),
20718 type);
20719 return NULL;
20720 }
20721 }
20722
20723#ifdef OBJ_ELF
20724 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
20725 && GOT_symbol
20726 && fixp->fx_addsy == GOT_symbol)
20727 {
20728 code = BFD_RELOC_ARM_GOTPC;
20729 reloc->addend = fixp->fx_offset = reloc->address;
20730 }
20731#endif
20732
20733 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
20734
20735 if (reloc->howto == NULL)
20736 {
20737 as_bad_where (fixp->fx_file, fixp->fx_line,
20738 _("cannot represent %s relocation in this object file format"),
20739 bfd_get_reloc_code_name (code));
20740 return NULL;
20741 }
20742
20743 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
20744 vtable entry to be used in the relocation's section offset. */
20745 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
20746 reloc->address = fixp->fx_offset;
20747
20748 return reloc;
20749}
20750
20751/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
20752
20753void
20754cons_fix_new_arm (fragS * frag,
20755 int where,
20756 int size,
20757 expressionS * exp)
20758{
20759 bfd_reloc_code_real_type type;
20760 int pcrel = 0;
20761
20762 /* Pick a reloc.
20763 FIXME: @@ Should look at CPU word size. */
20764 switch (size)
20765 {
20766 case 1:
20767 type = BFD_RELOC_8;
20768 break;
20769 case 2:
20770 type = BFD_RELOC_16;
20771 break;
20772 case 4:
20773 default:
20774 type = BFD_RELOC_32;
20775 break;
20776 case 8:
20777 type = BFD_RELOC_64;
20778 break;
20779 }
20780
20781#ifdef TE_PE
20782 if (exp->X_op == O_secrel)
20783 {
20784 exp->X_op = O_symbol;
20785 type = BFD_RELOC_32_SECREL;
20786 }
20787#endif
20788
20789 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
20790}
20791
20792#if defined (OBJ_COFF)
20793void
20794arm_validate_fix (fixS * fixP)
20795{
20796 /* If the destination of the branch is a defined symbol which does not have
20797 the THUMB_FUNC attribute, then we must be calling a function which has
20798 the (interfacearm) attribute. We look for the Thumb entry point to that
20799 function and change the branch to refer to that function instead. */
20800 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
20801 && fixP->fx_addsy != NULL
20802 && S_IS_DEFINED (fixP->fx_addsy)
20803 && ! THUMB_IS_FUNC (fixP->fx_addsy))
20804 {
20805 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
20806 }
20807}
20808#endif
20809
20810
20811int
20812arm_force_relocation (struct fix * fixp)
20813{
20814#if defined (OBJ_COFF) && defined (TE_PE)
20815 if (fixp->fx_r_type == BFD_RELOC_RVA)
20816 return 1;
20817#endif
20818
20819 /* In case we have a call or a branch to a function in ARM ISA mode from
20820 a thumb function or vice-versa force the relocation. These relocations
20821 are cleared off for some cores that might have blx and simple transformations
20822 are possible. */
20823
20824#ifdef OBJ_ELF
20825 switch (fixp->fx_r_type)
20826 {
20827 case BFD_RELOC_ARM_PCREL_JUMP:
20828 case BFD_RELOC_ARM_PCREL_CALL:
20829 case BFD_RELOC_THUMB_PCREL_BLX:
20830 if (THUMB_IS_FUNC (fixp->fx_addsy))
20831 return 1;
20832 break;
20833
20834 case BFD_RELOC_ARM_PCREL_BLX:
20835 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20836 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20837 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20838 if (ARM_IS_FUNC (fixp->fx_addsy))
20839 return 1;
20840 break;
20841
20842 default:
20843 break;
20844 }
20845#endif
20846
20847 /* Resolve these relocations even if the symbol is extern or weak. */
20848 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
20849 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
20850 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
20851 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
20852 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20853 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
20854 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
20855 return 0;
20856
20857 /* Always leave these relocations for the linker. */
20858 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
20859 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
20860 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
20861 return 1;
20862
20863 /* Always generate relocations against function symbols. */
20864 if (fixp->fx_r_type == BFD_RELOC_32
20865 && fixp->fx_addsy
20866 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
20867 return 1;
20868
20869 return generic_force_reloc (fixp);
20870}
20871
20872#if defined (OBJ_ELF) || defined (OBJ_COFF)
20873/* Relocations against function names must be left unadjusted,
20874 so that the linker can use this information to generate interworking
20875 stubs. The MIPS version of this function
20876 also prevents relocations that are mips-16 specific, but I do not
20877 know why it does this.
20878
20879 FIXME:
20880 There is one other problem that ought to be addressed here, but
20881 which currently is not: Taking the address of a label (rather
20882 than a function) and then later jumping to that address. Such
20883 addresses also ought to have their bottom bit set (assuming that
20884 they reside in Thumb code), but at the moment they will not. */
20885
20886bfd_boolean
20887arm_fix_adjustable (fixS * fixP)
20888{
20889 if (fixP->fx_addsy == NULL)
20890 return 1;
20891
20892 /* Preserve relocations against symbols with function type. */
20893 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
20894 return FALSE;
20895
20896 if (THUMB_IS_FUNC (fixP->fx_addsy)
20897 && fixP->fx_subsy == NULL)
20898 return FALSE;
20899
20900 /* We need the symbol name for the VTABLE entries. */
20901 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
20902 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
20903 return FALSE;
20904
20905 /* Don't allow symbols to be discarded on GOT related relocs. */
20906 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
20907 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
20908 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
20909 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
20910 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
20911 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
20912 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
20913 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
20914 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
20915 return FALSE;
20916
20917 /* Similarly for group relocations. */
20918 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
20919 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
20920 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
20921 return FALSE;
20922
20923 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
20924 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
20925 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20926 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
20927 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
20928 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20929 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
20930 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
20931 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
20932 return FALSE;
20933
20934 return TRUE;
20935}
20936#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
20937
20938#ifdef OBJ_ELF
20939
20940const char *
20941elf32_arm_target_format (void)
20942{
20943#ifdef TE_SYMBIAN
20944 return (target_big_endian
20945 ? "elf32-bigarm-symbian"
20946 : "elf32-littlearm-symbian");
20947#elif defined (TE_VXWORKS)
20948 return (target_big_endian
20949 ? "elf32-bigarm-vxworks"
20950 : "elf32-littlearm-vxworks");
20951#else
20952 if (target_big_endian)
20953 return "elf32-bigarm";
20954 else
20955 return "elf32-littlearm";
20956#endif
20957}
20958
20959void
20960armelf_frob_symbol (symbolS * symp,
20961 int * puntp)
20962{
20963 elf_frob_symbol (symp, puntp);
20964}
20965#endif
20966
20967/* MD interface: Finalization. */
20968
20969void
20970arm_cleanup (void)
20971{
20972 literal_pool * pool;
20973
20974 /* Ensure that all the IT blocks are properly closed. */
20975 check_it_blocks_finished ();
20976
20977 for (pool = list_of_pools; pool; pool = pool->next)
20978 {
20979 /* Put it at the end of the relevant section. */
20980 subseg_set (pool->section, pool->sub_section);
20981#ifdef OBJ_ELF
20982 arm_elf_change_section ();
20983#endif
20984 s_ltorg (0);
20985 }
20986}
20987
20988/* Adjust the symbol table. This marks Thumb symbols as distinct from
20989 ARM ones. */
20990
20991void
20992arm_adjust_symtab (void)
20993{
20994#ifdef OBJ_COFF
20995 symbolS * sym;
20996
20997 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
20998 {
20999 if (ARM_IS_THUMB (sym))
21000 {
21001 if (THUMB_IS_FUNC (sym))
21002 {
21003 /* Mark the symbol as a Thumb function. */
21004 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21005 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21006 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
21007
21008 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21009 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21010 else
21011 as_bad (_("%s: unexpected function type: %d"),
21012 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21013 }
21014 else switch (S_GET_STORAGE_CLASS (sym))
21015 {
21016 case C_EXT:
21017 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21018 break;
21019 case C_STAT:
21020 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21021 break;
21022 case C_LABEL:
21023 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21024 break;
21025 default:
21026 /* Do nothing. */
21027 break;
21028 }
21029 }
21030
21031 if (ARM_IS_INTERWORK (sym))
21032 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
21033 }
21034#endif
21035#ifdef OBJ_ELF
21036 symbolS * sym;
21037 char bind;
21038
21039 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21040 {
21041 if (ARM_IS_THUMB (sym))
21042 {
21043 elf_symbol_type * elf_sym;
21044
21045 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21046 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
21047
21048 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21049 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
21050 {
21051 /* If it's a .thumb_func, declare it as so,
21052 otherwise tag label as .code 16. */
21053 if (THUMB_IS_FUNC (sym))
21054 elf_sym->internal_elf_sym.st_info =
21055 ELF_ST_INFO (bind, STT_ARM_TFUNC);
21056 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21057 elf_sym->internal_elf_sym.st_info =
21058 ELF_ST_INFO (bind, STT_ARM_16BIT);
21059 }
21060 }
21061 }
21062#endif
21063}
21064
21065/* MD interface: Initialization. */
21066
21067static void
21068set_constant_flonums (void)
21069{
21070 int i;
21071
21072 for (i = 0; i < NUM_FLOAT_VALS; i++)
21073 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21074 abort ();
21075}
21076
21077/* Auto-select Thumb mode if it's the only available instruction set for the
21078 given architecture. */
21079
21080static void
21081autoselect_thumb_from_cpu_variant (void)
21082{
21083 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21084 opcode_select (16);
21085}
21086
21087void
21088md_begin (void)
21089{
21090 unsigned mach;
21091 unsigned int i;
21092
21093 if ( (arm_ops_hsh = hash_new ()) == NULL
21094 || (arm_cond_hsh = hash_new ()) == NULL
21095 || (arm_shift_hsh = hash_new ()) == NULL
21096 || (arm_psr_hsh = hash_new ()) == NULL
21097 || (arm_v7m_psr_hsh = hash_new ()) == NULL
21098 || (arm_reg_hsh = hash_new ()) == NULL
21099 || (arm_reloc_hsh = hash_new ()) == NULL
21100 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
21101 as_fatal (_("virtual memory exhausted"));
21102
21103 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
21104 hash_insert (arm_ops_hsh, insns[i].template, (void *) (insns + i));
21105 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
21106 hash_insert (arm_cond_hsh, conds[i].template, (void *) (conds + i));
21107 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
21108 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
21109 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
21110 hash_insert (arm_psr_hsh, psrs[i].template, (void *) (psrs + i));
21111 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
21112 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (void *) (v7m_psrs + i));
21113 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
21114 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
21115 for (i = 0;
21116 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21117 i++)
21118 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
21119 (void *) (barrier_opt_names + i));
21120#ifdef OBJ_ELF
21121 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
21122 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
21123#endif
21124
21125 set_constant_flonums ();
21126
21127 /* Set the cpu variant based on the command-line options. We prefer
21128 -mcpu= over -march= if both are set (as for GCC); and we prefer
21129 -mfpu= over any other way of setting the floating point unit.
21130 Use of legacy options with new options are faulted. */
21131 if (legacy_cpu)
21132 {
21133 if (mcpu_cpu_opt || march_cpu_opt)
21134 as_bad (_("use of old and new-style options to set CPU type"));
21135
21136 mcpu_cpu_opt = legacy_cpu;
21137 }
21138 else if (!mcpu_cpu_opt)
21139 mcpu_cpu_opt = march_cpu_opt;
21140
21141 if (legacy_fpu)
21142 {
21143 if (mfpu_opt)
21144 as_bad (_("use of old and new-style options to set FPU type"));
21145
21146 mfpu_opt = legacy_fpu;
21147 }
21148 else if (!mfpu_opt)
21149 {
21150#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21151 || defined (TE_NetBSD) || defined (TE_VXWORKS))
21152 /* Some environments specify a default FPU. If they don't, infer it
21153 from the processor. */
21154 if (mcpu_fpu_opt)
21155 mfpu_opt = mcpu_fpu_opt;
21156 else
21157 mfpu_opt = march_fpu_opt;
21158#else
21159 mfpu_opt = &fpu_default;
21160#endif
21161 }
21162
21163 if (!mfpu_opt)
21164 {
21165 if (mcpu_cpu_opt != NULL)
21166 mfpu_opt = &fpu_default;
21167 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
21168 mfpu_opt = &fpu_arch_vfp_v2;
21169 else
21170 mfpu_opt = &fpu_arch_fpa;
21171 }
21172
21173#ifdef CPU_DEFAULT
21174 if (!mcpu_cpu_opt)
21175 {
21176 mcpu_cpu_opt = &cpu_default;
21177 selected_cpu = cpu_default;
21178 }
21179#else
21180 if (mcpu_cpu_opt)
21181 selected_cpu = *mcpu_cpu_opt;
21182 else
21183 mcpu_cpu_opt = &arm_arch_any;
21184#endif
21185
21186 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21187
21188 autoselect_thumb_from_cpu_variant ();
21189
21190 arm_arch_used = thumb_arch_used = arm_arch_none;
21191
21192#if defined OBJ_COFF || defined OBJ_ELF
21193 {
21194 unsigned int flags = 0;
21195
21196#if defined OBJ_ELF
21197 flags = meabi_flags;
21198
21199 switch (meabi_flags)
21200 {
21201 case EF_ARM_EABI_UNKNOWN:
21202#endif
21203 /* Set the flags in the private structure. */
21204 if (uses_apcs_26) flags |= F_APCS26;
21205 if (support_interwork) flags |= F_INTERWORK;
21206 if (uses_apcs_float) flags |= F_APCS_FLOAT;
21207 if (pic_code) flags |= F_PIC;
21208 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
21209 flags |= F_SOFT_FLOAT;
21210
21211 switch (mfloat_abi_opt)
21212 {
21213 case ARM_FLOAT_ABI_SOFT:
21214 case ARM_FLOAT_ABI_SOFTFP:
21215 flags |= F_SOFT_FLOAT;
21216 break;
21217
21218 case ARM_FLOAT_ABI_HARD:
21219 if (flags & F_SOFT_FLOAT)
21220 as_bad (_("hard-float conflicts with specified fpu"));
21221 break;
21222 }
21223
21224 /* Using pure-endian doubles (even if soft-float). */
21225 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
21226 flags |= F_VFP_FLOAT;
21227
21228#if defined OBJ_ELF
21229 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
21230 flags |= EF_ARM_MAVERICK_FLOAT;
21231 break;
21232
21233 case EF_ARM_EABI_VER4:
21234 case EF_ARM_EABI_VER5:
21235 /* No additional flags to set. */
21236 break;
21237
21238 default:
21239 abort ();
21240 }
21241#endif
21242 bfd_set_private_flags (stdoutput, flags);
21243
21244 /* We have run out flags in the COFF header to encode the
21245 status of ATPCS support, so instead we create a dummy,
21246 empty, debug section called .arm.atpcs. */
21247 if (atpcs)
21248 {
21249 asection * sec;
21250
21251 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21252
21253 if (sec != NULL)
21254 {
21255 bfd_set_section_flags
21256 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21257 bfd_set_section_size (stdoutput, sec, 0);
21258 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21259 }
21260 }
21261 }
21262#endif
21263
21264 /* Record the CPU type as well. */
21265 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21266 mach = bfd_mach_arm_iWMMXt2;
21267 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
21268 mach = bfd_mach_arm_iWMMXt;
21269 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
21270 mach = bfd_mach_arm_XScale;
21271 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
21272 mach = bfd_mach_arm_ep9312;
21273 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
21274 mach = bfd_mach_arm_5TE;
21275 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
21276 {
21277 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21278 mach = bfd_mach_arm_5T;
21279 else
21280 mach = bfd_mach_arm_5;
21281 }
21282 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
21283 {
21284 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21285 mach = bfd_mach_arm_4T;
21286 else
21287 mach = bfd_mach_arm_4;
21288 }
21289 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
21290 mach = bfd_mach_arm_3M;
21291 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21292 mach = bfd_mach_arm_3;
21293 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21294 mach = bfd_mach_arm_2a;
21295 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21296 mach = bfd_mach_arm_2;
21297 else
21298 mach = bfd_mach_arm_unknown;
21299
21300 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21301}
21302
21303/* Command line processing. */
21304
21305/* md_parse_option
21306 Invocation line includes a switch not recognized by the base assembler.
21307 See if it's a processor-specific option.
21308
21309 This routine is somewhat complicated by the need for backwards
21310 compatibility (since older releases of gcc can't be changed).
21311 The new options try to make the interface as compatible as
21312 possible with GCC.
21313
21314 New options (supported) are:
21315
21316 -mcpu=<cpu name> Assemble for selected processor
21317 -march=<architecture name> Assemble for selected architecture
21318 -mfpu=<fpu architecture> Assemble for selected FPU.
21319 -EB/-mbig-endian Big-endian
21320 -EL/-mlittle-endian Little-endian
21321 -k Generate PIC code
21322 -mthumb Start in Thumb mode
21323 -mthumb-interwork Code supports ARM/Thumb interworking
21324
21325 -m[no-]warn-deprecated Warn about deprecated features
21326
21327 For now we will also provide support for:
21328
21329 -mapcs-32 32-bit Program counter
21330 -mapcs-26 26-bit Program counter
21331 -macps-float Floats passed in FP registers
21332 -mapcs-reentrant Reentrant code
21333 -matpcs
21334 (sometime these will probably be replaced with -mapcs=<list of options>
21335 and -matpcs=<list of options>)
21336
21337 The remaining options are only supported for back-wards compatibility.
21338 Cpu variants, the arm part is optional:
21339 -m[arm]1 Currently not supported.
21340 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21341 -m[arm]3 Arm 3 processor
21342 -m[arm]6[xx], Arm 6 processors
21343 -m[arm]7[xx][t][[d]m] Arm 7 processors
21344 -m[arm]8[10] Arm 8 processors
21345 -m[arm]9[20][tdmi] Arm 9 processors
21346 -mstrongarm[110[0]] StrongARM processors
21347 -mxscale XScale processors
21348 -m[arm]v[2345[t[e]]] Arm architectures
21349 -mall All (except the ARM1)
21350 FP variants:
21351 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21352 -mfpe-old (No float load/store multiples)
21353 -mvfpxd VFP Single precision
21354 -mvfp All VFP
21355 -mno-fpu Disable all floating point instructions
21356
21357 The following CPU names are recognized:
21358 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21359 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21360 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21361 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21362 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21363 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21364 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
21365
21366 */
21367
21368const char * md_shortopts = "m:k";
21369
21370#ifdef ARM_BI_ENDIAN
21371#define OPTION_EB (OPTION_MD_BASE + 0)
21372#define OPTION_EL (OPTION_MD_BASE + 1)
21373#else
21374#if TARGET_BYTES_BIG_ENDIAN
21375#define OPTION_EB (OPTION_MD_BASE + 0)
21376#else
21377#define OPTION_EL (OPTION_MD_BASE + 1)
21378#endif
21379#endif
21380#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
21381
21382struct option md_longopts[] =
21383{
21384#ifdef OPTION_EB
21385 {"EB", no_argument, NULL, OPTION_EB},
21386#endif
21387#ifdef OPTION_EL
21388 {"EL", no_argument, NULL, OPTION_EL},
21389#endif
21390 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
21391 {NULL, no_argument, NULL, 0}
21392};
21393
21394size_t md_longopts_size = sizeof (md_longopts);
21395
21396struct arm_option_table
21397{
21398 char *option; /* Option name to match. */
21399 char *help; /* Help information. */
21400 int *var; /* Variable to change. */
21401 int value; /* What to change it to. */
21402 char *deprecated; /* If non-null, print this message. */
21403};
21404
21405struct arm_option_table arm_opts[] =
21406{
21407 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
21408 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
21409 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
21410 &support_interwork, 1, NULL},
21411 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
21412 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
21413 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
21414 1, NULL},
21415 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
21416 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
21417 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
21418 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
21419 NULL},
21420
21421 /* These are recognized by the assembler, but have no affect on code. */
21422 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
21423 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
21424
21425 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
21426 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
21427 &warn_on_deprecated, 0, NULL},
21428 {NULL, NULL, NULL, 0, NULL}
21429};
21430
21431struct arm_legacy_option_table
21432{
21433 char *option; /* Option name to match. */
21434 const arm_feature_set **var; /* Variable to change. */
21435 const arm_feature_set value; /* What to change it to. */
21436 char *deprecated; /* If non-null, print this message. */
21437};
21438
21439const struct arm_legacy_option_table arm_legacy_opts[] =
21440{
21441 /* DON'T add any new processors to this list -- we want the whole list
21442 to go away... Add them to the processors table instead. */
21443 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21444 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21445 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21446 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21447 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21448 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21449 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21450 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21451 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21452 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21453 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21454 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21455 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21456 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21457 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21458 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21459 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21460 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21461 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21462 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21463 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21464 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21465 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21466 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21467 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21468 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21469 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21470 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21471 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21472 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21473 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21474 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21475 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21476 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21477 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21478 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21479 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21480 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21481 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21482 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21483 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21484 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21485 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21486 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21487 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21488 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21489 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21490 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21491 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21492 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21493 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21494 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21495 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21496 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21497 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21498 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21499 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21500 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21501 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21502 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21503 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21504 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21505 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21506 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21507 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21508 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21509 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21510 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21511 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
21512 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
21513 N_("use -mcpu=strongarm110")},
21514 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
21515 N_("use -mcpu=strongarm1100")},
21516 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
21517 N_("use -mcpu=strongarm1110")},
21518 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
21519 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
21520 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
21521
21522 /* Architecture variants -- don't add any more to this list either. */
21523 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21524 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21525 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21526 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21527 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21528 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21529 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21530 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21531 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21532 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21533 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21534 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21535 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21536 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21537 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21538 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21539 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
21540 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
21541
21542 /* Floating point variants -- don't add any more to this list either. */
21543 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
21544 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
21545 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
21546 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
21547 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
21548
21549 {NULL, NULL, ARM_ARCH_NONE, NULL}
21550};
21551
21552struct arm_cpu_option_table
21553{
21554 char *name;
21555 const arm_feature_set value;
21556 /* For some CPUs we assume an FPU unless the user explicitly sets
21557 -mfpu=... */
21558 const arm_feature_set default_fpu;
21559 /* The canonical name of the CPU, or NULL to use NAME converted to upper
21560 case. */
21561 const char *canonical_name;
21562};
21563
21564/* This list should, at a minimum, contain all the cpu names
21565 recognized by GCC. */
21566static const struct arm_cpu_option_table arm_cpus[] =
21567{
21568 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
21569 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
21570 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
21571 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21572 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21573 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21574 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21575 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21576 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21577 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21578 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21579 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21580 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21581 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21582 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21583 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21584 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21585 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21586 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21587 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21588 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21589 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21590 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21591 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21592 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21593 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21594 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21595 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21596 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21597 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21598 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21599 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21600 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21601 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21602 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21603 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21604 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21605 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21606 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21607 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
21608 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21609 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21610 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21611 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21612 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21613 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21614 /* For V5 or later processors we default to using VFP; but the user
21615 should really set the FPU type explicitly. */
21616 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21617 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21618 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
21619 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
21620 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
21621 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21622 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
21623 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21624 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21625 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
21626 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21627 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21628 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21629 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21630 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21631 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
21632 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21633 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21634 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21635 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
21636 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
21637 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
21638 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21639 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
21640 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
21641 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
21642 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
21643 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
21644 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
21645 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
21646 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
21647 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
21648 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
21649 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
21650 | FPU_NEON_EXT_V1),
21651 NULL},
21652 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
21653 | FPU_NEON_EXT_V1),
21654 NULL},
21655 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
21656 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
21657 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
21658 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
21659 /* ??? XSCALE is really an architecture. */
21660 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
21661 /* ??? iwmmxt is not a processor. */
21662 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
21663 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
21664 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
21665 /* Maverick */
21666 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
21667 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
21668};
21669
21670struct arm_arch_option_table
21671{
21672 char *name;
21673 const arm_feature_set value;
21674 const arm_feature_set default_fpu;
21675};
21676
21677/* This list should, at a minimum, contain all the architecture names
21678 recognized by GCC. */
21679static const struct arm_arch_option_table arm_archs[] =
21680{
21681 {"all", ARM_ANY, FPU_ARCH_FPA},
21682 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
21683 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
21684 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
21685 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
21686 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
21687 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
21688 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
21689 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
21690 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
21691 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
21692 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
21693 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
21694 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
21695 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
21696 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
21697 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
21698 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
21699 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
21700 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
21701 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
21702 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
21703 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
21704 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
21705 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
21706 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
21707 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
21708 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
21709 /* The official spelling of the ARMv7 profile variants is the dashed form.
21710 Accept the non-dashed form for compatibility with old toolchains. */
21711 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
21712 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
21713 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
21714 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
21715 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
21716 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
21717 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
21718 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
21719 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
21720 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
21721};
21722
21723/* ISA extensions in the co-processor space. */
21724struct arm_option_cpu_value_table
21725{
21726 char *name;
21727 const arm_feature_set value;
21728};
21729
21730static const struct arm_option_cpu_value_table arm_extensions[] =
21731{
21732 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
21733 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
21734 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
21735 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
21736 {NULL, ARM_ARCH_NONE}
21737};
21738
21739/* This list should, at a minimum, contain all the fpu names
21740 recognized by GCC. */
21741static const struct arm_option_cpu_value_table arm_fpus[] =
21742{
21743 {"softfpa", FPU_NONE},
21744 {"fpe", FPU_ARCH_FPE},
21745 {"fpe2", FPU_ARCH_FPE},
21746 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
21747 {"fpa", FPU_ARCH_FPA},
21748 {"fpa10", FPU_ARCH_FPA},
21749 {"fpa11", FPU_ARCH_FPA},
21750 {"arm7500fe", FPU_ARCH_FPA},
21751 {"softvfp", FPU_ARCH_VFP},
21752 {"softvfp+vfp", FPU_ARCH_VFP_V2},
21753 {"vfp", FPU_ARCH_VFP_V2},
21754 {"vfp9", FPU_ARCH_VFP_V2},
21755 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
21756 {"vfp10", FPU_ARCH_VFP_V2},
21757 {"vfp10-r0", FPU_ARCH_VFP_V1},
21758 {"vfpxd", FPU_ARCH_VFP_V1xD},
21759 {"vfpv2", FPU_ARCH_VFP_V2},
21760 {"vfpv3", FPU_ARCH_VFP_V3},
21761 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
21762 {"arm1020t", FPU_ARCH_VFP_V1},
21763 {"arm1020e", FPU_ARCH_VFP_V2},
21764 {"arm1136jfs", FPU_ARCH_VFP_V2},
21765 {"arm1136jf-s", FPU_ARCH_VFP_V2},
21766 {"maverick", FPU_ARCH_MAVERICK},
21767 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
21768 {"neon-fp16", FPU_ARCH_NEON_FP16},
21769 {NULL, ARM_ARCH_NONE}
21770};
21771
21772struct arm_option_value_table
21773{
21774 char *name;
21775 long value;
21776};
21777
21778static const struct arm_option_value_table arm_float_abis[] =
21779{
21780 {"hard", ARM_FLOAT_ABI_HARD},
21781 {"softfp", ARM_FLOAT_ABI_SOFTFP},
21782 {"soft", ARM_FLOAT_ABI_SOFT},
21783 {NULL, 0}
21784};
21785
21786#ifdef OBJ_ELF
21787/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
21788static const struct arm_option_value_table arm_eabis[] =
21789{
21790 {"gnu", EF_ARM_EABI_UNKNOWN},
21791 {"4", EF_ARM_EABI_VER4},
21792 {"5", EF_ARM_EABI_VER5},
21793 {NULL, 0}
21794};
21795#endif
21796
21797struct arm_long_option_table
21798{
21799 char * option; /* Substring to match. */
21800 char * help; /* Help information. */
21801 int (* func) (char * subopt); /* Function to decode sub-option. */
21802 char * deprecated; /* If non-null, print this message. */
21803};
21804
21805static bfd_boolean
21806arm_parse_extension (char * str, const arm_feature_set **opt_p)
21807{
21808 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
21809
21810 /* Copy the feature set, so that we can modify it. */
21811 *ext_set = **opt_p;
21812 *opt_p = ext_set;
21813
21814 while (str != NULL && *str != 0)
21815 {
21816 const struct arm_option_cpu_value_table * opt;
21817 char * ext;
21818 int optlen;
21819
21820 if (*str != '+')
21821 {
21822 as_bad (_("invalid architectural extension"));
21823 return FALSE;
21824 }
21825
21826 str++;
21827 ext = strchr (str, '+');
21828
21829 if (ext != NULL)
21830 optlen = ext - str;
21831 else
21832 optlen = strlen (str);
21833
21834 if (optlen == 0)
21835 {
21836 as_bad (_("missing architectural extension"));
21837 return FALSE;
21838 }
21839
21840 for (opt = arm_extensions; opt->name != NULL; opt++)
21841 if (strncmp (opt->name, str, optlen) == 0)
21842 {
21843 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
21844 break;
21845 }
21846
21847 if (opt->name == NULL)
21848 {
21849 as_bad (_("unknown architectural extension `%s'"), str);
21850 return FALSE;
21851 }
21852
21853 str = ext;
21854 };
21855
21856 return TRUE;
21857}
21858
21859static bfd_boolean
21860arm_parse_cpu (char * str)
21861{
21862 const struct arm_cpu_option_table * opt;
21863 char * ext = strchr (str, '+');
21864 int optlen;
21865
21866 if (ext != NULL)
21867 optlen = ext - str;
21868 else
21869 optlen = strlen (str);
21870
21871 if (optlen == 0)
21872 {
21873 as_bad (_("missing cpu name `%s'"), str);
21874 return FALSE;
21875 }
21876
21877 for (opt = arm_cpus; opt->name != NULL; opt++)
21878 if (strncmp (opt->name, str, optlen) == 0)
21879 {
21880 mcpu_cpu_opt = &opt->value;
21881 mcpu_fpu_opt = &opt->default_fpu;
21882 if (opt->canonical_name)
21883 strcpy (selected_cpu_name, opt->canonical_name);
21884 else
21885 {
21886 int i;
21887
21888 for (i = 0; i < optlen; i++)
21889 selected_cpu_name[i] = TOUPPER (opt->name[i]);
21890 selected_cpu_name[i] = 0;
21891 }
21892
21893 if (ext != NULL)
21894 return arm_parse_extension (ext, &mcpu_cpu_opt);
21895
21896 return TRUE;
21897 }
21898
21899 as_bad (_("unknown cpu `%s'"), str);
21900 return FALSE;
21901}
21902
21903static bfd_boolean
21904arm_parse_arch (char * str)
21905{
21906 const struct arm_arch_option_table *opt;
21907 char *ext = strchr (str, '+');
21908 int optlen;
21909
21910 if (ext != NULL)
21911 optlen = ext - str;
21912 else
21913 optlen = strlen (str);
21914
21915 if (optlen == 0)
21916 {
21917 as_bad (_("missing architecture name `%s'"), str);
21918 return FALSE;
21919 }
21920
21921 for (opt = arm_archs; opt->name != NULL; opt++)
21922 if (streq (opt->name, str))
21923 {
21924 march_cpu_opt = &opt->value;
21925 march_fpu_opt = &opt->default_fpu;
21926 strcpy (selected_cpu_name, opt->name);
21927
21928 if (ext != NULL)
21929 return arm_parse_extension (ext, &march_cpu_opt);
21930
21931 return TRUE;
21932 }
21933
21934 as_bad (_("unknown architecture `%s'\n"), str);
21935 return FALSE;
21936}
21937
21938static bfd_boolean
21939arm_parse_fpu (char * str)
21940{
21941 const struct arm_option_cpu_value_table * opt;
21942
21943 for (opt = arm_fpus; opt->name != NULL; opt++)
21944 if (streq (opt->name, str))
21945 {
21946 mfpu_opt = &opt->value;
21947 return TRUE;
21948 }
21949
21950 as_bad (_("unknown floating point format `%s'\n"), str);
21951 return FALSE;
21952}
21953
21954static bfd_boolean
21955arm_parse_float_abi (char * str)
21956{
21957 const struct arm_option_value_table * opt;
21958
21959 for (opt = arm_float_abis; opt->name != NULL; opt++)
21960 if (streq (opt->name, str))
21961 {
21962 mfloat_abi_opt = opt->value;
21963 return TRUE;
21964 }
21965
21966 as_bad (_("unknown floating point abi `%s'\n"), str);
21967 return FALSE;
21968}
21969
21970#ifdef OBJ_ELF
21971static bfd_boolean
21972arm_parse_eabi (char * str)
21973{
21974 const struct arm_option_value_table *opt;
21975
21976 for (opt = arm_eabis; opt->name != NULL; opt++)
21977 if (streq (opt->name, str))
21978 {
21979 meabi_flags = opt->value;
21980 return TRUE;
21981 }
21982 as_bad (_("unknown EABI `%s'\n"), str);
21983 return FALSE;
21984}
21985#endif
21986
21987static bfd_boolean
21988arm_parse_it_mode (char * str)
21989{
21990 bfd_boolean ret = TRUE;
21991
21992 if (streq ("arm", str))
21993 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
21994 else if (streq ("thumb", str))
21995 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
21996 else if (streq ("always", str))
21997 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
21998 else if (streq ("never", str))
21999 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22000 else
22001 {
22002 as_bad (_("unknown implicit IT mode `%s', should be "\
22003 "arm, thumb, always, or never."), str);
22004 ret = FALSE;
22005 }
22006
22007 return ret;
22008}
22009
22010struct arm_long_option_table arm_long_opts[] =
22011{
22012 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22013 arm_parse_cpu, NULL},
22014 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22015 arm_parse_arch, NULL},
22016 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22017 arm_parse_fpu, NULL},
22018 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22019 arm_parse_float_abi, NULL},
22020#ifdef OBJ_ELF
22021 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
22022 arm_parse_eabi, NULL},
22023#endif
22024 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22025 arm_parse_it_mode, NULL},
22026 {NULL, NULL, 0, NULL}
22027};
22028
22029int
22030md_parse_option (int c, char * arg)
22031{
22032 struct arm_option_table *opt;
22033 const struct arm_legacy_option_table *fopt;
22034 struct arm_long_option_table *lopt;
22035
22036 switch (c)
22037 {
22038#ifdef OPTION_EB
22039 case OPTION_EB:
22040 target_big_endian = 1;
22041 break;
22042#endif
22043
22044#ifdef OPTION_EL
22045 case OPTION_EL:
22046 target_big_endian = 0;
22047 break;
22048#endif
22049
22050 case OPTION_FIX_V4BX:
22051 fix_v4bx = TRUE;
22052 break;
22053
22054 case 'a':
22055 /* Listing option. Just ignore these, we don't support additional
22056 ones. */
22057 return 0;
22058
22059 default:
22060 for (opt = arm_opts; opt->option != NULL; opt++)
22061 {
22062 if (c == opt->option[0]
22063 && ((arg == NULL && opt->option[1] == 0)
22064 || streq (arg, opt->option + 1)))
22065 {
22066 /* If the option is deprecated, tell the user. */
22067 if (warn_on_deprecated && opt->deprecated != NULL)
22068 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22069 arg ? arg : "", _(opt->deprecated));
22070
22071 if (opt->var != NULL)
22072 *opt->var = opt->value;
22073
22074 return 1;
22075 }
22076 }
22077
22078 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22079 {
22080 if (c == fopt->option[0]
22081 && ((arg == NULL && fopt->option[1] == 0)
22082 || streq (arg, fopt->option + 1)))
22083 {
22084 /* If the option is deprecated, tell the user. */
22085 if (warn_on_deprecated && fopt->deprecated != NULL)
22086 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22087 arg ? arg : "", _(fopt->deprecated));
22088
22089 if (fopt->var != NULL)
22090 *fopt->var = &fopt->value;
22091
22092 return 1;
22093 }
22094 }
22095
22096 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22097 {
22098 /* These options are expected to have an argument. */
22099 if (c == lopt->option[0]
22100 && arg != NULL
22101 && strncmp (arg, lopt->option + 1,
22102 strlen (lopt->option + 1)) == 0)
22103 {
22104 /* If the option is deprecated, tell the user. */
22105 if (warn_on_deprecated && lopt->deprecated != NULL)
22106 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22107 _(lopt->deprecated));
22108
22109 /* Call the sup-option parser. */
22110 return lopt->func (arg + strlen (lopt->option) - 1);
22111 }
22112 }
22113
22114 return 0;
22115 }
22116
22117 return 1;
22118}
22119
22120void
22121md_show_usage (FILE * fp)
22122{
22123 struct arm_option_table *opt;
22124 struct arm_long_option_table *lopt;
22125
22126 fprintf (fp, _(" ARM-specific assembler options:\n"));
22127
22128 for (opt = arm_opts; opt->option != NULL; opt++)
22129 if (opt->help != NULL)
22130 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
22131
22132 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22133 if (lopt->help != NULL)
22134 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
22135
22136#ifdef OPTION_EB
22137 fprintf (fp, _("\
22138 -EB assemble code for a big-endian cpu\n"));
22139#endif
22140
22141#ifdef OPTION_EL
22142 fprintf (fp, _("\
22143 -EL assemble code for a little-endian cpu\n"));
22144#endif
22145
22146 fprintf (fp, _("\
22147 --fix-v4bx Allow BX in ARMv4 code\n"));
22148}
22149
22150
22151#ifdef OBJ_ELF
22152typedef struct
22153{
22154 int val;
22155 arm_feature_set flags;
22156} cpu_arch_ver_table;
22157
22158/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22159 least features first. */
22160static const cpu_arch_ver_table cpu_arch_ver[] =
22161{
22162 {1, ARM_ARCH_V4},
22163 {2, ARM_ARCH_V4T},
22164 {3, ARM_ARCH_V5},
22165 {3, ARM_ARCH_V5T},
22166 {4, ARM_ARCH_V5TE},
22167 {5, ARM_ARCH_V5TEJ},
22168 {6, ARM_ARCH_V6},
22169 {7, ARM_ARCH_V6Z},
22170 {9, ARM_ARCH_V6K},
22171 {11, ARM_ARCH_V6M},
22172 {8, ARM_ARCH_V6T2},
22173 {10, ARM_ARCH_V7A},
22174 {10, ARM_ARCH_V7R},
22175 {10, ARM_ARCH_V7M},
22176 {0, ARM_ARCH_NONE}
22177};
22178
22179/* Set an attribute if it has not already been set by the user. */
22180static void
22181aeabi_set_attribute_int (int tag, int value)
22182{
22183 if (tag < 1
22184 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22185 || !attributes_set_explicitly[tag])
22186 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22187}
22188
22189static void
22190aeabi_set_attribute_string (int tag, const char *value)
22191{
22192 if (tag < 1
22193 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22194 || !attributes_set_explicitly[tag])
22195 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22196}
22197
22198/* Set the public EABI object attributes. */
22199static void
22200aeabi_set_public_attributes (void)
22201{
22202 int arch;
22203 arm_feature_set flags;
22204 arm_feature_set tmp;
22205 const cpu_arch_ver_table *p;
22206
22207 /* Choose the architecture based on the capabilities of the requested cpu
22208 (if any) and/or the instructions actually used. */
22209 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22210 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22211 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
22212 /*Allow the user to override the reported architecture. */
22213 if (object_arch)
22214 {
22215 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22216 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22217 }
22218
22219 tmp = flags;
22220 arch = 0;
22221 for (p = cpu_arch_ver; p->val; p++)
22222 {
22223 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22224 {
22225 arch = p->val;
22226 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22227 }
22228 }
22229
22230 /* Tag_CPU_name. */
22231 if (selected_cpu_name[0])
22232 {
22233 char *p;
22234
22235 p = selected_cpu_name;
22236 if (strncmp (p, "armv", 4) == 0)
22237 {
22238 int i;
22239
22240 p += 4;
22241 for (i = 0; p[i]; i++)
22242 p[i] = TOUPPER (p[i]);
22243 }
22244 aeabi_set_attribute_string (Tag_CPU_name, p);
22245 }
22246 /* Tag_CPU_arch. */
22247 aeabi_set_attribute_int (Tag_CPU_arch, arch);
22248 /* Tag_CPU_arch_profile. */
22249 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
22250 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
22251 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
22252 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
22253 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
22254 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
22255 /* Tag_ARM_ISA_use. */
22256 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22257 || arch == 0)
22258 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
22259 /* Tag_THUMB_ISA_use. */
22260 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22261 || arch == 0)
22262 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22263 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
22264 /* Tag_VFP_arch. */
22265 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
22266 aeabi_set_attribute_int (Tag_VFP_arch, 3);
22267 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3))
22268 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22269 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22270 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22271 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22272 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22273 aeabi_set_attribute_int (Tag_VFP_arch, 1);
22274 /* Tag_WMMX_arch. */
22275 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22276 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22277 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22278 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
22279 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
22280 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
22281 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
22282 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
22283 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_fp16))
22284 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
22285}
22286
22287/* Add the default contents for the .ARM.attributes section. */
22288void
22289arm_md_end (void)
22290{
22291 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22292 return;
22293
22294 aeabi_set_public_attributes ();
22295}
22296#endif /* OBJ_ELF */
22297
22298
22299/* Parse a .cpu directive. */
22300
22301static void
22302s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22303{
22304 const struct arm_cpu_option_table *opt;
22305 char *name;
22306 char saved_char;
22307
22308 name = input_line_pointer;
22309 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22310 input_line_pointer++;
22311 saved_char = *input_line_pointer;
22312 *input_line_pointer = 0;
22313
22314 /* Skip the first "all" entry. */
22315 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
22316 if (streq (opt->name, name))
22317 {
22318 mcpu_cpu_opt = &opt->value;
22319 selected_cpu = opt->value;
22320 if (opt->canonical_name)
22321 strcpy (selected_cpu_name, opt->canonical_name);
22322 else
22323 {
22324 int i;
22325 for (i = 0; opt->name[i]; i++)
22326 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22327 selected_cpu_name[i] = 0;
22328 }
22329 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22330 *input_line_pointer = saved_char;
22331 demand_empty_rest_of_line ();
22332 return;
22333 }
22334 as_bad (_("unknown cpu `%s'"), name);
22335 *input_line_pointer = saved_char;
22336 ignore_rest_of_line ();
22337}
22338
22339
22340/* Parse a .arch directive. */
22341
22342static void
22343s_arm_arch (int ignored ATTRIBUTE_UNUSED)
22344{
22345 const struct arm_arch_option_table *opt;
22346 char saved_char;
22347 char *name;
22348
22349 name = input_line_pointer;
22350 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22351 input_line_pointer++;
22352 saved_char = *input_line_pointer;
22353 *input_line_pointer = 0;
22354
22355 /* Skip the first "all" entry. */
22356 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22357 if (streq (opt->name, name))
22358 {
22359 mcpu_cpu_opt = &opt->value;
22360 selected_cpu = opt->value;
22361 strcpy (selected_cpu_name, opt->name);
22362 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22363 *input_line_pointer = saved_char;
22364 demand_empty_rest_of_line ();
22365 return;
22366 }
22367
22368 as_bad (_("unknown architecture `%s'\n"), name);
22369 *input_line_pointer = saved_char;
22370 ignore_rest_of_line ();
22371}
22372
22373
22374/* Parse a .object_arch directive. */
22375
22376static void
22377s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
22378{
22379 const struct arm_arch_option_table *opt;
22380 char saved_char;
22381 char *name;
22382
22383 name = input_line_pointer;
22384 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22385 input_line_pointer++;
22386 saved_char = *input_line_pointer;
22387 *input_line_pointer = 0;
22388
22389 /* Skip the first "all" entry. */
22390 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22391 if (streq (opt->name, name))
22392 {
22393 object_arch = &opt->value;
22394 *input_line_pointer = saved_char;
22395 demand_empty_rest_of_line ();
22396 return;
22397 }
22398
22399 as_bad (_("unknown architecture `%s'\n"), name);
22400 *input_line_pointer = saved_char;
22401 ignore_rest_of_line ();
22402}
22403
22404/* Parse a .fpu directive. */
22405
22406static void
22407s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
22408{
22409 const struct arm_option_cpu_value_table *opt;
22410 char saved_char;
22411 char *name;
22412
22413 name = input_line_pointer;
22414 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22415 input_line_pointer++;
22416 saved_char = *input_line_pointer;
22417 *input_line_pointer = 0;
22418
22419 for (opt = arm_fpus; opt->name != NULL; opt++)
22420 if (streq (opt->name, name))
22421 {
22422 mfpu_opt = &opt->value;
22423 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22424 *input_line_pointer = saved_char;
22425 demand_empty_rest_of_line ();
22426 return;
22427 }
22428
22429 as_bad (_("unknown floating point format `%s'\n"), name);
22430 *input_line_pointer = saved_char;
22431 ignore_rest_of_line ();
22432}
22433
22434/* Copy symbol information. */
22435
22436void
22437arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
22438{
22439 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
22440}
22441
22442#ifdef OBJ_ELF
22443/* Given a symbolic attribute NAME, return the proper integer value.
22444 Returns -1 if the attribute is not known. */
22445
22446int
22447arm_convert_symbolic_attribute (const char *name)
22448{
22449 static const struct
22450 {
22451 const char * name;
22452 const int tag;
22453 }
22454 attribute_table[] =
22455 {
22456 /* When you modify this table you should
22457 also modify the list in doc/c-arm.texi. */
22458#define T(tag) {#tag, tag}
22459 T (Tag_CPU_raw_name),
22460 T (Tag_CPU_name),
22461 T (Tag_CPU_arch),
22462 T (Tag_CPU_arch_profile),
22463 T (Tag_ARM_ISA_use),
22464 T (Tag_THUMB_ISA_use),
22465 T (Tag_VFP_arch),
22466 T (Tag_WMMX_arch),
22467 T (Tag_Advanced_SIMD_arch),
22468 T (Tag_PCS_config),
22469 T (Tag_ABI_PCS_R9_use),
22470 T (Tag_ABI_PCS_RW_data),
22471 T (Tag_ABI_PCS_RO_data),
22472 T (Tag_ABI_PCS_GOT_use),
22473 T (Tag_ABI_PCS_wchar_t),
22474 T (Tag_ABI_FP_rounding),
22475 T (Tag_ABI_FP_denormal),
22476 T (Tag_ABI_FP_exceptions),
22477 T (Tag_ABI_FP_user_exceptions),
22478 T (Tag_ABI_FP_number_model),
22479 T (Tag_ABI_align8_needed),
22480 T (Tag_ABI_align8_preserved),
22481 T (Tag_ABI_enum_size),
22482 T (Tag_ABI_HardFP_use),
22483 T (Tag_ABI_VFP_args),
22484 T (Tag_ABI_WMMX_args),
22485 T (Tag_ABI_optimization_goals),
22486 T (Tag_ABI_FP_optimization_goals),
22487 T (Tag_compatibility),
22488 T (Tag_CPU_unaligned_access),
22489 T (Tag_VFP_HP_extension),
22490 T (Tag_ABI_FP_16bit_format),
22491 T (Tag_nodefaults),
22492 T (Tag_also_compatible_with),
22493 T (Tag_conformance),
22494 T (Tag_T2EE_use),
22495 T (Tag_Virtualization_use),
22496 T (Tag_MPextension_use)
22497#undef T
22498 };
22499 unsigned int i;
22500
22501 if (name == NULL)
22502 return -1;
22503
22504 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
22505 if (streq (name, attribute_table[i].name))
22506 return attribute_table[i].tag;
22507
22508 return -1;
22509}
22510
22511
22512/* Apply sym value for relocations only in the case that
22513 they are for local symbols and you have the respective
22514 architectural feature for blx and simple switches. */
22515int
22516arm_apply_sym_value (struct fix * fixP)
22517{
22518 if (fixP->fx_addsy
22519 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22520 && !S_IS_EXTERNAL (fixP->fx_addsy))
22521 {
22522 switch (fixP->fx_r_type)
22523 {
22524 case BFD_RELOC_ARM_PCREL_BLX:
22525 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22526 if (ARM_IS_FUNC (fixP->fx_addsy))
22527 return 1;
22528 break;
22529
22530 case BFD_RELOC_ARM_PCREL_CALL:
22531 case BFD_RELOC_THUMB_PCREL_BLX:
22532 if (THUMB_IS_FUNC (fixP->fx_addsy))
22533 return 1;
22534 break;
22535
22536 default:
22537 break;
22538 }
22539
22540 }
22541 return 0;
22542}
22543#endif /* OBJ_ELF */
This page took 0.102649 seconds and 4 git commands to generate.