x86: drop {X,Y,Z}MMWORD_MNEM_SUFFIX
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
... / ...
CommitLineData
1/* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28#include "as.h"
29#include "safe-ctype.h"
30#include "subsegs.h"
31#include "dwarf2dbg.h"
32#include "dw2gencfi.h"
33#include "elf/x86-64.h"
34#include "opcodes/i386-init.h"
35
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
40#ifndef INFER_ADDR_PREFIX
41#define INFER_ADDR_PREFIX 1
42#endif
43
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
46#endif
47
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
65#define REP_PREFIX 4
66#define HLE_PREFIX REP_PREFIX
67#define BND_PREFIX REP_PREFIX
68#define LOCK_PREFIX 5
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
99 const insn_template *start;
100 const insn_template *end;
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133}
134arch_entry;
135
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
145static void update_code_flag (int, int);
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
149static void set_intel_mnemonic (int);
150static void set_allow_index_reg (int);
151static void set_check (int);
152static void set_cpu_arch (int);
153#ifdef TE_PE
154static void pe_directive_secrel (int);
155#endif
156static void signed_cons (int);
157static char *output_invalid (int c);
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162static int i386_att_operand (char *);
163static int i386_intel_operand (char *, int);
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
170static void swap_2_operands (int, int);
171static void optimize_imm (void);
172static void optimize_disp (void);
173static const insn_template *match_template (char);
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
186#ifndef I386COFF
187static void s_bss (int);
188#endif
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
191#endif
192
193static const char *default_arch = DEFAULT_ARCH;
194
195/* This struct describes rounding control and SAE in the instruction. */
196struct RC_Operation
197{
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207};
208
209static struct RC_Operation rc_op;
210
211/* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214struct Mask_Operation
215{
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220};
221
222static struct Mask_Operation mask_op;
223
224/* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226struct Broadcast_Operation
227{
228 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233};
234
235static struct Broadcast_Operation broadcast_op;
236
237/* VEX prefix. */
238typedef struct
239{
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245} vex_prefix;
246
247/* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 old_gcc_only,
266 unsupported_with_intel_mnemonic,
267 unsupported_syntax,
268 unsupported,
269 invalid_vsib_address,
270 invalid_vector_register_set,
271 unsupported_vector_index_register,
272 unsupported_broadcast,
273 broadcast_not_on_src_operand,
274 broadcast_needed,
275 unsupported_masking,
276 mask_not_on_destination,
277 no_default_mask,
278 unsupported_rc_sae,
279 rc_sae_operand_not_last_imm,
280 invalid_register_operand,
281 };
282
283struct _i386_insn
284 {
285 /* TM holds the template for the insn were currently assembling. */
286 insn_template tm;
287
288 /* SUFFIX holds the instruction size suffix for byte, word, dword
289 or qword, if given. */
290 char suffix;
291
292 /* OPERANDS gives the number of given operands. */
293 unsigned int operands;
294
295 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
296 of given register, displacement, memory operands and immediate
297 operands. */
298 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
299
300 /* TYPES [i] is the type (see above #defines) which tells us how to
301 use OP[i] for the corresponding operand. */
302 i386_operand_type types[MAX_OPERANDS];
303
304 /* Displacement expression, immediate expression, or register for each
305 operand. */
306 union i386_op op[MAX_OPERANDS];
307
308 /* Flags for operands. */
309 unsigned int flags[MAX_OPERANDS];
310#define Operand_PCrel 1
311
312 /* Relocation type for operand */
313 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
314
315 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
316 the base index byte below. */
317 const reg_entry *base_reg;
318 const reg_entry *index_reg;
319 unsigned int log2_scale_factor;
320
321 /* SEG gives the seg_entries of this insn. They are zero unless
322 explicit segment overrides are given. */
323 const seg_entry *seg[2];
324
325 /* Copied first memory operand string, for re-checking. */
326 char *memop1_string;
327
328 /* PREFIX holds all the given prefix opcodes (usually null).
329 PREFIXES is the number of prefix opcodes. */
330 unsigned int prefixes;
331 unsigned char prefix[MAX_PREFIXES];
332
333 /* RM and SIB are the modrm byte and the sib byte where the
334 addressing modes of this insn are encoded. */
335 modrm_byte rm;
336 rex_byte rex;
337 rex_byte vrex;
338 sib_byte sib;
339 vex_prefix vex;
340
341 /* Masking attributes. */
342 struct Mask_Operation *mask;
343
344 /* Rounding control and SAE attributes. */
345 struct RC_Operation *rounding;
346
347 /* Broadcasting attributes. */
348 struct Broadcast_Operation *broadcast;
349
350 /* Compressed disp8*N attribute. */
351 unsigned int memshift;
352
353 /* Prefer load or store in encoding. */
354 enum
355 {
356 dir_encoding_default = 0,
357 dir_encoding_load,
358 dir_encoding_store
359 } dir_encoding;
360
361 /* Prefer 8bit or 32bit displacement in encoding. */
362 enum
363 {
364 disp_encoding_default = 0,
365 disp_encoding_8bit,
366 disp_encoding_32bit
367 } disp_encoding;
368
369 /* Prefer the REX byte in encoding. */
370 bfd_boolean rex_encoding;
371
372 /* Disable instruction size optimization. */
373 bfd_boolean no_optimize;
374
375 /* How to encode vector instructions. */
376 enum
377 {
378 vex_encoding_default = 0,
379 vex_encoding_vex2,
380 vex_encoding_vex3,
381 vex_encoding_evex
382 } vec_encoding;
383
384 /* REP prefix. */
385 const char *rep_prefix;
386
387 /* HLE prefix. */
388 const char *hle_prefix;
389
390 /* Have BND prefix. */
391 const char *bnd_prefix;
392
393 /* Have NOTRACK prefix. */
394 const char *notrack_prefix;
395
396 /* Error message. */
397 enum i386_error error;
398 };
399
400typedef struct _i386_insn i386_insn;
401
402/* Link RC type with corresponding string, that'll be looked for in
403 asm. */
404struct RC_name
405{
406 enum rc_type type;
407 const char *name;
408 unsigned int len;
409};
410
411static const struct RC_name RC_NamesTable[] =
412{
413 { rne, STRING_COMMA_LEN ("rn-sae") },
414 { rd, STRING_COMMA_LEN ("rd-sae") },
415 { ru, STRING_COMMA_LEN ("ru-sae") },
416 { rz, STRING_COMMA_LEN ("rz-sae") },
417 { saeonly, STRING_COMMA_LEN ("sae") },
418};
419
420/* List of chars besides those in app.c:symbol_chars that can start an
421 operand. Used to prevent the scrubber eating vital white-space. */
422const char extra_symbol_chars[] = "*%-([{}"
423#ifdef LEX_AT
424 "@"
425#endif
426#ifdef LEX_QM
427 "?"
428#endif
429 ;
430
431#if (defined (TE_I386AIX) \
432 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
433 && !defined (TE_GNU) \
434 && !defined (TE_LINUX) \
435 && !defined (TE_NACL) \
436 && !defined (TE_NETWARE) \
437 && !defined (TE_FreeBSD) \
438 && !defined (TE_DragonFly) \
439 && !defined (TE_NetBSD)))
440/* This array holds the chars that always start a comment. If the
441 pre-processor is disabled, these aren't very useful. The option
442 --divide will remove '/' from this list. */
443const char *i386_comment_chars = "#/";
444#define SVR4_COMMENT_CHARS 1
445#define PREFIX_SEPARATOR '\\'
446
447#else
448const char *i386_comment_chars = "#";
449#define PREFIX_SEPARATOR '/'
450#endif
451
452/* This array holds the chars that only start a comment at the beginning of
453 a line. If the line seems to have the form '# 123 filename'
454 .line and .file directives will appear in the pre-processed output.
455 Note that input_file.c hand checks for '#' at the beginning of the
456 first line of the input file. This is because the compiler outputs
457 #NO_APP at the beginning of its output.
458 Also note that comments started like this one will always work if
459 '/' isn't otherwise defined. */
460const char line_comment_chars[] = "#/";
461
462const char line_separator_chars[] = ";";
463
464/* Chars that can be used to separate mant from exp in floating point
465 nums. */
466const char EXP_CHARS[] = "eE";
467
468/* Chars that mean this number is a floating point constant
469 As in 0f12.456
470 or 0d1.2345e12. */
471const char FLT_CHARS[] = "fFdDxX";
472
473/* Tables for lexical analysis. */
474static char mnemonic_chars[256];
475static char register_chars[256];
476static char operand_chars[256];
477static char identifier_chars[256];
478static char digit_chars[256];
479
480/* Lexical macros. */
481#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
482#define is_operand_char(x) (operand_chars[(unsigned char) x])
483#define is_register_char(x) (register_chars[(unsigned char) x])
484#define is_space_char(x) ((x) == ' ')
485#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
486#define is_digit_char(x) (digit_chars[(unsigned char) x])
487
488/* All non-digit non-letter characters that may occur in an operand. */
489static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
490
491/* md_assemble() always leaves the strings it's passed unaltered. To
492 effect this we maintain a stack of saved characters that we've smashed
493 with '\0's (indicating end of strings for various sub-fields of the
494 assembler instruction). */
495static char save_stack[32];
496static char *save_stack_p;
497#define END_STRING_AND_SAVE(s) \
498 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
499#define RESTORE_END_STRING(s) \
500 do { *(s) = *--save_stack_p; } while (0)
501
502/* The instruction we're assembling. */
503static i386_insn i;
504
505/* Possible templates for current insn. */
506static const templates *current_templates;
507
508/* Per instruction expressionS buffers: max displacements & immediates. */
509static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
510static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
511
512/* Current operand we are working on. */
513static int this_operand = -1;
514
515/* We support four different modes. FLAG_CODE variable is used to distinguish
516 these. */
517
518enum flag_code {
519 CODE_32BIT,
520 CODE_16BIT,
521 CODE_64BIT };
522
523static enum flag_code flag_code;
524static unsigned int object_64bit;
525static unsigned int disallow_64bit_reloc;
526static int use_rela_relocations = 0;
527
528#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
529 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
530 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
531
532/* The ELF ABI to use. */
533enum x86_elf_abi
534{
535 I386_ABI,
536 X86_64_ABI,
537 X86_64_X32_ABI
538};
539
540static enum x86_elf_abi x86_elf_abi = I386_ABI;
541#endif
542
543#if defined (TE_PE) || defined (TE_PEP)
544/* Use big object file format. */
545static int use_big_obj = 0;
546#endif
547
548#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
549/* 1 if generating code for a shared library. */
550static int shared = 0;
551#endif
552
553/* 1 for intel syntax,
554 0 if att syntax. */
555static int intel_syntax = 0;
556
557/* 1 for Intel64 ISA,
558 0 if AMD64 ISA. */
559static int intel64;
560
561/* 1 for intel mnemonic,
562 0 if att mnemonic. */
563static int intel_mnemonic = !SYSV386_COMPAT;
564
565/* 1 if support old (<= 2.8.1) versions of gcc. */
566static int old_gcc = OLDGCC_COMPAT;
567
568/* 1 if pseudo registers are permitted. */
569static int allow_pseudo_reg = 0;
570
571/* 1 if register prefix % not required. */
572static int allow_naked_reg = 0;
573
574/* 1 if the assembler should add BND prefix for all control-transferring
575 instructions supporting it, even if this prefix wasn't specified
576 explicitly. */
577static int add_bnd_prefix = 0;
578
579/* 1 if pseudo index register, eiz/riz, is allowed . */
580static int allow_index_reg = 0;
581
582/* 1 if the assembler should ignore LOCK prefix, even if it was
583 specified explicitly. */
584static int omit_lock_prefix = 0;
585
586/* 1 if the assembler should encode lfence, mfence, and sfence as
587 "lock addl $0, (%{re}sp)". */
588static int avoid_fence = 0;
589
590/* 1 if the assembler should generate relax relocations. */
591
592static int generate_relax_relocations
593 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
594
595static enum check_kind
596 {
597 check_none = 0,
598 check_warning,
599 check_error
600 }
601sse_check, operand_check = check_warning;
602
603/* Optimization:
604 1. Clear the REX_W bit with register operand if possible.
605 2. Above plus use 128bit vector instruction to clear the full vector
606 register.
607 */
608static int optimize = 0;
609
610/* Optimization:
611 1. Clear the REX_W bit with register operand if possible.
612 2. Above plus use 128bit vector instruction to clear the full vector
613 register.
614 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
615 "testb $imm7,%r8".
616 */
617static int optimize_for_space = 0;
618
619/* Register prefix used for error message. */
620static const char *register_prefix = "%";
621
622/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
623 leave, push, and pop instructions so that gcc has the same stack
624 frame as in 32 bit mode. */
625static char stackop_size = '\0';
626
627/* Non-zero to optimize code alignment. */
628int optimize_align_code = 1;
629
630/* Non-zero to quieten some warnings. */
631static int quiet_warnings = 0;
632
633/* CPU name. */
634static const char *cpu_arch_name = NULL;
635static char *cpu_sub_arch_name = NULL;
636
637/* CPU feature flags. */
638static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
639
640/* If we have selected a cpu we are generating instructions for. */
641static int cpu_arch_tune_set = 0;
642
643/* Cpu we are generating instructions for. */
644enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
645
646/* CPU feature flags of cpu we are generating instructions for. */
647static i386_cpu_flags cpu_arch_tune_flags;
648
649/* CPU instruction set architecture used. */
650enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
651
652/* CPU feature flags of instruction set architecture used. */
653i386_cpu_flags cpu_arch_isa_flags;
654
655/* If set, conditional jumps are not automatically promoted to handle
656 larger than a byte offset. */
657static unsigned int no_cond_jump_promotion = 0;
658
659/* Encode SSE instructions with VEX prefix. */
660static unsigned int sse2avx;
661
662/* Encode scalar AVX instructions with specific vector length. */
663static enum
664 {
665 vex128 = 0,
666 vex256
667 } avxscalar;
668
669/* Encode scalar EVEX LIG instructions with specific vector length. */
670static enum
671 {
672 evexl128 = 0,
673 evexl256,
674 evexl512
675 } evexlig;
676
677/* Encode EVEX WIG instructions with specific evex.w. */
678static enum
679 {
680 evexw0 = 0,
681 evexw1
682 } evexwig;
683
684/* Value to encode in EVEX RC bits, for SAE-only instructions. */
685static enum rc_type evexrcig = rne;
686
687/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
688static symbolS *GOT_symbol;
689
690/* The dwarf2 return column, adjusted for 32 or 64 bit. */
691unsigned int x86_dwarf2_return_column;
692
693/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
694int x86_cie_data_alignment;
695
696/* Interface to relax_segment.
697 There are 3 major relax states for 386 jump insns because the
698 different types of jumps add different sizes to frags when we're
699 figuring out what sort of jump to choose to reach a given label. */
700
701/* Types. */
702#define UNCOND_JUMP 0
703#define COND_JUMP 1
704#define COND_JUMP86 2
705
706/* Sizes. */
707#define CODE16 1
708#define SMALL 0
709#define SMALL16 (SMALL | CODE16)
710#define BIG 2
711#define BIG16 (BIG | CODE16)
712
713#ifndef INLINE
714#ifdef __GNUC__
715#define INLINE __inline__
716#else
717#define INLINE
718#endif
719#endif
720
721#define ENCODE_RELAX_STATE(type, size) \
722 ((relax_substateT) (((type) << 2) | (size)))
723#define TYPE_FROM_RELAX_STATE(s) \
724 ((s) >> 2)
725#define DISP_SIZE_FROM_RELAX_STATE(s) \
726 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
727
728/* This table is used by relax_frag to promote short jumps to long
729 ones where necessary. SMALL (short) jumps may be promoted to BIG
730 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
731 don't allow a short jump in a 32 bit code segment to be promoted to
732 a 16 bit offset jump because it's slower (requires data size
733 prefix), and doesn't work, unless the destination is in the bottom
734 64k of the code segment (The top 16 bits of eip are zeroed). */
735
736const relax_typeS md_relax_table[] =
737{
738 /* The fields are:
739 1) most positive reach of this state,
740 2) most negative reach of this state,
741 3) how many bytes this mode will have in the variable part of the frag
742 4) which index into the table to try if we can't fit into this one. */
743
744 /* UNCOND_JUMP states. */
745 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
746 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
747 /* dword jmp adds 4 bytes to frag:
748 0 extra opcode bytes, 4 displacement bytes. */
749 {0, 0, 4, 0},
750 /* word jmp adds 2 byte2 to frag:
751 0 extra opcode bytes, 2 displacement bytes. */
752 {0, 0, 2, 0},
753
754 /* COND_JUMP states. */
755 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
756 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
757 /* dword conditionals adds 5 bytes to frag:
758 1 extra opcode byte, 4 displacement bytes. */
759 {0, 0, 5, 0},
760 /* word conditionals add 3 bytes to frag:
761 1 extra opcode byte, 2 displacement bytes. */
762 {0, 0, 3, 0},
763
764 /* COND_JUMP86 states. */
765 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
766 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
767 /* dword conditionals adds 5 bytes to frag:
768 1 extra opcode byte, 4 displacement bytes. */
769 {0, 0, 5, 0},
770 /* word conditionals add 4 bytes to frag:
771 1 displacement byte and a 3 byte long branch insn. */
772 {0, 0, 4, 0}
773};
774
775static const arch_entry cpu_arch[] =
776{
777 /* Do not replace the first two entries - i386_target_format()
778 relies on them being there in this order. */
779 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
780 CPU_GENERIC32_FLAGS, 0 },
781 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
782 CPU_GENERIC64_FLAGS, 0 },
783 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
784 CPU_NONE_FLAGS, 0 },
785 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
786 CPU_I186_FLAGS, 0 },
787 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
788 CPU_I286_FLAGS, 0 },
789 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
790 CPU_I386_FLAGS, 0 },
791 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
792 CPU_I486_FLAGS, 0 },
793 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
794 CPU_I586_FLAGS, 0 },
795 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
796 CPU_I686_FLAGS, 0 },
797 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
798 CPU_I586_FLAGS, 0 },
799 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
800 CPU_PENTIUMPRO_FLAGS, 0 },
801 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
802 CPU_P2_FLAGS, 0 },
803 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
804 CPU_P3_FLAGS, 0 },
805 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
806 CPU_P4_FLAGS, 0 },
807 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
808 CPU_CORE_FLAGS, 0 },
809 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
810 CPU_NOCONA_FLAGS, 0 },
811 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
812 CPU_CORE_FLAGS, 1 },
813 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
814 CPU_CORE_FLAGS, 0 },
815 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
816 CPU_CORE2_FLAGS, 1 },
817 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
818 CPU_CORE2_FLAGS, 0 },
819 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
820 CPU_COREI7_FLAGS, 0 },
821 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
822 CPU_L1OM_FLAGS, 0 },
823 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
824 CPU_K1OM_FLAGS, 0 },
825 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
826 CPU_IAMCU_FLAGS, 0 },
827 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
828 CPU_K6_FLAGS, 0 },
829 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
830 CPU_K6_2_FLAGS, 0 },
831 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
832 CPU_ATHLON_FLAGS, 0 },
833 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
834 CPU_K8_FLAGS, 1 },
835 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
836 CPU_K8_FLAGS, 0 },
837 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
838 CPU_K8_FLAGS, 0 },
839 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
840 CPU_AMDFAM10_FLAGS, 0 },
841 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
842 CPU_BDVER1_FLAGS, 0 },
843 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
844 CPU_BDVER2_FLAGS, 0 },
845 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
846 CPU_BDVER3_FLAGS, 0 },
847 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
848 CPU_BDVER4_FLAGS, 0 },
849 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
850 CPU_ZNVER1_FLAGS, 0 },
851 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
852 CPU_BTVER1_FLAGS, 0 },
853 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
854 CPU_BTVER2_FLAGS, 0 },
855 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
856 CPU_8087_FLAGS, 0 },
857 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
858 CPU_287_FLAGS, 0 },
859 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
860 CPU_387_FLAGS, 0 },
861 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
862 CPU_687_FLAGS, 0 },
863 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
864 CPU_MMX_FLAGS, 0 },
865 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
866 CPU_SSE_FLAGS, 0 },
867 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
868 CPU_SSE2_FLAGS, 0 },
869 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
870 CPU_SSE3_FLAGS, 0 },
871 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
872 CPU_SSSE3_FLAGS, 0 },
873 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
874 CPU_SSE4_1_FLAGS, 0 },
875 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
876 CPU_SSE4_2_FLAGS, 0 },
877 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
878 CPU_SSE4_2_FLAGS, 0 },
879 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
880 CPU_AVX_FLAGS, 0 },
881 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
882 CPU_AVX2_FLAGS, 0 },
883 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
884 CPU_AVX512F_FLAGS, 0 },
885 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
886 CPU_AVX512CD_FLAGS, 0 },
887 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
888 CPU_AVX512ER_FLAGS, 0 },
889 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
890 CPU_AVX512PF_FLAGS, 0 },
891 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
892 CPU_AVX512DQ_FLAGS, 0 },
893 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
894 CPU_AVX512BW_FLAGS, 0 },
895 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
896 CPU_AVX512VL_FLAGS, 0 },
897 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
898 CPU_VMX_FLAGS, 0 },
899 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
900 CPU_VMFUNC_FLAGS, 0 },
901 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
902 CPU_SMX_FLAGS, 0 },
903 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
904 CPU_XSAVE_FLAGS, 0 },
905 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
906 CPU_XSAVEOPT_FLAGS, 0 },
907 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
908 CPU_XSAVEC_FLAGS, 0 },
909 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
910 CPU_XSAVES_FLAGS, 0 },
911 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
912 CPU_AES_FLAGS, 0 },
913 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
914 CPU_PCLMUL_FLAGS, 0 },
915 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
916 CPU_PCLMUL_FLAGS, 1 },
917 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
918 CPU_FSGSBASE_FLAGS, 0 },
919 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
920 CPU_RDRND_FLAGS, 0 },
921 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
922 CPU_F16C_FLAGS, 0 },
923 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
924 CPU_BMI2_FLAGS, 0 },
925 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
926 CPU_FMA_FLAGS, 0 },
927 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
928 CPU_FMA4_FLAGS, 0 },
929 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
930 CPU_XOP_FLAGS, 0 },
931 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
932 CPU_LWP_FLAGS, 0 },
933 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
934 CPU_MOVBE_FLAGS, 0 },
935 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
936 CPU_CX16_FLAGS, 0 },
937 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
938 CPU_EPT_FLAGS, 0 },
939 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
940 CPU_LZCNT_FLAGS, 0 },
941 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
942 CPU_HLE_FLAGS, 0 },
943 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
944 CPU_RTM_FLAGS, 0 },
945 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
946 CPU_INVPCID_FLAGS, 0 },
947 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
948 CPU_CLFLUSH_FLAGS, 0 },
949 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
950 CPU_NOP_FLAGS, 0 },
951 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
952 CPU_SYSCALL_FLAGS, 0 },
953 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
954 CPU_RDTSCP_FLAGS, 0 },
955 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
956 CPU_3DNOW_FLAGS, 0 },
957 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
958 CPU_3DNOWA_FLAGS, 0 },
959 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
960 CPU_PADLOCK_FLAGS, 0 },
961 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
962 CPU_SVME_FLAGS, 1 },
963 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
964 CPU_SVME_FLAGS, 0 },
965 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
966 CPU_SSE4A_FLAGS, 0 },
967 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
968 CPU_ABM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
970 CPU_BMI_FLAGS, 0 },
971 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
972 CPU_TBM_FLAGS, 0 },
973 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
974 CPU_ADX_FLAGS, 0 },
975 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
976 CPU_RDSEED_FLAGS, 0 },
977 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
978 CPU_PRFCHW_FLAGS, 0 },
979 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
980 CPU_SMAP_FLAGS, 0 },
981 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
982 CPU_MPX_FLAGS, 0 },
983 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
984 CPU_SHA_FLAGS, 0 },
985 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
986 CPU_CLFLUSHOPT_FLAGS, 0 },
987 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
988 CPU_PREFETCHWT1_FLAGS, 0 },
989 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
990 CPU_SE1_FLAGS, 0 },
991 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
992 CPU_CLWB_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
994 CPU_AVX512IFMA_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
996 CPU_AVX512VBMI_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
998 CPU_AVX512_4FMAPS_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512_4VNNIW_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512_VBMI2_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1006 CPU_AVX512_VNNI_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1008 CPU_AVX512_BITALG_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1010 CPU_CLZERO_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1012 CPU_MWAITX_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1014 CPU_OSPKE_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1016 CPU_RDPID_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1018 CPU_PTWRITE_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1020 CPU_IBT_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1022 CPU_SHSTK_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1024 CPU_GFNI_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1026 CPU_VAES_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1028 CPU_VPCLMULQDQ_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1030 CPU_WBNOINVD_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1032 CPU_PCONFIG_FLAGS, 0 },
1033};
1034
1035static const noarch_entry cpu_noarch[] =
1036{
1037 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1038 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1039 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1040 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1041 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1042 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1043 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1044 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1045 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1046 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1047 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1048 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1049 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1050 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1051 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1052 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1053 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1065 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1066 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1067 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1068};
1069
1070#ifdef I386COFF
1071/* Like s_lcomm_internal in gas/read.c but the alignment string
1072 is allowed to be optional. */
1073
1074static symbolS *
1075pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1076{
1077 addressT align = 0;
1078
1079 SKIP_WHITESPACE ();
1080
1081 if (needs_align
1082 && *input_line_pointer == ',')
1083 {
1084 align = parse_align (needs_align - 1);
1085
1086 if (align == (addressT) -1)
1087 return NULL;
1088 }
1089 else
1090 {
1091 if (size >= 8)
1092 align = 3;
1093 else if (size >= 4)
1094 align = 2;
1095 else if (size >= 2)
1096 align = 1;
1097 else
1098 align = 0;
1099 }
1100
1101 bss_alloc (symbolP, size, align);
1102 return symbolP;
1103}
1104
1105static void
1106pe_lcomm (int needs_align)
1107{
1108 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1109}
1110#endif
1111
1112const pseudo_typeS md_pseudo_table[] =
1113{
1114#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1115 {"align", s_align_bytes, 0},
1116#else
1117 {"align", s_align_ptwo, 0},
1118#endif
1119 {"arch", set_cpu_arch, 0},
1120#ifndef I386COFF
1121 {"bss", s_bss, 0},
1122#else
1123 {"lcomm", pe_lcomm, 1},
1124#endif
1125 {"ffloat", float_cons, 'f'},
1126 {"dfloat", float_cons, 'd'},
1127 {"tfloat", float_cons, 'x'},
1128 {"value", cons, 2},
1129 {"slong", signed_cons, 4},
1130 {"noopt", s_ignore, 0},
1131 {"optim", s_ignore, 0},
1132 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1133 {"code16", set_code_flag, CODE_16BIT},
1134 {"code32", set_code_flag, CODE_32BIT},
1135#ifdef BFD64
1136 {"code64", set_code_flag, CODE_64BIT},
1137#endif
1138 {"intel_syntax", set_intel_syntax, 1},
1139 {"att_syntax", set_intel_syntax, 0},
1140 {"intel_mnemonic", set_intel_mnemonic, 1},
1141 {"att_mnemonic", set_intel_mnemonic, 0},
1142 {"allow_index_reg", set_allow_index_reg, 1},
1143 {"disallow_index_reg", set_allow_index_reg, 0},
1144 {"sse_check", set_check, 0},
1145 {"operand_check", set_check, 1},
1146#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1147 {"largecomm", handle_large_common, 0},
1148#else
1149 {"file", dwarf2_directive_file, 0},
1150 {"loc", dwarf2_directive_loc, 0},
1151 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1152#endif
1153#ifdef TE_PE
1154 {"secrel32", pe_directive_secrel, 0},
1155#endif
1156 {0, 0, 0}
1157};
1158
1159/* For interface with expression (). */
1160extern char *input_line_pointer;
1161
1162/* Hash table for instruction mnemonic lookup. */
1163static struct hash_control *op_hash;
1164
1165/* Hash table for register lookup. */
1166static struct hash_control *reg_hash;
1167\f
1168 /* Various efficient no-op patterns for aligning code labels.
1169 Note: Don't try to assemble the instructions in the comments.
1170 0L and 0w are not legal. */
1171static const unsigned char f32_1[] =
1172 {0x90}; /* nop */
1173static const unsigned char f32_2[] =
1174 {0x66,0x90}; /* xchg %ax,%ax */
1175static const unsigned char f32_3[] =
1176 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1177static const unsigned char f32_4[] =
1178 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1179static const unsigned char f32_6[] =
1180 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1181static const unsigned char f32_7[] =
1182 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1183static const unsigned char f16_3[] =
1184 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1185static const unsigned char f16_4[] =
1186 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1187static const unsigned char jump_disp8[] =
1188 {0xeb}; /* jmp disp8 */
1189static const unsigned char jump32_disp32[] =
1190 {0xe9}; /* jmp disp32 */
1191static const unsigned char jump16_disp32[] =
1192 {0x66,0xe9}; /* jmp disp32 */
1193/* 32-bit NOPs patterns. */
1194static const unsigned char *const f32_patt[] = {
1195 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1196};
1197/* 16-bit NOPs patterns. */
1198static const unsigned char *const f16_patt[] = {
1199 f32_1, f32_2, f16_3, f16_4
1200};
1201/* nopl (%[re]ax) */
1202static const unsigned char alt_3[] =
1203 {0x0f,0x1f,0x00};
1204/* nopl 0(%[re]ax) */
1205static const unsigned char alt_4[] =
1206 {0x0f,0x1f,0x40,0x00};
1207/* nopl 0(%[re]ax,%[re]ax,1) */
1208static const unsigned char alt_5[] =
1209 {0x0f,0x1f,0x44,0x00,0x00};
1210/* nopw 0(%[re]ax,%[re]ax,1) */
1211static const unsigned char alt_6[] =
1212 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1213/* nopl 0L(%[re]ax) */
1214static const unsigned char alt_7[] =
1215 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1216/* nopl 0L(%[re]ax,%[re]ax,1) */
1217static const unsigned char alt_8[] =
1218 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1219/* nopw 0L(%[re]ax,%[re]ax,1) */
1220static const unsigned char alt_9[] =
1221 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1222/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1223static const unsigned char alt_10[] =
1224 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1225/* data16 nopw %cs:0L(%eax,%eax,1) */
1226static const unsigned char alt_11[] =
1227 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1228/* 32-bit and 64-bit NOPs patterns. */
1229static const unsigned char *const alt_patt[] = {
1230 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1231 alt_9, alt_10, alt_11
1232};
1233
1234/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1235 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1236
1237static void
1238i386_output_nops (char *where, const unsigned char *const *patt,
1239 int count, int max_single_nop_size)
1240
1241{
1242 /* Place the longer NOP first. */
1243 int last;
1244 int offset;
1245 const unsigned char *nops = patt[max_single_nop_size - 1];
1246
1247 /* Use the smaller one if the requsted one isn't available. */
1248 if (nops == NULL)
1249 {
1250 max_single_nop_size--;
1251 nops = patt[max_single_nop_size - 1];
1252 }
1253
1254 last = count % max_single_nop_size;
1255
1256 count -= last;
1257 for (offset = 0; offset < count; offset += max_single_nop_size)
1258 memcpy (where + offset, nops, max_single_nop_size);
1259
1260 if (last)
1261 {
1262 nops = patt[last - 1];
1263 if (nops == NULL)
1264 {
1265 /* Use the smaller one plus one-byte NOP if the needed one
1266 isn't available. */
1267 last--;
1268 nops = patt[last - 1];
1269 memcpy (where + offset, nops, last);
1270 where[offset + last] = *patt[0];
1271 }
1272 else
1273 memcpy (where + offset, nops, last);
1274 }
1275}
1276
1277static INLINE int
1278fits_in_imm7 (offsetT num)
1279{
1280 return (num & 0x7f) == num;
1281}
1282
1283static INLINE int
1284fits_in_imm31 (offsetT num)
1285{
1286 return (num & 0x7fffffff) == num;
1287}
1288
1289/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1290 single NOP instruction LIMIT. */
1291
1292void
1293i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1294{
1295 const unsigned char *const *patt = NULL;
1296 int max_single_nop_size;
1297 /* Maximum number of NOPs before switching to jump over NOPs. */
1298 int max_number_of_nops;
1299
1300 switch (fragP->fr_type)
1301 {
1302 case rs_fill_nop:
1303 case rs_align_code:
1304 break;
1305 default:
1306 return;
1307 }
1308
1309 /* We need to decide which NOP sequence to use for 32bit and
1310 64bit. When -mtune= is used:
1311
1312 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1313 PROCESSOR_GENERIC32, f32_patt will be used.
1314 2. For the rest, alt_patt will be used.
1315
1316 When -mtune= isn't used, alt_patt will be used if
1317 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1318 be used.
1319
1320 When -march= or .arch is used, we can't use anything beyond
1321 cpu_arch_isa_flags. */
1322
1323 if (flag_code == CODE_16BIT)
1324 {
1325 patt = f16_patt;
1326 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1327 /* Limit number of NOPs to 2 in 16-bit mode. */
1328 max_number_of_nops = 2;
1329 }
1330 else
1331 {
1332 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1333 {
1334 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1335 switch (cpu_arch_tune)
1336 {
1337 case PROCESSOR_UNKNOWN:
1338 /* We use cpu_arch_isa_flags to check if we SHOULD
1339 optimize with nops. */
1340 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1341 patt = alt_patt;
1342 else
1343 patt = f32_patt;
1344 break;
1345 case PROCESSOR_PENTIUM4:
1346 case PROCESSOR_NOCONA:
1347 case PROCESSOR_CORE:
1348 case PROCESSOR_CORE2:
1349 case PROCESSOR_COREI7:
1350 case PROCESSOR_L1OM:
1351 case PROCESSOR_K1OM:
1352 case PROCESSOR_GENERIC64:
1353 case PROCESSOR_K6:
1354 case PROCESSOR_ATHLON:
1355 case PROCESSOR_K8:
1356 case PROCESSOR_AMDFAM10:
1357 case PROCESSOR_BD:
1358 case PROCESSOR_ZNVER:
1359 case PROCESSOR_BT:
1360 patt = alt_patt;
1361 break;
1362 case PROCESSOR_I386:
1363 case PROCESSOR_I486:
1364 case PROCESSOR_PENTIUM:
1365 case PROCESSOR_PENTIUMPRO:
1366 case PROCESSOR_IAMCU:
1367 case PROCESSOR_GENERIC32:
1368 patt = f32_patt;
1369 break;
1370 }
1371 }
1372 else
1373 {
1374 switch (fragP->tc_frag_data.tune)
1375 {
1376 case PROCESSOR_UNKNOWN:
1377 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1378 PROCESSOR_UNKNOWN. */
1379 abort ();
1380 break;
1381
1382 case PROCESSOR_I386:
1383 case PROCESSOR_I486:
1384 case PROCESSOR_PENTIUM:
1385 case PROCESSOR_IAMCU:
1386 case PROCESSOR_K6:
1387 case PROCESSOR_ATHLON:
1388 case PROCESSOR_K8:
1389 case PROCESSOR_AMDFAM10:
1390 case PROCESSOR_BD:
1391 case PROCESSOR_ZNVER:
1392 case PROCESSOR_BT:
1393 case PROCESSOR_GENERIC32:
1394 /* We use cpu_arch_isa_flags to check if we CAN optimize
1395 with nops. */
1396 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1397 patt = alt_patt;
1398 else
1399 patt = f32_patt;
1400 break;
1401 case PROCESSOR_PENTIUMPRO:
1402 case PROCESSOR_PENTIUM4:
1403 case PROCESSOR_NOCONA:
1404 case PROCESSOR_CORE:
1405 case PROCESSOR_CORE2:
1406 case PROCESSOR_COREI7:
1407 case PROCESSOR_L1OM:
1408 case PROCESSOR_K1OM:
1409 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1410 patt = alt_patt;
1411 else
1412 patt = f32_patt;
1413 break;
1414 case PROCESSOR_GENERIC64:
1415 patt = alt_patt;
1416 break;
1417 }
1418 }
1419
1420 if (patt == f32_patt)
1421 {
1422 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1423 /* Limit number of NOPs to 2 for older processors. */
1424 max_number_of_nops = 2;
1425 }
1426 else
1427 {
1428 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1429 /* Limit number of NOPs to 7 for newer processors. */
1430 max_number_of_nops = 7;
1431 }
1432 }
1433
1434 if (limit == 0)
1435 limit = max_single_nop_size;
1436
1437 if (fragP->fr_type == rs_fill_nop)
1438 {
1439 /* Output NOPs for .nop directive. */
1440 if (limit > max_single_nop_size)
1441 {
1442 as_bad_where (fragP->fr_file, fragP->fr_line,
1443 _("invalid single nop size: %d "
1444 "(expect within [0, %d])"),
1445 limit, max_single_nop_size);
1446 return;
1447 }
1448 }
1449 else
1450 fragP->fr_var = count;
1451
1452 if ((count / max_single_nop_size) > max_number_of_nops)
1453 {
1454 /* Generate jump over NOPs. */
1455 offsetT disp = count - 2;
1456 if (fits_in_imm7 (disp))
1457 {
1458 /* Use "jmp disp8" if possible. */
1459 count = disp;
1460 where[0] = jump_disp8[0];
1461 where[1] = count;
1462 where += 2;
1463 }
1464 else
1465 {
1466 unsigned int size_of_jump;
1467
1468 if (flag_code == CODE_16BIT)
1469 {
1470 where[0] = jump16_disp32[0];
1471 where[1] = jump16_disp32[1];
1472 size_of_jump = 2;
1473 }
1474 else
1475 {
1476 where[0] = jump32_disp32[0];
1477 size_of_jump = 1;
1478 }
1479
1480 count -= size_of_jump + 4;
1481 if (!fits_in_imm31 (count))
1482 {
1483 as_bad_where (fragP->fr_file, fragP->fr_line,
1484 _("jump over nop padding out of range"));
1485 return;
1486 }
1487
1488 md_number_to_chars (where + size_of_jump, count, 4);
1489 where += size_of_jump + 4;
1490 }
1491 }
1492
1493 /* Generate multiple NOPs. */
1494 i386_output_nops (where, patt, count, limit);
1495}
1496
1497static INLINE int
1498operand_type_all_zero (const union i386_operand_type *x)
1499{
1500 switch (ARRAY_SIZE(x->array))
1501 {
1502 case 3:
1503 if (x->array[2])
1504 return 0;
1505 /* Fall through. */
1506 case 2:
1507 if (x->array[1])
1508 return 0;
1509 /* Fall through. */
1510 case 1:
1511 return !x->array[0];
1512 default:
1513 abort ();
1514 }
1515}
1516
1517static INLINE void
1518operand_type_set (union i386_operand_type *x, unsigned int v)
1519{
1520 switch (ARRAY_SIZE(x->array))
1521 {
1522 case 3:
1523 x->array[2] = v;
1524 /* Fall through. */
1525 case 2:
1526 x->array[1] = v;
1527 /* Fall through. */
1528 case 1:
1529 x->array[0] = v;
1530 /* Fall through. */
1531 break;
1532 default:
1533 abort ();
1534 }
1535}
1536
1537static INLINE int
1538operand_type_equal (const union i386_operand_type *x,
1539 const union i386_operand_type *y)
1540{
1541 switch (ARRAY_SIZE(x->array))
1542 {
1543 case 3:
1544 if (x->array[2] != y->array[2])
1545 return 0;
1546 /* Fall through. */
1547 case 2:
1548 if (x->array[1] != y->array[1])
1549 return 0;
1550 /* Fall through. */
1551 case 1:
1552 return x->array[0] == y->array[0];
1553 break;
1554 default:
1555 abort ();
1556 }
1557}
1558
1559static INLINE int
1560cpu_flags_all_zero (const union i386_cpu_flags *x)
1561{
1562 switch (ARRAY_SIZE(x->array))
1563 {
1564 case 4:
1565 if (x->array[3])
1566 return 0;
1567 /* Fall through. */
1568 case 3:
1569 if (x->array[2])
1570 return 0;
1571 /* Fall through. */
1572 case 2:
1573 if (x->array[1])
1574 return 0;
1575 /* Fall through. */
1576 case 1:
1577 return !x->array[0];
1578 default:
1579 abort ();
1580 }
1581}
1582
1583static INLINE int
1584cpu_flags_equal (const union i386_cpu_flags *x,
1585 const union i386_cpu_flags *y)
1586{
1587 switch (ARRAY_SIZE(x->array))
1588 {
1589 case 4:
1590 if (x->array[3] != y->array[3])
1591 return 0;
1592 /* Fall through. */
1593 case 3:
1594 if (x->array[2] != y->array[2])
1595 return 0;
1596 /* Fall through. */
1597 case 2:
1598 if (x->array[1] != y->array[1])
1599 return 0;
1600 /* Fall through. */
1601 case 1:
1602 return x->array[0] == y->array[0];
1603 break;
1604 default:
1605 abort ();
1606 }
1607}
1608
1609static INLINE int
1610cpu_flags_check_cpu64 (i386_cpu_flags f)
1611{
1612 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1613 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1614}
1615
1616static INLINE i386_cpu_flags
1617cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1618{
1619 switch (ARRAY_SIZE (x.array))
1620 {
1621 case 4:
1622 x.array [3] &= y.array [3];
1623 /* Fall through. */
1624 case 3:
1625 x.array [2] &= y.array [2];
1626 /* Fall through. */
1627 case 2:
1628 x.array [1] &= y.array [1];
1629 /* Fall through. */
1630 case 1:
1631 x.array [0] &= y.array [0];
1632 break;
1633 default:
1634 abort ();
1635 }
1636 return x;
1637}
1638
1639static INLINE i386_cpu_flags
1640cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1641{
1642 switch (ARRAY_SIZE (x.array))
1643 {
1644 case 4:
1645 x.array [3] |= y.array [3];
1646 /* Fall through. */
1647 case 3:
1648 x.array [2] |= y.array [2];
1649 /* Fall through. */
1650 case 2:
1651 x.array [1] |= y.array [1];
1652 /* Fall through. */
1653 case 1:
1654 x.array [0] |= y.array [0];
1655 break;
1656 default:
1657 abort ();
1658 }
1659 return x;
1660}
1661
1662static INLINE i386_cpu_flags
1663cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1664{
1665 switch (ARRAY_SIZE (x.array))
1666 {
1667 case 4:
1668 x.array [3] &= ~y.array [3];
1669 /* Fall through. */
1670 case 3:
1671 x.array [2] &= ~y.array [2];
1672 /* Fall through. */
1673 case 2:
1674 x.array [1] &= ~y.array [1];
1675 /* Fall through. */
1676 case 1:
1677 x.array [0] &= ~y.array [0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682 return x;
1683}
1684
1685#define CPU_FLAGS_ARCH_MATCH 0x1
1686#define CPU_FLAGS_64BIT_MATCH 0x2
1687
1688#define CPU_FLAGS_PERFECT_MATCH \
1689 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1690
1691/* Return CPU flags match bits. */
1692
1693static int
1694cpu_flags_match (const insn_template *t)
1695{
1696 i386_cpu_flags x = t->cpu_flags;
1697 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1698
1699 x.bitfield.cpu64 = 0;
1700 x.bitfield.cpuno64 = 0;
1701
1702 if (cpu_flags_all_zero (&x))
1703 {
1704 /* This instruction is available on all archs. */
1705 match |= CPU_FLAGS_ARCH_MATCH;
1706 }
1707 else
1708 {
1709 /* This instruction is available only on some archs. */
1710 i386_cpu_flags cpu = cpu_arch_flags;
1711
1712 /* AVX512VL is no standalone feature - match it and then strip it. */
1713 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1714 return match;
1715 x.bitfield.cpuavx512vl = 0;
1716
1717 cpu = cpu_flags_and (x, cpu);
1718 if (!cpu_flags_all_zero (&cpu))
1719 {
1720 if (x.bitfield.cpuavx)
1721 {
1722 /* We need to check a few extra flags with AVX. */
1723 if (cpu.bitfield.cpuavx
1724 && (!t->opcode_modifier.sse2avx || sse2avx)
1725 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1726 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1727 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1728 match |= CPU_FLAGS_ARCH_MATCH;
1729 }
1730 else if (x.bitfield.cpuavx512f)
1731 {
1732 /* We need to check a few extra flags with AVX512F. */
1733 if (cpu.bitfield.cpuavx512f
1734 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1735 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1736 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1737 match |= CPU_FLAGS_ARCH_MATCH;
1738 }
1739 else
1740 match |= CPU_FLAGS_ARCH_MATCH;
1741 }
1742 }
1743 return match;
1744}
1745
1746static INLINE i386_operand_type
1747operand_type_and (i386_operand_type x, i386_operand_type y)
1748{
1749 switch (ARRAY_SIZE (x.array))
1750 {
1751 case 3:
1752 x.array [2] &= y.array [2];
1753 /* Fall through. */
1754 case 2:
1755 x.array [1] &= y.array [1];
1756 /* Fall through. */
1757 case 1:
1758 x.array [0] &= y.array [0];
1759 break;
1760 default:
1761 abort ();
1762 }
1763 return x;
1764}
1765
1766static INLINE i386_operand_type
1767operand_type_and_not (i386_operand_type x, i386_operand_type y)
1768{
1769 switch (ARRAY_SIZE (x.array))
1770 {
1771 case 3:
1772 x.array [2] &= ~y.array [2];
1773 /* Fall through. */
1774 case 2:
1775 x.array [1] &= ~y.array [1];
1776 /* Fall through. */
1777 case 1:
1778 x.array [0] &= ~y.array [0];
1779 break;
1780 default:
1781 abort ();
1782 }
1783 return x;
1784}
1785
1786static INLINE i386_operand_type
1787operand_type_or (i386_operand_type x, i386_operand_type y)
1788{
1789 switch (ARRAY_SIZE (x.array))
1790 {
1791 case 3:
1792 x.array [2] |= y.array [2];
1793 /* Fall through. */
1794 case 2:
1795 x.array [1] |= y.array [1];
1796 /* Fall through. */
1797 case 1:
1798 x.array [0] |= y.array [0];
1799 break;
1800 default:
1801 abort ();
1802 }
1803 return x;
1804}
1805
1806static INLINE i386_operand_type
1807operand_type_xor (i386_operand_type x, i386_operand_type y)
1808{
1809 switch (ARRAY_SIZE (x.array))
1810 {
1811 case 3:
1812 x.array [2] ^= y.array [2];
1813 /* Fall through. */
1814 case 2:
1815 x.array [1] ^= y.array [1];
1816 /* Fall through. */
1817 case 1:
1818 x.array [0] ^= y.array [0];
1819 break;
1820 default:
1821 abort ();
1822 }
1823 return x;
1824}
1825
1826static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1827static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1828static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1829static const i386_operand_type inoutportreg
1830 = OPERAND_TYPE_INOUTPORTREG;
1831static const i386_operand_type reg16_inoutportreg
1832 = OPERAND_TYPE_REG16_INOUTPORTREG;
1833static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1834static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1835static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1836static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1837static const i386_operand_type anydisp
1838 = OPERAND_TYPE_ANYDISP;
1839static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1840static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1841static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1842static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1843static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1844static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1845static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1846static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1847static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1848static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1849static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1850static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1851
1852enum operand_type
1853{
1854 reg,
1855 imm,
1856 disp,
1857 anymem
1858};
1859
1860static INLINE int
1861operand_type_check (i386_operand_type t, enum operand_type c)
1862{
1863 switch (c)
1864 {
1865 case reg:
1866 return t.bitfield.reg;
1867
1868 case imm:
1869 return (t.bitfield.imm8
1870 || t.bitfield.imm8s
1871 || t.bitfield.imm16
1872 || t.bitfield.imm32
1873 || t.bitfield.imm32s
1874 || t.bitfield.imm64);
1875
1876 case disp:
1877 return (t.bitfield.disp8
1878 || t.bitfield.disp16
1879 || t.bitfield.disp32
1880 || t.bitfield.disp32s
1881 || t.bitfield.disp64);
1882
1883 case anymem:
1884 return (t.bitfield.disp8
1885 || t.bitfield.disp16
1886 || t.bitfield.disp32
1887 || t.bitfield.disp32s
1888 || t.bitfield.disp64
1889 || t.bitfield.baseindex);
1890
1891 default:
1892 abort ();
1893 }
1894
1895 return 0;
1896}
1897
1898/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1899 operand J for instruction template T. */
1900
1901static INLINE int
1902match_reg_size (const insn_template *t, unsigned int j)
1903{
1904 return !((i.types[j].bitfield.byte
1905 && !t->operand_types[j].bitfield.byte)
1906 || (i.types[j].bitfield.word
1907 && !t->operand_types[j].bitfield.word)
1908 || (i.types[j].bitfield.dword
1909 && !t->operand_types[j].bitfield.dword)
1910 || (i.types[j].bitfield.qword
1911 && !t->operand_types[j].bitfield.qword)
1912 || (i.types[j].bitfield.tbyte
1913 && !t->operand_types[j].bitfield.tbyte));
1914}
1915
1916/* Return 1 if there is no conflict in SIMD register on
1917 operand J for instruction template T. */
1918
1919static INLINE int
1920match_simd_size (const insn_template *t, unsigned int j)
1921{
1922 return !((i.types[j].bitfield.xmmword
1923 && !t->operand_types[j].bitfield.xmmword)
1924 || (i.types[j].bitfield.ymmword
1925 && !t->operand_types[j].bitfield.ymmword)
1926 || (i.types[j].bitfield.zmmword
1927 && !t->operand_types[j].bitfield.zmmword));
1928}
1929
1930/* Return 1 if there is no conflict in any size on operand J for
1931 instruction template T. */
1932
1933static INLINE int
1934match_mem_size (const insn_template *t, unsigned int j)
1935{
1936 return (match_reg_size (t, j)
1937 && !((i.types[j].bitfield.unspecified
1938 && !i.broadcast
1939 && !t->operand_types[j].bitfield.unspecified)
1940 || (i.types[j].bitfield.fword
1941 && !t->operand_types[j].bitfield.fword)
1942 /* For scalar opcode templates to allow register and memory
1943 operands at the same time, some special casing is needed
1944 here. */
1945 || ((t->operand_types[j].bitfield.regsimd
1946 && !t->opcode_modifier.broadcast
1947 && (t->operand_types[j].bitfield.dword
1948 || t->operand_types[j].bitfield.qword))
1949 ? (i.types[j].bitfield.xmmword
1950 || i.types[j].bitfield.ymmword
1951 || i.types[j].bitfield.zmmword)
1952 : !match_simd_size(t, j))));
1953}
1954
1955/* Return 1 if there is no size conflict on any operands for
1956 instruction template T. */
1957
1958static INLINE int
1959operand_size_match (const insn_template *t)
1960{
1961 unsigned int j;
1962 int match = 1;
1963
1964 /* Don't check jump instructions. */
1965 if (t->opcode_modifier.jump
1966 || t->opcode_modifier.jumpbyte
1967 || t->opcode_modifier.jumpdword
1968 || t->opcode_modifier.jumpintersegment)
1969 return match;
1970
1971 /* Check memory and accumulator operand size. */
1972 for (j = 0; j < i.operands; j++)
1973 {
1974 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1975 && t->operand_types[j].bitfield.anysize)
1976 continue;
1977
1978 if (t->operand_types[j].bitfield.reg
1979 && !match_reg_size (t, j))
1980 {
1981 match = 0;
1982 break;
1983 }
1984
1985 if (t->operand_types[j].bitfield.regsimd
1986 && !match_simd_size (t, j))
1987 {
1988 match = 0;
1989 break;
1990 }
1991
1992 if (t->operand_types[j].bitfield.acc
1993 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1994 {
1995 match = 0;
1996 break;
1997 }
1998
1999 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2000 {
2001 match = 0;
2002 break;
2003 }
2004 }
2005
2006 if (match)
2007 return match;
2008 else if (!t->opcode_modifier.d)
2009 {
2010mismatch:
2011 i.error = operand_size_mismatch;
2012 return 0;
2013 }
2014
2015 /* Check reverse. */
2016 gas_assert (i.operands == 2);
2017
2018 match = 1;
2019 for (j = 0; j < 2; j++)
2020 {
2021 if ((t->operand_types[j].bitfield.reg
2022 || t->operand_types[j].bitfield.acc)
2023 && !match_reg_size (t, j ? 0 : 1))
2024 goto mismatch;
2025
2026 if (i.types[j].bitfield.mem
2027 && !match_mem_size (t, j ? 0 : 1))
2028 goto mismatch;
2029 }
2030
2031 return match;
2032}
2033
2034static INLINE int
2035operand_type_match (i386_operand_type overlap,
2036 i386_operand_type given)
2037{
2038 i386_operand_type temp = overlap;
2039
2040 temp.bitfield.jumpabsolute = 0;
2041 temp.bitfield.unspecified = 0;
2042 temp.bitfield.byte = 0;
2043 temp.bitfield.word = 0;
2044 temp.bitfield.dword = 0;
2045 temp.bitfield.fword = 0;
2046 temp.bitfield.qword = 0;
2047 temp.bitfield.tbyte = 0;
2048 temp.bitfield.xmmword = 0;
2049 temp.bitfield.ymmword = 0;
2050 temp.bitfield.zmmword = 0;
2051 if (operand_type_all_zero (&temp))
2052 goto mismatch;
2053
2054 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2055 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2056 return 1;
2057
2058mismatch:
2059 i.error = operand_type_mismatch;
2060 return 0;
2061}
2062
2063/* If given types g0 and g1 are registers they must be of the same type
2064 unless the expected operand type register overlap is null.
2065 Memory operand size of certain SIMD instructions is also being checked
2066 here. */
2067
2068static INLINE int
2069operand_type_register_match (i386_operand_type g0,
2070 i386_operand_type t0,
2071 i386_operand_type g1,
2072 i386_operand_type t1)
2073{
2074 if (!g0.bitfield.reg
2075 && !g0.bitfield.regsimd
2076 && (!operand_type_check (g0, anymem)
2077 || g0.bitfield.unspecified
2078 || !t0.bitfield.regsimd))
2079 return 1;
2080
2081 if (!g1.bitfield.reg
2082 && !g1.bitfield.regsimd
2083 && (!operand_type_check (g1, anymem)
2084 || g1.bitfield.unspecified
2085 || !t1.bitfield.regsimd))
2086 return 1;
2087
2088 if (g0.bitfield.byte == g1.bitfield.byte
2089 && g0.bitfield.word == g1.bitfield.word
2090 && g0.bitfield.dword == g1.bitfield.dword
2091 && g0.bitfield.qword == g1.bitfield.qword
2092 && g0.bitfield.xmmword == g1.bitfield.xmmword
2093 && g0.bitfield.ymmword == g1.bitfield.ymmword
2094 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2095 return 1;
2096
2097 if (!(t0.bitfield.byte & t1.bitfield.byte)
2098 && !(t0.bitfield.word & t1.bitfield.word)
2099 && !(t0.bitfield.dword & t1.bitfield.dword)
2100 && !(t0.bitfield.qword & t1.bitfield.qword)
2101 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2102 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2103 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2104 return 1;
2105
2106 i.error = register_type_mismatch;
2107
2108 return 0;
2109}
2110
2111static INLINE unsigned int
2112register_number (const reg_entry *r)
2113{
2114 unsigned int nr = r->reg_num;
2115
2116 if (r->reg_flags & RegRex)
2117 nr += 8;
2118
2119 if (r->reg_flags & RegVRex)
2120 nr += 16;
2121
2122 return nr;
2123}
2124
2125static INLINE unsigned int
2126mode_from_disp_size (i386_operand_type t)
2127{
2128 if (t.bitfield.disp8)
2129 return 1;
2130 else if (t.bitfield.disp16
2131 || t.bitfield.disp32
2132 || t.bitfield.disp32s)
2133 return 2;
2134 else
2135 return 0;
2136}
2137
2138static INLINE int
2139fits_in_signed_byte (addressT num)
2140{
2141 return num + 0x80 <= 0xff;
2142}
2143
2144static INLINE int
2145fits_in_unsigned_byte (addressT num)
2146{
2147 return num <= 0xff;
2148}
2149
2150static INLINE int
2151fits_in_unsigned_word (addressT num)
2152{
2153 return num <= 0xffff;
2154}
2155
2156static INLINE int
2157fits_in_signed_word (addressT num)
2158{
2159 return num + 0x8000 <= 0xffff;
2160}
2161
2162static INLINE int
2163fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2164{
2165#ifndef BFD64
2166 return 1;
2167#else
2168 return num + 0x80000000 <= 0xffffffff;
2169#endif
2170} /* fits_in_signed_long() */
2171
2172static INLINE int
2173fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2174{
2175#ifndef BFD64
2176 return 1;
2177#else
2178 return num <= 0xffffffff;
2179#endif
2180} /* fits_in_unsigned_long() */
2181
2182static INLINE int
2183fits_in_disp8 (offsetT num)
2184{
2185 int shift = i.memshift;
2186 unsigned int mask;
2187
2188 if (shift == -1)
2189 abort ();
2190
2191 mask = (1 << shift) - 1;
2192
2193 /* Return 0 if NUM isn't properly aligned. */
2194 if ((num & mask))
2195 return 0;
2196
2197 /* Check if NUM will fit in 8bit after shift. */
2198 return fits_in_signed_byte (num >> shift);
2199}
2200
2201static INLINE int
2202fits_in_imm4 (offsetT num)
2203{
2204 return (num & 0xf) == num;
2205}
2206
2207static i386_operand_type
2208smallest_imm_type (offsetT num)
2209{
2210 i386_operand_type t;
2211
2212 operand_type_set (&t, 0);
2213 t.bitfield.imm64 = 1;
2214
2215 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2216 {
2217 /* This code is disabled on the 486 because all the Imm1 forms
2218 in the opcode table are slower on the i486. They're the
2219 versions with the implicitly specified single-position
2220 displacement, which has another syntax if you really want to
2221 use that form. */
2222 t.bitfield.imm1 = 1;
2223 t.bitfield.imm8 = 1;
2224 t.bitfield.imm8s = 1;
2225 t.bitfield.imm16 = 1;
2226 t.bitfield.imm32 = 1;
2227 t.bitfield.imm32s = 1;
2228 }
2229 else if (fits_in_signed_byte (num))
2230 {
2231 t.bitfield.imm8 = 1;
2232 t.bitfield.imm8s = 1;
2233 t.bitfield.imm16 = 1;
2234 t.bitfield.imm32 = 1;
2235 t.bitfield.imm32s = 1;
2236 }
2237 else if (fits_in_unsigned_byte (num))
2238 {
2239 t.bitfield.imm8 = 1;
2240 t.bitfield.imm16 = 1;
2241 t.bitfield.imm32 = 1;
2242 t.bitfield.imm32s = 1;
2243 }
2244 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2245 {
2246 t.bitfield.imm16 = 1;
2247 t.bitfield.imm32 = 1;
2248 t.bitfield.imm32s = 1;
2249 }
2250 else if (fits_in_signed_long (num))
2251 {
2252 t.bitfield.imm32 = 1;
2253 t.bitfield.imm32s = 1;
2254 }
2255 else if (fits_in_unsigned_long (num))
2256 t.bitfield.imm32 = 1;
2257
2258 return t;
2259}
2260
2261static offsetT
2262offset_in_range (offsetT val, int size)
2263{
2264 addressT mask;
2265
2266 switch (size)
2267 {
2268 case 1: mask = ((addressT) 1 << 8) - 1; break;
2269 case 2: mask = ((addressT) 1 << 16) - 1; break;
2270 case 4: mask = ((addressT) 2 << 31) - 1; break;
2271#ifdef BFD64
2272 case 8: mask = ((addressT) 2 << 63) - 1; break;
2273#endif
2274 default: abort ();
2275 }
2276
2277#ifdef BFD64
2278 /* If BFD64, sign extend val for 32bit address mode. */
2279 if (flag_code != CODE_64BIT
2280 || i.prefix[ADDR_PREFIX])
2281 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2282 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2283#endif
2284
2285 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2286 {
2287 char buf1[40], buf2[40];
2288
2289 sprint_value (buf1, val);
2290 sprint_value (buf2, val & mask);
2291 as_warn (_("%s shortened to %s"), buf1, buf2);
2292 }
2293 return val & mask;
2294}
2295
2296enum PREFIX_GROUP
2297{
2298 PREFIX_EXIST = 0,
2299 PREFIX_LOCK,
2300 PREFIX_REP,
2301 PREFIX_DS,
2302 PREFIX_OTHER
2303};
2304
2305/* Returns
2306 a. PREFIX_EXIST if attempting to add a prefix where one from the
2307 same class already exists.
2308 b. PREFIX_LOCK if lock prefix is added.
2309 c. PREFIX_REP if rep/repne prefix is added.
2310 d. PREFIX_DS if ds prefix is added.
2311 e. PREFIX_OTHER if other prefix is added.
2312 */
2313
2314static enum PREFIX_GROUP
2315add_prefix (unsigned int prefix)
2316{
2317 enum PREFIX_GROUP ret = PREFIX_OTHER;
2318 unsigned int q;
2319
2320 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2321 && flag_code == CODE_64BIT)
2322 {
2323 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2324 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2325 && (prefix & (REX_R | REX_X | REX_B))))
2326 ret = PREFIX_EXIST;
2327 q = REX_PREFIX;
2328 }
2329 else
2330 {
2331 switch (prefix)
2332 {
2333 default:
2334 abort ();
2335
2336 case DS_PREFIX_OPCODE:
2337 ret = PREFIX_DS;
2338 /* Fall through. */
2339 case CS_PREFIX_OPCODE:
2340 case ES_PREFIX_OPCODE:
2341 case FS_PREFIX_OPCODE:
2342 case GS_PREFIX_OPCODE:
2343 case SS_PREFIX_OPCODE:
2344 q = SEG_PREFIX;
2345 break;
2346
2347 case REPNE_PREFIX_OPCODE:
2348 case REPE_PREFIX_OPCODE:
2349 q = REP_PREFIX;
2350 ret = PREFIX_REP;
2351 break;
2352
2353 case LOCK_PREFIX_OPCODE:
2354 q = LOCK_PREFIX;
2355 ret = PREFIX_LOCK;
2356 break;
2357
2358 case FWAIT_OPCODE:
2359 q = WAIT_PREFIX;
2360 break;
2361
2362 case ADDR_PREFIX_OPCODE:
2363 q = ADDR_PREFIX;
2364 break;
2365
2366 case DATA_PREFIX_OPCODE:
2367 q = DATA_PREFIX;
2368 break;
2369 }
2370 if (i.prefix[q] != 0)
2371 ret = PREFIX_EXIST;
2372 }
2373
2374 if (ret)
2375 {
2376 if (!i.prefix[q])
2377 ++i.prefixes;
2378 i.prefix[q] |= prefix;
2379 }
2380 else
2381 as_bad (_("same type of prefix used twice"));
2382
2383 return ret;
2384}
2385
2386static void
2387update_code_flag (int value, int check)
2388{
2389 PRINTF_LIKE ((*as_error));
2390
2391 flag_code = (enum flag_code) value;
2392 if (flag_code == CODE_64BIT)
2393 {
2394 cpu_arch_flags.bitfield.cpu64 = 1;
2395 cpu_arch_flags.bitfield.cpuno64 = 0;
2396 }
2397 else
2398 {
2399 cpu_arch_flags.bitfield.cpu64 = 0;
2400 cpu_arch_flags.bitfield.cpuno64 = 1;
2401 }
2402 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2403 {
2404 if (check)
2405 as_error = as_fatal;
2406 else
2407 as_error = as_bad;
2408 (*as_error) (_("64bit mode not supported on `%s'."),
2409 cpu_arch_name ? cpu_arch_name : default_arch);
2410 }
2411 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2412 {
2413 if (check)
2414 as_error = as_fatal;
2415 else
2416 as_error = as_bad;
2417 (*as_error) (_("32bit mode not supported on `%s'."),
2418 cpu_arch_name ? cpu_arch_name : default_arch);
2419 }
2420 stackop_size = '\0';
2421}
2422
2423static void
2424set_code_flag (int value)
2425{
2426 update_code_flag (value, 0);
2427}
2428
2429static void
2430set_16bit_gcc_code_flag (int new_code_flag)
2431{
2432 flag_code = (enum flag_code) new_code_flag;
2433 if (flag_code != CODE_16BIT)
2434 abort ();
2435 cpu_arch_flags.bitfield.cpu64 = 0;
2436 cpu_arch_flags.bitfield.cpuno64 = 1;
2437 stackop_size = LONG_MNEM_SUFFIX;
2438}
2439
2440static void
2441set_intel_syntax (int syntax_flag)
2442{
2443 /* Find out if register prefixing is specified. */
2444 int ask_naked_reg = 0;
2445
2446 SKIP_WHITESPACE ();
2447 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2448 {
2449 char *string;
2450 int e = get_symbol_name (&string);
2451
2452 if (strcmp (string, "prefix") == 0)
2453 ask_naked_reg = 1;
2454 else if (strcmp (string, "noprefix") == 0)
2455 ask_naked_reg = -1;
2456 else
2457 as_bad (_("bad argument to syntax directive."));
2458 (void) restore_line_pointer (e);
2459 }
2460 demand_empty_rest_of_line ();
2461
2462 intel_syntax = syntax_flag;
2463
2464 if (ask_naked_reg == 0)
2465 allow_naked_reg = (intel_syntax
2466 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2467 else
2468 allow_naked_reg = (ask_naked_reg < 0);
2469
2470 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2471
2472 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2473 identifier_chars['$'] = intel_syntax ? '$' : 0;
2474 register_prefix = allow_naked_reg ? "" : "%";
2475}
2476
2477static void
2478set_intel_mnemonic (int mnemonic_flag)
2479{
2480 intel_mnemonic = mnemonic_flag;
2481}
2482
2483static void
2484set_allow_index_reg (int flag)
2485{
2486 allow_index_reg = flag;
2487}
2488
2489static void
2490set_check (int what)
2491{
2492 enum check_kind *kind;
2493 const char *str;
2494
2495 if (what)
2496 {
2497 kind = &operand_check;
2498 str = "operand";
2499 }
2500 else
2501 {
2502 kind = &sse_check;
2503 str = "sse";
2504 }
2505
2506 SKIP_WHITESPACE ();
2507
2508 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2509 {
2510 char *string;
2511 int e = get_symbol_name (&string);
2512
2513 if (strcmp (string, "none") == 0)
2514 *kind = check_none;
2515 else if (strcmp (string, "warning") == 0)
2516 *kind = check_warning;
2517 else if (strcmp (string, "error") == 0)
2518 *kind = check_error;
2519 else
2520 as_bad (_("bad argument to %s_check directive."), str);
2521 (void) restore_line_pointer (e);
2522 }
2523 else
2524 as_bad (_("missing argument for %s_check directive"), str);
2525
2526 demand_empty_rest_of_line ();
2527}
2528
2529static void
2530check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2531 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2532{
2533#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2534 static const char *arch;
2535
2536 /* Intel LIOM is only supported on ELF. */
2537 if (!IS_ELF)
2538 return;
2539
2540 if (!arch)
2541 {
2542 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2543 use default_arch. */
2544 arch = cpu_arch_name;
2545 if (!arch)
2546 arch = default_arch;
2547 }
2548
2549 /* If we are targeting Intel MCU, we must enable it. */
2550 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2551 || new_flag.bitfield.cpuiamcu)
2552 return;
2553
2554 /* If we are targeting Intel L1OM, we must enable it. */
2555 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2556 || new_flag.bitfield.cpul1om)
2557 return;
2558
2559 /* If we are targeting Intel K1OM, we must enable it. */
2560 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2561 || new_flag.bitfield.cpuk1om)
2562 return;
2563
2564 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2565#endif
2566}
2567
2568static void
2569set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2570{
2571 SKIP_WHITESPACE ();
2572
2573 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2574 {
2575 char *string;
2576 int e = get_symbol_name (&string);
2577 unsigned int j;
2578 i386_cpu_flags flags;
2579
2580 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2581 {
2582 if (strcmp (string, cpu_arch[j].name) == 0)
2583 {
2584 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2585
2586 if (*string != '.')
2587 {
2588 cpu_arch_name = cpu_arch[j].name;
2589 cpu_sub_arch_name = NULL;
2590 cpu_arch_flags = cpu_arch[j].flags;
2591 if (flag_code == CODE_64BIT)
2592 {
2593 cpu_arch_flags.bitfield.cpu64 = 1;
2594 cpu_arch_flags.bitfield.cpuno64 = 0;
2595 }
2596 else
2597 {
2598 cpu_arch_flags.bitfield.cpu64 = 0;
2599 cpu_arch_flags.bitfield.cpuno64 = 1;
2600 }
2601 cpu_arch_isa = cpu_arch[j].type;
2602 cpu_arch_isa_flags = cpu_arch[j].flags;
2603 if (!cpu_arch_tune_set)
2604 {
2605 cpu_arch_tune = cpu_arch_isa;
2606 cpu_arch_tune_flags = cpu_arch_isa_flags;
2607 }
2608 break;
2609 }
2610
2611 flags = cpu_flags_or (cpu_arch_flags,
2612 cpu_arch[j].flags);
2613
2614 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2615 {
2616 if (cpu_sub_arch_name)
2617 {
2618 char *name = cpu_sub_arch_name;
2619 cpu_sub_arch_name = concat (name,
2620 cpu_arch[j].name,
2621 (const char *) NULL);
2622 free (name);
2623 }
2624 else
2625 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2626 cpu_arch_flags = flags;
2627 cpu_arch_isa_flags = flags;
2628 }
2629 (void) restore_line_pointer (e);
2630 demand_empty_rest_of_line ();
2631 return;
2632 }
2633 }
2634
2635 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2636 {
2637 /* Disable an ISA extension. */
2638 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2639 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2640 {
2641 flags = cpu_flags_and_not (cpu_arch_flags,
2642 cpu_noarch[j].flags);
2643 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2644 {
2645 if (cpu_sub_arch_name)
2646 {
2647 char *name = cpu_sub_arch_name;
2648 cpu_sub_arch_name = concat (name, string,
2649 (const char *) NULL);
2650 free (name);
2651 }
2652 else
2653 cpu_sub_arch_name = xstrdup (string);
2654 cpu_arch_flags = flags;
2655 cpu_arch_isa_flags = flags;
2656 }
2657 (void) restore_line_pointer (e);
2658 demand_empty_rest_of_line ();
2659 return;
2660 }
2661
2662 j = ARRAY_SIZE (cpu_arch);
2663 }
2664
2665 if (j >= ARRAY_SIZE (cpu_arch))
2666 as_bad (_("no such architecture: `%s'"), string);
2667
2668 *input_line_pointer = e;
2669 }
2670 else
2671 as_bad (_("missing cpu architecture"));
2672
2673 no_cond_jump_promotion = 0;
2674 if (*input_line_pointer == ','
2675 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2676 {
2677 char *string;
2678 char e;
2679
2680 ++input_line_pointer;
2681 e = get_symbol_name (&string);
2682
2683 if (strcmp (string, "nojumps") == 0)
2684 no_cond_jump_promotion = 1;
2685 else if (strcmp (string, "jumps") == 0)
2686 ;
2687 else
2688 as_bad (_("no such architecture modifier: `%s'"), string);
2689
2690 (void) restore_line_pointer (e);
2691 }
2692
2693 demand_empty_rest_of_line ();
2694}
2695
2696enum bfd_architecture
2697i386_arch (void)
2698{
2699 if (cpu_arch_isa == PROCESSOR_L1OM)
2700 {
2701 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2702 || flag_code != CODE_64BIT)
2703 as_fatal (_("Intel L1OM is 64bit ELF only"));
2704 return bfd_arch_l1om;
2705 }
2706 else if (cpu_arch_isa == PROCESSOR_K1OM)
2707 {
2708 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2709 || flag_code != CODE_64BIT)
2710 as_fatal (_("Intel K1OM is 64bit ELF only"));
2711 return bfd_arch_k1om;
2712 }
2713 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2714 {
2715 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2716 || flag_code == CODE_64BIT)
2717 as_fatal (_("Intel MCU is 32bit ELF only"));
2718 return bfd_arch_iamcu;
2719 }
2720 else
2721 return bfd_arch_i386;
2722}
2723
2724unsigned long
2725i386_mach (void)
2726{
2727 if (!strncmp (default_arch, "x86_64", 6))
2728 {
2729 if (cpu_arch_isa == PROCESSOR_L1OM)
2730 {
2731 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2732 || default_arch[6] != '\0')
2733 as_fatal (_("Intel L1OM is 64bit ELF only"));
2734 return bfd_mach_l1om;
2735 }
2736 else if (cpu_arch_isa == PROCESSOR_K1OM)
2737 {
2738 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2739 || default_arch[6] != '\0')
2740 as_fatal (_("Intel K1OM is 64bit ELF only"));
2741 return bfd_mach_k1om;
2742 }
2743 else if (default_arch[6] == '\0')
2744 return bfd_mach_x86_64;
2745 else
2746 return bfd_mach_x64_32;
2747 }
2748 else if (!strcmp (default_arch, "i386")
2749 || !strcmp (default_arch, "iamcu"))
2750 {
2751 if (cpu_arch_isa == PROCESSOR_IAMCU)
2752 {
2753 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2754 as_fatal (_("Intel MCU is 32bit ELF only"));
2755 return bfd_mach_i386_iamcu;
2756 }
2757 else
2758 return bfd_mach_i386_i386;
2759 }
2760 else
2761 as_fatal (_("unknown architecture"));
2762}
2763\f
2764void
2765md_begin (void)
2766{
2767 const char *hash_err;
2768
2769 /* Support pseudo prefixes like {disp32}. */
2770 lex_type ['{'] = LEX_BEGIN_NAME;
2771
2772 /* Initialize op_hash hash table. */
2773 op_hash = hash_new ();
2774
2775 {
2776 const insn_template *optab;
2777 templates *core_optab;
2778
2779 /* Setup for loop. */
2780 optab = i386_optab;
2781 core_optab = XNEW (templates);
2782 core_optab->start = optab;
2783
2784 while (1)
2785 {
2786 ++optab;
2787 if (optab->name == NULL
2788 || strcmp (optab->name, (optab - 1)->name) != 0)
2789 {
2790 /* different name --> ship out current template list;
2791 add to hash table; & begin anew. */
2792 core_optab->end = optab;
2793 hash_err = hash_insert (op_hash,
2794 (optab - 1)->name,
2795 (void *) core_optab);
2796 if (hash_err)
2797 {
2798 as_fatal (_("can't hash %s: %s"),
2799 (optab - 1)->name,
2800 hash_err);
2801 }
2802 if (optab->name == NULL)
2803 break;
2804 core_optab = XNEW (templates);
2805 core_optab->start = optab;
2806 }
2807 }
2808 }
2809
2810 /* Initialize reg_hash hash table. */
2811 reg_hash = hash_new ();
2812 {
2813 const reg_entry *regtab;
2814 unsigned int regtab_size = i386_regtab_size;
2815
2816 for (regtab = i386_regtab; regtab_size--; regtab++)
2817 {
2818 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2819 if (hash_err)
2820 as_fatal (_("can't hash %s: %s"),
2821 regtab->reg_name,
2822 hash_err);
2823 }
2824 }
2825
2826 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2827 {
2828 int c;
2829 char *p;
2830
2831 for (c = 0; c < 256; c++)
2832 {
2833 if (ISDIGIT (c))
2834 {
2835 digit_chars[c] = c;
2836 mnemonic_chars[c] = c;
2837 register_chars[c] = c;
2838 operand_chars[c] = c;
2839 }
2840 else if (ISLOWER (c))
2841 {
2842 mnemonic_chars[c] = c;
2843 register_chars[c] = c;
2844 operand_chars[c] = c;
2845 }
2846 else if (ISUPPER (c))
2847 {
2848 mnemonic_chars[c] = TOLOWER (c);
2849 register_chars[c] = mnemonic_chars[c];
2850 operand_chars[c] = c;
2851 }
2852 else if (c == '{' || c == '}')
2853 {
2854 mnemonic_chars[c] = c;
2855 operand_chars[c] = c;
2856 }
2857
2858 if (ISALPHA (c) || ISDIGIT (c))
2859 identifier_chars[c] = c;
2860 else if (c >= 128)
2861 {
2862 identifier_chars[c] = c;
2863 operand_chars[c] = c;
2864 }
2865 }
2866
2867#ifdef LEX_AT
2868 identifier_chars['@'] = '@';
2869#endif
2870#ifdef LEX_QM
2871 identifier_chars['?'] = '?';
2872 operand_chars['?'] = '?';
2873#endif
2874 digit_chars['-'] = '-';
2875 mnemonic_chars['_'] = '_';
2876 mnemonic_chars['-'] = '-';
2877 mnemonic_chars['.'] = '.';
2878 identifier_chars['_'] = '_';
2879 identifier_chars['.'] = '.';
2880
2881 for (p = operand_special_chars; *p != '\0'; p++)
2882 operand_chars[(unsigned char) *p] = *p;
2883 }
2884
2885 if (flag_code == CODE_64BIT)
2886 {
2887#if defined (OBJ_COFF) && defined (TE_PE)
2888 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2889 ? 32 : 16);
2890#else
2891 x86_dwarf2_return_column = 16;
2892#endif
2893 x86_cie_data_alignment = -8;
2894 }
2895 else
2896 {
2897 x86_dwarf2_return_column = 8;
2898 x86_cie_data_alignment = -4;
2899 }
2900}
2901
2902void
2903i386_print_statistics (FILE *file)
2904{
2905 hash_print_statistics (file, "i386 opcode", op_hash);
2906 hash_print_statistics (file, "i386 register", reg_hash);
2907}
2908\f
2909#ifdef DEBUG386
2910
2911/* Debugging routines for md_assemble. */
2912static void pte (insn_template *);
2913static void pt (i386_operand_type);
2914static void pe (expressionS *);
2915static void ps (symbolS *);
2916
2917static void
2918pi (char *line, i386_insn *x)
2919{
2920 unsigned int j;
2921
2922 fprintf (stdout, "%s: template ", line);
2923 pte (&x->tm);
2924 fprintf (stdout, " address: base %s index %s scale %x\n",
2925 x->base_reg ? x->base_reg->reg_name : "none",
2926 x->index_reg ? x->index_reg->reg_name : "none",
2927 x->log2_scale_factor);
2928 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2929 x->rm.mode, x->rm.reg, x->rm.regmem);
2930 fprintf (stdout, " sib: base %x index %x scale %x\n",
2931 x->sib.base, x->sib.index, x->sib.scale);
2932 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2933 (x->rex & REX_W) != 0,
2934 (x->rex & REX_R) != 0,
2935 (x->rex & REX_X) != 0,
2936 (x->rex & REX_B) != 0);
2937 for (j = 0; j < x->operands; j++)
2938 {
2939 fprintf (stdout, " #%d: ", j + 1);
2940 pt (x->types[j]);
2941 fprintf (stdout, "\n");
2942 if (x->types[j].bitfield.reg
2943 || x->types[j].bitfield.regmmx
2944 || x->types[j].bitfield.regsimd
2945 || x->types[j].bitfield.sreg2
2946 || x->types[j].bitfield.sreg3
2947 || x->types[j].bitfield.control
2948 || x->types[j].bitfield.debug
2949 || x->types[j].bitfield.test)
2950 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2951 if (operand_type_check (x->types[j], imm))
2952 pe (x->op[j].imms);
2953 if (operand_type_check (x->types[j], disp))
2954 pe (x->op[j].disps);
2955 }
2956}
2957
2958static void
2959pte (insn_template *t)
2960{
2961 unsigned int j;
2962 fprintf (stdout, " %d operands ", t->operands);
2963 fprintf (stdout, "opcode %x ", t->base_opcode);
2964 if (t->extension_opcode != None)
2965 fprintf (stdout, "ext %x ", t->extension_opcode);
2966 if (t->opcode_modifier.d)
2967 fprintf (stdout, "D");
2968 if (t->opcode_modifier.w)
2969 fprintf (stdout, "W");
2970 fprintf (stdout, "\n");
2971 for (j = 0; j < t->operands; j++)
2972 {
2973 fprintf (stdout, " #%d type ", j + 1);
2974 pt (t->operand_types[j]);
2975 fprintf (stdout, "\n");
2976 }
2977}
2978
2979static void
2980pe (expressionS *e)
2981{
2982 fprintf (stdout, " operation %d\n", e->X_op);
2983 fprintf (stdout, " add_number %ld (%lx)\n",
2984 (long) e->X_add_number, (long) e->X_add_number);
2985 if (e->X_add_symbol)
2986 {
2987 fprintf (stdout, " add_symbol ");
2988 ps (e->X_add_symbol);
2989 fprintf (stdout, "\n");
2990 }
2991 if (e->X_op_symbol)
2992 {
2993 fprintf (stdout, " op_symbol ");
2994 ps (e->X_op_symbol);
2995 fprintf (stdout, "\n");
2996 }
2997}
2998
2999static void
3000ps (symbolS *s)
3001{
3002 fprintf (stdout, "%s type %s%s",
3003 S_GET_NAME (s),
3004 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3005 segment_name (S_GET_SEGMENT (s)));
3006}
3007
3008static struct type_name
3009 {
3010 i386_operand_type mask;
3011 const char *name;
3012 }
3013const type_names[] =
3014{
3015 { OPERAND_TYPE_REG8, "r8" },
3016 { OPERAND_TYPE_REG16, "r16" },
3017 { OPERAND_TYPE_REG32, "r32" },
3018 { OPERAND_TYPE_REG64, "r64" },
3019 { OPERAND_TYPE_IMM8, "i8" },
3020 { OPERAND_TYPE_IMM8, "i8s" },
3021 { OPERAND_TYPE_IMM16, "i16" },
3022 { OPERAND_TYPE_IMM32, "i32" },
3023 { OPERAND_TYPE_IMM32S, "i32s" },
3024 { OPERAND_TYPE_IMM64, "i64" },
3025 { OPERAND_TYPE_IMM1, "i1" },
3026 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3027 { OPERAND_TYPE_DISP8, "d8" },
3028 { OPERAND_TYPE_DISP16, "d16" },
3029 { OPERAND_TYPE_DISP32, "d32" },
3030 { OPERAND_TYPE_DISP32S, "d32s" },
3031 { OPERAND_TYPE_DISP64, "d64" },
3032 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3033 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3034 { OPERAND_TYPE_CONTROL, "control reg" },
3035 { OPERAND_TYPE_TEST, "test reg" },
3036 { OPERAND_TYPE_DEBUG, "debug reg" },
3037 { OPERAND_TYPE_FLOATREG, "FReg" },
3038 { OPERAND_TYPE_FLOATACC, "FAcc" },
3039 { OPERAND_TYPE_SREG2, "SReg2" },
3040 { OPERAND_TYPE_SREG3, "SReg3" },
3041 { OPERAND_TYPE_ACC, "Acc" },
3042 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3043 { OPERAND_TYPE_REGMMX, "rMMX" },
3044 { OPERAND_TYPE_REGXMM, "rXMM" },
3045 { OPERAND_TYPE_REGYMM, "rYMM" },
3046 { OPERAND_TYPE_REGZMM, "rZMM" },
3047 { OPERAND_TYPE_REGMASK, "Mask reg" },
3048 { OPERAND_TYPE_ESSEG, "es" },
3049};
3050
3051static void
3052pt (i386_operand_type t)
3053{
3054 unsigned int j;
3055 i386_operand_type a;
3056
3057 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3058 {
3059 a = operand_type_and (t, type_names[j].mask);
3060 if (!operand_type_all_zero (&a))
3061 fprintf (stdout, "%s, ", type_names[j].name);
3062 }
3063 fflush (stdout);
3064}
3065
3066#endif /* DEBUG386 */
3067\f
3068static bfd_reloc_code_real_type
3069reloc (unsigned int size,
3070 int pcrel,
3071 int sign,
3072 bfd_reloc_code_real_type other)
3073{
3074 if (other != NO_RELOC)
3075 {
3076 reloc_howto_type *rel;
3077
3078 if (size == 8)
3079 switch (other)
3080 {
3081 case BFD_RELOC_X86_64_GOT32:
3082 return BFD_RELOC_X86_64_GOT64;
3083 break;
3084 case BFD_RELOC_X86_64_GOTPLT64:
3085 return BFD_RELOC_X86_64_GOTPLT64;
3086 break;
3087 case BFD_RELOC_X86_64_PLTOFF64:
3088 return BFD_RELOC_X86_64_PLTOFF64;
3089 break;
3090 case BFD_RELOC_X86_64_GOTPC32:
3091 other = BFD_RELOC_X86_64_GOTPC64;
3092 break;
3093 case BFD_RELOC_X86_64_GOTPCREL:
3094 other = BFD_RELOC_X86_64_GOTPCREL64;
3095 break;
3096 case BFD_RELOC_X86_64_TPOFF32:
3097 other = BFD_RELOC_X86_64_TPOFF64;
3098 break;
3099 case BFD_RELOC_X86_64_DTPOFF32:
3100 other = BFD_RELOC_X86_64_DTPOFF64;
3101 break;
3102 default:
3103 break;
3104 }
3105
3106#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3107 if (other == BFD_RELOC_SIZE32)
3108 {
3109 if (size == 8)
3110 other = BFD_RELOC_SIZE64;
3111 if (pcrel)
3112 {
3113 as_bad (_("there are no pc-relative size relocations"));
3114 return NO_RELOC;
3115 }
3116 }
3117#endif
3118
3119 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3120 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3121 sign = -1;
3122
3123 rel = bfd_reloc_type_lookup (stdoutput, other);
3124 if (!rel)
3125 as_bad (_("unknown relocation (%u)"), other);
3126 else if (size != bfd_get_reloc_size (rel))
3127 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3128 bfd_get_reloc_size (rel),
3129 size);
3130 else if (pcrel && !rel->pc_relative)
3131 as_bad (_("non-pc-relative relocation for pc-relative field"));
3132 else if ((rel->complain_on_overflow == complain_overflow_signed
3133 && !sign)
3134 || (rel->complain_on_overflow == complain_overflow_unsigned
3135 && sign > 0))
3136 as_bad (_("relocated field and relocation type differ in signedness"));
3137 else
3138 return other;
3139 return NO_RELOC;
3140 }
3141
3142 if (pcrel)
3143 {
3144 if (!sign)
3145 as_bad (_("there are no unsigned pc-relative relocations"));
3146 switch (size)
3147 {
3148 case 1: return BFD_RELOC_8_PCREL;
3149 case 2: return BFD_RELOC_16_PCREL;
3150 case 4: return BFD_RELOC_32_PCREL;
3151 case 8: return BFD_RELOC_64_PCREL;
3152 }
3153 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3154 }
3155 else
3156 {
3157 if (sign > 0)
3158 switch (size)
3159 {
3160 case 4: return BFD_RELOC_X86_64_32S;
3161 }
3162 else
3163 switch (size)
3164 {
3165 case 1: return BFD_RELOC_8;
3166 case 2: return BFD_RELOC_16;
3167 case 4: return BFD_RELOC_32;
3168 case 8: return BFD_RELOC_64;
3169 }
3170 as_bad (_("cannot do %s %u byte relocation"),
3171 sign > 0 ? "signed" : "unsigned", size);
3172 }
3173
3174 return NO_RELOC;
3175}
3176
3177/* Here we decide which fixups can be adjusted to make them relative to
3178 the beginning of the section instead of the symbol. Basically we need
3179 to make sure that the dynamic relocations are done correctly, so in
3180 some cases we force the original symbol to be used. */
3181
3182int
3183tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3184{
3185#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3186 if (!IS_ELF)
3187 return 1;
3188
3189 /* Don't adjust pc-relative references to merge sections in 64-bit
3190 mode. */
3191 if (use_rela_relocations
3192 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3193 && fixP->fx_pcrel)
3194 return 0;
3195
3196 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3197 and changed later by validate_fix. */
3198 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3199 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3200 return 0;
3201
3202 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3203 for size relocations. */
3204 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3205 || fixP->fx_r_type == BFD_RELOC_SIZE64
3206 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3207 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3208 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3209 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3210 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3211 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3212 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3213 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3214 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3215 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3220 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3221 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3222 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3223 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3224 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3225 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3231 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3235 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3236 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3237 return 0;
3238#endif
3239 return 1;
3240}
3241
3242static int
3243intel_float_operand (const char *mnemonic)
3244{
3245 /* Note that the value returned is meaningful only for opcodes with (memory)
3246 operands, hence the code here is free to improperly handle opcodes that
3247 have no operands (for better performance and smaller code). */
3248
3249 if (mnemonic[0] != 'f')
3250 return 0; /* non-math */
3251
3252 switch (mnemonic[1])
3253 {
3254 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3255 the fs segment override prefix not currently handled because no
3256 call path can make opcodes without operands get here */
3257 case 'i':
3258 return 2 /* integer op */;
3259 case 'l':
3260 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3261 return 3; /* fldcw/fldenv */
3262 break;
3263 case 'n':
3264 if (mnemonic[2] != 'o' /* fnop */)
3265 return 3; /* non-waiting control op */
3266 break;
3267 case 'r':
3268 if (mnemonic[2] == 's')
3269 return 3; /* frstor/frstpm */
3270 break;
3271 case 's':
3272 if (mnemonic[2] == 'a')
3273 return 3; /* fsave */
3274 if (mnemonic[2] == 't')
3275 {
3276 switch (mnemonic[3])
3277 {
3278 case 'c': /* fstcw */
3279 case 'd': /* fstdw */
3280 case 'e': /* fstenv */
3281 case 's': /* fsts[gw] */
3282 return 3;
3283 }
3284 }
3285 break;
3286 case 'x':
3287 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3288 return 0; /* fxsave/fxrstor are not really math ops */
3289 break;
3290 }
3291
3292 return 1;
3293}
3294
3295/* Build the VEX prefix. */
3296
3297static void
3298build_vex_prefix (const insn_template *t)
3299{
3300 unsigned int register_specifier;
3301 unsigned int implied_prefix;
3302 unsigned int vector_length;
3303
3304 /* Check register specifier. */
3305 if (i.vex.register_specifier)
3306 {
3307 register_specifier =
3308 ~register_number (i.vex.register_specifier) & 0xf;
3309 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3310 }
3311 else
3312 register_specifier = 0xf;
3313
3314 /* Use 2-byte VEX prefix by swapping destination and source
3315 operand. */
3316 if (i.vec_encoding != vex_encoding_vex3
3317 && i.dir_encoding == dir_encoding_default
3318 && i.operands == i.reg_operands
3319 && i.tm.opcode_modifier.vexopcode == VEX0F
3320 && i.tm.opcode_modifier.load
3321 && i.rex == REX_B)
3322 {
3323 unsigned int xchg = i.operands - 1;
3324 union i386_op temp_op;
3325 i386_operand_type temp_type;
3326
3327 temp_type = i.types[xchg];
3328 i.types[xchg] = i.types[0];
3329 i.types[0] = temp_type;
3330 temp_op = i.op[xchg];
3331 i.op[xchg] = i.op[0];
3332 i.op[0] = temp_op;
3333
3334 gas_assert (i.rm.mode == 3);
3335
3336 i.rex = REX_R;
3337 xchg = i.rm.regmem;
3338 i.rm.regmem = i.rm.reg;
3339 i.rm.reg = xchg;
3340
3341 /* Use the next insn. */
3342 i.tm = t[1];
3343 }
3344
3345 if (i.tm.opcode_modifier.vex == VEXScalar)
3346 vector_length = avxscalar;
3347 else if (i.tm.opcode_modifier.vex == VEX256)
3348 vector_length = 1;
3349 else
3350 {
3351 unsigned int op;
3352
3353 vector_length = 0;
3354 for (op = 0; op < t->operands; ++op)
3355 if (t->operand_types[op].bitfield.xmmword
3356 && t->operand_types[op].bitfield.ymmword
3357 && i.types[op].bitfield.ymmword)
3358 {
3359 vector_length = 1;
3360 break;
3361 }
3362 }
3363
3364 switch ((i.tm.base_opcode >> 8) & 0xff)
3365 {
3366 case 0:
3367 implied_prefix = 0;
3368 break;
3369 case DATA_PREFIX_OPCODE:
3370 implied_prefix = 1;
3371 break;
3372 case REPE_PREFIX_OPCODE:
3373 implied_prefix = 2;
3374 break;
3375 case REPNE_PREFIX_OPCODE:
3376 implied_prefix = 3;
3377 break;
3378 default:
3379 abort ();
3380 }
3381
3382 /* Use 2-byte VEX prefix if possible. */
3383 if (i.vec_encoding != vex_encoding_vex3
3384 && i.tm.opcode_modifier.vexopcode == VEX0F
3385 && i.tm.opcode_modifier.vexw != VEXW1
3386 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3387 {
3388 /* 2-byte VEX prefix. */
3389 unsigned int r;
3390
3391 i.vex.length = 2;
3392 i.vex.bytes[0] = 0xc5;
3393
3394 /* Check the REX.R bit. */
3395 r = (i.rex & REX_R) ? 0 : 1;
3396 i.vex.bytes[1] = (r << 7
3397 | register_specifier << 3
3398 | vector_length << 2
3399 | implied_prefix);
3400 }
3401 else
3402 {
3403 /* 3-byte VEX prefix. */
3404 unsigned int m, w;
3405
3406 i.vex.length = 3;
3407
3408 switch (i.tm.opcode_modifier.vexopcode)
3409 {
3410 case VEX0F:
3411 m = 0x1;
3412 i.vex.bytes[0] = 0xc4;
3413 break;
3414 case VEX0F38:
3415 m = 0x2;
3416 i.vex.bytes[0] = 0xc4;
3417 break;
3418 case VEX0F3A:
3419 m = 0x3;
3420 i.vex.bytes[0] = 0xc4;
3421 break;
3422 case XOP08:
3423 m = 0x8;
3424 i.vex.bytes[0] = 0x8f;
3425 break;
3426 case XOP09:
3427 m = 0x9;
3428 i.vex.bytes[0] = 0x8f;
3429 break;
3430 case XOP0A:
3431 m = 0xa;
3432 i.vex.bytes[0] = 0x8f;
3433 break;
3434 default:
3435 abort ();
3436 }
3437
3438 /* The high 3 bits of the second VEX byte are 1's compliment
3439 of RXB bits from REX. */
3440 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3441
3442 /* Check the REX.W bit. */
3443 w = (i.rex & REX_W) ? 1 : 0;
3444 if (i.tm.opcode_modifier.vexw == VEXW1)
3445 w = 1;
3446
3447 i.vex.bytes[2] = (w << 7
3448 | register_specifier << 3
3449 | vector_length << 2
3450 | implied_prefix);
3451 }
3452}
3453
3454/* Build the EVEX prefix. */
3455
3456static void
3457build_evex_prefix (void)
3458{
3459 unsigned int register_specifier;
3460 unsigned int implied_prefix;
3461 unsigned int m, w;
3462 rex_byte vrex_used = 0;
3463
3464 /* Check register specifier. */
3465 if (i.vex.register_specifier)
3466 {
3467 gas_assert ((i.vrex & REX_X) == 0);
3468
3469 register_specifier = i.vex.register_specifier->reg_num;
3470 if ((i.vex.register_specifier->reg_flags & RegRex))
3471 register_specifier += 8;
3472 /* The upper 16 registers are encoded in the fourth byte of the
3473 EVEX prefix. */
3474 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3475 i.vex.bytes[3] = 0x8;
3476 register_specifier = ~register_specifier & 0xf;
3477 }
3478 else
3479 {
3480 register_specifier = 0xf;
3481
3482 /* Encode upper 16 vector index register in the fourth byte of
3483 the EVEX prefix. */
3484 if (!(i.vrex & REX_X))
3485 i.vex.bytes[3] = 0x8;
3486 else
3487 vrex_used |= REX_X;
3488 }
3489
3490 switch ((i.tm.base_opcode >> 8) & 0xff)
3491 {
3492 case 0:
3493 implied_prefix = 0;
3494 break;
3495 case DATA_PREFIX_OPCODE:
3496 implied_prefix = 1;
3497 break;
3498 case REPE_PREFIX_OPCODE:
3499 implied_prefix = 2;
3500 break;
3501 case REPNE_PREFIX_OPCODE:
3502 implied_prefix = 3;
3503 break;
3504 default:
3505 abort ();
3506 }
3507
3508 /* 4 byte EVEX prefix. */
3509 i.vex.length = 4;
3510 i.vex.bytes[0] = 0x62;
3511
3512 /* mmmm bits. */
3513 switch (i.tm.opcode_modifier.vexopcode)
3514 {
3515 case VEX0F:
3516 m = 1;
3517 break;
3518 case VEX0F38:
3519 m = 2;
3520 break;
3521 case VEX0F3A:
3522 m = 3;
3523 break;
3524 default:
3525 abort ();
3526 break;
3527 }
3528
3529 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3530 bits from REX. */
3531 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3532
3533 /* The fifth bit of the second EVEX byte is 1's compliment of the
3534 REX_R bit in VREX. */
3535 if (!(i.vrex & REX_R))
3536 i.vex.bytes[1] |= 0x10;
3537 else
3538 vrex_used |= REX_R;
3539
3540 if ((i.reg_operands + i.imm_operands) == i.operands)
3541 {
3542 /* When all operands are registers, the REX_X bit in REX is not
3543 used. We reuse it to encode the upper 16 registers, which is
3544 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3545 as 1's compliment. */
3546 if ((i.vrex & REX_B))
3547 {
3548 vrex_used |= REX_B;
3549 i.vex.bytes[1] &= ~0x40;
3550 }
3551 }
3552
3553 /* EVEX instructions shouldn't need the REX prefix. */
3554 i.vrex &= ~vrex_used;
3555 gas_assert (i.vrex == 0);
3556
3557 /* Check the REX.W bit. */
3558 w = (i.rex & REX_W) ? 1 : 0;
3559 if (i.tm.opcode_modifier.vexw)
3560 {
3561 if (i.tm.opcode_modifier.vexw == VEXW1)
3562 w = 1;
3563 }
3564 /* If w is not set it means we are dealing with WIG instruction. */
3565 else if (!w)
3566 {
3567 if (evexwig == evexw1)
3568 w = 1;
3569 }
3570
3571 /* Encode the U bit. */
3572 implied_prefix |= 0x4;
3573
3574 /* The third byte of the EVEX prefix. */
3575 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3576
3577 /* The fourth byte of the EVEX prefix. */
3578 /* The zeroing-masking bit. */
3579 if (i.mask && i.mask->zeroing)
3580 i.vex.bytes[3] |= 0x80;
3581
3582 /* Don't always set the broadcast bit if there is no RC. */
3583 if (!i.rounding)
3584 {
3585 /* Encode the vector length. */
3586 unsigned int vec_length;
3587
3588 switch (i.tm.opcode_modifier.evex)
3589 {
3590 case EVEXLIG: /* LL' is ignored */
3591 vec_length = evexlig << 5;
3592 break;
3593 case EVEX128:
3594 vec_length = 0 << 5;
3595 break;
3596 case EVEX256:
3597 vec_length = 1 << 5;
3598 break;
3599 case EVEX512:
3600 vec_length = 2 << 5;
3601 break;
3602 default:
3603 abort ();
3604 break;
3605 }
3606 i.vex.bytes[3] |= vec_length;
3607 /* Encode the broadcast bit. */
3608 if (i.broadcast)
3609 i.vex.bytes[3] |= 0x10;
3610 }
3611 else
3612 {
3613 if (i.rounding->type != saeonly)
3614 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3615 else
3616 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3617 }
3618
3619 if (i.mask && i.mask->mask)
3620 i.vex.bytes[3] |= i.mask->mask->reg_num;
3621}
3622
3623static void
3624process_immext (void)
3625{
3626 expressionS *exp;
3627
3628 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3629 && i.operands > 0)
3630 {
3631 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3632 with an opcode suffix which is coded in the same place as an
3633 8-bit immediate field would be.
3634 Here we check those operands and remove them afterwards. */
3635 unsigned int x;
3636
3637 for (x = 0; x < i.operands; x++)
3638 if (register_number (i.op[x].regs) != x)
3639 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3640 register_prefix, i.op[x].regs->reg_name, x + 1,
3641 i.tm.name);
3642
3643 i.operands = 0;
3644 }
3645
3646 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3647 {
3648 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3649 suffix which is coded in the same place as an 8-bit immediate
3650 field would be.
3651 Here we check those operands and remove them afterwards. */
3652 unsigned int x;
3653
3654 if (i.operands != 3)
3655 abort();
3656
3657 for (x = 0; x < 2; x++)
3658 if (register_number (i.op[x].regs) != x)
3659 goto bad_register_operand;
3660
3661 /* Check for third operand for mwaitx/monitorx insn. */
3662 if (register_number (i.op[x].regs)
3663 != (x + (i.tm.extension_opcode == 0xfb)))
3664 {
3665bad_register_operand:
3666 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3667 register_prefix, i.op[x].regs->reg_name, x+1,
3668 i.tm.name);
3669 }
3670
3671 i.operands = 0;
3672 }
3673
3674 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3675 which is coded in the same place as an 8-bit immediate field
3676 would be. Here we fake an 8-bit immediate operand from the
3677 opcode suffix stored in tm.extension_opcode.
3678
3679 AVX instructions also use this encoding, for some of
3680 3 argument instructions. */
3681
3682 gas_assert (i.imm_operands <= 1
3683 && (i.operands <= 2
3684 || ((i.tm.opcode_modifier.vex
3685 || i.tm.opcode_modifier.evex)
3686 && i.operands <= 4)));
3687
3688 exp = &im_expressions[i.imm_operands++];
3689 i.op[i.operands].imms = exp;
3690 i.types[i.operands] = imm8;
3691 i.operands++;
3692 exp->X_op = O_constant;
3693 exp->X_add_number = i.tm.extension_opcode;
3694 i.tm.extension_opcode = None;
3695}
3696
3697
3698static int
3699check_hle (void)
3700{
3701 switch (i.tm.opcode_modifier.hleprefixok)
3702 {
3703 default:
3704 abort ();
3705 case HLEPrefixNone:
3706 as_bad (_("invalid instruction `%s' after `%s'"),
3707 i.tm.name, i.hle_prefix);
3708 return 0;
3709 case HLEPrefixLock:
3710 if (i.prefix[LOCK_PREFIX])
3711 return 1;
3712 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3713 return 0;
3714 case HLEPrefixAny:
3715 return 1;
3716 case HLEPrefixRelease:
3717 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3718 {
3719 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3720 i.tm.name);
3721 return 0;
3722 }
3723 if (i.mem_operands == 0
3724 || !operand_type_check (i.types[i.operands - 1], anymem))
3725 {
3726 as_bad (_("memory destination needed for instruction `%s'"
3727 " after `xrelease'"), i.tm.name);
3728 return 0;
3729 }
3730 return 1;
3731 }
3732}
3733
3734/* Try the shortest encoding by shortening operand size. */
3735
3736static void
3737optimize_encoding (void)
3738{
3739 int j;
3740
3741 if (optimize_for_space
3742 && i.reg_operands == 1
3743 && i.imm_operands == 1
3744 && !i.types[1].bitfield.byte
3745 && i.op[0].imms->X_op == O_constant
3746 && fits_in_imm7 (i.op[0].imms->X_add_number)
3747 && ((i.tm.base_opcode == 0xa8
3748 && i.tm.extension_opcode == None)
3749 || (i.tm.base_opcode == 0xf6
3750 && i.tm.extension_opcode == 0x0)))
3751 {
3752 /* Optimize: -Os:
3753 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3754 */
3755 unsigned int base_regnum = i.op[1].regs->reg_num;
3756 if (flag_code == CODE_64BIT || base_regnum < 4)
3757 {
3758 i.types[1].bitfield.byte = 1;
3759 /* Ignore the suffix. */
3760 i.suffix = 0;
3761 if (base_regnum >= 4
3762 && !(i.op[1].regs->reg_flags & RegRex))
3763 {
3764 /* Handle SP, BP, SI and DI registers. */
3765 if (i.types[1].bitfield.word)
3766 j = 16;
3767 else if (i.types[1].bitfield.dword)
3768 j = 32;
3769 else
3770 j = 48;
3771 i.op[1].regs -= j;
3772 }
3773 }
3774 }
3775 else if (flag_code == CODE_64BIT
3776 && ((i.reg_operands == 1
3777 && i.imm_operands == 1
3778 && i.op[0].imms->X_op == O_constant
3779 && ((i.tm.base_opcode == 0xb0
3780 && i.tm.extension_opcode == None
3781 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3782 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3783 && (((i.tm.base_opcode == 0x24
3784 || i.tm.base_opcode == 0xa8)
3785 && i.tm.extension_opcode == None)
3786 || (i.tm.base_opcode == 0x80
3787 && i.tm.extension_opcode == 0x4)
3788 || ((i.tm.base_opcode == 0xf6
3789 || i.tm.base_opcode == 0xc6)
3790 && i.tm.extension_opcode == 0x0)))))
3791 || (i.reg_operands == 2
3792 && i.op[0].regs == i.op[1].regs
3793 && ((i.tm.base_opcode == 0x30
3794 || i.tm.base_opcode == 0x28)
3795 && i.tm.extension_opcode == None)))
3796 && i.types[1].bitfield.qword)
3797 {
3798 /* Optimize: -O:
3799 andq $imm31, %r64 -> andl $imm31, %r32
3800 testq $imm31, %r64 -> testl $imm31, %r32
3801 xorq %r64, %r64 -> xorl %r32, %r32
3802 subq %r64, %r64 -> subl %r32, %r32
3803 movq $imm31, %r64 -> movl $imm31, %r32
3804 movq $imm32, %r64 -> movl $imm32, %r32
3805 */
3806 i.tm.opcode_modifier.norex64 = 1;
3807 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3808 {
3809 /* Handle
3810 movq $imm31, %r64 -> movl $imm31, %r32
3811 movq $imm32, %r64 -> movl $imm32, %r32
3812 */
3813 i.tm.operand_types[0].bitfield.imm32 = 1;
3814 i.tm.operand_types[0].bitfield.imm32s = 0;
3815 i.tm.operand_types[0].bitfield.imm64 = 0;
3816 i.types[0].bitfield.imm32 = 1;
3817 i.types[0].bitfield.imm32s = 0;
3818 i.types[0].bitfield.imm64 = 0;
3819 i.types[1].bitfield.dword = 1;
3820 i.types[1].bitfield.qword = 0;
3821 if (i.tm.base_opcode == 0xc6)
3822 {
3823 /* Handle
3824 movq $imm31, %r64 -> movl $imm31, %r32
3825 */
3826 i.tm.base_opcode = 0xb0;
3827 i.tm.extension_opcode = None;
3828 i.tm.opcode_modifier.shortform = 1;
3829 i.tm.opcode_modifier.modrm = 0;
3830 }
3831 }
3832 }
3833 else if (optimize > 1
3834 && i.reg_operands == 3
3835 && i.op[0].regs == i.op[1].regs
3836 && !i.types[2].bitfield.xmmword
3837 && (i.tm.opcode_modifier.vex
3838 || (!i.mask
3839 && !i.rounding
3840 && i.tm.opcode_modifier.evex
3841 && cpu_arch_flags.bitfield.cpuavx512vl))
3842 && ((i.tm.base_opcode == 0x55
3843 || i.tm.base_opcode == 0x6655
3844 || i.tm.base_opcode == 0x66df
3845 || i.tm.base_opcode == 0x57
3846 || i.tm.base_opcode == 0x6657
3847 || i.tm.base_opcode == 0x66ef
3848 || i.tm.base_opcode == 0x66f8
3849 || i.tm.base_opcode == 0x66f9
3850 || i.tm.base_opcode == 0x66fa
3851 || i.tm.base_opcode == 0x66fb)
3852 && i.tm.extension_opcode == None))
3853 {
3854 /* Optimize: -O2:
3855 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3856 vpsubq and vpsubw:
3857 EVEX VOP %zmmM, %zmmM, %zmmN
3858 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3859 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3860 EVEX VOP %ymmM, %ymmM, %ymmN
3861 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3862 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3863 VEX VOP %ymmM, %ymmM, %ymmN
3864 -> VEX VOP %xmmM, %xmmM, %xmmN
3865 VOP, one of vpandn and vpxor:
3866 VEX VOP %ymmM, %ymmM, %ymmN
3867 -> VEX VOP %xmmM, %xmmM, %xmmN
3868 VOP, one of vpandnd and vpandnq:
3869 EVEX VOP %zmmM, %zmmM, %zmmN
3870 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3871 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3872 EVEX VOP %ymmM, %ymmM, %ymmN
3873 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3874 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3875 VOP, one of vpxord and vpxorq:
3876 EVEX VOP %zmmM, %zmmM, %zmmN
3877 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3878 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3879 EVEX VOP %ymmM, %ymmM, %ymmN
3880 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3881 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3882 */
3883 if (i.tm.opcode_modifier.evex)
3884 {
3885 /* If only lower 16 vector registers are used, we can use
3886 VEX encoding. */
3887 for (j = 0; j < 3; j++)
3888 if (register_number (i.op[j].regs) > 15)
3889 break;
3890
3891 if (j < 3)
3892 i.tm.opcode_modifier.evex = EVEX128;
3893 else
3894 {
3895 i.tm.opcode_modifier.vex = VEX128;
3896 i.tm.opcode_modifier.vexw = VEXW0;
3897 i.tm.opcode_modifier.evex = 0;
3898 }
3899 }
3900 else
3901 i.tm.opcode_modifier.vex = VEX128;
3902
3903 if (i.tm.opcode_modifier.vex)
3904 for (j = 0; j < 3; j++)
3905 {
3906 i.types[j].bitfield.xmmword = 1;
3907 i.types[j].bitfield.ymmword = 0;
3908 }
3909 }
3910}
3911
3912/* This is the guts of the machine-dependent assembler. LINE points to a
3913 machine dependent instruction. This function is supposed to emit
3914 the frags/bytes it assembles to. */
3915
3916void
3917md_assemble (char *line)
3918{
3919 unsigned int j;
3920 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3921 const insn_template *t;
3922
3923 /* Initialize globals. */
3924 memset (&i, '\0', sizeof (i));
3925 for (j = 0; j < MAX_OPERANDS; j++)
3926 i.reloc[j] = NO_RELOC;
3927 memset (disp_expressions, '\0', sizeof (disp_expressions));
3928 memset (im_expressions, '\0', sizeof (im_expressions));
3929 save_stack_p = save_stack;
3930
3931 /* First parse an instruction mnemonic & call i386_operand for the operands.
3932 We assume that the scrubber has arranged it so that line[0] is the valid
3933 start of a (possibly prefixed) mnemonic. */
3934
3935 line = parse_insn (line, mnemonic);
3936 if (line == NULL)
3937 return;
3938 mnem_suffix = i.suffix;
3939
3940 line = parse_operands (line, mnemonic);
3941 this_operand = -1;
3942 xfree (i.memop1_string);
3943 i.memop1_string = NULL;
3944 if (line == NULL)
3945 return;
3946
3947 /* Now we've parsed the mnemonic into a set of templates, and have the
3948 operands at hand. */
3949
3950 /* All intel opcodes have reversed operands except for "bound" and
3951 "enter". We also don't reverse intersegment "jmp" and "call"
3952 instructions with 2 immediate operands so that the immediate segment
3953 precedes the offset, as it does when in AT&T mode. */
3954 if (intel_syntax
3955 && i.operands > 1
3956 && (strcmp (mnemonic, "bound") != 0)
3957 && (strcmp (mnemonic, "invlpga") != 0)
3958 && !(operand_type_check (i.types[0], imm)
3959 && operand_type_check (i.types[1], imm)))
3960 swap_operands ();
3961
3962 /* The order of the immediates should be reversed
3963 for 2 immediates extrq and insertq instructions */
3964 if (i.imm_operands == 2
3965 && (strcmp (mnemonic, "extrq") == 0
3966 || strcmp (mnemonic, "insertq") == 0))
3967 swap_2_operands (0, 1);
3968
3969 if (i.imm_operands)
3970 optimize_imm ();
3971
3972 /* Don't optimize displacement for movabs since it only takes 64bit
3973 displacement. */
3974 if (i.disp_operands
3975 && i.disp_encoding != disp_encoding_32bit
3976 && (flag_code != CODE_64BIT
3977 || strcmp (mnemonic, "movabs") != 0))
3978 optimize_disp ();
3979
3980 /* Next, we find a template that matches the given insn,
3981 making sure the overlap of the given operands types is consistent
3982 with the template operand types. */
3983
3984 if (!(t = match_template (mnem_suffix)))
3985 return;
3986
3987 if (sse_check != check_none
3988 && !i.tm.opcode_modifier.noavx
3989 && !i.tm.cpu_flags.bitfield.cpuavx
3990 && (i.tm.cpu_flags.bitfield.cpusse
3991 || i.tm.cpu_flags.bitfield.cpusse2
3992 || i.tm.cpu_flags.bitfield.cpusse3
3993 || i.tm.cpu_flags.bitfield.cpussse3
3994 || i.tm.cpu_flags.bitfield.cpusse4_1
3995 || i.tm.cpu_flags.bitfield.cpusse4_2
3996 || i.tm.cpu_flags.bitfield.cpupclmul
3997 || i.tm.cpu_flags.bitfield.cpuaes
3998 || i.tm.cpu_flags.bitfield.cpugfni))
3999 {
4000 (sse_check == check_warning
4001 ? as_warn
4002 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4003 }
4004
4005 /* Zap movzx and movsx suffix. The suffix has been set from
4006 "word ptr" or "byte ptr" on the source operand in Intel syntax
4007 or extracted from mnemonic in AT&T syntax. But we'll use
4008 the destination register to choose the suffix for encoding. */
4009 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4010 {
4011 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4012 there is no suffix, the default will be byte extension. */
4013 if (i.reg_operands != 2
4014 && !i.suffix
4015 && intel_syntax)
4016 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4017
4018 i.suffix = 0;
4019 }
4020
4021 if (i.tm.opcode_modifier.fwait)
4022 if (!add_prefix (FWAIT_OPCODE))
4023 return;
4024
4025 /* Check if REP prefix is OK. */
4026 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4027 {
4028 as_bad (_("invalid instruction `%s' after `%s'"),
4029 i.tm.name, i.rep_prefix);
4030 return;
4031 }
4032
4033 /* Check for lock without a lockable instruction. Destination operand
4034 must be memory unless it is xchg (0x86). */
4035 if (i.prefix[LOCK_PREFIX]
4036 && (!i.tm.opcode_modifier.islockable
4037 || i.mem_operands == 0
4038 || (i.tm.base_opcode != 0x86
4039 && !operand_type_check (i.types[i.operands - 1], anymem))))
4040 {
4041 as_bad (_("expecting lockable instruction after `lock'"));
4042 return;
4043 }
4044
4045 /* Check if HLE prefix is OK. */
4046 if (i.hle_prefix && !check_hle ())
4047 return;
4048
4049 /* Check BND prefix. */
4050 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4051 as_bad (_("expecting valid branch instruction after `bnd'"));
4052
4053 /* Check NOTRACK prefix. */
4054 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4055 as_bad (_("expecting indirect branch instruction after `notrack'"));
4056
4057 if (i.tm.cpu_flags.bitfield.cpumpx)
4058 {
4059 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4060 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4061 else if (flag_code != CODE_16BIT
4062 ? i.prefix[ADDR_PREFIX]
4063 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4064 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4065 }
4066
4067 /* Insert BND prefix. */
4068 if (add_bnd_prefix
4069 && i.tm.opcode_modifier.bndprefixok
4070 && !i.prefix[BND_PREFIX])
4071 add_prefix (BND_PREFIX_OPCODE);
4072
4073 /* Check string instruction segment overrides. */
4074 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4075 {
4076 if (!check_string ())
4077 return;
4078 i.disp_operands = 0;
4079 }
4080
4081 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4082 optimize_encoding ();
4083
4084 if (!process_suffix ())
4085 return;
4086
4087 /* Update operand types. */
4088 for (j = 0; j < i.operands; j++)
4089 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4090
4091 /* Make still unresolved immediate matches conform to size of immediate
4092 given in i.suffix. */
4093 if (!finalize_imm ())
4094 return;
4095
4096 if (i.types[0].bitfield.imm1)
4097 i.imm_operands = 0; /* kludge for shift insns. */
4098
4099 /* We only need to check those implicit registers for instructions
4100 with 3 operands or less. */
4101 if (i.operands <= 3)
4102 for (j = 0; j < i.operands; j++)
4103 if (i.types[j].bitfield.inoutportreg
4104 || i.types[j].bitfield.shiftcount
4105 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4106 i.reg_operands--;
4107
4108 /* ImmExt should be processed after SSE2AVX. */
4109 if (!i.tm.opcode_modifier.sse2avx
4110 && i.tm.opcode_modifier.immext)
4111 process_immext ();
4112
4113 /* For insns with operands there are more diddles to do to the opcode. */
4114 if (i.operands)
4115 {
4116 if (!process_operands ())
4117 return;
4118 }
4119 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4120 {
4121 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4122 as_warn (_("translating to `%sp'"), i.tm.name);
4123 }
4124
4125 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
4126 {
4127 if (flag_code == CODE_16BIT)
4128 {
4129 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4130 i.tm.name);
4131 return;
4132 }
4133
4134 if (i.tm.opcode_modifier.vex)
4135 build_vex_prefix (t);
4136 else
4137 build_evex_prefix ();
4138 }
4139
4140 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4141 instructions may define INT_OPCODE as well, so avoid this corner
4142 case for those instructions that use MODRM. */
4143 if (i.tm.base_opcode == INT_OPCODE
4144 && !i.tm.opcode_modifier.modrm
4145 && i.op[0].imms->X_add_number == 3)
4146 {
4147 i.tm.base_opcode = INT3_OPCODE;
4148 i.imm_operands = 0;
4149 }
4150
4151 if ((i.tm.opcode_modifier.jump
4152 || i.tm.opcode_modifier.jumpbyte
4153 || i.tm.opcode_modifier.jumpdword)
4154 && i.op[0].disps->X_op == O_constant)
4155 {
4156 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4157 the absolute address given by the constant. Since ix86 jumps and
4158 calls are pc relative, we need to generate a reloc. */
4159 i.op[0].disps->X_add_symbol = &abs_symbol;
4160 i.op[0].disps->X_op = O_symbol;
4161 }
4162
4163 if (i.tm.opcode_modifier.rex64)
4164 i.rex |= REX_W;
4165
4166 /* For 8 bit registers we need an empty rex prefix. Also if the
4167 instruction already has a prefix, we need to convert old
4168 registers to new ones. */
4169
4170 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4171 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4172 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4173 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4174 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4175 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4176 && i.rex != 0))
4177 {
4178 int x;
4179
4180 i.rex |= REX_OPCODE;
4181 for (x = 0; x < 2; x++)
4182 {
4183 /* Look for 8 bit operand that uses old registers. */
4184 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4185 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4186 {
4187 /* In case it is "hi" register, give up. */
4188 if (i.op[x].regs->reg_num > 3)
4189 as_bad (_("can't encode register '%s%s' in an "
4190 "instruction requiring REX prefix."),
4191 register_prefix, i.op[x].regs->reg_name);
4192
4193 /* Otherwise it is equivalent to the extended register.
4194 Since the encoding doesn't change this is merely
4195 cosmetic cleanup for debug output. */
4196
4197 i.op[x].regs = i.op[x].regs + 8;
4198 }
4199 }
4200 }
4201
4202 if (i.rex == 0 && i.rex_encoding)
4203 {
4204 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4205 that uses legacy register. If it is "hi" register, don't add
4206 the REX_OPCODE byte. */
4207 int x;
4208 for (x = 0; x < 2; x++)
4209 if (i.types[x].bitfield.reg
4210 && i.types[x].bitfield.byte
4211 && (i.op[x].regs->reg_flags & RegRex64) == 0
4212 && i.op[x].regs->reg_num > 3)
4213 {
4214 i.rex_encoding = FALSE;
4215 break;
4216 }
4217
4218 if (i.rex_encoding)
4219 i.rex = REX_OPCODE;
4220 }
4221
4222 if (i.rex != 0)
4223 add_prefix (REX_OPCODE | i.rex);
4224
4225 /* We are ready to output the insn. */
4226 output_insn ();
4227}
4228
4229static char *
4230parse_insn (char *line, char *mnemonic)
4231{
4232 char *l = line;
4233 char *token_start = l;
4234 char *mnem_p;
4235 int supported;
4236 const insn_template *t;
4237 char *dot_p = NULL;
4238
4239 while (1)
4240 {
4241 mnem_p = mnemonic;
4242 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4243 {
4244 if (*mnem_p == '.')
4245 dot_p = mnem_p;
4246 mnem_p++;
4247 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4248 {
4249 as_bad (_("no such instruction: `%s'"), token_start);
4250 return NULL;
4251 }
4252 l++;
4253 }
4254 if (!is_space_char (*l)
4255 && *l != END_OF_INSN
4256 && (intel_syntax
4257 || (*l != PREFIX_SEPARATOR
4258 && *l != ',')))
4259 {
4260 as_bad (_("invalid character %s in mnemonic"),
4261 output_invalid (*l));
4262 return NULL;
4263 }
4264 if (token_start == l)
4265 {
4266 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4267 as_bad (_("expecting prefix; got nothing"));
4268 else
4269 as_bad (_("expecting mnemonic; got nothing"));
4270 return NULL;
4271 }
4272
4273 /* Look up instruction (or prefix) via hash table. */
4274 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4275
4276 if (*l != END_OF_INSN
4277 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4278 && current_templates
4279 && current_templates->start->opcode_modifier.isprefix)
4280 {
4281 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4282 {
4283 as_bad ((flag_code != CODE_64BIT
4284 ? _("`%s' is only supported in 64-bit mode")
4285 : _("`%s' is not supported in 64-bit mode")),
4286 current_templates->start->name);
4287 return NULL;
4288 }
4289 /* If we are in 16-bit mode, do not allow addr16 or data16.
4290 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4291 if ((current_templates->start->opcode_modifier.size16
4292 || current_templates->start->opcode_modifier.size32)
4293 && flag_code != CODE_64BIT
4294 && (current_templates->start->opcode_modifier.size32
4295 ^ (flag_code == CODE_16BIT)))
4296 {
4297 as_bad (_("redundant %s prefix"),
4298 current_templates->start->name);
4299 return NULL;
4300 }
4301 if (current_templates->start->opcode_length == 0)
4302 {
4303 /* Handle pseudo prefixes. */
4304 switch (current_templates->start->base_opcode)
4305 {
4306 case 0x0:
4307 /* {disp8} */
4308 i.disp_encoding = disp_encoding_8bit;
4309 break;
4310 case 0x1:
4311 /* {disp32} */
4312 i.disp_encoding = disp_encoding_32bit;
4313 break;
4314 case 0x2:
4315 /* {load} */
4316 i.dir_encoding = dir_encoding_load;
4317 break;
4318 case 0x3:
4319 /* {store} */
4320 i.dir_encoding = dir_encoding_store;
4321 break;
4322 case 0x4:
4323 /* {vex2} */
4324 i.vec_encoding = vex_encoding_vex2;
4325 break;
4326 case 0x5:
4327 /* {vex3} */
4328 i.vec_encoding = vex_encoding_vex3;
4329 break;
4330 case 0x6:
4331 /* {evex} */
4332 i.vec_encoding = vex_encoding_evex;
4333 break;
4334 case 0x7:
4335 /* {rex} */
4336 i.rex_encoding = TRUE;
4337 break;
4338 case 0x8:
4339 /* {nooptimize} */
4340 i.no_optimize = TRUE;
4341 break;
4342 default:
4343 abort ();
4344 }
4345 }
4346 else
4347 {
4348 /* Add prefix, checking for repeated prefixes. */
4349 switch (add_prefix (current_templates->start->base_opcode))
4350 {
4351 case PREFIX_EXIST:
4352 return NULL;
4353 case PREFIX_DS:
4354 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4355 i.notrack_prefix = current_templates->start->name;
4356 break;
4357 case PREFIX_REP:
4358 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4359 i.hle_prefix = current_templates->start->name;
4360 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4361 i.bnd_prefix = current_templates->start->name;
4362 else
4363 i.rep_prefix = current_templates->start->name;
4364 break;
4365 default:
4366 break;
4367 }
4368 }
4369 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4370 token_start = ++l;
4371 }
4372 else
4373 break;
4374 }
4375
4376 if (!current_templates)
4377 {
4378 /* Check if we should swap operand or force 32bit displacement in
4379 encoding. */
4380 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4381 i.dir_encoding = dir_encoding_store;
4382 else if (mnem_p - 3 == dot_p
4383 && dot_p[1] == 'd'
4384 && dot_p[2] == '8')
4385 i.disp_encoding = disp_encoding_8bit;
4386 else if (mnem_p - 4 == dot_p
4387 && dot_p[1] == 'd'
4388 && dot_p[2] == '3'
4389 && dot_p[3] == '2')
4390 i.disp_encoding = disp_encoding_32bit;
4391 else
4392 goto check_suffix;
4393 mnem_p = dot_p;
4394 *dot_p = '\0';
4395 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4396 }
4397
4398 if (!current_templates)
4399 {
4400check_suffix:
4401 /* See if we can get a match by trimming off a suffix. */
4402 switch (mnem_p[-1])
4403 {
4404 case WORD_MNEM_SUFFIX:
4405 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4406 i.suffix = SHORT_MNEM_SUFFIX;
4407 else
4408 /* Fall through. */
4409 case BYTE_MNEM_SUFFIX:
4410 case QWORD_MNEM_SUFFIX:
4411 i.suffix = mnem_p[-1];
4412 mnem_p[-1] = '\0';
4413 current_templates = (const templates *) hash_find (op_hash,
4414 mnemonic);
4415 break;
4416 case SHORT_MNEM_SUFFIX:
4417 case LONG_MNEM_SUFFIX:
4418 if (!intel_syntax)
4419 {
4420 i.suffix = mnem_p[-1];
4421 mnem_p[-1] = '\0';
4422 current_templates = (const templates *) hash_find (op_hash,
4423 mnemonic);
4424 }
4425 break;
4426
4427 /* Intel Syntax. */
4428 case 'd':
4429 if (intel_syntax)
4430 {
4431 if (intel_float_operand (mnemonic) == 1)
4432 i.suffix = SHORT_MNEM_SUFFIX;
4433 else
4434 i.suffix = LONG_MNEM_SUFFIX;
4435 mnem_p[-1] = '\0';
4436 current_templates = (const templates *) hash_find (op_hash,
4437 mnemonic);
4438 }
4439 break;
4440 }
4441 if (!current_templates)
4442 {
4443 as_bad (_("no such instruction: `%s'"), token_start);
4444 return NULL;
4445 }
4446 }
4447
4448 if (current_templates->start->opcode_modifier.jump
4449 || current_templates->start->opcode_modifier.jumpbyte)
4450 {
4451 /* Check for a branch hint. We allow ",pt" and ",pn" for
4452 predict taken and predict not taken respectively.
4453 I'm not sure that branch hints actually do anything on loop
4454 and jcxz insns (JumpByte) for current Pentium4 chips. They
4455 may work in the future and it doesn't hurt to accept them
4456 now. */
4457 if (l[0] == ',' && l[1] == 'p')
4458 {
4459 if (l[2] == 't')
4460 {
4461 if (!add_prefix (DS_PREFIX_OPCODE))
4462 return NULL;
4463 l += 3;
4464 }
4465 else if (l[2] == 'n')
4466 {
4467 if (!add_prefix (CS_PREFIX_OPCODE))
4468 return NULL;
4469 l += 3;
4470 }
4471 }
4472 }
4473 /* Any other comma loses. */
4474 if (*l == ',')
4475 {
4476 as_bad (_("invalid character %s in mnemonic"),
4477 output_invalid (*l));
4478 return NULL;
4479 }
4480
4481 /* Check if instruction is supported on specified architecture. */
4482 supported = 0;
4483 for (t = current_templates->start; t < current_templates->end; ++t)
4484 {
4485 supported |= cpu_flags_match (t);
4486 if (supported == CPU_FLAGS_PERFECT_MATCH)
4487 {
4488 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4489 as_warn (_("use .code16 to ensure correct addressing mode"));
4490
4491 return l;
4492 }
4493 }
4494
4495 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4496 as_bad (flag_code == CODE_64BIT
4497 ? _("`%s' is not supported in 64-bit mode")
4498 : _("`%s' is only supported in 64-bit mode"),
4499 current_templates->start->name);
4500 else
4501 as_bad (_("`%s' is not supported on `%s%s'"),
4502 current_templates->start->name,
4503 cpu_arch_name ? cpu_arch_name : default_arch,
4504 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4505
4506 return NULL;
4507}
4508
4509static char *
4510parse_operands (char *l, const char *mnemonic)
4511{
4512 char *token_start;
4513
4514 /* 1 if operand is pending after ','. */
4515 unsigned int expecting_operand = 0;
4516
4517 /* Non-zero if operand parens not balanced. */
4518 unsigned int paren_not_balanced;
4519
4520 while (*l != END_OF_INSN)
4521 {
4522 /* Skip optional white space before operand. */
4523 if (is_space_char (*l))
4524 ++l;
4525 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4526 {
4527 as_bad (_("invalid character %s before operand %d"),
4528 output_invalid (*l),
4529 i.operands + 1);
4530 return NULL;
4531 }
4532 token_start = l; /* After white space. */
4533 paren_not_balanced = 0;
4534 while (paren_not_balanced || *l != ',')
4535 {
4536 if (*l == END_OF_INSN)
4537 {
4538 if (paren_not_balanced)
4539 {
4540 if (!intel_syntax)
4541 as_bad (_("unbalanced parenthesis in operand %d."),
4542 i.operands + 1);
4543 else
4544 as_bad (_("unbalanced brackets in operand %d."),
4545 i.operands + 1);
4546 return NULL;
4547 }
4548 else
4549 break; /* we are done */
4550 }
4551 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4552 {
4553 as_bad (_("invalid character %s in operand %d"),
4554 output_invalid (*l),
4555 i.operands + 1);
4556 return NULL;
4557 }
4558 if (!intel_syntax)
4559 {
4560 if (*l == '(')
4561 ++paren_not_balanced;
4562 if (*l == ')')
4563 --paren_not_balanced;
4564 }
4565 else
4566 {
4567 if (*l == '[')
4568 ++paren_not_balanced;
4569 if (*l == ']')
4570 --paren_not_balanced;
4571 }
4572 l++;
4573 }
4574 if (l != token_start)
4575 { /* Yes, we've read in another operand. */
4576 unsigned int operand_ok;
4577 this_operand = i.operands++;
4578 if (i.operands > MAX_OPERANDS)
4579 {
4580 as_bad (_("spurious operands; (%d operands/instruction max)"),
4581 MAX_OPERANDS);
4582 return NULL;
4583 }
4584 i.types[this_operand].bitfield.unspecified = 1;
4585 /* Now parse operand adding info to 'i' as we go along. */
4586 END_STRING_AND_SAVE (l);
4587
4588 if (intel_syntax)
4589 operand_ok =
4590 i386_intel_operand (token_start,
4591 intel_float_operand (mnemonic));
4592 else
4593 operand_ok = i386_att_operand (token_start);
4594
4595 RESTORE_END_STRING (l);
4596 if (!operand_ok)
4597 return NULL;
4598 }
4599 else
4600 {
4601 if (expecting_operand)
4602 {
4603 expecting_operand_after_comma:
4604 as_bad (_("expecting operand after ','; got nothing"));
4605 return NULL;
4606 }
4607 if (*l == ',')
4608 {
4609 as_bad (_("expecting operand before ','; got nothing"));
4610 return NULL;
4611 }
4612 }
4613
4614 /* Now *l must be either ',' or END_OF_INSN. */
4615 if (*l == ',')
4616 {
4617 if (*++l == END_OF_INSN)
4618 {
4619 /* Just skip it, if it's \n complain. */
4620 goto expecting_operand_after_comma;
4621 }
4622 expecting_operand = 1;
4623 }
4624 }
4625 return l;
4626}
4627
4628static void
4629swap_2_operands (int xchg1, int xchg2)
4630{
4631 union i386_op temp_op;
4632 i386_operand_type temp_type;
4633 enum bfd_reloc_code_real temp_reloc;
4634
4635 temp_type = i.types[xchg2];
4636 i.types[xchg2] = i.types[xchg1];
4637 i.types[xchg1] = temp_type;
4638 temp_op = i.op[xchg2];
4639 i.op[xchg2] = i.op[xchg1];
4640 i.op[xchg1] = temp_op;
4641 temp_reloc = i.reloc[xchg2];
4642 i.reloc[xchg2] = i.reloc[xchg1];
4643 i.reloc[xchg1] = temp_reloc;
4644
4645 if (i.mask)
4646 {
4647 if (i.mask->operand == xchg1)
4648 i.mask->operand = xchg2;
4649 else if (i.mask->operand == xchg2)
4650 i.mask->operand = xchg1;
4651 }
4652 if (i.broadcast)
4653 {
4654 if (i.broadcast->operand == xchg1)
4655 i.broadcast->operand = xchg2;
4656 else if (i.broadcast->operand == xchg2)
4657 i.broadcast->operand = xchg1;
4658 }
4659 if (i.rounding)
4660 {
4661 if (i.rounding->operand == xchg1)
4662 i.rounding->operand = xchg2;
4663 else if (i.rounding->operand == xchg2)
4664 i.rounding->operand = xchg1;
4665 }
4666}
4667
4668static void
4669swap_operands (void)
4670{
4671 switch (i.operands)
4672 {
4673 case 5:
4674 case 4:
4675 swap_2_operands (1, i.operands - 2);
4676 /* Fall through. */
4677 case 3:
4678 case 2:
4679 swap_2_operands (0, i.operands - 1);
4680 break;
4681 default:
4682 abort ();
4683 }
4684
4685 if (i.mem_operands == 2)
4686 {
4687 const seg_entry *temp_seg;
4688 temp_seg = i.seg[0];
4689 i.seg[0] = i.seg[1];
4690 i.seg[1] = temp_seg;
4691 }
4692}
4693
4694/* Try to ensure constant immediates are represented in the smallest
4695 opcode possible. */
4696static void
4697optimize_imm (void)
4698{
4699 char guess_suffix = 0;
4700 int op;
4701
4702 if (i.suffix)
4703 guess_suffix = i.suffix;
4704 else if (i.reg_operands)
4705 {
4706 /* Figure out a suffix from the last register operand specified.
4707 We can't do this properly yet, ie. excluding InOutPortReg,
4708 but the following works for instructions with immediates.
4709 In any case, we can't set i.suffix yet. */
4710 for (op = i.operands; --op >= 0;)
4711 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4712 {
4713 guess_suffix = BYTE_MNEM_SUFFIX;
4714 break;
4715 }
4716 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4717 {
4718 guess_suffix = WORD_MNEM_SUFFIX;
4719 break;
4720 }
4721 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4722 {
4723 guess_suffix = LONG_MNEM_SUFFIX;
4724 break;
4725 }
4726 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4727 {
4728 guess_suffix = QWORD_MNEM_SUFFIX;
4729 break;
4730 }
4731 }
4732 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4733 guess_suffix = WORD_MNEM_SUFFIX;
4734
4735 for (op = i.operands; --op >= 0;)
4736 if (operand_type_check (i.types[op], imm))
4737 {
4738 switch (i.op[op].imms->X_op)
4739 {
4740 case O_constant:
4741 /* If a suffix is given, this operand may be shortened. */
4742 switch (guess_suffix)
4743 {
4744 case LONG_MNEM_SUFFIX:
4745 i.types[op].bitfield.imm32 = 1;
4746 i.types[op].bitfield.imm64 = 1;
4747 break;
4748 case WORD_MNEM_SUFFIX:
4749 i.types[op].bitfield.imm16 = 1;
4750 i.types[op].bitfield.imm32 = 1;
4751 i.types[op].bitfield.imm32s = 1;
4752 i.types[op].bitfield.imm64 = 1;
4753 break;
4754 case BYTE_MNEM_SUFFIX:
4755 i.types[op].bitfield.imm8 = 1;
4756 i.types[op].bitfield.imm8s = 1;
4757 i.types[op].bitfield.imm16 = 1;
4758 i.types[op].bitfield.imm32 = 1;
4759 i.types[op].bitfield.imm32s = 1;
4760 i.types[op].bitfield.imm64 = 1;
4761 break;
4762 }
4763
4764 /* If this operand is at most 16 bits, convert it
4765 to a signed 16 bit number before trying to see
4766 whether it will fit in an even smaller size.
4767 This allows a 16-bit operand such as $0xffe0 to
4768 be recognised as within Imm8S range. */
4769 if ((i.types[op].bitfield.imm16)
4770 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4771 {
4772 i.op[op].imms->X_add_number =
4773 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4774 }
4775#ifdef BFD64
4776 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4777 if ((i.types[op].bitfield.imm32)
4778 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4779 == 0))
4780 {
4781 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4782 ^ ((offsetT) 1 << 31))
4783 - ((offsetT) 1 << 31));
4784 }
4785#endif
4786 i.types[op]
4787 = operand_type_or (i.types[op],
4788 smallest_imm_type (i.op[op].imms->X_add_number));
4789
4790 /* We must avoid matching of Imm32 templates when 64bit
4791 only immediate is available. */
4792 if (guess_suffix == QWORD_MNEM_SUFFIX)
4793 i.types[op].bitfield.imm32 = 0;
4794 break;
4795
4796 case O_absent:
4797 case O_register:
4798 abort ();
4799
4800 /* Symbols and expressions. */
4801 default:
4802 /* Convert symbolic operand to proper sizes for matching, but don't
4803 prevent matching a set of insns that only supports sizes other
4804 than those matching the insn suffix. */
4805 {
4806 i386_operand_type mask, allowed;
4807 const insn_template *t;
4808
4809 operand_type_set (&mask, 0);
4810 operand_type_set (&allowed, 0);
4811
4812 for (t = current_templates->start;
4813 t < current_templates->end;
4814 ++t)
4815 allowed = operand_type_or (allowed,
4816 t->operand_types[op]);
4817 switch (guess_suffix)
4818 {
4819 case QWORD_MNEM_SUFFIX:
4820 mask.bitfield.imm64 = 1;
4821 mask.bitfield.imm32s = 1;
4822 break;
4823 case LONG_MNEM_SUFFIX:
4824 mask.bitfield.imm32 = 1;
4825 break;
4826 case WORD_MNEM_SUFFIX:
4827 mask.bitfield.imm16 = 1;
4828 break;
4829 case BYTE_MNEM_SUFFIX:
4830 mask.bitfield.imm8 = 1;
4831 break;
4832 default:
4833 break;
4834 }
4835 allowed = operand_type_and (mask, allowed);
4836 if (!operand_type_all_zero (&allowed))
4837 i.types[op] = operand_type_and (i.types[op], mask);
4838 }
4839 break;
4840 }
4841 }
4842}
4843
4844/* Try to use the smallest displacement type too. */
4845static void
4846optimize_disp (void)
4847{
4848 int op;
4849
4850 for (op = i.operands; --op >= 0;)
4851 if (operand_type_check (i.types[op], disp))
4852 {
4853 if (i.op[op].disps->X_op == O_constant)
4854 {
4855 offsetT op_disp = i.op[op].disps->X_add_number;
4856
4857 if (i.types[op].bitfield.disp16
4858 && (op_disp & ~(offsetT) 0xffff) == 0)
4859 {
4860 /* If this operand is at most 16 bits, convert
4861 to a signed 16 bit number and don't use 64bit
4862 displacement. */
4863 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4864 i.types[op].bitfield.disp64 = 0;
4865 }
4866#ifdef BFD64
4867 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4868 if (i.types[op].bitfield.disp32
4869 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4870 {
4871 /* If this operand is at most 32 bits, convert
4872 to a signed 32 bit number and don't use 64bit
4873 displacement. */
4874 op_disp &= (((offsetT) 2 << 31) - 1);
4875 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4876 i.types[op].bitfield.disp64 = 0;
4877 }
4878#endif
4879 if (!op_disp && i.types[op].bitfield.baseindex)
4880 {
4881 i.types[op].bitfield.disp8 = 0;
4882 i.types[op].bitfield.disp16 = 0;
4883 i.types[op].bitfield.disp32 = 0;
4884 i.types[op].bitfield.disp32s = 0;
4885 i.types[op].bitfield.disp64 = 0;
4886 i.op[op].disps = 0;
4887 i.disp_operands--;
4888 }
4889 else if (flag_code == CODE_64BIT)
4890 {
4891 if (fits_in_signed_long (op_disp))
4892 {
4893 i.types[op].bitfield.disp64 = 0;
4894 i.types[op].bitfield.disp32s = 1;
4895 }
4896 if (i.prefix[ADDR_PREFIX]
4897 && fits_in_unsigned_long (op_disp))
4898 i.types[op].bitfield.disp32 = 1;
4899 }
4900 if ((i.types[op].bitfield.disp32
4901 || i.types[op].bitfield.disp32s
4902 || i.types[op].bitfield.disp16)
4903 && fits_in_disp8 (op_disp))
4904 i.types[op].bitfield.disp8 = 1;
4905 }
4906 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4907 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4908 {
4909 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4910 i.op[op].disps, 0, i.reloc[op]);
4911 i.types[op].bitfield.disp8 = 0;
4912 i.types[op].bitfield.disp16 = 0;
4913 i.types[op].bitfield.disp32 = 0;
4914 i.types[op].bitfield.disp32s = 0;
4915 i.types[op].bitfield.disp64 = 0;
4916 }
4917 else
4918 /* We only support 64bit displacement on constants. */
4919 i.types[op].bitfield.disp64 = 0;
4920 }
4921}
4922
4923/* Check if operands are valid for the instruction. */
4924
4925static int
4926check_VecOperands (const insn_template *t)
4927{
4928 unsigned int op;
4929
4930 /* Without VSIB byte, we can't have a vector register for index. */
4931 if (!t->opcode_modifier.vecsib
4932 && i.index_reg
4933 && (i.index_reg->reg_type.bitfield.xmmword
4934 || i.index_reg->reg_type.bitfield.ymmword
4935 || i.index_reg->reg_type.bitfield.zmmword))
4936 {
4937 i.error = unsupported_vector_index_register;
4938 return 1;
4939 }
4940
4941 /* Check if default mask is allowed. */
4942 if (t->opcode_modifier.nodefmask
4943 && (!i.mask || i.mask->mask->reg_num == 0))
4944 {
4945 i.error = no_default_mask;
4946 return 1;
4947 }
4948
4949 /* For VSIB byte, we need a vector register for index, and all vector
4950 registers must be distinct. */
4951 if (t->opcode_modifier.vecsib)
4952 {
4953 if (!i.index_reg
4954 || !((t->opcode_modifier.vecsib == VecSIB128
4955 && i.index_reg->reg_type.bitfield.xmmword)
4956 || (t->opcode_modifier.vecsib == VecSIB256
4957 && i.index_reg->reg_type.bitfield.ymmword)
4958 || (t->opcode_modifier.vecsib == VecSIB512
4959 && i.index_reg->reg_type.bitfield.zmmword)))
4960 {
4961 i.error = invalid_vsib_address;
4962 return 1;
4963 }
4964
4965 gas_assert (i.reg_operands == 2 || i.mask);
4966 if (i.reg_operands == 2 && !i.mask)
4967 {
4968 gas_assert (i.types[0].bitfield.regsimd);
4969 gas_assert (i.types[0].bitfield.xmmword
4970 || i.types[0].bitfield.ymmword);
4971 gas_assert (i.types[2].bitfield.regsimd);
4972 gas_assert (i.types[2].bitfield.xmmword
4973 || i.types[2].bitfield.ymmword);
4974 if (operand_check == check_none)
4975 return 0;
4976 if (register_number (i.op[0].regs)
4977 != register_number (i.index_reg)
4978 && register_number (i.op[2].regs)
4979 != register_number (i.index_reg)
4980 && register_number (i.op[0].regs)
4981 != register_number (i.op[2].regs))
4982 return 0;
4983 if (operand_check == check_error)
4984 {
4985 i.error = invalid_vector_register_set;
4986 return 1;
4987 }
4988 as_warn (_("mask, index, and destination registers should be distinct"));
4989 }
4990 else if (i.reg_operands == 1 && i.mask)
4991 {
4992 if (i.types[1].bitfield.regsimd
4993 && (i.types[1].bitfield.xmmword
4994 || i.types[1].bitfield.ymmword
4995 || i.types[1].bitfield.zmmword)
4996 && (register_number (i.op[1].regs)
4997 == register_number (i.index_reg)))
4998 {
4999 if (operand_check == check_error)
5000 {
5001 i.error = invalid_vector_register_set;
5002 return 1;
5003 }
5004 if (operand_check != check_none)
5005 as_warn (_("index and destination registers should be distinct"));
5006 }
5007 }
5008 }
5009
5010 /* Check if broadcast is supported by the instruction and is applied
5011 to the memory operand. */
5012 if (i.broadcast)
5013 {
5014 int broadcasted_opnd_size;
5015
5016 /* Check if specified broadcast is supported in this instruction,
5017 and it's applied to memory operand of DWORD or QWORD type,
5018 depending on VecESize. */
5019 if (i.broadcast->type != t->opcode_modifier.broadcast
5020 || !i.types[i.broadcast->operand].bitfield.mem
5021 || (t->opcode_modifier.vecesize == 0
5022 && !i.types[i.broadcast->operand].bitfield.dword
5023 && !i.types[i.broadcast->operand].bitfield.unspecified)
5024 || (t->opcode_modifier.vecesize == 1
5025 && !i.types[i.broadcast->operand].bitfield.qword
5026 && !i.types[i.broadcast->operand].bitfield.unspecified))
5027 goto bad_broadcast;
5028
5029 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
5030 if (i.broadcast->type == BROADCAST_1TO16)
5031 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
5032 else if (i.broadcast->type == BROADCAST_1TO8)
5033 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
5034 else if (i.broadcast->type == BROADCAST_1TO4)
5035 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
5036 else if (i.broadcast->type == BROADCAST_1TO2)
5037 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
5038 else
5039 goto bad_broadcast;
5040
5041 if ((broadcasted_opnd_size == 256
5042 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
5043 || (broadcasted_opnd_size == 512
5044 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
5045 {
5046 bad_broadcast:
5047 i.error = unsupported_broadcast;
5048 return 1;
5049 }
5050 }
5051 /* If broadcast is supported in this instruction, we need to check if
5052 operand of one-element size isn't specified without broadcast. */
5053 else if (t->opcode_modifier.broadcast && i.mem_operands)
5054 {
5055 /* Find memory operand. */
5056 for (op = 0; op < i.operands; op++)
5057 if (operand_type_check (i.types[op], anymem))
5058 break;
5059 gas_assert (op < i.operands);
5060 /* Check size of the memory operand. */
5061 if ((t->opcode_modifier.vecesize == 0
5062 && i.types[op].bitfield.dword)
5063 || (t->opcode_modifier.vecesize == 1
5064 && i.types[op].bitfield.qword))
5065 {
5066 i.error = broadcast_needed;
5067 return 1;
5068 }
5069 }
5070
5071 /* Check if requested masking is supported. */
5072 if (i.mask
5073 && (!t->opcode_modifier.masking
5074 || (i.mask->zeroing
5075 && t->opcode_modifier.masking == MERGING_MASKING)))
5076 {
5077 i.error = unsupported_masking;
5078 return 1;
5079 }
5080
5081 /* Check if masking is applied to dest operand. */
5082 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5083 {
5084 i.error = mask_not_on_destination;
5085 return 1;
5086 }
5087
5088 /* Check RC/SAE. */
5089 if (i.rounding)
5090 {
5091 if ((i.rounding->type != saeonly
5092 && !t->opcode_modifier.staticrounding)
5093 || (i.rounding->type == saeonly
5094 && (t->opcode_modifier.staticrounding
5095 || !t->opcode_modifier.sae)))
5096 {
5097 i.error = unsupported_rc_sae;
5098 return 1;
5099 }
5100 /* If the instruction has several immediate operands and one of
5101 them is rounding, the rounding operand should be the last
5102 immediate operand. */
5103 if (i.imm_operands > 1
5104 && i.rounding->operand != (int) (i.imm_operands - 1))
5105 {
5106 i.error = rc_sae_operand_not_last_imm;
5107 return 1;
5108 }
5109 }
5110
5111 /* Check vector Disp8 operand. */
5112 if (t->opcode_modifier.disp8memshift
5113 && i.disp_encoding != disp_encoding_32bit)
5114 {
5115 if (i.broadcast)
5116 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
5117 else
5118 i.memshift = t->opcode_modifier.disp8memshift;
5119
5120 for (op = 0; op < i.operands; op++)
5121 if (operand_type_check (i.types[op], disp)
5122 && i.op[op].disps->X_op == O_constant)
5123 {
5124 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5125 {
5126 i.types[op].bitfield.disp8 = 1;
5127 return 0;
5128 }
5129 i.types[op].bitfield.disp8 = 0;
5130 }
5131 }
5132
5133 i.memshift = 0;
5134
5135 return 0;
5136}
5137
5138/* Check if operands are valid for the instruction. Update VEX
5139 operand types. */
5140
5141static int
5142VEX_check_operands (const insn_template *t)
5143{
5144 if (i.vec_encoding == vex_encoding_evex)
5145 {
5146 /* This instruction must be encoded with EVEX prefix. */
5147 if (!t->opcode_modifier.evex)
5148 {
5149 i.error = unsupported;
5150 return 1;
5151 }
5152 return 0;
5153 }
5154
5155 if (!t->opcode_modifier.vex)
5156 {
5157 /* This instruction template doesn't have VEX prefix. */
5158 if (i.vec_encoding != vex_encoding_default)
5159 {
5160 i.error = unsupported;
5161 return 1;
5162 }
5163 return 0;
5164 }
5165
5166 /* Only check VEX_Imm4, which must be the first operand. */
5167 if (t->operand_types[0].bitfield.vec_imm4)
5168 {
5169 if (i.op[0].imms->X_op != O_constant
5170 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5171 {
5172 i.error = bad_imm4;
5173 return 1;
5174 }
5175
5176 /* Turn off Imm8 so that update_imm won't complain. */
5177 i.types[0] = vec_imm4;
5178 }
5179
5180 return 0;
5181}
5182
5183static const insn_template *
5184match_template (char mnem_suffix)
5185{
5186 /* Points to template once we've found it. */
5187 const insn_template *t;
5188 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5189 i386_operand_type overlap4;
5190 unsigned int found_reverse_match;
5191 i386_opcode_modifier suffix_check, mnemsuf_check;
5192 i386_operand_type operand_types [MAX_OPERANDS];
5193 int addr_prefix_disp;
5194 unsigned int j;
5195 unsigned int found_cpu_match;
5196 unsigned int check_register;
5197 enum i386_error specific_error = 0;
5198
5199#if MAX_OPERANDS != 5
5200# error "MAX_OPERANDS must be 5."
5201#endif
5202
5203 found_reverse_match = 0;
5204 addr_prefix_disp = -1;
5205
5206 memset (&suffix_check, 0, sizeof (suffix_check));
5207 if (i.suffix == BYTE_MNEM_SUFFIX)
5208 suffix_check.no_bsuf = 1;
5209 else if (i.suffix == WORD_MNEM_SUFFIX)
5210 suffix_check.no_wsuf = 1;
5211 else if (i.suffix == SHORT_MNEM_SUFFIX)
5212 suffix_check.no_ssuf = 1;
5213 else if (i.suffix == LONG_MNEM_SUFFIX)
5214 suffix_check.no_lsuf = 1;
5215 else if (i.suffix == QWORD_MNEM_SUFFIX)
5216 suffix_check.no_qsuf = 1;
5217 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5218 suffix_check.no_ldsuf = 1;
5219
5220 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5221 if (intel_syntax)
5222 {
5223 switch (mnem_suffix)
5224 {
5225 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5226 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5227 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5228 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5229 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5230 }
5231 }
5232
5233 /* Must have right number of operands. */
5234 i.error = number_of_operands_mismatch;
5235
5236 for (t = current_templates->start; t < current_templates->end; t++)
5237 {
5238 addr_prefix_disp = -1;
5239
5240 if (i.operands != t->operands)
5241 continue;
5242
5243 /* Check processor support. */
5244 i.error = unsupported;
5245 found_cpu_match = (cpu_flags_match (t)
5246 == CPU_FLAGS_PERFECT_MATCH);
5247 if (!found_cpu_match)
5248 continue;
5249
5250 /* Check old gcc support. */
5251 i.error = old_gcc_only;
5252 if (!old_gcc && t->opcode_modifier.oldgcc)
5253 continue;
5254
5255 /* Check AT&T mnemonic. */
5256 i.error = unsupported_with_intel_mnemonic;
5257 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5258 continue;
5259
5260 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5261 i.error = unsupported_syntax;
5262 if ((intel_syntax && t->opcode_modifier.attsyntax)
5263 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5264 || (intel64 && t->opcode_modifier.amd64)
5265 || (!intel64 && t->opcode_modifier.intel64))
5266 continue;
5267
5268 /* Check the suffix, except for some instructions in intel mode. */
5269 i.error = invalid_instruction_suffix;
5270 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5271 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5272 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5273 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5274 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5275 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5276 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5277 continue;
5278 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5279 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5280 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5281 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5282 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5283 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5284 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5285 continue;
5286
5287 if (!operand_size_match (t))
5288 continue;
5289
5290 for (j = 0; j < MAX_OPERANDS; j++)
5291 operand_types[j] = t->operand_types[j];
5292
5293 /* In general, don't allow 64-bit operands in 32-bit mode. */
5294 if (i.suffix == QWORD_MNEM_SUFFIX
5295 && flag_code != CODE_64BIT
5296 && (intel_syntax
5297 ? (!t->opcode_modifier.ignoresize
5298 && !intel_float_operand (t->name))
5299 : intel_float_operand (t->name) != 2)
5300 && ((!operand_types[0].bitfield.regmmx
5301 && !operand_types[0].bitfield.regsimd)
5302 || (!operand_types[t->operands > 1].bitfield.regmmx
5303 && !operand_types[t->operands > 1].bitfield.regsimd))
5304 && (t->base_opcode != 0x0fc7
5305 || t->extension_opcode != 1 /* cmpxchg8b */))
5306 continue;
5307
5308 /* In general, don't allow 32-bit operands on pre-386. */
5309 else if (i.suffix == LONG_MNEM_SUFFIX
5310 && !cpu_arch_flags.bitfield.cpui386
5311 && (intel_syntax
5312 ? (!t->opcode_modifier.ignoresize
5313 && !intel_float_operand (t->name))
5314 : intel_float_operand (t->name) != 2)
5315 && ((!operand_types[0].bitfield.regmmx
5316 && !operand_types[0].bitfield.regsimd)
5317 || (!operand_types[t->operands > 1].bitfield.regmmx
5318 && !operand_types[t->operands > 1].bitfield.regsimd)))
5319 continue;
5320
5321 /* Do not verify operands when there are none. */
5322 else
5323 {
5324 if (!t->operands)
5325 /* We've found a match; break out of loop. */
5326 break;
5327 }
5328
5329 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5330 into Disp32/Disp16/Disp32 operand. */
5331 if (i.prefix[ADDR_PREFIX] != 0)
5332 {
5333 /* There should be only one Disp operand. */
5334 switch (flag_code)
5335 {
5336 case CODE_16BIT:
5337 for (j = 0; j < MAX_OPERANDS; j++)
5338 {
5339 if (operand_types[j].bitfield.disp16)
5340 {
5341 addr_prefix_disp = j;
5342 operand_types[j].bitfield.disp32 = 1;
5343 operand_types[j].bitfield.disp16 = 0;
5344 break;
5345 }
5346 }
5347 break;
5348 case CODE_32BIT:
5349 for (j = 0; j < MAX_OPERANDS; j++)
5350 {
5351 if (operand_types[j].bitfield.disp32)
5352 {
5353 addr_prefix_disp = j;
5354 operand_types[j].bitfield.disp32 = 0;
5355 operand_types[j].bitfield.disp16 = 1;
5356 break;
5357 }
5358 }
5359 break;
5360 case CODE_64BIT:
5361 for (j = 0; j < MAX_OPERANDS; j++)
5362 {
5363 if (operand_types[j].bitfield.disp64)
5364 {
5365 addr_prefix_disp = j;
5366 operand_types[j].bitfield.disp64 = 0;
5367 operand_types[j].bitfield.disp32 = 1;
5368 break;
5369 }
5370 }
5371 break;
5372 }
5373 }
5374
5375 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5376 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5377 continue;
5378
5379 /* We check register size if needed. */
5380 check_register = t->opcode_modifier.checkregsize;
5381 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5382 switch (t->operands)
5383 {
5384 case 1:
5385 if (!operand_type_match (overlap0, i.types[0]))
5386 continue;
5387 break;
5388 case 2:
5389 /* xchg %eax, %eax is a special case. It is an alias for nop
5390 only in 32bit mode and we can use opcode 0x90. In 64bit
5391 mode, we can't use 0x90 for xchg %eax, %eax since it should
5392 zero-extend %eax to %rax. */
5393 if (flag_code == CODE_64BIT
5394 && t->base_opcode == 0x90
5395 && operand_type_equal (&i.types [0], &acc32)
5396 && operand_type_equal (&i.types [1], &acc32))
5397 continue;
5398 /* If we want store form, we reverse direction of operands. */
5399 if (i.dir_encoding == dir_encoding_store
5400 && t->opcode_modifier.d)
5401 goto check_reverse;
5402 /* Fall through. */
5403
5404 case 3:
5405 /* If we want store form, we skip the current load. */
5406 if (i.dir_encoding == dir_encoding_store
5407 && i.mem_operands == 0
5408 && t->opcode_modifier.load)
5409 continue;
5410 /* Fall through. */
5411 case 4:
5412 case 5:
5413 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5414 if (!operand_type_match (overlap0, i.types[0])
5415 || !operand_type_match (overlap1, i.types[1])
5416 || (check_register
5417 && !operand_type_register_match (i.types[0],
5418 operand_types[0],
5419 i.types[1],
5420 operand_types[1])))
5421 {
5422 /* Check if other direction is valid ... */
5423 if (!t->opcode_modifier.d)
5424 continue;
5425
5426check_reverse:
5427 /* Try reversing direction of operands. */
5428 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5429 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5430 if (!operand_type_match (overlap0, i.types[0])
5431 || !operand_type_match (overlap1, i.types[1])
5432 || (check_register
5433 && !operand_type_register_match (i.types[0],
5434 operand_types[1],
5435 i.types[1],
5436 operand_types[0])))
5437 {
5438 /* Does not match either direction. */
5439 continue;
5440 }
5441 /* found_reverse_match holds which of D or FloatR
5442 we've found. */
5443 if (!t->opcode_modifier.d)
5444 found_reverse_match = 0;
5445 else if (operand_types[0].bitfield.tbyte)
5446 found_reverse_match = Opcode_FloatD;
5447 else
5448 found_reverse_match = Opcode_D;
5449 if (t->opcode_modifier.floatr)
5450 found_reverse_match |= Opcode_FloatR;
5451 }
5452 else
5453 {
5454 /* Found a forward 2 operand match here. */
5455 switch (t->operands)
5456 {
5457 case 5:
5458 overlap4 = operand_type_and (i.types[4],
5459 operand_types[4]);
5460 /* Fall through. */
5461 case 4:
5462 overlap3 = operand_type_and (i.types[3],
5463 operand_types[3]);
5464 /* Fall through. */
5465 case 3:
5466 overlap2 = operand_type_and (i.types[2],
5467 operand_types[2]);
5468 break;
5469 }
5470
5471 switch (t->operands)
5472 {
5473 case 5:
5474 if (!operand_type_match (overlap4, i.types[4])
5475 || !operand_type_register_match (i.types[3],
5476 operand_types[3],
5477 i.types[4],
5478 operand_types[4]))
5479 continue;
5480 /* Fall through. */
5481 case 4:
5482 if (!operand_type_match (overlap3, i.types[3])
5483 || (check_register
5484 && !operand_type_register_match (i.types[2],
5485 operand_types[2],
5486 i.types[3],
5487 operand_types[3])))
5488 continue;
5489 /* Fall through. */
5490 case 3:
5491 /* Here we make use of the fact that there are no
5492 reverse match 3 operand instructions. */
5493 if (!operand_type_match (overlap2, i.types[2])
5494 || (check_register
5495 && (!operand_type_register_match (i.types[0],
5496 operand_types[0],
5497 i.types[2],
5498 operand_types[2])
5499 || !operand_type_register_match (i.types[1],
5500 operand_types[1],
5501 i.types[2],
5502 operand_types[2]))))
5503 continue;
5504 break;
5505 }
5506 }
5507 /* Found either forward/reverse 2, 3 or 4 operand match here:
5508 slip through to break. */
5509 }
5510 if (!found_cpu_match)
5511 {
5512 found_reverse_match = 0;
5513 continue;
5514 }
5515
5516 /* Check if vector and VEX operands are valid. */
5517 if (check_VecOperands (t) || VEX_check_operands (t))
5518 {
5519 specific_error = i.error;
5520 continue;
5521 }
5522
5523 /* We've found a match; break out of loop. */
5524 break;
5525 }
5526
5527 if (t == current_templates->end)
5528 {
5529 /* We found no match. */
5530 const char *err_msg;
5531 switch (specific_error ? specific_error : i.error)
5532 {
5533 default:
5534 abort ();
5535 case operand_size_mismatch:
5536 err_msg = _("operand size mismatch");
5537 break;
5538 case operand_type_mismatch:
5539 err_msg = _("operand type mismatch");
5540 break;
5541 case register_type_mismatch:
5542 err_msg = _("register type mismatch");
5543 break;
5544 case number_of_operands_mismatch:
5545 err_msg = _("number of operands mismatch");
5546 break;
5547 case invalid_instruction_suffix:
5548 err_msg = _("invalid instruction suffix");
5549 break;
5550 case bad_imm4:
5551 err_msg = _("constant doesn't fit in 4 bits");
5552 break;
5553 case old_gcc_only:
5554 err_msg = _("only supported with old gcc");
5555 break;
5556 case unsupported_with_intel_mnemonic:
5557 err_msg = _("unsupported with Intel mnemonic");
5558 break;
5559 case unsupported_syntax:
5560 err_msg = _("unsupported syntax");
5561 break;
5562 case unsupported:
5563 as_bad (_("unsupported instruction `%s'"),
5564 current_templates->start->name);
5565 return NULL;
5566 case invalid_vsib_address:
5567 err_msg = _("invalid VSIB address");
5568 break;
5569 case invalid_vector_register_set:
5570 err_msg = _("mask, index, and destination registers must be distinct");
5571 break;
5572 case unsupported_vector_index_register:
5573 err_msg = _("unsupported vector index register");
5574 break;
5575 case unsupported_broadcast:
5576 err_msg = _("unsupported broadcast");
5577 break;
5578 case broadcast_not_on_src_operand:
5579 err_msg = _("broadcast not on source memory operand");
5580 break;
5581 case broadcast_needed:
5582 err_msg = _("broadcast is needed for operand of such type");
5583 break;
5584 case unsupported_masking:
5585 err_msg = _("unsupported masking");
5586 break;
5587 case mask_not_on_destination:
5588 err_msg = _("mask not on destination operand");
5589 break;
5590 case no_default_mask:
5591 err_msg = _("default mask isn't allowed");
5592 break;
5593 case unsupported_rc_sae:
5594 err_msg = _("unsupported static rounding/sae");
5595 break;
5596 case rc_sae_operand_not_last_imm:
5597 if (intel_syntax)
5598 err_msg = _("RC/SAE operand must precede immediate operands");
5599 else
5600 err_msg = _("RC/SAE operand must follow immediate operands");
5601 break;
5602 case invalid_register_operand:
5603 err_msg = _("invalid register operand");
5604 break;
5605 }
5606 as_bad (_("%s for `%s'"), err_msg,
5607 current_templates->start->name);
5608 return NULL;
5609 }
5610
5611 if (!quiet_warnings)
5612 {
5613 if (!intel_syntax
5614 && (i.types[0].bitfield.jumpabsolute
5615 != operand_types[0].bitfield.jumpabsolute))
5616 {
5617 as_warn (_("indirect %s without `*'"), t->name);
5618 }
5619
5620 if (t->opcode_modifier.isprefix
5621 && t->opcode_modifier.ignoresize)
5622 {
5623 /* Warn them that a data or address size prefix doesn't
5624 affect assembly of the next line of code. */
5625 as_warn (_("stand-alone `%s' prefix"), t->name);
5626 }
5627 }
5628
5629 /* Copy the template we found. */
5630 i.tm = *t;
5631
5632 if (addr_prefix_disp != -1)
5633 i.tm.operand_types[addr_prefix_disp]
5634 = operand_types[addr_prefix_disp];
5635
5636 if (found_reverse_match)
5637 {
5638 /* If we found a reverse match we must alter the opcode
5639 direction bit. found_reverse_match holds bits to change
5640 (different for int & float insns). */
5641
5642 i.tm.base_opcode ^= found_reverse_match;
5643
5644 i.tm.operand_types[0] = operand_types[1];
5645 i.tm.operand_types[1] = operand_types[0];
5646 }
5647
5648 return t;
5649}
5650
5651static int
5652check_string (void)
5653{
5654 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5655 if (i.tm.operand_types[mem_op].bitfield.esseg)
5656 {
5657 if (i.seg[0] != NULL && i.seg[0] != &es)
5658 {
5659 as_bad (_("`%s' operand %d must use `%ses' segment"),
5660 i.tm.name,
5661 mem_op + 1,
5662 register_prefix);
5663 return 0;
5664 }
5665 /* There's only ever one segment override allowed per instruction.
5666 This instruction possibly has a legal segment override on the
5667 second operand, so copy the segment to where non-string
5668 instructions store it, allowing common code. */
5669 i.seg[0] = i.seg[1];
5670 }
5671 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5672 {
5673 if (i.seg[1] != NULL && i.seg[1] != &es)
5674 {
5675 as_bad (_("`%s' operand %d must use `%ses' segment"),
5676 i.tm.name,
5677 mem_op + 2,
5678 register_prefix);
5679 return 0;
5680 }
5681 }
5682 return 1;
5683}
5684
5685static int
5686process_suffix (void)
5687{
5688 /* If matched instruction specifies an explicit instruction mnemonic
5689 suffix, use it. */
5690 if (i.tm.opcode_modifier.size16)
5691 i.suffix = WORD_MNEM_SUFFIX;
5692 else if (i.tm.opcode_modifier.size32)
5693 i.suffix = LONG_MNEM_SUFFIX;
5694 else if (i.tm.opcode_modifier.size64)
5695 i.suffix = QWORD_MNEM_SUFFIX;
5696 else if (i.reg_operands)
5697 {
5698 /* If there's no instruction mnemonic suffix we try to invent one
5699 based on register operands. */
5700 if (!i.suffix)
5701 {
5702 /* We take i.suffix from the last register operand specified,
5703 Destination register type is more significant than source
5704 register type. crc32 in SSE4.2 prefers source register
5705 type. */
5706 if (i.tm.base_opcode == 0xf20f38f1)
5707 {
5708 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5709 i.suffix = WORD_MNEM_SUFFIX;
5710 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5711 i.suffix = LONG_MNEM_SUFFIX;
5712 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5713 i.suffix = QWORD_MNEM_SUFFIX;
5714 }
5715 else if (i.tm.base_opcode == 0xf20f38f0)
5716 {
5717 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5718 i.suffix = BYTE_MNEM_SUFFIX;
5719 }
5720
5721 if (!i.suffix)
5722 {
5723 int op;
5724
5725 if (i.tm.base_opcode == 0xf20f38f1
5726 || i.tm.base_opcode == 0xf20f38f0)
5727 {
5728 /* We have to know the operand size for crc32. */
5729 as_bad (_("ambiguous memory operand size for `%s`"),
5730 i.tm.name);
5731 return 0;
5732 }
5733
5734 for (op = i.operands; --op >= 0;)
5735 if (!i.tm.operand_types[op].bitfield.inoutportreg
5736 && !i.tm.operand_types[op].bitfield.shiftcount)
5737 {
5738 if (!i.types[op].bitfield.reg)
5739 continue;
5740 if (i.types[op].bitfield.byte)
5741 i.suffix = BYTE_MNEM_SUFFIX;
5742 else if (i.types[op].bitfield.word)
5743 i.suffix = WORD_MNEM_SUFFIX;
5744 else if (i.types[op].bitfield.dword)
5745 i.suffix = LONG_MNEM_SUFFIX;
5746 else if (i.types[op].bitfield.qword)
5747 i.suffix = QWORD_MNEM_SUFFIX;
5748 else
5749 continue;
5750 break;
5751 }
5752 }
5753 }
5754 else if (i.suffix == BYTE_MNEM_SUFFIX)
5755 {
5756 if (intel_syntax
5757 && i.tm.opcode_modifier.ignoresize
5758 && i.tm.opcode_modifier.no_bsuf)
5759 i.suffix = 0;
5760 else if (!check_byte_reg ())
5761 return 0;
5762 }
5763 else if (i.suffix == LONG_MNEM_SUFFIX)
5764 {
5765 if (intel_syntax
5766 && i.tm.opcode_modifier.ignoresize
5767 && i.tm.opcode_modifier.no_lsuf)
5768 i.suffix = 0;
5769 else if (!check_long_reg ())
5770 return 0;
5771 }
5772 else if (i.suffix == QWORD_MNEM_SUFFIX)
5773 {
5774 if (intel_syntax
5775 && i.tm.opcode_modifier.ignoresize
5776 && i.tm.opcode_modifier.no_qsuf)
5777 i.suffix = 0;
5778 else if (!check_qword_reg ())
5779 return 0;
5780 }
5781 else if (i.suffix == WORD_MNEM_SUFFIX)
5782 {
5783 if (intel_syntax
5784 && i.tm.opcode_modifier.ignoresize
5785 && i.tm.opcode_modifier.no_wsuf)
5786 i.suffix = 0;
5787 else if (!check_word_reg ())
5788 return 0;
5789 }
5790 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5791 /* Do nothing if the instruction is going to ignore the prefix. */
5792 ;
5793 else
5794 abort ();
5795 }
5796 else if (i.tm.opcode_modifier.defaultsize
5797 && !i.suffix
5798 /* exclude fldenv/frstor/fsave/fstenv */
5799 && i.tm.opcode_modifier.no_ssuf)
5800 {
5801 i.suffix = stackop_size;
5802 }
5803 else if (intel_syntax
5804 && !i.suffix
5805 && (i.tm.operand_types[0].bitfield.jumpabsolute
5806 || i.tm.opcode_modifier.jumpbyte
5807 || i.tm.opcode_modifier.jumpintersegment
5808 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5809 && i.tm.extension_opcode <= 3)))
5810 {
5811 switch (flag_code)
5812 {
5813 case CODE_64BIT:
5814 if (!i.tm.opcode_modifier.no_qsuf)
5815 {
5816 i.suffix = QWORD_MNEM_SUFFIX;
5817 break;
5818 }
5819 /* Fall through. */
5820 case CODE_32BIT:
5821 if (!i.tm.opcode_modifier.no_lsuf)
5822 i.suffix = LONG_MNEM_SUFFIX;
5823 break;
5824 case CODE_16BIT:
5825 if (!i.tm.opcode_modifier.no_wsuf)
5826 i.suffix = WORD_MNEM_SUFFIX;
5827 break;
5828 }
5829 }
5830
5831 if (!i.suffix)
5832 {
5833 if (!intel_syntax)
5834 {
5835 if (i.tm.opcode_modifier.w)
5836 {
5837 as_bad (_("no instruction mnemonic suffix given and "
5838 "no register operands; can't size instruction"));
5839 return 0;
5840 }
5841 }
5842 else
5843 {
5844 unsigned int suffixes;
5845
5846 suffixes = !i.tm.opcode_modifier.no_bsuf;
5847 if (!i.tm.opcode_modifier.no_wsuf)
5848 suffixes |= 1 << 1;
5849 if (!i.tm.opcode_modifier.no_lsuf)
5850 suffixes |= 1 << 2;
5851 if (!i.tm.opcode_modifier.no_ldsuf)
5852 suffixes |= 1 << 3;
5853 if (!i.tm.opcode_modifier.no_ssuf)
5854 suffixes |= 1 << 4;
5855 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5856 suffixes |= 1 << 5;
5857
5858 /* There are more than suffix matches. */
5859 if (i.tm.opcode_modifier.w
5860 || ((suffixes & (suffixes - 1))
5861 && !i.tm.opcode_modifier.defaultsize
5862 && !i.tm.opcode_modifier.ignoresize))
5863 {
5864 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5865 return 0;
5866 }
5867 }
5868 }
5869
5870 /* Change the opcode based on the operand size given by i.suffix. */
5871 switch (i.suffix)
5872 {
5873 /* Size floating point instruction. */
5874 case LONG_MNEM_SUFFIX:
5875 if (i.tm.opcode_modifier.floatmf)
5876 {
5877 i.tm.base_opcode ^= 4;
5878 break;
5879 }
5880 /* fall through */
5881 case WORD_MNEM_SUFFIX:
5882 case QWORD_MNEM_SUFFIX:
5883 /* It's not a byte, select word/dword operation. */
5884 if (i.tm.opcode_modifier.w)
5885 {
5886 if (i.tm.opcode_modifier.shortform)
5887 i.tm.base_opcode |= 8;
5888 else
5889 i.tm.base_opcode |= 1;
5890 }
5891 /* fall through */
5892 case SHORT_MNEM_SUFFIX:
5893 /* Now select between word & dword operations via the operand
5894 size prefix, except for instructions that will ignore this
5895 prefix anyway. */
5896 if (i.tm.opcode_modifier.addrprefixop0)
5897 {
5898 /* The address size override prefix changes the size of the
5899 first operand. */
5900 if ((flag_code == CODE_32BIT
5901 && i.op->regs[0].reg_type.bitfield.word)
5902 || (flag_code != CODE_32BIT
5903 && i.op->regs[0].reg_type.bitfield.dword))
5904 if (!add_prefix (ADDR_PREFIX_OPCODE))
5905 return 0;
5906 }
5907 else if (i.suffix != QWORD_MNEM_SUFFIX
5908 && !i.tm.opcode_modifier.ignoresize
5909 && !i.tm.opcode_modifier.floatmf
5910 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5911 || (flag_code == CODE_64BIT
5912 && i.tm.opcode_modifier.jumpbyte)))
5913 {
5914 unsigned int prefix = DATA_PREFIX_OPCODE;
5915
5916 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5917 prefix = ADDR_PREFIX_OPCODE;
5918
5919 if (!add_prefix (prefix))
5920 return 0;
5921 }
5922
5923 /* Set mode64 for an operand. */
5924 if (i.suffix == QWORD_MNEM_SUFFIX
5925 && flag_code == CODE_64BIT
5926 && !i.tm.opcode_modifier.norex64
5927 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5928 need rex64. */
5929 && ! (i.operands == 2
5930 && i.tm.base_opcode == 0x90
5931 && i.tm.extension_opcode == None
5932 && operand_type_equal (&i.types [0], &acc64)
5933 && operand_type_equal (&i.types [1], &acc64)))
5934 i.rex |= REX_W;
5935
5936 break;
5937 }
5938
5939 return 1;
5940}
5941
5942static int
5943check_byte_reg (void)
5944{
5945 int op;
5946
5947 for (op = i.operands; --op >= 0;)
5948 {
5949 /* Skip non-register operands. */
5950 if (!i.types[op].bitfield.reg)
5951 continue;
5952
5953 /* If this is an eight bit register, it's OK. If it's the 16 or
5954 32 bit version of an eight bit register, we will just use the
5955 low portion, and that's OK too. */
5956 if (i.types[op].bitfield.byte)
5957 continue;
5958
5959 /* I/O port address operands are OK too. */
5960 if (i.tm.operand_types[op].bitfield.inoutportreg)
5961 continue;
5962
5963 /* crc32 doesn't generate this warning. */
5964 if (i.tm.base_opcode == 0xf20f38f0)
5965 continue;
5966
5967 if ((i.types[op].bitfield.word
5968 || i.types[op].bitfield.dword
5969 || i.types[op].bitfield.qword)
5970 && i.op[op].regs->reg_num < 4
5971 /* Prohibit these changes in 64bit mode, since the lowering
5972 would be more complicated. */
5973 && flag_code != CODE_64BIT)
5974 {
5975#if REGISTER_WARNINGS
5976 if (!quiet_warnings)
5977 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5978 register_prefix,
5979 (i.op[op].regs + (i.types[op].bitfield.word
5980 ? REGNAM_AL - REGNAM_AX
5981 : REGNAM_AL - REGNAM_EAX))->reg_name,
5982 register_prefix,
5983 i.op[op].regs->reg_name,
5984 i.suffix);
5985#endif
5986 continue;
5987 }
5988 /* Any other register is bad. */
5989 if (i.types[op].bitfield.reg
5990 || i.types[op].bitfield.regmmx
5991 || i.types[op].bitfield.regsimd
5992 || i.types[op].bitfield.sreg2
5993 || i.types[op].bitfield.sreg3
5994 || i.types[op].bitfield.control
5995 || i.types[op].bitfield.debug
5996 || i.types[op].bitfield.test)
5997 {
5998 as_bad (_("`%s%s' not allowed with `%s%c'"),
5999 register_prefix,
6000 i.op[op].regs->reg_name,
6001 i.tm.name,
6002 i.suffix);
6003 return 0;
6004 }
6005 }
6006 return 1;
6007}
6008
6009static int
6010check_long_reg (void)
6011{
6012 int op;
6013
6014 for (op = i.operands; --op >= 0;)
6015 /* Skip non-register operands. */
6016 if (!i.types[op].bitfield.reg)
6017 continue;
6018 /* Reject eight bit registers, except where the template requires
6019 them. (eg. movzb) */
6020 else if (i.types[op].bitfield.byte
6021 && (i.tm.operand_types[op].bitfield.reg
6022 || i.tm.operand_types[op].bitfield.acc)
6023 && (i.tm.operand_types[op].bitfield.word
6024 || i.tm.operand_types[op].bitfield.dword))
6025 {
6026 as_bad (_("`%s%s' not allowed with `%s%c'"),
6027 register_prefix,
6028 i.op[op].regs->reg_name,
6029 i.tm.name,
6030 i.suffix);
6031 return 0;
6032 }
6033 /* Warn if the e prefix on a general reg is missing. */
6034 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6035 && i.types[op].bitfield.word
6036 && (i.tm.operand_types[op].bitfield.reg
6037 || i.tm.operand_types[op].bitfield.acc)
6038 && i.tm.operand_types[op].bitfield.dword)
6039 {
6040 /* Prohibit these changes in the 64bit mode, since the
6041 lowering is more complicated. */
6042 if (flag_code == CODE_64BIT)
6043 {
6044 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6045 register_prefix, i.op[op].regs->reg_name,
6046 i.suffix);
6047 return 0;
6048 }
6049#if REGISTER_WARNINGS
6050 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6051 register_prefix,
6052 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6053 register_prefix, i.op[op].regs->reg_name, i.suffix);
6054#endif
6055 }
6056 /* Warn if the r prefix on a general reg is present. */
6057 else if (i.types[op].bitfield.qword
6058 && (i.tm.operand_types[op].bitfield.reg
6059 || i.tm.operand_types[op].bitfield.acc)
6060 && i.tm.operand_types[op].bitfield.dword)
6061 {
6062 if (intel_syntax
6063 && i.tm.opcode_modifier.toqword
6064 && !i.types[0].bitfield.regsimd)
6065 {
6066 /* Convert to QWORD. We want REX byte. */
6067 i.suffix = QWORD_MNEM_SUFFIX;
6068 }
6069 else
6070 {
6071 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6072 register_prefix, i.op[op].regs->reg_name,
6073 i.suffix);
6074 return 0;
6075 }
6076 }
6077 return 1;
6078}
6079
6080static int
6081check_qword_reg (void)
6082{
6083 int op;
6084
6085 for (op = i.operands; --op >= 0; )
6086 /* Skip non-register operands. */
6087 if (!i.types[op].bitfield.reg)
6088 continue;
6089 /* Reject eight bit registers, except where the template requires
6090 them. (eg. movzb) */
6091 else if (i.types[op].bitfield.byte
6092 && (i.tm.operand_types[op].bitfield.reg
6093 || i.tm.operand_types[op].bitfield.acc)
6094 && (i.tm.operand_types[op].bitfield.word
6095 || i.tm.operand_types[op].bitfield.dword))
6096 {
6097 as_bad (_("`%s%s' not allowed with `%s%c'"),
6098 register_prefix,
6099 i.op[op].regs->reg_name,
6100 i.tm.name,
6101 i.suffix);
6102 return 0;
6103 }
6104 /* Warn if the r prefix on a general reg is missing. */
6105 else if ((i.types[op].bitfield.word
6106 || i.types[op].bitfield.dword)
6107 && (i.tm.operand_types[op].bitfield.reg
6108 || i.tm.operand_types[op].bitfield.acc)
6109 && i.tm.operand_types[op].bitfield.qword)
6110 {
6111 /* Prohibit these changes in the 64bit mode, since the
6112 lowering is more complicated. */
6113 if (intel_syntax
6114 && i.tm.opcode_modifier.todword
6115 && !i.types[0].bitfield.regsimd)
6116 {
6117 /* Convert to DWORD. We don't want REX byte. */
6118 i.suffix = LONG_MNEM_SUFFIX;
6119 }
6120 else
6121 {
6122 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6123 register_prefix, i.op[op].regs->reg_name,
6124 i.suffix);
6125 return 0;
6126 }
6127 }
6128 return 1;
6129}
6130
6131static int
6132check_word_reg (void)
6133{
6134 int op;
6135 for (op = i.operands; --op >= 0;)
6136 /* Skip non-register operands. */
6137 if (!i.types[op].bitfield.reg)
6138 continue;
6139 /* Reject eight bit registers, except where the template requires
6140 them. (eg. movzb) */
6141 else if (i.types[op].bitfield.byte
6142 && (i.tm.operand_types[op].bitfield.reg
6143 || i.tm.operand_types[op].bitfield.acc)
6144 && (i.tm.operand_types[op].bitfield.word
6145 || i.tm.operand_types[op].bitfield.dword))
6146 {
6147 as_bad (_("`%s%s' not allowed with `%s%c'"),
6148 register_prefix,
6149 i.op[op].regs->reg_name,
6150 i.tm.name,
6151 i.suffix);
6152 return 0;
6153 }
6154 /* Warn if the e or r prefix on a general reg is present. */
6155 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6156 && (i.types[op].bitfield.dword
6157 || i.types[op].bitfield.qword)
6158 && (i.tm.operand_types[op].bitfield.reg
6159 || i.tm.operand_types[op].bitfield.acc)
6160 && i.tm.operand_types[op].bitfield.word)
6161 {
6162 /* Prohibit these changes in the 64bit mode, since the
6163 lowering is more complicated. */
6164 if (flag_code == CODE_64BIT)
6165 {
6166 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6167 register_prefix, i.op[op].regs->reg_name,
6168 i.suffix);
6169 return 0;
6170 }
6171#if REGISTER_WARNINGS
6172 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6173 register_prefix,
6174 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6175 register_prefix, i.op[op].regs->reg_name, i.suffix);
6176#endif
6177 }
6178 return 1;
6179}
6180
6181static int
6182update_imm (unsigned int j)
6183{
6184 i386_operand_type overlap = i.types[j];
6185 if ((overlap.bitfield.imm8
6186 || overlap.bitfield.imm8s
6187 || overlap.bitfield.imm16
6188 || overlap.bitfield.imm32
6189 || overlap.bitfield.imm32s
6190 || overlap.bitfield.imm64)
6191 && !operand_type_equal (&overlap, &imm8)
6192 && !operand_type_equal (&overlap, &imm8s)
6193 && !operand_type_equal (&overlap, &imm16)
6194 && !operand_type_equal (&overlap, &imm32)
6195 && !operand_type_equal (&overlap, &imm32s)
6196 && !operand_type_equal (&overlap, &imm64))
6197 {
6198 if (i.suffix)
6199 {
6200 i386_operand_type temp;
6201
6202 operand_type_set (&temp, 0);
6203 if (i.suffix == BYTE_MNEM_SUFFIX)
6204 {
6205 temp.bitfield.imm8 = overlap.bitfield.imm8;
6206 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6207 }
6208 else if (i.suffix == WORD_MNEM_SUFFIX)
6209 temp.bitfield.imm16 = overlap.bitfield.imm16;
6210 else if (i.suffix == QWORD_MNEM_SUFFIX)
6211 {
6212 temp.bitfield.imm64 = overlap.bitfield.imm64;
6213 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6214 }
6215 else
6216 temp.bitfield.imm32 = overlap.bitfield.imm32;
6217 overlap = temp;
6218 }
6219 else if (operand_type_equal (&overlap, &imm16_32_32s)
6220 || operand_type_equal (&overlap, &imm16_32)
6221 || operand_type_equal (&overlap, &imm16_32s))
6222 {
6223 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6224 overlap = imm16;
6225 else
6226 overlap = imm32s;
6227 }
6228 if (!operand_type_equal (&overlap, &imm8)
6229 && !operand_type_equal (&overlap, &imm8s)
6230 && !operand_type_equal (&overlap, &imm16)
6231 && !operand_type_equal (&overlap, &imm32)
6232 && !operand_type_equal (&overlap, &imm32s)
6233 && !operand_type_equal (&overlap, &imm64))
6234 {
6235 as_bad (_("no instruction mnemonic suffix given; "
6236 "can't determine immediate size"));
6237 return 0;
6238 }
6239 }
6240 i.types[j] = overlap;
6241
6242 return 1;
6243}
6244
6245static int
6246finalize_imm (void)
6247{
6248 unsigned int j, n;
6249
6250 /* Update the first 2 immediate operands. */
6251 n = i.operands > 2 ? 2 : i.operands;
6252 if (n)
6253 {
6254 for (j = 0; j < n; j++)
6255 if (update_imm (j) == 0)
6256 return 0;
6257
6258 /* The 3rd operand can't be immediate operand. */
6259 gas_assert (operand_type_check (i.types[2], imm) == 0);
6260 }
6261
6262 return 1;
6263}
6264
6265static int
6266process_operands (void)
6267{
6268 /* Default segment register this instruction will use for memory
6269 accesses. 0 means unknown. This is only for optimizing out
6270 unnecessary segment overrides. */
6271 const seg_entry *default_seg = 0;
6272
6273 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6274 {
6275 unsigned int dupl = i.operands;
6276 unsigned int dest = dupl - 1;
6277 unsigned int j;
6278
6279 /* The destination must be an xmm register. */
6280 gas_assert (i.reg_operands
6281 && MAX_OPERANDS > dupl
6282 && operand_type_equal (&i.types[dest], &regxmm));
6283
6284 if (i.tm.operand_types[0].bitfield.acc
6285 && i.tm.operand_types[0].bitfield.xmmword)
6286 {
6287 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6288 {
6289 /* Keep xmm0 for instructions with VEX prefix and 3
6290 sources. */
6291 i.tm.operand_types[0].bitfield.acc = 0;
6292 i.tm.operand_types[0].bitfield.regsimd = 1;
6293 goto duplicate;
6294 }
6295 else
6296 {
6297 /* We remove the first xmm0 and keep the number of
6298 operands unchanged, which in fact duplicates the
6299 destination. */
6300 for (j = 1; j < i.operands; j++)
6301 {
6302 i.op[j - 1] = i.op[j];
6303 i.types[j - 1] = i.types[j];
6304 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6305 }
6306 }
6307 }
6308 else if (i.tm.opcode_modifier.implicit1stxmm0)
6309 {
6310 gas_assert ((MAX_OPERANDS - 1) > dupl
6311 && (i.tm.opcode_modifier.vexsources
6312 == VEX3SOURCES));
6313
6314 /* Add the implicit xmm0 for instructions with VEX prefix
6315 and 3 sources. */
6316 for (j = i.operands; j > 0; j--)
6317 {
6318 i.op[j] = i.op[j - 1];
6319 i.types[j] = i.types[j - 1];
6320 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6321 }
6322 i.op[0].regs
6323 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6324 i.types[0] = regxmm;
6325 i.tm.operand_types[0] = regxmm;
6326
6327 i.operands += 2;
6328 i.reg_operands += 2;
6329 i.tm.operands += 2;
6330
6331 dupl++;
6332 dest++;
6333 i.op[dupl] = i.op[dest];
6334 i.types[dupl] = i.types[dest];
6335 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6336 }
6337 else
6338 {
6339duplicate:
6340 i.operands++;
6341 i.reg_operands++;
6342 i.tm.operands++;
6343
6344 i.op[dupl] = i.op[dest];
6345 i.types[dupl] = i.types[dest];
6346 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6347 }
6348
6349 if (i.tm.opcode_modifier.immext)
6350 process_immext ();
6351 }
6352 else if (i.tm.operand_types[0].bitfield.acc
6353 && i.tm.operand_types[0].bitfield.xmmword)
6354 {
6355 unsigned int j;
6356
6357 for (j = 1; j < i.operands; j++)
6358 {
6359 i.op[j - 1] = i.op[j];
6360 i.types[j - 1] = i.types[j];
6361
6362 /* We need to adjust fields in i.tm since they are used by
6363 build_modrm_byte. */
6364 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6365 }
6366
6367 i.operands--;
6368 i.reg_operands--;
6369 i.tm.operands--;
6370 }
6371 else if (i.tm.opcode_modifier.implicitquadgroup)
6372 {
6373 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6374
6375 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6376 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6377 regnum = register_number (i.op[1].regs);
6378 first_reg_in_group = regnum & ~3;
6379 last_reg_in_group = first_reg_in_group + 3;
6380 if (regnum != first_reg_in_group)
6381 as_warn (_("source register `%s%s' implicitly denotes"
6382 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6383 register_prefix, i.op[1].regs->reg_name,
6384 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6385 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6386 i.tm.name);
6387 }
6388 else if (i.tm.opcode_modifier.regkludge)
6389 {
6390 /* The imul $imm, %reg instruction is converted into
6391 imul $imm, %reg, %reg, and the clr %reg instruction
6392 is converted into xor %reg, %reg. */
6393
6394 unsigned int first_reg_op;
6395
6396 if (operand_type_check (i.types[0], reg))
6397 first_reg_op = 0;
6398 else
6399 first_reg_op = 1;
6400 /* Pretend we saw the extra register operand. */
6401 gas_assert (i.reg_operands == 1
6402 && i.op[first_reg_op + 1].regs == 0);
6403 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6404 i.types[first_reg_op + 1] = i.types[first_reg_op];
6405 i.operands++;
6406 i.reg_operands++;
6407 }
6408
6409 if (i.tm.opcode_modifier.shortform)
6410 {
6411 if (i.types[0].bitfield.sreg2
6412 || i.types[0].bitfield.sreg3)
6413 {
6414 if (i.tm.base_opcode == POP_SEG_SHORT
6415 && i.op[0].regs->reg_num == 1)
6416 {
6417 as_bad (_("you can't `pop %scs'"), register_prefix);
6418 return 0;
6419 }
6420 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6421 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6422 i.rex |= REX_B;
6423 }
6424 else
6425 {
6426 /* The register or float register operand is in operand
6427 0 or 1. */
6428 unsigned int op;
6429
6430 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6431 || operand_type_check (i.types[0], reg))
6432 op = 0;
6433 else
6434 op = 1;
6435 /* Register goes in low 3 bits of opcode. */
6436 i.tm.base_opcode |= i.op[op].regs->reg_num;
6437 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6438 i.rex |= REX_B;
6439 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6440 {
6441 /* Warn about some common errors, but press on regardless.
6442 The first case can be generated by gcc (<= 2.8.1). */
6443 if (i.operands == 2)
6444 {
6445 /* Reversed arguments on faddp, fsubp, etc. */
6446 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6447 register_prefix, i.op[!intel_syntax].regs->reg_name,
6448 register_prefix, i.op[intel_syntax].regs->reg_name);
6449 }
6450 else
6451 {
6452 /* Extraneous `l' suffix on fp insn. */
6453 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6454 register_prefix, i.op[0].regs->reg_name);
6455 }
6456 }
6457 }
6458 }
6459 else if (i.tm.opcode_modifier.modrm)
6460 {
6461 /* The opcode is completed (modulo i.tm.extension_opcode which
6462 must be put into the modrm byte). Now, we make the modrm and
6463 index base bytes based on all the info we've collected. */
6464
6465 default_seg = build_modrm_byte ();
6466 }
6467 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6468 {
6469 default_seg = &ds;
6470 }
6471 else if (i.tm.opcode_modifier.isstring)
6472 {
6473 /* For the string instructions that allow a segment override
6474 on one of their operands, the default segment is ds. */
6475 default_seg = &ds;
6476 }
6477
6478 if (i.tm.base_opcode == 0x8d /* lea */
6479 && i.seg[0]
6480 && !quiet_warnings)
6481 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6482
6483 /* If a segment was explicitly specified, and the specified segment
6484 is not the default, use an opcode prefix to select it. If we
6485 never figured out what the default segment is, then default_seg
6486 will be zero at this point, and the specified segment prefix will
6487 always be used. */
6488 if ((i.seg[0]) && (i.seg[0] != default_seg))
6489 {
6490 if (!add_prefix (i.seg[0]->seg_prefix))
6491 return 0;
6492 }
6493 return 1;
6494}
6495
6496static const seg_entry *
6497build_modrm_byte (void)
6498{
6499 const seg_entry *default_seg = 0;
6500 unsigned int source, dest;
6501 int vex_3_sources;
6502
6503 /* The first operand of instructions with VEX prefix and 3 sources
6504 must be VEX_Imm4. */
6505 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6506 if (vex_3_sources)
6507 {
6508 unsigned int nds, reg_slot;
6509 expressionS *exp;
6510
6511 if (i.tm.opcode_modifier.veximmext
6512 && i.tm.opcode_modifier.immext)
6513 {
6514 dest = i.operands - 2;
6515 gas_assert (dest == 3);
6516 }
6517 else
6518 dest = i.operands - 1;
6519 nds = dest - 1;
6520
6521 /* There are 2 kinds of instructions:
6522 1. 5 operands: 4 register operands or 3 register operands
6523 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6524 VexW0 or VexW1. The destination must be either XMM, YMM or
6525 ZMM register.
6526 2. 4 operands: 4 register operands or 3 register operands
6527 plus 1 memory operand, VexXDS, and VexImmExt */
6528 gas_assert ((i.reg_operands == 4
6529 || (i.reg_operands == 3 && i.mem_operands == 1))
6530 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6531 && (i.tm.opcode_modifier.veximmext
6532 || (i.imm_operands == 1
6533 && i.types[0].bitfield.vec_imm4
6534 && (i.tm.opcode_modifier.vexw == VEXW0
6535 || i.tm.opcode_modifier.vexw == VEXW1)
6536 && i.tm.operand_types[dest].bitfield.regsimd)));
6537
6538 if (i.imm_operands == 0)
6539 {
6540 /* When there is no immediate operand, generate an 8bit
6541 immediate operand to encode the first operand. */
6542 exp = &im_expressions[i.imm_operands++];
6543 i.op[i.operands].imms = exp;
6544 i.types[i.operands] = imm8;
6545 i.operands++;
6546 /* If VexW1 is set, the first operand is the source and
6547 the second operand is encoded in the immediate operand. */
6548 if (i.tm.opcode_modifier.vexw == VEXW1)
6549 {
6550 source = 0;
6551 reg_slot = 1;
6552 }
6553 else
6554 {
6555 source = 1;
6556 reg_slot = 0;
6557 }
6558
6559 /* FMA swaps REG and NDS. */
6560 if (i.tm.cpu_flags.bitfield.cpufma)
6561 {
6562 unsigned int tmp;
6563 tmp = reg_slot;
6564 reg_slot = nds;
6565 nds = tmp;
6566 }
6567
6568 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6569 exp->X_op = O_constant;
6570 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6571 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6572 }
6573 else
6574 {
6575 unsigned int imm_slot;
6576
6577 if (i.tm.opcode_modifier.vexw == VEXW0)
6578 {
6579 /* If VexW0 is set, the third operand is the source and
6580 the second operand is encoded in the immediate
6581 operand. */
6582 source = 2;
6583 reg_slot = 1;
6584 }
6585 else
6586 {
6587 /* VexW1 is set, the second operand is the source and
6588 the third operand is encoded in the immediate
6589 operand. */
6590 source = 1;
6591 reg_slot = 2;
6592 }
6593
6594 if (i.tm.opcode_modifier.immext)
6595 {
6596 /* When ImmExt is set, the immediate byte is the last
6597 operand. */
6598 imm_slot = i.operands - 1;
6599 source--;
6600 reg_slot--;
6601 }
6602 else
6603 {
6604 imm_slot = 0;
6605
6606 /* Turn on Imm8 so that output_imm will generate it. */
6607 i.types[imm_slot].bitfield.imm8 = 1;
6608 }
6609
6610 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6611 i.op[imm_slot].imms->X_add_number
6612 |= register_number (i.op[reg_slot].regs) << 4;
6613 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6614 }
6615
6616 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6617 i.vex.register_specifier = i.op[nds].regs;
6618 }
6619 else
6620 source = dest = 0;
6621
6622 /* i.reg_operands MUST be the number of real register operands;
6623 implicit registers do not count. If there are 3 register
6624 operands, it must be a instruction with VexNDS. For a
6625 instruction with VexNDD, the destination register is encoded
6626 in VEX prefix. If there are 4 register operands, it must be
6627 a instruction with VEX prefix and 3 sources. */
6628 if (i.mem_operands == 0
6629 && ((i.reg_operands == 2
6630 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6631 || (i.reg_operands == 3
6632 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6633 || (i.reg_operands == 4 && vex_3_sources)))
6634 {
6635 switch (i.operands)
6636 {
6637 case 2:
6638 source = 0;
6639 break;
6640 case 3:
6641 /* When there are 3 operands, one of them may be immediate,
6642 which may be the first or the last operand. Otherwise,
6643 the first operand must be shift count register (cl) or it
6644 is an instruction with VexNDS. */
6645 gas_assert (i.imm_operands == 1
6646 || (i.imm_operands == 0
6647 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6648 || i.types[0].bitfield.shiftcount)));
6649 if (operand_type_check (i.types[0], imm)
6650 || i.types[0].bitfield.shiftcount)
6651 source = 1;
6652 else
6653 source = 0;
6654 break;
6655 case 4:
6656 /* When there are 4 operands, the first two must be 8bit
6657 immediate operands. The source operand will be the 3rd
6658 one.
6659
6660 For instructions with VexNDS, if the first operand
6661 an imm8, the source operand is the 2nd one. If the last
6662 operand is imm8, the source operand is the first one. */
6663 gas_assert ((i.imm_operands == 2
6664 && i.types[0].bitfield.imm8
6665 && i.types[1].bitfield.imm8)
6666 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6667 && i.imm_operands == 1
6668 && (i.types[0].bitfield.imm8
6669 || i.types[i.operands - 1].bitfield.imm8
6670 || i.rounding)));
6671 if (i.imm_operands == 2)
6672 source = 2;
6673 else
6674 {
6675 if (i.types[0].bitfield.imm8)
6676 source = 1;
6677 else
6678 source = 0;
6679 }
6680 break;
6681 case 5:
6682 if (i.tm.opcode_modifier.evex)
6683 {
6684 /* For EVEX instructions, when there are 5 operands, the
6685 first one must be immediate operand. If the second one
6686 is immediate operand, the source operand is the 3th
6687 one. If the last one is immediate operand, the source
6688 operand is the 2nd one. */
6689 gas_assert (i.imm_operands == 2
6690 && i.tm.opcode_modifier.sae
6691 && operand_type_check (i.types[0], imm));
6692 if (operand_type_check (i.types[1], imm))
6693 source = 2;
6694 else if (operand_type_check (i.types[4], imm))
6695 source = 1;
6696 else
6697 abort ();
6698 }
6699 break;
6700 default:
6701 abort ();
6702 }
6703
6704 if (!vex_3_sources)
6705 {
6706 dest = source + 1;
6707
6708 /* RC/SAE operand could be between DEST and SRC. That happens
6709 when one operand is GPR and the other one is XMM/YMM/ZMM
6710 register. */
6711 if (i.rounding && i.rounding->operand == (int) dest)
6712 dest++;
6713
6714 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6715 {
6716 /* For instructions with VexNDS, the register-only source
6717 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6718 register. It is encoded in VEX prefix. We need to
6719 clear RegMem bit before calling operand_type_equal. */
6720
6721 i386_operand_type op;
6722 unsigned int vvvv;
6723
6724 /* Check register-only source operand when two source
6725 operands are swapped. */
6726 if (!i.tm.operand_types[source].bitfield.baseindex
6727 && i.tm.operand_types[dest].bitfield.baseindex)
6728 {
6729 vvvv = source;
6730 source = dest;
6731 }
6732 else
6733 vvvv = dest;
6734
6735 op = i.tm.operand_types[vvvv];
6736 op.bitfield.regmem = 0;
6737 if ((dest + 1) >= i.operands
6738 || ((!op.bitfield.reg
6739 || (!op.bitfield.dword && !op.bitfield.qword))
6740 && !op.bitfield.regsimd
6741 && !operand_type_equal (&op, &regmask)))
6742 abort ();
6743 i.vex.register_specifier = i.op[vvvv].regs;
6744 dest++;
6745 }
6746 }
6747
6748 i.rm.mode = 3;
6749 /* One of the register operands will be encoded in the i.tm.reg
6750 field, the other in the combined i.tm.mode and i.tm.regmem
6751 fields. If no form of this instruction supports a memory
6752 destination operand, then we assume the source operand may
6753 sometimes be a memory operand and so we need to store the
6754 destination in the i.rm.reg field. */
6755 if (!i.tm.operand_types[dest].bitfield.regmem
6756 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6757 {
6758 i.rm.reg = i.op[dest].regs->reg_num;
6759 i.rm.regmem = i.op[source].regs->reg_num;
6760 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6761 i.rex |= REX_R;
6762 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6763 i.vrex |= REX_R;
6764 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6765 i.rex |= REX_B;
6766 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6767 i.vrex |= REX_B;
6768 }
6769 else
6770 {
6771 i.rm.reg = i.op[source].regs->reg_num;
6772 i.rm.regmem = i.op[dest].regs->reg_num;
6773 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6774 i.rex |= REX_B;
6775 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6776 i.vrex |= REX_B;
6777 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6778 i.rex |= REX_R;
6779 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6780 i.vrex |= REX_R;
6781 }
6782 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6783 {
6784 if (!i.types[0].bitfield.control
6785 && !i.types[1].bitfield.control)
6786 abort ();
6787 i.rex &= ~(REX_R | REX_B);
6788 add_prefix (LOCK_PREFIX_OPCODE);
6789 }
6790 }
6791 else
6792 { /* If it's not 2 reg operands... */
6793 unsigned int mem;
6794
6795 if (i.mem_operands)
6796 {
6797 unsigned int fake_zero_displacement = 0;
6798 unsigned int op;
6799
6800 for (op = 0; op < i.operands; op++)
6801 if (operand_type_check (i.types[op], anymem))
6802 break;
6803 gas_assert (op < i.operands);
6804
6805 if (i.tm.opcode_modifier.vecsib)
6806 {
6807 if (i.index_reg->reg_num == RegEiz
6808 || i.index_reg->reg_num == RegRiz)
6809 abort ();
6810
6811 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6812 if (!i.base_reg)
6813 {
6814 i.sib.base = NO_BASE_REGISTER;
6815 i.sib.scale = i.log2_scale_factor;
6816 i.types[op].bitfield.disp8 = 0;
6817 i.types[op].bitfield.disp16 = 0;
6818 i.types[op].bitfield.disp64 = 0;
6819 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6820 {
6821 /* Must be 32 bit */
6822 i.types[op].bitfield.disp32 = 1;
6823 i.types[op].bitfield.disp32s = 0;
6824 }
6825 else
6826 {
6827 i.types[op].bitfield.disp32 = 0;
6828 i.types[op].bitfield.disp32s = 1;
6829 }
6830 }
6831 i.sib.index = i.index_reg->reg_num;
6832 if ((i.index_reg->reg_flags & RegRex) != 0)
6833 i.rex |= REX_X;
6834 if ((i.index_reg->reg_flags & RegVRex) != 0)
6835 i.vrex |= REX_X;
6836 }
6837
6838 default_seg = &ds;
6839
6840 if (i.base_reg == 0)
6841 {
6842 i.rm.mode = 0;
6843 if (!i.disp_operands)
6844 fake_zero_displacement = 1;
6845 if (i.index_reg == 0)
6846 {
6847 i386_operand_type newdisp;
6848
6849 gas_assert (!i.tm.opcode_modifier.vecsib);
6850 /* Operand is just <disp> */
6851 if (flag_code == CODE_64BIT)
6852 {
6853 /* 64bit mode overwrites the 32bit absolute
6854 addressing by RIP relative addressing and
6855 absolute addressing is encoded by one of the
6856 redundant SIB forms. */
6857 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6858 i.sib.base = NO_BASE_REGISTER;
6859 i.sib.index = NO_INDEX_REGISTER;
6860 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6861 }
6862 else if ((flag_code == CODE_16BIT)
6863 ^ (i.prefix[ADDR_PREFIX] != 0))
6864 {
6865 i.rm.regmem = NO_BASE_REGISTER_16;
6866 newdisp = disp16;
6867 }
6868 else
6869 {
6870 i.rm.regmem = NO_BASE_REGISTER;
6871 newdisp = disp32;
6872 }
6873 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6874 i.types[op] = operand_type_or (i.types[op], newdisp);
6875 }
6876 else if (!i.tm.opcode_modifier.vecsib)
6877 {
6878 /* !i.base_reg && i.index_reg */
6879 if (i.index_reg->reg_num == RegEiz
6880 || i.index_reg->reg_num == RegRiz)
6881 i.sib.index = NO_INDEX_REGISTER;
6882 else
6883 i.sib.index = i.index_reg->reg_num;
6884 i.sib.base = NO_BASE_REGISTER;
6885 i.sib.scale = i.log2_scale_factor;
6886 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6887 i.types[op].bitfield.disp8 = 0;
6888 i.types[op].bitfield.disp16 = 0;
6889 i.types[op].bitfield.disp64 = 0;
6890 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6891 {
6892 /* Must be 32 bit */
6893 i.types[op].bitfield.disp32 = 1;
6894 i.types[op].bitfield.disp32s = 0;
6895 }
6896 else
6897 {
6898 i.types[op].bitfield.disp32 = 0;
6899 i.types[op].bitfield.disp32s = 1;
6900 }
6901 if ((i.index_reg->reg_flags & RegRex) != 0)
6902 i.rex |= REX_X;
6903 }
6904 }
6905 /* RIP addressing for 64bit mode. */
6906 else if (i.base_reg->reg_num == RegRip ||
6907 i.base_reg->reg_num == RegEip)
6908 {
6909 gas_assert (!i.tm.opcode_modifier.vecsib);
6910 i.rm.regmem = NO_BASE_REGISTER;
6911 i.types[op].bitfield.disp8 = 0;
6912 i.types[op].bitfield.disp16 = 0;
6913 i.types[op].bitfield.disp32 = 0;
6914 i.types[op].bitfield.disp32s = 1;
6915 i.types[op].bitfield.disp64 = 0;
6916 i.flags[op] |= Operand_PCrel;
6917 if (! i.disp_operands)
6918 fake_zero_displacement = 1;
6919 }
6920 else if (i.base_reg->reg_type.bitfield.word)
6921 {
6922 gas_assert (!i.tm.opcode_modifier.vecsib);
6923 switch (i.base_reg->reg_num)
6924 {
6925 case 3: /* (%bx) */
6926 if (i.index_reg == 0)
6927 i.rm.regmem = 7;
6928 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6929 i.rm.regmem = i.index_reg->reg_num - 6;
6930 break;
6931 case 5: /* (%bp) */
6932 default_seg = &ss;
6933 if (i.index_reg == 0)
6934 {
6935 i.rm.regmem = 6;
6936 if (operand_type_check (i.types[op], disp) == 0)
6937 {
6938 /* fake (%bp) into 0(%bp) */
6939 i.types[op].bitfield.disp8 = 1;
6940 fake_zero_displacement = 1;
6941 }
6942 }
6943 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6944 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6945 break;
6946 default: /* (%si) -> 4 or (%di) -> 5 */
6947 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6948 }
6949 i.rm.mode = mode_from_disp_size (i.types[op]);
6950 }
6951 else /* i.base_reg and 32/64 bit mode */
6952 {
6953 if (flag_code == CODE_64BIT
6954 && operand_type_check (i.types[op], disp))
6955 {
6956 i.types[op].bitfield.disp16 = 0;
6957 i.types[op].bitfield.disp64 = 0;
6958 if (i.prefix[ADDR_PREFIX] == 0)
6959 {
6960 i.types[op].bitfield.disp32 = 0;
6961 i.types[op].bitfield.disp32s = 1;
6962 }
6963 else
6964 {
6965 i.types[op].bitfield.disp32 = 1;
6966 i.types[op].bitfield.disp32s = 0;
6967 }
6968 }
6969
6970 if (!i.tm.opcode_modifier.vecsib)
6971 i.rm.regmem = i.base_reg->reg_num;
6972 if ((i.base_reg->reg_flags & RegRex) != 0)
6973 i.rex |= REX_B;
6974 i.sib.base = i.base_reg->reg_num;
6975 /* x86-64 ignores REX prefix bit here to avoid decoder
6976 complications. */
6977 if (!(i.base_reg->reg_flags & RegRex)
6978 && (i.base_reg->reg_num == EBP_REG_NUM
6979 || i.base_reg->reg_num == ESP_REG_NUM))
6980 default_seg = &ss;
6981 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6982 {
6983 fake_zero_displacement = 1;
6984 i.types[op].bitfield.disp8 = 1;
6985 }
6986 i.sib.scale = i.log2_scale_factor;
6987 if (i.index_reg == 0)
6988 {
6989 gas_assert (!i.tm.opcode_modifier.vecsib);
6990 /* <disp>(%esp) becomes two byte modrm with no index
6991 register. We've already stored the code for esp
6992 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6993 Any base register besides %esp will not use the
6994 extra modrm byte. */
6995 i.sib.index = NO_INDEX_REGISTER;
6996 }
6997 else if (!i.tm.opcode_modifier.vecsib)
6998 {
6999 if (i.index_reg->reg_num == RegEiz
7000 || i.index_reg->reg_num == RegRiz)
7001 i.sib.index = NO_INDEX_REGISTER;
7002 else
7003 i.sib.index = i.index_reg->reg_num;
7004 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7005 if ((i.index_reg->reg_flags & RegRex) != 0)
7006 i.rex |= REX_X;
7007 }
7008
7009 if (i.disp_operands
7010 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7011 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7012 i.rm.mode = 0;
7013 else
7014 {
7015 if (!fake_zero_displacement
7016 && !i.disp_operands
7017 && i.disp_encoding)
7018 {
7019 fake_zero_displacement = 1;
7020 if (i.disp_encoding == disp_encoding_8bit)
7021 i.types[op].bitfield.disp8 = 1;
7022 else
7023 i.types[op].bitfield.disp32 = 1;
7024 }
7025 i.rm.mode = mode_from_disp_size (i.types[op]);
7026 }
7027 }
7028
7029 if (fake_zero_displacement)
7030 {
7031 /* Fakes a zero displacement assuming that i.types[op]
7032 holds the correct displacement size. */
7033 expressionS *exp;
7034
7035 gas_assert (i.op[op].disps == 0);
7036 exp = &disp_expressions[i.disp_operands++];
7037 i.op[op].disps = exp;
7038 exp->X_op = O_constant;
7039 exp->X_add_number = 0;
7040 exp->X_add_symbol = (symbolS *) 0;
7041 exp->X_op_symbol = (symbolS *) 0;
7042 }
7043
7044 mem = op;
7045 }
7046 else
7047 mem = ~0;
7048
7049 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7050 {
7051 if (operand_type_check (i.types[0], imm))
7052 i.vex.register_specifier = NULL;
7053 else
7054 {
7055 /* VEX.vvvv encodes one of the sources when the first
7056 operand is not an immediate. */
7057 if (i.tm.opcode_modifier.vexw == VEXW0)
7058 i.vex.register_specifier = i.op[0].regs;
7059 else
7060 i.vex.register_specifier = i.op[1].regs;
7061 }
7062
7063 /* Destination is a XMM register encoded in the ModRM.reg
7064 and VEX.R bit. */
7065 i.rm.reg = i.op[2].regs->reg_num;
7066 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7067 i.rex |= REX_R;
7068
7069 /* ModRM.rm and VEX.B encodes the other source. */
7070 if (!i.mem_operands)
7071 {
7072 i.rm.mode = 3;
7073
7074 if (i.tm.opcode_modifier.vexw == VEXW0)
7075 i.rm.regmem = i.op[1].regs->reg_num;
7076 else
7077 i.rm.regmem = i.op[0].regs->reg_num;
7078
7079 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7080 i.rex |= REX_B;
7081 }
7082 }
7083 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7084 {
7085 i.vex.register_specifier = i.op[2].regs;
7086 if (!i.mem_operands)
7087 {
7088 i.rm.mode = 3;
7089 i.rm.regmem = i.op[1].regs->reg_num;
7090 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7091 i.rex |= REX_B;
7092 }
7093 }
7094 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7095 (if any) based on i.tm.extension_opcode. Again, we must be
7096 careful to make sure that segment/control/debug/test/MMX
7097 registers are coded into the i.rm.reg field. */
7098 else if (i.reg_operands)
7099 {
7100 unsigned int op;
7101 unsigned int vex_reg = ~0;
7102
7103 for (op = 0; op < i.operands; op++)
7104 if (i.types[op].bitfield.reg
7105 || i.types[op].bitfield.regmmx
7106 || i.types[op].bitfield.regsimd
7107 || i.types[op].bitfield.regbnd
7108 || i.types[op].bitfield.regmask
7109 || i.types[op].bitfield.sreg2
7110 || i.types[op].bitfield.sreg3
7111 || i.types[op].bitfield.control
7112 || i.types[op].bitfield.debug
7113 || i.types[op].bitfield.test)
7114 break;
7115
7116 if (vex_3_sources)
7117 op = dest;
7118 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7119 {
7120 /* For instructions with VexNDS, the register-only
7121 source operand is encoded in VEX prefix. */
7122 gas_assert (mem != (unsigned int) ~0);
7123
7124 if (op > mem)
7125 {
7126 vex_reg = op++;
7127 gas_assert (op < i.operands);
7128 }
7129 else
7130 {
7131 /* Check register-only source operand when two source
7132 operands are swapped. */
7133 if (!i.tm.operand_types[op].bitfield.baseindex
7134 && i.tm.operand_types[op + 1].bitfield.baseindex)
7135 {
7136 vex_reg = op;
7137 op += 2;
7138 gas_assert (mem == (vex_reg + 1)
7139 && op < i.operands);
7140 }
7141 else
7142 {
7143 vex_reg = op + 1;
7144 gas_assert (vex_reg < i.operands);
7145 }
7146 }
7147 }
7148 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7149 {
7150 /* For instructions with VexNDD, the register destination
7151 is encoded in VEX prefix. */
7152 if (i.mem_operands == 0)
7153 {
7154 /* There is no memory operand. */
7155 gas_assert ((op + 2) == i.operands);
7156 vex_reg = op + 1;
7157 }
7158 else
7159 {
7160 /* There are only 2 operands. */
7161 gas_assert (op < 2 && i.operands == 2);
7162 vex_reg = 1;
7163 }
7164 }
7165 else
7166 gas_assert (op < i.operands);
7167
7168 if (vex_reg != (unsigned int) ~0)
7169 {
7170 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7171
7172 if ((!type->bitfield.reg
7173 || (!type->bitfield.dword && !type->bitfield.qword))
7174 && !type->bitfield.regsimd
7175 && !operand_type_equal (type, &regmask))
7176 abort ();
7177
7178 i.vex.register_specifier = i.op[vex_reg].regs;
7179 }
7180
7181 /* Don't set OP operand twice. */
7182 if (vex_reg != op)
7183 {
7184 /* If there is an extension opcode to put here, the
7185 register number must be put into the regmem field. */
7186 if (i.tm.extension_opcode != None)
7187 {
7188 i.rm.regmem = i.op[op].regs->reg_num;
7189 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7190 i.rex |= REX_B;
7191 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7192 i.vrex |= REX_B;
7193 }
7194 else
7195 {
7196 i.rm.reg = i.op[op].regs->reg_num;
7197 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7198 i.rex |= REX_R;
7199 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7200 i.vrex |= REX_R;
7201 }
7202 }
7203
7204 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7205 must set it to 3 to indicate this is a register operand
7206 in the regmem field. */
7207 if (!i.mem_operands)
7208 i.rm.mode = 3;
7209 }
7210
7211 /* Fill in i.rm.reg field with extension opcode (if any). */
7212 if (i.tm.extension_opcode != None)
7213 i.rm.reg = i.tm.extension_opcode;
7214 }
7215 return default_seg;
7216}
7217
7218static void
7219output_branch (void)
7220{
7221 char *p;
7222 int size;
7223 int code16;
7224 int prefix;
7225 relax_substateT subtype;
7226 symbolS *sym;
7227 offsetT off;
7228
7229 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7230 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7231
7232 prefix = 0;
7233 if (i.prefix[DATA_PREFIX] != 0)
7234 {
7235 prefix = 1;
7236 i.prefixes -= 1;
7237 code16 ^= CODE16;
7238 }
7239 /* Pentium4 branch hints. */
7240 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7241 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7242 {
7243 prefix++;
7244 i.prefixes--;
7245 }
7246 if (i.prefix[REX_PREFIX] != 0)
7247 {
7248 prefix++;
7249 i.prefixes--;
7250 }
7251
7252 /* BND prefixed jump. */
7253 if (i.prefix[BND_PREFIX] != 0)
7254 {
7255 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7256 i.prefixes -= 1;
7257 }
7258
7259 if (i.prefixes != 0 && !intel_syntax)
7260 as_warn (_("skipping prefixes on this instruction"));
7261
7262 /* It's always a symbol; End frag & setup for relax.
7263 Make sure there is enough room in this frag for the largest
7264 instruction we may generate in md_convert_frag. This is 2
7265 bytes for the opcode and room for the prefix and largest
7266 displacement. */
7267 frag_grow (prefix + 2 + 4);
7268 /* Prefix and 1 opcode byte go in fr_fix. */
7269 p = frag_more (prefix + 1);
7270 if (i.prefix[DATA_PREFIX] != 0)
7271 *p++ = DATA_PREFIX_OPCODE;
7272 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7273 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7274 *p++ = i.prefix[SEG_PREFIX];
7275 if (i.prefix[REX_PREFIX] != 0)
7276 *p++ = i.prefix[REX_PREFIX];
7277 *p = i.tm.base_opcode;
7278
7279 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7280 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7281 else if (cpu_arch_flags.bitfield.cpui386)
7282 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7283 else
7284 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7285 subtype |= code16;
7286
7287 sym = i.op[0].disps->X_add_symbol;
7288 off = i.op[0].disps->X_add_number;
7289
7290 if (i.op[0].disps->X_op != O_constant
7291 && i.op[0].disps->X_op != O_symbol)
7292 {
7293 /* Handle complex expressions. */
7294 sym = make_expr_symbol (i.op[0].disps);
7295 off = 0;
7296 }
7297
7298 /* 1 possible extra opcode + 4 byte displacement go in var part.
7299 Pass reloc in fr_var. */
7300 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7301}
7302
7303#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7304/* Return TRUE iff PLT32 relocation should be used for branching to
7305 symbol S. */
7306
7307static bfd_boolean
7308need_plt32_p (symbolS *s)
7309{
7310 /* PLT32 relocation is ELF only. */
7311 if (!IS_ELF)
7312 return FALSE;
7313
7314 /* Since there is no need to prepare for PLT branch on x86-64, we
7315 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7316 be used as a marker for 32-bit PC-relative branches. */
7317 if (!object_64bit)
7318 return FALSE;
7319
7320 /* Weak or undefined symbol need PLT32 relocation. */
7321 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7322 return TRUE;
7323
7324 /* Non-global symbol doesn't need PLT32 relocation. */
7325 if (! S_IS_EXTERNAL (s))
7326 return FALSE;
7327
7328 /* Other global symbols need PLT32 relocation. NB: Symbol with
7329 non-default visibilities are treated as normal global symbol
7330 so that PLT32 relocation can be used as a marker for 32-bit
7331 PC-relative branches. It is useful for linker relaxation. */
7332 return TRUE;
7333}
7334#endif
7335
7336static void
7337output_jump (void)
7338{
7339 char *p;
7340 int size;
7341 fixS *fixP;
7342 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7343
7344 if (i.tm.opcode_modifier.jumpbyte)
7345 {
7346 /* This is a loop or jecxz type instruction. */
7347 size = 1;
7348 if (i.prefix[ADDR_PREFIX] != 0)
7349 {
7350 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7351 i.prefixes -= 1;
7352 }
7353 /* Pentium4 branch hints. */
7354 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7355 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7356 {
7357 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7358 i.prefixes--;
7359 }
7360 }
7361 else
7362 {
7363 int code16;
7364
7365 code16 = 0;
7366 if (flag_code == CODE_16BIT)
7367 code16 = CODE16;
7368
7369 if (i.prefix[DATA_PREFIX] != 0)
7370 {
7371 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7372 i.prefixes -= 1;
7373 code16 ^= CODE16;
7374 }
7375
7376 size = 4;
7377 if (code16)
7378 size = 2;
7379 }
7380
7381 if (i.prefix[REX_PREFIX] != 0)
7382 {
7383 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7384 i.prefixes -= 1;
7385 }
7386
7387 /* BND prefixed jump. */
7388 if (i.prefix[BND_PREFIX] != 0)
7389 {
7390 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7391 i.prefixes -= 1;
7392 }
7393
7394 if (i.prefixes != 0 && !intel_syntax)
7395 as_warn (_("skipping prefixes on this instruction"));
7396
7397 p = frag_more (i.tm.opcode_length + size);
7398 switch (i.tm.opcode_length)
7399 {
7400 case 2:
7401 *p++ = i.tm.base_opcode >> 8;
7402 /* Fall through. */
7403 case 1:
7404 *p++ = i.tm.base_opcode;
7405 break;
7406 default:
7407 abort ();
7408 }
7409
7410#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7411 if (size == 4
7412 && jump_reloc == NO_RELOC
7413 && need_plt32_p (i.op[0].disps->X_add_symbol))
7414 jump_reloc = BFD_RELOC_X86_64_PLT32;
7415#endif
7416
7417 jump_reloc = reloc (size, 1, 1, jump_reloc);
7418
7419 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7420 i.op[0].disps, 1, jump_reloc);
7421
7422 /* All jumps handled here are signed, but don't use a signed limit
7423 check for 32 and 16 bit jumps as we want to allow wrap around at
7424 4G and 64k respectively. */
7425 if (size == 1)
7426 fixP->fx_signed = 1;
7427}
7428
7429static void
7430output_interseg_jump (void)
7431{
7432 char *p;
7433 int size;
7434 int prefix;
7435 int code16;
7436
7437 code16 = 0;
7438 if (flag_code == CODE_16BIT)
7439 code16 = CODE16;
7440
7441 prefix = 0;
7442 if (i.prefix[DATA_PREFIX] != 0)
7443 {
7444 prefix = 1;
7445 i.prefixes -= 1;
7446 code16 ^= CODE16;
7447 }
7448 if (i.prefix[REX_PREFIX] != 0)
7449 {
7450 prefix++;
7451 i.prefixes -= 1;
7452 }
7453
7454 size = 4;
7455 if (code16)
7456 size = 2;
7457
7458 if (i.prefixes != 0 && !intel_syntax)
7459 as_warn (_("skipping prefixes on this instruction"));
7460
7461 /* 1 opcode; 2 segment; offset */
7462 p = frag_more (prefix + 1 + 2 + size);
7463
7464 if (i.prefix[DATA_PREFIX] != 0)
7465 *p++ = DATA_PREFIX_OPCODE;
7466
7467 if (i.prefix[REX_PREFIX] != 0)
7468 *p++ = i.prefix[REX_PREFIX];
7469
7470 *p++ = i.tm.base_opcode;
7471 if (i.op[1].imms->X_op == O_constant)
7472 {
7473 offsetT n = i.op[1].imms->X_add_number;
7474
7475 if (size == 2
7476 && !fits_in_unsigned_word (n)
7477 && !fits_in_signed_word (n))
7478 {
7479 as_bad (_("16-bit jump out of range"));
7480 return;
7481 }
7482 md_number_to_chars (p, n, size);
7483 }
7484 else
7485 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7486 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7487 if (i.op[0].imms->X_op != O_constant)
7488 as_bad (_("can't handle non absolute segment in `%s'"),
7489 i.tm.name);
7490 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7491}
7492
7493static void
7494output_insn (void)
7495{
7496 fragS *insn_start_frag;
7497 offsetT insn_start_off;
7498
7499 /* Tie dwarf2 debug info to the address at the start of the insn.
7500 We can't do this after the insn has been output as the current
7501 frag may have been closed off. eg. by frag_var. */
7502 dwarf2_emit_insn (0);
7503
7504 insn_start_frag = frag_now;
7505 insn_start_off = frag_now_fix ();
7506
7507 /* Output jumps. */
7508 if (i.tm.opcode_modifier.jump)
7509 output_branch ();
7510 else if (i.tm.opcode_modifier.jumpbyte
7511 || i.tm.opcode_modifier.jumpdword)
7512 output_jump ();
7513 else if (i.tm.opcode_modifier.jumpintersegment)
7514 output_interseg_jump ();
7515 else
7516 {
7517 /* Output normal instructions here. */
7518 char *p;
7519 unsigned char *q;
7520 unsigned int j;
7521 unsigned int prefix;
7522
7523 if (avoid_fence
7524 && i.tm.base_opcode == 0xfae
7525 && i.operands == 1
7526 && i.imm_operands == 1
7527 && (i.op[0].imms->X_add_number == 0xe8
7528 || i.op[0].imms->X_add_number == 0xf0
7529 || i.op[0].imms->X_add_number == 0xf8))
7530 {
7531 /* Encode lfence, mfence, and sfence as
7532 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7533 offsetT val = 0x240483f0ULL;
7534 p = frag_more (5);
7535 md_number_to_chars (p, val, 5);
7536 return;
7537 }
7538
7539 /* Some processors fail on LOCK prefix. This options makes
7540 assembler ignore LOCK prefix and serves as a workaround. */
7541 if (omit_lock_prefix)
7542 {
7543 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7544 return;
7545 i.prefix[LOCK_PREFIX] = 0;
7546 }
7547
7548 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7549 don't need the explicit prefix. */
7550 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7551 {
7552 switch (i.tm.opcode_length)
7553 {
7554 case 3:
7555 if (i.tm.base_opcode & 0xff000000)
7556 {
7557 prefix = (i.tm.base_opcode >> 24) & 0xff;
7558 goto check_prefix;
7559 }
7560 break;
7561 case 2:
7562 if ((i.tm.base_opcode & 0xff0000) != 0)
7563 {
7564 prefix = (i.tm.base_opcode >> 16) & 0xff;
7565 if (i.tm.cpu_flags.bitfield.cpupadlock)
7566 {
7567check_prefix:
7568 if (prefix != REPE_PREFIX_OPCODE
7569 || (i.prefix[REP_PREFIX]
7570 != REPE_PREFIX_OPCODE))
7571 add_prefix (prefix);
7572 }
7573 else
7574 add_prefix (prefix);
7575 }
7576 break;
7577 case 1:
7578 break;
7579 case 0:
7580 /* Check for pseudo prefixes. */
7581 as_bad_where (insn_start_frag->fr_file,
7582 insn_start_frag->fr_line,
7583 _("pseudo prefix without instruction"));
7584 return;
7585 default:
7586 abort ();
7587 }
7588
7589#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7590 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7591 R_X86_64_GOTTPOFF relocation so that linker can safely
7592 perform IE->LE optimization. */
7593 if (x86_elf_abi == X86_64_X32_ABI
7594 && i.operands == 2
7595 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7596 && i.prefix[REX_PREFIX] == 0)
7597 add_prefix (REX_OPCODE);
7598#endif
7599
7600 /* The prefix bytes. */
7601 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7602 if (*q)
7603 FRAG_APPEND_1_CHAR (*q);
7604 }
7605 else
7606 {
7607 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7608 if (*q)
7609 switch (j)
7610 {
7611 case REX_PREFIX:
7612 /* REX byte is encoded in VEX prefix. */
7613 break;
7614 case SEG_PREFIX:
7615 case ADDR_PREFIX:
7616 FRAG_APPEND_1_CHAR (*q);
7617 break;
7618 default:
7619 /* There should be no other prefixes for instructions
7620 with VEX prefix. */
7621 abort ();
7622 }
7623
7624 /* For EVEX instructions i.vrex should become 0 after
7625 build_evex_prefix. For VEX instructions upper 16 registers
7626 aren't available, so VREX should be 0. */
7627 if (i.vrex)
7628 abort ();
7629 /* Now the VEX prefix. */
7630 p = frag_more (i.vex.length);
7631 for (j = 0; j < i.vex.length; j++)
7632 p[j] = i.vex.bytes[j];
7633 }
7634
7635 /* Now the opcode; be careful about word order here! */
7636 if (i.tm.opcode_length == 1)
7637 {
7638 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7639 }
7640 else
7641 {
7642 switch (i.tm.opcode_length)
7643 {
7644 case 4:
7645 p = frag_more (4);
7646 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7647 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7648 break;
7649 case 3:
7650 p = frag_more (3);
7651 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7652 break;
7653 case 2:
7654 p = frag_more (2);
7655 break;
7656 default:
7657 abort ();
7658 break;
7659 }
7660
7661 /* Put out high byte first: can't use md_number_to_chars! */
7662 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7663 *p = i.tm.base_opcode & 0xff;
7664 }
7665
7666 /* Now the modrm byte and sib byte (if present). */
7667 if (i.tm.opcode_modifier.modrm)
7668 {
7669 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7670 | i.rm.reg << 3
7671 | i.rm.mode << 6));
7672 /* If i.rm.regmem == ESP (4)
7673 && i.rm.mode != (Register mode)
7674 && not 16 bit
7675 ==> need second modrm byte. */
7676 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7677 && i.rm.mode != 3
7678 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7679 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7680 | i.sib.index << 3
7681 | i.sib.scale << 6));
7682 }
7683
7684 if (i.disp_operands)
7685 output_disp (insn_start_frag, insn_start_off);
7686
7687 if (i.imm_operands)
7688 output_imm (insn_start_frag, insn_start_off);
7689 }
7690
7691#ifdef DEBUG386
7692 if (flag_debug)
7693 {
7694 pi ("" /*line*/, &i);
7695 }
7696#endif /* DEBUG386 */
7697}
7698
7699/* Return the size of the displacement operand N. */
7700
7701static int
7702disp_size (unsigned int n)
7703{
7704 int size = 4;
7705
7706 if (i.types[n].bitfield.disp64)
7707 size = 8;
7708 else if (i.types[n].bitfield.disp8)
7709 size = 1;
7710 else if (i.types[n].bitfield.disp16)
7711 size = 2;
7712 return size;
7713}
7714
7715/* Return the size of the immediate operand N. */
7716
7717static int
7718imm_size (unsigned int n)
7719{
7720 int size = 4;
7721 if (i.types[n].bitfield.imm64)
7722 size = 8;
7723 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7724 size = 1;
7725 else if (i.types[n].bitfield.imm16)
7726 size = 2;
7727 return size;
7728}
7729
7730static void
7731output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7732{
7733 char *p;
7734 unsigned int n;
7735
7736 for (n = 0; n < i.operands; n++)
7737 {
7738 if (operand_type_check (i.types[n], disp))
7739 {
7740 if (i.op[n].disps->X_op == O_constant)
7741 {
7742 int size = disp_size (n);
7743 offsetT val = i.op[n].disps->X_add_number;
7744
7745 val = offset_in_range (val >> i.memshift, size);
7746 p = frag_more (size);
7747 md_number_to_chars (p, val, size);
7748 }
7749 else
7750 {
7751 enum bfd_reloc_code_real reloc_type;
7752 int size = disp_size (n);
7753 int sign = i.types[n].bitfield.disp32s;
7754 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7755 fixS *fixP;
7756
7757 /* We can't have 8 bit displacement here. */
7758 gas_assert (!i.types[n].bitfield.disp8);
7759
7760 /* The PC relative address is computed relative
7761 to the instruction boundary, so in case immediate
7762 fields follows, we need to adjust the value. */
7763 if (pcrel && i.imm_operands)
7764 {
7765 unsigned int n1;
7766 int sz = 0;
7767
7768 for (n1 = 0; n1 < i.operands; n1++)
7769 if (operand_type_check (i.types[n1], imm))
7770 {
7771 /* Only one immediate is allowed for PC
7772 relative address. */
7773 gas_assert (sz == 0);
7774 sz = imm_size (n1);
7775 i.op[n].disps->X_add_number -= sz;
7776 }
7777 /* We should find the immediate. */
7778 gas_assert (sz != 0);
7779 }
7780
7781 p = frag_more (size);
7782 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7783 if (GOT_symbol
7784 && GOT_symbol == i.op[n].disps->X_add_symbol
7785 && (((reloc_type == BFD_RELOC_32
7786 || reloc_type == BFD_RELOC_X86_64_32S
7787 || (reloc_type == BFD_RELOC_64
7788 && object_64bit))
7789 && (i.op[n].disps->X_op == O_symbol
7790 || (i.op[n].disps->X_op == O_add
7791 && ((symbol_get_value_expression
7792 (i.op[n].disps->X_op_symbol)->X_op)
7793 == O_subtract))))
7794 || reloc_type == BFD_RELOC_32_PCREL))
7795 {
7796 offsetT add;
7797
7798 if (insn_start_frag == frag_now)
7799 add = (p - frag_now->fr_literal) - insn_start_off;
7800 else
7801 {
7802 fragS *fr;
7803
7804 add = insn_start_frag->fr_fix - insn_start_off;
7805 for (fr = insn_start_frag->fr_next;
7806 fr && fr != frag_now; fr = fr->fr_next)
7807 add += fr->fr_fix;
7808 add += p - frag_now->fr_literal;
7809 }
7810
7811 if (!object_64bit)
7812 {
7813 reloc_type = BFD_RELOC_386_GOTPC;
7814 i.op[n].imms->X_add_number += add;
7815 }
7816 else if (reloc_type == BFD_RELOC_64)
7817 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7818 else
7819 /* Don't do the adjustment for x86-64, as there
7820 the pcrel addressing is relative to the _next_
7821 insn, and that is taken care of in other code. */
7822 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7823 }
7824 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7825 size, i.op[n].disps, pcrel,
7826 reloc_type);
7827 /* Check for "call/jmp *mem", "mov mem, %reg",
7828 "test %reg, mem" and "binop mem, %reg" where binop
7829 is one of adc, add, and, cmp, or, sbb, sub, xor
7830 instructions. Always generate R_386_GOT32X for
7831 "sym*GOT" operand in 32-bit mode. */
7832 if ((generate_relax_relocations
7833 || (!object_64bit
7834 && i.rm.mode == 0
7835 && i.rm.regmem == 5))
7836 && (i.rm.mode == 2
7837 || (i.rm.mode == 0 && i.rm.regmem == 5))
7838 && ((i.operands == 1
7839 && i.tm.base_opcode == 0xff
7840 && (i.rm.reg == 2 || i.rm.reg == 4))
7841 || (i.operands == 2
7842 && (i.tm.base_opcode == 0x8b
7843 || i.tm.base_opcode == 0x85
7844 || (i.tm.base_opcode & 0xc7) == 0x03))))
7845 {
7846 if (object_64bit)
7847 {
7848 fixP->fx_tcbit = i.rex != 0;
7849 if (i.base_reg
7850 && (i.base_reg->reg_num == RegRip
7851 || i.base_reg->reg_num == RegEip))
7852 fixP->fx_tcbit2 = 1;
7853 }
7854 else
7855 fixP->fx_tcbit2 = 1;
7856 }
7857 }
7858 }
7859 }
7860}
7861
7862static void
7863output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7864{
7865 char *p;
7866 unsigned int n;
7867
7868 for (n = 0; n < i.operands; n++)
7869 {
7870 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7871 if (i.rounding && (int) n == i.rounding->operand)
7872 continue;
7873
7874 if (operand_type_check (i.types[n], imm))
7875 {
7876 if (i.op[n].imms->X_op == O_constant)
7877 {
7878 int size = imm_size (n);
7879 offsetT val;
7880
7881 val = offset_in_range (i.op[n].imms->X_add_number,
7882 size);
7883 p = frag_more (size);
7884 md_number_to_chars (p, val, size);
7885 }
7886 else
7887 {
7888 /* Not absolute_section.
7889 Need a 32-bit fixup (don't support 8bit
7890 non-absolute imms). Try to support other
7891 sizes ... */
7892 enum bfd_reloc_code_real reloc_type;
7893 int size = imm_size (n);
7894 int sign;
7895
7896 if (i.types[n].bitfield.imm32s
7897 && (i.suffix == QWORD_MNEM_SUFFIX
7898 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7899 sign = 1;
7900 else
7901 sign = 0;
7902
7903 p = frag_more (size);
7904 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7905
7906 /* This is tough to explain. We end up with this one if we
7907 * have operands that look like
7908 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7909 * obtain the absolute address of the GOT, and it is strongly
7910 * preferable from a performance point of view to avoid using
7911 * a runtime relocation for this. The actual sequence of
7912 * instructions often look something like:
7913 *
7914 * call .L66
7915 * .L66:
7916 * popl %ebx
7917 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7918 *
7919 * The call and pop essentially return the absolute address
7920 * of the label .L66 and store it in %ebx. The linker itself
7921 * will ultimately change the first operand of the addl so
7922 * that %ebx points to the GOT, but to keep things simple, the
7923 * .o file must have this operand set so that it generates not
7924 * the absolute address of .L66, but the absolute address of
7925 * itself. This allows the linker itself simply treat a GOTPC
7926 * relocation as asking for a pcrel offset to the GOT to be
7927 * added in, and the addend of the relocation is stored in the
7928 * operand field for the instruction itself.
7929 *
7930 * Our job here is to fix the operand so that it would add
7931 * the correct offset so that %ebx would point to itself. The
7932 * thing that is tricky is that .-.L66 will point to the
7933 * beginning of the instruction, so we need to further modify
7934 * the operand so that it will point to itself. There are
7935 * other cases where you have something like:
7936 *
7937 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7938 *
7939 * and here no correction would be required. Internally in
7940 * the assembler we treat operands of this form as not being
7941 * pcrel since the '.' is explicitly mentioned, and I wonder
7942 * whether it would simplify matters to do it this way. Who
7943 * knows. In earlier versions of the PIC patches, the
7944 * pcrel_adjust field was used to store the correction, but
7945 * since the expression is not pcrel, I felt it would be
7946 * confusing to do it this way. */
7947
7948 if ((reloc_type == BFD_RELOC_32
7949 || reloc_type == BFD_RELOC_X86_64_32S
7950 || reloc_type == BFD_RELOC_64)
7951 && GOT_symbol
7952 && GOT_symbol == i.op[n].imms->X_add_symbol
7953 && (i.op[n].imms->X_op == O_symbol
7954 || (i.op[n].imms->X_op == O_add
7955 && ((symbol_get_value_expression
7956 (i.op[n].imms->X_op_symbol)->X_op)
7957 == O_subtract))))
7958 {
7959 offsetT add;
7960
7961 if (insn_start_frag == frag_now)
7962 add = (p - frag_now->fr_literal) - insn_start_off;
7963 else
7964 {
7965 fragS *fr;
7966
7967 add = insn_start_frag->fr_fix - insn_start_off;
7968 for (fr = insn_start_frag->fr_next;
7969 fr && fr != frag_now; fr = fr->fr_next)
7970 add += fr->fr_fix;
7971 add += p - frag_now->fr_literal;
7972 }
7973
7974 if (!object_64bit)
7975 reloc_type = BFD_RELOC_386_GOTPC;
7976 else if (size == 4)
7977 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7978 else if (size == 8)
7979 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7980 i.op[n].imms->X_add_number += add;
7981 }
7982 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7983 i.op[n].imms, 0, reloc_type);
7984 }
7985 }
7986 }
7987}
7988\f
7989/* x86_cons_fix_new is called via the expression parsing code when a
7990 reloc is needed. We use this hook to get the correct .got reloc. */
7991static int cons_sign = -1;
7992
7993void
7994x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7995 expressionS *exp, bfd_reloc_code_real_type r)
7996{
7997 r = reloc (len, 0, cons_sign, r);
7998
7999#ifdef TE_PE
8000 if (exp->X_op == O_secrel)
8001 {
8002 exp->X_op = O_symbol;
8003 r = BFD_RELOC_32_SECREL;
8004 }
8005#endif
8006
8007 fix_new_exp (frag, off, len, exp, 0, r);
8008}
8009
8010/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8011 purpose of the `.dc.a' internal pseudo-op. */
8012
8013int
8014x86_address_bytes (void)
8015{
8016 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8017 return 4;
8018 return stdoutput->arch_info->bits_per_address / 8;
8019}
8020
8021#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8022 || defined (LEX_AT)
8023# define lex_got(reloc, adjust, types) NULL
8024#else
8025/* Parse operands of the form
8026 <symbol>@GOTOFF+<nnn>
8027 and similar .plt or .got references.
8028
8029 If we find one, set up the correct relocation in RELOC and copy the
8030 input string, minus the `@GOTOFF' into a malloc'd buffer for
8031 parsing by the calling routine. Return this buffer, and if ADJUST
8032 is non-null set it to the length of the string we removed from the
8033 input line. Otherwise return NULL. */
8034static char *
8035lex_got (enum bfd_reloc_code_real *rel,
8036 int *adjust,
8037 i386_operand_type *types)
8038{
8039 /* Some of the relocations depend on the size of what field is to
8040 be relocated. But in our callers i386_immediate and i386_displacement
8041 we don't yet know the operand size (this will be set by insn
8042 matching). Hence we record the word32 relocation here,
8043 and adjust the reloc according to the real size in reloc(). */
8044 static const struct {
8045 const char *str;
8046 int len;
8047 const enum bfd_reloc_code_real rel[2];
8048 const i386_operand_type types64;
8049 } gotrel[] = {
8050#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8051 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8052 BFD_RELOC_SIZE32 },
8053 OPERAND_TYPE_IMM32_64 },
8054#endif
8055 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8056 BFD_RELOC_X86_64_PLTOFF64 },
8057 OPERAND_TYPE_IMM64 },
8058 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8059 BFD_RELOC_X86_64_PLT32 },
8060 OPERAND_TYPE_IMM32_32S_DISP32 },
8061 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8062 BFD_RELOC_X86_64_GOTPLT64 },
8063 OPERAND_TYPE_IMM64_DISP64 },
8064 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8065 BFD_RELOC_X86_64_GOTOFF64 },
8066 OPERAND_TYPE_IMM64_DISP64 },
8067 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8068 BFD_RELOC_X86_64_GOTPCREL },
8069 OPERAND_TYPE_IMM32_32S_DISP32 },
8070 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8071 BFD_RELOC_X86_64_TLSGD },
8072 OPERAND_TYPE_IMM32_32S_DISP32 },
8073 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8074 _dummy_first_bfd_reloc_code_real },
8075 OPERAND_TYPE_NONE },
8076 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8077 BFD_RELOC_X86_64_TLSLD },
8078 OPERAND_TYPE_IMM32_32S_DISP32 },
8079 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8080 BFD_RELOC_X86_64_GOTTPOFF },
8081 OPERAND_TYPE_IMM32_32S_DISP32 },
8082 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8083 BFD_RELOC_X86_64_TPOFF32 },
8084 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8085 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8086 _dummy_first_bfd_reloc_code_real },
8087 OPERAND_TYPE_NONE },
8088 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8089 BFD_RELOC_X86_64_DTPOFF32 },
8090 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8091 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8092 _dummy_first_bfd_reloc_code_real },
8093 OPERAND_TYPE_NONE },
8094 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8095 _dummy_first_bfd_reloc_code_real },
8096 OPERAND_TYPE_NONE },
8097 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8098 BFD_RELOC_X86_64_GOT32 },
8099 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8100 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8101 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8102 OPERAND_TYPE_IMM32_32S_DISP32 },
8103 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8104 BFD_RELOC_X86_64_TLSDESC_CALL },
8105 OPERAND_TYPE_IMM32_32S_DISP32 },
8106 };
8107 char *cp;
8108 unsigned int j;
8109
8110#if defined (OBJ_MAYBE_ELF)
8111 if (!IS_ELF)
8112 return NULL;
8113#endif
8114
8115 for (cp = input_line_pointer; *cp != '@'; cp++)
8116 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8117 return NULL;
8118
8119 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8120 {
8121 int len = gotrel[j].len;
8122 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8123 {
8124 if (gotrel[j].rel[object_64bit] != 0)
8125 {
8126 int first, second;
8127 char *tmpbuf, *past_reloc;
8128
8129 *rel = gotrel[j].rel[object_64bit];
8130
8131 if (types)
8132 {
8133 if (flag_code != CODE_64BIT)
8134 {
8135 types->bitfield.imm32 = 1;
8136 types->bitfield.disp32 = 1;
8137 }
8138 else
8139 *types = gotrel[j].types64;
8140 }
8141
8142 if (j != 0 && GOT_symbol == NULL)
8143 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8144
8145 /* The length of the first part of our input line. */
8146 first = cp - input_line_pointer;
8147
8148 /* The second part goes from after the reloc token until
8149 (and including) an end_of_line char or comma. */
8150 past_reloc = cp + 1 + len;
8151 cp = past_reloc;
8152 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8153 ++cp;
8154 second = cp + 1 - past_reloc;
8155
8156 /* Allocate and copy string. The trailing NUL shouldn't
8157 be necessary, but be safe. */
8158 tmpbuf = XNEWVEC (char, first + second + 2);
8159 memcpy (tmpbuf, input_line_pointer, first);
8160 if (second != 0 && *past_reloc != ' ')
8161 /* Replace the relocation token with ' ', so that
8162 errors like foo@GOTOFF1 will be detected. */
8163 tmpbuf[first++] = ' ';
8164 else
8165 /* Increment length by 1 if the relocation token is
8166 removed. */
8167 len++;
8168 if (adjust)
8169 *adjust = len;
8170 memcpy (tmpbuf + first, past_reloc, second);
8171 tmpbuf[first + second] = '\0';
8172 return tmpbuf;
8173 }
8174
8175 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8176 gotrel[j].str, 1 << (5 + object_64bit));
8177 return NULL;
8178 }
8179 }
8180
8181 /* Might be a symbol version string. Don't as_bad here. */
8182 return NULL;
8183}
8184#endif
8185
8186#ifdef TE_PE
8187#ifdef lex_got
8188#undef lex_got
8189#endif
8190/* Parse operands of the form
8191 <symbol>@SECREL32+<nnn>
8192
8193 If we find one, set up the correct relocation in RELOC and copy the
8194 input string, minus the `@SECREL32' into a malloc'd buffer for
8195 parsing by the calling routine. Return this buffer, and if ADJUST
8196 is non-null set it to the length of the string we removed from the
8197 input line. Otherwise return NULL.
8198
8199 This function is copied from the ELF version above adjusted for PE targets. */
8200
8201static char *
8202lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8203 int *adjust ATTRIBUTE_UNUSED,
8204 i386_operand_type *types)
8205{
8206 static const struct
8207 {
8208 const char *str;
8209 int len;
8210 const enum bfd_reloc_code_real rel[2];
8211 const i386_operand_type types64;
8212 }
8213 gotrel[] =
8214 {
8215 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8216 BFD_RELOC_32_SECREL },
8217 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8218 };
8219
8220 char *cp;
8221 unsigned j;
8222
8223 for (cp = input_line_pointer; *cp != '@'; cp++)
8224 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8225 return NULL;
8226
8227 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8228 {
8229 int len = gotrel[j].len;
8230
8231 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8232 {
8233 if (gotrel[j].rel[object_64bit] != 0)
8234 {
8235 int first, second;
8236 char *tmpbuf, *past_reloc;
8237
8238 *rel = gotrel[j].rel[object_64bit];
8239 if (adjust)
8240 *adjust = len;
8241
8242 if (types)
8243 {
8244 if (flag_code != CODE_64BIT)
8245 {
8246 types->bitfield.imm32 = 1;
8247 types->bitfield.disp32 = 1;
8248 }
8249 else
8250 *types = gotrel[j].types64;
8251 }
8252
8253 /* The length of the first part of our input line. */
8254 first = cp - input_line_pointer;
8255
8256 /* The second part goes from after the reloc token until
8257 (and including) an end_of_line char or comma. */
8258 past_reloc = cp + 1 + len;
8259 cp = past_reloc;
8260 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8261 ++cp;
8262 second = cp + 1 - past_reloc;
8263
8264 /* Allocate and copy string. The trailing NUL shouldn't
8265 be necessary, but be safe. */
8266 tmpbuf = XNEWVEC (char, first + second + 2);
8267 memcpy (tmpbuf, input_line_pointer, first);
8268 if (second != 0 && *past_reloc != ' ')
8269 /* Replace the relocation token with ' ', so that
8270 errors like foo@SECLREL321 will be detected. */
8271 tmpbuf[first++] = ' ';
8272 memcpy (tmpbuf + first, past_reloc, second);
8273 tmpbuf[first + second] = '\0';
8274 return tmpbuf;
8275 }
8276
8277 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8278 gotrel[j].str, 1 << (5 + object_64bit));
8279 return NULL;
8280 }
8281 }
8282
8283 /* Might be a symbol version string. Don't as_bad here. */
8284 return NULL;
8285}
8286
8287#endif /* TE_PE */
8288
8289bfd_reloc_code_real_type
8290x86_cons (expressionS *exp, int size)
8291{
8292 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8293
8294 intel_syntax = -intel_syntax;
8295
8296 exp->X_md = 0;
8297 if (size == 4 || (object_64bit && size == 8))
8298 {
8299 /* Handle @GOTOFF and the like in an expression. */
8300 char *save;
8301 char *gotfree_input_line;
8302 int adjust = 0;
8303
8304 save = input_line_pointer;
8305 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8306 if (gotfree_input_line)
8307 input_line_pointer = gotfree_input_line;
8308
8309 expression (exp);
8310
8311 if (gotfree_input_line)
8312 {
8313 /* expression () has merrily parsed up to the end of line,
8314 or a comma - in the wrong buffer. Transfer how far
8315 input_line_pointer has moved to the right buffer. */
8316 input_line_pointer = (save
8317 + (input_line_pointer - gotfree_input_line)
8318 + adjust);
8319 free (gotfree_input_line);
8320 if (exp->X_op == O_constant
8321 || exp->X_op == O_absent
8322 || exp->X_op == O_illegal
8323 || exp->X_op == O_register
8324 || exp->X_op == O_big)
8325 {
8326 char c = *input_line_pointer;
8327 *input_line_pointer = 0;
8328 as_bad (_("missing or invalid expression `%s'"), save);
8329 *input_line_pointer = c;
8330 }
8331 }
8332 }
8333 else
8334 expression (exp);
8335
8336 intel_syntax = -intel_syntax;
8337
8338 if (intel_syntax)
8339 i386_intel_simplify (exp);
8340
8341 return got_reloc;
8342}
8343
8344static void
8345signed_cons (int size)
8346{
8347 if (flag_code == CODE_64BIT)
8348 cons_sign = 1;
8349 cons (size);
8350 cons_sign = -1;
8351}
8352
8353#ifdef TE_PE
8354static void
8355pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8356{
8357 expressionS exp;
8358
8359 do
8360 {
8361 expression (&exp);
8362 if (exp.X_op == O_symbol)
8363 exp.X_op = O_secrel;
8364
8365 emit_expr (&exp, 4);
8366 }
8367 while (*input_line_pointer++ == ',');
8368
8369 input_line_pointer--;
8370 demand_empty_rest_of_line ();
8371}
8372#endif
8373
8374/* Handle Vector operations. */
8375
8376static char *
8377check_VecOperations (char *op_string, char *op_end)
8378{
8379 const reg_entry *mask;
8380 const char *saved;
8381 char *end_op;
8382
8383 while (*op_string
8384 && (op_end == NULL || op_string < op_end))
8385 {
8386 saved = op_string;
8387 if (*op_string == '{')
8388 {
8389 op_string++;
8390
8391 /* Check broadcasts. */
8392 if (strncmp (op_string, "1to", 3) == 0)
8393 {
8394 int bcst_type;
8395
8396 if (i.broadcast)
8397 goto duplicated_vec_op;
8398
8399 op_string += 3;
8400 if (*op_string == '8')
8401 bcst_type = BROADCAST_1TO8;
8402 else if (*op_string == '4')
8403 bcst_type = BROADCAST_1TO4;
8404 else if (*op_string == '2')
8405 bcst_type = BROADCAST_1TO2;
8406 else if (*op_string == '1'
8407 && *(op_string+1) == '6')
8408 {
8409 bcst_type = BROADCAST_1TO16;
8410 op_string++;
8411 }
8412 else
8413 {
8414 as_bad (_("Unsupported broadcast: `%s'"), saved);
8415 return NULL;
8416 }
8417 op_string++;
8418
8419 broadcast_op.type = bcst_type;
8420 broadcast_op.operand = this_operand;
8421 i.broadcast = &broadcast_op;
8422 }
8423 /* Check masking operation. */
8424 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8425 {
8426 /* k0 can't be used for write mask. */
8427 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8428 {
8429 as_bad (_("`%s%s' can't be used for write mask"),
8430 register_prefix, mask->reg_name);
8431 return NULL;
8432 }
8433
8434 if (!i.mask)
8435 {
8436 mask_op.mask = mask;
8437 mask_op.zeroing = 0;
8438 mask_op.operand = this_operand;
8439 i.mask = &mask_op;
8440 }
8441 else
8442 {
8443 if (i.mask->mask)
8444 goto duplicated_vec_op;
8445
8446 i.mask->mask = mask;
8447
8448 /* Only "{z}" is allowed here. No need to check
8449 zeroing mask explicitly. */
8450 if (i.mask->operand != this_operand)
8451 {
8452 as_bad (_("invalid write mask `%s'"), saved);
8453 return NULL;
8454 }
8455 }
8456
8457 op_string = end_op;
8458 }
8459 /* Check zeroing-flag for masking operation. */
8460 else if (*op_string == 'z')
8461 {
8462 if (!i.mask)
8463 {
8464 mask_op.mask = NULL;
8465 mask_op.zeroing = 1;
8466 mask_op.operand = this_operand;
8467 i.mask = &mask_op;
8468 }
8469 else
8470 {
8471 if (i.mask->zeroing)
8472 {
8473 duplicated_vec_op:
8474 as_bad (_("duplicated `%s'"), saved);
8475 return NULL;
8476 }
8477
8478 i.mask->zeroing = 1;
8479
8480 /* Only "{%k}" is allowed here. No need to check mask
8481 register explicitly. */
8482 if (i.mask->operand != this_operand)
8483 {
8484 as_bad (_("invalid zeroing-masking `%s'"),
8485 saved);
8486 return NULL;
8487 }
8488 }
8489
8490 op_string++;
8491 }
8492 else
8493 goto unknown_vec_op;
8494
8495 if (*op_string != '}')
8496 {
8497 as_bad (_("missing `}' in `%s'"), saved);
8498 return NULL;
8499 }
8500 op_string++;
8501 continue;
8502 }
8503 unknown_vec_op:
8504 /* We don't know this one. */
8505 as_bad (_("unknown vector operation: `%s'"), saved);
8506 return NULL;
8507 }
8508
8509 if (i.mask && i.mask->zeroing && !i.mask->mask)
8510 {
8511 as_bad (_("zeroing-masking only allowed with write mask"));
8512 return NULL;
8513 }
8514
8515 return op_string;
8516}
8517
8518static int
8519i386_immediate (char *imm_start)
8520{
8521 char *save_input_line_pointer;
8522 char *gotfree_input_line;
8523 segT exp_seg = 0;
8524 expressionS *exp;
8525 i386_operand_type types;
8526
8527 operand_type_set (&types, ~0);
8528
8529 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8530 {
8531 as_bad (_("at most %d immediate operands are allowed"),
8532 MAX_IMMEDIATE_OPERANDS);
8533 return 0;
8534 }
8535
8536 exp = &im_expressions[i.imm_operands++];
8537 i.op[this_operand].imms = exp;
8538
8539 if (is_space_char (*imm_start))
8540 ++imm_start;
8541
8542 save_input_line_pointer = input_line_pointer;
8543 input_line_pointer = imm_start;
8544
8545 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8546 if (gotfree_input_line)
8547 input_line_pointer = gotfree_input_line;
8548
8549 exp_seg = expression (exp);
8550
8551 SKIP_WHITESPACE ();
8552
8553 /* Handle vector operations. */
8554 if (*input_line_pointer == '{')
8555 {
8556 input_line_pointer = check_VecOperations (input_line_pointer,
8557 NULL);
8558 if (input_line_pointer == NULL)
8559 return 0;
8560 }
8561
8562 if (*input_line_pointer)
8563 as_bad (_("junk `%s' after expression"), input_line_pointer);
8564
8565 input_line_pointer = save_input_line_pointer;
8566 if (gotfree_input_line)
8567 {
8568 free (gotfree_input_line);
8569
8570 if (exp->X_op == O_constant || exp->X_op == O_register)
8571 exp->X_op = O_illegal;
8572 }
8573
8574 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8575}
8576
8577static int
8578i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8579 i386_operand_type types, const char *imm_start)
8580{
8581 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8582 {
8583 if (imm_start)
8584 as_bad (_("missing or invalid immediate expression `%s'"),
8585 imm_start);
8586 return 0;
8587 }
8588 else if (exp->X_op == O_constant)
8589 {
8590 /* Size it properly later. */
8591 i.types[this_operand].bitfield.imm64 = 1;
8592 /* If not 64bit, sign extend val. */
8593 if (flag_code != CODE_64BIT
8594 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8595 exp->X_add_number
8596 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8597 }
8598#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8599 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8600 && exp_seg != absolute_section
8601 && exp_seg != text_section
8602 && exp_seg != data_section
8603 && exp_seg != bss_section
8604 && exp_seg != undefined_section
8605 && !bfd_is_com_section (exp_seg))
8606 {
8607 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8608 return 0;
8609 }
8610#endif
8611 else if (!intel_syntax && exp_seg == reg_section)
8612 {
8613 if (imm_start)
8614 as_bad (_("illegal immediate register operand %s"), imm_start);
8615 return 0;
8616 }
8617 else
8618 {
8619 /* This is an address. The size of the address will be
8620 determined later, depending on destination register,
8621 suffix, or the default for the section. */
8622 i.types[this_operand].bitfield.imm8 = 1;
8623 i.types[this_operand].bitfield.imm16 = 1;
8624 i.types[this_operand].bitfield.imm32 = 1;
8625 i.types[this_operand].bitfield.imm32s = 1;
8626 i.types[this_operand].bitfield.imm64 = 1;
8627 i.types[this_operand] = operand_type_and (i.types[this_operand],
8628 types);
8629 }
8630
8631 return 1;
8632}
8633
8634static char *
8635i386_scale (char *scale)
8636{
8637 offsetT val;
8638 char *save = input_line_pointer;
8639
8640 input_line_pointer = scale;
8641 val = get_absolute_expression ();
8642
8643 switch (val)
8644 {
8645 case 1:
8646 i.log2_scale_factor = 0;
8647 break;
8648 case 2:
8649 i.log2_scale_factor = 1;
8650 break;
8651 case 4:
8652 i.log2_scale_factor = 2;
8653 break;
8654 case 8:
8655 i.log2_scale_factor = 3;
8656 break;
8657 default:
8658 {
8659 char sep = *input_line_pointer;
8660
8661 *input_line_pointer = '\0';
8662 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8663 scale);
8664 *input_line_pointer = sep;
8665 input_line_pointer = save;
8666 return NULL;
8667 }
8668 }
8669 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8670 {
8671 as_warn (_("scale factor of %d without an index register"),
8672 1 << i.log2_scale_factor);
8673 i.log2_scale_factor = 0;
8674 }
8675 scale = input_line_pointer;
8676 input_line_pointer = save;
8677 return scale;
8678}
8679
8680static int
8681i386_displacement (char *disp_start, char *disp_end)
8682{
8683 expressionS *exp;
8684 segT exp_seg = 0;
8685 char *save_input_line_pointer;
8686 char *gotfree_input_line;
8687 int override;
8688 i386_operand_type bigdisp, types = anydisp;
8689 int ret;
8690
8691 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8692 {
8693 as_bad (_("at most %d displacement operands are allowed"),
8694 MAX_MEMORY_OPERANDS);
8695 return 0;
8696 }
8697
8698 operand_type_set (&bigdisp, 0);
8699 if ((i.types[this_operand].bitfield.jumpabsolute)
8700 || (!current_templates->start->opcode_modifier.jump
8701 && !current_templates->start->opcode_modifier.jumpdword))
8702 {
8703 bigdisp.bitfield.disp32 = 1;
8704 override = (i.prefix[ADDR_PREFIX] != 0);
8705 if (flag_code == CODE_64BIT)
8706 {
8707 if (!override)
8708 {
8709 bigdisp.bitfield.disp32s = 1;
8710 bigdisp.bitfield.disp64 = 1;
8711 }
8712 }
8713 else if ((flag_code == CODE_16BIT) ^ override)
8714 {
8715 bigdisp.bitfield.disp32 = 0;
8716 bigdisp.bitfield.disp16 = 1;
8717 }
8718 }
8719 else
8720 {
8721 /* For PC-relative branches, the width of the displacement
8722 is dependent upon data size, not address size. */
8723 override = (i.prefix[DATA_PREFIX] != 0);
8724 if (flag_code == CODE_64BIT)
8725 {
8726 if (override || i.suffix == WORD_MNEM_SUFFIX)
8727 bigdisp.bitfield.disp16 = 1;
8728 else
8729 {
8730 bigdisp.bitfield.disp32 = 1;
8731 bigdisp.bitfield.disp32s = 1;
8732 }
8733 }
8734 else
8735 {
8736 if (!override)
8737 override = (i.suffix == (flag_code != CODE_16BIT
8738 ? WORD_MNEM_SUFFIX
8739 : LONG_MNEM_SUFFIX));
8740 bigdisp.bitfield.disp32 = 1;
8741 if ((flag_code == CODE_16BIT) ^ override)
8742 {
8743 bigdisp.bitfield.disp32 = 0;
8744 bigdisp.bitfield.disp16 = 1;
8745 }
8746 }
8747 }
8748 i.types[this_operand] = operand_type_or (i.types[this_operand],
8749 bigdisp);
8750
8751 exp = &disp_expressions[i.disp_operands];
8752 i.op[this_operand].disps = exp;
8753 i.disp_operands++;
8754 save_input_line_pointer = input_line_pointer;
8755 input_line_pointer = disp_start;
8756 END_STRING_AND_SAVE (disp_end);
8757
8758#ifndef GCC_ASM_O_HACK
8759#define GCC_ASM_O_HACK 0
8760#endif
8761#if GCC_ASM_O_HACK
8762 END_STRING_AND_SAVE (disp_end + 1);
8763 if (i.types[this_operand].bitfield.baseIndex
8764 && displacement_string_end[-1] == '+')
8765 {
8766 /* This hack is to avoid a warning when using the "o"
8767 constraint within gcc asm statements.
8768 For instance:
8769
8770 #define _set_tssldt_desc(n,addr,limit,type) \
8771 __asm__ __volatile__ ( \
8772 "movw %w2,%0\n\t" \
8773 "movw %w1,2+%0\n\t" \
8774 "rorl $16,%1\n\t" \
8775 "movb %b1,4+%0\n\t" \
8776 "movb %4,5+%0\n\t" \
8777 "movb $0,6+%0\n\t" \
8778 "movb %h1,7+%0\n\t" \
8779 "rorl $16,%1" \
8780 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8781
8782 This works great except that the output assembler ends
8783 up looking a bit weird if it turns out that there is
8784 no offset. You end up producing code that looks like:
8785
8786 #APP
8787 movw $235,(%eax)
8788 movw %dx,2+(%eax)
8789 rorl $16,%edx
8790 movb %dl,4+(%eax)
8791 movb $137,5+(%eax)
8792 movb $0,6+(%eax)
8793 movb %dh,7+(%eax)
8794 rorl $16,%edx
8795 #NO_APP
8796
8797 So here we provide the missing zero. */
8798
8799 *displacement_string_end = '0';
8800 }
8801#endif
8802 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8803 if (gotfree_input_line)
8804 input_line_pointer = gotfree_input_line;
8805
8806 exp_seg = expression (exp);
8807
8808 SKIP_WHITESPACE ();
8809 if (*input_line_pointer)
8810 as_bad (_("junk `%s' after expression"), input_line_pointer);
8811#if GCC_ASM_O_HACK
8812 RESTORE_END_STRING (disp_end + 1);
8813#endif
8814 input_line_pointer = save_input_line_pointer;
8815 if (gotfree_input_line)
8816 {
8817 free (gotfree_input_line);
8818
8819 if (exp->X_op == O_constant || exp->X_op == O_register)
8820 exp->X_op = O_illegal;
8821 }
8822
8823 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8824
8825 RESTORE_END_STRING (disp_end);
8826
8827 return ret;
8828}
8829
8830static int
8831i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8832 i386_operand_type types, const char *disp_start)
8833{
8834 i386_operand_type bigdisp;
8835 int ret = 1;
8836
8837 /* We do this to make sure that the section symbol is in
8838 the symbol table. We will ultimately change the relocation
8839 to be relative to the beginning of the section. */
8840 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8841 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8842 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8843 {
8844 if (exp->X_op != O_symbol)
8845 goto inv_disp;
8846
8847 if (S_IS_LOCAL (exp->X_add_symbol)
8848 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8849 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8850 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8851 exp->X_op = O_subtract;
8852 exp->X_op_symbol = GOT_symbol;
8853 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8854 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8855 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8856 i.reloc[this_operand] = BFD_RELOC_64;
8857 else
8858 i.reloc[this_operand] = BFD_RELOC_32;
8859 }
8860
8861 else if (exp->X_op == O_absent
8862 || exp->X_op == O_illegal
8863 || exp->X_op == O_big)
8864 {
8865 inv_disp:
8866 as_bad (_("missing or invalid displacement expression `%s'"),
8867 disp_start);
8868 ret = 0;
8869 }
8870
8871 else if (flag_code == CODE_64BIT
8872 && !i.prefix[ADDR_PREFIX]
8873 && exp->X_op == O_constant)
8874 {
8875 /* Since displacement is signed extended to 64bit, don't allow
8876 disp32 and turn off disp32s if they are out of range. */
8877 i.types[this_operand].bitfield.disp32 = 0;
8878 if (!fits_in_signed_long (exp->X_add_number))
8879 {
8880 i.types[this_operand].bitfield.disp32s = 0;
8881 if (i.types[this_operand].bitfield.baseindex)
8882 {
8883 as_bad (_("0x%lx out range of signed 32bit displacement"),
8884 (long) exp->X_add_number);
8885 ret = 0;
8886 }
8887 }
8888 }
8889
8890#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8891 else if (exp->X_op != O_constant
8892 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8893 && exp_seg != absolute_section
8894 && exp_seg != text_section
8895 && exp_seg != data_section
8896 && exp_seg != bss_section
8897 && exp_seg != undefined_section
8898 && !bfd_is_com_section (exp_seg))
8899 {
8900 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8901 ret = 0;
8902 }
8903#endif
8904
8905 /* Check if this is a displacement only operand. */
8906 bigdisp = i.types[this_operand];
8907 bigdisp.bitfield.disp8 = 0;
8908 bigdisp.bitfield.disp16 = 0;
8909 bigdisp.bitfield.disp32 = 0;
8910 bigdisp.bitfield.disp32s = 0;
8911 bigdisp.bitfield.disp64 = 0;
8912 if (operand_type_all_zero (&bigdisp))
8913 i.types[this_operand] = operand_type_and (i.types[this_operand],
8914 types);
8915
8916 return ret;
8917}
8918
8919/* Return the active addressing mode, taking address override and
8920 registers forming the address into consideration. Update the
8921 address override prefix if necessary. */
8922
8923static enum flag_code
8924i386_addressing_mode (void)
8925{
8926 enum flag_code addr_mode;
8927
8928 if (i.prefix[ADDR_PREFIX])
8929 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8930 else
8931 {
8932 addr_mode = flag_code;
8933
8934#if INFER_ADDR_PREFIX
8935 if (i.mem_operands == 0)
8936 {
8937 /* Infer address prefix from the first memory operand. */
8938 const reg_entry *addr_reg = i.base_reg;
8939
8940 if (addr_reg == NULL)
8941 addr_reg = i.index_reg;
8942
8943 if (addr_reg)
8944 {
8945 if (addr_reg->reg_num == RegEip
8946 || addr_reg->reg_num == RegEiz
8947 || addr_reg->reg_type.bitfield.dword)
8948 addr_mode = CODE_32BIT;
8949 else if (flag_code != CODE_64BIT
8950 && addr_reg->reg_type.bitfield.word)
8951 addr_mode = CODE_16BIT;
8952
8953 if (addr_mode != flag_code)
8954 {
8955 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8956 i.prefixes += 1;
8957 /* Change the size of any displacement too. At most one
8958 of Disp16 or Disp32 is set.
8959 FIXME. There doesn't seem to be any real need for
8960 separate Disp16 and Disp32 flags. The same goes for
8961 Imm16 and Imm32. Removing them would probably clean
8962 up the code quite a lot. */
8963 if (flag_code != CODE_64BIT
8964 && (i.types[this_operand].bitfield.disp16
8965 || i.types[this_operand].bitfield.disp32))
8966 i.types[this_operand]
8967 = operand_type_xor (i.types[this_operand], disp16_32);
8968 }
8969 }
8970 }
8971#endif
8972 }
8973
8974 return addr_mode;
8975}
8976
8977/* Make sure the memory operand we've been dealt is valid.
8978 Return 1 on success, 0 on a failure. */
8979
8980static int
8981i386_index_check (const char *operand_string)
8982{
8983 const char *kind = "base/index";
8984 enum flag_code addr_mode = i386_addressing_mode ();
8985
8986 if (current_templates->start->opcode_modifier.isstring
8987 && !current_templates->start->opcode_modifier.immext
8988 && (current_templates->end[-1].opcode_modifier.isstring
8989 || i.mem_operands))
8990 {
8991 /* Memory operands of string insns are special in that they only allow
8992 a single register (rDI, rSI, or rBX) as their memory address. */
8993 const reg_entry *expected_reg;
8994 static const char *di_si[][2] =
8995 {
8996 { "esi", "edi" },
8997 { "si", "di" },
8998 { "rsi", "rdi" }
8999 };
9000 static const char *bx[] = { "ebx", "bx", "rbx" };
9001
9002 kind = "string address";
9003
9004 if (current_templates->start->opcode_modifier.repprefixok)
9005 {
9006 i386_operand_type type = current_templates->end[-1].operand_types[0];
9007
9008 if (!type.bitfield.baseindex
9009 || ((!i.mem_operands != !intel_syntax)
9010 && current_templates->end[-1].operand_types[1]
9011 .bitfield.baseindex))
9012 type = current_templates->end[-1].operand_types[1];
9013 expected_reg = hash_find (reg_hash,
9014 di_si[addr_mode][type.bitfield.esseg]);
9015
9016 }
9017 else
9018 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9019
9020 if (i.base_reg != expected_reg
9021 || i.index_reg
9022 || operand_type_check (i.types[this_operand], disp))
9023 {
9024 /* The second memory operand must have the same size as
9025 the first one. */
9026 if (i.mem_operands
9027 && i.base_reg
9028 && !((addr_mode == CODE_64BIT
9029 && i.base_reg->reg_type.bitfield.qword)
9030 || (addr_mode == CODE_32BIT
9031 ? i.base_reg->reg_type.bitfield.dword
9032 : i.base_reg->reg_type.bitfield.word)))
9033 goto bad_address;
9034
9035 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9036 operand_string,
9037 intel_syntax ? '[' : '(',
9038 register_prefix,
9039 expected_reg->reg_name,
9040 intel_syntax ? ']' : ')');
9041 return 1;
9042 }
9043 else
9044 return 1;
9045
9046bad_address:
9047 as_bad (_("`%s' is not a valid %s expression"),
9048 operand_string, kind);
9049 return 0;
9050 }
9051 else
9052 {
9053 if (addr_mode != CODE_16BIT)
9054 {
9055 /* 32-bit/64-bit checks. */
9056 if ((i.base_reg
9057 && (addr_mode == CODE_64BIT
9058 ? !i.base_reg->reg_type.bitfield.qword
9059 : !i.base_reg->reg_type.bitfield.dword)
9060 && (i.index_reg
9061 || (i.base_reg->reg_num
9062 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9063 || (i.index_reg
9064 && !i.index_reg->reg_type.bitfield.xmmword
9065 && !i.index_reg->reg_type.bitfield.ymmword
9066 && !i.index_reg->reg_type.bitfield.zmmword
9067 && ((addr_mode == CODE_64BIT
9068 ? !(i.index_reg->reg_type.bitfield.qword
9069 || i.index_reg->reg_num == RegRiz)
9070 : !(i.index_reg->reg_type.bitfield.dword
9071 || i.index_reg->reg_num == RegEiz))
9072 || !i.index_reg->reg_type.bitfield.baseindex)))
9073 goto bad_address;
9074
9075 /* bndmk, bndldx, and bndstx have special restrictions. */
9076 if (current_templates->start->base_opcode == 0xf30f1b
9077 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9078 {
9079 /* They cannot use RIP-relative addressing. */
9080 if (i.base_reg && i.base_reg->reg_num == RegRip)
9081 {
9082 as_bad (_("`%s' cannot be used here"), operand_string);
9083 return 0;
9084 }
9085
9086 /* bndldx and bndstx ignore their scale factor. */
9087 if (current_templates->start->base_opcode != 0xf30f1b
9088 && i.log2_scale_factor)
9089 as_warn (_("register scaling is being ignored here"));
9090 }
9091 }
9092 else
9093 {
9094 /* 16-bit checks. */
9095 if ((i.base_reg
9096 && (!i.base_reg->reg_type.bitfield.word
9097 || !i.base_reg->reg_type.bitfield.baseindex))
9098 || (i.index_reg
9099 && (!i.index_reg->reg_type.bitfield.word
9100 || !i.index_reg->reg_type.bitfield.baseindex
9101 || !(i.base_reg
9102 && i.base_reg->reg_num < 6
9103 && i.index_reg->reg_num >= 6
9104 && i.log2_scale_factor == 0))))
9105 goto bad_address;
9106 }
9107 }
9108 return 1;
9109}
9110
9111/* Handle vector immediates. */
9112
9113static int
9114RC_SAE_immediate (const char *imm_start)
9115{
9116 unsigned int match_found, j;
9117 const char *pstr = imm_start;
9118 expressionS *exp;
9119
9120 if (*pstr != '{')
9121 return 0;
9122
9123 pstr++;
9124 match_found = 0;
9125 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9126 {
9127 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9128 {
9129 if (!i.rounding)
9130 {
9131 rc_op.type = RC_NamesTable[j].type;
9132 rc_op.operand = this_operand;
9133 i.rounding = &rc_op;
9134 }
9135 else
9136 {
9137 as_bad (_("duplicated `%s'"), imm_start);
9138 return 0;
9139 }
9140 pstr += RC_NamesTable[j].len;
9141 match_found = 1;
9142 break;
9143 }
9144 }
9145 if (!match_found)
9146 return 0;
9147
9148 if (*pstr++ != '}')
9149 {
9150 as_bad (_("Missing '}': '%s'"), imm_start);
9151 return 0;
9152 }
9153 /* RC/SAE immediate string should contain nothing more. */;
9154 if (*pstr != 0)
9155 {
9156 as_bad (_("Junk after '}': '%s'"), imm_start);
9157 return 0;
9158 }
9159
9160 exp = &im_expressions[i.imm_operands++];
9161 i.op[this_operand].imms = exp;
9162
9163 exp->X_op = O_constant;
9164 exp->X_add_number = 0;
9165 exp->X_add_symbol = (symbolS *) 0;
9166 exp->X_op_symbol = (symbolS *) 0;
9167
9168 i.types[this_operand].bitfield.imm8 = 1;
9169 return 1;
9170}
9171
9172/* Only string instructions can have a second memory operand, so
9173 reduce current_templates to just those if it contains any. */
9174static int
9175maybe_adjust_templates (void)
9176{
9177 const insn_template *t;
9178
9179 gas_assert (i.mem_operands == 1);
9180
9181 for (t = current_templates->start; t < current_templates->end; ++t)
9182 if (t->opcode_modifier.isstring)
9183 break;
9184
9185 if (t < current_templates->end)
9186 {
9187 static templates aux_templates;
9188 bfd_boolean recheck;
9189
9190 aux_templates.start = t;
9191 for (; t < current_templates->end; ++t)
9192 if (!t->opcode_modifier.isstring)
9193 break;
9194 aux_templates.end = t;
9195
9196 /* Determine whether to re-check the first memory operand. */
9197 recheck = (aux_templates.start != current_templates->start
9198 || t != current_templates->end);
9199
9200 current_templates = &aux_templates;
9201
9202 if (recheck)
9203 {
9204 i.mem_operands = 0;
9205 if (i.memop1_string != NULL
9206 && i386_index_check (i.memop1_string) == 0)
9207 return 0;
9208 i.mem_operands = 1;
9209 }
9210 }
9211
9212 return 1;
9213}
9214
9215/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9216 on error. */
9217
9218static int
9219i386_att_operand (char *operand_string)
9220{
9221 const reg_entry *r;
9222 char *end_op;
9223 char *op_string = operand_string;
9224
9225 if (is_space_char (*op_string))
9226 ++op_string;
9227
9228 /* We check for an absolute prefix (differentiating,
9229 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9230 if (*op_string == ABSOLUTE_PREFIX)
9231 {
9232 ++op_string;
9233 if (is_space_char (*op_string))
9234 ++op_string;
9235 i.types[this_operand].bitfield.jumpabsolute = 1;
9236 }
9237
9238 /* Check if operand is a register. */
9239 if ((r = parse_register (op_string, &end_op)) != NULL)
9240 {
9241 i386_operand_type temp;
9242
9243 /* Check for a segment override by searching for ':' after a
9244 segment register. */
9245 op_string = end_op;
9246 if (is_space_char (*op_string))
9247 ++op_string;
9248 if (*op_string == ':'
9249 && (r->reg_type.bitfield.sreg2
9250 || r->reg_type.bitfield.sreg3))
9251 {
9252 switch (r->reg_num)
9253 {
9254 case 0:
9255 i.seg[i.mem_operands] = &es;
9256 break;
9257 case 1:
9258 i.seg[i.mem_operands] = &cs;
9259 break;
9260 case 2:
9261 i.seg[i.mem_operands] = &ss;
9262 break;
9263 case 3:
9264 i.seg[i.mem_operands] = &ds;
9265 break;
9266 case 4:
9267 i.seg[i.mem_operands] = &fs;
9268 break;
9269 case 5:
9270 i.seg[i.mem_operands] = &gs;
9271 break;
9272 }
9273
9274 /* Skip the ':' and whitespace. */
9275 ++op_string;
9276 if (is_space_char (*op_string))
9277 ++op_string;
9278
9279 if (!is_digit_char (*op_string)
9280 && !is_identifier_char (*op_string)
9281 && *op_string != '('
9282 && *op_string != ABSOLUTE_PREFIX)
9283 {
9284 as_bad (_("bad memory operand `%s'"), op_string);
9285 return 0;
9286 }
9287 /* Handle case of %es:*foo. */
9288 if (*op_string == ABSOLUTE_PREFIX)
9289 {
9290 ++op_string;
9291 if (is_space_char (*op_string))
9292 ++op_string;
9293 i.types[this_operand].bitfield.jumpabsolute = 1;
9294 }
9295 goto do_memory_reference;
9296 }
9297
9298 /* Handle vector operations. */
9299 if (*op_string == '{')
9300 {
9301 op_string = check_VecOperations (op_string, NULL);
9302 if (op_string == NULL)
9303 return 0;
9304 }
9305
9306 if (*op_string)
9307 {
9308 as_bad (_("junk `%s' after register"), op_string);
9309 return 0;
9310 }
9311 temp = r->reg_type;
9312 temp.bitfield.baseindex = 0;
9313 i.types[this_operand] = operand_type_or (i.types[this_operand],
9314 temp);
9315 i.types[this_operand].bitfield.unspecified = 0;
9316 i.op[this_operand].regs = r;
9317 i.reg_operands++;
9318 }
9319 else if (*op_string == REGISTER_PREFIX)
9320 {
9321 as_bad (_("bad register name `%s'"), op_string);
9322 return 0;
9323 }
9324 else if (*op_string == IMMEDIATE_PREFIX)
9325 {
9326 ++op_string;
9327 if (i.types[this_operand].bitfield.jumpabsolute)
9328 {
9329 as_bad (_("immediate operand illegal with absolute jump"));
9330 return 0;
9331 }
9332 if (!i386_immediate (op_string))
9333 return 0;
9334 }
9335 else if (RC_SAE_immediate (operand_string))
9336 {
9337 /* If it is a RC or SAE immediate, do nothing. */
9338 ;
9339 }
9340 else if (is_digit_char (*op_string)
9341 || is_identifier_char (*op_string)
9342 || *op_string == '"'
9343 || *op_string == '(')
9344 {
9345 /* This is a memory reference of some sort. */
9346 char *base_string;
9347
9348 /* Start and end of displacement string expression (if found). */
9349 char *displacement_string_start;
9350 char *displacement_string_end;
9351 char *vop_start;
9352
9353 do_memory_reference:
9354 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9355 return 0;
9356 if ((i.mem_operands == 1
9357 && !current_templates->start->opcode_modifier.isstring)
9358 || i.mem_operands == 2)
9359 {
9360 as_bad (_("too many memory references for `%s'"),
9361 current_templates->start->name);
9362 return 0;
9363 }
9364
9365 /* Check for base index form. We detect the base index form by
9366 looking for an ')' at the end of the operand, searching
9367 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9368 after the '('. */
9369 base_string = op_string + strlen (op_string);
9370
9371 /* Handle vector operations. */
9372 vop_start = strchr (op_string, '{');
9373 if (vop_start && vop_start < base_string)
9374 {
9375 if (check_VecOperations (vop_start, base_string) == NULL)
9376 return 0;
9377 base_string = vop_start;
9378 }
9379
9380 --base_string;
9381 if (is_space_char (*base_string))
9382 --base_string;
9383
9384 /* If we only have a displacement, set-up for it to be parsed later. */
9385 displacement_string_start = op_string;
9386 displacement_string_end = base_string + 1;
9387
9388 if (*base_string == ')')
9389 {
9390 char *temp_string;
9391 unsigned int parens_balanced = 1;
9392 /* We've already checked that the number of left & right ()'s are
9393 equal, so this loop will not be infinite. */
9394 do
9395 {
9396 base_string--;
9397 if (*base_string == ')')
9398 parens_balanced++;
9399 if (*base_string == '(')
9400 parens_balanced--;
9401 }
9402 while (parens_balanced);
9403
9404 temp_string = base_string;
9405
9406 /* Skip past '(' and whitespace. */
9407 ++base_string;
9408 if (is_space_char (*base_string))
9409 ++base_string;
9410
9411 if (*base_string == ','
9412 || ((i.base_reg = parse_register (base_string, &end_op))
9413 != NULL))
9414 {
9415 displacement_string_end = temp_string;
9416
9417 i.types[this_operand].bitfield.baseindex = 1;
9418
9419 if (i.base_reg)
9420 {
9421 base_string = end_op;
9422 if (is_space_char (*base_string))
9423 ++base_string;
9424 }
9425
9426 /* There may be an index reg or scale factor here. */
9427 if (*base_string == ',')
9428 {
9429 ++base_string;
9430 if (is_space_char (*base_string))
9431 ++base_string;
9432
9433 if ((i.index_reg = parse_register (base_string, &end_op))
9434 != NULL)
9435 {
9436 base_string = end_op;
9437 if (is_space_char (*base_string))
9438 ++base_string;
9439 if (*base_string == ',')
9440 {
9441 ++base_string;
9442 if (is_space_char (*base_string))
9443 ++base_string;
9444 }
9445 else if (*base_string != ')')
9446 {
9447 as_bad (_("expecting `,' or `)' "
9448 "after index register in `%s'"),
9449 operand_string);
9450 return 0;
9451 }
9452 }
9453 else if (*base_string == REGISTER_PREFIX)
9454 {
9455 end_op = strchr (base_string, ',');
9456 if (end_op)
9457 *end_op = '\0';
9458 as_bad (_("bad register name `%s'"), base_string);
9459 return 0;
9460 }
9461
9462 /* Check for scale factor. */
9463 if (*base_string != ')')
9464 {
9465 char *end_scale = i386_scale (base_string);
9466
9467 if (!end_scale)
9468 return 0;
9469
9470 base_string = end_scale;
9471 if (is_space_char (*base_string))
9472 ++base_string;
9473 if (*base_string != ')')
9474 {
9475 as_bad (_("expecting `)' "
9476 "after scale factor in `%s'"),
9477 operand_string);
9478 return 0;
9479 }
9480 }
9481 else if (!i.index_reg)
9482 {
9483 as_bad (_("expecting index register or scale factor "
9484 "after `,'; got '%c'"),
9485 *base_string);
9486 return 0;
9487 }
9488 }
9489 else if (*base_string != ')')
9490 {
9491 as_bad (_("expecting `,' or `)' "
9492 "after base register in `%s'"),
9493 operand_string);
9494 return 0;
9495 }
9496 }
9497 else if (*base_string == REGISTER_PREFIX)
9498 {
9499 end_op = strchr (base_string, ',');
9500 if (end_op)
9501 *end_op = '\0';
9502 as_bad (_("bad register name `%s'"), base_string);
9503 return 0;
9504 }
9505 }
9506
9507 /* If there's an expression beginning the operand, parse it,
9508 assuming displacement_string_start and
9509 displacement_string_end are meaningful. */
9510 if (displacement_string_start != displacement_string_end)
9511 {
9512 if (!i386_displacement (displacement_string_start,
9513 displacement_string_end))
9514 return 0;
9515 }
9516
9517 /* Special case for (%dx) while doing input/output op. */
9518 if (i.base_reg
9519 && operand_type_equal (&i.base_reg->reg_type,
9520 &reg16_inoutportreg)
9521 && i.index_reg == 0
9522 && i.log2_scale_factor == 0
9523 && i.seg[i.mem_operands] == 0
9524 && !operand_type_check (i.types[this_operand], disp))
9525 {
9526 i.types[this_operand] = inoutportreg;
9527 return 1;
9528 }
9529
9530 if (i386_index_check (operand_string) == 0)
9531 return 0;
9532 i.types[this_operand].bitfield.mem = 1;
9533 if (i.mem_operands == 0)
9534 i.memop1_string = xstrdup (operand_string);
9535 i.mem_operands++;
9536 }
9537 else
9538 {
9539 /* It's not a memory operand; argh! */
9540 as_bad (_("invalid char %s beginning operand %d `%s'"),
9541 output_invalid (*op_string),
9542 this_operand + 1,
9543 op_string);
9544 return 0;
9545 }
9546 return 1; /* Normal return. */
9547}
9548\f
9549/* Calculate the maximum variable size (i.e., excluding fr_fix)
9550 that an rs_machine_dependent frag may reach. */
9551
9552unsigned int
9553i386_frag_max_var (fragS *frag)
9554{
9555 /* The only relaxable frags are for jumps.
9556 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9557 gas_assert (frag->fr_type == rs_machine_dependent);
9558 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9559}
9560
9561#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9562static int
9563elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9564{
9565 /* STT_GNU_IFUNC symbol must go through PLT. */
9566 if ((symbol_get_bfdsym (fr_symbol)->flags
9567 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9568 return 0;
9569
9570 if (!S_IS_EXTERNAL (fr_symbol))
9571 /* Symbol may be weak or local. */
9572 return !S_IS_WEAK (fr_symbol);
9573
9574 /* Global symbols with non-default visibility can't be preempted. */
9575 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9576 return 1;
9577
9578 if (fr_var != NO_RELOC)
9579 switch ((enum bfd_reloc_code_real) fr_var)
9580 {
9581 case BFD_RELOC_386_PLT32:
9582 case BFD_RELOC_X86_64_PLT32:
9583 /* Symbol with PLT relocation may be preempted. */
9584 return 0;
9585 default:
9586 abort ();
9587 }
9588
9589 /* Global symbols with default visibility in a shared library may be
9590 preempted by another definition. */
9591 return !shared;
9592}
9593#endif
9594
9595/* md_estimate_size_before_relax()
9596
9597 Called just before relax() for rs_machine_dependent frags. The x86
9598 assembler uses these frags to handle variable size jump
9599 instructions.
9600
9601 Any symbol that is now undefined will not become defined.
9602 Return the correct fr_subtype in the frag.
9603 Return the initial "guess for variable size of frag" to caller.
9604 The guess is actually the growth beyond the fixed part. Whatever
9605 we do to grow the fixed or variable part contributes to our
9606 returned value. */
9607
9608int
9609md_estimate_size_before_relax (fragS *fragP, segT segment)
9610{
9611 /* We've already got fragP->fr_subtype right; all we have to do is
9612 check for un-relaxable symbols. On an ELF system, we can't relax
9613 an externally visible symbol, because it may be overridden by a
9614 shared library. */
9615 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9616#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9617 || (IS_ELF
9618 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9619 fragP->fr_var))
9620#endif
9621#if defined (OBJ_COFF) && defined (TE_PE)
9622 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9623 && S_IS_WEAK (fragP->fr_symbol))
9624#endif
9625 )
9626 {
9627 /* Symbol is undefined in this segment, or we need to keep a
9628 reloc so that weak symbols can be overridden. */
9629 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9630 enum bfd_reloc_code_real reloc_type;
9631 unsigned char *opcode;
9632 int old_fr_fix;
9633
9634 if (fragP->fr_var != NO_RELOC)
9635 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9636 else if (size == 2)
9637 reloc_type = BFD_RELOC_16_PCREL;
9638#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9639 else if (need_plt32_p (fragP->fr_symbol))
9640 reloc_type = BFD_RELOC_X86_64_PLT32;
9641#endif
9642 else
9643 reloc_type = BFD_RELOC_32_PCREL;
9644
9645 old_fr_fix = fragP->fr_fix;
9646 opcode = (unsigned char *) fragP->fr_opcode;
9647
9648 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9649 {
9650 case UNCOND_JUMP:
9651 /* Make jmp (0xeb) a (d)word displacement jump. */
9652 opcode[0] = 0xe9;
9653 fragP->fr_fix += size;
9654 fix_new (fragP, old_fr_fix, size,
9655 fragP->fr_symbol,
9656 fragP->fr_offset, 1,
9657 reloc_type);
9658 break;
9659
9660 case COND_JUMP86:
9661 if (size == 2
9662 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9663 {
9664 /* Negate the condition, and branch past an
9665 unconditional jump. */
9666 opcode[0] ^= 1;
9667 opcode[1] = 3;
9668 /* Insert an unconditional jump. */
9669 opcode[2] = 0xe9;
9670 /* We added two extra opcode bytes, and have a two byte
9671 offset. */
9672 fragP->fr_fix += 2 + 2;
9673 fix_new (fragP, old_fr_fix + 2, 2,
9674 fragP->fr_symbol,
9675 fragP->fr_offset, 1,
9676 reloc_type);
9677 break;
9678 }
9679 /* Fall through. */
9680
9681 case COND_JUMP:
9682 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9683 {
9684 fixS *fixP;
9685
9686 fragP->fr_fix += 1;
9687 fixP = fix_new (fragP, old_fr_fix, 1,
9688 fragP->fr_symbol,
9689 fragP->fr_offset, 1,
9690 BFD_RELOC_8_PCREL);
9691 fixP->fx_signed = 1;
9692 break;
9693 }
9694
9695 /* This changes the byte-displacement jump 0x7N
9696 to the (d)word-displacement jump 0x0f,0x8N. */
9697 opcode[1] = opcode[0] + 0x10;
9698 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9699 /* We've added an opcode byte. */
9700 fragP->fr_fix += 1 + size;
9701 fix_new (fragP, old_fr_fix + 1, size,
9702 fragP->fr_symbol,
9703 fragP->fr_offset, 1,
9704 reloc_type);
9705 break;
9706
9707 default:
9708 BAD_CASE (fragP->fr_subtype);
9709 break;
9710 }
9711 frag_wane (fragP);
9712 return fragP->fr_fix - old_fr_fix;
9713 }
9714
9715 /* Guess size depending on current relax state. Initially the relax
9716 state will correspond to a short jump and we return 1, because
9717 the variable part of the frag (the branch offset) is one byte
9718 long. However, we can relax a section more than once and in that
9719 case we must either set fr_subtype back to the unrelaxed state,
9720 or return the value for the appropriate branch. */
9721 return md_relax_table[fragP->fr_subtype].rlx_length;
9722}
9723
9724/* Called after relax() is finished.
9725
9726 In: Address of frag.
9727 fr_type == rs_machine_dependent.
9728 fr_subtype is what the address relaxed to.
9729
9730 Out: Any fixSs and constants are set up.
9731 Caller will turn frag into a ".space 0". */
9732
9733void
9734md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9735 fragS *fragP)
9736{
9737 unsigned char *opcode;
9738 unsigned char *where_to_put_displacement = NULL;
9739 offsetT target_address;
9740 offsetT opcode_address;
9741 unsigned int extension = 0;
9742 offsetT displacement_from_opcode_start;
9743
9744 opcode = (unsigned char *) fragP->fr_opcode;
9745
9746 /* Address we want to reach in file space. */
9747 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9748
9749 /* Address opcode resides at in file space. */
9750 opcode_address = fragP->fr_address + fragP->fr_fix;
9751
9752 /* Displacement from opcode start to fill into instruction. */
9753 displacement_from_opcode_start = target_address - opcode_address;
9754
9755 if ((fragP->fr_subtype & BIG) == 0)
9756 {
9757 /* Don't have to change opcode. */
9758 extension = 1; /* 1 opcode + 1 displacement */
9759 where_to_put_displacement = &opcode[1];
9760 }
9761 else
9762 {
9763 if (no_cond_jump_promotion
9764 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9765 as_warn_where (fragP->fr_file, fragP->fr_line,
9766 _("long jump required"));
9767
9768 switch (fragP->fr_subtype)
9769 {
9770 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9771 extension = 4; /* 1 opcode + 4 displacement */
9772 opcode[0] = 0xe9;
9773 where_to_put_displacement = &opcode[1];
9774 break;
9775
9776 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9777 extension = 2; /* 1 opcode + 2 displacement */
9778 opcode[0] = 0xe9;
9779 where_to_put_displacement = &opcode[1];
9780 break;
9781
9782 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9783 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9784 extension = 5; /* 2 opcode + 4 displacement */
9785 opcode[1] = opcode[0] + 0x10;
9786 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9787 where_to_put_displacement = &opcode[2];
9788 break;
9789
9790 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9791 extension = 3; /* 2 opcode + 2 displacement */
9792 opcode[1] = opcode[0] + 0x10;
9793 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9794 where_to_put_displacement = &opcode[2];
9795 break;
9796
9797 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9798 extension = 4;
9799 opcode[0] ^= 1;
9800 opcode[1] = 3;
9801 opcode[2] = 0xe9;
9802 where_to_put_displacement = &opcode[3];
9803 break;
9804
9805 default:
9806 BAD_CASE (fragP->fr_subtype);
9807 break;
9808 }
9809 }
9810
9811 /* If size if less then four we are sure that the operand fits,
9812 but if it's 4, then it could be that the displacement is larger
9813 then -/+ 2GB. */
9814 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9815 && object_64bit
9816 && ((addressT) (displacement_from_opcode_start - extension
9817 + ((addressT) 1 << 31))
9818 > (((addressT) 2 << 31) - 1)))
9819 {
9820 as_bad_where (fragP->fr_file, fragP->fr_line,
9821 _("jump target out of range"));
9822 /* Make us emit 0. */
9823 displacement_from_opcode_start = extension;
9824 }
9825 /* Now put displacement after opcode. */
9826 md_number_to_chars ((char *) where_to_put_displacement,
9827 (valueT) (displacement_from_opcode_start - extension),
9828 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9829 fragP->fr_fix += extension;
9830}
9831\f
9832/* Apply a fixup (fixP) to segment data, once it has been determined
9833 by our caller that we have all the info we need to fix it up.
9834
9835 Parameter valP is the pointer to the value of the bits.
9836
9837 On the 386, immediates, displacements, and data pointers are all in
9838 the same (little-endian) format, so we don't need to care about which
9839 we are handling. */
9840
9841void
9842md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9843{
9844 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9845 valueT value = *valP;
9846
9847#if !defined (TE_Mach)
9848 if (fixP->fx_pcrel)
9849 {
9850 switch (fixP->fx_r_type)
9851 {
9852 default:
9853 break;
9854
9855 case BFD_RELOC_64:
9856 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9857 break;
9858 case BFD_RELOC_32:
9859 case BFD_RELOC_X86_64_32S:
9860 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9861 break;
9862 case BFD_RELOC_16:
9863 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9864 break;
9865 case BFD_RELOC_8:
9866 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9867 break;
9868 }
9869 }
9870
9871 if (fixP->fx_addsy != NULL
9872 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9873 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9874 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9875 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9876 && !use_rela_relocations)
9877 {
9878 /* This is a hack. There should be a better way to handle this.
9879 This covers for the fact that bfd_install_relocation will
9880 subtract the current location (for partial_inplace, PC relative
9881 relocations); see more below. */
9882#ifndef OBJ_AOUT
9883 if (IS_ELF
9884#ifdef TE_PE
9885 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9886#endif
9887 )
9888 value += fixP->fx_where + fixP->fx_frag->fr_address;
9889#endif
9890#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9891 if (IS_ELF)
9892 {
9893 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9894
9895 if ((sym_seg == seg
9896 || (symbol_section_p (fixP->fx_addsy)
9897 && sym_seg != absolute_section))
9898 && !generic_force_reloc (fixP))
9899 {
9900 /* Yes, we add the values in twice. This is because
9901 bfd_install_relocation subtracts them out again. I think
9902 bfd_install_relocation is broken, but I don't dare change
9903 it. FIXME. */
9904 value += fixP->fx_where + fixP->fx_frag->fr_address;
9905 }
9906 }
9907#endif
9908#if defined (OBJ_COFF) && defined (TE_PE)
9909 /* For some reason, the PE format does not store a
9910 section address offset for a PC relative symbol. */
9911 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9912 || S_IS_WEAK (fixP->fx_addsy))
9913 value += md_pcrel_from (fixP);
9914#endif
9915 }
9916#if defined (OBJ_COFF) && defined (TE_PE)
9917 if (fixP->fx_addsy != NULL
9918 && S_IS_WEAK (fixP->fx_addsy)
9919 /* PR 16858: Do not modify weak function references. */
9920 && ! fixP->fx_pcrel)
9921 {
9922#if !defined (TE_PEP)
9923 /* For x86 PE weak function symbols are neither PC-relative
9924 nor do they set S_IS_FUNCTION. So the only reliable way
9925 to detect them is to check the flags of their containing
9926 section. */
9927 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9928 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9929 ;
9930 else
9931#endif
9932 value -= S_GET_VALUE (fixP->fx_addsy);
9933 }
9934#endif
9935
9936 /* Fix a few things - the dynamic linker expects certain values here,
9937 and we must not disappoint it. */
9938#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9939 if (IS_ELF && fixP->fx_addsy)
9940 switch (fixP->fx_r_type)
9941 {
9942 case BFD_RELOC_386_PLT32:
9943 case BFD_RELOC_X86_64_PLT32:
9944 /* Make the jump instruction point to the address of the operand. At
9945 runtime we merely add the offset to the actual PLT entry. */
9946 value = -4;
9947 break;
9948
9949 case BFD_RELOC_386_TLS_GD:
9950 case BFD_RELOC_386_TLS_LDM:
9951 case BFD_RELOC_386_TLS_IE_32:
9952 case BFD_RELOC_386_TLS_IE:
9953 case BFD_RELOC_386_TLS_GOTIE:
9954 case BFD_RELOC_386_TLS_GOTDESC:
9955 case BFD_RELOC_X86_64_TLSGD:
9956 case BFD_RELOC_X86_64_TLSLD:
9957 case BFD_RELOC_X86_64_GOTTPOFF:
9958 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9959 value = 0; /* Fully resolved at runtime. No addend. */
9960 /* Fallthrough */
9961 case BFD_RELOC_386_TLS_LE:
9962 case BFD_RELOC_386_TLS_LDO_32:
9963 case BFD_RELOC_386_TLS_LE_32:
9964 case BFD_RELOC_X86_64_DTPOFF32:
9965 case BFD_RELOC_X86_64_DTPOFF64:
9966 case BFD_RELOC_X86_64_TPOFF32:
9967 case BFD_RELOC_X86_64_TPOFF64:
9968 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9969 break;
9970
9971 case BFD_RELOC_386_TLS_DESC_CALL:
9972 case BFD_RELOC_X86_64_TLSDESC_CALL:
9973 value = 0; /* Fully resolved at runtime. No addend. */
9974 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9975 fixP->fx_done = 0;
9976 return;
9977
9978 case BFD_RELOC_VTABLE_INHERIT:
9979 case BFD_RELOC_VTABLE_ENTRY:
9980 fixP->fx_done = 0;
9981 return;
9982
9983 default:
9984 break;
9985 }
9986#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9987 *valP = value;
9988#endif /* !defined (TE_Mach) */
9989
9990 /* Are we finished with this relocation now? */
9991 if (fixP->fx_addsy == NULL)
9992 fixP->fx_done = 1;
9993#if defined (OBJ_COFF) && defined (TE_PE)
9994 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9995 {
9996 fixP->fx_done = 0;
9997 /* Remember value for tc_gen_reloc. */
9998 fixP->fx_addnumber = value;
9999 /* Clear out the frag for now. */
10000 value = 0;
10001 }
10002#endif
10003 else if (use_rela_relocations)
10004 {
10005 fixP->fx_no_overflow = 1;
10006 /* Remember value for tc_gen_reloc. */
10007 fixP->fx_addnumber = value;
10008 value = 0;
10009 }
10010
10011 md_number_to_chars (p, value, fixP->fx_size);
10012}
10013\f
10014const char *
10015md_atof (int type, char *litP, int *sizeP)
10016{
10017 /* This outputs the LITTLENUMs in REVERSE order;
10018 in accord with the bigendian 386. */
10019 return ieee_md_atof (type, litP, sizeP, FALSE);
10020}
10021\f
10022static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10023
10024static char *
10025output_invalid (int c)
10026{
10027 if (ISPRINT (c))
10028 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10029 "'%c'", c);
10030 else
10031 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10032 "(0x%x)", (unsigned char) c);
10033 return output_invalid_buf;
10034}
10035
10036/* REG_STRING starts *before* REGISTER_PREFIX. */
10037
10038static const reg_entry *
10039parse_real_register (char *reg_string, char **end_op)
10040{
10041 char *s = reg_string;
10042 char *p;
10043 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10044 const reg_entry *r;
10045
10046 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10047 if (*s == REGISTER_PREFIX)
10048 ++s;
10049
10050 if (is_space_char (*s))
10051 ++s;
10052
10053 p = reg_name_given;
10054 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10055 {
10056 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10057 return (const reg_entry *) NULL;
10058 s++;
10059 }
10060
10061 /* For naked regs, make sure that we are not dealing with an identifier.
10062 This prevents confusing an identifier like `eax_var' with register
10063 `eax'. */
10064 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10065 return (const reg_entry *) NULL;
10066
10067 *end_op = s;
10068
10069 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10070
10071 /* Handle floating point regs, allowing spaces in the (i) part. */
10072 if (r == i386_regtab /* %st is first entry of table */)
10073 {
10074 if (is_space_char (*s))
10075 ++s;
10076 if (*s == '(')
10077 {
10078 ++s;
10079 if (is_space_char (*s))
10080 ++s;
10081 if (*s >= '0' && *s <= '7')
10082 {
10083 int fpr = *s - '0';
10084 ++s;
10085 if (is_space_char (*s))
10086 ++s;
10087 if (*s == ')')
10088 {
10089 *end_op = s + 1;
10090 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10091 know (r);
10092 return r + fpr;
10093 }
10094 }
10095 /* We have "%st(" then garbage. */
10096 return (const reg_entry *) NULL;
10097 }
10098 }
10099
10100 if (r == NULL || allow_pseudo_reg)
10101 return r;
10102
10103 if (operand_type_all_zero (&r->reg_type))
10104 return (const reg_entry *) NULL;
10105
10106 if ((r->reg_type.bitfield.dword
10107 || r->reg_type.bitfield.sreg3
10108 || r->reg_type.bitfield.control
10109 || r->reg_type.bitfield.debug
10110 || r->reg_type.bitfield.test)
10111 && !cpu_arch_flags.bitfield.cpui386)
10112 return (const reg_entry *) NULL;
10113
10114 if (r->reg_type.bitfield.tbyte
10115 && !cpu_arch_flags.bitfield.cpu8087
10116 && !cpu_arch_flags.bitfield.cpu287
10117 && !cpu_arch_flags.bitfield.cpu387)
10118 return (const reg_entry *) NULL;
10119
10120 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
10121 return (const reg_entry *) NULL;
10122
10123 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
10124 return (const reg_entry *) NULL;
10125
10126 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
10127 return (const reg_entry *) NULL;
10128
10129 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
10130 return (const reg_entry *) NULL;
10131
10132 if (r->reg_type.bitfield.regmask
10133 && !cpu_arch_flags.bitfield.cpuregmask)
10134 return (const reg_entry *) NULL;
10135
10136 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10137 if (!allow_index_reg
10138 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10139 return (const reg_entry *) NULL;
10140
10141 /* Upper 16 vector register is only available with VREX in 64bit
10142 mode. */
10143 if ((r->reg_flags & RegVRex))
10144 {
10145 if (i.vec_encoding == vex_encoding_default)
10146 i.vec_encoding = vex_encoding_evex;
10147
10148 if (!cpu_arch_flags.bitfield.cpuvrex
10149 || i.vec_encoding != vex_encoding_evex
10150 || flag_code != CODE_64BIT)
10151 return (const reg_entry *) NULL;
10152 }
10153
10154 if (((r->reg_flags & (RegRex64 | RegRex))
10155 || r->reg_type.bitfield.qword)
10156 && (!cpu_arch_flags.bitfield.cpulm
10157 || !operand_type_equal (&r->reg_type, &control))
10158 && flag_code != CODE_64BIT)
10159 return (const reg_entry *) NULL;
10160
10161 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10162 return (const reg_entry *) NULL;
10163
10164 return r;
10165}
10166
10167/* REG_STRING starts *before* REGISTER_PREFIX. */
10168
10169static const reg_entry *
10170parse_register (char *reg_string, char **end_op)
10171{
10172 const reg_entry *r;
10173
10174 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10175 r = parse_real_register (reg_string, end_op);
10176 else
10177 r = NULL;
10178 if (!r)
10179 {
10180 char *save = input_line_pointer;
10181 char c;
10182 symbolS *symbolP;
10183
10184 input_line_pointer = reg_string;
10185 c = get_symbol_name (&reg_string);
10186 symbolP = symbol_find (reg_string);
10187 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10188 {
10189 const expressionS *e = symbol_get_value_expression (symbolP);
10190
10191 know (e->X_op == O_register);
10192 know (e->X_add_number >= 0
10193 && (valueT) e->X_add_number < i386_regtab_size);
10194 r = i386_regtab + e->X_add_number;
10195 if ((r->reg_flags & RegVRex))
10196 i.vec_encoding = vex_encoding_evex;
10197 *end_op = input_line_pointer;
10198 }
10199 *input_line_pointer = c;
10200 input_line_pointer = save;
10201 }
10202 return r;
10203}
10204
10205int
10206i386_parse_name (char *name, expressionS *e, char *nextcharP)
10207{
10208 const reg_entry *r;
10209 char *end = input_line_pointer;
10210
10211 *end = *nextcharP;
10212 r = parse_register (name, &input_line_pointer);
10213 if (r && end <= input_line_pointer)
10214 {
10215 *nextcharP = *input_line_pointer;
10216 *input_line_pointer = 0;
10217 e->X_op = O_register;
10218 e->X_add_number = r - i386_regtab;
10219 return 1;
10220 }
10221 input_line_pointer = end;
10222 *end = 0;
10223 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10224}
10225
10226void
10227md_operand (expressionS *e)
10228{
10229 char *end;
10230 const reg_entry *r;
10231
10232 switch (*input_line_pointer)
10233 {
10234 case REGISTER_PREFIX:
10235 r = parse_real_register (input_line_pointer, &end);
10236 if (r)
10237 {
10238 e->X_op = O_register;
10239 e->X_add_number = r - i386_regtab;
10240 input_line_pointer = end;
10241 }
10242 break;
10243
10244 case '[':
10245 gas_assert (intel_syntax);
10246 end = input_line_pointer++;
10247 expression (e);
10248 if (*input_line_pointer == ']')
10249 {
10250 ++input_line_pointer;
10251 e->X_op_symbol = make_expr_symbol (e);
10252 e->X_add_symbol = NULL;
10253 e->X_add_number = 0;
10254 e->X_op = O_index;
10255 }
10256 else
10257 {
10258 e->X_op = O_absent;
10259 input_line_pointer = end;
10260 }
10261 break;
10262 }
10263}
10264
10265\f
10266#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10267const char *md_shortopts = "kVQ:sqnO::";
10268#else
10269const char *md_shortopts = "qnO::";
10270#endif
10271
10272#define OPTION_32 (OPTION_MD_BASE + 0)
10273#define OPTION_64 (OPTION_MD_BASE + 1)
10274#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10275#define OPTION_MARCH (OPTION_MD_BASE + 3)
10276#define OPTION_MTUNE (OPTION_MD_BASE + 4)
10277#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10278#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10279#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10280#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10281#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
10282#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10283#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10284#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10285#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10286#define OPTION_X32 (OPTION_MD_BASE + 14)
10287#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10288#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10289#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10290#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10291#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10292#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10293#define OPTION_MSHARED (OPTION_MD_BASE + 21)
10294#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10295#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10296#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10297#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
10298
10299struct option md_longopts[] =
10300{
10301 {"32", no_argument, NULL, OPTION_32},
10302#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10303 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10304 {"64", no_argument, NULL, OPTION_64},
10305#endif
10306#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10307 {"x32", no_argument, NULL, OPTION_X32},
10308 {"mshared", no_argument, NULL, OPTION_MSHARED},
10309#endif
10310 {"divide", no_argument, NULL, OPTION_DIVIDE},
10311 {"march", required_argument, NULL, OPTION_MARCH},
10312 {"mtune", required_argument, NULL, OPTION_MTUNE},
10313 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10314 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10315 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10316 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10317 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
10318 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10319 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10320 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10321 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10322 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10323 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10324 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10325# if defined (TE_PE) || defined (TE_PEP)
10326 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10327#endif
10328 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10329 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10330 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10331 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10332 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10333 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10334 {NULL, no_argument, NULL, 0}
10335};
10336size_t md_longopts_size = sizeof (md_longopts);
10337
10338int
10339md_parse_option (int c, const char *arg)
10340{
10341 unsigned int j;
10342 char *arch, *next, *saved;
10343
10344 switch (c)
10345 {
10346 case 'n':
10347 optimize_align_code = 0;
10348 break;
10349
10350 case 'q':
10351 quiet_warnings = 1;
10352 break;
10353
10354#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10355 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10356 should be emitted or not. FIXME: Not implemented. */
10357 case 'Q':
10358 break;
10359
10360 /* -V: SVR4 argument to print version ID. */
10361 case 'V':
10362 print_version_id ();
10363 break;
10364
10365 /* -k: Ignore for FreeBSD compatibility. */
10366 case 'k':
10367 break;
10368
10369 case 's':
10370 /* -s: On i386 Solaris, this tells the native assembler to use
10371 .stab instead of .stab.excl. We always use .stab anyhow. */
10372 break;
10373
10374 case OPTION_MSHARED:
10375 shared = 1;
10376 break;
10377#endif
10378#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10379 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10380 case OPTION_64:
10381 {
10382 const char **list, **l;
10383
10384 list = bfd_target_list ();
10385 for (l = list; *l != NULL; l++)
10386 if (CONST_STRNEQ (*l, "elf64-x86-64")
10387 || strcmp (*l, "coff-x86-64") == 0
10388 || strcmp (*l, "pe-x86-64") == 0
10389 || strcmp (*l, "pei-x86-64") == 0
10390 || strcmp (*l, "mach-o-x86-64") == 0)
10391 {
10392 default_arch = "x86_64";
10393 break;
10394 }
10395 if (*l == NULL)
10396 as_fatal (_("no compiled in support for x86_64"));
10397 free (list);
10398 }
10399 break;
10400#endif
10401
10402#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10403 case OPTION_X32:
10404 if (IS_ELF)
10405 {
10406 const char **list, **l;
10407
10408 list = bfd_target_list ();
10409 for (l = list; *l != NULL; l++)
10410 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10411 {
10412 default_arch = "x86_64:32";
10413 break;
10414 }
10415 if (*l == NULL)
10416 as_fatal (_("no compiled in support for 32bit x86_64"));
10417 free (list);
10418 }
10419 else
10420 as_fatal (_("32bit x86_64 is only supported for ELF"));
10421 break;
10422#endif
10423
10424 case OPTION_32:
10425 default_arch = "i386";
10426 break;
10427
10428 case OPTION_DIVIDE:
10429#ifdef SVR4_COMMENT_CHARS
10430 {
10431 char *n, *t;
10432 const char *s;
10433
10434 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10435 t = n;
10436 for (s = i386_comment_chars; *s != '\0'; s++)
10437 if (*s != '/')
10438 *t++ = *s;
10439 *t = '\0';
10440 i386_comment_chars = n;
10441 }
10442#endif
10443 break;
10444
10445 case OPTION_MARCH:
10446 saved = xstrdup (arg);
10447 arch = saved;
10448 /* Allow -march=+nosse. */
10449 if (*arch == '+')
10450 arch++;
10451 do
10452 {
10453 if (*arch == '.')
10454 as_fatal (_("invalid -march= option: `%s'"), arg);
10455 next = strchr (arch, '+');
10456 if (next)
10457 *next++ = '\0';
10458 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10459 {
10460 if (strcmp (arch, cpu_arch [j].name) == 0)
10461 {
10462 /* Processor. */
10463 if (! cpu_arch[j].flags.bitfield.cpui386)
10464 continue;
10465
10466 cpu_arch_name = cpu_arch[j].name;
10467 cpu_sub_arch_name = NULL;
10468 cpu_arch_flags = cpu_arch[j].flags;
10469 cpu_arch_isa = cpu_arch[j].type;
10470 cpu_arch_isa_flags = cpu_arch[j].flags;
10471 if (!cpu_arch_tune_set)
10472 {
10473 cpu_arch_tune = cpu_arch_isa;
10474 cpu_arch_tune_flags = cpu_arch_isa_flags;
10475 }
10476 break;
10477 }
10478 else if (*cpu_arch [j].name == '.'
10479 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10480 {
10481 /* ISA extension. */
10482 i386_cpu_flags flags;
10483
10484 flags = cpu_flags_or (cpu_arch_flags,
10485 cpu_arch[j].flags);
10486
10487 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10488 {
10489 if (cpu_sub_arch_name)
10490 {
10491 char *name = cpu_sub_arch_name;
10492 cpu_sub_arch_name = concat (name,
10493 cpu_arch[j].name,
10494 (const char *) NULL);
10495 free (name);
10496 }
10497 else
10498 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10499 cpu_arch_flags = flags;
10500 cpu_arch_isa_flags = flags;
10501 }
10502 break;
10503 }
10504 }
10505
10506 if (j >= ARRAY_SIZE (cpu_arch))
10507 {
10508 /* Disable an ISA extension. */
10509 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10510 if (strcmp (arch, cpu_noarch [j].name) == 0)
10511 {
10512 i386_cpu_flags flags;
10513
10514 flags = cpu_flags_and_not (cpu_arch_flags,
10515 cpu_noarch[j].flags);
10516 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10517 {
10518 if (cpu_sub_arch_name)
10519 {
10520 char *name = cpu_sub_arch_name;
10521 cpu_sub_arch_name = concat (arch,
10522 (const char *) NULL);
10523 free (name);
10524 }
10525 else
10526 cpu_sub_arch_name = xstrdup (arch);
10527 cpu_arch_flags = flags;
10528 cpu_arch_isa_flags = flags;
10529 }
10530 break;
10531 }
10532
10533 if (j >= ARRAY_SIZE (cpu_noarch))
10534 j = ARRAY_SIZE (cpu_arch);
10535 }
10536
10537 if (j >= ARRAY_SIZE (cpu_arch))
10538 as_fatal (_("invalid -march= option: `%s'"), arg);
10539
10540 arch = next;
10541 }
10542 while (next != NULL);
10543 free (saved);
10544 break;
10545
10546 case OPTION_MTUNE:
10547 if (*arg == '.')
10548 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10549 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10550 {
10551 if (strcmp (arg, cpu_arch [j].name) == 0)
10552 {
10553 cpu_arch_tune_set = 1;
10554 cpu_arch_tune = cpu_arch [j].type;
10555 cpu_arch_tune_flags = cpu_arch[j].flags;
10556 break;
10557 }
10558 }
10559 if (j >= ARRAY_SIZE (cpu_arch))
10560 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10561 break;
10562
10563 case OPTION_MMNEMONIC:
10564 if (strcasecmp (arg, "att") == 0)
10565 intel_mnemonic = 0;
10566 else if (strcasecmp (arg, "intel") == 0)
10567 intel_mnemonic = 1;
10568 else
10569 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10570 break;
10571
10572 case OPTION_MSYNTAX:
10573 if (strcasecmp (arg, "att") == 0)
10574 intel_syntax = 0;
10575 else if (strcasecmp (arg, "intel") == 0)
10576 intel_syntax = 1;
10577 else
10578 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10579 break;
10580
10581 case OPTION_MINDEX_REG:
10582 allow_index_reg = 1;
10583 break;
10584
10585 case OPTION_MNAKED_REG:
10586 allow_naked_reg = 1;
10587 break;
10588
10589 case OPTION_MOLD_GCC:
10590 old_gcc = 1;
10591 break;
10592
10593 case OPTION_MSSE2AVX:
10594 sse2avx = 1;
10595 break;
10596
10597 case OPTION_MSSE_CHECK:
10598 if (strcasecmp (arg, "error") == 0)
10599 sse_check = check_error;
10600 else if (strcasecmp (arg, "warning") == 0)
10601 sse_check = check_warning;
10602 else if (strcasecmp (arg, "none") == 0)
10603 sse_check = check_none;
10604 else
10605 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10606 break;
10607
10608 case OPTION_MOPERAND_CHECK:
10609 if (strcasecmp (arg, "error") == 0)
10610 operand_check = check_error;
10611 else if (strcasecmp (arg, "warning") == 0)
10612 operand_check = check_warning;
10613 else if (strcasecmp (arg, "none") == 0)
10614 operand_check = check_none;
10615 else
10616 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10617 break;
10618
10619 case OPTION_MAVXSCALAR:
10620 if (strcasecmp (arg, "128") == 0)
10621 avxscalar = vex128;
10622 else if (strcasecmp (arg, "256") == 0)
10623 avxscalar = vex256;
10624 else
10625 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10626 break;
10627
10628 case OPTION_MADD_BND_PREFIX:
10629 add_bnd_prefix = 1;
10630 break;
10631
10632 case OPTION_MEVEXLIG:
10633 if (strcmp (arg, "128") == 0)
10634 evexlig = evexl128;
10635 else if (strcmp (arg, "256") == 0)
10636 evexlig = evexl256;
10637 else if (strcmp (arg, "512") == 0)
10638 evexlig = evexl512;
10639 else
10640 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10641 break;
10642
10643 case OPTION_MEVEXRCIG:
10644 if (strcmp (arg, "rne") == 0)
10645 evexrcig = rne;
10646 else if (strcmp (arg, "rd") == 0)
10647 evexrcig = rd;
10648 else if (strcmp (arg, "ru") == 0)
10649 evexrcig = ru;
10650 else if (strcmp (arg, "rz") == 0)
10651 evexrcig = rz;
10652 else
10653 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10654 break;
10655
10656 case OPTION_MEVEXWIG:
10657 if (strcmp (arg, "0") == 0)
10658 evexwig = evexw0;
10659 else if (strcmp (arg, "1") == 0)
10660 evexwig = evexw1;
10661 else
10662 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10663 break;
10664
10665# if defined (TE_PE) || defined (TE_PEP)
10666 case OPTION_MBIG_OBJ:
10667 use_big_obj = 1;
10668 break;
10669#endif
10670
10671 case OPTION_MOMIT_LOCK_PREFIX:
10672 if (strcasecmp (arg, "yes") == 0)
10673 omit_lock_prefix = 1;
10674 else if (strcasecmp (arg, "no") == 0)
10675 omit_lock_prefix = 0;
10676 else
10677 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10678 break;
10679
10680 case OPTION_MFENCE_AS_LOCK_ADD:
10681 if (strcasecmp (arg, "yes") == 0)
10682 avoid_fence = 1;
10683 else if (strcasecmp (arg, "no") == 0)
10684 avoid_fence = 0;
10685 else
10686 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10687 break;
10688
10689 case OPTION_MRELAX_RELOCATIONS:
10690 if (strcasecmp (arg, "yes") == 0)
10691 generate_relax_relocations = 1;
10692 else if (strcasecmp (arg, "no") == 0)
10693 generate_relax_relocations = 0;
10694 else
10695 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10696 break;
10697
10698 case OPTION_MAMD64:
10699 intel64 = 0;
10700 break;
10701
10702 case OPTION_MINTEL64:
10703 intel64 = 1;
10704 break;
10705
10706 case 'O':
10707 if (arg == NULL)
10708 {
10709 optimize = 1;
10710 /* Turn off -Os. */
10711 optimize_for_space = 0;
10712 }
10713 else if (*arg == 's')
10714 {
10715 optimize_for_space = 1;
10716 /* Turn on all encoding optimizations. */
10717 optimize = -1;
10718 }
10719 else
10720 {
10721 optimize = atoi (arg);
10722 /* Turn off -Os. */
10723 optimize_for_space = 0;
10724 }
10725 break;
10726
10727 default:
10728 return 0;
10729 }
10730 return 1;
10731}
10732
10733#define MESSAGE_TEMPLATE \
10734" "
10735
10736static char *
10737output_message (FILE *stream, char *p, char *message, char *start,
10738 int *left_p, const char *name, int len)
10739{
10740 int size = sizeof (MESSAGE_TEMPLATE);
10741 int left = *left_p;
10742
10743 /* Reserve 2 spaces for ", " or ",\0" */
10744 left -= len + 2;
10745
10746 /* Check if there is any room. */
10747 if (left >= 0)
10748 {
10749 if (p != start)
10750 {
10751 *p++ = ',';
10752 *p++ = ' ';
10753 }
10754 p = mempcpy (p, name, len);
10755 }
10756 else
10757 {
10758 /* Output the current message now and start a new one. */
10759 *p++ = ',';
10760 *p = '\0';
10761 fprintf (stream, "%s\n", message);
10762 p = start;
10763 left = size - (start - message) - len - 2;
10764
10765 gas_assert (left >= 0);
10766
10767 p = mempcpy (p, name, len);
10768 }
10769
10770 *left_p = left;
10771 return p;
10772}
10773
10774static void
10775show_arch (FILE *stream, int ext, int check)
10776{
10777 static char message[] = MESSAGE_TEMPLATE;
10778 char *start = message + 27;
10779 char *p;
10780 int size = sizeof (MESSAGE_TEMPLATE);
10781 int left;
10782 const char *name;
10783 int len;
10784 unsigned int j;
10785
10786 p = start;
10787 left = size - (start - message);
10788 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10789 {
10790 /* Should it be skipped? */
10791 if (cpu_arch [j].skip)
10792 continue;
10793
10794 name = cpu_arch [j].name;
10795 len = cpu_arch [j].len;
10796 if (*name == '.')
10797 {
10798 /* It is an extension. Skip if we aren't asked to show it. */
10799 if (ext)
10800 {
10801 name++;
10802 len--;
10803 }
10804 else
10805 continue;
10806 }
10807 else if (ext)
10808 {
10809 /* It is an processor. Skip if we show only extension. */
10810 continue;
10811 }
10812 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10813 {
10814 /* It is an impossible processor - skip. */
10815 continue;
10816 }
10817
10818 p = output_message (stream, p, message, start, &left, name, len);
10819 }
10820
10821 /* Display disabled extensions. */
10822 if (ext)
10823 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10824 {
10825 name = cpu_noarch [j].name;
10826 len = cpu_noarch [j].len;
10827 p = output_message (stream, p, message, start, &left, name,
10828 len);
10829 }
10830
10831 *p = '\0';
10832 fprintf (stream, "%s\n", message);
10833}
10834
10835void
10836md_show_usage (FILE *stream)
10837{
10838#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10839 fprintf (stream, _("\
10840 -Q ignored\n\
10841 -V print assembler version number\n\
10842 -k ignored\n"));
10843#endif
10844 fprintf (stream, _("\
10845 -n Do not optimize code alignment\n\
10846 -q quieten some warnings\n"));
10847#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10848 fprintf (stream, _("\
10849 -s ignored\n"));
10850#endif
10851#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10852 || defined (TE_PE) || defined (TE_PEP))
10853 fprintf (stream, _("\
10854 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10855#endif
10856#ifdef SVR4_COMMENT_CHARS
10857 fprintf (stream, _("\
10858 --divide do not treat `/' as a comment character\n"));
10859#else
10860 fprintf (stream, _("\
10861 --divide ignored\n"));
10862#endif
10863 fprintf (stream, _("\
10864 -march=CPU[,+EXTENSION...]\n\
10865 generate code for CPU and EXTENSION, CPU is one of:\n"));
10866 show_arch (stream, 0, 1);
10867 fprintf (stream, _("\
10868 EXTENSION is combination of:\n"));
10869 show_arch (stream, 1, 0);
10870 fprintf (stream, _("\
10871 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10872 show_arch (stream, 0, 0);
10873 fprintf (stream, _("\
10874 -msse2avx encode SSE instructions with VEX prefix\n"));
10875 fprintf (stream, _("\
10876 -msse-check=[none|error|warning]\n\
10877 check SSE instructions\n"));
10878 fprintf (stream, _("\
10879 -moperand-check=[none|error|warning]\n\
10880 check operand combinations for validity\n"));
10881 fprintf (stream, _("\
10882 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10883 length\n"));
10884 fprintf (stream, _("\
10885 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10886 length\n"));
10887 fprintf (stream, _("\
10888 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10889 for EVEX.W bit ignored instructions\n"));
10890 fprintf (stream, _("\
10891 -mevexrcig=[rne|rd|ru|rz]\n\
10892 encode EVEX instructions with specific EVEX.RC value\n\
10893 for SAE-only ignored instructions\n"));
10894 fprintf (stream, _("\
10895 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10896 fprintf (stream, _("\
10897 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10898 fprintf (stream, _("\
10899 -mindex-reg support pseudo index registers\n"));
10900 fprintf (stream, _("\
10901 -mnaked-reg don't require `%%' prefix for registers\n"));
10902 fprintf (stream, _("\
10903 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10904 fprintf (stream, _("\
10905 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10906 fprintf (stream, _("\
10907 -mshared disable branch optimization for shared code\n"));
10908# if defined (TE_PE) || defined (TE_PEP)
10909 fprintf (stream, _("\
10910 -mbig-obj generate big object files\n"));
10911#endif
10912 fprintf (stream, _("\
10913 -momit-lock-prefix=[no|yes]\n\
10914 strip all lock prefixes\n"));
10915 fprintf (stream, _("\
10916 -mfence-as-lock-add=[no|yes]\n\
10917 encode lfence, mfence and sfence as\n\
10918 lock addl $0x0, (%%{re}sp)\n"));
10919 fprintf (stream, _("\
10920 -mrelax-relocations=[no|yes]\n\
10921 generate relax relocations\n"));
10922 fprintf (stream, _("\
10923 -mamd64 accept only AMD64 ISA\n"));
10924 fprintf (stream, _("\
10925 -mintel64 accept only Intel64 ISA\n"));
10926}
10927
10928#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10929 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10930 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10931
10932/* Pick the target format to use. */
10933
10934const char *
10935i386_target_format (void)
10936{
10937 if (!strncmp (default_arch, "x86_64", 6))
10938 {
10939 update_code_flag (CODE_64BIT, 1);
10940 if (default_arch[6] == '\0')
10941 x86_elf_abi = X86_64_ABI;
10942 else
10943 x86_elf_abi = X86_64_X32_ABI;
10944 }
10945 else if (!strcmp (default_arch, "i386"))
10946 update_code_flag (CODE_32BIT, 1);
10947 else if (!strcmp (default_arch, "iamcu"))
10948 {
10949 update_code_flag (CODE_32BIT, 1);
10950 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10951 {
10952 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10953 cpu_arch_name = "iamcu";
10954 cpu_sub_arch_name = NULL;
10955 cpu_arch_flags = iamcu_flags;
10956 cpu_arch_isa = PROCESSOR_IAMCU;
10957 cpu_arch_isa_flags = iamcu_flags;
10958 if (!cpu_arch_tune_set)
10959 {
10960 cpu_arch_tune = cpu_arch_isa;
10961 cpu_arch_tune_flags = cpu_arch_isa_flags;
10962 }
10963 }
10964 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10965 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10966 cpu_arch_name);
10967 }
10968 else
10969 as_fatal (_("unknown architecture"));
10970
10971 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10972 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10973 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10974 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10975
10976 switch (OUTPUT_FLAVOR)
10977 {
10978#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10979 case bfd_target_aout_flavour:
10980 return AOUT_TARGET_FORMAT;
10981#endif
10982#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10983# if defined (TE_PE) || defined (TE_PEP)
10984 case bfd_target_coff_flavour:
10985 if (flag_code == CODE_64BIT)
10986 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10987 else
10988 return "pe-i386";
10989# elif defined (TE_GO32)
10990 case bfd_target_coff_flavour:
10991 return "coff-go32";
10992# else
10993 case bfd_target_coff_flavour:
10994 return "coff-i386";
10995# endif
10996#endif
10997#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10998 case bfd_target_elf_flavour:
10999 {
11000 const char *format;
11001
11002 switch (x86_elf_abi)
11003 {
11004 default:
11005 format = ELF_TARGET_FORMAT;
11006 break;
11007 case X86_64_ABI:
11008 use_rela_relocations = 1;
11009 object_64bit = 1;
11010 format = ELF_TARGET_FORMAT64;
11011 break;
11012 case X86_64_X32_ABI:
11013 use_rela_relocations = 1;
11014 object_64bit = 1;
11015 disallow_64bit_reloc = 1;
11016 format = ELF_TARGET_FORMAT32;
11017 break;
11018 }
11019 if (cpu_arch_isa == PROCESSOR_L1OM)
11020 {
11021 if (x86_elf_abi != X86_64_ABI)
11022 as_fatal (_("Intel L1OM is 64bit only"));
11023 return ELF_TARGET_L1OM_FORMAT;
11024 }
11025 else if (cpu_arch_isa == PROCESSOR_K1OM)
11026 {
11027 if (x86_elf_abi != X86_64_ABI)
11028 as_fatal (_("Intel K1OM is 64bit only"));
11029 return ELF_TARGET_K1OM_FORMAT;
11030 }
11031 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11032 {
11033 if (x86_elf_abi != I386_ABI)
11034 as_fatal (_("Intel MCU is 32bit only"));
11035 return ELF_TARGET_IAMCU_FORMAT;
11036 }
11037 else
11038 return format;
11039 }
11040#endif
11041#if defined (OBJ_MACH_O)
11042 case bfd_target_mach_o_flavour:
11043 if (flag_code == CODE_64BIT)
11044 {
11045 use_rela_relocations = 1;
11046 object_64bit = 1;
11047 return "mach-o-x86-64";
11048 }
11049 else
11050 return "mach-o-i386";
11051#endif
11052 default:
11053 abort ();
11054 return NULL;
11055 }
11056}
11057
11058#endif /* OBJ_MAYBE_ more than one */
11059\f
11060symbolS *
11061md_undefined_symbol (char *name)
11062{
11063 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11064 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11065 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11066 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11067 {
11068 if (!GOT_symbol)
11069 {
11070 if (symbol_find (name))
11071 as_bad (_("GOT already in symbol table"));
11072 GOT_symbol = symbol_new (name, undefined_section,
11073 (valueT) 0, &zero_address_frag);
11074 };
11075 return GOT_symbol;
11076 }
11077 return 0;
11078}
11079
11080/* Round up a section size to the appropriate boundary. */
11081
11082valueT
11083md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11084{
11085#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11086 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11087 {
11088 /* For a.out, force the section size to be aligned. If we don't do
11089 this, BFD will align it for us, but it will not write out the
11090 final bytes of the section. This may be a bug in BFD, but it is
11091 easier to fix it here since that is how the other a.out targets
11092 work. */
11093 int align;
11094
11095 align = bfd_get_section_alignment (stdoutput, segment);
11096 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11097 }
11098#endif
11099
11100 return size;
11101}
11102
11103/* On the i386, PC-relative offsets are relative to the start of the
11104 next instruction. That is, the address of the offset, plus its
11105 size, since the offset is always the last part of the insn. */
11106
11107long
11108md_pcrel_from (fixS *fixP)
11109{
11110 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11111}
11112
11113#ifndef I386COFF
11114
11115static void
11116s_bss (int ignore ATTRIBUTE_UNUSED)
11117{
11118 int temp;
11119
11120#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11121 if (IS_ELF)
11122 obj_elf_section_change_hook ();
11123#endif
11124 temp = get_absolute_expression ();
11125 subseg_set (bss_section, (subsegT) temp);
11126 demand_empty_rest_of_line ();
11127}
11128
11129#endif
11130
11131void
11132i386_validate_fix (fixS *fixp)
11133{
11134 if (fixp->fx_subsy)
11135 {
11136 if (fixp->fx_subsy == GOT_symbol)
11137 {
11138 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11139 {
11140 if (!object_64bit)
11141 abort ();
11142#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11143 if (fixp->fx_tcbit2)
11144 fixp->fx_r_type = (fixp->fx_tcbit
11145 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11146 : BFD_RELOC_X86_64_GOTPCRELX);
11147 else
11148#endif
11149 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11150 }
11151 else
11152 {
11153 if (!object_64bit)
11154 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11155 else
11156 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11157 }
11158 fixp->fx_subsy = 0;
11159 }
11160 }
11161#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11162 else if (!object_64bit)
11163 {
11164 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11165 && fixp->fx_tcbit2)
11166 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11167 }
11168#endif
11169}
11170
11171arelent *
11172tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11173{
11174 arelent *rel;
11175 bfd_reloc_code_real_type code;
11176
11177 switch (fixp->fx_r_type)
11178 {
11179#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11180 case BFD_RELOC_SIZE32:
11181 case BFD_RELOC_SIZE64:
11182 if (S_IS_DEFINED (fixp->fx_addsy)
11183 && !S_IS_EXTERNAL (fixp->fx_addsy))
11184 {
11185 /* Resolve size relocation against local symbol to size of
11186 the symbol plus addend. */
11187 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11188 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11189 && !fits_in_unsigned_long (value))
11190 as_bad_where (fixp->fx_file, fixp->fx_line,
11191 _("symbol size computation overflow"));
11192 fixp->fx_addsy = NULL;
11193 fixp->fx_subsy = NULL;
11194 md_apply_fix (fixp, (valueT *) &value, NULL);
11195 return NULL;
11196 }
11197#endif
11198 /* Fall through. */
11199
11200 case BFD_RELOC_X86_64_PLT32:
11201 case BFD_RELOC_X86_64_GOT32:
11202 case BFD_RELOC_X86_64_GOTPCREL:
11203 case BFD_RELOC_X86_64_GOTPCRELX:
11204 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11205 case BFD_RELOC_386_PLT32:
11206 case BFD_RELOC_386_GOT32:
11207 case BFD_RELOC_386_GOT32X:
11208 case BFD_RELOC_386_GOTOFF:
11209 case BFD_RELOC_386_GOTPC:
11210 case BFD_RELOC_386_TLS_GD:
11211 case BFD_RELOC_386_TLS_LDM:
11212 case BFD_RELOC_386_TLS_LDO_32:
11213 case BFD_RELOC_386_TLS_IE_32:
11214 case BFD_RELOC_386_TLS_IE:
11215 case BFD_RELOC_386_TLS_GOTIE:
11216 case BFD_RELOC_386_TLS_LE_32:
11217 case BFD_RELOC_386_TLS_LE:
11218 case BFD_RELOC_386_TLS_GOTDESC:
11219 case BFD_RELOC_386_TLS_DESC_CALL:
11220 case BFD_RELOC_X86_64_TLSGD:
11221 case BFD_RELOC_X86_64_TLSLD:
11222 case BFD_RELOC_X86_64_DTPOFF32:
11223 case BFD_RELOC_X86_64_DTPOFF64:
11224 case BFD_RELOC_X86_64_GOTTPOFF:
11225 case BFD_RELOC_X86_64_TPOFF32:
11226 case BFD_RELOC_X86_64_TPOFF64:
11227 case BFD_RELOC_X86_64_GOTOFF64:
11228 case BFD_RELOC_X86_64_GOTPC32:
11229 case BFD_RELOC_X86_64_GOT64:
11230 case BFD_RELOC_X86_64_GOTPCREL64:
11231 case BFD_RELOC_X86_64_GOTPC64:
11232 case BFD_RELOC_X86_64_GOTPLT64:
11233 case BFD_RELOC_X86_64_PLTOFF64:
11234 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11235 case BFD_RELOC_X86_64_TLSDESC_CALL:
11236 case BFD_RELOC_RVA:
11237 case BFD_RELOC_VTABLE_ENTRY:
11238 case BFD_RELOC_VTABLE_INHERIT:
11239#ifdef TE_PE
11240 case BFD_RELOC_32_SECREL:
11241#endif
11242 code = fixp->fx_r_type;
11243 break;
11244 case BFD_RELOC_X86_64_32S:
11245 if (!fixp->fx_pcrel)
11246 {
11247 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11248 code = fixp->fx_r_type;
11249 break;
11250 }
11251 /* Fall through. */
11252 default:
11253 if (fixp->fx_pcrel)
11254 {
11255 switch (fixp->fx_size)
11256 {
11257 default:
11258 as_bad_where (fixp->fx_file, fixp->fx_line,
11259 _("can not do %d byte pc-relative relocation"),
11260 fixp->fx_size);
11261 code = BFD_RELOC_32_PCREL;
11262 break;
11263 case 1: code = BFD_RELOC_8_PCREL; break;
11264 case 2: code = BFD_RELOC_16_PCREL; break;
11265 case 4: code = BFD_RELOC_32_PCREL; break;
11266#ifdef BFD64
11267 case 8: code = BFD_RELOC_64_PCREL; break;
11268#endif
11269 }
11270 }
11271 else
11272 {
11273 switch (fixp->fx_size)
11274 {
11275 default:
11276 as_bad_where (fixp->fx_file, fixp->fx_line,
11277 _("can not do %d byte relocation"),
11278 fixp->fx_size);
11279 code = BFD_RELOC_32;
11280 break;
11281 case 1: code = BFD_RELOC_8; break;
11282 case 2: code = BFD_RELOC_16; break;
11283 case 4: code = BFD_RELOC_32; break;
11284#ifdef BFD64
11285 case 8: code = BFD_RELOC_64; break;
11286#endif
11287 }
11288 }
11289 break;
11290 }
11291
11292 if ((code == BFD_RELOC_32
11293 || code == BFD_RELOC_32_PCREL
11294 || code == BFD_RELOC_X86_64_32S)
11295 && GOT_symbol
11296 && fixp->fx_addsy == GOT_symbol)
11297 {
11298 if (!object_64bit)
11299 code = BFD_RELOC_386_GOTPC;
11300 else
11301 code = BFD_RELOC_X86_64_GOTPC32;
11302 }
11303 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11304 && GOT_symbol
11305 && fixp->fx_addsy == GOT_symbol)
11306 {
11307 code = BFD_RELOC_X86_64_GOTPC64;
11308 }
11309
11310 rel = XNEW (arelent);
11311 rel->sym_ptr_ptr = XNEW (asymbol *);
11312 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11313
11314 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11315
11316 if (!use_rela_relocations)
11317 {
11318 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11319 vtable entry to be used in the relocation's section offset. */
11320 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11321 rel->address = fixp->fx_offset;
11322#if defined (OBJ_COFF) && defined (TE_PE)
11323 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11324 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11325 else
11326#endif
11327 rel->addend = 0;
11328 }
11329 /* Use the rela in 64bit mode. */
11330 else
11331 {
11332 if (disallow_64bit_reloc)
11333 switch (code)
11334 {
11335 case BFD_RELOC_X86_64_DTPOFF64:
11336 case BFD_RELOC_X86_64_TPOFF64:
11337 case BFD_RELOC_64_PCREL:
11338 case BFD_RELOC_X86_64_GOTOFF64:
11339 case BFD_RELOC_X86_64_GOT64:
11340 case BFD_RELOC_X86_64_GOTPCREL64:
11341 case BFD_RELOC_X86_64_GOTPC64:
11342 case BFD_RELOC_X86_64_GOTPLT64:
11343 case BFD_RELOC_X86_64_PLTOFF64:
11344 as_bad_where (fixp->fx_file, fixp->fx_line,
11345 _("cannot represent relocation type %s in x32 mode"),
11346 bfd_get_reloc_code_name (code));
11347 break;
11348 default:
11349 break;
11350 }
11351
11352 if (!fixp->fx_pcrel)
11353 rel->addend = fixp->fx_offset;
11354 else
11355 switch (code)
11356 {
11357 case BFD_RELOC_X86_64_PLT32:
11358 case BFD_RELOC_X86_64_GOT32:
11359 case BFD_RELOC_X86_64_GOTPCREL:
11360 case BFD_RELOC_X86_64_GOTPCRELX:
11361 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11362 case BFD_RELOC_X86_64_TLSGD:
11363 case BFD_RELOC_X86_64_TLSLD:
11364 case BFD_RELOC_X86_64_GOTTPOFF:
11365 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11366 case BFD_RELOC_X86_64_TLSDESC_CALL:
11367 rel->addend = fixp->fx_offset - fixp->fx_size;
11368 break;
11369 default:
11370 rel->addend = (section->vma
11371 - fixp->fx_size
11372 + fixp->fx_addnumber
11373 + md_pcrel_from (fixp));
11374 break;
11375 }
11376 }
11377
11378 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11379 if (rel->howto == NULL)
11380 {
11381 as_bad_where (fixp->fx_file, fixp->fx_line,
11382 _("cannot represent relocation type %s"),
11383 bfd_get_reloc_code_name (code));
11384 /* Set howto to a garbage value so that we can keep going. */
11385 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11386 gas_assert (rel->howto != NULL);
11387 }
11388
11389 return rel;
11390}
11391
11392#include "tc-i386-intel.c"
11393
11394void
11395tc_x86_parse_to_dw2regnum (expressionS *exp)
11396{
11397 int saved_naked_reg;
11398 char saved_register_dot;
11399
11400 saved_naked_reg = allow_naked_reg;
11401 allow_naked_reg = 1;
11402 saved_register_dot = register_chars['.'];
11403 register_chars['.'] = '.';
11404 allow_pseudo_reg = 1;
11405 expression_and_evaluate (exp);
11406 allow_pseudo_reg = 0;
11407 register_chars['.'] = saved_register_dot;
11408 allow_naked_reg = saved_naked_reg;
11409
11410 if (exp->X_op == O_register && exp->X_add_number >= 0)
11411 {
11412 if ((addressT) exp->X_add_number < i386_regtab_size)
11413 {
11414 exp->X_op = O_constant;
11415 exp->X_add_number = i386_regtab[exp->X_add_number]
11416 .dw2_regnum[flag_code >> 1];
11417 }
11418 else
11419 exp->X_op = O_illegal;
11420 }
11421}
11422
11423void
11424tc_x86_frame_initial_instructions (void)
11425{
11426 static unsigned int sp_regno[2];
11427
11428 if (!sp_regno[flag_code >> 1])
11429 {
11430 char *saved_input = input_line_pointer;
11431 char sp[][4] = {"esp", "rsp"};
11432 expressionS exp;
11433
11434 input_line_pointer = sp[flag_code >> 1];
11435 tc_x86_parse_to_dw2regnum (&exp);
11436 gas_assert (exp.X_op == O_constant);
11437 sp_regno[flag_code >> 1] = exp.X_add_number;
11438 input_line_pointer = saved_input;
11439 }
11440
11441 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11442 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11443}
11444
11445int
11446x86_dwarf2_addr_size (void)
11447{
11448#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11449 if (x86_elf_abi == X86_64_X32_ABI)
11450 return 4;
11451#endif
11452 return bfd_arch_bits_per_address (stdoutput) / 8;
11453}
11454
11455int
11456i386_elf_section_type (const char *str, size_t len)
11457{
11458 if (flag_code == CODE_64BIT
11459 && len == sizeof ("unwind") - 1
11460 && strncmp (str, "unwind", 6) == 0)
11461 return SHT_X86_64_UNWIND;
11462
11463 return -1;
11464}
11465
11466#ifdef TE_SOLARIS
11467void
11468i386_solaris_fix_up_eh_frame (segT sec)
11469{
11470 if (flag_code == CODE_64BIT)
11471 elf_section_type (sec) = SHT_X86_64_UNWIND;
11472}
11473#endif
11474
11475#ifdef TE_PE
11476void
11477tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11478{
11479 expressionS exp;
11480
11481 exp.X_op = O_secrel;
11482 exp.X_add_symbol = symbol;
11483 exp.X_add_number = 0;
11484 emit_expr (&exp, size);
11485}
11486#endif
11487
11488#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11489/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11490
11491bfd_vma
11492x86_64_section_letter (int letter, const char **ptr_msg)
11493{
11494 if (flag_code == CODE_64BIT)
11495 {
11496 if (letter == 'l')
11497 return SHF_X86_64_LARGE;
11498
11499 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11500 }
11501 else
11502 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11503 return -1;
11504}
11505
11506bfd_vma
11507x86_64_section_word (char *str, size_t len)
11508{
11509 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11510 return SHF_X86_64_LARGE;
11511
11512 return -1;
11513}
11514
11515static void
11516handle_large_common (int small ATTRIBUTE_UNUSED)
11517{
11518 if (flag_code != CODE_64BIT)
11519 {
11520 s_comm_internal (0, elf_common_parse);
11521 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11522 }
11523 else
11524 {
11525 static segT lbss_section;
11526 asection *saved_com_section_ptr = elf_com_section_ptr;
11527 asection *saved_bss_section = bss_section;
11528
11529 if (lbss_section == NULL)
11530 {
11531 flagword applicable;
11532 segT seg = now_seg;
11533 subsegT subseg = now_subseg;
11534
11535 /* The .lbss section is for local .largecomm symbols. */
11536 lbss_section = subseg_new (".lbss", 0);
11537 applicable = bfd_applicable_section_flags (stdoutput);
11538 bfd_set_section_flags (stdoutput, lbss_section,
11539 applicable & SEC_ALLOC);
11540 seg_info (lbss_section)->bss = 1;
11541
11542 subseg_set (seg, subseg);
11543 }
11544
11545 elf_com_section_ptr = &_bfd_elf_large_com_section;
11546 bss_section = lbss_section;
11547
11548 s_comm_internal (0, elf_common_parse);
11549
11550 elf_com_section_ptr = saved_com_section_ptr;
11551 bss_section = saved_bss_section;
11552 }
11553}
11554#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.061737 seconds and 4 git commands to generate.