MIPS/GAS: Treat local jump relocs the same no matter if REL or RELA
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
... / ...
CommitLineData
1@c Copyright (C) 1991-2016 Free Software Foundation, Inc.
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4@c man end
5
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80386 support
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
24@menu
25* i386-Options:: Options
26* i386-Directives:: X86 specific directives
27* i386-Syntax:: Syntactical considerations
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
32* i386-Jumps:: Handling of Jump Instructions
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35* i386-LWP:: AMD's Lightweight Profiling Instructions
36* i386-BMI:: Bit Manipulation Instruction
37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38* i386-16bit:: Writing 16-bit Code
39* i386-Arch:: Specifying an x86 CPU architecture
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
50@cindex x86-64 options
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
55@c man begin OPTIONS
56@table @gcctabopt
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
63@item --32 | --x32 | --64
64Select the word size, either 32 bits or 64 bits. @samp{--32}
65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
93processor names are recognized:
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
108@code{core},
109@code{core2},
110@code{corei7},
111@code{l1om},
112@code{k1om},
113@code{iamcu},
114@code{k6},
115@code{k6_2},
116@code{athlon},
117@code{opteron},
118@code{k8},
119@code{amdfam10},
120@code{bdver1},
121@code{bdver2},
122@code{bdver3},
123@code{bdver4},
124@code{znver1},
125@code{btver1},
126@code{btver2},
127@code{generic32} and
128@code{generic64}.
129
130In addition to the basic instruction set, the assembler can be told to
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
134@code{8087},
135@code{287},
136@code{387},
137@code{no87},
138@code{mmx},
139@code{nommx},
140@code{sse},
141@code{sse2},
142@code{sse3},
143@code{ssse3},
144@code{sse4.1},
145@code{sse4.2},
146@code{sse4},
147@code{nosse},
148@code{avx},
149@code{avx2},
150@code{adx},
151@code{rdseed},
152@code{prfchw},
153@code{smap},
154@code{mpx},
155@code{sha},
156@code{rdpid},
157@code{prefetchwt1},
158@code{clflushopt},
159@code{se1},
160@code{clwb},
161@code{pcommit},
162@code{avx512f},
163@code{avx512cd},
164@code{avx512er},
165@code{avx512pf},
166@code{avx512vl},
167@code{avx512bw},
168@code{avx512dq},
169@code{avx512ifma},
170@code{avx512vbmi},
171@code{noavx},
172@code{vmx},
173@code{vmfunc},
174@code{smx},
175@code{xsave},
176@code{xsaveopt},
177@code{xsavec},
178@code{xsaves},
179@code{aes},
180@code{pclmul},
181@code{fsgsbase},
182@code{rdrnd},
183@code{f16c},
184@code{bmi2},
185@code{fma},
186@code{movbe},
187@code{ept},
188@code{lzcnt},
189@code{hle},
190@code{rtm},
191@code{invpcid},
192@code{clflush},
193@code{mwaitx},
194@code{clzero},
195@code{lwp},
196@code{fma4},
197@code{xop},
198@code{cx16},
199@code{syscall},
200@code{rdtscp},
201@code{3dnow},
202@code{3dnowa},
203@code{sse4a},
204@code{sse5},
205@code{svme},
206@code{abm} and
207@code{padlock}.
208Note that rather than extending a basic instruction set, the extension
209mnemonics starting with @code{no} revoke the respective functionality.
210
211When the @code{.arch} directive is used with @option{-march}, the
212@code{.arch} directive will take precedent.
213
214@cindex @samp{-mtune=} option, i386
215@cindex @samp{-mtune=} option, x86-64
216@item -mtune=@var{CPU}
217This option specifies a processor to optimize for. When used in
218conjunction with the @option{-march} option, only instructions
219of the processor specified by the @option{-march} option will be
220generated.
221
222Valid @var{CPU} values are identical to the processor list of
223@option{-march=@var{CPU}}.
224
225@cindex @samp{-msse2avx} option, i386
226@cindex @samp{-msse2avx} option, x86-64
227@item -msse2avx
228This option specifies that the assembler should encode SSE instructions
229with VEX prefix.
230
231@cindex @samp{-msse-check=} option, i386
232@cindex @samp{-msse-check=} option, x86-64
233@item -msse-check=@var{none}
234@itemx -msse-check=@var{warning}
235@itemx -msse-check=@var{error}
236These options control if the assembler should check SSE instructions.
237@option{-msse-check=@var{none}} will make the assembler not to check SSE
238instructions, which is the default. @option{-msse-check=@var{warning}}
239will make the assembler issue a warning for any SSE instruction.
240@option{-msse-check=@var{error}} will make the assembler issue an error
241for any SSE instruction.
242
243@cindex @samp{-mavxscalar=} option, i386
244@cindex @samp{-mavxscalar=} option, x86-64
245@item -mavxscalar=@var{128}
246@itemx -mavxscalar=@var{256}
247These options control how the assembler should encode scalar AVX
248instructions. @option{-mavxscalar=@var{128}} will encode scalar
249AVX instructions with 128bit vector length, which is the default.
250@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
251with 256bit vector length.
252
253@cindex @samp{-mevexlig=} option, i386
254@cindex @samp{-mevexlig=} option, x86-64
255@item -mevexlig=@var{128}
256@itemx -mevexlig=@var{256}
257@itemx -mevexlig=@var{512}
258These options control how the assembler should encode length-ignored
259(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
260EVEX instructions with 128bit vector length, which is the default.
261@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
262encode LIG EVEX instructions with 256bit and 512bit vector length,
263respectively.
264
265@cindex @samp{-mevexwig=} option, i386
266@cindex @samp{-mevexwig=} option, x86-64
267@item -mevexwig=@var{0}
268@itemx -mevexwig=@var{1}
269These options control how the assembler should encode w-ignored (WIG)
270EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
271EVEX instructions with evex.w = 0, which is the default.
272@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
273evex.w = 1.
274
275@cindex @samp{-mmnemonic=} option, i386
276@cindex @samp{-mmnemonic=} option, x86-64
277@item -mmnemonic=@var{att}
278@itemx -mmnemonic=@var{intel}
279This option specifies instruction mnemonic for matching instructions.
280The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
281take precedent.
282
283@cindex @samp{-msyntax=} option, i386
284@cindex @samp{-msyntax=} option, x86-64
285@item -msyntax=@var{att}
286@itemx -msyntax=@var{intel}
287This option specifies instruction syntax when processing instructions.
288The @code{.att_syntax} and @code{.intel_syntax} directives will
289take precedent.
290
291@cindex @samp{-mnaked-reg} option, i386
292@cindex @samp{-mnaked-reg} option, x86-64
293@item -mnaked-reg
294This opetion specifies that registers don't require a @samp{%} prefix.
295The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
296
297@cindex @samp{-madd-bnd-prefix} option, i386
298@cindex @samp{-madd-bnd-prefix} option, x86-64
299@item -madd-bnd-prefix
300This option forces the assembler to add BND prefix to all branches, even
301if such prefix was not explicitly specified in the source code.
302
303@cindex @samp{-mshared} option, i386
304@cindex @samp{-mshared} option, x86-64
305@item -mno-shared
306On ELF target, the assembler normally optimizes out non-PLT relocations
307against defined non-weak global branch targets with default visibility.
308The @samp{-mshared} option tells the assembler to generate code which
309may go into a shared library where all non-weak global branch targets
310with default visibility can be preempted. The resulting code is
311slightly bigger. This option only affects the handling of branch
312instructions.
313
314@cindex @samp{-mbig-obj} option, x86-64
315@item -mbig-obj
316On x86-64 PE/COFF target this option forces the use of big object file
317format, which allows more than 32768 sections.
318
319@cindex @samp{-momit-lock-prefix=} option, i386
320@cindex @samp{-momit-lock-prefix=} option, x86-64
321@item -momit-lock-prefix=@var{no}
322@itemx -momit-lock-prefix=@var{yes}
323These options control how the assembler should encode lock prefix.
324This option is intended as a workaround for processors, that fail on
325lock prefix. This option can only be safely used with single-core,
326single-thread computers
327@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
328@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
329which is the default.
330
331@cindex @samp{-mfence-as-lock-add=} option, i386
332@cindex @samp{-mfence-as-lock-add=} option, x86-64
333@item -mfence-as-lock-add=@var{no}
334@itemx -mfence-as-lock-add=@var{yes}
335These options control how the assembler should encode lfence, mfence and
336sfence.
337@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
338sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
339@samp{lock addl $0x0, (%esp)} in 32-bit mode.
340@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
341sfence as usual, which is the default.
342
343@cindex @samp{-mrelax-relocations=} option, i386
344@cindex @samp{-mrelax-relocations=} option, x86-64
345@item -mrelax-relocations=@var{no}
346@itemx -mrelax-relocations=@var{yes}
347These options control whether the assembler should generate relax
348relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
349R_X86_64_REX_GOTPCRELX, in 64-bit mode.
350@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
351@option{-mrelax-relocations=@var{no}} will not generate relax
352relocations. The default can be controlled by a configure option
353@option{--enable-x86-relax-relocations}.
354
355@cindex @samp{-mevexrcig=} option, i386
356@cindex @samp{-mevexrcig=} option, x86-64
357@item -mevexrcig=@var{rne}
358@itemx -mevexrcig=@var{rd}
359@itemx -mevexrcig=@var{ru}
360@itemx -mevexrcig=@var{rz}
361These options control how the assembler should encode SAE-only
362EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
363of EVEX instruction with 00, which is the default.
364@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
365and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
366with 01, 10 and 11 RC bits, respectively.
367
368@cindex @samp{-mamd64} option, x86-64
369@cindex @samp{-mintel64} option, x86-64
370@item -mamd64
371@itemx -mintel64
372This option specifies that the assembler should accept only AMD64 or
373Intel64 ISA in 64-bit mode. The default is to accept both.
374
375@end table
376@c man end
377
378@node i386-Directives
379@section x86 specific Directives
380
381@cindex machine directives, x86
382@cindex x86 machine directives
383@table @code
384
385@cindex @code{lcomm} directive, COFF
386@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
387Reserve @var{length} (an absolute expression) bytes for a local common
388denoted by @var{symbol}. The section and value of @var{symbol} are
389those of the new local common. The addresses are allocated in the bss
390section, so that at run-time the bytes start off zeroed. Since
391@var{symbol} is not declared global, it is normally not visible to
392@code{@value{LD}}. The optional third parameter, @var{alignment},
393specifies the desired alignment of the symbol in the bss section.
394
395This directive is only available for COFF based x86 targets.
396
397@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
398@c .largecomm
399
400@end table
401
402@node i386-Syntax
403@section i386 Syntactical Considerations
404@menu
405* i386-Variations:: AT&T Syntax versus Intel Syntax
406* i386-Chars:: Special Characters
407@end menu
408
409@node i386-Variations
410@subsection AT&T Syntax versus Intel Syntax
411
412@cindex i386 intel_syntax pseudo op
413@cindex intel_syntax pseudo op, i386
414@cindex i386 att_syntax pseudo op
415@cindex att_syntax pseudo op, i386
416@cindex i386 syntax compatibility
417@cindex syntax compatibility, i386
418@cindex x86-64 intel_syntax pseudo op
419@cindex intel_syntax pseudo op, x86-64
420@cindex x86-64 att_syntax pseudo op
421@cindex att_syntax pseudo op, x86-64
422@cindex x86-64 syntax compatibility
423@cindex syntax compatibility, x86-64
424
425@code{@value{AS}} now supports assembly using Intel assembler syntax.
426@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
427back to the usual AT&T mode for compatibility with the output of
428@code{@value{GCC}}. Either of these directives may have an optional
429argument, @code{prefix}, or @code{noprefix} specifying whether registers
430require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
431different from Intel syntax. We mention these differences because
432almost all 80386 documents use Intel syntax. Notable differences
433between the two syntaxes are:
434
435@cindex immediate operands, i386
436@cindex i386 immediate operands
437@cindex register operands, i386
438@cindex i386 register operands
439@cindex jump/call operands, i386
440@cindex i386 jump/call operands
441@cindex operand delimiters, i386
442
443@cindex immediate operands, x86-64
444@cindex x86-64 immediate operands
445@cindex register operands, x86-64
446@cindex x86-64 register operands
447@cindex jump/call operands, x86-64
448@cindex x86-64 jump/call operands
449@cindex operand delimiters, x86-64
450@itemize @bullet
451@item
452AT&T immediate operands are preceded by @samp{$}; Intel immediate
453operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
454AT&T register operands are preceded by @samp{%}; Intel register operands
455are undelimited. AT&T absolute (as opposed to PC relative) jump/call
456operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
457
458@cindex i386 source, destination operands
459@cindex source, destination operands; i386
460@cindex x86-64 source, destination operands
461@cindex source, destination operands; x86-64
462@item
463AT&T and Intel syntax use the opposite order for source and destination
464operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
465@samp{source, dest} convention is maintained for compatibility with
466previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
467instructions with 2 immediate operands, such as the @samp{enter}
468instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
469
470@cindex mnemonic suffixes, i386
471@cindex sizes operands, i386
472@cindex i386 size suffixes
473@cindex mnemonic suffixes, x86-64
474@cindex sizes operands, x86-64
475@cindex x86-64 size suffixes
476@item
477In AT&T syntax the size of memory operands is determined from the last
478character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
479@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
480(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
481this by prefixing memory operands (@emph{not} the instruction mnemonics) with
482@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
483Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
484syntax.
485
486In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
487instruction with the 64-bit displacement or immediate operand.
488
489@cindex return instructions, i386
490@cindex i386 jump, call, return
491@cindex return instructions, x86-64
492@cindex x86-64 jump, call, return
493@item
494Immediate form long jumps and calls are
495@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
496Intel syntax is
497@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
498instruction
499is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
500@samp{ret far @var{stack-adjust}}.
501
502@cindex sections, i386
503@cindex i386 sections
504@cindex sections, x86-64
505@cindex x86-64 sections
506@item
507The AT&T assembler does not provide support for multiple section
508programs. Unix style systems expect all programs to be single sections.
509@end itemize
510
511@node i386-Chars
512@subsection Special Characters
513
514@cindex line comment character, i386
515@cindex i386 line comment character
516The presence of a @samp{#} appearing anywhere on a line indicates the
517start of a comment that extends to the end of that line.
518
519If a @samp{#} appears as the first character of a line then the whole
520line is treated as a comment, but in this case the line can also be a
521logical line number directive (@pxref{Comments}) or a preprocessor
522control command (@pxref{Preprocessing}).
523
524If the @option{--divide} command line option has not been specified
525then the @samp{/} character appearing anywhere on a line also
526introduces a line comment.
527
528@cindex line separator, i386
529@cindex statement separator, i386
530@cindex i386 line separator
531The @samp{;} character can be used to separate statements on the same
532line.
533
534@node i386-Mnemonics
535@section i386-Mnemonics
536@subsection Instruction Naming
537
538@cindex i386 instruction naming
539@cindex instruction naming, i386
540@cindex x86-64 instruction naming
541@cindex instruction naming, x86-64
542
543Instruction mnemonics are suffixed with one character modifiers which
544specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
545and @samp{q} specify byte, word, long and quadruple word operands. If
546no suffix is specified by an instruction then @code{@value{AS}} tries to
547fill in the missing suffix based on the destination register operand
548(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
549to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
550@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
551assembler which assumes that a missing mnemonic suffix implies long
552operand size. (This incompatibility does not affect compiler output
553since compilers always explicitly specify the mnemonic suffix.)
554
555Almost all instructions have the same names in AT&T and Intel format.
556There are a few exceptions. The sign extend and zero extend
557instructions need two sizes to specify them. They need a size to
558sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
559is accomplished by using two instruction mnemonic suffixes in AT&T
560syntax. Base names for sign extend and zero extend are
561@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
562and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
563are tacked on to this base name, the @emph{from} suffix before the
564@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
565``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
566thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
567@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
568@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
569quadruple word).
570
571@cindex encoding options, i386
572@cindex encoding options, x86-64
573
574Different encoding options can be specified via optional mnemonic
575suffix. @samp{.s} suffix swaps 2 register operands in encoding when
576moving from one register to another. @samp{.d8} or @samp{.d32} suffix
577prefers 8bit or 32bit displacement in encoding.
578
579@cindex conversion instructions, i386
580@cindex i386 conversion instructions
581@cindex conversion instructions, x86-64
582@cindex x86-64 conversion instructions
583The Intel-syntax conversion instructions
584
585@itemize @bullet
586@item
587@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
588
589@item
590@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
591
592@item
593@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
594
595@item
596@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
597
598@item
599@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
600(x86-64 only),
601
602@item
603@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
604@samp{%rdx:%rax} (x86-64 only),
605@end itemize
606
607@noindent
608are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
609@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
610instructions.
611
612@cindex jump instructions, i386
613@cindex call instructions, i386
614@cindex jump instructions, x86-64
615@cindex call instructions, x86-64
616Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
617AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
618convention.
619
620@subsection AT&T Mnemonic versus Intel Mnemonic
621
622@cindex i386 mnemonic compatibility
623@cindex mnemonic compatibility, i386
624
625@code{@value{AS}} supports assembly using Intel mnemonic.
626@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
627@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
628syntax for compatibility with the output of @code{@value{GCC}}.
629Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
630@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
631@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
632assembler with different mnemonics from those in Intel IA32 specification.
633@code{@value{GCC}} generates those instructions with AT&T mnemonic.
634
635@node i386-Regs
636@section Register Naming
637
638@cindex i386 registers
639@cindex registers, i386
640@cindex x86-64 registers
641@cindex registers, x86-64
642Register operands are always prefixed with @samp{%}. The 80386 registers
643consist of
644
645@itemize @bullet
646@item
647the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
648@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
649frame pointer), and @samp{%esp} (the stack pointer).
650
651@item
652the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
653@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
654
655@item
656the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
657@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
658are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
659@samp{%cx}, and @samp{%dx})
660
661@item
662the 6 section registers @samp{%cs} (code section), @samp{%ds}
663(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
664and @samp{%gs}.
665
666@item
667the 5 processor control registers @samp{%cr0}, @samp{%cr2},
668@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
669
670@item
671the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
672@samp{%db3}, @samp{%db6}, and @samp{%db7}.
673
674@item
675the 2 test registers @samp{%tr6} and @samp{%tr7}.
676
677@item
678the 8 floating point register stack @samp{%st} or equivalently
679@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
680@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
681These registers are overloaded by 8 MMX registers @samp{%mm0},
682@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
683@samp{%mm6} and @samp{%mm7}.
684
685@item
686the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
687@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
688@end itemize
689
690The AMD x86-64 architecture extends the register set by:
691
692@itemize @bullet
693@item
694enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
695accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
696@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
697pointer)
698
699@item
700the 8 extended registers @samp{%r8}--@samp{%r15}.
701
702@item
703the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
704
705@item
706the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
707
708@item
709the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
710
711@item
712the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
713
714@item
715the 8 debug registers: @samp{%db8}--@samp{%db15}.
716
717@item
718the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
719@end itemize
720
721With the AVX extensions more registers were made available:
722
723@itemize @bullet
724
725@item
726the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
727available in 32-bit mode). The bottom 128 bits are overlaid with the
728@samp{xmm0}--@samp{xmm15} registers.
729
730@end itemize
731
732The AVX2 extensions made in 64-bit mode more registers available:
733
734@itemize @bullet
735
736@item
737the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
738registers @samp{%ymm16}--@samp{%ymm31}.
739
740@end itemize
741
742The AVX512 extensions added the following registers:
743
744@itemize @bullet
745
746@item
747the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
748available in 32-bit mode). The bottom 128 bits are overlaid with the
749@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
750overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
751
752@item
753the 8 mask registers @samp{%k0}--@samp{%k7}.
754
755@end itemize
756
757@node i386-Prefixes
758@section Instruction Prefixes
759
760@cindex i386 instruction prefixes
761@cindex instruction prefixes, i386
762@cindex prefixes, i386
763Instruction prefixes are used to modify the following instruction. They
764are used to repeat string instructions, to provide section overrides, to
765perform bus lock operations, and to change operand and address sizes.
766(Most instructions that normally operate on 32-bit operands will use
76716-bit operands if the instruction has an ``operand size'' prefix.)
768Instruction prefixes are best written on the same line as the instruction
769they act upon. For example, the @samp{scas} (scan string) instruction is
770repeated with:
771
772@smallexample
773 repne scas %es:(%edi),%al
774@end smallexample
775
776You may also place prefixes on the lines immediately preceding the
777instruction, but this circumvents checks that @code{@value{AS}} does
778with prefixes, and will not work with all prefixes.
779
780Here is a list of instruction prefixes:
781
782@cindex section override prefixes, i386
783@itemize @bullet
784@item
785Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
786@samp{fs}, @samp{gs}. These are automatically added by specifying
787using the @var{section}:@var{memory-operand} form for memory references.
788
789@cindex size prefixes, i386
790@item
791Operand/Address size prefixes @samp{data16} and @samp{addr16}
792change 32-bit operands/addresses into 16-bit operands/addresses,
793while @samp{data32} and @samp{addr32} change 16-bit ones (in a
794@code{.code16} section) into 32-bit operands/addresses. These prefixes
795@emph{must} appear on the same line of code as the instruction they
796modify. For example, in a 16-bit @code{.code16} section, you might
797write:
798
799@smallexample
800 addr32 jmpl *(%ebx)
801@end smallexample
802
803@cindex bus lock prefixes, i386
804@cindex inhibiting interrupts, i386
805@item
806The bus lock prefix @samp{lock} inhibits interrupts during execution of
807the instruction it precedes. (This is only valid with certain
808instructions; see a 80386 manual for details).
809
810@cindex coprocessor wait, i386
811@item
812The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
813complete the current instruction. This should never be needed for the
81480386/80387 combination.
815
816@cindex repeat prefixes, i386
817@item
818The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
819to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
820times if the current address size is 16-bits).
821@cindex REX prefixes, i386
822@item
823The @samp{rex} family of prefixes is used by x86-64 to encode
824extensions to i386 instruction set. The @samp{rex} prefix has four
825bits --- an operand size overwrite (@code{64}) used to change operand size
826from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
827register set.
828
829You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
830instruction emits @samp{rex} prefix with all the bits set. By omitting
831the @code{64}, @code{x}, @code{y} or @code{z} you may write other
832prefixes as well. Normally, there is no need to write the prefixes
833explicitly, since gas will automatically generate them based on the
834instruction operands.
835@end itemize
836
837@node i386-Memory
838@section Memory References
839
840@cindex i386 memory references
841@cindex memory references, i386
842@cindex x86-64 memory references
843@cindex memory references, x86-64
844An Intel syntax indirect memory reference of the form
845
846@smallexample
847@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
848@end smallexample
849
850@noindent
851is translated into the AT&T syntax
852
853@smallexample
854@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
855@end smallexample
856
857@noindent
858where @var{base} and @var{index} are the optional 32-bit base and
859index registers, @var{disp} is the optional displacement, and
860@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
861to calculate the address of the operand. If no @var{scale} is
862specified, @var{scale} is taken to be 1. @var{section} specifies the
863optional section register for the memory operand, and may override the
864default section register (see a 80386 manual for section register
865defaults). Note that section overrides in AT&T syntax @emph{must}
866be preceded by a @samp{%}. If you specify a section override which
867coincides with the default section register, @code{@value{AS}} does @emph{not}
868output any section register override prefixes to assemble the given
869instruction. Thus, section overrides can be specified to emphasize which
870section register is used for a given memory operand.
871
872Here are some examples of Intel and AT&T style memory references:
873
874@table @asis
875@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
876@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
877missing, and the default section is used (@samp{%ss} for addressing with
878@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
879
880@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
881@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
882@samp{foo}. All other fields are missing. The section register here
883defaults to @samp{%ds}.
884
885@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
886This uses the value pointed to by @samp{foo} as a memory operand.
887Note that @var{base} and @var{index} are both missing, but there is only
888@emph{one} @samp{,}. This is a syntactic exception.
889
890@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
891This selects the contents of the variable @samp{foo} with section
892register @var{section} being @samp{%gs}.
893@end table
894
895Absolute (as opposed to PC relative) call and jump operands must be
896prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
897always chooses PC relative addressing for jump/call labels.
898
899Any instruction that has a memory operand, but no register operand,
900@emph{must} specify its size (byte, word, long, or quadruple) with an
901instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
902respectively).
903
904The x86-64 architecture adds an RIP (instruction pointer relative)
905addressing. This addressing mode is specified by using @samp{rip} as a
906base register. Only constant offsets are valid. For example:
907
908@table @asis
909@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
910Points to the address 1234 bytes past the end of the current
911instruction.
912
913@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
914Points to the @code{symbol} in RIP relative way, this is shorter than
915the default absolute addressing.
916@end table
917
918Other addressing modes remain unchanged in x86-64 architecture, except
919registers used are 64-bit instead of 32-bit.
920
921@node i386-Jumps
922@section Handling of Jump Instructions
923
924@cindex jump optimization, i386
925@cindex i386 jump optimization
926@cindex jump optimization, x86-64
927@cindex x86-64 jump optimization
928Jump instructions are always optimized to use the smallest possible
929displacements. This is accomplished by using byte (8-bit) displacement
930jumps whenever the target is sufficiently close. If a byte displacement
931is insufficient a long displacement is used. We do not support
932word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
933instruction with the @samp{data16} instruction prefix), since the 80386
934insists upon masking @samp{%eip} to 16 bits after the word displacement
935is added. (See also @pxref{i386-Arch})
936
937Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
938@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
939displacements, so that if you use these instructions (@code{@value{GCC}} does
940not use them) you may get an error message (and incorrect code). The AT&T
94180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
942to
943
944@smallexample
945 jcxz cx_zero
946 jmp cx_nonzero
947cx_zero: jmp foo
948cx_nonzero:
949@end smallexample
950
951@node i386-Float
952@section Floating Point
953
954@cindex i386 floating point
955@cindex floating point, i386
956@cindex x86-64 floating point
957@cindex floating point, x86-64
958All 80387 floating point types except packed BCD are supported.
959(BCD support may be added without much difficulty). These data
960types are 16-, 32-, and 64- bit integers, and single (32-bit),
961double (64-bit), and extended (80-bit) precision floating point.
962Each supported type has an instruction mnemonic suffix and a constructor
963associated with it. Instruction mnemonic suffixes specify the operand's
964data type. Constructors build these data types into memory.
965
966@cindex @code{float} directive, i386
967@cindex @code{single} directive, i386
968@cindex @code{double} directive, i386
969@cindex @code{tfloat} directive, i386
970@cindex @code{float} directive, x86-64
971@cindex @code{single} directive, x86-64
972@cindex @code{double} directive, x86-64
973@cindex @code{tfloat} directive, x86-64
974@itemize @bullet
975@item
976Floating point constructors are @samp{.float} or @samp{.single},
977@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
978These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
979and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
980only supports this format via the @samp{fldt} (load 80-bit real to stack
981top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
982
983@cindex @code{word} directive, i386
984@cindex @code{long} directive, i386
985@cindex @code{int} directive, i386
986@cindex @code{quad} directive, i386
987@cindex @code{word} directive, x86-64
988@cindex @code{long} directive, x86-64
989@cindex @code{int} directive, x86-64
990@cindex @code{quad} directive, x86-64
991@item
992Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
993@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
994corresponding instruction mnemonic suffixes are @samp{s} (single),
995@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
996the 64-bit @samp{q} format is only present in the @samp{fildq} (load
997quad integer to stack top) and @samp{fistpq} (store quad integer and pop
998stack) instructions.
999@end itemize
1000
1001Register to register operations should not use instruction mnemonic suffixes.
1002@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1003wrote @samp{fst %st, %st(1)}, since all register to register operations
1004use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1005which converts @samp{%st} from 80-bit to 64-bit floating point format,
1006then stores the result in the 4 byte location @samp{mem})
1007
1008@node i386-SIMD
1009@section Intel's MMX and AMD's 3DNow! SIMD Operations
1010
1011@cindex MMX, i386
1012@cindex 3DNow!, i386
1013@cindex SIMD, i386
1014@cindex MMX, x86-64
1015@cindex 3DNow!, x86-64
1016@cindex SIMD, x86-64
1017
1018@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1019instructions for integer data), available on Intel's Pentium MMX
1020processors and Pentium II processors, AMD's K6 and K6-2 processors,
1021Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1022instruction set (SIMD instructions for 32-bit floating point data)
1023available on AMD's K6-2 processor and possibly others in the future.
1024
1025Currently, @code{@value{AS}} does not support Intel's floating point
1026SIMD, Katmai (KNI).
1027
1028The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1029@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
103016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1031floating point values. The MMX registers cannot be used at the same time
1032as the floating point stack.
1033
1034See Intel and AMD documentation, keeping in mind that the operand order in
1035instructions is reversed from the Intel syntax.
1036
1037@node i386-LWP
1038@section AMD's Lightweight Profiling Instructions
1039
1040@cindex LWP, i386
1041@cindex LWP, x86-64
1042
1043@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1044instruction set, available on AMD's Family 15h (Orochi) processors.
1045
1046LWP enables applications to collect and manage performance data, and
1047react to performance events. The collection of performance data
1048requires no context switches. LWP runs in the context of a thread and
1049so several counters can be used independently across multiple threads.
1050LWP can be used in both 64-bit and legacy 32-bit modes.
1051
1052For detailed information on the LWP instruction set, see the
1053@cite{AMD Lightweight Profiling Specification} available at
1054@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1055
1056@node i386-BMI
1057@section Bit Manipulation Instructions
1058
1059@cindex BMI, i386
1060@cindex BMI, x86-64
1061
1062@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1063
1064BMI instructions provide several instructions implementing individual
1065bit manipulation operations such as isolation, masking, setting, or
1066resetting.
1067
1068@c Need to add a specification citation here when available.
1069
1070@node i386-TBM
1071@section AMD's Trailing Bit Manipulation Instructions
1072
1073@cindex TBM, i386
1074@cindex TBM, x86-64
1075
1076@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1077instruction set, available on AMD's BDVER2 processors (Trinity and
1078Viperfish).
1079
1080TBM instructions provide instructions implementing individual bit
1081manipulation operations such as isolating, masking, setting, resetting,
1082complementing, and operations on trailing zeros and ones.
1083
1084@c Need to add a specification citation here when available.
1085
1086@node i386-16bit
1087@section Writing 16-bit Code
1088
1089@cindex i386 16-bit code
1090@cindex 16-bit code, i386
1091@cindex real-mode code, i386
1092@cindex @code{code16gcc} directive, i386
1093@cindex @code{code16} directive, i386
1094@cindex @code{code32} directive, i386
1095@cindex @code{code64} directive, i386
1096@cindex @code{code64} directive, x86-64
1097While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1098or 64-bit x86-64 code depending on the default configuration,
1099it also supports writing code to run in real mode or in 16-bit protected
1100mode code segments. To do this, put a @samp{.code16} or
1101@samp{.code16gcc} directive before the assembly language instructions to
1102be run in 16-bit mode. You can switch @code{@value{AS}} to writing
110332-bit code with the @samp{.code32} directive or 64-bit code with the
1104@samp{.code64} directive.
1105
1106@samp{.code16gcc} provides experimental support for generating 16-bit
1107code from gcc, and differs from @samp{.code16} in that @samp{call},
1108@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1109@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1110default to 32-bit size. This is so that the stack pointer is
1111manipulated in the same way over function calls, allowing access to
1112function parameters at the same stack offsets as in 32-bit mode.
1113@samp{.code16gcc} also automatically adds address size prefixes where
1114necessary to use the 32-bit addressing modes that gcc generates.
1115
1116The code which @code{@value{AS}} generates in 16-bit mode will not
1117necessarily run on a 16-bit pre-80386 processor. To write code that
1118runs on such a processor, you must refrain from using @emph{any} 32-bit
1119constructs which require @code{@value{AS}} to output address or operand
1120size prefixes.
1121
1122Note that writing 16-bit code instructions by explicitly specifying a
1123prefix or an instruction mnemonic suffix within a 32-bit code section
1124generates different machine instructions than those generated for a
112516-bit code segment. In a 32-bit code section, the following code
1126generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1127value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1128
1129@smallexample
1130 pushw $4
1131@end smallexample
1132
1133The same code in a 16-bit code section would generate the machine
1134opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1135is correct since the processor default operand size is assumed to be 16
1136bits in a 16-bit code section.
1137
1138@node i386-Arch
1139@section Specifying CPU Architecture
1140
1141@cindex arch directive, i386
1142@cindex i386 arch directive
1143@cindex arch directive, x86-64
1144@cindex x86-64 arch directive
1145
1146@code{@value{AS}} may be told to assemble for a particular CPU
1147(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1148directive enables a warning when gas detects an instruction that is not
1149supported on the CPU specified. The choices for @var{cpu_type} are:
1150
1151@multitable @columnfractions .20 .20 .20 .20
1152@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1153@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1154@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1155@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1156@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1157@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1158@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1159@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1160@item @samp{generic32} @tab @samp{generic64}
1161@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1162@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1163@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1164@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1165@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1166@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1167@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1168@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1169@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1170@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1171@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1172@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1173@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1174@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1175@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1176@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1177@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpid}
1178@end multitable
1179
1180Apart from the warning, there are only two other effects on
1181@code{@value{AS}} operation; Firstly, if you specify a CPU other than
1182@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1183will automatically use a two byte opcode sequence. The larger three
1184byte opcode sequence is used on the 486 (and when no architecture is
1185specified) because it executes faster on the 486. Note that you can
1186explicitly request the two byte opcode by writing @samp{sarl %eax}.
1187Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1188@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1189conditional jumps will be promoted when necessary to a two instruction
1190sequence consisting of a conditional jump of the opposite sense around
1191an unconditional jump to the target.
1192
1193Following the CPU architecture (but not a sub-architecture, which are those
1194starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1195control automatic promotion of conditional jumps. @samp{jumps} is the
1196default, and enables jump promotion; All external jumps will be of the long
1197variety, and file-local jumps will be promoted as necessary.
1198(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1199byte offset jumps, and warns about file-local conditional jumps that
1200@code{@value{AS}} promotes.
1201Unconditional jumps are treated as for @samp{jumps}.
1202
1203For example
1204
1205@smallexample
1206 .arch i8086,nojumps
1207@end smallexample
1208
1209@node i386-Bugs
1210@section AT&T Syntax bugs
1211
1212The UnixWare assembler, and probably other AT&T derived ix86 Unix
1213assemblers, generate floating point instructions with reversed source
1214and destination registers in certain cases. Unfortunately, gcc and
1215possibly many other programs use this reversed syntax, so we're stuck
1216with it.
1217
1218For example
1219
1220@smallexample
1221 fsub %st,%st(3)
1222@end smallexample
1223@noindent
1224results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1225than the expected @samp{%st(3) - %st}. This happens with all the
1226non-commutative arithmetic floating point operations with two register
1227operands where the source register is @samp{%st} and the destination
1228register is @samp{%st(i)}.
1229
1230@node i386-Notes
1231@section Notes
1232
1233@cindex i386 @code{mul}, @code{imul} instructions
1234@cindex @code{mul} instruction, i386
1235@cindex @code{imul} instruction, i386
1236@cindex @code{mul} instruction, x86-64
1237@cindex @code{imul} instruction, x86-64
1238There is some trickery concerning the @samp{mul} and @samp{imul}
1239instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1240multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1241for @samp{imul}) can be output only in the one operand form. Thus,
1242@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1243the expanding multiply would clobber the @samp{%edx} register, and this
1244would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
124564-bit product in @samp{%edx:%eax}.
1246
1247We have added a two operand form of @samp{imul} when the first operand
1248is an immediate mode expression and the second operand is a register.
1249This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1250example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1251$69, %eax, %eax}.
1252
This page took 0.030201 seconds and 4 git commands to generate.