[GOLD] Set non-exec stack for aarch64
[deliverable/binutils-gdb.git] / gdb / arch-utils.c
... / ...
CommitLineData
1/* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright (C) 1998-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21
22#include "arch-utils.h"
23#include "buildsym.h"
24#include "gdbcmd.h"
25#include "inferior.h" /* enum CALL_DUMMY_LOCATION et al. */
26#include "infrun.h"
27#include "regcache.h"
28#include "sim-regno.h"
29#include "gdbcore.h"
30#include "osabi.h"
31#include "target-descriptions.h"
32#include "objfiles.h"
33#include "language.h"
34#include "symtab.h"
35
36#include "version.h"
37
38#include "floatformat.h"
39
40#include "dis-asm.h"
41
42struct displaced_step_closure *
43simple_displaced_step_copy_insn (struct gdbarch *gdbarch,
44 CORE_ADDR from, CORE_ADDR to,
45 struct regcache *regs)
46{
47 size_t len = gdbarch_max_insn_length (gdbarch);
48 gdb_byte *buf = (gdb_byte *) xmalloc (len);
49
50 read_memory (from, buf, len);
51 write_memory (to, buf, len);
52
53 if (debug_displaced)
54 {
55 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
56 paddress (gdbarch, from), paddress (gdbarch, to));
57 displaced_step_dump_bytes (gdb_stdlog, buf, len);
58 }
59
60 return (struct displaced_step_closure *) buf;
61}
62
63int
64default_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
65 struct displaced_step_closure *closure)
66{
67 return !gdbarch_software_single_step_p (gdbarch);
68}
69
70CORE_ADDR
71displaced_step_at_entry_point (struct gdbarch *gdbarch)
72{
73 CORE_ADDR addr;
74 int bp_len;
75
76 addr = entry_point_address ();
77
78 /* Inferior calls also use the entry point as a breakpoint location.
79 We don't want displaced stepping to interfere with those
80 breakpoints, so leave space. */
81 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
82 addr += bp_len * 2;
83
84 return addr;
85}
86
87int
88legacy_register_sim_regno (struct gdbarch *gdbarch, int regnum)
89{
90 /* Only makes sense to supply raw registers. */
91 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
92 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
93 suspected that some GDB/SIM combinations may rely on this
94 behavour. The default should be one2one_register_sim_regno
95 (below). */
96 if (gdbarch_register_name (gdbarch, regnum) != NULL
97 && gdbarch_register_name (gdbarch, regnum)[0] != '\0')
98 return regnum;
99 else
100 return LEGACY_SIM_REGNO_IGNORE;
101}
102
103CORE_ADDR
104generic_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
105{
106 return 0;
107}
108
109CORE_ADDR
110generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
111{
112 return 0;
113}
114
115int
116generic_in_solib_return_trampoline (struct gdbarch *gdbarch,
117 CORE_ADDR pc, const char *name)
118{
119 return 0;
120}
121
122int
123generic_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
124{
125 return 0;
126}
127
128int
129default_code_of_frame_writable (struct gdbarch *gdbarch,
130 struct frame_info *frame)
131{
132 return 1;
133}
134
135/* Helper functions for gdbarch_inner_than */
136
137int
138core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
139{
140 return (lhs < rhs);
141}
142
143int
144core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
145{
146 return (lhs > rhs);
147}
148
149/* Misc helper functions for targets. */
150
151CORE_ADDR
152core_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr)
153{
154 return addr;
155}
156
157CORE_ADDR
158convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
159 struct target_ops *targ)
160{
161 return addr;
162}
163
164int
165no_op_reg_to_regnum (struct gdbarch *gdbarch, int reg)
166{
167 return reg;
168}
169
170void
171default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
172{
173 return;
174}
175
176/* See arch-utils.h. */
177
178void
179default_make_symbol_special (struct symbol *sym, struct objfile *objfile)
180{
181 return;
182}
183
184/* See arch-utils.h. */
185
186CORE_ADDR
187default_adjust_dwarf2_addr (CORE_ADDR pc)
188{
189 return pc;
190}
191
192/* See arch-utils.h. */
193
194CORE_ADDR
195default_adjust_dwarf2_line (CORE_ADDR addr, int rel)
196{
197 return addr;
198}
199
200/* See arch-utils.h. */
201
202bool
203default_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
204 struct dwarf2_frame_state *fs)
205{
206 return false;
207}
208
209int
210cannot_register_not (struct gdbarch *gdbarch, int regnum)
211{
212 return 0;
213}
214
215/* Legacy version of target_virtual_frame_pointer(). Assumes that
216 there is an gdbarch_deprecated_fp_regnum and that it is the same,
217 cooked or raw. */
218
219void
220legacy_virtual_frame_pointer (struct gdbarch *gdbarch,
221 CORE_ADDR pc,
222 int *frame_regnum,
223 LONGEST *frame_offset)
224{
225 /* FIXME: cagney/2002-09-13: This code is used when identifying the
226 frame pointer of the current PC. It is assuming that a single
227 register and an offset can determine this. I think it should
228 instead generate a byte code expression as that would work better
229 with things like Dwarf2's CFI. */
230 if (gdbarch_deprecated_fp_regnum (gdbarch) >= 0
231 && gdbarch_deprecated_fp_regnum (gdbarch)
232 < gdbarch_num_regs (gdbarch))
233 *frame_regnum = gdbarch_deprecated_fp_regnum (gdbarch);
234 else if (gdbarch_sp_regnum (gdbarch) >= 0
235 && gdbarch_sp_regnum (gdbarch)
236 < gdbarch_num_regs (gdbarch))
237 *frame_regnum = gdbarch_sp_regnum (gdbarch);
238 else
239 /* Should this be an internal error? I guess so, it is reflecting
240 an architectural limitation in the current design. */
241 internal_error (__FILE__, __LINE__,
242 _("No virtual frame pointer available"));
243 *frame_offset = 0;
244}
245
246/* Return a floating-point format for a floating-point variable of
247 length LEN in bits. If non-NULL, NAME is the name of its type.
248 If no suitable type is found, return NULL. */
249
250const struct floatformat **
251default_floatformat_for_type (struct gdbarch *gdbarch,
252 const char *name, int len)
253{
254 const struct floatformat **format = NULL;
255
256 if (len == gdbarch_half_bit (gdbarch))
257 format = gdbarch_half_format (gdbarch);
258 else if (len == gdbarch_float_bit (gdbarch))
259 format = gdbarch_float_format (gdbarch);
260 else if (len == gdbarch_double_bit (gdbarch))
261 format = gdbarch_double_format (gdbarch);
262 else if (len == gdbarch_long_double_bit (gdbarch))
263 format = gdbarch_long_double_format (gdbarch);
264 /* On i386 the 'long double' type takes 96 bits,
265 while the real number of used bits is only 80,
266 both in processor and in memory.
267 The code below accepts the real bit size. */
268 else if (gdbarch_long_double_format (gdbarch) != NULL
269 && len == gdbarch_long_double_format (gdbarch)[0]->totalsize)
270 format = gdbarch_long_double_format (gdbarch);
271
272 return format;
273}
274\f
275int
276generic_convert_register_p (struct gdbarch *gdbarch, int regnum,
277 struct type *type)
278{
279 return 0;
280}
281
282int
283default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
284{
285 return 0;
286}
287
288int
289generic_instruction_nullified (struct gdbarch *gdbarch,
290 struct regcache *regcache)
291{
292 return 0;
293}
294
295int
296default_remote_register_number (struct gdbarch *gdbarch,
297 int regno)
298{
299 return regno;
300}
301
302/* See arch-utils.h. */
303
304int
305default_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
306{
307 return 0;
308}
309
310\f
311/* Functions to manipulate the endianness of the target. */
312
313static enum bfd_endian target_byte_order_user = BFD_ENDIAN_UNKNOWN;
314
315static const char endian_big[] = "big";
316static const char endian_little[] = "little";
317static const char endian_auto[] = "auto";
318static const char *const endian_enum[] =
319{
320 endian_big,
321 endian_little,
322 endian_auto,
323 NULL,
324};
325static const char *set_endian_string;
326
327enum bfd_endian
328selected_byte_order (void)
329{
330 return target_byte_order_user;
331}
332
333/* Called by ``show endian''. */
334
335static void
336show_endian (struct ui_file *file, int from_tty, struct cmd_list_element *c,
337 const char *value)
338{
339 if (target_byte_order_user == BFD_ENDIAN_UNKNOWN)
340 if (gdbarch_byte_order (get_current_arch ()) == BFD_ENDIAN_BIG)
341 fprintf_unfiltered (file, _("The target endianness is set automatically "
342 "(currently big endian)\n"));
343 else
344 fprintf_unfiltered (file, _("The target endianness is set automatically "
345 "(currently little endian)\n"));
346 else
347 if (target_byte_order_user == BFD_ENDIAN_BIG)
348 fprintf_unfiltered (file,
349 _("The target is assumed to be big endian\n"));
350 else
351 fprintf_unfiltered (file,
352 _("The target is assumed to be little endian\n"));
353}
354
355static void
356set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
357{
358 struct gdbarch_info info;
359
360 gdbarch_info_init (&info);
361
362 if (set_endian_string == endian_auto)
363 {
364 target_byte_order_user = BFD_ENDIAN_UNKNOWN;
365 if (! gdbarch_update_p (info))
366 internal_error (__FILE__, __LINE__,
367 _("set_endian: architecture update failed"));
368 }
369 else if (set_endian_string == endian_little)
370 {
371 info.byte_order = BFD_ENDIAN_LITTLE;
372 if (! gdbarch_update_p (info))
373 printf_unfiltered (_("Little endian target not supported by GDB\n"));
374 else
375 target_byte_order_user = BFD_ENDIAN_LITTLE;
376 }
377 else if (set_endian_string == endian_big)
378 {
379 info.byte_order = BFD_ENDIAN_BIG;
380 if (! gdbarch_update_p (info))
381 printf_unfiltered (_("Big endian target not supported by GDB\n"));
382 else
383 target_byte_order_user = BFD_ENDIAN_BIG;
384 }
385 else
386 internal_error (__FILE__, __LINE__,
387 _("set_endian: bad value"));
388
389 show_endian (gdb_stdout, from_tty, NULL, NULL);
390}
391
392/* Given SELECTED, a currently selected BFD architecture, and
393 TARGET_DESC, the current target description, return what
394 architecture to use.
395
396 SELECTED may be NULL, in which case we return the architecture
397 associated with TARGET_DESC. If SELECTED specifies a variant
398 of the architecture associtated with TARGET_DESC, return the
399 more specific of the two.
400
401 If SELECTED is a different architecture, but it is accepted as
402 compatible by the target, we can use the target architecture.
403
404 If SELECTED is obviously incompatible, warn the user. */
405
406static const struct bfd_arch_info *
407choose_architecture_for_target (const struct target_desc *target_desc,
408 const struct bfd_arch_info *selected)
409{
410 const struct bfd_arch_info *from_target = tdesc_architecture (target_desc);
411 const struct bfd_arch_info *compat1, *compat2;
412
413 if (selected == NULL)
414 return from_target;
415
416 if (from_target == NULL)
417 return selected;
418
419 /* struct bfd_arch_info objects are singletons: that is, there's
420 supposed to be exactly one instance for a given machine. So you
421 can tell whether two are equivalent by comparing pointers. */
422 if (from_target == selected)
423 return selected;
424
425 /* BFD's 'A->compatible (A, B)' functions return zero if A and B are
426 incompatible. But if they are compatible, it returns the 'more
427 featureful' of the two arches. That is, if A can run code
428 written for B, but B can't run code written for A, then it'll
429 return A.
430
431 Some targets (e.g. MIPS as of 2006-12-04) don't fully
432 implement this, instead always returning NULL or the first
433 argument. We detect that case by checking both directions. */
434
435 compat1 = selected->compatible (selected, from_target);
436 compat2 = from_target->compatible (from_target, selected);
437
438 if (compat1 == NULL && compat2 == NULL)
439 {
440 /* BFD considers the architectures incompatible. Check our
441 target description whether it accepts SELECTED as compatible
442 anyway. */
443 if (tdesc_compatible_p (target_desc, selected))
444 return from_target;
445
446 warning (_("Selected architecture %s is not compatible "
447 "with reported target architecture %s"),
448 selected->printable_name, from_target->printable_name);
449 return selected;
450 }
451
452 if (compat1 == NULL)
453 return compat2;
454 if (compat2 == NULL)
455 return compat1;
456 if (compat1 == compat2)
457 return compat1;
458
459 /* If the two didn't match, but one of them was a default
460 architecture, assume the more specific one is correct. This
461 handles the case where an executable or target description just
462 says "mips", but the other knows which MIPS variant. */
463 if (compat1->the_default)
464 return compat2;
465 if (compat2->the_default)
466 return compat1;
467
468 /* We have no idea which one is better. This is a bug, but not
469 a critical problem; warn the user. */
470 warning (_("Selected architecture %s is ambiguous with "
471 "reported target architecture %s"),
472 selected->printable_name, from_target->printable_name);
473 return selected;
474}
475
476/* Functions to manipulate the architecture of the target. */
477
478enum set_arch { set_arch_auto, set_arch_manual };
479
480static const struct bfd_arch_info *target_architecture_user;
481
482static const char *set_architecture_string;
483
484const char *
485selected_architecture_name (void)
486{
487 if (target_architecture_user == NULL)
488 return NULL;
489 else
490 return set_architecture_string;
491}
492
493/* Called if the user enters ``show architecture'' without an
494 argument. */
495
496static void
497show_architecture (struct ui_file *file, int from_tty,
498 struct cmd_list_element *c, const char *value)
499{
500 if (target_architecture_user == NULL)
501 fprintf_filtered (file, _("The target architecture is set "
502 "automatically (currently %s)\n"),
503 gdbarch_bfd_arch_info (get_current_arch ())->printable_name);
504 else
505 fprintf_filtered (file, _("The target architecture is assumed to be %s\n"),
506 set_architecture_string);
507}
508
509
510/* Called if the user enters ``set architecture'' with or without an
511 argument. */
512
513static void
514set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
515{
516 struct gdbarch_info info;
517
518 gdbarch_info_init (&info);
519
520 if (strcmp (set_architecture_string, "auto") == 0)
521 {
522 target_architecture_user = NULL;
523 if (!gdbarch_update_p (info))
524 internal_error (__FILE__, __LINE__,
525 _("could not select an architecture automatically"));
526 }
527 else
528 {
529 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
530 if (info.bfd_arch_info == NULL)
531 internal_error (__FILE__, __LINE__,
532 _("set_architecture: bfd_scan_arch failed"));
533 if (gdbarch_update_p (info))
534 target_architecture_user = info.bfd_arch_info;
535 else
536 printf_unfiltered (_("Architecture `%s' not recognized.\n"),
537 set_architecture_string);
538 }
539 show_architecture (gdb_stdout, from_tty, NULL, NULL);
540}
541
542/* Try to select a global architecture that matches "info". Return
543 non-zero if the attempt succeeds. */
544int
545gdbarch_update_p (struct gdbarch_info info)
546{
547 struct gdbarch *new_gdbarch;
548
549 /* Check for the current file. */
550 if (info.abfd == NULL)
551 info.abfd = exec_bfd;
552 if (info.abfd == NULL)
553 info.abfd = core_bfd;
554
555 /* Check for the current target description. */
556 if (info.target_desc == NULL)
557 info.target_desc = target_current_description ();
558
559 new_gdbarch = gdbarch_find_by_info (info);
560
561 /* If there no architecture by that name, reject the request. */
562 if (new_gdbarch == NULL)
563 {
564 if (gdbarch_debug)
565 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
566 "Architecture not found\n");
567 return 0;
568 }
569
570 /* If it is the same old architecture, accept the request (but don't
571 swap anything). */
572 if (new_gdbarch == target_gdbarch ())
573 {
574 if (gdbarch_debug)
575 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
576 "Architecture %s (%s) unchanged\n",
577 host_address_to_string (new_gdbarch),
578 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
579 return 1;
580 }
581
582 /* It's a new architecture, swap it in. */
583 if (gdbarch_debug)
584 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
585 "New architecture %s (%s) selected\n",
586 host_address_to_string (new_gdbarch),
587 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
588 set_target_gdbarch (new_gdbarch);
589
590 return 1;
591}
592
593/* Return the architecture for ABFD. If no suitable architecture
594 could be find, return NULL. */
595
596struct gdbarch *
597gdbarch_from_bfd (bfd *abfd)
598{
599 struct gdbarch_info info;
600 gdbarch_info_init (&info);
601
602 info.abfd = abfd;
603 return gdbarch_find_by_info (info);
604}
605
606/* Set the dynamic target-system-dependent parameters (architecture,
607 byte-order) using information found in the BFD */
608
609void
610set_gdbarch_from_file (bfd *abfd)
611{
612 struct gdbarch_info info;
613 struct gdbarch *gdbarch;
614
615 gdbarch_info_init (&info);
616 info.abfd = abfd;
617 info.target_desc = target_current_description ();
618 gdbarch = gdbarch_find_by_info (info);
619
620 if (gdbarch == NULL)
621 error (_("Architecture of file not recognized."));
622 set_target_gdbarch (gdbarch);
623}
624
625/* Initialize the current architecture. Update the ``set
626 architecture'' command so that it specifies a list of valid
627 architectures. */
628
629#ifdef DEFAULT_BFD_ARCH
630extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
631static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
632#else
633static const bfd_arch_info_type *default_bfd_arch;
634#endif
635
636#ifdef DEFAULT_BFD_VEC
637extern const bfd_target DEFAULT_BFD_VEC;
638static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
639#else
640static const bfd_target *default_bfd_vec;
641#endif
642
643static enum bfd_endian default_byte_order = BFD_ENDIAN_UNKNOWN;
644
645void
646initialize_current_architecture (void)
647{
648 const char **arches = gdbarch_printable_names ();
649 struct gdbarch_info info;
650
651 /* determine a default architecture and byte order. */
652 gdbarch_info_init (&info);
653
654 /* Find a default architecture. */
655 if (default_bfd_arch == NULL)
656 {
657 /* Choose the architecture by taking the first one
658 alphabetically. */
659 const char *chosen = arches[0];
660 const char **arch;
661 for (arch = arches; *arch != NULL; arch++)
662 {
663 if (strcmp (*arch, chosen) < 0)
664 chosen = *arch;
665 }
666 if (chosen == NULL)
667 internal_error (__FILE__, __LINE__,
668 _("initialize_current_architecture: No arch"));
669 default_bfd_arch = bfd_scan_arch (chosen);
670 if (default_bfd_arch == NULL)
671 internal_error (__FILE__, __LINE__,
672 _("initialize_current_architecture: Arch not found"));
673 }
674
675 info.bfd_arch_info = default_bfd_arch;
676
677 /* Take several guesses at a byte order. */
678 if (default_byte_order == BFD_ENDIAN_UNKNOWN
679 && default_bfd_vec != NULL)
680 {
681 /* Extract BFD's default vector's byte order. */
682 switch (default_bfd_vec->byteorder)
683 {
684 case BFD_ENDIAN_BIG:
685 default_byte_order = BFD_ENDIAN_BIG;
686 break;
687 case BFD_ENDIAN_LITTLE:
688 default_byte_order = BFD_ENDIAN_LITTLE;
689 break;
690 default:
691 break;
692 }
693 }
694 if (default_byte_order == BFD_ENDIAN_UNKNOWN)
695 {
696 /* look for ``*el-*'' in the target name. */
697 const char *chp;
698 chp = strchr (target_name, '-');
699 if (chp != NULL
700 && chp - 2 >= target_name
701 && startswith (chp - 2, "el"))
702 default_byte_order = BFD_ENDIAN_LITTLE;
703 }
704 if (default_byte_order == BFD_ENDIAN_UNKNOWN)
705 {
706 /* Wire it to big-endian!!! */
707 default_byte_order = BFD_ENDIAN_BIG;
708 }
709
710 info.byte_order = default_byte_order;
711 info.byte_order_for_code = info.byte_order;
712
713 if (! gdbarch_update_p (info))
714 internal_error (__FILE__, __LINE__,
715 _("initialize_current_architecture: Selection of "
716 "initial architecture failed"));
717
718 /* Create the ``set architecture'' command appending ``auto'' to the
719 list of architectures. */
720 {
721 /* Append ``auto''. */
722 int nr;
723 for (nr = 0; arches[nr] != NULL; nr++);
724 arches = XRESIZEVEC (const char *, arches, nr + 2);
725 arches[nr + 0] = "auto";
726 arches[nr + 1] = NULL;
727 add_setshow_enum_cmd ("architecture", class_support,
728 arches, &set_architecture_string,
729 _("Set architecture of target."),
730 _("Show architecture of target."), NULL,
731 set_architecture, show_architecture,
732 &setlist, &showlist);
733 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
734 }
735}
736
737
738/* Initialize a gdbarch info to values that will be automatically
739 overridden. Note: Originally, this ``struct info'' was initialized
740 using memset(0). Unfortunately, that ran into problems, namely
741 BFD_ENDIAN_BIG is zero. An explicit initialization function that
742 can explicitly set each field to a well defined value is used. */
743
744void
745gdbarch_info_init (struct gdbarch_info *info)
746{
747 memset (info, 0, sizeof (struct gdbarch_info));
748 info->byte_order = BFD_ENDIAN_UNKNOWN;
749 info->byte_order_for_code = info->byte_order;
750 info->osabi = GDB_OSABI_UNINITIALIZED;
751}
752
753/* Similar to init, but this time fill in the blanks. Information is
754 obtained from the global "set ..." options and explicitly
755 initialized INFO fields. */
756
757void
758gdbarch_info_fill (struct gdbarch_info *info)
759{
760 /* "(gdb) set architecture ...". */
761 if (info->bfd_arch_info == NULL
762 && target_architecture_user)
763 info->bfd_arch_info = target_architecture_user;
764 /* From the file. */
765 if (info->bfd_arch_info == NULL
766 && info->abfd != NULL
767 && bfd_get_arch (info->abfd) != bfd_arch_unknown
768 && bfd_get_arch (info->abfd) != bfd_arch_obscure)
769 info->bfd_arch_info = bfd_get_arch_info (info->abfd);
770 /* From the target. */
771 if (info->target_desc != NULL)
772 info->bfd_arch_info = choose_architecture_for_target
773 (info->target_desc, info->bfd_arch_info);
774 /* From the default. */
775 if (info->bfd_arch_info == NULL)
776 info->bfd_arch_info = default_bfd_arch;
777
778 /* "(gdb) set byte-order ...". */
779 if (info->byte_order == BFD_ENDIAN_UNKNOWN
780 && target_byte_order_user != BFD_ENDIAN_UNKNOWN)
781 info->byte_order = target_byte_order_user;
782 /* From the INFO struct. */
783 if (info->byte_order == BFD_ENDIAN_UNKNOWN
784 && info->abfd != NULL)
785 info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
786 : bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
787 : BFD_ENDIAN_UNKNOWN);
788 /* From the default. */
789 if (info->byte_order == BFD_ENDIAN_UNKNOWN)
790 info->byte_order = default_byte_order;
791 info->byte_order_for_code = info->byte_order;
792
793 /* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
794 /* From the manual override, or from file. */
795 if (info->osabi == GDB_OSABI_UNINITIALIZED)
796 info->osabi = gdbarch_lookup_osabi (info->abfd);
797 /* From the target. */
798 if (info->osabi == GDB_OSABI_UNKNOWN && info->target_desc != NULL)
799 info->osabi = tdesc_osabi (info->target_desc);
800 /* From the configured default. */
801#ifdef GDB_OSABI_DEFAULT
802 if (info->osabi == GDB_OSABI_UNKNOWN)
803 info->osabi = GDB_OSABI_DEFAULT;
804#endif
805
806 /* Must have at least filled in the architecture. */
807 gdb_assert (info->bfd_arch_info != NULL);
808}
809
810/* Return "current" architecture. If the target is running, this is
811 the architecture of the selected frame. Otherwise, the "current"
812 architecture defaults to the target architecture.
813
814 This function should normally be called solely by the command
815 interpreter routines to determine the architecture to execute a
816 command in. */
817struct gdbarch *
818get_current_arch (void)
819{
820 if (has_stack_frames ())
821 return get_frame_arch (get_selected_frame (NULL));
822 else
823 return target_gdbarch ();
824}
825
826int
827default_has_shared_address_space (struct gdbarch *gdbarch)
828{
829 /* Simply say no. In most unix-like targets each inferior/process
830 has its own address space. */
831 return 0;
832}
833
834int
835default_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
836 char **msg)
837{
838 /* We don't know if maybe the target has some way to do fast
839 tracepoints that doesn't need gdbarch, so always say yes. */
840 if (msg)
841 *msg = NULL;
842 return 1;
843}
844
845const gdb_byte *
846default_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
847 int *lenptr)
848{
849 int kind = gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);
850
851 return gdbarch_sw_breakpoint_from_kind (gdbarch, kind, lenptr);
852}
853int
854default_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
855 struct regcache *regcache,
856 CORE_ADDR *pcptr)
857{
858 return gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);
859}
860
861
862void
863default_gen_return_address (struct gdbarch *gdbarch,
864 struct agent_expr *ax, struct axs_value *value,
865 CORE_ADDR scope)
866{
867 error (_("This architecture has no method to collect a return address."));
868}
869
870int
871default_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
872 struct type *type)
873{
874 /* Usually, the return value's address is stored the in the "first hidden"
875 parameter if the return value should be passed by reference, as
876 specified in ABI. */
877 return language_pass_by_reference (type);
878}
879
880int default_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
881{
882 return 0;
883}
884
885int default_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
886{
887 return 0;
888}
889
890int default_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
891{
892 return 0;
893}
894
895void
896default_skip_permanent_breakpoint (struct regcache *regcache)
897{
898 struct gdbarch *gdbarch = get_regcache_arch (regcache);
899 CORE_ADDR current_pc = regcache_read_pc (regcache);
900 int bp_len;
901
902 gdbarch_breakpoint_from_pc (gdbarch, &current_pc, &bp_len);
903 current_pc += bp_len;
904 regcache_write_pc (regcache, current_pc);
905}
906
907CORE_ADDR
908default_infcall_mmap (CORE_ADDR size, unsigned prot)
909{
910 error (_("This target does not support inferior memory allocation by mmap."));
911}
912
913void
914default_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
915{
916 /* Memory reserved by inferior mmap is kept leaked. */
917}
918
919/* -mcmodel=large is used so that no GOT (Global Offset Table) is needed to be
920 created in inferior memory by GDB (normally it is set by ld.so). */
921
922char *
923default_gcc_target_options (struct gdbarch *gdbarch)
924{
925 return xstrprintf ("-m%d%s", gdbarch_ptr_bit (gdbarch),
926 gdbarch_ptr_bit (gdbarch) == 64 ? " -mcmodel=large" : "");
927}
928
929/* gdbarch gnu_triplet_regexp method. */
930
931const char *
932default_gnu_triplet_regexp (struct gdbarch *gdbarch)
933{
934 return gdbarch_bfd_arch_info (gdbarch)->arch_name;
935}
936
937/* Default method for gdbarch_addressable_memory_unit_size. By default, a memory byte has
938 a size of 1 octet. */
939
940int
941default_addressable_memory_unit_size (struct gdbarch *gdbarch)
942{
943 return 1;
944}
945
946void
947default_guess_tracepoint_registers (struct gdbarch *gdbarch,
948 struct regcache *regcache,
949 CORE_ADDR addr)
950{
951 int pc_regno = gdbarch_pc_regnum (gdbarch);
952 gdb_byte *regs;
953
954 /* This guessing code below only works if the PC register isn't
955 a pseudo-register. The value of a pseudo-register isn't stored
956 in the (non-readonly) regcache -- instead it's recomputed
957 (probably from some other cached raw register) whenever the
958 register is read. In this case, a custom method implementation
959 should be used by the architecture. */
960 if (pc_regno < 0 || pc_regno >= gdbarch_num_regs (gdbarch))
961 return;
962
963 regs = (gdb_byte *) alloca (register_size (gdbarch, pc_regno));
964 store_unsigned_integer (regs, register_size (gdbarch, pc_regno),
965 gdbarch_byte_order (gdbarch), addr);
966 regcache_raw_supply (regcache, pc_regno, regs);
967}
968
969int
970default_print_insn (bfd_vma memaddr, disassemble_info *info)
971{
972 disassembler_ftype disassemble_fn;
973
974 disassemble_fn = disassembler (info->arch, info->endian == BFD_ENDIAN_BIG,
975 info->mach, exec_bfd);
976
977 gdb_assert (disassemble_fn != NULL);
978 return (*disassemble_fn) (memaddr, info);
979}
980
981/* See arch-utils.h. */
982
983CORE_ADDR
984gdbarch_skip_prologue_noexcept (gdbarch *gdbarch, CORE_ADDR pc) noexcept
985{
986 CORE_ADDR new_pc = pc;
987
988 TRY
989 {
990 new_pc = gdbarch_skip_prologue (gdbarch, pc);
991 }
992 CATCH (ex, RETURN_MASK_ALL)
993 {}
994 END_CATCH
995
996 return new_pc;
997}
998
999void
1000_initialize_gdbarch_utils (void)
1001{
1002 add_setshow_enum_cmd ("endian", class_support,
1003 endian_enum, &set_endian_string,
1004 _("Set endianness of target."),
1005 _("Show endianness of target."),
1006 NULL, set_endian, show_endian,
1007 &setlist, &showlist);
1008}
This page took 0.025569 seconds and 4 git commands to generate.