Simplify floatformat_from_type
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
... / ...
CommitLineData
1/* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21
22#include <ctype.h> /* XXX for isupper (). */
23
24#include "frame.h"
25#include "inferior.h"
26#include "infrun.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
29#include "dis-asm.h" /* For register styles. */
30#include "disasm.h"
31#include "regcache.h"
32#include "reggroups.h"
33#include "doublest.h"
34#include "value.h"
35#include "arch-utils.h"
36#include "osabi.h"
37#include "frame-unwind.h"
38#include "frame-base.h"
39#include "trad-frame.h"
40#include "objfiles.h"
41#include "dwarf2-frame.h"
42#include "gdbtypes.h"
43#include "prologue-value.h"
44#include "remote.h"
45#include "target-descriptions.h"
46#include "user-regs.h"
47#include "observer.h"
48
49#include "arch/arm.h"
50#include "arch/arm-get-next-pcs.h"
51#include "arm-tdep.h"
52#include "gdb/sim-arm.h"
53
54#include "elf-bfd.h"
55#include "coff/internal.h"
56#include "elf/arm.h"
57
58#include "vec.h"
59
60#include "record.h"
61#include "record-full.h"
62#include <algorithm>
63
64#include "features/arm/arm-with-m.c"
65#include "features/arm/arm-with-m-fpa-layout.c"
66#include "features/arm/arm-with-m-vfp-d16.c"
67#include "features/arm/arm-with-iwmmxt.c"
68#include "features/arm/arm-with-vfpv2.c"
69#include "features/arm/arm-with-vfpv3.c"
70#include "features/arm/arm-with-neon.c"
71
72#if GDB_SELF_TEST
73#include "selftest.h"
74#endif
75
76static int arm_debug;
77
78/* Macros for setting and testing a bit in a minimal symbol that marks
79 it as Thumb function. The MSB of the minimal symbol's "info" field
80 is used for this purpose.
81
82 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
83 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
84
85#define MSYMBOL_SET_SPECIAL(msym) \
86 MSYMBOL_TARGET_FLAG_1 (msym) = 1
87
88#define MSYMBOL_IS_SPECIAL(msym) \
89 MSYMBOL_TARGET_FLAG_1 (msym)
90
91/* Per-objfile data used for mapping symbols. */
92static const struct objfile_data *arm_objfile_data_key;
93
94struct arm_mapping_symbol
95{
96 bfd_vma value;
97 char type;
98};
99typedef struct arm_mapping_symbol arm_mapping_symbol_s;
100DEF_VEC_O(arm_mapping_symbol_s);
101
102struct arm_per_objfile
103{
104 VEC(arm_mapping_symbol_s) **section_maps;
105};
106
107/* The list of available "set arm ..." and "show arm ..." commands. */
108static struct cmd_list_element *setarmcmdlist = NULL;
109static struct cmd_list_element *showarmcmdlist = NULL;
110
111/* The type of floating-point to use. Keep this in sync with enum
112 arm_float_model, and the help string in _initialize_arm_tdep. */
113static const char *const fp_model_strings[] =
114{
115 "auto",
116 "softfpa",
117 "fpa",
118 "softvfp",
119 "vfp",
120 NULL
121};
122
123/* A variable that can be configured by the user. */
124static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
125static const char *current_fp_model = "auto";
126
127/* The ABI to use. Keep this in sync with arm_abi_kind. */
128static const char *const arm_abi_strings[] =
129{
130 "auto",
131 "APCS",
132 "AAPCS",
133 NULL
134};
135
136/* A variable that can be configured by the user. */
137static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
138static const char *arm_abi_string = "auto";
139
140/* The execution mode to assume. */
141static const char *const arm_mode_strings[] =
142 {
143 "auto",
144 "arm",
145 "thumb",
146 NULL
147 };
148
149static const char *arm_fallback_mode_string = "auto";
150static const char *arm_force_mode_string = "auto";
151
152/* The standard register names, and all the valid aliases for them. Note
153 that `fp', `sp' and `pc' are not added in this alias list, because they
154 have been added as builtin user registers in
155 std-regs.c:_initialize_frame_reg. */
156static const struct
157{
158 const char *name;
159 int regnum;
160} arm_register_aliases[] = {
161 /* Basic register numbers. */
162 { "r0", 0 },
163 { "r1", 1 },
164 { "r2", 2 },
165 { "r3", 3 },
166 { "r4", 4 },
167 { "r5", 5 },
168 { "r6", 6 },
169 { "r7", 7 },
170 { "r8", 8 },
171 { "r9", 9 },
172 { "r10", 10 },
173 { "r11", 11 },
174 { "r12", 12 },
175 { "r13", 13 },
176 { "r14", 14 },
177 { "r15", 15 },
178 /* Synonyms (argument and variable registers). */
179 { "a1", 0 },
180 { "a2", 1 },
181 { "a3", 2 },
182 { "a4", 3 },
183 { "v1", 4 },
184 { "v2", 5 },
185 { "v3", 6 },
186 { "v4", 7 },
187 { "v5", 8 },
188 { "v6", 9 },
189 { "v7", 10 },
190 { "v8", 11 },
191 /* Other platform-specific names for r9. */
192 { "sb", 9 },
193 { "tr", 9 },
194 /* Special names. */
195 { "ip", 12 },
196 { "lr", 14 },
197 /* Names used by GCC (not listed in the ARM EABI). */
198 { "sl", 10 },
199 /* A special name from the older ATPCS. */
200 { "wr", 7 },
201};
202
203static const char *const arm_register_names[] =
204{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
205 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
206 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
207 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
208 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
209 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
210 "fps", "cpsr" }; /* 24 25 */
211
212/* Holds the current set of options to be passed to the disassembler. */
213static char *arm_disassembler_options;
214
215/* Valid register name styles. */
216static const char **valid_disassembly_styles;
217
218/* Disassembly style to use. Default to "std" register names. */
219static const char *disassembly_style;
220
221/* This is used to keep the bfd arch_info in sync with the disassembly
222 style. */
223static void set_disassembly_style_sfunc(char *, int,
224 struct cmd_list_element *);
225static void show_disassembly_style_sfunc (struct ui_file *, int,
226 struct cmd_list_element *,
227 const char *);
228
229static void convert_from_extended (const struct floatformat *, const void *,
230 void *, int);
231static void convert_to_extended (const struct floatformat *, void *,
232 const void *, int);
233
234static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
235 struct regcache *regcache,
236 int regnum, gdb_byte *buf);
237static void arm_neon_quad_write (struct gdbarch *gdbarch,
238 struct regcache *regcache,
239 int regnum, const gdb_byte *buf);
240
241static CORE_ADDR
242 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
243
244
245/* get_next_pcs operations. */
246static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
247 arm_get_next_pcs_read_memory_unsigned_integer,
248 arm_get_next_pcs_syscall_next_pc,
249 arm_get_next_pcs_addr_bits_remove,
250 arm_get_next_pcs_is_thumb,
251 NULL,
252};
253
254struct arm_prologue_cache
255{
256 /* The stack pointer at the time this frame was created; i.e. the
257 caller's stack pointer when this function was called. It is used
258 to identify this frame. */
259 CORE_ADDR prev_sp;
260
261 /* The frame base for this frame is just prev_sp - frame size.
262 FRAMESIZE is the distance from the frame pointer to the
263 initial stack pointer. */
264
265 int framesize;
266
267 /* The register used to hold the frame pointer for this frame. */
268 int framereg;
269
270 /* Saved register offsets. */
271 struct trad_frame_saved_reg *saved_regs;
272};
273
274static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
275 CORE_ADDR prologue_start,
276 CORE_ADDR prologue_end,
277 struct arm_prologue_cache *cache);
278
279/* Architecture version for displaced stepping. This effects the behaviour of
280 certain instructions, and really should not be hard-wired. */
281
282#define DISPLACED_STEPPING_ARCH_VERSION 5
283
284/* Set to true if the 32-bit mode is in use. */
285
286int arm_apcs_32 = 1;
287
288/* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
289
290int
291arm_psr_thumb_bit (struct gdbarch *gdbarch)
292{
293 if (gdbarch_tdep (gdbarch)->is_m)
294 return XPSR_T;
295 else
296 return CPSR_T;
297}
298
299/* Determine if the processor is currently executing in Thumb mode. */
300
301int
302arm_is_thumb (struct regcache *regcache)
303{
304 ULONGEST cpsr;
305 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regcache));
306
307 cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
308
309 return (cpsr & t_bit) != 0;
310}
311
312/* Determine if FRAME is executing in Thumb mode. */
313
314int
315arm_frame_is_thumb (struct frame_info *frame)
316{
317 CORE_ADDR cpsr;
318 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
319
320 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
321 directly (from a signal frame or dummy frame) or by interpreting
322 the saved LR (from a prologue or DWARF frame). So consult it and
323 trust the unwinders. */
324 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
325
326 return (cpsr & t_bit) != 0;
327}
328
329/* Callback for VEC_lower_bound. */
330
331static inline int
332arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
333 const struct arm_mapping_symbol *rhs)
334{
335 return lhs->value < rhs->value;
336}
337
338/* Search for the mapping symbol covering MEMADDR. If one is found,
339 return its type. Otherwise, return 0. If START is non-NULL,
340 set *START to the location of the mapping symbol. */
341
342static char
343arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
344{
345 struct obj_section *sec;
346
347 /* If there are mapping symbols, consult them. */
348 sec = find_pc_section (memaddr);
349 if (sec != NULL)
350 {
351 struct arm_per_objfile *data;
352 VEC(arm_mapping_symbol_s) *map;
353 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
354 0 };
355 unsigned int idx;
356
357 data = (struct arm_per_objfile *) objfile_data (sec->objfile,
358 arm_objfile_data_key);
359 if (data != NULL)
360 {
361 map = data->section_maps[sec->the_bfd_section->index];
362 if (!VEC_empty (arm_mapping_symbol_s, map))
363 {
364 struct arm_mapping_symbol *map_sym;
365
366 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
367 arm_compare_mapping_symbols);
368
369 /* VEC_lower_bound finds the earliest ordered insertion
370 point. If the following symbol starts at this exact
371 address, we use that; otherwise, the preceding
372 mapping symbol covers this address. */
373 if (idx < VEC_length (arm_mapping_symbol_s, map))
374 {
375 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
376 if (map_sym->value == map_key.value)
377 {
378 if (start)
379 *start = map_sym->value + obj_section_addr (sec);
380 return map_sym->type;
381 }
382 }
383
384 if (idx > 0)
385 {
386 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
387 if (start)
388 *start = map_sym->value + obj_section_addr (sec);
389 return map_sym->type;
390 }
391 }
392 }
393 }
394
395 return 0;
396}
397
398/* Determine if the program counter specified in MEMADDR is in a Thumb
399 function. This function should be called for addresses unrelated to
400 any executing frame; otherwise, prefer arm_frame_is_thumb. */
401
402int
403arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
404{
405 struct bound_minimal_symbol sym;
406 char type;
407 struct displaced_step_closure* dsc
408 = get_displaced_step_closure_by_addr(memaddr);
409
410 /* If checking the mode of displaced instruction in copy area, the mode
411 should be determined by instruction on the original address. */
412 if (dsc)
413 {
414 if (debug_displaced)
415 fprintf_unfiltered (gdb_stdlog,
416 "displaced: check mode of %.8lx instead of %.8lx\n",
417 (unsigned long) dsc->insn_addr,
418 (unsigned long) memaddr);
419 memaddr = dsc->insn_addr;
420 }
421
422 /* If bit 0 of the address is set, assume this is a Thumb address. */
423 if (IS_THUMB_ADDR (memaddr))
424 return 1;
425
426 /* If the user wants to override the symbol table, let him. */
427 if (strcmp (arm_force_mode_string, "arm") == 0)
428 return 0;
429 if (strcmp (arm_force_mode_string, "thumb") == 0)
430 return 1;
431
432 /* ARM v6-M and v7-M are always in Thumb mode. */
433 if (gdbarch_tdep (gdbarch)->is_m)
434 return 1;
435
436 /* If there are mapping symbols, consult them. */
437 type = arm_find_mapping_symbol (memaddr, NULL);
438 if (type)
439 return type == 't';
440
441 /* Thumb functions have a "special" bit set in minimal symbols. */
442 sym = lookup_minimal_symbol_by_pc (memaddr);
443 if (sym.minsym)
444 return (MSYMBOL_IS_SPECIAL (sym.minsym));
445
446 /* If the user wants to override the fallback mode, let them. */
447 if (strcmp (arm_fallback_mode_string, "arm") == 0)
448 return 0;
449 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
450 return 1;
451
452 /* If we couldn't find any symbol, but we're talking to a running
453 target, then trust the current value of $cpsr. This lets
454 "display/i $pc" always show the correct mode (though if there is
455 a symbol table we will not reach here, so it still may not be
456 displayed in the mode it will be executed). */
457 if (target_has_registers)
458 return arm_frame_is_thumb (get_current_frame ());
459
460 /* Otherwise we're out of luck; we assume ARM. */
461 return 0;
462}
463
464/* Determine if the address specified equals any of these magic return
465 values, called EXC_RETURN, defined by the ARM v6-M and v7-M
466 architectures.
467
468 From ARMv6-M Reference Manual B1.5.8
469 Table B1-5 Exception return behavior
470
471 EXC_RETURN Return To Return Stack
472 0xFFFFFFF1 Handler mode Main
473 0xFFFFFFF9 Thread mode Main
474 0xFFFFFFFD Thread mode Process
475
476 From ARMv7-M Reference Manual B1.5.8
477 Table B1-8 EXC_RETURN definition of exception return behavior, no FP
478
479 EXC_RETURN Return To Return Stack
480 0xFFFFFFF1 Handler mode Main
481 0xFFFFFFF9 Thread mode Main
482 0xFFFFFFFD Thread mode Process
483
484 Table B1-9 EXC_RETURN definition of exception return behavior, with
485 FP
486
487 EXC_RETURN Return To Return Stack Frame Type
488 0xFFFFFFE1 Handler mode Main Extended
489 0xFFFFFFE9 Thread mode Main Extended
490 0xFFFFFFED Thread mode Process Extended
491 0xFFFFFFF1 Handler mode Main Basic
492 0xFFFFFFF9 Thread mode Main Basic
493 0xFFFFFFFD Thread mode Process Basic
494
495 For more details see "B1.5.8 Exception return behavior"
496 in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */
497
498static int
499arm_m_addr_is_magic (CORE_ADDR addr)
500{
501 switch (addr)
502 {
503 /* Values from Tables in B1.5.8 the EXC_RETURN definitions of
504 the exception return behavior. */
505 case 0xffffffe1:
506 case 0xffffffe9:
507 case 0xffffffed:
508 case 0xfffffff1:
509 case 0xfffffff9:
510 case 0xfffffffd:
511 /* Address is magic. */
512 return 1;
513
514 default:
515 /* Address is not magic. */
516 return 0;
517 }
518}
519
520/* Remove useless bits from addresses in a running program. */
521static CORE_ADDR
522arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
523{
524 /* On M-profile devices, do not strip the low bit from EXC_RETURN
525 (the magic exception return address). */
526 if (gdbarch_tdep (gdbarch)->is_m
527 && arm_m_addr_is_magic (val))
528 return val;
529
530 if (arm_apcs_32)
531 return UNMAKE_THUMB_ADDR (val);
532 else
533 return (val & 0x03fffffc);
534}
535
536/* Return 1 if PC is the start of a compiler helper function which
537 can be safely ignored during prologue skipping. IS_THUMB is true
538 if the function is known to be a Thumb function due to the way it
539 is being called. */
540static int
541skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
542{
543 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
544 struct bound_minimal_symbol msym;
545
546 msym = lookup_minimal_symbol_by_pc (pc);
547 if (msym.minsym != NULL
548 && BMSYMBOL_VALUE_ADDRESS (msym) == pc
549 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL)
550 {
551 const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym);
552
553 /* The GNU linker's Thumb call stub to foo is named
554 __foo_from_thumb. */
555 if (strstr (name, "_from_thumb") != NULL)
556 name += 2;
557
558 /* On soft-float targets, __truncdfsf2 is called to convert promoted
559 arguments to their argument types in non-prototyped
560 functions. */
561 if (startswith (name, "__truncdfsf2"))
562 return 1;
563 if (startswith (name, "__aeabi_d2f"))
564 return 1;
565
566 /* Internal functions related to thread-local storage. */
567 if (startswith (name, "__tls_get_addr"))
568 return 1;
569 if (startswith (name, "__aeabi_read_tp"))
570 return 1;
571 }
572 else
573 {
574 /* If we run against a stripped glibc, we may be unable to identify
575 special functions by name. Check for one important case,
576 __aeabi_read_tp, by comparing the *code* against the default
577 implementation (this is hand-written ARM assembler in glibc). */
578
579 if (!is_thumb
580 && read_code_unsigned_integer (pc, 4, byte_order_for_code)
581 == 0xe3e00a0f /* mov r0, #0xffff0fff */
582 && read_code_unsigned_integer (pc + 4, 4, byte_order_for_code)
583 == 0xe240f01f) /* sub pc, r0, #31 */
584 return 1;
585 }
586
587 return 0;
588}
589
590/* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
591 the first 16-bit of instruction, and INSN2 is the second 16-bit of
592 instruction. */
593#define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
594 ((bits ((insn1), 0, 3) << 12) \
595 | (bits ((insn1), 10, 10) << 11) \
596 | (bits ((insn2), 12, 14) << 8) \
597 | bits ((insn2), 0, 7))
598
599/* Extract the immediate from instruction movw/movt of encoding A. INSN is
600 the 32-bit instruction. */
601#define EXTRACT_MOVW_MOVT_IMM_A(insn) \
602 ((bits ((insn), 16, 19) << 12) \
603 | bits ((insn), 0, 11))
604
605/* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
606
607static unsigned int
608thumb_expand_immediate (unsigned int imm)
609{
610 unsigned int count = imm >> 7;
611
612 if (count < 8)
613 switch (count / 2)
614 {
615 case 0:
616 return imm & 0xff;
617 case 1:
618 return (imm & 0xff) | ((imm & 0xff) << 16);
619 case 2:
620 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
621 case 3:
622 return (imm & 0xff) | ((imm & 0xff) << 8)
623 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
624 }
625
626 return (0x80 | (imm & 0x7f)) << (32 - count);
627}
628
629/* Return 1 if the 16-bit Thumb instruction INSN restores SP in
630 epilogue, 0 otherwise. */
631
632static int
633thumb_instruction_restores_sp (unsigned short insn)
634{
635 return (insn == 0x46bd /* mov sp, r7 */
636 || (insn & 0xff80) == 0xb000 /* add sp, imm */
637 || (insn & 0xfe00) == 0xbc00); /* pop <registers> */
638}
639
640/* Analyze a Thumb prologue, looking for a recognizable stack frame
641 and frame pointer. Scan until we encounter a store that could
642 clobber the stack frame unexpectedly, or an unknown instruction.
643 Return the last address which is definitely safe to skip for an
644 initial breakpoint. */
645
646static CORE_ADDR
647thumb_analyze_prologue (struct gdbarch *gdbarch,
648 CORE_ADDR start, CORE_ADDR limit,
649 struct arm_prologue_cache *cache)
650{
651 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
652 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
653 int i;
654 pv_t regs[16];
655 struct pv_area *stack;
656 struct cleanup *back_to;
657 CORE_ADDR offset;
658 CORE_ADDR unrecognized_pc = 0;
659
660 for (i = 0; i < 16; i++)
661 regs[i] = pv_register (i, 0);
662 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
663 back_to = make_cleanup_free_pv_area (stack);
664
665 while (start < limit)
666 {
667 unsigned short insn;
668
669 insn = read_code_unsigned_integer (start, 2, byte_order_for_code);
670
671 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
672 {
673 int regno;
674 int mask;
675
676 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
677 break;
678
679 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
680 whether to save LR (R14). */
681 mask = (insn & 0xff) | ((insn & 0x100) << 6);
682
683 /* Calculate offsets of saved R0-R7 and LR. */
684 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
685 if (mask & (1 << regno))
686 {
687 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
688 -4);
689 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
690 }
691 }
692 else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
693 {
694 offset = (insn & 0x7f) << 2; /* get scaled offset */
695 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
696 -offset);
697 }
698 else if (thumb_instruction_restores_sp (insn))
699 {
700 /* Don't scan past the epilogue. */
701 break;
702 }
703 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
704 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
705 (insn & 0xff) << 2);
706 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
707 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
708 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
709 bits (insn, 6, 8));
710 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
711 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
712 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
713 bits (insn, 0, 7));
714 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
715 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
716 && pv_is_constant (regs[bits (insn, 3, 5)]))
717 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
718 regs[bits (insn, 6, 8)]);
719 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
720 && pv_is_constant (regs[bits (insn, 3, 6)]))
721 {
722 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
723 int rm = bits (insn, 3, 6);
724 regs[rd] = pv_add (regs[rd], regs[rm]);
725 }
726 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
727 {
728 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
729 int src_reg = (insn & 0x78) >> 3;
730 regs[dst_reg] = regs[src_reg];
731 }
732 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
733 {
734 /* Handle stores to the stack. Normally pushes are used,
735 but with GCC -mtpcs-frame, there may be other stores
736 in the prologue to create the frame. */
737 int regno = (insn >> 8) & 0x7;
738 pv_t addr;
739
740 offset = (insn & 0xff) << 2;
741 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
742
743 if (pv_area_store_would_trash (stack, addr))
744 break;
745
746 pv_area_store (stack, addr, 4, regs[regno]);
747 }
748 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
749 {
750 int rd = bits (insn, 0, 2);
751 int rn = bits (insn, 3, 5);
752 pv_t addr;
753
754 offset = bits (insn, 6, 10) << 2;
755 addr = pv_add_constant (regs[rn], offset);
756
757 if (pv_area_store_would_trash (stack, addr))
758 break;
759
760 pv_area_store (stack, addr, 4, regs[rd]);
761 }
762 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
763 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
764 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
765 /* Ignore stores of argument registers to the stack. */
766 ;
767 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
768 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
769 /* Ignore block loads from the stack, potentially copying
770 parameters from memory. */
771 ;
772 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
773 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
774 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
775 /* Similarly ignore single loads from the stack. */
776 ;
777 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
778 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
779 /* Skip register copies, i.e. saves to another register
780 instead of the stack. */
781 ;
782 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
783 /* Recognize constant loads; even with small stacks these are necessary
784 on Thumb. */
785 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
786 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
787 {
788 /* Constant pool loads, for the same reason. */
789 unsigned int constant;
790 CORE_ADDR loc;
791
792 loc = start + 4 + bits (insn, 0, 7) * 4;
793 constant = read_memory_unsigned_integer (loc, 4, byte_order);
794 regs[bits (insn, 8, 10)] = pv_constant (constant);
795 }
796 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
797 {
798 unsigned short inst2;
799
800 inst2 = read_code_unsigned_integer (start + 2, 2,
801 byte_order_for_code);
802
803 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
804 {
805 /* BL, BLX. Allow some special function calls when
806 skipping the prologue; GCC generates these before
807 storing arguments to the stack. */
808 CORE_ADDR nextpc;
809 int j1, j2, imm1, imm2;
810
811 imm1 = sbits (insn, 0, 10);
812 imm2 = bits (inst2, 0, 10);
813 j1 = bit (inst2, 13);
814 j2 = bit (inst2, 11);
815
816 offset = ((imm1 << 12) + (imm2 << 1));
817 offset ^= ((!j2) << 22) | ((!j1) << 23);
818
819 nextpc = start + 4 + offset;
820 /* For BLX make sure to clear the low bits. */
821 if (bit (inst2, 12) == 0)
822 nextpc = nextpc & 0xfffffffc;
823
824 if (!skip_prologue_function (gdbarch, nextpc,
825 bit (inst2, 12) != 0))
826 break;
827 }
828
829 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
830 { registers } */
831 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
832 {
833 pv_t addr = regs[bits (insn, 0, 3)];
834 int regno;
835
836 if (pv_area_store_would_trash (stack, addr))
837 break;
838
839 /* Calculate offsets of saved registers. */
840 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
841 if (inst2 & (1 << regno))
842 {
843 addr = pv_add_constant (addr, -4);
844 pv_area_store (stack, addr, 4, regs[regno]);
845 }
846
847 if (insn & 0x0020)
848 regs[bits (insn, 0, 3)] = addr;
849 }
850
851 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
852 [Rn, #+/-imm]{!} */
853 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
854 {
855 int regno1 = bits (inst2, 12, 15);
856 int regno2 = bits (inst2, 8, 11);
857 pv_t addr = regs[bits (insn, 0, 3)];
858
859 offset = inst2 & 0xff;
860 if (insn & 0x0080)
861 addr = pv_add_constant (addr, offset);
862 else
863 addr = pv_add_constant (addr, -offset);
864
865 if (pv_area_store_would_trash (stack, addr))
866 break;
867
868 pv_area_store (stack, addr, 4, regs[regno1]);
869 pv_area_store (stack, pv_add_constant (addr, 4),
870 4, regs[regno2]);
871
872 if (insn & 0x0020)
873 regs[bits (insn, 0, 3)] = addr;
874 }
875
876 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
877 && (inst2 & 0x0c00) == 0x0c00
878 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
879 {
880 int regno = bits (inst2, 12, 15);
881 pv_t addr = regs[bits (insn, 0, 3)];
882
883 offset = inst2 & 0xff;
884 if (inst2 & 0x0200)
885 addr = pv_add_constant (addr, offset);
886 else
887 addr = pv_add_constant (addr, -offset);
888
889 if (pv_area_store_would_trash (stack, addr))
890 break;
891
892 pv_area_store (stack, addr, 4, regs[regno]);
893
894 if (inst2 & 0x0100)
895 regs[bits (insn, 0, 3)] = addr;
896 }
897
898 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
899 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
900 {
901 int regno = bits (inst2, 12, 15);
902 pv_t addr;
903
904 offset = inst2 & 0xfff;
905 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
906
907 if (pv_area_store_would_trash (stack, addr))
908 break;
909
910 pv_area_store (stack, addr, 4, regs[regno]);
911 }
912
913 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
914 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
915 /* Ignore stores of argument registers to the stack. */
916 ;
917
918 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
919 && (inst2 & 0x0d00) == 0x0c00
920 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
921 /* Ignore stores of argument registers to the stack. */
922 ;
923
924 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
925 { registers } */
926 && (inst2 & 0x8000) == 0x0000
927 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
928 /* Ignore block loads from the stack, potentially copying
929 parameters from memory. */
930 ;
931
932 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
933 [Rn, #+/-imm] */
934 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
935 /* Similarly ignore dual loads from the stack. */
936 ;
937
938 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
939 && (inst2 & 0x0d00) == 0x0c00
940 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
941 /* Similarly ignore single loads from the stack. */
942 ;
943
944 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
945 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
946 /* Similarly ignore single loads from the stack. */
947 ;
948
949 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
950 && (inst2 & 0x8000) == 0x0000)
951 {
952 unsigned int imm = ((bits (insn, 10, 10) << 11)
953 | (bits (inst2, 12, 14) << 8)
954 | bits (inst2, 0, 7));
955
956 regs[bits (inst2, 8, 11)]
957 = pv_add_constant (regs[bits (insn, 0, 3)],
958 thumb_expand_immediate (imm));
959 }
960
961 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
962 && (inst2 & 0x8000) == 0x0000)
963 {
964 unsigned int imm = ((bits (insn, 10, 10) << 11)
965 | (bits (inst2, 12, 14) << 8)
966 | bits (inst2, 0, 7));
967
968 regs[bits (inst2, 8, 11)]
969 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
970 }
971
972 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
973 && (inst2 & 0x8000) == 0x0000)
974 {
975 unsigned int imm = ((bits (insn, 10, 10) << 11)
976 | (bits (inst2, 12, 14) << 8)
977 | bits (inst2, 0, 7));
978
979 regs[bits (inst2, 8, 11)]
980 = pv_add_constant (regs[bits (insn, 0, 3)],
981 - (CORE_ADDR) thumb_expand_immediate (imm));
982 }
983
984 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
985 && (inst2 & 0x8000) == 0x0000)
986 {
987 unsigned int imm = ((bits (insn, 10, 10) << 11)
988 | (bits (inst2, 12, 14) << 8)
989 | bits (inst2, 0, 7));
990
991 regs[bits (inst2, 8, 11)]
992 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
993 }
994
995 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
996 {
997 unsigned int imm = ((bits (insn, 10, 10) << 11)
998 | (bits (inst2, 12, 14) << 8)
999 | bits (inst2, 0, 7));
1000
1001 regs[bits (inst2, 8, 11)]
1002 = pv_constant (thumb_expand_immediate (imm));
1003 }
1004
1005 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1006 {
1007 unsigned int imm
1008 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
1009
1010 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1011 }
1012
1013 else if (insn == 0xea5f /* mov.w Rd,Rm */
1014 && (inst2 & 0xf0f0) == 0)
1015 {
1016 int dst_reg = (inst2 & 0x0f00) >> 8;
1017 int src_reg = inst2 & 0xf;
1018 regs[dst_reg] = regs[src_reg];
1019 }
1020
1021 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1022 {
1023 /* Constant pool loads. */
1024 unsigned int constant;
1025 CORE_ADDR loc;
1026
1027 offset = bits (inst2, 0, 11);
1028 if (insn & 0x0080)
1029 loc = start + 4 + offset;
1030 else
1031 loc = start + 4 - offset;
1032
1033 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1034 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1035 }
1036
1037 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1038 {
1039 /* Constant pool loads. */
1040 unsigned int constant;
1041 CORE_ADDR loc;
1042
1043 offset = bits (inst2, 0, 7) << 2;
1044 if (insn & 0x0080)
1045 loc = start + 4 + offset;
1046 else
1047 loc = start + 4 - offset;
1048
1049 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1050 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1051
1052 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1053 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1054 }
1055
1056 else if (thumb2_instruction_changes_pc (insn, inst2))
1057 {
1058 /* Don't scan past anything that might change control flow. */
1059 break;
1060 }
1061 else
1062 {
1063 /* The optimizer might shove anything into the prologue,
1064 so we just skip what we don't recognize. */
1065 unrecognized_pc = start;
1066 }
1067
1068 start += 2;
1069 }
1070 else if (thumb_instruction_changes_pc (insn))
1071 {
1072 /* Don't scan past anything that might change control flow. */
1073 break;
1074 }
1075 else
1076 {
1077 /* The optimizer might shove anything into the prologue,
1078 so we just skip what we don't recognize. */
1079 unrecognized_pc = start;
1080 }
1081
1082 start += 2;
1083 }
1084
1085 if (arm_debug)
1086 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1087 paddress (gdbarch, start));
1088
1089 if (unrecognized_pc == 0)
1090 unrecognized_pc = start;
1091
1092 if (cache == NULL)
1093 {
1094 do_cleanups (back_to);
1095 return unrecognized_pc;
1096 }
1097
1098 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1099 {
1100 /* Frame pointer is fp. Frame size is constant. */
1101 cache->framereg = ARM_FP_REGNUM;
1102 cache->framesize = -regs[ARM_FP_REGNUM].k;
1103 }
1104 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1105 {
1106 /* Frame pointer is r7. Frame size is constant. */
1107 cache->framereg = THUMB_FP_REGNUM;
1108 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1109 }
1110 else
1111 {
1112 /* Try the stack pointer... this is a bit desperate. */
1113 cache->framereg = ARM_SP_REGNUM;
1114 cache->framesize = -regs[ARM_SP_REGNUM].k;
1115 }
1116
1117 for (i = 0; i < 16; i++)
1118 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1119 cache->saved_regs[i].addr = offset;
1120
1121 do_cleanups (back_to);
1122 return unrecognized_pc;
1123}
1124
1125
1126/* Try to analyze the instructions starting from PC, which load symbol
1127 __stack_chk_guard. Return the address of instruction after loading this
1128 symbol, set the dest register number to *BASEREG, and set the size of
1129 instructions for loading symbol in OFFSET. Return 0 if instructions are
1130 not recognized. */
1131
1132static CORE_ADDR
1133arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1134 unsigned int *destreg, int *offset)
1135{
1136 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1137 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1138 unsigned int low, high, address;
1139
1140 address = 0;
1141 if (is_thumb)
1142 {
1143 unsigned short insn1
1144 = read_code_unsigned_integer (pc, 2, byte_order_for_code);
1145
1146 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1147 {
1148 *destreg = bits (insn1, 8, 10);
1149 *offset = 2;
1150 address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
1151 address = read_memory_unsigned_integer (address, 4,
1152 byte_order_for_code);
1153 }
1154 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1155 {
1156 unsigned short insn2
1157 = read_code_unsigned_integer (pc + 2, 2, byte_order_for_code);
1158
1159 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1160
1161 insn1
1162 = read_code_unsigned_integer (pc + 4, 2, byte_order_for_code);
1163 insn2
1164 = read_code_unsigned_integer (pc + 6, 2, byte_order_for_code);
1165
1166 /* movt Rd, #const */
1167 if ((insn1 & 0xfbc0) == 0xf2c0)
1168 {
1169 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1170 *destreg = bits (insn2, 8, 11);
1171 *offset = 8;
1172 address = (high << 16 | low);
1173 }
1174 }
1175 }
1176 else
1177 {
1178 unsigned int insn
1179 = read_code_unsigned_integer (pc, 4, byte_order_for_code);
1180
1181 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
1182 {
1183 address = bits (insn, 0, 11) + pc + 8;
1184 address = read_memory_unsigned_integer (address, 4,
1185 byte_order_for_code);
1186
1187 *destreg = bits (insn, 12, 15);
1188 *offset = 4;
1189 }
1190 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1191 {
1192 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1193
1194 insn
1195 = read_code_unsigned_integer (pc + 4, 4, byte_order_for_code);
1196
1197 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1198 {
1199 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1200 *destreg = bits (insn, 12, 15);
1201 *offset = 8;
1202 address = (high << 16 | low);
1203 }
1204 }
1205 }
1206
1207 return address;
1208}
1209
1210/* Try to skip a sequence of instructions used for stack protector. If PC
1211 points to the first instruction of this sequence, return the address of
1212 first instruction after this sequence, otherwise, return original PC.
1213
1214 On arm, this sequence of instructions is composed of mainly three steps,
1215 Step 1: load symbol __stack_chk_guard,
1216 Step 2: load from address of __stack_chk_guard,
1217 Step 3: store it to somewhere else.
1218
1219 Usually, instructions on step 2 and step 3 are the same on various ARM
1220 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1221 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1222 instructions in step 1 vary from different ARM architectures. On ARMv7,
1223 they are,
1224
1225 movw Rn, #:lower16:__stack_chk_guard
1226 movt Rn, #:upper16:__stack_chk_guard
1227
1228 On ARMv5t, it is,
1229
1230 ldr Rn, .Label
1231 ....
1232 .Lable:
1233 .word __stack_chk_guard
1234
1235 Since ldr/str is a very popular instruction, we can't use them as
1236 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1237 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1238 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1239
1240static CORE_ADDR
1241arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1242{
1243 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1244 unsigned int basereg;
1245 struct bound_minimal_symbol stack_chk_guard;
1246 int offset;
1247 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1248 CORE_ADDR addr;
1249
1250 /* Try to parse the instructions in Step 1. */
1251 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1252 &basereg, &offset);
1253 if (!addr)
1254 return pc;
1255
1256 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
1257 /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
1258 Otherwise, this sequence cannot be for stack protector. */
1259 if (stack_chk_guard.minsym == NULL
1260 || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard"))
1261 return pc;
1262
1263 if (is_thumb)
1264 {
1265 unsigned int destreg;
1266 unsigned short insn
1267 = read_code_unsigned_integer (pc + offset, 2, byte_order_for_code);
1268
1269 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1270 if ((insn & 0xf800) != 0x6800)
1271 return pc;
1272 if (bits (insn, 3, 5) != basereg)
1273 return pc;
1274 destreg = bits (insn, 0, 2);
1275
1276 insn = read_code_unsigned_integer (pc + offset + 2, 2,
1277 byte_order_for_code);
1278 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1279 if ((insn & 0xf800) != 0x6000)
1280 return pc;
1281 if (destreg != bits (insn, 0, 2))
1282 return pc;
1283 }
1284 else
1285 {
1286 unsigned int destreg;
1287 unsigned int insn
1288 = read_code_unsigned_integer (pc + offset, 4, byte_order_for_code);
1289
1290 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1291 if ((insn & 0x0e500000) != 0x04100000)
1292 return pc;
1293 if (bits (insn, 16, 19) != basereg)
1294 return pc;
1295 destreg = bits (insn, 12, 15);
1296 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1297 insn = read_code_unsigned_integer (pc + offset + 4,
1298 4, byte_order_for_code);
1299 if ((insn & 0x0e500000) != 0x04000000)
1300 return pc;
1301 if (bits (insn, 12, 15) != destreg)
1302 return pc;
1303 }
1304 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1305 on arm. */
1306 if (is_thumb)
1307 return pc + offset + 4;
1308 else
1309 return pc + offset + 8;
1310}
1311
1312/* Advance the PC across any function entry prologue instructions to
1313 reach some "real" code.
1314
1315 The APCS (ARM Procedure Call Standard) defines the following
1316 prologue:
1317
1318 mov ip, sp
1319 [stmfd sp!, {a1,a2,a3,a4}]
1320 stmfd sp!, {...,fp,ip,lr,pc}
1321 [stfe f7, [sp, #-12]!]
1322 [stfe f6, [sp, #-12]!]
1323 [stfe f5, [sp, #-12]!]
1324 [stfe f4, [sp, #-12]!]
1325 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
1326
1327static CORE_ADDR
1328arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1329{
1330 CORE_ADDR func_addr, limit_pc;
1331
1332 /* See if we can determine the end of the prologue via the symbol table.
1333 If so, then return either PC, or the PC after the prologue, whichever
1334 is greater. */
1335 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1336 {
1337 CORE_ADDR post_prologue_pc
1338 = skip_prologue_using_sal (gdbarch, func_addr);
1339 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1340
1341 if (post_prologue_pc)
1342 post_prologue_pc
1343 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1344
1345
1346 /* GCC always emits a line note before the prologue and another
1347 one after, even if the two are at the same address or on the
1348 same line. Take advantage of this so that we do not need to
1349 know every instruction that might appear in the prologue. We
1350 will have producer information for most binaries; if it is
1351 missing (e.g. for -gstabs), assuming the GNU tools. */
1352 if (post_prologue_pc
1353 && (cust == NULL
1354 || COMPUNIT_PRODUCER (cust) == NULL
1355 || startswith (COMPUNIT_PRODUCER (cust), "GNU ")
1356 || startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1357 return post_prologue_pc;
1358
1359 if (post_prologue_pc != 0)
1360 {
1361 CORE_ADDR analyzed_limit;
1362
1363 /* For non-GCC compilers, make sure the entire line is an
1364 acceptable prologue; GDB will round this function's
1365 return value up to the end of the following line so we
1366 can not skip just part of a line (and we do not want to).
1367
1368 RealView does not treat the prologue specially, but does
1369 associate prologue code with the opening brace; so this
1370 lets us skip the first line if we think it is the opening
1371 brace. */
1372 if (arm_pc_is_thumb (gdbarch, func_addr))
1373 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1374 post_prologue_pc, NULL);
1375 else
1376 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1377 post_prologue_pc, NULL);
1378
1379 if (analyzed_limit != post_prologue_pc)
1380 return func_addr;
1381
1382 return post_prologue_pc;
1383 }
1384 }
1385
1386 /* Can't determine prologue from the symbol table, need to examine
1387 instructions. */
1388
1389 /* Find an upper limit on the function prologue using the debug
1390 information. If the debug information could not be used to provide
1391 that bound, then use an arbitrary large number as the upper bound. */
1392 /* Like arm_scan_prologue, stop no later than pc + 64. */
1393 limit_pc = skip_prologue_using_sal (gdbarch, pc);
1394 if (limit_pc == 0)
1395 limit_pc = pc + 64; /* Magic. */
1396
1397
1398 /* Check if this is Thumb code. */
1399 if (arm_pc_is_thumb (gdbarch, pc))
1400 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1401 else
1402 return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1403}
1404
1405/* *INDENT-OFF* */
1406/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1407 This function decodes a Thumb function prologue to determine:
1408 1) the size of the stack frame
1409 2) which registers are saved on it
1410 3) the offsets of saved regs
1411 4) the offset from the stack pointer to the frame pointer
1412
1413 A typical Thumb function prologue would create this stack frame
1414 (offsets relative to FP)
1415 old SP -> 24 stack parameters
1416 20 LR
1417 16 R7
1418 R7 -> 0 local variables (16 bytes)
1419 SP -> -12 additional stack space (12 bytes)
1420 The frame size would thus be 36 bytes, and the frame offset would be
1421 12 bytes. The frame register is R7.
1422
1423 The comments for thumb_skip_prolog() describe the algorithm we use
1424 to detect the end of the prolog. */
1425/* *INDENT-ON* */
1426
1427static void
1428thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
1429 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
1430{
1431 CORE_ADDR prologue_start;
1432 CORE_ADDR prologue_end;
1433
1434 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1435 &prologue_end))
1436 {
1437 /* See comment in arm_scan_prologue for an explanation of
1438 this heuristics. */
1439 if (prologue_end > prologue_start + 64)
1440 {
1441 prologue_end = prologue_start + 64;
1442 }
1443 }
1444 else
1445 /* We're in the boondocks: we have no idea where the start of the
1446 function is. */
1447 return;
1448
1449 prologue_end = std::min (prologue_end, prev_pc);
1450
1451 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1452}
1453
1454/* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
1455 otherwise. */
1456
1457static int
1458arm_instruction_restores_sp (unsigned int insn)
1459{
1460 if (bits (insn, 28, 31) != INST_NV)
1461 {
1462 if ((insn & 0x0df0f000) == 0x0080d000
1463 /* ADD SP (register or immediate). */
1464 || (insn & 0x0df0f000) == 0x0040d000
1465 /* SUB SP (register or immediate). */
1466 || (insn & 0x0ffffff0) == 0x01a0d000
1467 /* MOV SP. */
1468 || (insn & 0x0fff0000) == 0x08bd0000
1469 /* POP (LDMIA). */
1470 || (insn & 0x0fff0000) == 0x049d0000)
1471 /* POP of a single register. */
1472 return 1;
1473 }
1474
1475 return 0;
1476}
1477
1478/* Analyze an ARM mode prologue starting at PROLOGUE_START and
1479 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1480 fill it in. Return the first address not recognized as a prologue
1481 instruction.
1482
1483 We recognize all the instructions typically found in ARM prologues,
1484 plus harmless instructions which can be skipped (either for analysis
1485 purposes, or a more restrictive set that can be skipped when finding
1486 the end of the prologue). */
1487
1488static CORE_ADDR
1489arm_analyze_prologue (struct gdbarch *gdbarch,
1490 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1491 struct arm_prologue_cache *cache)
1492{
1493 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1494 int regno;
1495 CORE_ADDR offset, current_pc;
1496 pv_t regs[ARM_FPS_REGNUM];
1497 struct pv_area *stack;
1498 struct cleanup *back_to;
1499 CORE_ADDR unrecognized_pc = 0;
1500
1501 /* Search the prologue looking for instructions that set up the
1502 frame pointer, adjust the stack pointer, and save registers.
1503
1504 Be careful, however, and if it doesn't look like a prologue,
1505 don't try to scan it. If, for instance, a frameless function
1506 begins with stmfd sp!, then we will tell ourselves there is
1507 a frame, which will confuse stack traceback, as well as "finish"
1508 and other operations that rely on a knowledge of the stack
1509 traceback. */
1510
1511 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1512 regs[regno] = pv_register (regno, 0);
1513 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1514 back_to = make_cleanup_free_pv_area (stack);
1515
1516 for (current_pc = prologue_start;
1517 current_pc < prologue_end;
1518 current_pc += 4)
1519 {
1520 unsigned int insn
1521 = read_code_unsigned_integer (current_pc, 4, byte_order_for_code);
1522
1523 if (insn == 0xe1a0c00d) /* mov ip, sp */
1524 {
1525 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
1526 continue;
1527 }
1528 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1529 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1530 {
1531 unsigned imm = insn & 0xff; /* immediate value */
1532 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1533 int rd = bits (insn, 12, 15);
1534 imm = (imm >> rot) | (imm << (32 - rot));
1535 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
1536 continue;
1537 }
1538 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1539 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1540 {
1541 unsigned imm = insn & 0xff; /* immediate value */
1542 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1543 int rd = bits (insn, 12, 15);
1544 imm = (imm >> rot) | (imm << (32 - rot));
1545 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
1546 continue;
1547 }
1548 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1549 [sp, #-4]! */
1550 {
1551 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1552 break;
1553 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1554 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1555 regs[bits (insn, 12, 15)]);
1556 continue;
1557 }
1558 else if ((insn & 0xffff0000) == 0xe92d0000)
1559 /* stmfd sp!, {..., fp, ip, lr, pc}
1560 or
1561 stmfd sp!, {a1, a2, a3, a4} */
1562 {
1563 int mask = insn & 0xffff;
1564
1565 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1566 break;
1567
1568 /* Calculate offsets of saved registers. */
1569 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
1570 if (mask & (1 << regno))
1571 {
1572 regs[ARM_SP_REGNUM]
1573 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1574 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
1575 }
1576 }
1577 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1578 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
1579 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
1580 {
1581 /* No need to add this to saved_regs -- it's just an arg reg. */
1582 continue;
1583 }
1584 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1585 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
1586 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
1587 {
1588 /* No need to add this to saved_regs -- it's just an arg reg. */
1589 continue;
1590 }
1591 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1592 { registers } */
1593 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1594 {
1595 /* No need to add this to saved_regs -- it's just arg regs. */
1596 continue;
1597 }
1598 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1599 {
1600 unsigned imm = insn & 0xff; /* immediate value */
1601 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1602 imm = (imm >> rot) | (imm << (32 - rot));
1603 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
1604 }
1605 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1606 {
1607 unsigned imm = insn & 0xff; /* immediate value */
1608 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1609 imm = (imm >> rot) | (imm << (32 - rot));
1610 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
1611 }
1612 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1613 [sp, -#c]! */
1614 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1615 {
1616 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1617 break;
1618
1619 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1620 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
1621 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
1622 }
1623 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1624 [sp!] */
1625 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1626 {
1627 int n_saved_fp_regs;
1628 unsigned int fp_start_reg, fp_bound_reg;
1629
1630 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1631 break;
1632
1633 if ((insn & 0x800) == 0x800) /* N0 is set */
1634 {
1635 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1636 n_saved_fp_regs = 3;
1637 else
1638 n_saved_fp_regs = 1;
1639 }
1640 else
1641 {
1642 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1643 n_saved_fp_regs = 2;
1644 else
1645 n_saved_fp_regs = 4;
1646 }
1647
1648 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
1649 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1650 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
1651 {
1652 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1653 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1654 regs[fp_start_reg++]);
1655 }
1656 }
1657 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1658 {
1659 /* Allow some special function calls when skipping the
1660 prologue; GCC generates these before storing arguments to
1661 the stack. */
1662 CORE_ADDR dest = BranchDest (current_pc, insn);
1663
1664 if (skip_prologue_function (gdbarch, dest, 0))
1665 continue;
1666 else
1667 break;
1668 }
1669 else if ((insn & 0xf0000000) != 0xe0000000)
1670 break; /* Condition not true, exit early. */
1671 else if (arm_instruction_changes_pc (insn))
1672 /* Don't scan past anything that might change control flow. */
1673 break;
1674 else if (arm_instruction_restores_sp (insn))
1675 {
1676 /* Don't scan past the epilogue. */
1677 break;
1678 }
1679 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1680 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1681 /* Ignore block loads from the stack, potentially copying
1682 parameters from memory. */
1683 continue;
1684 else if ((insn & 0xfc500000) == 0xe4100000
1685 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1686 /* Similarly ignore single loads from the stack. */
1687 continue;
1688 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1689 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1690 register instead of the stack. */
1691 continue;
1692 else
1693 {
1694 /* The optimizer might shove anything into the prologue, if
1695 we build up cache (cache != NULL) from scanning prologue,
1696 we just skip what we don't recognize and scan further to
1697 make cache as complete as possible. However, if we skip
1698 prologue, we'll stop immediately on unrecognized
1699 instruction. */
1700 unrecognized_pc = current_pc;
1701 if (cache != NULL)
1702 continue;
1703 else
1704 break;
1705 }
1706 }
1707
1708 if (unrecognized_pc == 0)
1709 unrecognized_pc = current_pc;
1710
1711 if (cache)
1712 {
1713 int framereg, framesize;
1714
1715 /* The frame size is just the distance from the frame register
1716 to the original stack pointer. */
1717 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1718 {
1719 /* Frame pointer is fp. */
1720 framereg = ARM_FP_REGNUM;
1721 framesize = -regs[ARM_FP_REGNUM].k;
1722 }
1723 else
1724 {
1725 /* Try the stack pointer... this is a bit desperate. */
1726 framereg = ARM_SP_REGNUM;
1727 framesize = -regs[ARM_SP_REGNUM].k;
1728 }
1729
1730 cache->framereg = framereg;
1731 cache->framesize = framesize;
1732
1733 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1734 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1735 cache->saved_regs[regno].addr = offset;
1736 }
1737
1738 if (arm_debug)
1739 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1740 paddress (gdbarch, unrecognized_pc));
1741
1742 do_cleanups (back_to);
1743 return unrecognized_pc;
1744}
1745
1746static void
1747arm_scan_prologue (struct frame_info *this_frame,
1748 struct arm_prologue_cache *cache)
1749{
1750 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1751 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1752 CORE_ADDR prologue_start, prologue_end;
1753 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1754 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1755
1756 /* Assume there is no frame until proven otherwise. */
1757 cache->framereg = ARM_SP_REGNUM;
1758 cache->framesize = 0;
1759
1760 /* Check for Thumb prologue. */
1761 if (arm_frame_is_thumb (this_frame))
1762 {
1763 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1764 return;
1765 }
1766
1767 /* Find the function prologue. If we can't find the function in
1768 the symbol table, peek in the stack frame to find the PC. */
1769 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1770 &prologue_end))
1771 {
1772 /* One way to find the end of the prologue (which works well
1773 for unoptimized code) is to do the following:
1774
1775 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1776
1777 if (sal.line == 0)
1778 prologue_end = prev_pc;
1779 else if (sal.end < prologue_end)
1780 prologue_end = sal.end;
1781
1782 This mechanism is very accurate so long as the optimizer
1783 doesn't move any instructions from the function body into the
1784 prologue. If this happens, sal.end will be the last
1785 instruction in the first hunk of prologue code just before
1786 the first instruction that the scheduler has moved from
1787 the body to the prologue.
1788
1789 In order to make sure that we scan all of the prologue
1790 instructions, we use a slightly less accurate mechanism which
1791 may scan more than necessary. To help compensate for this
1792 lack of accuracy, the prologue scanning loop below contains
1793 several clauses which'll cause the loop to terminate early if
1794 an implausible prologue instruction is encountered.
1795
1796 The expression
1797
1798 prologue_start + 64
1799
1800 is a suitable endpoint since it accounts for the largest
1801 possible prologue plus up to five instructions inserted by
1802 the scheduler. */
1803
1804 if (prologue_end > prologue_start + 64)
1805 {
1806 prologue_end = prologue_start + 64; /* See above. */
1807 }
1808 }
1809 else
1810 {
1811 /* We have no symbol information. Our only option is to assume this
1812 function has a standard stack frame and the normal frame register.
1813 Then, we can find the value of our frame pointer on entrance to
1814 the callee (or at the present moment if this is the innermost frame).
1815 The value stored there should be the address of the stmfd + 8. */
1816 CORE_ADDR frame_loc;
1817 ULONGEST return_value;
1818
1819 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
1820 if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order,
1821 &return_value))
1822 return;
1823 else
1824 {
1825 prologue_start = gdbarch_addr_bits_remove
1826 (gdbarch, return_value) - 8;
1827 prologue_end = prologue_start + 64; /* See above. */
1828 }
1829 }
1830
1831 if (prev_pc < prologue_end)
1832 prologue_end = prev_pc;
1833
1834 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1835}
1836
1837static struct arm_prologue_cache *
1838arm_make_prologue_cache (struct frame_info *this_frame)
1839{
1840 int reg;
1841 struct arm_prologue_cache *cache;
1842 CORE_ADDR unwound_fp;
1843
1844 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1845 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1846
1847 arm_scan_prologue (this_frame, cache);
1848
1849 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
1850 if (unwound_fp == 0)
1851 return cache;
1852
1853 cache->prev_sp = unwound_fp + cache->framesize;
1854
1855 /* Calculate actual addresses of saved registers using offsets
1856 determined by arm_scan_prologue. */
1857 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
1858 if (trad_frame_addr_p (cache->saved_regs, reg))
1859 cache->saved_regs[reg].addr += cache->prev_sp;
1860
1861 return cache;
1862}
1863
1864/* Implementation of the stop_reason hook for arm_prologue frames. */
1865
1866static enum unwind_stop_reason
1867arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
1868 void **this_cache)
1869{
1870 struct arm_prologue_cache *cache;
1871 CORE_ADDR pc;
1872
1873 if (*this_cache == NULL)
1874 *this_cache = arm_make_prologue_cache (this_frame);
1875 cache = (struct arm_prologue_cache *) *this_cache;
1876
1877 /* This is meant to halt the backtrace at "_start". */
1878 pc = get_frame_pc (this_frame);
1879 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1880 return UNWIND_OUTERMOST;
1881
1882 /* If we've hit a wall, stop. */
1883 if (cache->prev_sp == 0)
1884 return UNWIND_OUTERMOST;
1885
1886 return UNWIND_NO_REASON;
1887}
1888
1889/* Our frame ID for a normal frame is the current function's starting PC
1890 and the caller's SP when we were called. */
1891
1892static void
1893arm_prologue_this_id (struct frame_info *this_frame,
1894 void **this_cache,
1895 struct frame_id *this_id)
1896{
1897 struct arm_prologue_cache *cache;
1898 struct frame_id id;
1899 CORE_ADDR pc, func;
1900
1901 if (*this_cache == NULL)
1902 *this_cache = arm_make_prologue_cache (this_frame);
1903 cache = (struct arm_prologue_cache *) *this_cache;
1904
1905 /* Use function start address as part of the frame ID. If we cannot
1906 identify the start address (due to missing symbol information),
1907 fall back to just using the current PC. */
1908 pc = get_frame_pc (this_frame);
1909 func = get_frame_func (this_frame);
1910 if (!func)
1911 func = pc;
1912
1913 id = frame_id_build (cache->prev_sp, func);
1914 *this_id = id;
1915}
1916
1917static struct value *
1918arm_prologue_prev_register (struct frame_info *this_frame,
1919 void **this_cache,
1920 int prev_regnum)
1921{
1922 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1923 struct arm_prologue_cache *cache;
1924
1925 if (*this_cache == NULL)
1926 *this_cache = arm_make_prologue_cache (this_frame);
1927 cache = (struct arm_prologue_cache *) *this_cache;
1928
1929 /* If we are asked to unwind the PC, then we need to return the LR
1930 instead. The prologue may save PC, but it will point into this
1931 frame's prologue, not the next frame's resume location. Also
1932 strip the saved T bit. A valid LR may have the low bit set, but
1933 a valid PC never does. */
1934 if (prev_regnum == ARM_PC_REGNUM)
1935 {
1936 CORE_ADDR lr;
1937
1938 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1939 return frame_unwind_got_constant (this_frame, prev_regnum,
1940 arm_addr_bits_remove (gdbarch, lr));
1941 }
1942
1943 /* SP is generally not saved to the stack, but this frame is
1944 identified by the next frame's stack pointer at the time of the call.
1945 The value was already reconstructed into PREV_SP. */
1946 if (prev_regnum == ARM_SP_REGNUM)
1947 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
1948
1949 /* The CPSR may have been changed by the call instruction and by the
1950 called function. The only bit we can reconstruct is the T bit,
1951 by checking the low bit of LR as of the call. This is a reliable
1952 indicator of Thumb-ness except for some ARM v4T pre-interworking
1953 Thumb code, which could get away with a clear low bit as long as
1954 the called function did not use bx. Guess that all other
1955 bits are unchanged; the condition flags are presumably lost,
1956 but the processor status is likely valid. */
1957 if (prev_regnum == ARM_PS_REGNUM)
1958 {
1959 CORE_ADDR lr, cpsr;
1960 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
1961
1962 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1963 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1964 if (IS_THUMB_ADDR (lr))
1965 cpsr |= t_bit;
1966 else
1967 cpsr &= ~t_bit;
1968 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1969 }
1970
1971 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1972 prev_regnum);
1973}
1974
1975struct frame_unwind arm_prologue_unwind = {
1976 NORMAL_FRAME,
1977 arm_prologue_unwind_stop_reason,
1978 arm_prologue_this_id,
1979 arm_prologue_prev_register,
1980 NULL,
1981 default_frame_sniffer
1982};
1983
1984/* Maintain a list of ARM exception table entries per objfile, similar to the
1985 list of mapping symbols. We only cache entries for standard ARM-defined
1986 personality routines; the cache will contain only the frame unwinding
1987 instructions associated with the entry (not the descriptors). */
1988
1989static const struct objfile_data *arm_exidx_data_key;
1990
1991struct arm_exidx_entry
1992{
1993 bfd_vma addr;
1994 gdb_byte *entry;
1995};
1996typedef struct arm_exidx_entry arm_exidx_entry_s;
1997DEF_VEC_O(arm_exidx_entry_s);
1998
1999struct arm_exidx_data
2000{
2001 VEC(arm_exidx_entry_s) **section_maps;
2002};
2003
2004static void
2005arm_exidx_data_free (struct objfile *objfile, void *arg)
2006{
2007 struct arm_exidx_data *data = (struct arm_exidx_data *) arg;
2008 unsigned int i;
2009
2010 for (i = 0; i < objfile->obfd->section_count; i++)
2011 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2012}
2013
2014static inline int
2015arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2016 const struct arm_exidx_entry *rhs)
2017{
2018 return lhs->addr < rhs->addr;
2019}
2020
2021static struct obj_section *
2022arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2023{
2024 struct obj_section *osect;
2025
2026 ALL_OBJFILE_OSECTIONS (objfile, osect)
2027 if (bfd_get_section_flags (objfile->obfd,
2028 osect->the_bfd_section) & SEC_ALLOC)
2029 {
2030 bfd_vma start, size;
2031 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2032 size = bfd_get_section_size (osect->the_bfd_section);
2033
2034 if (start <= vma && vma < start + size)
2035 return osect;
2036 }
2037
2038 return NULL;
2039}
2040
2041/* Parse contents of exception table and exception index sections
2042 of OBJFILE, and fill in the exception table entry cache.
2043
2044 For each entry that refers to a standard ARM-defined personality
2045 routine, extract the frame unwinding instructions (from either
2046 the index or the table section). The unwinding instructions
2047 are normalized by:
2048 - extracting them from the rest of the table data
2049 - converting to host endianness
2050 - appending the implicit 0xb0 ("Finish") code
2051
2052 The extracted and normalized instructions are stored for later
2053 retrieval by the arm_find_exidx_entry routine. */
2054
2055static void
2056arm_exidx_new_objfile (struct objfile *objfile)
2057{
2058 struct cleanup *cleanups;
2059 struct arm_exidx_data *data;
2060 asection *exidx, *extab;
2061 bfd_vma exidx_vma = 0, extab_vma = 0;
2062 bfd_size_type exidx_size = 0, extab_size = 0;
2063 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2064 LONGEST i;
2065
2066 /* If we've already touched this file, do nothing. */
2067 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2068 return;
2069 cleanups = make_cleanup (null_cleanup, NULL);
2070
2071 /* Read contents of exception table and index. */
2072 exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
2073 if (exidx)
2074 {
2075 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2076 exidx_size = bfd_get_section_size (exidx);
2077 exidx_data = (gdb_byte *) xmalloc (exidx_size);
2078 make_cleanup (xfree, exidx_data);
2079
2080 if (!bfd_get_section_contents (objfile->obfd, exidx,
2081 exidx_data, 0, exidx_size))
2082 {
2083 do_cleanups (cleanups);
2084 return;
2085 }
2086 }
2087
2088 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2089 if (extab)
2090 {
2091 extab_vma = bfd_section_vma (objfile->obfd, extab);
2092 extab_size = bfd_get_section_size (extab);
2093 extab_data = (gdb_byte *) xmalloc (extab_size);
2094 make_cleanup (xfree, extab_data);
2095
2096 if (!bfd_get_section_contents (objfile->obfd, extab,
2097 extab_data, 0, extab_size))
2098 {
2099 do_cleanups (cleanups);
2100 return;
2101 }
2102 }
2103
2104 /* Allocate exception table data structure. */
2105 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2106 set_objfile_data (objfile, arm_exidx_data_key, data);
2107 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2108 objfile->obfd->section_count,
2109 VEC(arm_exidx_entry_s) *);
2110
2111 /* Fill in exception table. */
2112 for (i = 0; i < exidx_size / 8; i++)
2113 {
2114 struct arm_exidx_entry new_exidx_entry;
2115 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2116 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2117 bfd_vma addr = 0, word = 0;
2118 int n_bytes = 0, n_words = 0;
2119 struct obj_section *sec;
2120 gdb_byte *entry = NULL;
2121
2122 /* Extract address of start of function. */
2123 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2124 idx += exidx_vma + i * 8;
2125
2126 /* Find section containing function and compute section offset. */
2127 sec = arm_obj_section_from_vma (objfile, idx);
2128 if (sec == NULL)
2129 continue;
2130 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2131
2132 /* Determine address of exception table entry. */
2133 if (val == 1)
2134 {
2135 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2136 }
2137 else if ((val & 0xff000000) == 0x80000000)
2138 {
2139 /* Exception table entry embedded in .ARM.exidx
2140 -- must be short form. */
2141 word = val;
2142 n_bytes = 3;
2143 }
2144 else if (!(val & 0x80000000))
2145 {
2146 /* Exception table entry in .ARM.extab. */
2147 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2148 addr += exidx_vma + i * 8 + 4;
2149
2150 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2151 {
2152 word = bfd_h_get_32 (objfile->obfd,
2153 extab_data + addr - extab_vma);
2154 addr += 4;
2155
2156 if ((word & 0xff000000) == 0x80000000)
2157 {
2158 /* Short form. */
2159 n_bytes = 3;
2160 }
2161 else if ((word & 0xff000000) == 0x81000000
2162 || (word & 0xff000000) == 0x82000000)
2163 {
2164 /* Long form. */
2165 n_bytes = 2;
2166 n_words = ((word >> 16) & 0xff);
2167 }
2168 else if (!(word & 0x80000000))
2169 {
2170 bfd_vma pers;
2171 struct obj_section *pers_sec;
2172 int gnu_personality = 0;
2173
2174 /* Custom personality routine. */
2175 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2176 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2177
2178 /* Check whether we've got one of the variants of the
2179 GNU personality routines. */
2180 pers_sec = arm_obj_section_from_vma (objfile, pers);
2181 if (pers_sec)
2182 {
2183 static const char *personality[] =
2184 {
2185 "__gcc_personality_v0",
2186 "__gxx_personality_v0",
2187 "__gcj_personality_v0",
2188 "__gnu_objc_personality_v0",
2189 NULL
2190 };
2191
2192 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2193 int k;
2194
2195 for (k = 0; personality[k]; k++)
2196 if (lookup_minimal_symbol_by_pc_name
2197 (pc, personality[k], objfile))
2198 {
2199 gnu_personality = 1;
2200 break;
2201 }
2202 }
2203
2204 /* If so, the next word contains a word count in the high
2205 byte, followed by the same unwind instructions as the
2206 pre-defined forms. */
2207 if (gnu_personality
2208 && addr + 4 <= extab_vma + extab_size)
2209 {
2210 word = bfd_h_get_32 (objfile->obfd,
2211 extab_data + addr - extab_vma);
2212 addr += 4;
2213 n_bytes = 3;
2214 n_words = ((word >> 24) & 0xff);
2215 }
2216 }
2217 }
2218 }
2219
2220 /* Sanity check address. */
2221 if (n_words)
2222 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2223 n_words = n_bytes = 0;
2224
2225 /* The unwind instructions reside in WORD (only the N_BYTES least
2226 significant bytes are valid), followed by N_WORDS words in the
2227 extab section starting at ADDR. */
2228 if (n_bytes || n_words)
2229 {
2230 gdb_byte *p = entry
2231 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
2232 n_bytes + n_words * 4 + 1);
2233
2234 while (n_bytes--)
2235 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2236
2237 while (n_words--)
2238 {
2239 word = bfd_h_get_32 (objfile->obfd,
2240 extab_data + addr - extab_vma);
2241 addr += 4;
2242
2243 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2244 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2245 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2246 *p++ = (gdb_byte) (word & 0xff);
2247 }
2248
2249 /* Implied "Finish" to terminate the list. */
2250 *p++ = 0xb0;
2251 }
2252
2253 /* Push entry onto vector. They are guaranteed to always
2254 appear in order of increasing addresses. */
2255 new_exidx_entry.addr = idx;
2256 new_exidx_entry.entry = entry;
2257 VEC_safe_push (arm_exidx_entry_s,
2258 data->section_maps[sec->the_bfd_section->index],
2259 &new_exidx_entry);
2260 }
2261
2262 do_cleanups (cleanups);
2263}
2264
2265/* Search for the exception table entry covering MEMADDR. If one is found,
2266 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2267 set *START to the start of the region covered by this entry. */
2268
2269static gdb_byte *
2270arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2271{
2272 struct obj_section *sec;
2273
2274 sec = find_pc_section (memaddr);
2275 if (sec != NULL)
2276 {
2277 struct arm_exidx_data *data;
2278 VEC(arm_exidx_entry_s) *map;
2279 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2280 unsigned int idx;
2281
2282 data = ((struct arm_exidx_data *)
2283 objfile_data (sec->objfile, arm_exidx_data_key));
2284 if (data != NULL)
2285 {
2286 map = data->section_maps[sec->the_bfd_section->index];
2287 if (!VEC_empty (arm_exidx_entry_s, map))
2288 {
2289 struct arm_exidx_entry *map_sym;
2290
2291 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2292 arm_compare_exidx_entries);
2293
2294 /* VEC_lower_bound finds the earliest ordered insertion
2295 point. If the following symbol starts at this exact
2296 address, we use that; otherwise, the preceding
2297 exception table entry covers this address. */
2298 if (idx < VEC_length (arm_exidx_entry_s, map))
2299 {
2300 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2301 if (map_sym->addr == map_key.addr)
2302 {
2303 if (start)
2304 *start = map_sym->addr + obj_section_addr (sec);
2305 return map_sym->entry;
2306 }
2307 }
2308
2309 if (idx > 0)
2310 {
2311 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2312 if (start)
2313 *start = map_sym->addr + obj_section_addr (sec);
2314 return map_sym->entry;
2315 }
2316 }
2317 }
2318 }
2319
2320 return NULL;
2321}
2322
2323/* Given the current frame THIS_FRAME, and its associated frame unwinding
2324 instruction list from the ARM exception table entry ENTRY, allocate and
2325 return a prologue cache structure describing how to unwind this frame.
2326
2327 Return NULL if the unwinding instruction list contains a "spare",
2328 "reserved" or "refuse to unwind" instruction as defined in section
2329 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2330 for the ARM Architecture" document. */
2331
2332static struct arm_prologue_cache *
2333arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2334{
2335 CORE_ADDR vsp = 0;
2336 int vsp_valid = 0;
2337
2338 struct arm_prologue_cache *cache;
2339 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2340 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2341
2342 for (;;)
2343 {
2344 gdb_byte insn;
2345
2346 /* Whenever we reload SP, we actually have to retrieve its
2347 actual value in the current frame. */
2348 if (!vsp_valid)
2349 {
2350 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2351 {
2352 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2353 vsp = get_frame_register_unsigned (this_frame, reg);
2354 }
2355 else
2356 {
2357 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2358 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2359 }
2360
2361 vsp_valid = 1;
2362 }
2363
2364 /* Decode next unwind instruction. */
2365 insn = *entry++;
2366
2367 if ((insn & 0xc0) == 0)
2368 {
2369 int offset = insn & 0x3f;
2370 vsp += (offset << 2) + 4;
2371 }
2372 else if ((insn & 0xc0) == 0x40)
2373 {
2374 int offset = insn & 0x3f;
2375 vsp -= (offset << 2) + 4;
2376 }
2377 else if ((insn & 0xf0) == 0x80)
2378 {
2379 int mask = ((insn & 0xf) << 8) | *entry++;
2380 int i;
2381
2382 /* The special case of an all-zero mask identifies
2383 "Refuse to unwind". We return NULL to fall back
2384 to the prologue analyzer. */
2385 if (mask == 0)
2386 return NULL;
2387
2388 /* Pop registers r4..r15 under mask. */
2389 for (i = 0; i < 12; i++)
2390 if (mask & (1 << i))
2391 {
2392 cache->saved_regs[4 + i].addr = vsp;
2393 vsp += 4;
2394 }
2395
2396 /* Special-case popping SP -- we need to reload vsp. */
2397 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2398 vsp_valid = 0;
2399 }
2400 else if ((insn & 0xf0) == 0x90)
2401 {
2402 int reg = insn & 0xf;
2403
2404 /* Reserved cases. */
2405 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2406 return NULL;
2407
2408 /* Set SP from another register and mark VSP for reload. */
2409 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2410 vsp_valid = 0;
2411 }
2412 else if ((insn & 0xf0) == 0xa0)
2413 {
2414 int count = insn & 0x7;
2415 int pop_lr = (insn & 0x8) != 0;
2416 int i;
2417
2418 /* Pop r4..r[4+count]. */
2419 for (i = 0; i <= count; i++)
2420 {
2421 cache->saved_regs[4 + i].addr = vsp;
2422 vsp += 4;
2423 }
2424
2425 /* If indicated by flag, pop LR as well. */
2426 if (pop_lr)
2427 {
2428 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2429 vsp += 4;
2430 }
2431 }
2432 else if (insn == 0xb0)
2433 {
2434 /* We could only have updated PC by popping into it; if so, it
2435 will show up as address. Otherwise, copy LR into PC. */
2436 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2437 cache->saved_regs[ARM_PC_REGNUM]
2438 = cache->saved_regs[ARM_LR_REGNUM];
2439
2440 /* We're done. */
2441 break;
2442 }
2443 else if (insn == 0xb1)
2444 {
2445 int mask = *entry++;
2446 int i;
2447
2448 /* All-zero mask and mask >= 16 is "spare". */
2449 if (mask == 0 || mask >= 16)
2450 return NULL;
2451
2452 /* Pop r0..r3 under mask. */
2453 for (i = 0; i < 4; i++)
2454 if (mask & (1 << i))
2455 {
2456 cache->saved_regs[i].addr = vsp;
2457 vsp += 4;
2458 }
2459 }
2460 else if (insn == 0xb2)
2461 {
2462 ULONGEST offset = 0;
2463 unsigned shift = 0;
2464
2465 do
2466 {
2467 offset |= (*entry & 0x7f) << shift;
2468 shift += 7;
2469 }
2470 while (*entry++ & 0x80);
2471
2472 vsp += 0x204 + (offset << 2);
2473 }
2474 else if (insn == 0xb3)
2475 {
2476 int start = *entry >> 4;
2477 int count = (*entry++) & 0xf;
2478 int i;
2479
2480 /* Only registers D0..D15 are valid here. */
2481 if (start + count >= 16)
2482 return NULL;
2483
2484 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2485 for (i = 0; i <= count; i++)
2486 {
2487 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2488 vsp += 8;
2489 }
2490
2491 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2492 vsp += 4;
2493 }
2494 else if ((insn & 0xf8) == 0xb8)
2495 {
2496 int count = insn & 0x7;
2497 int i;
2498
2499 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2500 for (i = 0; i <= count; i++)
2501 {
2502 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2503 vsp += 8;
2504 }
2505
2506 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2507 vsp += 4;
2508 }
2509 else if (insn == 0xc6)
2510 {
2511 int start = *entry >> 4;
2512 int count = (*entry++) & 0xf;
2513 int i;
2514
2515 /* Only registers WR0..WR15 are valid. */
2516 if (start + count >= 16)
2517 return NULL;
2518
2519 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2520 for (i = 0; i <= count; i++)
2521 {
2522 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2523 vsp += 8;
2524 }
2525 }
2526 else if (insn == 0xc7)
2527 {
2528 int mask = *entry++;
2529 int i;
2530
2531 /* All-zero mask and mask >= 16 is "spare". */
2532 if (mask == 0 || mask >= 16)
2533 return NULL;
2534
2535 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2536 for (i = 0; i < 4; i++)
2537 if (mask & (1 << i))
2538 {
2539 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2540 vsp += 4;
2541 }
2542 }
2543 else if ((insn & 0xf8) == 0xc0)
2544 {
2545 int count = insn & 0x7;
2546 int i;
2547
2548 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2549 for (i = 0; i <= count; i++)
2550 {
2551 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2552 vsp += 8;
2553 }
2554 }
2555 else if (insn == 0xc8)
2556 {
2557 int start = *entry >> 4;
2558 int count = (*entry++) & 0xf;
2559 int i;
2560
2561 /* Only registers D0..D31 are valid. */
2562 if (start + count >= 16)
2563 return NULL;
2564
2565 /* Pop VFP double-precision registers
2566 D[16+start]..D[16+start+count]. */
2567 for (i = 0; i <= count; i++)
2568 {
2569 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2570 vsp += 8;
2571 }
2572 }
2573 else if (insn == 0xc9)
2574 {
2575 int start = *entry >> 4;
2576 int count = (*entry++) & 0xf;
2577 int i;
2578
2579 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2580 for (i = 0; i <= count; i++)
2581 {
2582 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2583 vsp += 8;
2584 }
2585 }
2586 else if ((insn & 0xf8) == 0xd0)
2587 {
2588 int count = insn & 0x7;
2589 int i;
2590
2591 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2592 for (i = 0; i <= count; i++)
2593 {
2594 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2595 vsp += 8;
2596 }
2597 }
2598 else
2599 {
2600 /* Everything else is "spare". */
2601 return NULL;
2602 }
2603 }
2604
2605 /* If we restore SP from a register, assume this was the frame register.
2606 Otherwise just fall back to SP as frame register. */
2607 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2608 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2609 else
2610 cache->framereg = ARM_SP_REGNUM;
2611
2612 /* Determine offset to previous frame. */
2613 cache->framesize
2614 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2615
2616 /* We already got the previous SP. */
2617 cache->prev_sp = vsp;
2618
2619 return cache;
2620}
2621
2622/* Unwinding via ARM exception table entries. Note that the sniffer
2623 already computes a filled-in prologue cache, which is then used
2624 with the same arm_prologue_this_id and arm_prologue_prev_register
2625 routines also used for prologue-parsing based unwinding. */
2626
2627static int
2628arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2629 struct frame_info *this_frame,
2630 void **this_prologue_cache)
2631{
2632 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2633 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2634 CORE_ADDR addr_in_block, exidx_region, func_start;
2635 struct arm_prologue_cache *cache;
2636 gdb_byte *entry;
2637
2638 /* See if we have an ARM exception table entry covering this address. */
2639 addr_in_block = get_frame_address_in_block (this_frame);
2640 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2641 if (!entry)
2642 return 0;
2643
2644 /* The ARM exception table does not describe unwind information
2645 for arbitrary PC values, but is guaranteed to be correct only
2646 at call sites. We have to decide here whether we want to use
2647 ARM exception table information for this frame, or fall back
2648 to using prologue parsing. (Note that if we have DWARF CFI,
2649 this sniffer isn't even called -- CFI is always preferred.)
2650
2651 Before we make this decision, however, we check whether we
2652 actually have *symbol* information for the current frame.
2653 If not, prologue parsing would not work anyway, so we might
2654 as well use the exception table and hope for the best. */
2655 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2656 {
2657 int exc_valid = 0;
2658
2659 /* If the next frame is "normal", we are at a call site in this
2660 frame, so exception information is guaranteed to be valid. */
2661 if (get_next_frame (this_frame)
2662 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2663 exc_valid = 1;
2664
2665 /* We also assume exception information is valid if we're currently
2666 blocked in a system call. The system library is supposed to
2667 ensure this, so that e.g. pthread cancellation works. */
2668 if (arm_frame_is_thumb (this_frame))
2669 {
2670 ULONGEST insn;
2671
2672 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 2,
2673 2, byte_order_for_code, &insn)
2674 && (insn & 0xff00) == 0xdf00 /* svc */)
2675 exc_valid = 1;
2676 }
2677 else
2678 {
2679 ULONGEST insn;
2680
2681 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 4,
2682 4, byte_order_for_code, &insn)
2683 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2684 exc_valid = 1;
2685 }
2686
2687 /* Bail out if we don't know that exception information is valid. */
2688 if (!exc_valid)
2689 return 0;
2690
2691 /* The ARM exception index does not mark the *end* of the region
2692 covered by the entry, and some functions will not have any entry.
2693 To correctly recognize the end of the covered region, the linker
2694 should have inserted dummy records with a CANTUNWIND marker.
2695
2696 Unfortunately, current versions of GNU ld do not reliably do
2697 this, and thus we may have found an incorrect entry above.
2698 As a (temporary) sanity check, we only use the entry if it
2699 lies *within* the bounds of the function. Note that this check
2700 might reject perfectly valid entries that just happen to cover
2701 multiple functions; therefore this check ought to be removed
2702 once the linker is fixed. */
2703 if (func_start > exidx_region)
2704 return 0;
2705 }
2706
2707 /* Decode the list of unwinding instructions into a prologue cache.
2708 Note that this may fail due to e.g. a "refuse to unwind" code. */
2709 cache = arm_exidx_fill_cache (this_frame, entry);
2710 if (!cache)
2711 return 0;
2712
2713 *this_prologue_cache = cache;
2714 return 1;
2715}
2716
2717struct frame_unwind arm_exidx_unwind = {
2718 NORMAL_FRAME,
2719 default_frame_unwind_stop_reason,
2720 arm_prologue_this_id,
2721 arm_prologue_prev_register,
2722 NULL,
2723 arm_exidx_unwind_sniffer
2724};
2725
2726static struct arm_prologue_cache *
2727arm_make_epilogue_frame_cache (struct frame_info *this_frame)
2728{
2729 struct arm_prologue_cache *cache;
2730 int reg;
2731
2732 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2733 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2734
2735 /* Still rely on the offset calculated from prologue. */
2736 arm_scan_prologue (this_frame, cache);
2737
2738 /* Since we are in epilogue, the SP has been restored. */
2739 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2740
2741 /* Calculate actual addresses of saved registers using offsets
2742 determined by arm_scan_prologue. */
2743 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
2744 if (trad_frame_addr_p (cache->saved_regs, reg))
2745 cache->saved_regs[reg].addr += cache->prev_sp;
2746
2747 return cache;
2748}
2749
2750/* Implementation of function hook 'this_id' in
2751 'struct frame_uwnind' for epilogue unwinder. */
2752
2753static void
2754arm_epilogue_frame_this_id (struct frame_info *this_frame,
2755 void **this_cache,
2756 struct frame_id *this_id)
2757{
2758 struct arm_prologue_cache *cache;
2759 CORE_ADDR pc, func;
2760
2761 if (*this_cache == NULL)
2762 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2763 cache = (struct arm_prologue_cache *) *this_cache;
2764
2765 /* Use function start address as part of the frame ID. If we cannot
2766 identify the start address (due to missing symbol information),
2767 fall back to just using the current PC. */
2768 pc = get_frame_pc (this_frame);
2769 func = get_frame_func (this_frame);
2770 if (func == 0)
2771 func = pc;
2772
2773 (*this_id) = frame_id_build (cache->prev_sp, pc);
2774}
2775
2776/* Implementation of function hook 'prev_register' in
2777 'struct frame_uwnind' for epilogue unwinder. */
2778
2779static struct value *
2780arm_epilogue_frame_prev_register (struct frame_info *this_frame,
2781 void **this_cache, int regnum)
2782{
2783 if (*this_cache == NULL)
2784 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2785
2786 return arm_prologue_prev_register (this_frame, this_cache, regnum);
2787}
2788
2789static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
2790 CORE_ADDR pc);
2791static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
2792 CORE_ADDR pc);
2793
2794/* Implementation of function hook 'sniffer' in
2795 'struct frame_uwnind' for epilogue unwinder. */
2796
2797static int
2798arm_epilogue_frame_sniffer (const struct frame_unwind *self,
2799 struct frame_info *this_frame,
2800 void **this_prologue_cache)
2801{
2802 if (frame_relative_level (this_frame) == 0)
2803 {
2804 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2805 CORE_ADDR pc = get_frame_pc (this_frame);
2806
2807 if (arm_frame_is_thumb (this_frame))
2808 return thumb_stack_frame_destroyed_p (gdbarch, pc);
2809 else
2810 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
2811 }
2812 else
2813 return 0;
2814}
2815
2816/* Frame unwinder from epilogue. */
2817
2818static const struct frame_unwind arm_epilogue_frame_unwind =
2819{
2820 NORMAL_FRAME,
2821 default_frame_unwind_stop_reason,
2822 arm_epilogue_frame_this_id,
2823 arm_epilogue_frame_prev_register,
2824 NULL,
2825 arm_epilogue_frame_sniffer,
2826};
2827
2828/* Recognize GCC's trampoline for thumb call-indirect. If we are in a
2829 trampoline, return the target PC. Otherwise return 0.
2830
2831 void call0a (char c, short s, int i, long l) {}
2832
2833 int main (void)
2834 {
2835 (*pointer_to_call0a) (c, s, i, l);
2836 }
2837
2838 Instead of calling a stub library function _call_via_xx (xx is
2839 the register name), GCC may inline the trampoline in the object
2840 file as below (register r2 has the address of call0a).
2841
2842 .global main
2843 .type main, %function
2844 ...
2845 bl .L1
2846 ...
2847 .size main, .-main
2848
2849 .L1:
2850 bx r2
2851
2852 The trampoline 'bx r2' doesn't belong to main. */
2853
2854static CORE_ADDR
2855arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc)
2856{
2857 /* The heuristics of recognizing such trampoline is that FRAME is
2858 executing in Thumb mode and the instruction on PC is 'bx Rm'. */
2859 if (arm_frame_is_thumb (frame))
2860 {
2861 gdb_byte buf[2];
2862
2863 if (target_read_memory (pc, buf, 2) == 0)
2864 {
2865 struct gdbarch *gdbarch = get_frame_arch (frame);
2866 enum bfd_endian byte_order_for_code
2867 = gdbarch_byte_order_for_code (gdbarch);
2868 uint16_t insn
2869 = extract_unsigned_integer (buf, 2, byte_order_for_code);
2870
2871 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
2872 {
2873 CORE_ADDR dest
2874 = get_frame_register_unsigned (frame, bits (insn, 3, 6));
2875
2876 /* Clear the LSB so that gdb core sets step-resume
2877 breakpoint at the right address. */
2878 return UNMAKE_THUMB_ADDR (dest);
2879 }
2880 }
2881 }
2882
2883 return 0;
2884}
2885
2886static struct arm_prologue_cache *
2887arm_make_stub_cache (struct frame_info *this_frame)
2888{
2889 struct arm_prologue_cache *cache;
2890
2891 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2892 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2893
2894 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2895
2896 return cache;
2897}
2898
2899/* Our frame ID for a stub frame is the current SP and LR. */
2900
2901static void
2902arm_stub_this_id (struct frame_info *this_frame,
2903 void **this_cache,
2904 struct frame_id *this_id)
2905{
2906 struct arm_prologue_cache *cache;
2907
2908 if (*this_cache == NULL)
2909 *this_cache = arm_make_stub_cache (this_frame);
2910 cache = (struct arm_prologue_cache *) *this_cache;
2911
2912 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
2913}
2914
2915static int
2916arm_stub_unwind_sniffer (const struct frame_unwind *self,
2917 struct frame_info *this_frame,
2918 void **this_prologue_cache)
2919{
2920 CORE_ADDR addr_in_block;
2921 gdb_byte dummy[4];
2922 CORE_ADDR pc, start_addr;
2923 const char *name;
2924
2925 addr_in_block = get_frame_address_in_block (this_frame);
2926 pc = get_frame_pc (this_frame);
2927 if (in_plt_section (addr_in_block)
2928 /* We also use the stub winder if the target memory is unreadable
2929 to avoid having the prologue unwinder trying to read it. */
2930 || target_read_memory (pc, dummy, 4) != 0)
2931 return 1;
2932
2933 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
2934 && arm_skip_bx_reg (this_frame, pc) != 0)
2935 return 1;
2936
2937 return 0;
2938}
2939
2940struct frame_unwind arm_stub_unwind = {
2941 NORMAL_FRAME,
2942 default_frame_unwind_stop_reason,
2943 arm_stub_this_id,
2944 arm_prologue_prev_register,
2945 NULL,
2946 arm_stub_unwind_sniffer
2947};
2948
2949/* Put here the code to store, into CACHE->saved_regs, the addresses
2950 of the saved registers of frame described by THIS_FRAME. CACHE is
2951 returned. */
2952
2953static struct arm_prologue_cache *
2954arm_m_exception_cache (struct frame_info *this_frame)
2955{
2956 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2958 struct arm_prologue_cache *cache;
2959 CORE_ADDR unwound_sp;
2960 LONGEST xpsr;
2961
2962 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2963 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2964
2965 unwound_sp = get_frame_register_unsigned (this_frame,
2966 ARM_SP_REGNUM);
2967
2968 /* The hardware saves eight 32-bit words, comprising xPSR,
2969 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2970 "B1.5.6 Exception entry behavior" in
2971 "ARMv7-M Architecture Reference Manual". */
2972 cache->saved_regs[0].addr = unwound_sp;
2973 cache->saved_regs[1].addr = unwound_sp + 4;
2974 cache->saved_regs[2].addr = unwound_sp + 8;
2975 cache->saved_regs[3].addr = unwound_sp + 12;
2976 cache->saved_regs[12].addr = unwound_sp + 16;
2977 cache->saved_regs[14].addr = unwound_sp + 20;
2978 cache->saved_regs[15].addr = unwound_sp + 24;
2979 cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
2980
2981 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2982 aligner between the top of the 32-byte stack frame and the
2983 previous context's stack pointer. */
2984 cache->prev_sp = unwound_sp + 32;
2985 if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
2986 && (xpsr & (1 << 9)) != 0)
2987 cache->prev_sp += 4;
2988
2989 return cache;
2990}
2991
2992/* Implementation of function hook 'this_id' in
2993 'struct frame_uwnind'. */
2994
2995static void
2996arm_m_exception_this_id (struct frame_info *this_frame,
2997 void **this_cache,
2998 struct frame_id *this_id)
2999{
3000 struct arm_prologue_cache *cache;
3001
3002 if (*this_cache == NULL)
3003 *this_cache = arm_m_exception_cache (this_frame);
3004 cache = (struct arm_prologue_cache *) *this_cache;
3005
3006 /* Our frame ID for a stub frame is the current SP and LR. */
3007 *this_id = frame_id_build (cache->prev_sp,
3008 get_frame_pc (this_frame));
3009}
3010
3011/* Implementation of function hook 'prev_register' in
3012 'struct frame_uwnind'. */
3013
3014static struct value *
3015arm_m_exception_prev_register (struct frame_info *this_frame,
3016 void **this_cache,
3017 int prev_regnum)
3018{
3019 struct arm_prologue_cache *cache;
3020
3021 if (*this_cache == NULL)
3022 *this_cache = arm_m_exception_cache (this_frame);
3023 cache = (struct arm_prologue_cache *) *this_cache;
3024
3025 /* The value was already reconstructed into PREV_SP. */
3026 if (prev_regnum == ARM_SP_REGNUM)
3027 return frame_unwind_got_constant (this_frame, prev_regnum,
3028 cache->prev_sp);
3029
3030 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
3031 prev_regnum);
3032}
3033
3034/* Implementation of function hook 'sniffer' in
3035 'struct frame_uwnind'. */
3036
3037static int
3038arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
3039 struct frame_info *this_frame,
3040 void **this_prologue_cache)
3041{
3042 CORE_ADDR this_pc = get_frame_pc (this_frame);
3043
3044 /* No need to check is_m; this sniffer is only registered for
3045 M-profile architectures. */
3046
3047 /* Check if exception frame returns to a magic PC value. */
3048 return arm_m_addr_is_magic (this_pc);
3049}
3050
3051/* Frame unwinder for M-profile exceptions. */
3052
3053struct frame_unwind arm_m_exception_unwind =
3054{
3055 SIGTRAMP_FRAME,
3056 default_frame_unwind_stop_reason,
3057 arm_m_exception_this_id,
3058 arm_m_exception_prev_register,
3059 NULL,
3060 arm_m_exception_unwind_sniffer
3061};
3062
3063static CORE_ADDR
3064arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
3065{
3066 struct arm_prologue_cache *cache;
3067
3068 if (*this_cache == NULL)
3069 *this_cache = arm_make_prologue_cache (this_frame);
3070 cache = (struct arm_prologue_cache *) *this_cache;
3071
3072 return cache->prev_sp - cache->framesize;
3073}
3074
3075struct frame_base arm_normal_base = {
3076 &arm_prologue_unwind,
3077 arm_normal_frame_base,
3078 arm_normal_frame_base,
3079 arm_normal_frame_base
3080};
3081
3082/* Assuming THIS_FRAME is a dummy, return the frame ID of that
3083 dummy frame. The frame ID's base needs to match the TOS value
3084 saved by save_dummy_frame_tos() and returned from
3085 arm_push_dummy_call, and the PC needs to match the dummy frame's
3086 breakpoint. */
3087
3088static struct frame_id
3089arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3090{
3091 return frame_id_build (get_frame_register_unsigned (this_frame,
3092 ARM_SP_REGNUM),
3093 get_frame_pc (this_frame));
3094}
3095
3096/* Given THIS_FRAME, find the previous frame's resume PC (which will
3097 be used to construct the previous frame's ID, after looking up the
3098 containing function). */
3099
3100static CORE_ADDR
3101arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
3102{
3103 CORE_ADDR pc;
3104 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
3105 return arm_addr_bits_remove (gdbarch, pc);
3106}
3107
3108static CORE_ADDR
3109arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
3110{
3111 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
3112}
3113
3114static struct value *
3115arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3116 int regnum)
3117{
3118 struct gdbarch * gdbarch = get_frame_arch (this_frame);
3119 CORE_ADDR lr, cpsr;
3120 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
3121
3122 switch (regnum)
3123 {
3124 case ARM_PC_REGNUM:
3125 /* The PC is normally copied from the return column, which
3126 describes saves of LR. However, that version may have an
3127 extra bit set to indicate Thumb state. The bit is not
3128 part of the PC. */
3129 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3130 return frame_unwind_got_constant (this_frame, regnum,
3131 arm_addr_bits_remove (gdbarch, lr));
3132
3133 case ARM_PS_REGNUM:
3134 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
3135 cpsr = get_frame_register_unsigned (this_frame, regnum);
3136 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3137 if (IS_THUMB_ADDR (lr))
3138 cpsr |= t_bit;
3139 else
3140 cpsr &= ~t_bit;
3141 return frame_unwind_got_constant (this_frame, regnum, cpsr);
3142
3143 default:
3144 internal_error (__FILE__, __LINE__,
3145 _("Unexpected register %d"), regnum);
3146 }
3147}
3148
3149static void
3150arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3151 struct dwarf2_frame_state_reg *reg,
3152 struct frame_info *this_frame)
3153{
3154 switch (regnum)
3155 {
3156 case ARM_PC_REGNUM:
3157 case ARM_PS_REGNUM:
3158 reg->how = DWARF2_FRAME_REG_FN;
3159 reg->loc.fn = arm_dwarf2_prev_register;
3160 break;
3161 case ARM_SP_REGNUM:
3162 reg->how = DWARF2_FRAME_REG_CFA;
3163 break;
3164 }
3165}
3166
3167/* Implement the stack_frame_destroyed_p gdbarch method. */
3168
3169static int
3170thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3171{
3172 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3173 unsigned int insn, insn2;
3174 int found_return = 0, found_stack_adjust = 0;
3175 CORE_ADDR func_start, func_end;
3176 CORE_ADDR scan_pc;
3177 gdb_byte buf[4];
3178
3179 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3180 return 0;
3181
3182 /* The epilogue is a sequence of instructions along the following lines:
3183
3184 - add stack frame size to SP or FP
3185 - [if frame pointer used] restore SP from FP
3186 - restore registers from SP [may include PC]
3187 - a return-type instruction [if PC wasn't already restored]
3188
3189 In a first pass, we scan forward from the current PC and verify the
3190 instructions we find as compatible with this sequence, ending in a
3191 return instruction.
3192
3193 However, this is not sufficient to distinguish indirect function calls
3194 within a function from indirect tail calls in the epilogue in some cases.
3195 Therefore, if we didn't already find any SP-changing instruction during
3196 forward scan, we add a backward scanning heuristic to ensure we actually
3197 are in the epilogue. */
3198
3199 scan_pc = pc;
3200 while (scan_pc < func_end && !found_return)
3201 {
3202 if (target_read_memory (scan_pc, buf, 2))
3203 break;
3204
3205 scan_pc += 2;
3206 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3207
3208 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3209 found_return = 1;
3210 else if (insn == 0x46f7) /* mov pc, lr */
3211 found_return = 1;
3212 else if (thumb_instruction_restores_sp (insn))
3213 {
3214 if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
3215 found_return = 1;
3216 }
3217 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
3218 {
3219 if (target_read_memory (scan_pc, buf, 2))
3220 break;
3221
3222 scan_pc += 2;
3223 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3224
3225 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3226 {
3227 if (insn2 & 0x8000) /* <registers> include PC. */
3228 found_return = 1;
3229 }
3230 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3231 && (insn2 & 0x0fff) == 0x0b04)
3232 {
3233 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3234 found_return = 1;
3235 }
3236 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3237 && (insn2 & 0x0e00) == 0x0a00)
3238 ;
3239 else
3240 break;
3241 }
3242 else
3243 break;
3244 }
3245
3246 if (!found_return)
3247 return 0;
3248
3249 /* Since any instruction in the epilogue sequence, with the possible
3250 exception of return itself, updates the stack pointer, we need to
3251 scan backwards for at most one instruction. Try either a 16-bit or
3252 a 32-bit instruction. This is just a heuristic, so we do not worry
3253 too much about false positives. */
3254
3255 if (pc - 4 < func_start)
3256 return 0;
3257 if (target_read_memory (pc - 4, buf, 4))
3258 return 0;
3259
3260 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3261 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3262
3263 if (thumb_instruction_restores_sp (insn2))
3264 found_stack_adjust = 1;
3265 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3266 found_stack_adjust = 1;
3267 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3268 && (insn2 & 0x0fff) == 0x0b04)
3269 found_stack_adjust = 1;
3270 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3271 && (insn2 & 0x0e00) == 0x0a00)
3272 found_stack_adjust = 1;
3273
3274 return found_stack_adjust;
3275}
3276
3277static int
3278arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
3279{
3280 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3281 unsigned int insn;
3282 int found_return;
3283 CORE_ADDR func_start, func_end;
3284
3285 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3286 return 0;
3287
3288 /* We are in the epilogue if the previous instruction was a stack
3289 adjustment and the next instruction is a possible return (bx, mov
3290 pc, or pop). We could have to scan backwards to find the stack
3291 adjustment, or forwards to find the return, but this is a decent
3292 approximation. First scan forwards. */
3293
3294 found_return = 0;
3295 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3296 if (bits (insn, 28, 31) != INST_NV)
3297 {
3298 if ((insn & 0x0ffffff0) == 0x012fff10)
3299 /* BX. */
3300 found_return = 1;
3301 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3302 /* MOV PC. */
3303 found_return = 1;
3304 else if ((insn & 0x0fff0000) == 0x08bd0000
3305 && (insn & 0x0000c000) != 0)
3306 /* POP (LDMIA), including PC or LR. */
3307 found_return = 1;
3308 }
3309
3310 if (!found_return)
3311 return 0;
3312
3313 /* Scan backwards. This is just a heuristic, so do not worry about
3314 false positives from mode changes. */
3315
3316 if (pc < func_start + 4)
3317 return 0;
3318
3319 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
3320 if (arm_instruction_restores_sp (insn))
3321 return 1;
3322
3323 return 0;
3324}
3325
3326/* Implement the stack_frame_destroyed_p gdbarch method. */
3327
3328static int
3329arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3330{
3331 if (arm_pc_is_thumb (gdbarch, pc))
3332 return thumb_stack_frame_destroyed_p (gdbarch, pc);
3333 else
3334 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
3335}
3336
3337/* When arguments must be pushed onto the stack, they go on in reverse
3338 order. The code below implements a FILO (stack) to do this. */
3339
3340struct stack_item
3341{
3342 int len;
3343 struct stack_item *prev;
3344 gdb_byte *data;
3345};
3346
3347static struct stack_item *
3348push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
3349{
3350 struct stack_item *si;
3351 si = XNEW (struct stack_item);
3352 si->data = (gdb_byte *) xmalloc (len);
3353 si->len = len;
3354 si->prev = prev;
3355 memcpy (si->data, contents, len);
3356 return si;
3357}
3358
3359static struct stack_item *
3360pop_stack_item (struct stack_item *si)
3361{
3362 struct stack_item *dead = si;
3363 si = si->prev;
3364 xfree (dead->data);
3365 xfree (dead);
3366 return si;
3367}
3368
3369
3370/* Return the alignment (in bytes) of the given type. */
3371
3372static int
3373arm_type_align (struct type *t)
3374{
3375 int n;
3376 int align;
3377 int falign;
3378
3379 t = check_typedef (t);
3380 switch (TYPE_CODE (t))
3381 {
3382 default:
3383 /* Should never happen. */
3384 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3385 return 4;
3386
3387 case TYPE_CODE_PTR:
3388 case TYPE_CODE_ENUM:
3389 case TYPE_CODE_INT:
3390 case TYPE_CODE_FLT:
3391 case TYPE_CODE_SET:
3392 case TYPE_CODE_RANGE:
3393 case TYPE_CODE_REF:
3394 case TYPE_CODE_RVALUE_REF:
3395 case TYPE_CODE_CHAR:
3396 case TYPE_CODE_BOOL:
3397 return TYPE_LENGTH (t);
3398
3399 case TYPE_CODE_ARRAY:
3400 if (TYPE_VECTOR (t))
3401 {
3402 /* Use the natural alignment for vector types (the same for
3403 scalar type), but the maximum alignment is 64-bit. */
3404 if (TYPE_LENGTH (t) > 8)
3405 return 8;
3406 else
3407 return TYPE_LENGTH (t);
3408 }
3409 else
3410 return arm_type_align (TYPE_TARGET_TYPE (t));
3411 case TYPE_CODE_COMPLEX:
3412 return arm_type_align (TYPE_TARGET_TYPE (t));
3413
3414 case TYPE_CODE_STRUCT:
3415 case TYPE_CODE_UNION:
3416 align = 1;
3417 for (n = 0; n < TYPE_NFIELDS (t); n++)
3418 {
3419 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3420 if (falign > align)
3421 align = falign;
3422 }
3423 return align;
3424 }
3425}
3426
3427/* Possible base types for a candidate for passing and returning in
3428 VFP registers. */
3429
3430enum arm_vfp_cprc_base_type
3431{
3432 VFP_CPRC_UNKNOWN,
3433 VFP_CPRC_SINGLE,
3434 VFP_CPRC_DOUBLE,
3435 VFP_CPRC_VEC64,
3436 VFP_CPRC_VEC128
3437};
3438
3439/* The length of one element of base type B. */
3440
3441static unsigned
3442arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3443{
3444 switch (b)
3445 {
3446 case VFP_CPRC_SINGLE:
3447 return 4;
3448 case VFP_CPRC_DOUBLE:
3449 return 8;
3450 case VFP_CPRC_VEC64:
3451 return 8;
3452 case VFP_CPRC_VEC128:
3453 return 16;
3454 default:
3455 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3456 (int) b);
3457 }
3458}
3459
3460/* The character ('s', 'd' or 'q') for the type of VFP register used
3461 for passing base type B. */
3462
3463static int
3464arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3465{
3466 switch (b)
3467 {
3468 case VFP_CPRC_SINGLE:
3469 return 's';
3470 case VFP_CPRC_DOUBLE:
3471 return 'd';
3472 case VFP_CPRC_VEC64:
3473 return 'd';
3474 case VFP_CPRC_VEC128:
3475 return 'q';
3476 default:
3477 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3478 (int) b);
3479 }
3480}
3481
3482/* Determine whether T may be part of a candidate for passing and
3483 returning in VFP registers, ignoring the limit on the total number
3484 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3485 classification of the first valid component found; if it is not
3486 VFP_CPRC_UNKNOWN, all components must have the same classification
3487 as *BASE_TYPE. If it is found that T contains a type not permitted
3488 for passing and returning in VFP registers, a type differently
3489 classified from *BASE_TYPE, or two types differently classified
3490 from each other, return -1, otherwise return the total number of
3491 base-type elements found (possibly 0 in an empty structure or
3492 array). Vector types are not currently supported, matching the
3493 generic AAPCS support. */
3494
3495static int
3496arm_vfp_cprc_sub_candidate (struct type *t,
3497 enum arm_vfp_cprc_base_type *base_type)
3498{
3499 t = check_typedef (t);
3500 switch (TYPE_CODE (t))
3501 {
3502 case TYPE_CODE_FLT:
3503 switch (TYPE_LENGTH (t))
3504 {
3505 case 4:
3506 if (*base_type == VFP_CPRC_UNKNOWN)
3507 *base_type = VFP_CPRC_SINGLE;
3508 else if (*base_type != VFP_CPRC_SINGLE)
3509 return -1;
3510 return 1;
3511
3512 case 8:
3513 if (*base_type == VFP_CPRC_UNKNOWN)
3514 *base_type = VFP_CPRC_DOUBLE;
3515 else if (*base_type != VFP_CPRC_DOUBLE)
3516 return -1;
3517 return 1;
3518
3519 default:
3520 return -1;
3521 }
3522 break;
3523
3524 case TYPE_CODE_COMPLEX:
3525 /* Arguments of complex T where T is one of the types float or
3526 double get treated as if they are implemented as:
3527
3528 struct complexT
3529 {
3530 T real;
3531 T imag;
3532 };
3533
3534 */
3535 switch (TYPE_LENGTH (t))
3536 {
3537 case 8:
3538 if (*base_type == VFP_CPRC_UNKNOWN)
3539 *base_type = VFP_CPRC_SINGLE;
3540 else if (*base_type != VFP_CPRC_SINGLE)
3541 return -1;
3542 return 2;
3543
3544 case 16:
3545 if (*base_type == VFP_CPRC_UNKNOWN)
3546 *base_type = VFP_CPRC_DOUBLE;
3547 else if (*base_type != VFP_CPRC_DOUBLE)
3548 return -1;
3549 return 2;
3550
3551 default:
3552 return -1;
3553 }
3554 break;
3555
3556 case TYPE_CODE_ARRAY:
3557 {
3558 if (TYPE_VECTOR (t))
3559 {
3560 /* A 64-bit or 128-bit containerized vector type are VFP
3561 CPRCs. */
3562 switch (TYPE_LENGTH (t))
3563 {
3564 case 8:
3565 if (*base_type == VFP_CPRC_UNKNOWN)
3566 *base_type = VFP_CPRC_VEC64;
3567 return 1;
3568 case 16:
3569 if (*base_type == VFP_CPRC_UNKNOWN)
3570 *base_type = VFP_CPRC_VEC128;
3571 return 1;
3572 default:
3573 return -1;
3574 }
3575 }
3576 else
3577 {
3578 int count;
3579 unsigned unitlen;
3580
3581 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
3582 base_type);
3583 if (count == -1)
3584 return -1;
3585 if (TYPE_LENGTH (t) == 0)
3586 {
3587 gdb_assert (count == 0);
3588 return 0;
3589 }
3590 else if (count == 0)
3591 return -1;
3592 unitlen = arm_vfp_cprc_unit_length (*base_type);
3593 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3594 return TYPE_LENGTH (t) / unitlen;
3595 }
3596 }
3597 break;
3598
3599 case TYPE_CODE_STRUCT:
3600 {
3601 int count = 0;
3602 unsigned unitlen;
3603 int i;
3604 for (i = 0; i < TYPE_NFIELDS (t); i++)
3605 {
3606 int sub_count = 0;
3607
3608 if (!field_is_static (&TYPE_FIELD (t, i)))
3609 sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3610 base_type);
3611 if (sub_count == -1)
3612 return -1;
3613 count += sub_count;
3614 }
3615 if (TYPE_LENGTH (t) == 0)
3616 {
3617 gdb_assert (count == 0);
3618 return 0;
3619 }
3620 else if (count == 0)
3621 return -1;
3622 unitlen = arm_vfp_cprc_unit_length (*base_type);
3623 if (TYPE_LENGTH (t) != unitlen * count)
3624 return -1;
3625 return count;
3626 }
3627
3628 case TYPE_CODE_UNION:
3629 {
3630 int count = 0;
3631 unsigned unitlen;
3632 int i;
3633 for (i = 0; i < TYPE_NFIELDS (t); i++)
3634 {
3635 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3636 base_type);
3637 if (sub_count == -1)
3638 return -1;
3639 count = (count > sub_count ? count : sub_count);
3640 }
3641 if (TYPE_LENGTH (t) == 0)
3642 {
3643 gdb_assert (count == 0);
3644 return 0;
3645 }
3646 else if (count == 0)
3647 return -1;
3648 unitlen = arm_vfp_cprc_unit_length (*base_type);
3649 if (TYPE_LENGTH (t) != unitlen * count)
3650 return -1;
3651 return count;
3652 }
3653
3654 default:
3655 break;
3656 }
3657
3658 return -1;
3659}
3660
3661/* Determine whether T is a VFP co-processor register candidate (CPRC)
3662 if passed to or returned from a non-variadic function with the VFP
3663 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3664 *BASE_TYPE to the base type for T and *COUNT to the number of
3665 elements of that base type before returning. */
3666
3667static int
3668arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3669 int *count)
3670{
3671 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3672 int c = arm_vfp_cprc_sub_candidate (t, &b);
3673 if (c <= 0 || c > 4)
3674 return 0;
3675 *base_type = b;
3676 *count = c;
3677 return 1;
3678}
3679
3680/* Return 1 if the VFP ABI should be used for passing arguments to and
3681 returning values from a function of type FUNC_TYPE, 0
3682 otherwise. */
3683
3684static int
3685arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3686{
3687 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3688 /* Variadic functions always use the base ABI. Assume that functions
3689 without debug info are not variadic. */
3690 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3691 return 0;
3692 /* The VFP ABI is only supported as a variant of AAPCS. */
3693 if (tdep->arm_abi != ARM_ABI_AAPCS)
3694 return 0;
3695 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3696}
3697
3698/* We currently only support passing parameters in integer registers, which
3699 conforms with GCC's default model, and VFP argument passing following
3700 the VFP variant of AAPCS. Several other variants exist and
3701 we should probably support some of them based on the selected ABI. */
3702
3703static CORE_ADDR
3704arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3705 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3706 struct value **args, CORE_ADDR sp, int struct_return,
3707 CORE_ADDR struct_addr)
3708{
3709 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3710 int argnum;
3711 int argreg;
3712 int nstack;
3713 struct stack_item *si = NULL;
3714 int use_vfp_abi;
3715 struct type *ftype;
3716 unsigned vfp_regs_free = (1 << 16) - 1;
3717
3718 /* Determine the type of this function and whether the VFP ABI
3719 applies. */
3720 ftype = check_typedef (value_type (function));
3721 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3722 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3723 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
3724
3725 /* Set the return address. For the ARM, the return breakpoint is
3726 always at BP_ADDR. */
3727 if (arm_pc_is_thumb (gdbarch, bp_addr))
3728 bp_addr |= 1;
3729 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
3730
3731 /* Walk through the list of args and determine how large a temporary
3732 stack is required. Need to take care here as structs may be
3733 passed on the stack, and we have to push them. */
3734 nstack = 0;
3735
3736 argreg = ARM_A1_REGNUM;
3737 nstack = 0;
3738
3739 /* The struct_return pointer occupies the first parameter
3740 passing register. */
3741 if (struct_return)
3742 {
3743 if (arm_debug)
3744 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
3745 gdbarch_register_name (gdbarch, argreg),
3746 paddress (gdbarch, struct_addr));
3747 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3748 argreg++;
3749 }
3750
3751 for (argnum = 0; argnum < nargs; argnum++)
3752 {
3753 int len;
3754 struct type *arg_type;
3755 struct type *target_type;
3756 enum type_code typecode;
3757 const bfd_byte *val;
3758 int align;
3759 enum arm_vfp_cprc_base_type vfp_base_type;
3760 int vfp_base_count;
3761 int may_use_core_reg = 1;
3762
3763 arg_type = check_typedef (value_type (args[argnum]));
3764 len = TYPE_LENGTH (arg_type);
3765 target_type = TYPE_TARGET_TYPE (arg_type);
3766 typecode = TYPE_CODE (arg_type);
3767 val = value_contents (args[argnum]);
3768
3769 align = arm_type_align (arg_type);
3770 /* Round alignment up to a whole number of words. */
3771 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3772 /* Different ABIs have different maximum alignments. */
3773 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3774 {
3775 /* The APCS ABI only requires word alignment. */
3776 align = INT_REGISTER_SIZE;
3777 }
3778 else
3779 {
3780 /* The AAPCS requires at most doubleword alignment. */
3781 if (align > INT_REGISTER_SIZE * 2)
3782 align = INT_REGISTER_SIZE * 2;
3783 }
3784
3785 if (use_vfp_abi
3786 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3787 &vfp_base_count))
3788 {
3789 int regno;
3790 int unit_length;
3791 int shift;
3792 unsigned mask;
3793
3794 /* Because this is a CPRC it cannot go in a core register or
3795 cause a core register to be skipped for alignment.
3796 Either it goes in VFP registers and the rest of this loop
3797 iteration is skipped for this argument, or it goes on the
3798 stack (and the stack alignment code is correct for this
3799 case). */
3800 may_use_core_reg = 0;
3801
3802 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3803 shift = unit_length / 4;
3804 mask = (1 << (shift * vfp_base_count)) - 1;
3805 for (regno = 0; regno < 16; regno += shift)
3806 if (((vfp_regs_free >> regno) & mask) == mask)
3807 break;
3808
3809 if (regno < 16)
3810 {
3811 int reg_char;
3812 int reg_scaled;
3813 int i;
3814
3815 vfp_regs_free &= ~(mask << regno);
3816 reg_scaled = regno / shift;
3817 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3818 for (i = 0; i < vfp_base_count; i++)
3819 {
3820 char name_buf[4];
3821 int regnum;
3822 if (reg_char == 'q')
3823 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
3824 val + i * unit_length);
3825 else
3826 {
3827 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
3828 reg_char, reg_scaled + i);
3829 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3830 strlen (name_buf));
3831 regcache_cooked_write (regcache, regnum,
3832 val + i * unit_length);
3833 }
3834 }
3835 continue;
3836 }
3837 else
3838 {
3839 /* This CPRC could not go in VFP registers, so all VFP
3840 registers are now marked as used. */
3841 vfp_regs_free = 0;
3842 }
3843 }
3844
3845 /* Push stack padding for dowubleword alignment. */
3846 if (nstack & (align - 1))
3847 {
3848 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3849 nstack += INT_REGISTER_SIZE;
3850 }
3851
3852 /* Doubleword aligned quantities must go in even register pairs. */
3853 if (may_use_core_reg
3854 && argreg <= ARM_LAST_ARG_REGNUM
3855 && align > INT_REGISTER_SIZE
3856 && argreg & 1)
3857 argreg++;
3858
3859 /* If the argument is a pointer to a function, and it is a
3860 Thumb function, create a LOCAL copy of the value and set
3861 the THUMB bit in it. */
3862 if (TYPE_CODE_PTR == typecode
3863 && target_type != NULL
3864 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
3865 {
3866 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
3867 if (arm_pc_is_thumb (gdbarch, regval))
3868 {
3869 bfd_byte *copy = (bfd_byte *) alloca (len);
3870 store_unsigned_integer (copy, len, byte_order,
3871 MAKE_THUMB_ADDR (regval));
3872 val = copy;
3873 }
3874 }
3875
3876 /* Copy the argument to general registers or the stack in
3877 register-sized pieces. Large arguments are split between
3878 registers and stack. */
3879 while (len > 0)
3880 {
3881 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
3882 CORE_ADDR regval
3883 = extract_unsigned_integer (val, partial_len, byte_order);
3884
3885 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
3886 {
3887 /* The argument is being passed in a general purpose
3888 register. */
3889 if (byte_order == BFD_ENDIAN_BIG)
3890 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
3891 if (arm_debug)
3892 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
3893 argnum,
3894 gdbarch_register_name
3895 (gdbarch, argreg),
3896 phex (regval, INT_REGISTER_SIZE));
3897 regcache_cooked_write_unsigned (regcache, argreg, regval);
3898 argreg++;
3899 }
3900 else
3901 {
3902 gdb_byte buf[INT_REGISTER_SIZE];
3903
3904 memset (buf, 0, sizeof (buf));
3905 store_unsigned_integer (buf, partial_len, byte_order, regval);
3906
3907 /* Push the arguments onto the stack. */
3908 if (arm_debug)
3909 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3910 argnum, nstack);
3911 si = push_stack_item (si, buf, INT_REGISTER_SIZE);
3912 nstack += INT_REGISTER_SIZE;
3913 }
3914
3915 len -= partial_len;
3916 val += partial_len;
3917 }
3918 }
3919 /* If we have an odd number of words to push, then decrement the stack
3920 by one word now, so first stack argument will be dword aligned. */
3921 if (nstack & 4)
3922 sp -= 4;
3923
3924 while (si)
3925 {
3926 sp -= si->len;
3927 write_memory (sp, si->data, si->len);
3928 si = pop_stack_item (si);
3929 }
3930
3931 /* Finally, update teh SP register. */
3932 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3933
3934 return sp;
3935}
3936
3937
3938/* Always align the frame to an 8-byte boundary. This is required on
3939 some platforms and harmless on the rest. */
3940
3941static CORE_ADDR
3942arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3943{
3944 /* Align the stack to eight bytes. */
3945 return sp & ~ (CORE_ADDR) 7;
3946}
3947
3948static void
3949print_fpu_flags (struct ui_file *file, int flags)
3950{
3951 if (flags & (1 << 0))
3952 fputs_filtered ("IVO ", file);
3953 if (flags & (1 << 1))
3954 fputs_filtered ("DVZ ", file);
3955 if (flags & (1 << 2))
3956 fputs_filtered ("OFL ", file);
3957 if (flags & (1 << 3))
3958 fputs_filtered ("UFL ", file);
3959 if (flags & (1 << 4))
3960 fputs_filtered ("INX ", file);
3961 fputc_filtered ('\n', file);
3962}
3963
3964/* Print interesting information about the floating point processor
3965 (if present) or emulator. */
3966static void
3967arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
3968 struct frame_info *frame, const char *args)
3969{
3970 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
3971 int type;
3972
3973 type = (status >> 24) & 127;
3974 if (status & (1 << 31))
3975 fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
3976 else
3977 fprintf_filtered (file, _("Software FPU type %d\n"), type);
3978 /* i18n: [floating point unit] mask */
3979 fputs_filtered (_("mask: "), file);
3980 print_fpu_flags (file, status >> 16);
3981 /* i18n: [floating point unit] flags */
3982 fputs_filtered (_("flags: "), file);
3983 print_fpu_flags (file, status);
3984}
3985
3986/* Construct the ARM extended floating point type. */
3987static struct type *
3988arm_ext_type (struct gdbarch *gdbarch)
3989{
3990 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3991
3992 if (!tdep->arm_ext_type)
3993 tdep->arm_ext_type
3994 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
3995 floatformats_arm_ext);
3996
3997 return tdep->arm_ext_type;
3998}
3999
4000static struct type *
4001arm_neon_double_type (struct gdbarch *gdbarch)
4002{
4003 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4004
4005 if (tdep->neon_double_type == NULL)
4006 {
4007 struct type *t, *elem;
4008
4009 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
4010 TYPE_CODE_UNION);
4011 elem = builtin_type (gdbarch)->builtin_uint8;
4012 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
4013 elem = builtin_type (gdbarch)->builtin_uint16;
4014 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
4015 elem = builtin_type (gdbarch)->builtin_uint32;
4016 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
4017 elem = builtin_type (gdbarch)->builtin_uint64;
4018 append_composite_type_field (t, "u64", elem);
4019 elem = builtin_type (gdbarch)->builtin_float;
4020 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
4021 elem = builtin_type (gdbarch)->builtin_double;
4022 append_composite_type_field (t, "f64", elem);
4023
4024 TYPE_VECTOR (t) = 1;
4025 TYPE_NAME (t) = "neon_d";
4026 tdep->neon_double_type = t;
4027 }
4028
4029 return tdep->neon_double_type;
4030}
4031
4032/* FIXME: The vector types are not correctly ordered on big-endian
4033 targets. Just as s0 is the low bits of d0, d0[0] is also the low
4034 bits of d0 - regardless of what unit size is being held in d0. So
4035 the offset of the first uint8 in d0 is 7, but the offset of the
4036 first float is 4. This code works as-is for little-endian
4037 targets. */
4038
4039static struct type *
4040arm_neon_quad_type (struct gdbarch *gdbarch)
4041{
4042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4043
4044 if (tdep->neon_quad_type == NULL)
4045 {
4046 struct type *t, *elem;
4047
4048 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
4049 TYPE_CODE_UNION);
4050 elem = builtin_type (gdbarch)->builtin_uint8;
4051 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
4052 elem = builtin_type (gdbarch)->builtin_uint16;
4053 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
4054 elem = builtin_type (gdbarch)->builtin_uint32;
4055 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
4056 elem = builtin_type (gdbarch)->builtin_uint64;
4057 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
4058 elem = builtin_type (gdbarch)->builtin_float;
4059 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
4060 elem = builtin_type (gdbarch)->builtin_double;
4061 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
4062
4063 TYPE_VECTOR (t) = 1;
4064 TYPE_NAME (t) = "neon_q";
4065 tdep->neon_quad_type = t;
4066 }
4067
4068 return tdep->neon_quad_type;
4069}
4070
4071/* Return the GDB type object for the "standard" data type of data in
4072 register N. */
4073
4074static struct type *
4075arm_register_type (struct gdbarch *gdbarch, int regnum)
4076{
4077 int num_regs = gdbarch_num_regs (gdbarch);
4078
4079 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
4080 && regnum >= num_regs && regnum < num_regs + 32)
4081 return builtin_type (gdbarch)->builtin_float;
4082
4083 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
4084 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
4085 return arm_neon_quad_type (gdbarch);
4086
4087 /* If the target description has register information, we are only
4088 in this function so that we can override the types of
4089 double-precision registers for NEON. */
4090 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
4091 {
4092 struct type *t = tdesc_register_type (gdbarch, regnum);
4093
4094 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
4095 && TYPE_CODE (t) == TYPE_CODE_FLT
4096 && gdbarch_tdep (gdbarch)->have_neon)
4097 return arm_neon_double_type (gdbarch);
4098 else
4099 return t;
4100 }
4101
4102 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
4103 {
4104 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
4105 return builtin_type (gdbarch)->builtin_void;
4106
4107 return arm_ext_type (gdbarch);
4108 }
4109 else if (regnum == ARM_SP_REGNUM)
4110 return builtin_type (gdbarch)->builtin_data_ptr;
4111 else if (regnum == ARM_PC_REGNUM)
4112 return builtin_type (gdbarch)->builtin_func_ptr;
4113 else if (regnum >= ARRAY_SIZE (arm_register_names))
4114 /* These registers are only supported on targets which supply
4115 an XML description. */
4116 return builtin_type (gdbarch)->builtin_int0;
4117 else
4118 return builtin_type (gdbarch)->builtin_uint32;
4119}
4120
4121/* Map a DWARF register REGNUM onto the appropriate GDB register
4122 number. */
4123
4124static int
4125arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
4126{
4127 /* Core integer regs. */
4128 if (reg >= 0 && reg <= 15)
4129 return reg;
4130
4131 /* Legacy FPA encoding. These were once used in a way which
4132 overlapped with VFP register numbering, so their use is
4133 discouraged, but GDB doesn't support the ARM toolchain
4134 which used them for VFP. */
4135 if (reg >= 16 && reg <= 23)
4136 return ARM_F0_REGNUM + reg - 16;
4137
4138 /* New assignments for the FPA registers. */
4139 if (reg >= 96 && reg <= 103)
4140 return ARM_F0_REGNUM + reg - 96;
4141
4142 /* WMMX register assignments. */
4143 if (reg >= 104 && reg <= 111)
4144 return ARM_WCGR0_REGNUM + reg - 104;
4145
4146 if (reg >= 112 && reg <= 127)
4147 return ARM_WR0_REGNUM + reg - 112;
4148
4149 if (reg >= 192 && reg <= 199)
4150 return ARM_WC0_REGNUM + reg - 192;
4151
4152 /* VFP v2 registers. A double precision value is actually
4153 in d1 rather than s2, but the ABI only defines numbering
4154 for the single precision registers. This will "just work"
4155 in GDB for little endian targets (we'll read eight bytes,
4156 starting in s0 and then progressing to s1), but will be
4157 reversed on big endian targets with VFP. This won't
4158 be a problem for the new Neon quad registers; you're supposed
4159 to use DW_OP_piece for those. */
4160 if (reg >= 64 && reg <= 95)
4161 {
4162 char name_buf[4];
4163
4164 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
4165 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4166 strlen (name_buf));
4167 }
4168
4169 /* VFP v3 / Neon registers. This range is also used for VFP v2
4170 registers, except that it now describes d0 instead of s0. */
4171 if (reg >= 256 && reg <= 287)
4172 {
4173 char name_buf[4];
4174
4175 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
4176 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4177 strlen (name_buf));
4178 }
4179
4180 return -1;
4181}
4182
4183/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4184static int
4185arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
4186{
4187 int reg = regnum;
4188 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
4189
4190 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4191 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4192
4193 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4194 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4195
4196 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4197 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4198
4199 if (reg < NUM_GREGS)
4200 return SIM_ARM_R0_REGNUM + reg;
4201 reg -= NUM_GREGS;
4202
4203 if (reg < NUM_FREGS)
4204 return SIM_ARM_FP0_REGNUM + reg;
4205 reg -= NUM_FREGS;
4206
4207 if (reg < NUM_SREGS)
4208 return SIM_ARM_FPS_REGNUM + reg;
4209 reg -= NUM_SREGS;
4210
4211 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
4212}
4213
4214/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4215 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4216 It is thought that this is is the floating-point register format on
4217 little-endian systems. */
4218
4219static void
4220convert_from_extended (const struct floatformat *fmt, const void *ptr,
4221 void *dbl, int endianess)
4222{
4223 DOUBLEST d;
4224
4225 if (endianess == BFD_ENDIAN_BIG)
4226 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4227 else
4228 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4229 ptr, &d);
4230 floatformat_from_doublest (fmt, &d, dbl);
4231}
4232
4233static void
4234convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4235 int endianess)
4236{
4237 DOUBLEST d;
4238
4239 floatformat_to_doublest (fmt, ptr, &d);
4240 if (endianess == BFD_ENDIAN_BIG)
4241 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4242 else
4243 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4244 &d, dbl);
4245}
4246
4247/* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4248 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4249 NULL if an error occurs. BUF is freed. */
4250
4251static gdb_byte *
4252extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4253 int old_len, int new_len)
4254{
4255 gdb_byte *new_buf;
4256 int bytes_to_read = new_len - old_len;
4257
4258 new_buf = (gdb_byte *) xmalloc (new_len);
4259 memcpy (new_buf + bytes_to_read, buf, old_len);
4260 xfree (buf);
4261 if (target_read_code (endaddr - new_len, new_buf, bytes_to_read) != 0)
4262 {
4263 xfree (new_buf);
4264 return NULL;
4265 }
4266 return new_buf;
4267}
4268
4269/* An IT block is at most the 2-byte IT instruction followed by
4270 four 4-byte instructions. The furthest back we must search to
4271 find an IT block that affects the current instruction is thus
4272 2 + 3 * 4 == 14 bytes. */
4273#define MAX_IT_BLOCK_PREFIX 14
4274
4275/* Use a quick scan if there are more than this many bytes of
4276 code. */
4277#define IT_SCAN_THRESHOLD 32
4278
4279/* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4280 A breakpoint in an IT block may not be hit, depending on the
4281 condition flags. */
4282static CORE_ADDR
4283arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
4284{
4285 gdb_byte *buf;
4286 char map_type;
4287 CORE_ADDR boundary, func_start;
4288 int buf_len;
4289 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4290 int i, any, last_it, last_it_count;
4291
4292 /* If we are using BKPT breakpoints, none of this is necessary. */
4293 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4294 return bpaddr;
4295
4296 /* ARM mode does not have this problem. */
4297 if (!arm_pc_is_thumb (gdbarch, bpaddr))
4298 return bpaddr;
4299
4300 /* We are setting a breakpoint in Thumb code that could potentially
4301 contain an IT block. The first step is to find how much Thumb
4302 code there is; we do not need to read outside of known Thumb
4303 sequences. */
4304 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4305 if (map_type == 0)
4306 /* Thumb-2 code must have mapping symbols to have a chance. */
4307 return bpaddr;
4308
4309 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
4310
4311 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4312 && func_start > boundary)
4313 boundary = func_start;
4314
4315 /* Search for a candidate IT instruction. We have to do some fancy
4316 footwork to distinguish a real IT instruction from the second
4317 half of a 32-bit instruction, but there is no need for that if
4318 there's no candidate. */
4319 buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
4320 if (buf_len == 0)
4321 /* No room for an IT instruction. */
4322 return bpaddr;
4323
4324 buf = (gdb_byte *) xmalloc (buf_len);
4325 if (target_read_code (bpaddr - buf_len, buf, buf_len) != 0)
4326 return bpaddr;
4327 any = 0;
4328 for (i = 0; i < buf_len; i += 2)
4329 {
4330 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4331 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4332 {
4333 any = 1;
4334 break;
4335 }
4336 }
4337
4338 if (any == 0)
4339 {
4340 xfree (buf);
4341 return bpaddr;
4342 }
4343
4344 /* OK, the code bytes before this instruction contain at least one
4345 halfword which resembles an IT instruction. We know that it's
4346 Thumb code, but there are still two possibilities. Either the
4347 halfword really is an IT instruction, or it is the second half of
4348 a 32-bit Thumb instruction. The only way we can tell is to
4349 scan forwards from a known instruction boundary. */
4350 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
4351 {
4352 int definite;
4353
4354 /* There's a lot of code before this instruction. Start with an
4355 optimistic search; it's easy to recognize halfwords that can
4356 not be the start of a 32-bit instruction, and use that to
4357 lock on to the instruction boundaries. */
4358 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
4359 if (buf == NULL)
4360 return bpaddr;
4361 buf_len = IT_SCAN_THRESHOLD;
4362
4363 definite = 0;
4364 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
4365 {
4366 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4367 if (thumb_insn_size (inst1) == 2)
4368 {
4369 definite = 1;
4370 break;
4371 }
4372 }
4373
4374 /* At this point, if DEFINITE, BUF[I] is the first place we
4375 are sure that we know the instruction boundaries, and it is far
4376 enough from BPADDR that we could not miss an IT instruction
4377 affecting BPADDR. If ! DEFINITE, give up - start from a
4378 known boundary. */
4379 if (! definite)
4380 {
4381 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
4382 bpaddr - boundary);
4383 if (buf == NULL)
4384 return bpaddr;
4385 buf_len = bpaddr - boundary;
4386 i = 0;
4387 }
4388 }
4389 else
4390 {
4391 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
4392 if (buf == NULL)
4393 return bpaddr;
4394 buf_len = bpaddr - boundary;
4395 i = 0;
4396 }
4397
4398 /* Scan forwards. Find the last IT instruction before BPADDR. */
4399 last_it = -1;
4400 last_it_count = 0;
4401 while (i < buf_len)
4402 {
4403 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4404 last_it_count--;
4405 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4406 {
4407 last_it = i;
4408 if (inst1 & 0x0001)
4409 last_it_count = 4;
4410 else if (inst1 & 0x0002)
4411 last_it_count = 3;
4412 else if (inst1 & 0x0004)
4413 last_it_count = 2;
4414 else
4415 last_it_count = 1;
4416 }
4417 i += thumb_insn_size (inst1);
4418 }
4419
4420 xfree (buf);
4421
4422 if (last_it == -1)
4423 /* There wasn't really an IT instruction after all. */
4424 return bpaddr;
4425
4426 if (last_it_count < 1)
4427 /* It was too far away. */
4428 return bpaddr;
4429
4430 /* This really is a trouble spot. Move the breakpoint to the IT
4431 instruction. */
4432 return bpaddr - buf_len + last_it;
4433}
4434
4435/* ARM displaced stepping support.
4436
4437 Generally ARM displaced stepping works as follows:
4438
4439 1. When an instruction is to be single-stepped, it is first decoded by
4440 arm_process_displaced_insn. Depending on the type of instruction, it is
4441 then copied to a scratch location, possibly in a modified form. The
4442 copy_* set of functions performs such modification, as necessary. A
4443 breakpoint is placed after the modified instruction in the scratch space
4444 to return control to GDB. Note in particular that instructions which
4445 modify the PC will no longer do so after modification.
4446
4447 2. The instruction is single-stepped, by setting the PC to the scratch
4448 location address, and resuming. Control returns to GDB when the
4449 breakpoint is hit.
4450
4451 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
4452 function used for the current instruction. This function's job is to
4453 put the CPU/memory state back to what it would have been if the
4454 instruction had been executed unmodified in its original location. */
4455
4456/* NOP instruction (mov r0, r0). */
4457#define ARM_NOP 0xe1a00000
4458#define THUMB_NOP 0x4600
4459
4460/* Helper for register reads for displaced stepping. In particular, this
4461 returns the PC as it would be seen by the instruction at its original
4462 location. */
4463
4464ULONGEST
4465displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4466 int regno)
4467{
4468 ULONGEST ret;
4469 CORE_ADDR from = dsc->insn_addr;
4470
4471 if (regno == ARM_PC_REGNUM)
4472 {
4473 /* Compute pipeline offset:
4474 - When executing an ARM instruction, PC reads as the address of the
4475 current instruction plus 8.
4476 - When executing a Thumb instruction, PC reads as the address of the
4477 current instruction plus 4. */
4478
4479 if (!dsc->is_thumb)
4480 from += 8;
4481 else
4482 from += 4;
4483
4484 if (debug_displaced)
4485 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4486 (unsigned long) from);
4487 return (ULONGEST) from;
4488 }
4489 else
4490 {
4491 regcache_cooked_read_unsigned (regs, regno, &ret);
4492 if (debug_displaced)
4493 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
4494 regno, (unsigned long) ret);
4495 return ret;
4496 }
4497}
4498
4499static int
4500displaced_in_arm_mode (struct regcache *regs)
4501{
4502 ULONGEST ps;
4503 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
4504
4505 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4506
4507 return (ps & t_bit) == 0;
4508}
4509
4510/* Write to the PC as from a branch instruction. */
4511
4512static void
4513branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4514 ULONGEST val)
4515{
4516 if (!dsc->is_thumb)
4517 /* Note: If bits 0/1 are set, this branch would be unpredictable for
4518 architecture versions < 6. */
4519 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4520 val & ~(ULONGEST) 0x3);
4521 else
4522 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4523 val & ~(ULONGEST) 0x1);
4524}
4525
4526/* Write to the PC as from a branch-exchange instruction. */
4527
4528static void
4529bx_write_pc (struct regcache *regs, ULONGEST val)
4530{
4531 ULONGEST ps;
4532 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
4533
4534 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4535
4536 if ((val & 1) == 1)
4537 {
4538 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
4539 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
4540 }
4541 else if ((val & 2) == 0)
4542 {
4543 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4544 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
4545 }
4546 else
4547 {
4548 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
4549 mode, align dest to 4 bytes). */
4550 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
4551 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4552 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
4553 }
4554}
4555
4556/* Write to the PC as if from a load instruction. */
4557
4558static void
4559load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4560 ULONGEST val)
4561{
4562 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
4563 bx_write_pc (regs, val);
4564 else
4565 branch_write_pc (regs, dsc, val);
4566}
4567
4568/* Write to the PC as if from an ALU instruction. */
4569
4570static void
4571alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4572 ULONGEST val)
4573{
4574 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
4575 bx_write_pc (regs, val);
4576 else
4577 branch_write_pc (regs, dsc, val);
4578}
4579
4580/* Helper for writing to registers for displaced stepping. Writing to the PC
4581 has a varying effects depending on the instruction which does the write:
4582 this is controlled by the WRITE_PC argument. */
4583
4584void
4585displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4586 int regno, ULONGEST val, enum pc_write_style write_pc)
4587{
4588 if (regno == ARM_PC_REGNUM)
4589 {
4590 if (debug_displaced)
4591 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
4592 (unsigned long) val);
4593 switch (write_pc)
4594 {
4595 case BRANCH_WRITE_PC:
4596 branch_write_pc (regs, dsc, val);
4597 break;
4598
4599 case BX_WRITE_PC:
4600 bx_write_pc (regs, val);
4601 break;
4602
4603 case LOAD_WRITE_PC:
4604 load_write_pc (regs, dsc, val);
4605 break;
4606
4607 case ALU_WRITE_PC:
4608 alu_write_pc (regs, dsc, val);
4609 break;
4610
4611 case CANNOT_WRITE_PC:
4612 warning (_("Instruction wrote to PC in an unexpected way when "
4613 "single-stepping"));
4614 break;
4615
4616 default:
4617 internal_error (__FILE__, __LINE__,
4618 _("Invalid argument to displaced_write_reg"));
4619 }
4620
4621 dsc->wrote_to_pc = 1;
4622 }
4623 else
4624 {
4625 if (debug_displaced)
4626 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
4627 regno, (unsigned long) val);
4628 regcache_cooked_write_unsigned (regs, regno, val);
4629 }
4630}
4631
4632/* This function is used to concisely determine if an instruction INSN
4633 references PC. Register fields of interest in INSN should have the
4634 corresponding fields of BITMASK set to 0b1111. The function
4635 returns return 1 if any of these fields in INSN reference the PC
4636 (also 0b1111, r15), else it returns 0. */
4637
4638static int
4639insn_references_pc (uint32_t insn, uint32_t bitmask)
4640{
4641 uint32_t lowbit = 1;
4642
4643 while (bitmask != 0)
4644 {
4645 uint32_t mask;
4646
4647 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
4648 ;
4649
4650 if (!lowbit)
4651 break;
4652
4653 mask = lowbit * 0xf;
4654
4655 if ((insn & mask) == mask)
4656 return 1;
4657
4658 bitmask &= ~mask;
4659 }
4660
4661 return 0;
4662}
4663
4664/* The simplest copy function. Many instructions have the same effect no
4665 matter what address they are executed at: in those cases, use this. */
4666
4667static int
4668arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
4669 const char *iname, struct displaced_step_closure *dsc)
4670{
4671 if (debug_displaced)
4672 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
4673 "opcode/class '%s' unmodified\n", (unsigned long) insn,
4674 iname);
4675
4676 dsc->modinsn[0] = insn;
4677
4678 return 0;
4679}
4680
4681static int
4682thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
4683 uint16_t insn2, const char *iname,
4684 struct displaced_step_closure *dsc)
4685{
4686 if (debug_displaced)
4687 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
4688 "opcode/class '%s' unmodified\n", insn1, insn2,
4689 iname);
4690
4691 dsc->modinsn[0] = insn1;
4692 dsc->modinsn[1] = insn2;
4693 dsc->numinsns = 2;
4694
4695 return 0;
4696}
4697
4698/* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
4699 modification. */
4700static int
4701thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
4702 const char *iname,
4703 struct displaced_step_closure *dsc)
4704{
4705 if (debug_displaced)
4706 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
4707 "opcode/class '%s' unmodified\n", insn,
4708 iname);
4709
4710 dsc->modinsn[0] = insn;
4711
4712 return 0;
4713}
4714
4715/* Preload instructions with immediate offset. */
4716
4717static void
4718cleanup_preload (struct gdbarch *gdbarch,
4719 struct regcache *regs, struct displaced_step_closure *dsc)
4720{
4721 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4722 if (!dsc->u.preload.immed)
4723 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
4724}
4725
4726static void
4727install_preload (struct gdbarch *gdbarch, struct regcache *regs,
4728 struct displaced_step_closure *dsc, unsigned int rn)
4729{
4730 ULONGEST rn_val;
4731 /* Preload instructions:
4732
4733 {pli/pld} [rn, #+/-imm]
4734 ->
4735 {pli/pld} [r0, #+/-imm]. */
4736
4737 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4738 rn_val = displaced_read_reg (regs, dsc, rn);
4739 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4740 dsc->u.preload.immed = 1;
4741
4742 dsc->cleanup = &cleanup_preload;
4743}
4744
4745static int
4746arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
4747 struct displaced_step_closure *dsc)
4748{
4749 unsigned int rn = bits (insn, 16, 19);
4750
4751 if (!insn_references_pc (insn, 0x000f0000ul))
4752 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
4753
4754 if (debug_displaced)
4755 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4756 (unsigned long) insn);
4757
4758 dsc->modinsn[0] = insn & 0xfff0ffff;
4759
4760 install_preload (gdbarch, regs, dsc, rn);
4761
4762 return 0;
4763}
4764
4765static int
4766thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
4767 struct regcache *regs, struct displaced_step_closure *dsc)
4768{
4769 unsigned int rn = bits (insn1, 0, 3);
4770 unsigned int u_bit = bit (insn1, 7);
4771 int imm12 = bits (insn2, 0, 11);
4772 ULONGEST pc_val;
4773
4774 if (rn != ARM_PC_REGNUM)
4775 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
4776
4777 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
4778 PLD (literal) Encoding T1. */
4779 if (debug_displaced)
4780 fprintf_unfiltered (gdb_stdlog,
4781 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
4782 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
4783 imm12);
4784
4785 if (!u_bit)
4786 imm12 = -1 * imm12;
4787
4788 /* Rewrite instruction {pli/pld} PC imm12 into:
4789 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
4790
4791 {pli/pld} [r0, r1]
4792
4793 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
4794
4795 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4796 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4797
4798 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
4799
4800 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
4801 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
4802 dsc->u.preload.immed = 0;
4803
4804 /* {pli/pld} [r0, r1] */
4805 dsc->modinsn[0] = insn1 & 0xfff0;
4806 dsc->modinsn[1] = 0xf001;
4807 dsc->numinsns = 2;
4808
4809 dsc->cleanup = &cleanup_preload;
4810 return 0;
4811}
4812
4813/* Preload instructions with register offset. */
4814
4815static void
4816install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
4817 struct displaced_step_closure *dsc, unsigned int rn,
4818 unsigned int rm)
4819{
4820 ULONGEST rn_val, rm_val;
4821
4822 /* Preload register-offset instructions:
4823
4824 {pli/pld} [rn, rm {, shift}]
4825 ->
4826 {pli/pld} [r0, r1 {, shift}]. */
4827
4828 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4829 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4830 rn_val = displaced_read_reg (regs, dsc, rn);
4831 rm_val = displaced_read_reg (regs, dsc, rm);
4832 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4833 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
4834 dsc->u.preload.immed = 0;
4835
4836 dsc->cleanup = &cleanup_preload;
4837}
4838
4839static int
4840arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
4841 struct regcache *regs,
4842 struct displaced_step_closure *dsc)
4843{
4844 unsigned int rn = bits (insn, 16, 19);
4845 unsigned int rm = bits (insn, 0, 3);
4846
4847
4848 if (!insn_references_pc (insn, 0x000f000ful))
4849 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
4850
4851 if (debug_displaced)
4852 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4853 (unsigned long) insn);
4854
4855 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
4856
4857 install_preload_reg (gdbarch, regs, dsc, rn, rm);
4858 return 0;
4859}
4860
4861/* Copy/cleanup coprocessor load and store instructions. */
4862
4863static void
4864cleanup_copro_load_store (struct gdbarch *gdbarch,
4865 struct regcache *regs,
4866 struct displaced_step_closure *dsc)
4867{
4868 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
4869
4870 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4871
4872 if (dsc->u.ldst.writeback)
4873 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
4874}
4875
4876static void
4877install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
4878 struct displaced_step_closure *dsc,
4879 int writeback, unsigned int rn)
4880{
4881 ULONGEST rn_val;
4882
4883 /* Coprocessor load/store instructions:
4884
4885 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
4886 ->
4887 {stc/stc2} [r0, #+/-imm].
4888
4889 ldc/ldc2 are handled identically. */
4890
4891 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4892 rn_val = displaced_read_reg (regs, dsc, rn);
4893 /* PC should be 4-byte aligned. */
4894 rn_val = rn_val & 0xfffffffc;
4895 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4896
4897 dsc->u.ldst.writeback = writeback;
4898 dsc->u.ldst.rn = rn;
4899
4900 dsc->cleanup = &cleanup_copro_load_store;
4901}
4902
4903static int
4904arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
4905 struct regcache *regs,
4906 struct displaced_step_closure *dsc)
4907{
4908 unsigned int rn = bits (insn, 16, 19);
4909
4910 if (!insn_references_pc (insn, 0x000f0000ul))
4911 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
4912
4913 if (debug_displaced)
4914 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4915 "load/store insn %.8lx\n", (unsigned long) insn);
4916
4917 dsc->modinsn[0] = insn & 0xfff0ffff;
4918
4919 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
4920
4921 return 0;
4922}
4923
4924static int
4925thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
4926 uint16_t insn2, struct regcache *regs,
4927 struct displaced_step_closure *dsc)
4928{
4929 unsigned int rn = bits (insn1, 0, 3);
4930
4931 if (rn != ARM_PC_REGNUM)
4932 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
4933 "copro load/store", dsc);
4934
4935 if (debug_displaced)
4936 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4937 "load/store insn %.4x%.4x\n", insn1, insn2);
4938
4939 dsc->modinsn[0] = insn1 & 0xfff0;
4940 dsc->modinsn[1] = insn2;
4941 dsc->numinsns = 2;
4942
4943 /* This function is called for copying instruction LDC/LDC2/VLDR, which
4944 doesn't support writeback, so pass 0. */
4945 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
4946
4947 return 0;
4948}
4949
4950/* Clean up branch instructions (actually perform the branch, by setting
4951 PC). */
4952
4953static void
4954cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
4955 struct displaced_step_closure *dsc)
4956{
4957 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
4958 int branch_taken = condition_true (dsc->u.branch.cond, status);
4959 enum pc_write_style write_pc = dsc->u.branch.exchange
4960 ? BX_WRITE_PC : BRANCH_WRITE_PC;
4961
4962 if (!branch_taken)
4963 return;
4964
4965 if (dsc->u.branch.link)
4966 {
4967 /* The value of LR should be the next insn of current one. In order
4968 not to confuse logic hanlding later insn `bx lr', if current insn mode
4969 is Thumb, the bit 0 of LR value should be set to 1. */
4970 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
4971
4972 if (dsc->is_thumb)
4973 next_insn_addr |= 0x1;
4974
4975 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
4976 CANNOT_WRITE_PC);
4977 }
4978
4979 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
4980}
4981
4982/* Copy B/BL/BLX instructions with immediate destinations. */
4983
4984static void
4985install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
4986 struct displaced_step_closure *dsc,
4987 unsigned int cond, int exchange, int link, long offset)
4988{
4989 /* Implement "BL<cond> <label>" as:
4990
4991 Preparation: cond <- instruction condition
4992 Insn: mov r0, r0 (nop)
4993 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
4994
4995 B<cond> similar, but don't set r14 in cleanup. */
4996
4997 dsc->u.branch.cond = cond;
4998 dsc->u.branch.link = link;
4999 dsc->u.branch.exchange = exchange;
5000
5001 dsc->u.branch.dest = dsc->insn_addr;
5002 if (link && exchange)
5003 /* For BLX, offset is computed from the Align (PC, 4). */
5004 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
5005
5006 if (dsc->is_thumb)
5007 dsc->u.branch.dest += 4 + offset;
5008 else
5009 dsc->u.branch.dest += 8 + offset;
5010
5011 dsc->cleanup = &cleanup_branch;
5012}
5013static int
5014arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
5015 struct regcache *regs, struct displaced_step_closure *dsc)
5016{
5017 unsigned int cond = bits (insn, 28, 31);
5018 int exchange = (cond == 0xf);
5019 int link = exchange || bit (insn, 24);
5020 long offset;
5021
5022 if (debug_displaced)
5023 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
5024 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
5025 (unsigned long) insn);
5026 if (exchange)
5027 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
5028 then arrange the switch into Thumb mode. */
5029 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
5030 else
5031 offset = bits (insn, 0, 23) << 2;
5032
5033 if (bit (offset, 25))
5034 offset = offset | ~0x3ffffff;
5035
5036 dsc->modinsn[0] = ARM_NOP;
5037
5038 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5039 return 0;
5040}
5041
5042static int
5043thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
5044 uint16_t insn2, struct regcache *regs,
5045 struct displaced_step_closure *dsc)
5046{
5047 int link = bit (insn2, 14);
5048 int exchange = link && !bit (insn2, 12);
5049 int cond = INST_AL;
5050 long offset = 0;
5051 int j1 = bit (insn2, 13);
5052 int j2 = bit (insn2, 11);
5053 int s = sbits (insn1, 10, 10);
5054 int i1 = !(j1 ^ bit (insn1, 10));
5055 int i2 = !(j2 ^ bit (insn1, 10));
5056
5057 if (!link && !exchange) /* B */
5058 {
5059 offset = (bits (insn2, 0, 10) << 1);
5060 if (bit (insn2, 12)) /* Encoding T4 */
5061 {
5062 offset |= (bits (insn1, 0, 9) << 12)
5063 | (i2 << 22)
5064 | (i1 << 23)
5065 | (s << 24);
5066 cond = INST_AL;
5067 }
5068 else /* Encoding T3 */
5069 {
5070 offset |= (bits (insn1, 0, 5) << 12)
5071 | (j1 << 18)
5072 | (j2 << 19)
5073 | (s << 20);
5074 cond = bits (insn1, 6, 9);
5075 }
5076 }
5077 else
5078 {
5079 offset = (bits (insn1, 0, 9) << 12);
5080 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
5081 offset |= exchange ?
5082 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
5083 }
5084
5085 if (debug_displaced)
5086 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
5087 "%.4x %.4x with offset %.8lx\n",
5088 link ? (exchange) ? "blx" : "bl" : "b",
5089 insn1, insn2, offset);
5090
5091 dsc->modinsn[0] = THUMB_NOP;
5092
5093 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5094 return 0;
5095}
5096
5097/* Copy B Thumb instructions. */
5098static int
5099thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
5100 struct displaced_step_closure *dsc)
5101{
5102 unsigned int cond = 0;
5103 int offset = 0;
5104 unsigned short bit_12_15 = bits (insn, 12, 15);
5105 CORE_ADDR from = dsc->insn_addr;
5106
5107 if (bit_12_15 == 0xd)
5108 {
5109 /* offset = SignExtend (imm8:0, 32) */
5110 offset = sbits ((insn << 1), 0, 8);
5111 cond = bits (insn, 8, 11);
5112 }
5113 else if (bit_12_15 == 0xe) /* Encoding T2 */
5114 {
5115 offset = sbits ((insn << 1), 0, 11);
5116 cond = INST_AL;
5117 }
5118
5119 if (debug_displaced)
5120 fprintf_unfiltered (gdb_stdlog,
5121 "displaced: copying b immediate insn %.4x "
5122 "with offset %d\n", insn, offset);
5123
5124 dsc->u.branch.cond = cond;
5125 dsc->u.branch.link = 0;
5126 dsc->u.branch.exchange = 0;
5127 dsc->u.branch.dest = from + 4 + offset;
5128
5129 dsc->modinsn[0] = THUMB_NOP;
5130
5131 dsc->cleanup = &cleanup_branch;
5132
5133 return 0;
5134}
5135
5136/* Copy BX/BLX with register-specified destinations. */
5137
5138static void
5139install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
5140 struct displaced_step_closure *dsc, int link,
5141 unsigned int cond, unsigned int rm)
5142{
5143 /* Implement {BX,BLX}<cond> <reg>" as:
5144
5145 Preparation: cond <- instruction condition
5146 Insn: mov r0, r0 (nop)
5147 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5148
5149 Don't set r14 in cleanup for BX. */
5150
5151 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
5152
5153 dsc->u.branch.cond = cond;
5154 dsc->u.branch.link = link;
5155
5156 dsc->u.branch.exchange = 1;
5157
5158 dsc->cleanup = &cleanup_branch;
5159}
5160
5161static int
5162arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
5163 struct regcache *regs, struct displaced_step_closure *dsc)
5164{
5165 unsigned int cond = bits (insn, 28, 31);
5166 /* BX: x12xxx1x
5167 BLX: x12xxx3x. */
5168 int link = bit (insn, 5);
5169 unsigned int rm = bits (insn, 0, 3);
5170
5171 if (debug_displaced)
5172 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
5173 (unsigned long) insn);
5174
5175 dsc->modinsn[0] = ARM_NOP;
5176
5177 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
5178 return 0;
5179}
5180
5181static int
5182thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
5183 struct regcache *regs,
5184 struct displaced_step_closure *dsc)
5185{
5186 int link = bit (insn, 7);
5187 unsigned int rm = bits (insn, 3, 6);
5188
5189 if (debug_displaced)
5190 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
5191 (unsigned short) insn);
5192
5193 dsc->modinsn[0] = THUMB_NOP;
5194
5195 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
5196
5197 return 0;
5198}
5199
5200
5201/* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
5202
5203static void
5204cleanup_alu_imm (struct gdbarch *gdbarch,
5205 struct regcache *regs, struct displaced_step_closure *dsc)
5206{
5207 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5208 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5209 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5210 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5211}
5212
5213static int
5214arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5215 struct displaced_step_closure *dsc)
5216{
5217 unsigned int rn = bits (insn, 16, 19);
5218 unsigned int rd = bits (insn, 12, 15);
5219 unsigned int op = bits (insn, 21, 24);
5220 int is_mov = (op == 0xd);
5221 ULONGEST rd_val, rn_val;
5222
5223 if (!insn_references_pc (insn, 0x000ff000ul))
5224 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
5225
5226 if (debug_displaced)
5227 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5228 "%.8lx\n", is_mov ? "move" : "ALU",
5229 (unsigned long) insn);
5230
5231 /* Instruction is of form:
5232
5233 <op><cond> rd, [rn,] #imm
5234
5235 Rewrite as:
5236
5237 Preparation: tmp1, tmp2 <- r0, r1;
5238 r0, r1 <- rd, rn
5239 Insn: <op><cond> r0, r1, #imm
5240 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5241 */
5242
5243 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5244 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5245 rn_val = displaced_read_reg (regs, dsc, rn);
5246 rd_val = displaced_read_reg (regs, dsc, rd);
5247 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5248 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5249 dsc->rd = rd;
5250
5251 if (is_mov)
5252 dsc->modinsn[0] = insn & 0xfff00fff;
5253 else
5254 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5255
5256 dsc->cleanup = &cleanup_alu_imm;
5257
5258 return 0;
5259}
5260
5261static int
5262thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
5263 uint16_t insn2, struct regcache *regs,
5264 struct displaced_step_closure *dsc)
5265{
5266 unsigned int op = bits (insn1, 5, 8);
5267 unsigned int rn, rm, rd;
5268 ULONGEST rd_val, rn_val;
5269
5270 rn = bits (insn1, 0, 3); /* Rn */
5271 rm = bits (insn2, 0, 3); /* Rm */
5272 rd = bits (insn2, 8, 11); /* Rd */
5273
5274 /* This routine is only called for instruction MOV. */
5275 gdb_assert (op == 0x2 && rn == 0xf);
5276
5277 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
5278 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
5279
5280 if (debug_displaced)
5281 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
5282 "ALU", insn1, insn2);
5283
5284 /* Instruction is of form:
5285
5286 <op><cond> rd, [rn,] #imm
5287
5288 Rewrite as:
5289
5290 Preparation: tmp1, tmp2 <- r0, r1;
5291 r0, r1 <- rd, rn
5292 Insn: <op><cond> r0, r1, #imm
5293 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5294 */
5295
5296 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5297 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5298 rn_val = displaced_read_reg (regs, dsc, rn);
5299 rd_val = displaced_read_reg (regs, dsc, rd);
5300 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5301 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5302 dsc->rd = rd;
5303
5304 dsc->modinsn[0] = insn1;
5305 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
5306 dsc->numinsns = 2;
5307
5308 dsc->cleanup = &cleanup_alu_imm;
5309
5310 return 0;
5311}
5312
5313/* Copy/cleanup arithmetic/logic insns with register RHS. */
5314
5315static void
5316cleanup_alu_reg (struct gdbarch *gdbarch,
5317 struct regcache *regs, struct displaced_step_closure *dsc)
5318{
5319 ULONGEST rd_val;
5320 int i;
5321
5322 rd_val = displaced_read_reg (regs, dsc, 0);
5323
5324 for (i = 0; i < 3; i++)
5325 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5326
5327 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5328}
5329
5330static void
5331install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
5332 struct displaced_step_closure *dsc,
5333 unsigned int rd, unsigned int rn, unsigned int rm)
5334{
5335 ULONGEST rd_val, rn_val, rm_val;
5336
5337 /* Instruction is of form:
5338
5339 <op><cond> rd, [rn,] rm [, <shift>]
5340
5341 Rewrite as:
5342
5343 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5344 r0, r1, r2 <- rd, rn, rm
5345 Insn: <op><cond> r0, [r1,] r2 [, <shift>]
5346 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5347 */
5348
5349 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5350 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5351 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5352 rd_val = displaced_read_reg (regs, dsc, rd);
5353 rn_val = displaced_read_reg (regs, dsc, rn);
5354 rm_val = displaced_read_reg (regs, dsc, rm);
5355 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5356 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5357 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5358 dsc->rd = rd;
5359
5360 dsc->cleanup = &cleanup_alu_reg;
5361}
5362
5363static int
5364arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5365 struct displaced_step_closure *dsc)
5366{
5367 unsigned int op = bits (insn, 21, 24);
5368 int is_mov = (op == 0xd);
5369
5370 if (!insn_references_pc (insn, 0x000ff00ful))
5371 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5372
5373 if (debug_displaced)
5374 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5375 is_mov ? "move" : "ALU", (unsigned long) insn);
5376
5377 if (is_mov)
5378 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5379 else
5380 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5381
5382 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
5383 bits (insn, 0, 3));
5384 return 0;
5385}
5386
5387static int
5388thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
5389 struct regcache *regs,
5390 struct displaced_step_closure *dsc)
5391{
5392 unsigned rm, rd;
5393
5394 rm = bits (insn, 3, 6);
5395 rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
5396
5397 if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
5398 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
5399
5400 if (debug_displaced)
5401 fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
5402 (unsigned short) insn);
5403
5404 dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
5405
5406 install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
5407
5408 return 0;
5409}
5410
5411/* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5412
5413static void
5414cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
5415 struct regcache *regs,
5416 struct displaced_step_closure *dsc)
5417{
5418 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5419 int i;
5420
5421 for (i = 0; i < 4; i++)
5422 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5423
5424 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5425}
5426
5427static void
5428install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
5429 struct displaced_step_closure *dsc,
5430 unsigned int rd, unsigned int rn, unsigned int rm,
5431 unsigned rs)
5432{
5433 int i;
5434 ULONGEST rd_val, rn_val, rm_val, rs_val;
5435
5436 /* Instruction is of form:
5437
5438 <op><cond> rd, [rn,] rm, <shift> rs
5439
5440 Rewrite as:
5441
5442 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5443 r0, r1, r2, r3 <- rd, rn, rm, rs
5444 Insn: <op><cond> r0, r1, r2, <shift> r3
5445 Cleanup: tmp5 <- r0
5446 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5447 rd <- tmp5
5448 */
5449
5450 for (i = 0; i < 4; i++)
5451 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
5452
5453 rd_val = displaced_read_reg (regs, dsc, rd);
5454 rn_val = displaced_read_reg (regs, dsc, rn);
5455 rm_val = displaced_read_reg (regs, dsc, rm);
5456 rs_val = displaced_read_reg (regs, dsc, rs);
5457 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5458 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5459 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5460 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5461 dsc->rd = rd;
5462 dsc->cleanup = &cleanup_alu_shifted_reg;
5463}
5464
5465static int
5466arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
5467 struct regcache *regs,
5468 struct displaced_step_closure *dsc)
5469{
5470 unsigned int op = bits (insn, 21, 24);
5471 int is_mov = (op == 0xd);
5472 unsigned int rd, rn, rm, rs;
5473
5474 if (!insn_references_pc (insn, 0x000fff0ful))
5475 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5476
5477 if (debug_displaced)
5478 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5479 "%.8lx\n", is_mov ? "move" : "ALU",
5480 (unsigned long) insn);
5481
5482 rn = bits (insn, 16, 19);
5483 rm = bits (insn, 0, 3);
5484 rs = bits (insn, 8, 11);
5485 rd = bits (insn, 12, 15);
5486
5487 if (is_mov)
5488 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5489 else
5490 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5491
5492 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
5493
5494 return 0;
5495}
5496
5497/* Clean up load instructions. */
5498
5499static void
5500cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
5501 struct displaced_step_closure *dsc)
5502{
5503 ULONGEST rt_val, rt_val2 = 0, rn_val;
5504
5505 rt_val = displaced_read_reg (regs, dsc, 0);
5506 if (dsc->u.ldst.xfersize == 8)
5507 rt_val2 = displaced_read_reg (regs, dsc, 1);
5508 rn_val = displaced_read_reg (regs, dsc, 2);
5509
5510 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5511 if (dsc->u.ldst.xfersize > 4)
5512 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5513 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5514 if (!dsc->u.ldst.immed)
5515 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5516
5517 /* Handle register writeback. */
5518 if (dsc->u.ldst.writeback)
5519 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5520 /* Put result in right place. */
5521 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5522 if (dsc->u.ldst.xfersize == 8)
5523 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5524}
5525
5526/* Clean up store instructions. */
5527
5528static void
5529cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
5530 struct displaced_step_closure *dsc)
5531{
5532 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
5533
5534 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5535 if (dsc->u.ldst.xfersize > 4)
5536 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5537 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5538 if (!dsc->u.ldst.immed)
5539 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5540 if (!dsc->u.ldst.restore_r4)
5541 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5542
5543 /* Writeback. */
5544 if (dsc->u.ldst.writeback)
5545 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5546}
5547
5548/* Copy "extra" load/store instructions. These are halfword/doubleword
5549 transfers, which have a different encoding to byte/word transfers. */
5550
5551static int
5552arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
5553 struct regcache *regs, struct displaced_step_closure *dsc)
5554{
5555 unsigned int op1 = bits (insn, 20, 24);
5556 unsigned int op2 = bits (insn, 5, 6);
5557 unsigned int rt = bits (insn, 12, 15);
5558 unsigned int rn = bits (insn, 16, 19);
5559 unsigned int rm = bits (insn, 0, 3);
5560 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5561 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5562 int immed = (op1 & 0x4) != 0;
5563 int opcode;
5564 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
5565
5566 if (!insn_references_pc (insn, 0x000ff00ful))
5567 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
5568
5569 if (debug_displaced)
5570 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
5571 "insn %.8lx\n", unprivileged ? "unprivileged " : "",
5572 (unsigned long) insn);
5573
5574 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5575
5576 if (opcode < 0)
5577 internal_error (__FILE__, __LINE__,
5578 _("copy_extra_ld_st: instruction decode error"));
5579
5580 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5581 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5582 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5583 if (!immed)
5584 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5585
5586 rt_val = displaced_read_reg (regs, dsc, rt);
5587 if (bytesize[opcode] == 8)
5588 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
5589 rn_val = displaced_read_reg (regs, dsc, rn);
5590 if (!immed)
5591 rm_val = displaced_read_reg (regs, dsc, rm);
5592
5593 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5594 if (bytesize[opcode] == 8)
5595 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5596 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5597 if (!immed)
5598 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5599
5600 dsc->rd = rt;
5601 dsc->u.ldst.xfersize = bytesize[opcode];
5602 dsc->u.ldst.rn = rn;
5603 dsc->u.ldst.immed = immed;
5604 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5605 dsc->u.ldst.restore_r4 = 0;
5606
5607 if (immed)
5608 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5609 ->
5610 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5611 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5612 else
5613 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5614 ->
5615 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5616 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5617
5618 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5619
5620 return 0;
5621}
5622
5623/* Copy byte/half word/word loads and stores. */
5624
5625static void
5626install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5627 struct displaced_step_closure *dsc, int load,
5628 int immed, int writeback, int size, int usermode,
5629 int rt, int rm, int rn)
5630{
5631 ULONGEST rt_val, rn_val, rm_val = 0;
5632
5633 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5634 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5635 if (!immed)
5636 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5637 if (!load)
5638 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
5639
5640 rt_val = displaced_read_reg (regs, dsc, rt);
5641 rn_val = displaced_read_reg (regs, dsc, rn);
5642 if (!immed)
5643 rm_val = displaced_read_reg (regs, dsc, rm);
5644
5645 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5646 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5647 if (!immed)
5648 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5649 dsc->rd = rt;
5650 dsc->u.ldst.xfersize = size;
5651 dsc->u.ldst.rn = rn;
5652 dsc->u.ldst.immed = immed;
5653 dsc->u.ldst.writeback = writeback;
5654
5655 /* To write PC we can do:
5656
5657 Before this sequence of instructions:
5658 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5659 r2 is the Rn value got from dispalced_read_reg.
5660
5661 Insn1: push {pc} Write address of STR instruction + offset on stack
5662 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5663 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5664 = addr(Insn1) + offset - addr(Insn3) - 8
5665 = offset - 16
5666 Insn4: add r4, r4, #8 r4 = offset - 8
5667 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5668 = from + offset
5669 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
5670
5671 Otherwise we don't know what value to write for PC, since the offset is
5672 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5673 of this can be found in Section "Saving from r15" in
5674 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
5675
5676 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5677}
5678
5679
5680static int
5681thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
5682 uint16_t insn2, struct regcache *regs,
5683 struct displaced_step_closure *dsc, int size)
5684{
5685 unsigned int u_bit = bit (insn1, 7);
5686 unsigned int rt = bits (insn2, 12, 15);
5687 int imm12 = bits (insn2, 0, 11);
5688 ULONGEST pc_val;
5689
5690 if (debug_displaced)
5691 fprintf_unfiltered (gdb_stdlog,
5692 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
5693 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
5694 imm12);
5695
5696 if (!u_bit)
5697 imm12 = -1 * imm12;
5698
5699 /* Rewrite instruction LDR Rt imm12 into:
5700
5701 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
5702
5703 LDR R0, R2, R3,
5704
5705 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
5706
5707
5708 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5709 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5710 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5711
5712 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5713
5714 pc_val = pc_val & 0xfffffffc;
5715
5716 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
5717 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
5718
5719 dsc->rd = rt;
5720
5721 dsc->u.ldst.xfersize = size;
5722 dsc->u.ldst.immed = 0;
5723 dsc->u.ldst.writeback = 0;
5724 dsc->u.ldst.restore_r4 = 0;
5725
5726 /* LDR R0, R2, R3 */
5727 dsc->modinsn[0] = 0xf852;
5728 dsc->modinsn[1] = 0x3;
5729 dsc->numinsns = 2;
5730
5731 dsc->cleanup = &cleanup_load;
5732
5733 return 0;
5734}
5735
5736static int
5737thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
5738 uint16_t insn2, struct regcache *regs,
5739 struct displaced_step_closure *dsc,
5740 int writeback, int immed)
5741{
5742 unsigned int rt = bits (insn2, 12, 15);
5743 unsigned int rn = bits (insn1, 0, 3);
5744 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
5745 /* In LDR (register), there is also a register Rm, which is not allowed to
5746 be PC, so we don't have to check it. */
5747
5748 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
5749 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
5750 dsc);
5751
5752 if (debug_displaced)
5753 fprintf_unfiltered (gdb_stdlog,
5754 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
5755 rt, rn, insn1, insn2);
5756
5757 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
5758 0, rt, rm, rn);
5759
5760 dsc->u.ldst.restore_r4 = 0;
5761
5762 if (immed)
5763 /* ldr[b]<cond> rt, [rn, #imm], etc.
5764 ->
5765 ldr[b]<cond> r0, [r2, #imm]. */
5766 {
5767 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5768 dsc->modinsn[1] = insn2 & 0x0fff;
5769 }
5770 else
5771 /* ldr[b]<cond> rt, [rn, rm], etc.
5772 ->
5773 ldr[b]<cond> r0, [r2, r3]. */
5774 {
5775 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5776 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
5777 }
5778
5779 dsc->numinsns = 2;
5780
5781 return 0;
5782}
5783
5784
5785static int
5786arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5787 struct regcache *regs,
5788 struct displaced_step_closure *dsc,
5789 int load, int size, int usermode)
5790{
5791 int immed = !bit (insn, 25);
5792 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
5793 unsigned int rt = bits (insn, 12, 15);
5794 unsigned int rn = bits (insn, 16, 19);
5795 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5796
5797 if (!insn_references_pc (insn, 0x000ff00ful))
5798 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
5799
5800 if (debug_displaced)
5801 fprintf_unfiltered (gdb_stdlog,
5802 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
5803 load ? (size == 1 ? "ldrb" : "ldr")
5804 : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
5805 rt, rn,
5806 (unsigned long) insn);
5807
5808 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
5809 usermode, rt, rm, rn);
5810
5811 if (load || rt != ARM_PC_REGNUM)
5812 {
5813 dsc->u.ldst.restore_r4 = 0;
5814
5815 if (immed)
5816 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5817 ->
5818 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5819 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5820 else
5821 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5822 ->
5823 {ldr,str}[b]<cond> r0, [r2, r3]. */
5824 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5825 }
5826 else
5827 {
5828 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
5829 dsc->u.ldst.restore_r4 = 1;
5830 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
5831 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
5832 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
5833 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
5834 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
5835
5836 /* As above. */
5837 if (immed)
5838 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
5839 else
5840 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
5841
5842 dsc->numinsns = 6;
5843 }
5844
5845 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5846
5847 return 0;
5848}
5849
5850/* Cleanup LDM instructions with fully-populated register list. This is an
5851 unfortunate corner case: it's impossible to implement correctly by modifying
5852 the instruction. The issue is as follows: we have an instruction,
5853
5854 ldm rN, {r0-r15}
5855
5856 which we must rewrite to avoid loading PC. A possible solution would be to
5857 do the load in two halves, something like (with suitable cleanup
5858 afterwards):
5859
5860 mov r8, rN
5861 ldm[id][ab] r8!, {r0-r7}
5862 str r7, <temp>
5863 ldm[id][ab] r8, {r7-r14}
5864 <bkpt>
5865
5866 but at present there's no suitable place for <temp>, since the scratch space
5867 is overwritten before the cleanup routine is called. For now, we simply
5868 emulate the instruction. */
5869
5870static void
5871cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
5872 struct displaced_step_closure *dsc)
5873{
5874 int inc = dsc->u.block.increment;
5875 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
5876 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
5877 uint32_t regmask = dsc->u.block.regmask;
5878 int regno = inc ? 0 : 15;
5879 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
5880 int exception_return = dsc->u.block.load && dsc->u.block.user
5881 && (regmask & 0x8000) != 0;
5882 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5883 int do_transfer = condition_true (dsc->u.block.cond, status);
5884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5885
5886 if (!do_transfer)
5887 return;
5888
5889 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
5890 sensible we can do here. Complain loudly. */
5891 if (exception_return)
5892 error (_("Cannot single-step exception return"));
5893
5894 /* We don't handle any stores here for now. */
5895 gdb_assert (dsc->u.block.load != 0);
5896
5897 if (debug_displaced)
5898 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
5899 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
5900 dsc->u.block.increment ? "inc" : "dec",
5901 dsc->u.block.before ? "before" : "after");
5902
5903 while (regmask)
5904 {
5905 uint32_t memword;
5906
5907 if (inc)
5908 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
5909 regno++;
5910 else
5911 while (regno >= 0 && (regmask & (1 << regno)) == 0)
5912 regno--;
5913
5914 xfer_addr += bump_before;
5915
5916 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
5917 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
5918
5919 xfer_addr += bump_after;
5920
5921 regmask &= ~(1 << regno);
5922 }
5923
5924 if (dsc->u.block.writeback)
5925 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
5926 CANNOT_WRITE_PC);
5927}
5928
5929/* Clean up an STM which included the PC in the register list. */
5930
5931static void
5932cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
5933 struct displaced_step_closure *dsc)
5934{
5935 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5936 int store_executed = condition_true (dsc->u.block.cond, status);
5937 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
5938 CORE_ADDR stm_insn_addr;
5939 uint32_t pc_val;
5940 long offset;
5941 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5942
5943 /* If condition code fails, there's nothing else to do. */
5944 if (!store_executed)
5945 return;
5946
5947 if (dsc->u.block.increment)
5948 {
5949 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
5950
5951 if (dsc->u.block.before)
5952 pc_stored_at += 4;
5953 }
5954 else
5955 {
5956 pc_stored_at = dsc->u.block.xfer_addr;
5957
5958 if (dsc->u.block.before)
5959 pc_stored_at -= 4;
5960 }
5961
5962 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
5963 stm_insn_addr = dsc->scratch_base;
5964 offset = pc_val - stm_insn_addr;
5965
5966 if (debug_displaced)
5967 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
5968 "STM instruction\n", offset);
5969
5970 /* Rewrite the stored PC to the proper value for the non-displaced original
5971 instruction. */
5972 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
5973 dsc->insn_addr + offset);
5974}
5975
5976/* Clean up an LDM which includes the PC in the register list. We clumped all
5977 the registers in the transferred list into a contiguous range r0...rX (to
5978 avoid loading PC directly and losing control of the debugged program), so we
5979 must undo that here. */
5980
5981static void
5982cleanup_block_load_pc (struct gdbarch *gdbarch,
5983 struct regcache *regs,
5984 struct displaced_step_closure *dsc)
5985{
5986 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5987 int load_executed = condition_true (dsc->u.block.cond, status);
5988 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
5989 unsigned int regs_loaded = bitcount (mask);
5990 unsigned int num_to_shuffle = regs_loaded, clobbered;
5991
5992 /* The method employed here will fail if the register list is fully populated
5993 (we need to avoid loading PC directly). */
5994 gdb_assert (num_to_shuffle < 16);
5995
5996 if (!load_executed)
5997 return;
5998
5999 clobbered = (1 << num_to_shuffle) - 1;
6000
6001 while (num_to_shuffle > 0)
6002 {
6003 if ((mask & (1 << write_reg)) != 0)
6004 {
6005 unsigned int read_reg = num_to_shuffle - 1;
6006
6007 if (read_reg != write_reg)
6008 {
6009 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
6010 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
6011 if (debug_displaced)
6012 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
6013 "loaded register r%d to r%d\n"), read_reg,
6014 write_reg);
6015 }
6016 else if (debug_displaced)
6017 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
6018 "r%d already in the right place\n"),
6019 write_reg);
6020
6021 clobbered &= ~(1 << write_reg);
6022
6023 num_to_shuffle--;
6024 }
6025
6026 write_reg--;
6027 }
6028
6029 /* Restore any registers we scribbled over. */
6030 for (write_reg = 0; clobbered != 0; write_reg++)
6031 {
6032 if ((clobbered & (1 << write_reg)) != 0)
6033 {
6034 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
6035 CANNOT_WRITE_PC);
6036 if (debug_displaced)
6037 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
6038 "clobbered register r%d\n"), write_reg);
6039 clobbered &= ~(1 << write_reg);
6040 }
6041 }
6042
6043 /* Perform register writeback manually. */
6044 if (dsc->u.block.writeback)
6045 {
6046 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
6047
6048 if (dsc->u.block.increment)
6049 new_rn_val += regs_loaded * 4;
6050 else
6051 new_rn_val -= regs_loaded * 4;
6052
6053 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
6054 CANNOT_WRITE_PC);
6055 }
6056}
6057
6058/* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
6059 in user-level code (in particular exception return, ldm rn, {...pc}^). */
6060
6061static int
6062arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
6063 struct regcache *regs,
6064 struct displaced_step_closure *dsc)
6065{
6066 int load = bit (insn, 20);
6067 int user = bit (insn, 22);
6068 int increment = bit (insn, 23);
6069 int before = bit (insn, 24);
6070 int writeback = bit (insn, 21);
6071 int rn = bits (insn, 16, 19);
6072
6073 /* Block transfers which don't mention PC can be run directly
6074 out-of-line. */
6075 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
6076 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
6077
6078 if (rn == ARM_PC_REGNUM)
6079 {
6080 warning (_("displaced: Unpredictable LDM or STM with "
6081 "base register r15"));
6082 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
6083 }
6084
6085 if (debug_displaced)
6086 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6087 "%.8lx\n", (unsigned long) insn);
6088
6089 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6090 dsc->u.block.rn = rn;
6091
6092 dsc->u.block.load = load;
6093 dsc->u.block.user = user;
6094 dsc->u.block.increment = increment;
6095 dsc->u.block.before = before;
6096 dsc->u.block.writeback = writeback;
6097 dsc->u.block.cond = bits (insn, 28, 31);
6098
6099 dsc->u.block.regmask = insn & 0xffff;
6100
6101 if (load)
6102 {
6103 if ((insn & 0xffff) == 0xffff)
6104 {
6105 /* LDM with a fully-populated register list. This case is
6106 particularly tricky. Implement for now by fully emulating the
6107 instruction (which might not behave perfectly in all cases, but
6108 these instructions should be rare enough for that not to matter
6109 too much). */
6110 dsc->modinsn[0] = ARM_NOP;
6111
6112 dsc->cleanup = &cleanup_block_load_all;
6113 }
6114 else
6115 {
6116 /* LDM of a list of registers which includes PC. Implement by
6117 rewriting the list of registers to be transferred into a
6118 contiguous chunk r0...rX before doing the transfer, then shuffling
6119 registers into the correct places in the cleanup routine. */
6120 unsigned int regmask = insn & 0xffff;
6121 unsigned int num_in_list = bitcount (regmask), new_regmask;
6122 unsigned int i;
6123
6124 for (i = 0; i < num_in_list; i++)
6125 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6126
6127 /* Writeback makes things complicated. We need to avoid clobbering
6128 the base register with one of the registers in our modified
6129 register list, but just using a different register can't work in
6130 all cases, e.g.:
6131
6132 ldm r14!, {r0-r13,pc}
6133
6134 which would need to be rewritten as:
6135
6136 ldm rN!, {r0-r14}
6137
6138 but that can't work, because there's no free register for N.
6139
6140 Solve this by turning off the writeback bit, and emulating
6141 writeback manually in the cleanup routine. */
6142
6143 if (writeback)
6144 insn &= ~(1 << 21);
6145
6146 new_regmask = (1 << num_in_list) - 1;
6147
6148 if (debug_displaced)
6149 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6150 "{..., pc}: original reg list %.4x, modified "
6151 "list %.4x\n"), rn, writeback ? "!" : "",
6152 (int) insn & 0xffff, new_regmask);
6153
6154 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6155
6156 dsc->cleanup = &cleanup_block_load_pc;
6157 }
6158 }
6159 else
6160 {
6161 /* STM of a list of registers which includes PC. Run the instruction
6162 as-is, but out of line: this will store the wrong value for the PC,
6163 so we must manually fix up the memory in the cleanup routine.
6164 Doing things this way has the advantage that we can auto-detect
6165 the offset of the PC write (which is architecture-dependent) in
6166 the cleanup routine. */
6167 dsc->modinsn[0] = insn;
6168
6169 dsc->cleanup = &cleanup_block_store_pc;
6170 }
6171
6172 return 0;
6173}
6174
6175static int
6176thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6177 struct regcache *regs,
6178 struct displaced_step_closure *dsc)
6179{
6180 int rn = bits (insn1, 0, 3);
6181 int load = bit (insn1, 4);
6182 int writeback = bit (insn1, 5);
6183
6184 /* Block transfers which don't mention PC can be run directly
6185 out-of-line. */
6186 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
6187 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
6188
6189 if (rn == ARM_PC_REGNUM)
6190 {
6191 warning (_("displaced: Unpredictable LDM or STM with "
6192 "base register r15"));
6193 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6194 "unpredictable ldm/stm", dsc);
6195 }
6196
6197 if (debug_displaced)
6198 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6199 "%.4x%.4x\n", insn1, insn2);
6200
6201 /* Clear bit 13, since it should be always zero. */
6202 dsc->u.block.regmask = (insn2 & 0xdfff);
6203 dsc->u.block.rn = rn;
6204
6205 dsc->u.block.load = load;
6206 dsc->u.block.user = 0;
6207 dsc->u.block.increment = bit (insn1, 7);
6208 dsc->u.block.before = bit (insn1, 8);
6209 dsc->u.block.writeback = writeback;
6210 dsc->u.block.cond = INST_AL;
6211 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6212
6213 if (load)
6214 {
6215 if (dsc->u.block.regmask == 0xffff)
6216 {
6217 /* This branch is impossible to happen. */
6218 gdb_assert (0);
6219 }
6220 else
6221 {
6222 unsigned int regmask = dsc->u.block.regmask;
6223 unsigned int num_in_list = bitcount (regmask), new_regmask;
6224 unsigned int i;
6225
6226 for (i = 0; i < num_in_list; i++)
6227 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6228
6229 if (writeback)
6230 insn1 &= ~(1 << 5);
6231
6232 new_regmask = (1 << num_in_list) - 1;
6233
6234 if (debug_displaced)
6235 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6236 "{..., pc}: original reg list %.4x, modified "
6237 "list %.4x\n"), rn, writeback ? "!" : "",
6238 (int) dsc->u.block.regmask, new_regmask);
6239
6240 dsc->modinsn[0] = insn1;
6241 dsc->modinsn[1] = (new_regmask & 0xffff);
6242 dsc->numinsns = 2;
6243
6244 dsc->cleanup = &cleanup_block_load_pc;
6245 }
6246 }
6247 else
6248 {
6249 dsc->modinsn[0] = insn1;
6250 dsc->modinsn[1] = insn2;
6251 dsc->numinsns = 2;
6252 dsc->cleanup = &cleanup_block_store_pc;
6253 }
6254 return 0;
6255}
6256
6257/* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
6258 This is used to avoid a dependency on BFD's bfd_endian enum. */
6259
6260ULONGEST
6261arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
6262 int byte_order)
6263{
6264 return read_memory_unsigned_integer (memaddr, len,
6265 (enum bfd_endian) byte_order);
6266}
6267
6268/* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
6269
6270CORE_ADDR
6271arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
6272 CORE_ADDR val)
6273{
6274 return gdbarch_addr_bits_remove (get_regcache_arch (self->regcache), val);
6275}
6276
6277/* Wrapper over syscall_next_pc for use in get_next_pcs. */
6278
6279static CORE_ADDR
6280arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
6281{
6282 return 0;
6283}
6284
6285/* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
6286
6287int
6288arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
6289{
6290 return arm_is_thumb (self->regcache);
6291}
6292
6293/* single_step() is called just before we want to resume the inferior,
6294 if we want to single-step it but there is no hardware or kernel
6295 single-step support. We find the target of the coming instructions
6296 and breakpoint them. */
6297
6298std::vector<CORE_ADDR>
6299arm_software_single_step (struct regcache *regcache)
6300{
6301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6302 struct arm_get_next_pcs next_pcs_ctx;
6303
6304 arm_get_next_pcs_ctor (&next_pcs_ctx,
6305 &arm_get_next_pcs_ops,
6306 gdbarch_byte_order (gdbarch),
6307 gdbarch_byte_order_for_code (gdbarch),
6308 0,
6309 regcache);
6310
6311 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
6312
6313 for (CORE_ADDR &pc_ref : next_pcs)
6314 pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref);
6315
6316 return next_pcs;
6317}
6318
6319/* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6320 for Linux, where some SVC instructions must be treated specially. */
6321
6322static void
6323cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
6324 struct displaced_step_closure *dsc)
6325{
6326 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
6327
6328 if (debug_displaced)
6329 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6330 "%.8lx\n", (unsigned long) resume_addr);
6331
6332 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6333}
6334
6335
6336/* Common copy routine for svc instruciton. */
6337
6338static int
6339install_svc (struct gdbarch *gdbarch, struct regcache *regs,
6340 struct displaced_step_closure *dsc)
6341{
6342 /* Preparation: none.
6343 Insn: unmodified svc.
6344 Cleanup: pc <- insn_addr + insn_size. */
6345
6346 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6347 instruction. */
6348 dsc->wrote_to_pc = 1;
6349
6350 /* Allow OS-specific code to override SVC handling. */
6351 if (dsc->u.svc.copy_svc_os)
6352 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
6353 else
6354 {
6355 dsc->cleanup = &cleanup_svc;
6356 return 0;
6357 }
6358}
6359
6360static int
6361arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
6362 struct regcache *regs, struct displaced_step_closure *dsc)
6363{
6364
6365 if (debug_displaced)
6366 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6367 (unsigned long) insn);
6368
6369 dsc->modinsn[0] = insn;
6370
6371 return install_svc (gdbarch, regs, dsc);
6372}
6373
6374static int
6375thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
6376 struct regcache *regs, struct displaced_step_closure *dsc)
6377{
6378
6379 if (debug_displaced)
6380 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
6381 insn);
6382
6383 dsc->modinsn[0] = insn;
6384
6385 return install_svc (gdbarch, regs, dsc);
6386}
6387
6388/* Copy undefined instructions. */
6389
6390static int
6391arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
6392 struct displaced_step_closure *dsc)
6393{
6394 if (debug_displaced)
6395 fprintf_unfiltered (gdb_stdlog,
6396 "displaced: copying undefined insn %.8lx\n",
6397 (unsigned long) insn);
6398
6399 dsc->modinsn[0] = insn;
6400
6401 return 0;
6402}
6403
6404static int
6405thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6406 struct displaced_step_closure *dsc)
6407{
6408
6409 if (debug_displaced)
6410 fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
6411 "%.4x %.4x\n", (unsigned short) insn1,
6412 (unsigned short) insn2);
6413
6414 dsc->modinsn[0] = insn1;
6415 dsc->modinsn[1] = insn2;
6416 dsc->numinsns = 2;
6417
6418 return 0;
6419}
6420
6421/* Copy unpredictable instructions. */
6422
6423static int
6424arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
6425 struct displaced_step_closure *dsc)
6426{
6427 if (debug_displaced)
6428 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6429 "%.8lx\n", (unsigned long) insn);
6430
6431 dsc->modinsn[0] = insn;
6432
6433 return 0;
6434}
6435
6436/* The decode_* functions are instruction decoding helpers. They mostly follow
6437 the presentation in the ARM ARM. */
6438
6439static int
6440arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6441 struct regcache *regs,
6442 struct displaced_step_closure *dsc)
6443{
6444 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6445 unsigned int rn = bits (insn, 16, 19);
6446
6447 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
6448 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
6449 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
6450 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
6451 else if ((op1 & 0x60) == 0x20)
6452 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
6453 else if ((op1 & 0x71) == 0x40)
6454 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
6455 dsc);
6456 else if ((op1 & 0x77) == 0x41)
6457 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6458 else if ((op1 & 0x77) == 0x45)
6459 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
6460 else if ((op1 & 0x77) == 0x51)
6461 {
6462 if (rn != 0xf)
6463 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6464 else
6465 return arm_copy_unpred (gdbarch, insn, dsc);
6466 }
6467 else if ((op1 & 0x77) == 0x55)
6468 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6469 else if (op1 == 0x57)
6470 switch (op2)
6471 {
6472 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
6473 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
6474 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
6475 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
6476 default: return arm_copy_unpred (gdbarch, insn, dsc);
6477 }
6478 else if ((op1 & 0x63) == 0x43)
6479 return arm_copy_unpred (gdbarch, insn, dsc);
6480 else if ((op2 & 0x1) == 0x0)
6481 switch (op1 & ~0x80)
6482 {
6483 case 0x61:
6484 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6485 case 0x65:
6486 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
6487 case 0x71: case 0x75:
6488 /* pld/pldw reg. */
6489 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
6490 case 0x63: case 0x67: case 0x73: case 0x77:
6491 return arm_copy_unpred (gdbarch, insn, dsc);
6492 default:
6493 return arm_copy_undef (gdbarch, insn, dsc);
6494 }
6495 else
6496 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
6497}
6498
6499static int
6500arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
6501 struct regcache *regs,
6502 struct displaced_step_closure *dsc)
6503{
6504 if (bit (insn, 27) == 0)
6505 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
6506 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6507 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6508 {
6509 case 0x0: case 0x2:
6510 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
6511
6512 case 0x1: case 0x3:
6513 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
6514
6515 case 0x4: case 0x5: case 0x6: case 0x7:
6516 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6517
6518 case 0x8:
6519 switch ((insn & 0xe00000) >> 21)
6520 {
6521 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6522 /* stc/stc2. */
6523 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6524
6525 case 0x2:
6526 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6527
6528 default:
6529 return arm_copy_undef (gdbarch, insn, dsc);
6530 }
6531
6532 case 0x9:
6533 {
6534 int rn_f = (bits (insn, 16, 19) == 0xf);
6535 switch ((insn & 0xe00000) >> 21)
6536 {
6537 case 0x1: case 0x3:
6538 /* ldc/ldc2 imm (undefined for rn == pc). */
6539 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
6540 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6541
6542 case 0x2:
6543 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6544
6545 case 0x4: case 0x5: case 0x6: case 0x7:
6546 /* ldc/ldc2 lit (undefined for rn != pc). */
6547 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
6548 : arm_copy_undef (gdbarch, insn, dsc);
6549
6550 default:
6551 return arm_copy_undef (gdbarch, insn, dsc);
6552 }
6553 }
6554
6555 case 0xa:
6556 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
6557
6558 case 0xb:
6559 if (bits (insn, 16, 19) == 0xf)
6560 /* ldc/ldc2 lit. */
6561 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6562 else
6563 return arm_copy_undef (gdbarch, insn, dsc);
6564
6565 case 0xc:
6566 if (bit (insn, 4))
6567 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6568 else
6569 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6570
6571 case 0xd:
6572 if (bit (insn, 4))
6573 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6574 else
6575 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6576
6577 default:
6578 return arm_copy_undef (gdbarch, insn, dsc);
6579 }
6580}
6581
6582/* Decode miscellaneous instructions in dp/misc encoding space. */
6583
6584static int
6585arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
6586 struct regcache *regs,
6587 struct displaced_step_closure *dsc)
6588{
6589 unsigned int op2 = bits (insn, 4, 6);
6590 unsigned int op = bits (insn, 21, 22);
6591
6592 switch (op2)
6593 {
6594 case 0x0:
6595 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
6596
6597 case 0x1:
6598 if (op == 0x1) /* bx. */
6599 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
6600 else if (op == 0x3)
6601 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
6602 else
6603 return arm_copy_undef (gdbarch, insn, dsc);
6604
6605 case 0x2:
6606 if (op == 0x1)
6607 /* Not really supported. */
6608 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
6609 else
6610 return arm_copy_undef (gdbarch, insn, dsc);
6611
6612 case 0x3:
6613 if (op == 0x1)
6614 return arm_copy_bx_blx_reg (gdbarch, insn,
6615 regs, dsc); /* blx register. */
6616 else
6617 return arm_copy_undef (gdbarch, insn, dsc);
6618
6619 case 0x5:
6620 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
6621
6622 case 0x7:
6623 if (op == 0x1)
6624 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
6625 else if (op == 0x3)
6626 /* Not really supported. */
6627 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
6628
6629 default:
6630 return arm_copy_undef (gdbarch, insn, dsc);
6631 }
6632}
6633
6634static int
6635arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
6636 struct regcache *regs,
6637 struct displaced_step_closure *dsc)
6638{
6639 if (bit (insn, 25))
6640 switch (bits (insn, 20, 24))
6641 {
6642 case 0x10:
6643 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
6644
6645 case 0x14:
6646 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
6647
6648 case 0x12: case 0x16:
6649 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
6650
6651 default:
6652 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
6653 }
6654 else
6655 {
6656 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6657
6658 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
6659 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
6660 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
6661 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
6662 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
6663 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
6664 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
6665 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
6666 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
6667 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
6668 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
6669 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
6670 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
6671 /* 2nd arg means "unprivileged". */
6672 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6673 dsc);
6674 }
6675
6676 /* Should be unreachable. */
6677 return 1;
6678}
6679
6680static int
6681arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6682 struct regcache *regs,
6683 struct displaced_step_closure *dsc)
6684{
6685 int a = bit (insn, 25), b = bit (insn, 4);
6686 uint32_t op1 = bits (insn, 20, 24);
6687
6688 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6689 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
6690 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
6691 else if ((!a && (op1 & 0x17) == 0x02)
6692 || (a && (op1 & 0x17) == 0x02 && !b))
6693 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
6694 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6695 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
6696 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
6697 else if ((!a && (op1 & 0x17) == 0x03)
6698 || (a && (op1 & 0x17) == 0x03 && !b))
6699 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
6700 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6701 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
6702 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
6703 else if ((!a && (op1 & 0x17) == 0x06)
6704 || (a && (op1 & 0x17) == 0x06 && !b))
6705 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
6706 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6707 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
6708 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
6709 else if ((!a && (op1 & 0x17) == 0x07)
6710 || (a && (op1 & 0x17) == 0x07 && !b))
6711 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
6712
6713 /* Should be unreachable. */
6714 return 1;
6715}
6716
6717static int
6718arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
6719 struct displaced_step_closure *dsc)
6720{
6721 switch (bits (insn, 20, 24))
6722 {
6723 case 0x00: case 0x01: case 0x02: case 0x03:
6724 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
6725
6726 case 0x04: case 0x05: case 0x06: case 0x07:
6727 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
6728
6729 case 0x08: case 0x09: case 0x0a: case 0x0b:
6730 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
6731 return arm_copy_unmodified (gdbarch, insn,
6732 "decode/pack/unpack/saturate/reverse", dsc);
6733
6734 case 0x18:
6735 if (bits (insn, 5, 7) == 0) /* op2. */
6736 {
6737 if (bits (insn, 12, 15) == 0xf)
6738 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
6739 else
6740 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
6741 }
6742 else
6743 return arm_copy_undef (gdbarch, insn, dsc);
6744
6745 case 0x1a: case 0x1b:
6746 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6747 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
6748 else
6749 return arm_copy_undef (gdbarch, insn, dsc);
6750
6751 case 0x1c: case 0x1d:
6752 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6753 {
6754 if (bits (insn, 0, 3) == 0xf)
6755 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
6756 else
6757 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
6758 }
6759 else
6760 return arm_copy_undef (gdbarch, insn, dsc);
6761
6762 case 0x1e: case 0x1f:
6763 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6764 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
6765 else
6766 return arm_copy_undef (gdbarch, insn, dsc);
6767 }
6768
6769 /* Should be unreachable. */
6770 return 1;
6771}
6772
6773static int
6774arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
6775 struct regcache *regs,
6776 struct displaced_step_closure *dsc)
6777{
6778 if (bit (insn, 25))
6779 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6780 else
6781 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
6782}
6783
6784static int
6785arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
6786 struct regcache *regs,
6787 struct displaced_step_closure *dsc)
6788{
6789 unsigned int opcode = bits (insn, 20, 24);
6790
6791 switch (opcode)
6792 {
6793 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
6794 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
6795
6796 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6797 case 0x12: case 0x16:
6798 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
6799
6800 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6801 case 0x13: case 0x17:
6802 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
6803
6804 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6805 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6806 /* Note: no writeback for these instructions. Bit 25 will always be
6807 zero though (via caller), so the following works OK. */
6808 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6809 }
6810
6811 /* Should be unreachable. */
6812 return 1;
6813}
6814
6815/* Decode shifted register instructions. */
6816
6817static int
6818thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
6819 uint16_t insn2, struct regcache *regs,
6820 struct displaced_step_closure *dsc)
6821{
6822 /* PC is only allowed to be used in instruction MOV. */
6823
6824 unsigned int op = bits (insn1, 5, 8);
6825 unsigned int rn = bits (insn1, 0, 3);
6826
6827 if (op == 0x2 && rn == 0xf) /* MOV */
6828 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
6829 else
6830 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6831 "dp (shift reg)", dsc);
6832}
6833
6834
6835/* Decode extension register load/store. Exactly the same as
6836 arm_decode_ext_reg_ld_st. */
6837
6838static int
6839thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
6840 uint16_t insn2, struct regcache *regs,
6841 struct displaced_step_closure *dsc)
6842{
6843 unsigned int opcode = bits (insn1, 4, 8);
6844
6845 switch (opcode)
6846 {
6847 case 0x04: case 0x05:
6848 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6849 "vfp/neon vmov", dsc);
6850
6851 case 0x08: case 0x0c: /* 01x00 */
6852 case 0x0a: case 0x0e: /* 01x10 */
6853 case 0x12: case 0x16: /* 10x10 */
6854 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6855 "vfp/neon vstm/vpush", dsc);
6856
6857 case 0x09: case 0x0d: /* 01x01 */
6858 case 0x0b: case 0x0f: /* 01x11 */
6859 case 0x13: case 0x17: /* 10x11 */
6860 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6861 "vfp/neon vldm/vpop", dsc);
6862
6863 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6864 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6865 "vstr", dsc);
6866 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6867 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
6868 }
6869
6870 /* Should be unreachable. */
6871 return 1;
6872}
6873
6874static int
6875arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
6876 struct regcache *regs, struct displaced_step_closure *dsc)
6877{
6878 unsigned int op1 = bits (insn, 20, 25);
6879 int op = bit (insn, 4);
6880 unsigned int coproc = bits (insn, 8, 11);
6881
6882 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
6883 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
6884 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6885 && (coproc & 0xe) != 0xa)
6886 /* stc/stc2. */
6887 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6888 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6889 && (coproc & 0xe) != 0xa)
6890 /* ldc/ldc2 imm/lit. */
6891 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6892 else if ((op1 & 0x3e) == 0x00)
6893 return arm_copy_undef (gdbarch, insn, dsc);
6894 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
6895 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
6896 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
6897 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6898 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
6899 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6900 else if ((op1 & 0x30) == 0x20 && !op)
6901 {
6902 if ((coproc & 0xe) == 0xa)
6903 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
6904 else
6905 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6906 }
6907 else if ((op1 & 0x30) == 0x20 && op)
6908 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
6909 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
6910 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6911 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
6912 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6913 else if ((op1 & 0x30) == 0x30)
6914 return arm_copy_svc (gdbarch, insn, regs, dsc);
6915 else
6916 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
6917}
6918
6919static int
6920thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
6921 uint16_t insn2, struct regcache *regs,
6922 struct displaced_step_closure *dsc)
6923{
6924 unsigned int coproc = bits (insn2, 8, 11);
6925 unsigned int bit_5_8 = bits (insn1, 5, 8);
6926 unsigned int bit_9 = bit (insn1, 9);
6927 unsigned int bit_4 = bit (insn1, 4);
6928
6929 if (bit_9 == 0)
6930 {
6931 if (bit_5_8 == 2)
6932 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6933 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
6934 dsc);
6935 else if (bit_5_8 == 0) /* UNDEFINED. */
6936 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
6937 else
6938 {
6939 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
6940 if ((coproc & 0xe) == 0xa)
6941 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
6942 dsc);
6943 else /* coproc is not 101x. */
6944 {
6945 if (bit_4 == 0) /* STC/STC2. */
6946 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6947 "stc/stc2", dsc);
6948 else /* LDC/LDC2 {literal, immeidate}. */
6949 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
6950 regs, dsc);
6951 }
6952 }
6953 }
6954 else
6955 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
6956
6957 return 0;
6958}
6959
6960static void
6961install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
6962 struct displaced_step_closure *dsc, int rd)
6963{
6964 /* ADR Rd, #imm
6965
6966 Rewrite as:
6967
6968 Preparation: Rd <- PC
6969 Insn: ADD Rd, #imm
6970 Cleanup: Null.
6971 */
6972
6973 /* Rd <- PC */
6974 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
6975 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
6976}
6977
6978static int
6979thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
6980 struct displaced_step_closure *dsc,
6981 int rd, unsigned int imm)
6982{
6983
6984 /* Encoding T2: ADDS Rd, #imm */
6985 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
6986
6987 install_pc_relative (gdbarch, regs, dsc, rd);
6988
6989 return 0;
6990}
6991
6992static int
6993thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
6994 struct regcache *regs,
6995 struct displaced_step_closure *dsc)
6996{
6997 unsigned int rd = bits (insn, 8, 10);
6998 unsigned int imm8 = bits (insn, 0, 7);
6999
7000 if (debug_displaced)
7001 fprintf_unfiltered (gdb_stdlog,
7002 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
7003 rd, imm8, insn);
7004
7005 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
7006}
7007
7008static int
7009thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
7010 uint16_t insn2, struct regcache *regs,
7011 struct displaced_step_closure *dsc)
7012{
7013 unsigned int rd = bits (insn2, 8, 11);
7014 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
7015 extract raw immediate encoding rather than computing immediate. When
7016 generating ADD or SUB instruction, we can simply perform OR operation to
7017 set immediate into ADD. */
7018 unsigned int imm_3_8 = insn2 & 0x70ff;
7019 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
7020
7021 if (debug_displaced)
7022 fprintf_unfiltered (gdb_stdlog,
7023 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
7024 rd, imm_i, imm_3_8, insn1, insn2);
7025
7026 if (bit (insn1, 7)) /* Encoding T2 */
7027 {
7028 /* Encoding T3: SUB Rd, Rd, #imm */
7029 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
7030 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7031 }
7032 else /* Encoding T3 */
7033 {
7034 /* Encoding T3: ADD Rd, Rd, #imm */
7035 dsc->modinsn[0] = (0xf100 | rd | imm_i);
7036 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7037 }
7038 dsc->numinsns = 2;
7039
7040 install_pc_relative (gdbarch, regs, dsc, rd);
7041
7042 return 0;
7043}
7044
7045static int
7046thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
7047 struct regcache *regs,
7048 struct displaced_step_closure *dsc)
7049{
7050 unsigned int rt = bits (insn1, 8, 10);
7051 unsigned int pc;
7052 int imm8 = (bits (insn1, 0, 7) << 2);
7053
7054 /* LDR Rd, #imm8
7055
7056 Rwrite as:
7057
7058 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
7059
7060 Insn: LDR R0, [R2, R3];
7061 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
7062
7063 if (debug_displaced)
7064 fprintf_unfiltered (gdb_stdlog,
7065 "displaced: copying thumb ldr r%d [pc #%d]\n"
7066 , rt, imm8);
7067
7068 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
7069 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
7070 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
7071 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7072 /* The assembler calculates the required value of the offset from the
7073 Align(PC,4) value of this instruction to the label. */
7074 pc = pc & 0xfffffffc;
7075
7076 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
7077 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
7078
7079 dsc->rd = rt;
7080 dsc->u.ldst.xfersize = 4;
7081 dsc->u.ldst.rn = 0;
7082 dsc->u.ldst.immed = 0;
7083 dsc->u.ldst.writeback = 0;
7084 dsc->u.ldst.restore_r4 = 0;
7085
7086 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
7087
7088 dsc->cleanup = &cleanup_load;
7089
7090 return 0;
7091}
7092
7093/* Copy Thumb cbnz/cbz insruction. */
7094
7095static int
7096thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
7097 struct regcache *regs,
7098 struct displaced_step_closure *dsc)
7099{
7100 int non_zero = bit (insn1, 11);
7101 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
7102 CORE_ADDR from = dsc->insn_addr;
7103 int rn = bits (insn1, 0, 2);
7104 int rn_val = displaced_read_reg (regs, dsc, rn);
7105
7106 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
7107 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
7108 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
7109 condition is false, let it be, cleanup_branch will do nothing. */
7110 if (dsc->u.branch.cond)
7111 {
7112 dsc->u.branch.cond = INST_AL;
7113 dsc->u.branch.dest = from + 4 + imm5;
7114 }
7115 else
7116 dsc->u.branch.dest = from + 2;
7117
7118 dsc->u.branch.link = 0;
7119 dsc->u.branch.exchange = 0;
7120
7121 if (debug_displaced)
7122 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
7123 " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
7124 rn, rn_val, insn1, dsc->u.branch.dest);
7125
7126 dsc->modinsn[0] = THUMB_NOP;
7127
7128 dsc->cleanup = &cleanup_branch;
7129 return 0;
7130}
7131
7132/* Copy Table Branch Byte/Halfword */
7133static int
7134thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
7135 uint16_t insn2, struct regcache *regs,
7136 struct displaced_step_closure *dsc)
7137{
7138 ULONGEST rn_val, rm_val;
7139 int is_tbh = bit (insn2, 4);
7140 CORE_ADDR halfwords = 0;
7141 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7142
7143 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
7144 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
7145
7146 if (is_tbh)
7147 {
7148 gdb_byte buf[2];
7149
7150 target_read_memory (rn_val + 2 * rm_val, buf, 2);
7151 halfwords = extract_unsigned_integer (buf, 2, byte_order);
7152 }
7153 else
7154 {
7155 gdb_byte buf[1];
7156
7157 target_read_memory (rn_val + rm_val, buf, 1);
7158 halfwords = extract_unsigned_integer (buf, 1, byte_order);
7159 }
7160
7161 if (debug_displaced)
7162 fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
7163 " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
7164 (unsigned int) rn_val, (unsigned int) rm_val,
7165 (unsigned int) halfwords);
7166
7167 dsc->u.branch.cond = INST_AL;
7168 dsc->u.branch.link = 0;
7169 dsc->u.branch.exchange = 0;
7170 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
7171
7172 dsc->cleanup = &cleanup_branch;
7173
7174 return 0;
7175}
7176
7177static void
7178cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
7179 struct displaced_step_closure *dsc)
7180{
7181 /* PC <- r7 */
7182 int val = displaced_read_reg (regs, dsc, 7);
7183 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
7184
7185 /* r7 <- r8 */
7186 val = displaced_read_reg (regs, dsc, 8);
7187 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
7188
7189 /* r8 <- tmp[0] */
7190 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
7191
7192}
7193
7194static int
7195thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
7196 struct regcache *regs,
7197 struct displaced_step_closure *dsc)
7198{
7199 dsc->u.block.regmask = insn1 & 0x00ff;
7200
7201 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
7202 to :
7203
7204 (1) register list is full, that is, r0-r7 are used.
7205 Prepare: tmp[0] <- r8
7206
7207 POP {r0, r1, ...., r6, r7}; remove PC from reglist
7208 MOV r8, r7; Move value of r7 to r8;
7209 POP {r7}; Store PC value into r7.
7210
7211 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
7212
7213 (2) register list is not full, supposing there are N registers in
7214 register list (except PC, 0 <= N <= 7).
7215 Prepare: for each i, 0 - N, tmp[i] <- ri.
7216
7217 POP {r0, r1, ...., rN};
7218
7219 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
7220 from tmp[] properly.
7221 */
7222 if (debug_displaced)
7223 fprintf_unfiltered (gdb_stdlog,
7224 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
7225 dsc->u.block.regmask, insn1);
7226
7227 if (dsc->u.block.regmask == 0xff)
7228 {
7229 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
7230
7231 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
7232 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
7233 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
7234
7235 dsc->numinsns = 3;
7236 dsc->cleanup = &cleanup_pop_pc_16bit_all;
7237 }
7238 else
7239 {
7240 unsigned int num_in_list = bitcount (dsc->u.block.regmask);
7241 unsigned int i;
7242 unsigned int new_regmask;
7243
7244 for (i = 0; i < num_in_list + 1; i++)
7245 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7246
7247 new_regmask = (1 << (num_in_list + 1)) - 1;
7248
7249 if (debug_displaced)
7250 fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
7251 "{..., pc}: original reg list %.4x,"
7252 " modified list %.4x\n"),
7253 (int) dsc->u.block.regmask, new_regmask);
7254
7255 dsc->u.block.regmask |= 0x8000;
7256 dsc->u.block.writeback = 0;
7257 dsc->u.block.cond = INST_AL;
7258
7259 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
7260
7261 dsc->cleanup = &cleanup_block_load_pc;
7262 }
7263
7264 return 0;
7265}
7266
7267static void
7268thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7269 struct regcache *regs,
7270 struct displaced_step_closure *dsc)
7271{
7272 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
7273 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
7274 int err = 0;
7275
7276 /* 16-bit thumb instructions. */
7277 switch (op_bit_12_15)
7278 {
7279 /* Shift (imme), add, subtract, move and compare. */
7280 case 0: case 1: case 2: case 3:
7281 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7282 "shift/add/sub/mov/cmp",
7283 dsc);
7284 break;
7285 case 4:
7286 switch (op_bit_10_11)
7287 {
7288 case 0: /* Data-processing */
7289 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7290 "data-processing",
7291 dsc);
7292 break;
7293 case 1: /* Special data instructions and branch and exchange. */
7294 {
7295 unsigned short op = bits (insn1, 7, 9);
7296 if (op == 6 || op == 7) /* BX or BLX */
7297 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
7298 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
7299 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
7300 else
7301 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
7302 dsc);
7303 }
7304 break;
7305 default: /* LDR (literal) */
7306 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
7307 }
7308 break;
7309 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
7310 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
7311 break;
7312 case 10:
7313 if (op_bit_10_11 < 2) /* Generate PC-relative address */
7314 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
7315 else /* Generate SP-relative address */
7316 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
7317 break;
7318 case 11: /* Misc 16-bit instructions */
7319 {
7320 switch (bits (insn1, 8, 11))
7321 {
7322 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
7323 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
7324 break;
7325 case 12: case 13: /* POP */
7326 if (bit (insn1, 8)) /* PC is in register list. */
7327 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
7328 else
7329 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
7330 break;
7331 case 15: /* If-Then, and hints */
7332 if (bits (insn1, 0, 3))
7333 /* If-Then makes up to four following instructions conditional.
7334 IT instruction itself is not conditional, so handle it as a
7335 common unmodified instruction. */
7336 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
7337 dsc);
7338 else
7339 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
7340 break;
7341 default:
7342 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
7343 }
7344 }
7345 break;
7346 case 12:
7347 if (op_bit_10_11 < 2) /* Store multiple registers */
7348 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
7349 else /* Load multiple registers */
7350 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
7351 break;
7352 case 13: /* Conditional branch and supervisor call */
7353 if (bits (insn1, 9, 11) != 7) /* conditional branch */
7354 err = thumb_copy_b (gdbarch, insn1, dsc);
7355 else
7356 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
7357 break;
7358 case 14: /* Unconditional branch */
7359 err = thumb_copy_b (gdbarch, insn1, dsc);
7360 break;
7361 default:
7362 err = 1;
7363 }
7364
7365 if (err)
7366 internal_error (__FILE__, __LINE__,
7367 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
7368}
7369
7370static int
7371decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
7372 uint16_t insn1, uint16_t insn2,
7373 struct regcache *regs,
7374 struct displaced_step_closure *dsc)
7375{
7376 int rt = bits (insn2, 12, 15);
7377 int rn = bits (insn1, 0, 3);
7378 int op1 = bits (insn1, 7, 8);
7379
7380 switch (bits (insn1, 5, 6))
7381 {
7382 case 0: /* Load byte and memory hints */
7383 if (rt == 0xf) /* PLD/PLI */
7384 {
7385 if (rn == 0xf)
7386 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
7387 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
7388 else
7389 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7390 "pli/pld", dsc);
7391 }
7392 else
7393 {
7394 if (rn == 0xf) /* LDRB/LDRSB (literal) */
7395 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7396 1);
7397 else
7398 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7399 "ldrb{reg, immediate}/ldrbt",
7400 dsc);
7401 }
7402
7403 break;
7404 case 1: /* Load halfword and memory hints. */
7405 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
7406 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7407 "pld/unalloc memhint", dsc);
7408 else
7409 {
7410 if (rn == 0xf)
7411 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7412 2);
7413 else
7414 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7415 "ldrh/ldrht", dsc);
7416 }
7417 break;
7418 case 2: /* Load word */
7419 {
7420 int insn2_bit_8_11 = bits (insn2, 8, 11);
7421
7422 if (rn == 0xf)
7423 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
7424 else if (op1 == 0x1) /* Encoding T3 */
7425 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
7426 0, 1);
7427 else /* op1 == 0x0 */
7428 {
7429 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
7430 /* LDR (immediate) */
7431 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7432 dsc, bit (insn2, 8), 1);
7433 else if (insn2_bit_8_11 == 0xe) /* LDRT */
7434 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7435 "ldrt", dsc);
7436 else
7437 /* LDR (register) */
7438 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7439 dsc, 0, 0);
7440 }
7441 break;
7442 }
7443 default:
7444 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7445 break;
7446 }
7447 return 0;
7448}
7449
7450static void
7451thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7452 uint16_t insn2, struct regcache *regs,
7453 struct displaced_step_closure *dsc)
7454{
7455 int err = 0;
7456 unsigned short op = bit (insn2, 15);
7457 unsigned int op1 = bits (insn1, 11, 12);
7458
7459 switch (op1)
7460 {
7461 case 1:
7462 {
7463 switch (bits (insn1, 9, 10))
7464 {
7465 case 0:
7466 if (bit (insn1, 6))
7467 {
7468 /* Load/store {dual, execlusive}, table branch. */
7469 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
7470 && bits (insn2, 5, 7) == 0)
7471 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
7472 dsc);
7473 else
7474 /* PC is not allowed to use in load/store {dual, exclusive}
7475 instructions. */
7476 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7477 "load/store dual/ex", dsc);
7478 }
7479 else /* load/store multiple */
7480 {
7481 switch (bits (insn1, 7, 8))
7482 {
7483 case 0: case 3: /* SRS, RFE */
7484 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7485 "srs/rfe", dsc);
7486 break;
7487 case 1: case 2: /* LDM/STM/PUSH/POP */
7488 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
7489 break;
7490 }
7491 }
7492 break;
7493
7494 case 1:
7495 /* Data-processing (shift register). */
7496 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
7497 dsc);
7498 break;
7499 default: /* Coprocessor instructions. */
7500 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7501 break;
7502 }
7503 break;
7504 }
7505 case 2: /* op1 = 2 */
7506 if (op) /* Branch and misc control. */
7507 {
7508 if (bit (insn2, 14) /* BLX/BL */
7509 || bit (insn2, 12) /* Unconditional branch */
7510 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
7511 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
7512 else
7513 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7514 "misc ctrl", dsc);
7515 }
7516 else
7517 {
7518 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
7519 {
7520 int op = bits (insn1, 4, 8);
7521 int rn = bits (insn1, 0, 3);
7522 if ((op == 0 || op == 0xa) && rn == 0xf)
7523 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
7524 regs, dsc);
7525 else
7526 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7527 "dp/pb", dsc);
7528 }
7529 else /* Data processing (modified immeidate) */
7530 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7531 "dp/mi", dsc);
7532 }
7533 break;
7534 case 3: /* op1 = 3 */
7535 switch (bits (insn1, 9, 10))
7536 {
7537 case 0:
7538 if (bit (insn1, 4))
7539 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
7540 regs, dsc);
7541 else /* NEON Load/Store and Store single data item */
7542 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7543 "neon elt/struct load/store",
7544 dsc);
7545 break;
7546 case 1: /* op1 = 3, bits (9, 10) == 1 */
7547 switch (bits (insn1, 7, 8))
7548 {
7549 case 0: case 1: /* Data processing (register) */
7550 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7551 "dp(reg)", dsc);
7552 break;
7553 case 2: /* Multiply and absolute difference */
7554 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7555 "mul/mua/diff", dsc);
7556 break;
7557 case 3: /* Long multiply and divide */
7558 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7559 "lmul/lmua", dsc);
7560 break;
7561 }
7562 break;
7563 default: /* Coprocessor instructions */
7564 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7565 break;
7566 }
7567 break;
7568 default:
7569 err = 1;
7570 }
7571
7572 if (err)
7573 internal_error (__FILE__, __LINE__,
7574 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
7575
7576}
7577
7578static void
7579thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7580 struct regcache *regs,
7581 struct displaced_step_closure *dsc)
7582{
7583 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7584 uint16_t insn1
7585 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
7586
7587 if (debug_displaced)
7588 fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
7589 "at %.8lx\n", insn1, (unsigned long) from);
7590
7591 dsc->is_thumb = 1;
7592 dsc->insn_size = thumb_insn_size (insn1);
7593 if (thumb_insn_size (insn1) == 4)
7594 {
7595 uint16_t insn2
7596 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
7597 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
7598 }
7599 else
7600 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
7601}
7602
7603void
7604arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7605 CORE_ADDR to, struct regcache *regs,
7606 struct displaced_step_closure *dsc)
7607{
7608 int err = 0;
7609 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7610 uint32_t insn;
7611
7612 /* Most displaced instructions use a 1-instruction scratch space, so set this
7613 here and override below if/when necessary. */
7614 dsc->numinsns = 1;
7615 dsc->insn_addr = from;
7616 dsc->scratch_base = to;
7617 dsc->cleanup = NULL;
7618 dsc->wrote_to_pc = 0;
7619
7620 if (!displaced_in_arm_mode (regs))
7621 return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
7622
7623 dsc->is_thumb = 0;
7624 dsc->insn_size = 4;
7625 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
7626 if (debug_displaced)
7627 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
7628 "at %.8lx\n", (unsigned long) insn,
7629 (unsigned long) from);
7630
7631 if ((insn & 0xf0000000) == 0xf0000000)
7632 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
7633 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
7634 {
7635 case 0x0: case 0x1: case 0x2: case 0x3:
7636 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
7637 break;
7638
7639 case 0x4: case 0x5: case 0x6:
7640 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
7641 break;
7642
7643 case 0x7:
7644 err = arm_decode_media (gdbarch, insn, dsc);
7645 break;
7646
7647 case 0x8: case 0x9: case 0xa: case 0xb:
7648 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
7649 break;
7650
7651 case 0xc: case 0xd: case 0xe: case 0xf:
7652 err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
7653 break;
7654 }
7655
7656 if (err)
7657 internal_error (__FILE__, __LINE__,
7658 _("arm_process_displaced_insn: Instruction decode error"));
7659}
7660
7661/* Actually set up the scratch space for a displaced instruction. */
7662
7663void
7664arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
7665 CORE_ADDR to, struct displaced_step_closure *dsc)
7666{
7667 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7668 unsigned int i, len, offset;
7669 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7670 int size = dsc->is_thumb? 2 : 4;
7671 const gdb_byte *bkp_insn;
7672
7673 offset = 0;
7674 /* Poke modified instruction(s). */
7675 for (i = 0; i < dsc->numinsns; i++)
7676 {
7677 if (debug_displaced)
7678 {
7679 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
7680 if (size == 4)
7681 fprintf_unfiltered (gdb_stdlog, "%.8lx",
7682 dsc->modinsn[i]);
7683 else if (size == 2)
7684 fprintf_unfiltered (gdb_stdlog, "%.4x",
7685 (unsigned short)dsc->modinsn[i]);
7686
7687 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
7688 (unsigned long) to + offset);
7689
7690 }
7691 write_memory_unsigned_integer (to + offset, size,
7692 byte_order_for_code,
7693 dsc->modinsn[i]);
7694 offset += size;
7695 }
7696
7697 /* Choose the correct breakpoint instruction. */
7698 if (dsc->is_thumb)
7699 {
7700 bkp_insn = tdep->thumb_breakpoint;
7701 len = tdep->thumb_breakpoint_size;
7702 }
7703 else
7704 {
7705 bkp_insn = tdep->arm_breakpoint;
7706 len = tdep->arm_breakpoint_size;
7707 }
7708
7709 /* Put breakpoint afterwards. */
7710 write_memory (to + offset, bkp_insn, len);
7711
7712 if (debug_displaced)
7713 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
7714 paddress (gdbarch, from), paddress (gdbarch, to));
7715}
7716
7717/* Entry point for cleaning things up after a displaced instruction has been
7718 single-stepped. */
7719
7720void
7721arm_displaced_step_fixup (struct gdbarch *gdbarch,
7722 struct displaced_step_closure *dsc,
7723 CORE_ADDR from, CORE_ADDR to,
7724 struct regcache *regs)
7725{
7726 if (dsc->cleanup)
7727 dsc->cleanup (gdbarch, regs, dsc);
7728
7729 if (!dsc->wrote_to_pc)
7730 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7731 dsc->insn_addr + dsc->insn_size);
7732
7733}
7734
7735#include "bfd-in2.h"
7736#include "libcoff.h"
7737
7738static int
7739gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7740{
7741 gdb_disassembler *di
7742 = static_cast<gdb_disassembler *>(info->application_data);
7743 struct gdbarch *gdbarch = di->arch ();
7744
7745 if (arm_pc_is_thumb (gdbarch, memaddr))
7746 {
7747 static asymbol *asym;
7748 static combined_entry_type ce;
7749 static struct coff_symbol_struct csym;
7750 static struct bfd fake_bfd;
7751 static bfd_target fake_target;
7752
7753 if (csym.native == NULL)
7754 {
7755 /* Create a fake symbol vector containing a Thumb symbol.
7756 This is solely so that the code in print_insn_little_arm()
7757 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7758 the presence of a Thumb symbol and switch to decoding
7759 Thumb instructions. */
7760
7761 fake_target.flavour = bfd_target_coff_flavour;
7762 fake_bfd.xvec = &fake_target;
7763 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7764 csym.native = &ce;
7765 csym.symbol.the_bfd = &fake_bfd;
7766 csym.symbol.name = "fake";
7767 asym = (asymbol *) & csym;
7768 }
7769
7770 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7771 info->symbols = &asym;
7772 }
7773 else
7774 info->symbols = NULL;
7775
7776 /* GDB is able to get bfd_mach from the exe_bfd, info->mach is
7777 accurate, so mark USER_SPECIFIED_MACHINE_TYPE bit. Otherwise,
7778 opcodes/arm-dis.c:print_insn reset info->mach, and it will trigger
7779 the assert on the mismatch of info->mach and bfd_get_mach (exec_bfd)
7780 in default_print_insn. */
7781 if (exec_bfd != NULL)
7782 info->flags |= USER_SPECIFIED_MACHINE_TYPE;
7783
7784 return default_print_insn (memaddr, info);
7785}
7786
7787/* The following define instruction sequences that will cause ARM
7788 cpu's to take an undefined instruction trap. These are used to
7789 signal a breakpoint to GDB.
7790
7791 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7792 modes. A different instruction is required for each mode. The ARM
7793 cpu's can also be big or little endian. Thus four different
7794 instructions are needed to support all cases.
7795
7796 Note: ARMv4 defines several new instructions that will take the
7797 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7798 not in fact add the new instructions. The new undefined
7799 instructions in ARMv4 are all instructions that had no defined
7800 behaviour in earlier chips. There is no guarantee that they will
7801 raise an exception, but may be treated as NOP's. In practice, it
7802 may only safe to rely on instructions matching:
7803
7804 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7805 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7806 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7807
7808 Even this may only true if the condition predicate is true. The
7809 following use a condition predicate of ALWAYS so it is always TRUE.
7810
7811 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7812 and NetBSD all use a software interrupt rather than an undefined
7813 instruction to force a trap. This can be handled by by the
7814 abi-specific code during establishment of the gdbarch vector. */
7815
7816#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7817#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7818#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7819#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7820
7821static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7822static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7823static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7824static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
7825
7826/* Implement the breakpoint_kind_from_pc gdbarch method. */
7827
7828static int
7829arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7830{
7831 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7832 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7833
7834 if (arm_pc_is_thumb (gdbarch, *pcptr))
7835 {
7836 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
7837
7838 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7839 check whether we are replacing a 32-bit instruction. */
7840 if (tdep->thumb2_breakpoint != NULL)
7841 {
7842 gdb_byte buf[2];
7843
7844 if (target_read_memory (*pcptr, buf, 2) == 0)
7845 {
7846 unsigned short inst1;
7847
7848 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
7849 if (thumb_insn_size (inst1) == 4)
7850 return ARM_BP_KIND_THUMB2;
7851 }
7852 }
7853
7854 return ARM_BP_KIND_THUMB;
7855 }
7856 else
7857 return ARM_BP_KIND_ARM;
7858
7859}
7860
7861/* Implement the sw_breakpoint_from_kind gdbarch method. */
7862
7863static const gdb_byte *
7864arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7865{
7866 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7867
7868 switch (kind)
7869 {
7870 case ARM_BP_KIND_ARM:
7871 *size = tdep->arm_breakpoint_size;
7872 return tdep->arm_breakpoint;
7873 case ARM_BP_KIND_THUMB:
7874 *size = tdep->thumb_breakpoint_size;
7875 return tdep->thumb_breakpoint;
7876 case ARM_BP_KIND_THUMB2:
7877 *size = tdep->thumb2_breakpoint_size;
7878 return tdep->thumb2_breakpoint;
7879 default:
7880 gdb_assert_not_reached ("unexpected arm breakpoint kind");
7881 }
7882}
7883
7884/* Implement the breakpoint_kind_from_current_state gdbarch method. */
7885
7886static int
7887arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
7888 struct regcache *regcache,
7889 CORE_ADDR *pcptr)
7890{
7891 gdb_byte buf[4];
7892
7893 /* Check the memory pointed by PC is readable. */
7894 if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0)
7895 {
7896 struct arm_get_next_pcs next_pcs_ctx;
7897
7898 arm_get_next_pcs_ctor (&next_pcs_ctx,
7899 &arm_get_next_pcs_ops,
7900 gdbarch_byte_order (gdbarch),
7901 gdbarch_byte_order_for_code (gdbarch),
7902 0,
7903 regcache);
7904
7905 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
7906
7907 /* If MEMADDR is the next instruction of current pc, do the
7908 software single step computation, and get the thumb mode by
7909 the destination address. */
7910 for (CORE_ADDR pc : next_pcs)
7911 {
7912 if (UNMAKE_THUMB_ADDR (pc) == *pcptr)
7913 {
7914 if (IS_THUMB_ADDR (pc))
7915 {
7916 *pcptr = MAKE_THUMB_ADDR (*pcptr);
7917 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7918 }
7919 else
7920 return ARM_BP_KIND_ARM;
7921 }
7922 }
7923 }
7924
7925 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7926}
7927
7928/* Extract from an array REGBUF containing the (raw) register state a
7929 function return value of type TYPE, and copy that, in virtual
7930 format, into VALBUF. */
7931
7932static void
7933arm_extract_return_value (struct type *type, struct regcache *regs,
7934 gdb_byte *valbuf)
7935{
7936 struct gdbarch *gdbarch = get_regcache_arch (regs);
7937 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7938
7939 if (TYPE_CODE_FLT == TYPE_CODE (type))
7940 {
7941 switch (gdbarch_tdep (gdbarch)->fp_model)
7942 {
7943 case ARM_FLOAT_FPA:
7944 {
7945 /* The value is in register F0 in internal format. We need to
7946 extract the raw value and then convert it to the desired
7947 internal type. */
7948 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7949
7950 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
7951 convert_from_extended (floatformat_from_type (type), tmpbuf,
7952 valbuf, gdbarch_byte_order (gdbarch));
7953 }
7954 break;
7955
7956 case ARM_FLOAT_SOFT_FPA:
7957 case ARM_FLOAT_SOFT_VFP:
7958 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7959 not using the VFP ABI code. */
7960 case ARM_FLOAT_VFP:
7961 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
7962 if (TYPE_LENGTH (type) > 4)
7963 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7964 valbuf + INT_REGISTER_SIZE);
7965 break;
7966
7967 default:
7968 internal_error (__FILE__, __LINE__,
7969 _("arm_extract_return_value: "
7970 "Floating point model not supported"));
7971 break;
7972 }
7973 }
7974 else if (TYPE_CODE (type) == TYPE_CODE_INT
7975 || TYPE_CODE (type) == TYPE_CODE_CHAR
7976 || TYPE_CODE (type) == TYPE_CODE_BOOL
7977 || TYPE_CODE (type) == TYPE_CODE_PTR
7978 || TYPE_IS_REFERENCE (type)
7979 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7980 {
7981 /* If the type is a plain integer, then the access is
7982 straight-forward. Otherwise we have to play around a bit
7983 more. */
7984 int len = TYPE_LENGTH (type);
7985 int regno = ARM_A1_REGNUM;
7986 ULONGEST tmp;
7987
7988 while (len > 0)
7989 {
7990 /* By using store_unsigned_integer we avoid having to do
7991 anything special for small big-endian values. */
7992 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7993 store_unsigned_integer (valbuf,
7994 (len > INT_REGISTER_SIZE
7995 ? INT_REGISTER_SIZE : len),
7996 byte_order, tmp);
7997 len -= INT_REGISTER_SIZE;
7998 valbuf += INT_REGISTER_SIZE;
7999 }
8000 }
8001 else
8002 {
8003 /* For a structure or union the behaviour is as if the value had
8004 been stored to word-aligned memory and then loaded into
8005 registers with 32-bit load instruction(s). */
8006 int len = TYPE_LENGTH (type);
8007 int regno = ARM_A1_REGNUM;
8008 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8009
8010 while (len > 0)
8011 {
8012 regcache_cooked_read (regs, regno++, tmpbuf);
8013 memcpy (valbuf, tmpbuf,
8014 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8015 len -= INT_REGISTER_SIZE;
8016 valbuf += INT_REGISTER_SIZE;
8017 }
8018 }
8019}
8020
8021
8022/* Will a function return an aggregate type in memory or in a
8023 register? Return 0 if an aggregate type can be returned in a
8024 register, 1 if it must be returned in memory. */
8025
8026static int
8027arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
8028{
8029 enum type_code code;
8030
8031 type = check_typedef (type);
8032
8033 /* Simple, non-aggregate types (ie not including vectors and
8034 complex) are always returned in a register (or registers). */
8035 code = TYPE_CODE (type);
8036 if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
8037 && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
8038 return 0;
8039
8040 if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
8041 {
8042 /* Vector values should be returned using ARM registers if they
8043 are not over 16 bytes. */
8044 return (TYPE_LENGTH (type) > 16);
8045 }
8046
8047 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
8048 {
8049 /* The AAPCS says all aggregates not larger than a word are returned
8050 in a register. */
8051 if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE)
8052 return 0;
8053
8054 return 1;
8055 }
8056 else
8057 {
8058 int nRc;
8059
8060 /* All aggregate types that won't fit in a register must be returned
8061 in memory. */
8062 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
8063 return 1;
8064
8065 /* In the ARM ABI, "integer" like aggregate types are returned in
8066 registers. For an aggregate type to be integer like, its size
8067 must be less than or equal to INT_REGISTER_SIZE and the
8068 offset of each addressable subfield must be zero. Note that bit
8069 fields are not addressable, and all addressable subfields of
8070 unions always start at offset zero.
8071
8072 This function is based on the behaviour of GCC 2.95.1.
8073 See: gcc/arm.c: arm_return_in_memory() for details.
8074
8075 Note: All versions of GCC before GCC 2.95.2 do not set up the
8076 parameters correctly for a function returning the following
8077 structure: struct { float f;}; This should be returned in memory,
8078 not a register. Richard Earnshaw sent me a patch, but I do not
8079 know of any way to detect if a function like the above has been
8080 compiled with the correct calling convention. */
8081
8082 /* Assume all other aggregate types can be returned in a register.
8083 Run a check for structures, unions and arrays. */
8084 nRc = 0;
8085
8086 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
8087 {
8088 int i;
8089 /* Need to check if this struct/union is "integer" like. For
8090 this to be true, its size must be less than or equal to
8091 INT_REGISTER_SIZE and the offset of each addressable
8092 subfield must be zero. Note that bit fields are not
8093 addressable, and unions always start at offset zero. If any
8094 of the subfields is a floating point type, the struct/union
8095 cannot be an integer type. */
8096
8097 /* For each field in the object, check:
8098 1) Is it FP? --> yes, nRc = 1;
8099 2) Is it addressable (bitpos != 0) and
8100 not packed (bitsize == 0)?
8101 --> yes, nRc = 1
8102 */
8103
8104 for (i = 0; i < TYPE_NFIELDS (type); i++)
8105 {
8106 enum type_code field_type_code;
8107
8108 field_type_code
8109 = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
8110 i)));
8111
8112 /* Is it a floating point type field? */
8113 if (field_type_code == TYPE_CODE_FLT)
8114 {
8115 nRc = 1;
8116 break;
8117 }
8118
8119 /* If bitpos != 0, then we have to care about it. */
8120 if (TYPE_FIELD_BITPOS (type, i) != 0)
8121 {
8122 /* Bitfields are not addressable. If the field bitsize is
8123 zero, then the field is not packed. Hence it cannot be
8124 a bitfield or any other packed type. */
8125 if (TYPE_FIELD_BITSIZE (type, i) == 0)
8126 {
8127 nRc = 1;
8128 break;
8129 }
8130 }
8131 }
8132 }
8133
8134 return nRc;
8135 }
8136}
8137
8138/* Write into appropriate registers a function return value of type
8139 TYPE, given in virtual format. */
8140
8141static void
8142arm_store_return_value (struct type *type, struct regcache *regs,
8143 const gdb_byte *valbuf)
8144{
8145 struct gdbarch *gdbarch = get_regcache_arch (regs);
8146 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8147
8148 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8149 {
8150 gdb_byte buf[FP_REGISTER_SIZE];
8151
8152 switch (gdbarch_tdep (gdbarch)->fp_model)
8153 {
8154 case ARM_FLOAT_FPA:
8155
8156 convert_to_extended (floatformat_from_type (type), buf, valbuf,
8157 gdbarch_byte_order (gdbarch));
8158 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
8159 break;
8160
8161 case ARM_FLOAT_SOFT_FPA:
8162 case ARM_FLOAT_SOFT_VFP:
8163 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8164 not using the VFP ABI code. */
8165 case ARM_FLOAT_VFP:
8166 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
8167 if (TYPE_LENGTH (type) > 4)
8168 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
8169 valbuf + INT_REGISTER_SIZE);
8170 break;
8171
8172 default:
8173 internal_error (__FILE__, __LINE__,
8174 _("arm_store_return_value: Floating "
8175 "point model not supported"));
8176 break;
8177 }
8178 }
8179 else if (TYPE_CODE (type) == TYPE_CODE_INT
8180 || TYPE_CODE (type) == TYPE_CODE_CHAR
8181 || TYPE_CODE (type) == TYPE_CODE_BOOL
8182 || TYPE_CODE (type) == TYPE_CODE_PTR
8183 || TYPE_IS_REFERENCE (type)
8184 || TYPE_CODE (type) == TYPE_CODE_ENUM)
8185 {
8186 if (TYPE_LENGTH (type) <= 4)
8187 {
8188 /* Values of one word or less are zero/sign-extended and
8189 returned in r0. */
8190 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8191 LONGEST val = unpack_long (type, valbuf);
8192
8193 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
8194 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
8195 }
8196 else
8197 {
8198 /* Integral values greater than one word are stored in consecutive
8199 registers starting with r0. This will always be a multiple of
8200 the regiser size. */
8201 int len = TYPE_LENGTH (type);
8202 int regno = ARM_A1_REGNUM;
8203
8204 while (len > 0)
8205 {
8206 regcache_cooked_write (regs, regno++, valbuf);
8207 len -= INT_REGISTER_SIZE;
8208 valbuf += INT_REGISTER_SIZE;
8209 }
8210 }
8211 }
8212 else
8213 {
8214 /* For a structure or union the behaviour is as if the value had
8215 been stored to word-aligned memory and then loaded into
8216 registers with 32-bit load instruction(s). */
8217 int len = TYPE_LENGTH (type);
8218 int regno = ARM_A1_REGNUM;
8219 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8220
8221 while (len > 0)
8222 {
8223 memcpy (tmpbuf, valbuf,
8224 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8225 regcache_cooked_write (regs, regno++, tmpbuf);
8226 len -= INT_REGISTER_SIZE;
8227 valbuf += INT_REGISTER_SIZE;
8228 }
8229 }
8230}
8231
8232
8233/* Handle function return values. */
8234
8235static enum return_value_convention
8236arm_return_value (struct gdbarch *gdbarch, struct value *function,
8237 struct type *valtype, struct regcache *regcache,
8238 gdb_byte *readbuf, const gdb_byte *writebuf)
8239{
8240 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8241 struct type *func_type = function ? value_type (function) : NULL;
8242 enum arm_vfp_cprc_base_type vfp_base_type;
8243 int vfp_base_count;
8244
8245 if (arm_vfp_abi_for_function (gdbarch, func_type)
8246 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
8247 {
8248 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
8249 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
8250 int i;
8251 for (i = 0; i < vfp_base_count; i++)
8252 {
8253 if (reg_char == 'q')
8254 {
8255 if (writebuf)
8256 arm_neon_quad_write (gdbarch, regcache, i,
8257 writebuf + i * unit_length);
8258
8259 if (readbuf)
8260 arm_neon_quad_read (gdbarch, regcache, i,
8261 readbuf + i * unit_length);
8262 }
8263 else
8264 {
8265 char name_buf[4];
8266 int regnum;
8267
8268 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
8269 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8270 strlen (name_buf));
8271 if (writebuf)
8272 regcache_cooked_write (regcache, regnum,
8273 writebuf + i * unit_length);
8274 if (readbuf)
8275 regcache_cooked_read (regcache, regnum,
8276 readbuf + i * unit_length);
8277 }
8278 }
8279 return RETURN_VALUE_REGISTER_CONVENTION;
8280 }
8281
8282 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
8283 || TYPE_CODE (valtype) == TYPE_CODE_UNION
8284 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
8285 {
8286 if (tdep->struct_return == pcc_struct_return
8287 || arm_return_in_memory (gdbarch, valtype))
8288 return RETURN_VALUE_STRUCT_CONVENTION;
8289 }
8290 else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
8291 {
8292 if (arm_return_in_memory (gdbarch, valtype))
8293 return RETURN_VALUE_STRUCT_CONVENTION;
8294 }
8295
8296 if (writebuf)
8297 arm_store_return_value (valtype, regcache, writebuf);
8298
8299 if (readbuf)
8300 arm_extract_return_value (valtype, regcache, readbuf);
8301
8302 return RETURN_VALUE_REGISTER_CONVENTION;
8303}
8304
8305
8306static int
8307arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
8308{
8309 struct gdbarch *gdbarch = get_frame_arch (frame);
8310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8311 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8312 CORE_ADDR jb_addr;
8313 gdb_byte buf[INT_REGISTER_SIZE];
8314
8315 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
8316
8317 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
8318 INT_REGISTER_SIZE))
8319 return 0;
8320
8321 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
8322 return 1;
8323}
8324
8325/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
8326 return the target PC. Otherwise return 0. */
8327
8328CORE_ADDR
8329arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
8330{
8331 const char *name;
8332 int namelen;
8333 CORE_ADDR start_addr;
8334
8335 /* Find the starting address and name of the function containing the PC. */
8336 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
8337 {
8338 /* Trampoline 'bx reg' doesn't belong to any functions. Do the
8339 check here. */
8340 start_addr = arm_skip_bx_reg (frame, pc);
8341 if (start_addr != 0)
8342 return start_addr;
8343
8344 return 0;
8345 }
8346
8347 /* If PC is in a Thumb call or return stub, return the address of the
8348 target PC, which is in a register. The thunk functions are called
8349 _call_via_xx, where x is the register name. The possible names
8350 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
8351 functions, named __ARM_call_via_r[0-7]. */
8352 if (startswith (name, "_call_via_")
8353 || startswith (name, "__ARM_call_via_"))
8354 {
8355 /* Use the name suffix to determine which register contains the
8356 target PC. */
8357 static const char *table[15] =
8358 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8359 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
8360 };
8361 int regno;
8362 int offset = strlen (name) - 2;
8363
8364 for (regno = 0; regno <= 14; regno++)
8365 if (strcmp (&name[offset], table[regno]) == 0)
8366 return get_frame_register_unsigned (frame, regno);
8367 }
8368
8369 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
8370 non-interworking calls to foo. We could decode the stubs
8371 to find the target but it's easier to use the symbol table. */
8372 namelen = strlen (name);
8373 if (name[0] == '_' && name[1] == '_'
8374 && ((namelen > 2 + strlen ("_from_thumb")
8375 && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
8376 || (namelen > 2 + strlen ("_from_arm")
8377 && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
8378 {
8379 char *target_name;
8380 int target_len = namelen - 2;
8381 struct bound_minimal_symbol minsym;
8382 struct objfile *objfile;
8383 struct obj_section *sec;
8384
8385 if (name[namelen - 1] == 'b')
8386 target_len -= strlen ("_from_thumb");
8387 else
8388 target_len -= strlen ("_from_arm");
8389
8390 target_name = (char *) alloca (target_len + 1);
8391 memcpy (target_name, name + 2, target_len);
8392 target_name[target_len] = '\0';
8393
8394 sec = find_pc_section (pc);
8395 objfile = (sec == NULL) ? NULL : sec->objfile;
8396 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
8397 if (minsym.minsym != NULL)
8398 return BMSYMBOL_VALUE_ADDRESS (minsym);
8399 else
8400 return 0;
8401 }
8402
8403 return 0; /* not a stub */
8404}
8405
8406static void
8407set_arm_command (char *args, int from_tty)
8408{
8409 printf_unfiltered (_("\
8410\"set arm\" must be followed by an apporpriate subcommand.\n"));
8411 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
8412}
8413
8414static void
8415show_arm_command (char *args, int from_tty)
8416{
8417 cmd_show_list (showarmcmdlist, from_tty, "");
8418}
8419
8420static void
8421arm_update_current_architecture (void)
8422{
8423 struct gdbarch_info info;
8424
8425 /* If the current architecture is not ARM, we have nothing to do. */
8426 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
8427 return;
8428
8429 /* Update the architecture. */
8430 gdbarch_info_init (&info);
8431
8432 if (!gdbarch_update_p (info))
8433 internal_error (__FILE__, __LINE__, _("could not update architecture"));
8434}
8435
8436static void
8437set_fp_model_sfunc (char *args, int from_tty,
8438 struct cmd_list_element *c)
8439{
8440 int fp_model;
8441
8442 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
8443 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
8444 {
8445 arm_fp_model = (enum arm_float_model) fp_model;
8446 break;
8447 }
8448
8449 if (fp_model == ARM_FLOAT_LAST)
8450 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
8451 current_fp_model);
8452
8453 arm_update_current_architecture ();
8454}
8455
8456static void
8457show_fp_model (struct ui_file *file, int from_tty,
8458 struct cmd_list_element *c, const char *value)
8459{
8460 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8461
8462 if (arm_fp_model == ARM_FLOAT_AUTO
8463 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8464 fprintf_filtered (file, _("\
8465The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
8466 fp_model_strings[tdep->fp_model]);
8467 else
8468 fprintf_filtered (file, _("\
8469The current ARM floating point model is \"%s\".\n"),
8470 fp_model_strings[arm_fp_model]);
8471}
8472
8473static void
8474arm_set_abi (char *args, int from_tty,
8475 struct cmd_list_element *c)
8476{
8477 int arm_abi;
8478
8479 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
8480 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
8481 {
8482 arm_abi_global = (enum arm_abi_kind) arm_abi;
8483 break;
8484 }
8485
8486 if (arm_abi == ARM_ABI_LAST)
8487 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
8488 arm_abi_string);
8489
8490 arm_update_current_architecture ();
8491}
8492
8493static void
8494arm_show_abi (struct ui_file *file, int from_tty,
8495 struct cmd_list_element *c, const char *value)
8496{
8497 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8498
8499 if (arm_abi_global == ARM_ABI_AUTO
8500 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8501 fprintf_filtered (file, _("\
8502The current ARM ABI is \"auto\" (currently \"%s\").\n"),
8503 arm_abi_strings[tdep->arm_abi]);
8504 else
8505 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
8506 arm_abi_string);
8507}
8508
8509static void
8510arm_show_fallback_mode (struct ui_file *file, int from_tty,
8511 struct cmd_list_element *c, const char *value)
8512{
8513 fprintf_filtered (file,
8514 _("The current execution mode assumed "
8515 "(when symbols are unavailable) is \"%s\".\n"),
8516 arm_fallback_mode_string);
8517}
8518
8519static void
8520arm_show_force_mode (struct ui_file *file, int from_tty,
8521 struct cmd_list_element *c, const char *value)
8522{
8523 fprintf_filtered (file,
8524 _("The current execution mode assumed "
8525 "(even when symbols are available) is \"%s\".\n"),
8526 arm_force_mode_string);
8527}
8528
8529/* If the user changes the register disassembly style used for info
8530 register and other commands, we have to also switch the style used
8531 in opcodes for disassembly output. This function is run in the "set
8532 arm disassembly" command, and does that. */
8533
8534static void
8535set_disassembly_style_sfunc (char *args, int from_tty,
8536 struct cmd_list_element *c)
8537{
8538 /* Convert the short style name into the long style name (eg, reg-names-*)
8539 before calling the generic set_disassembler_options() function. */
8540 std::string long_name = std::string ("reg-names-") + disassembly_style;
8541 set_disassembler_options (&long_name[0]);
8542}
8543
8544static void
8545show_disassembly_style_sfunc (struct ui_file *file, int from_tty,
8546 struct cmd_list_element *c, const char *value)
8547{
8548 struct gdbarch *gdbarch = get_current_arch ();
8549 char *options = get_disassembler_options (gdbarch);
8550 const char *style = "";
8551 int len = 0;
8552 const char *opt;
8553
8554 FOR_EACH_DISASSEMBLER_OPTION (opt, options)
8555 if (CONST_STRNEQ (opt, "reg-names-"))
8556 {
8557 style = &opt[strlen ("reg-names-")];
8558 len = strcspn (style, ",");
8559 }
8560
8561 fprintf_unfiltered (file, "The disassembly style is \"%.*s\".\n", len, style);
8562}
8563\f
8564/* Return the ARM register name corresponding to register I. */
8565static const char *
8566arm_register_name (struct gdbarch *gdbarch, int i)
8567{
8568 const int num_regs = gdbarch_num_regs (gdbarch);
8569
8570 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
8571 && i >= num_regs && i < num_regs + 32)
8572 {
8573 static const char *const vfp_pseudo_names[] = {
8574 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
8575 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
8576 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
8577 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
8578 };
8579
8580 return vfp_pseudo_names[i - num_regs];
8581 }
8582
8583 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
8584 && i >= num_regs + 32 && i < num_regs + 32 + 16)
8585 {
8586 static const char *const neon_pseudo_names[] = {
8587 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
8588 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
8589 };
8590
8591 return neon_pseudo_names[i - num_regs - 32];
8592 }
8593
8594 if (i >= ARRAY_SIZE (arm_register_names))
8595 /* These registers are only supported on targets which supply
8596 an XML description. */
8597 return "";
8598
8599 return arm_register_names[i];
8600}
8601
8602/* Test whether the coff symbol specific value corresponds to a Thumb
8603 function. */
8604
8605static int
8606coff_sym_is_thumb (int val)
8607{
8608 return (val == C_THUMBEXT
8609 || val == C_THUMBSTAT
8610 || val == C_THUMBEXTFUNC
8611 || val == C_THUMBSTATFUNC
8612 || val == C_THUMBLABEL);
8613}
8614
8615/* arm_coff_make_msymbol_special()
8616 arm_elf_make_msymbol_special()
8617
8618 These functions test whether the COFF or ELF symbol corresponds to
8619 an address in thumb code, and set a "special" bit in a minimal
8620 symbol to indicate that it does. */
8621
8622static void
8623arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
8624{
8625 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
8626
8627 if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
8628 == ST_BRANCH_TO_THUMB)
8629 MSYMBOL_SET_SPECIAL (msym);
8630}
8631
8632static void
8633arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
8634{
8635 if (coff_sym_is_thumb (val))
8636 MSYMBOL_SET_SPECIAL (msym);
8637}
8638
8639static void
8640arm_objfile_data_free (struct objfile *objfile, void *arg)
8641{
8642 struct arm_per_objfile *data = (struct arm_per_objfile *) arg;
8643 unsigned int i;
8644
8645 for (i = 0; i < objfile->obfd->section_count; i++)
8646 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
8647}
8648
8649static void
8650arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
8651 asymbol *sym)
8652{
8653 const char *name = bfd_asymbol_name (sym);
8654 struct arm_per_objfile *data;
8655 VEC(arm_mapping_symbol_s) **map_p;
8656 struct arm_mapping_symbol new_map_sym;
8657
8658 gdb_assert (name[0] == '$');
8659 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
8660 return;
8661
8662 data = (struct arm_per_objfile *) objfile_data (objfile,
8663 arm_objfile_data_key);
8664 if (data == NULL)
8665 {
8666 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8667 struct arm_per_objfile);
8668 set_objfile_data (objfile, arm_objfile_data_key, data);
8669 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
8670 objfile->obfd->section_count,
8671 VEC(arm_mapping_symbol_s) *);
8672 }
8673 map_p = &data->section_maps[bfd_get_section (sym)->index];
8674
8675 new_map_sym.value = sym->value;
8676 new_map_sym.type = name[1];
8677
8678 /* Assume that most mapping symbols appear in order of increasing
8679 value. If they were randomly distributed, it would be faster to
8680 always push here and then sort at first use. */
8681 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
8682 {
8683 struct arm_mapping_symbol *prev_map_sym;
8684
8685 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
8686 if (prev_map_sym->value >= sym->value)
8687 {
8688 unsigned int idx;
8689 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
8690 arm_compare_mapping_symbols);
8691 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
8692 return;
8693 }
8694 }
8695
8696 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
8697}
8698
8699static void
8700arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
8701{
8702 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8703 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
8704
8705 /* If necessary, set the T bit. */
8706 if (arm_apcs_32)
8707 {
8708 ULONGEST val, t_bit;
8709 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
8710 t_bit = arm_psr_thumb_bit (gdbarch);
8711 if (arm_pc_is_thumb (gdbarch, pc))
8712 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8713 val | t_bit);
8714 else
8715 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8716 val & ~t_bit);
8717 }
8718}
8719
8720/* Read the contents of a NEON quad register, by reading from two
8721 double registers. This is used to implement the quad pseudo
8722 registers, and for argument passing in case the quad registers are
8723 missing; vectors are passed in quad registers when using the VFP
8724 ABI, even if a NEON unit is not present. REGNUM is the index of
8725 the quad register, in [0, 15]. */
8726
8727static enum register_status
8728arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
8729 int regnum, gdb_byte *buf)
8730{
8731 char name_buf[4];
8732 gdb_byte reg_buf[8];
8733 int offset, double_regnum;
8734 enum register_status status;
8735
8736 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8737 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8738 strlen (name_buf));
8739
8740 /* d0 is always the least significant half of q0. */
8741 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8742 offset = 8;
8743 else
8744 offset = 0;
8745
8746 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8747 if (status != REG_VALID)
8748 return status;
8749 memcpy (buf + offset, reg_buf, 8);
8750
8751 offset = 8 - offset;
8752 status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
8753 if (status != REG_VALID)
8754 return status;
8755 memcpy (buf + offset, reg_buf, 8);
8756
8757 return REG_VALID;
8758}
8759
8760static enum register_status
8761arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
8762 int regnum, gdb_byte *buf)
8763{
8764 const int num_regs = gdbarch_num_regs (gdbarch);
8765 char name_buf[4];
8766 gdb_byte reg_buf[8];
8767 int offset, double_regnum;
8768
8769 gdb_assert (regnum >= num_regs);
8770 regnum -= num_regs;
8771
8772 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8773 /* Quad-precision register. */
8774 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
8775 else
8776 {
8777 enum register_status status;
8778
8779 /* Single-precision register. */
8780 gdb_assert (regnum < 32);
8781
8782 /* s0 is always the least significant half of d0. */
8783 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8784 offset = (regnum & 1) ? 0 : 4;
8785 else
8786 offset = (regnum & 1) ? 4 : 0;
8787
8788 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8789 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8790 strlen (name_buf));
8791
8792 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8793 if (status == REG_VALID)
8794 memcpy (buf, reg_buf + offset, 4);
8795 return status;
8796 }
8797}
8798
8799/* Store the contents of BUF to a NEON quad register, by writing to
8800 two double registers. This is used to implement the quad pseudo
8801 registers, and for argument passing in case the quad registers are
8802 missing; vectors are passed in quad registers when using the VFP
8803 ABI, even if a NEON unit is not present. REGNUM is the index
8804 of the quad register, in [0, 15]. */
8805
8806static void
8807arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
8808 int regnum, const gdb_byte *buf)
8809{
8810 char name_buf[4];
8811 int offset, double_regnum;
8812
8813 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8814 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8815 strlen (name_buf));
8816
8817 /* d0 is always the least significant half of q0. */
8818 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8819 offset = 8;
8820 else
8821 offset = 0;
8822
8823 regcache_raw_write (regcache, double_regnum, buf + offset);
8824 offset = 8 - offset;
8825 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
8826}
8827
8828static void
8829arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8830 int regnum, const gdb_byte *buf)
8831{
8832 const int num_regs = gdbarch_num_regs (gdbarch);
8833 char name_buf[4];
8834 gdb_byte reg_buf[8];
8835 int offset, double_regnum;
8836
8837 gdb_assert (regnum >= num_regs);
8838 regnum -= num_regs;
8839
8840 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8841 /* Quad-precision register. */
8842 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8843 else
8844 {
8845 /* Single-precision register. */
8846 gdb_assert (regnum < 32);
8847
8848 /* s0 is always the least significant half of d0. */
8849 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8850 offset = (regnum & 1) ? 0 : 4;
8851 else
8852 offset = (regnum & 1) ? 4 : 0;
8853
8854 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8855 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8856 strlen (name_buf));
8857
8858 regcache_raw_read (regcache, double_regnum, reg_buf);
8859 memcpy (reg_buf + offset, buf, 4);
8860 regcache_raw_write (regcache, double_regnum, reg_buf);
8861 }
8862}
8863
8864static struct value *
8865value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8866{
8867 const int *reg_p = (const int *) baton;
8868 return value_of_register (*reg_p, frame);
8869}
8870\f
8871static enum gdb_osabi
8872arm_elf_osabi_sniffer (bfd *abfd)
8873{
8874 unsigned int elfosabi;
8875 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
8876
8877 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
8878
8879 if (elfosabi == ELFOSABI_ARM)
8880 /* GNU tools use this value. Check note sections in this case,
8881 as well. */
8882 bfd_map_over_sections (abfd,
8883 generic_elf_osabi_sniff_abi_tag_sections,
8884 &osabi);
8885
8886 /* Anything else will be handled by the generic ELF sniffer. */
8887 return osabi;
8888}
8889
8890static int
8891arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8892 struct reggroup *group)
8893{
8894 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8895 this, FPS register belongs to save_regroup, restore_reggroup, and
8896 all_reggroup, of course. */
8897 if (regnum == ARM_FPS_REGNUM)
8898 return (group == float_reggroup
8899 || group == save_reggroup
8900 || group == restore_reggroup
8901 || group == all_reggroup);
8902 else
8903 return default_register_reggroup_p (gdbarch, regnum, group);
8904}
8905
8906\f
8907/* For backward-compatibility we allow two 'g' packet lengths with
8908 the remote protocol depending on whether FPA registers are
8909 supplied. M-profile targets do not have FPA registers, but some
8910 stubs already exist in the wild which use a 'g' packet which
8911 supplies them albeit with dummy values. The packet format which
8912 includes FPA registers should be considered deprecated for
8913 M-profile targets. */
8914
8915static void
8916arm_register_g_packet_guesses (struct gdbarch *gdbarch)
8917{
8918 if (gdbarch_tdep (gdbarch)->is_m)
8919 {
8920 /* If we know from the executable this is an M-profile target,
8921 cater for remote targets whose register set layout is the
8922 same as the FPA layout. */
8923 register_remote_g_packet_guess (gdbarch,
8924 /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
8925 (16 * INT_REGISTER_SIZE)
8926 + (8 * FP_REGISTER_SIZE)
8927 + (2 * INT_REGISTER_SIZE),
8928 tdesc_arm_with_m_fpa_layout);
8929
8930 /* The regular M-profile layout. */
8931 register_remote_g_packet_guess (gdbarch,
8932 /* r0-r12,sp,lr,pc; xpsr */
8933 (16 * INT_REGISTER_SIZE)
8934 + INT_REGISTER_SIZE,
8935 tdesc_arm_with_m);
8936
8937 /* M-profile plus M4F VFP. */
8938 register_remote_g_packet_guess (gdbarch,
8939 /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
8940 (16 * INT_REGISTER_SIZE)
8941 + (16 * VFP_REGISTER_SIZE)
8942 + (2 * INT_REGISTER_SIZE),
8943 tdesc_arm_with_m_vfp_d16);
8944 }
8945
8946 /* Otherwise we don't have a useful guess. */
8947}
8948
8949/* Implement the code_of_frame_writable gdbarch method. */
8950
8951static int
8952arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame)
8953{
8954 if (gdbarch_tdep (gdbarch)->is_m
8955 && get_frame_type (frame) == SIGTRAMP_FRAME)
8956 {
8957 /* M-profile exception frames return to some magic PCs, where
8958 isn't writable at all. */
8959 return 0;
8960 }
8961 else
8962 return 1;
8963}
8964
8965\f
8966/* Initialize the current architecture based on INFO. If possible,
8967 re-use an architecture from ARCHES, which is a list of
8968 architectures already created during this debugging session.
8969
8970 Called e.g. at program startup, when reading a core file, and when
8971 reading a binary file. */
8972
8973static struct gdbarch *
8974arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8975{
8976 struct gdbarch_tdep *tdep;
8977 struct gdbarch *gdbarch;
8978 struct gdbarch_list *best_arch;
8979 enum arm_abi_kind arm_abi = arm_abi_global;
8980 enum arm_float_model fp_model = arm_fp_model;
8981 struct tdesc_arch_data *tdesc_data = NULL;
8982 int i, is_m = 0;
8983 int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
8984 int have_wmmx_registers = 0;
8985 int have_neon = 0;
8986 int have_fpa_registers = 1;
8987 const struct target_desc *tdesc = info.target_desc;
8988
8989 /* If we have an object to base this architecture on, try to determine
8990 its ABI. */
8991
8992 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8993 {
8994 int ei_osabi, e_flags;
8995
8996 switch (bfd_get_flavour (info.abfd))
8997 {
8998 case bfd_target_coff_flavour:
8999 /* Assume it's an old APCS-style ABI. */
9000 /* XXX WinCE? */
9001 arm_abi = ARM_ABI_APCS;
9002 break;
9003
9004 case bfd_target_elf_flavour:
9005 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
9006 e_flags = elf_elfheader (info.abfd)->e_flags;
9007
9008 if (ei_osabi == ELFOSABI_ARM)
9009 {
9010 /* GNU tools used to use this value, but do not for EABI
9011 objects. There's nowhere to tag an EABI version
9012 anyway, so assume APCS. */
9013 arm_abi = ARM_ABI_APCS;
9014 }
9015 else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
9016 {
9017 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
9018 int attr_arch, attr_profile;
9019
9020 switch (eabi_ver)
9021 {
9022 case EF_ARM_EABI_UNKNOWN:
9023 /* Assume GNU tools. */
9024 arm_abi = ARM_ABI_APCS;
9025 break;
9026
9027 case EF_ARM_EABI_VER4:
9028 case EF_ARM_EABI_VER5:
9029 arm_abi = ARM_ABI_AAPCS;
9030 /* EABI binaries default to VFP float ordering.
9031 They may also contain build attributes that can
9032 be used to identify if the VFP argument-passing
9033 ABI is in use. */
9034 if (fp_model == ARM_FLOAT_AUTO)
9035 {
9036#ifdef HAVE_ELF
9037 switch (bfd_elf_get_obj_attr_int (info.abfd,
9038 OBJ_ATTR_PROC,
9039 Tag_ABI_VFP_args))
9040 {
9041 case AEABI_VFP_args_base:
9042 /* "The user intended FP parameter/result
9043 passing to conform to AAPCS, base
9044 variant". */
9045 fp_model = ARM_FLOAT_SOFT_VFP;
9046 break;
9047 case AEABI_VFP_args_vfp:
9048 /* "The user intended FP parameter/result
9049 passing to conform to AAPCS, VFP
9050 variant". */
9051 fp_model = ARM_FLOAT_VFP;
9052 break;
9053 case AEABI_VFP_args_toolchain:
9054 /* "The user intended FP parameter/result
9055 passing to conform to tool chain-specific
9056 conventions" - we don't know any such
9057 conventions, so leave it as "auto". */
9058 break;
9059 case AEABI_VFP_args_compatible:
9060 /* "Code is compatible with both the base
9061 and VFP variants; the user did not permit
9062 non-variadic functions to pass FP
9063 parameters/results" - leave it as
9064 "auto". */
9065 break;
9066 default:
9067 /* Attribute value not mentioned in the
9068 November 2012 ABI, so leave it as
9069 "auto". */
9070 break;
9071 }
9072#else
9073 fp_model = ARM_FLOAT_SOFT_VFP;
9074#endif
9075 }
9076 break;
9077
9078 default:
9079 /* Leave it as "auto". */
9080 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
9081 break;
9082 }
9083
9084#ifdef HAVE_ELF
9085 /* Detect M-profile programs. This only works if the
9086 executable file includes build attributes; GCC does
9087 copy them to the executable, but e.g. RealView does
9088 not. */
9089 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
9090 Tag_CPU_arch);
9091 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
9092 OBJ_ATTR_PROC,
9093 Tag_CPU_arch_profile);
9094 /* GCC specifies the profile for v6-M; RealView only
9095 specifies the profile for architectures starting with
9096 V7 (as opposed to architectures with a tag
9097 numerically greater than TAG_CPU_ARCH_V7). */
9098 if (!tdesc_has_registers (tdesc)
9099 && (attr_arch == TAG_CPU_ARCH_V6_M
9100 || attr_arch == TAG_CPU_ARCH_V6S_M
9101 || attr_profile == 'M'))
9102 is_m = 1;
9103#endif
9104 }
9105
9106 if (fp_model == ARM_FLOAT_AUTO)
9107 {
9108 int e_flags = elf_elfheader (info.abfd)->e_flags;
9109
9110 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
9111 {
9112 case 0:
9113 /* Leave it as "auto". Strictly speaking this case
9114 means FPA, but almost nobody uses that now, and
9115 many toolchains fail to set the appropriate bits
9116 for the floating-point model they use. */
9117 break;
9118 case EF_ARM_SOFT_FLOAT:
9119 fp_model = ARM_FLOAT_SOFT_FPA;
9120 break;
9121 case EF_ARM_VFP_FLOAT:
9122 fp_model = ARM_FLOAT_VFP;
9123 break;
9124 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
9125 fp_model = ARM_FLOAT_SOFT_VFP;
9126 break;
9127 }
9128 }
9129
9130 if (e_flags & EF_ARM_BE8)
9131 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
9132
9133 break;
9134
9135 default:
9136 /* Leave it as "auto". */
9137 break;
9138 }
9139 }
9140
9141 /* Check any target description for validity. */
9142 if (tdesc_has_registers (tdesc))
9143 {
9144 /* For most registers we require GDB's default names; but also allow
9145 the numeric names for sp / lr / pc, as a convenience. */
9146 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
9147 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
9148 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
9149
9150 const struct tdesc_feature *feature;
9151 int valid_p;
9152
9153 feature = tdesc_find_feature (tdesc,
9154 "org.gnu.gdb.arm.core");
9155 if (feature == NULL)
9156 {
9157 feature = tdesc_find_feature (tdesc,
9158 "org.gnu.gdb.arm.m-profile");
9159 if (feature == NULL)
9160 return NULL;
9161 else
9162 is_m = 1;
9163 }
9164
9165 tdesc_data = tdesc_data_alloc ();
9166
9167 valid_p = 1;
9168 for (i = 0; i < ARM_SP_REGNUM; i++)
9169 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9170 arm_register_names[i]);
9171 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9172 ARM_SP_REGNUM,
9173 arm_sp_names);
9174 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9175 ARM_LR_REGNUM,
9176 arm_lr_names);
9177 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9178 ARM_PC_REGNUM,
9179 arm_pc_names);
9180 if (is_m)
9181 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9182 ARM_PS_REGNUM, "xpsr");
9183 else
9184 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9185 ARM_PS_REGNUM, "cpsr");
9186
9187 if (!valid_p)
9188 {
9189 tdesc_data_cleanup (tdesc_data);
9190 return NULL;
9191 }
9192
9193 feature = tdesc_find_feature (tdesc,
9194 "org.gnu.gdb.arm.fpa");
9195 if (feature != NULL)
9196 {
9197 valid_p = 1;
9198 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
9199 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9200 arm_register_names[i]);
9201 if (!valid_p)
9202 {
9203 tdesc_data_cleanup (tdesc_data);
9204 return NULL;
9205 }
9206 }
9207 else
9208 have_fpa_registers = 0;
9209
9210 feature = tdesc_find_feature (tdesc,
9211 "org.gnu.gdb.xscale.iwmmxt");
9212 if (feature != NULL)
9213 {
9214 static const char *const iwmmxt_names[] = {
9215 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
9216 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
9217 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
9218 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
9219 };
9220
9221 valid_p = 1;
9222 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
9223 valid_p
9224 &= tdesc_numbered_register (feature, tdesc_data, i,
9225 iwmmxt_names[i - ARM_WR0_REGNUM]);
9226
9227 /* Check for the control registers, but do not fail if they
9228 are missing. */
9229 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
9230 tdesc_numbered_register (feature, tdesc_data, i,
9231 iwmmxt_names[i - ARM_WR0_REGNUM]);
9232
9233 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
9234 valid_p
9235 &= tdesc_numbered_register (feature, tdesc_data, i,
9236 iwmmxt_names[i - ARM_WR0_REGNUM]);
9237
9238 if (!valid_p)
9239 {
9240 tdesc_data_cleanup (tdesc_data);
9241 return NULL;
9242 }
9243
9244 have_wmmx_registers = 1;
9245 }
9246
9247 /* If we have a VFP unit, check whether the single precision registers
9248 are present. If not, then we will synthesize them as pseudo
9249 registers. */
9250 feature = tdesc_find_feature (tdesc,
9251 "org.gnu.gdb.arm.vfp");
9252 if (feature != NULL)
9253 {
9254 static const char *const vfp_double_names[] = {
9255 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
9256 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
9257 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
9258 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
9259 };
9260
9261 /* Require the double precision registers. There must be either
9262 16 or 32. */
9263 valid_p = 1;
9264 for (i = 0; i < 32; i++)
9265 {
9266 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9267 ARM_D0_REGNUM + i,
9268 vfp_double_names[i]);
9269 if (!valid_p)
9270 break;
9271 }
9272 if (!valid_p && i == 16)
9273 valid_p = 1;
9274
9275 /* Also require FPSCR. */
9276 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9277 ARM_FPSCR_REGNUM, "fpscr");
9278 if (!valid_p)
9279 {
9280 tdesc_data_cleanup (tdesc_data);
9281 return NULL;
9282 }
9283
9284 if (tdesc_unnumbered_register (feature, "s0") == 0)
9285 have_vfp_pseudos = 1;
9286
9287 vfp_register_count = i;
9288
9289 /* If we have VFP, also check for NEON. The architecture allows
9290 NEON without VFP (integer vector operations only), but GDB
9291 does not support that. */
9292 feature = tdesc_find_feature (tdesc,
9293 "org.gnu.gdb.arm.neon");
9294 if (feature != NULL)
9295 {
9296 /* NEON requires 32 double-precision registers. */
9297 if (i != 32)
9298 {
9299 tdesc_data_cleanup (tdesc_data);
9300 return NULL;
9301 }
9302
9303 /* If there are quad registers defined by the stub, use
9304 their type; otherwise (normally) provide them with
9305 the default type. */
9306 if (tdesc_unnumbered_register (feature, "q0") == 0)
9307 have_neon_pseudos = 1;
9308
9309 have_neon = 1;
9310 }
9311 }
9312 }
9313
9314 /* If there is already a candidate, use it. */
9315 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
9316 best_arch != NULL;
9317 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
9318 {
9319 if (arm_abi != ARM_ABI_AUTO
9320 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
9321 continue;
9322
9323 if (fp_model != ARM_FLOAT_AUTO
9324 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
9325 continue;
9326
9327 /* There are various other properties in tdep that we do not
9328 need to check here: those derived from a target description,
9329 since gdbarches with a different target description are
9330 automatically disqualified. */
9331
9332 /* Do check is_m, though, since it might come from the binary. */
9333 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
9334 continue;
9335
9336 /* Found a match. */
9337 break;
9338 }
9339
9340 if (best_arch != NULL)
9341 {
9342 if (tdesc_data != NULL)
9343 tdesc_data_cleanup (tdesc_data);
9344 return best_arch->gdbarch;
9345 }
9346
9347 tdep = XCNEW (struct gdbarch_tdep);
9348 gdbarch = gdbarch_alloc (&info, tdep);
9349
9350 /* Record additional information about the architecture we are defining.
9351 These are gdbarch discriminators, like the OSABI. */
9352 tdep->arm_abi = arm_abi;
9353 tdep->fp_model = fp_model;
9354 tdep->is_m = is_m;
9355 tdep->have_fpa_registers = have_fpa_registers;
9356 tdep->have_wmmx_registers = have_wmmx_registers;
9357 gdb_assert (vfp_register_count == 0
9358 || vfp_register_count == 16
9359 || vfp_register_count == 32);
9360 tdep->vfp_register_count = vfp_register_count;
9361 tdep->have_vfp_pseudos = have_vfp_pseudos;
9362 tdep->have_neon_pseudos = have_neon_pseudos;
9363 tdep->have_neon = have_neon;
9364
9365 arm_register_g_packet_guesses (gdbarch);
9366
9367 /* Breakpoints. */
9368 switch (info.byte_order_for_code)
9369 {
9370 case BFD_ENDIAN_BIG:
9371 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
9372 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
9373 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
9374 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
9375
9376 break;
9377
9378 case BFD_ENDIAN_LITTLE:
9379 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
9380 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
9381 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
9382 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
9383
9384 break;
9385
9386 default:
9387 internal_error (__FILE__, __LINE__,
9388 _("arm_gdbarch_init: bad byte order for float format"));
9389 }
9390
9391 /* On ARM targets char defaults to unsigned. */
9392 set_gdbarch_char_signed (gdbarch, 0);
9393
9394 /* wchar_t is unsigned under the AAPCS. */
9395 if (tdep->arm_abi == ARM_ABI_AAPCS)
9396 set_gdbarch_wchar_signed (gdbarch, 0);
9397 else
9398 set_gdbarch_wchar_signed (gdbarch, 1);
9399
9400 /* Note: for displaced stepping, this includes the breakpoint, and one word
9401 of additional scratch space. This setting isn't used for anything beside
9402 displaced stepping at present. */
9403 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
9404
9405 /* This should be low enough for everything. */
9406 tdep->lowest_pc = 0x20;
9407 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
9408
9409 /* The default, for both APCS and AAPCS, is to return small
9410 structures in registers. */
9411 tdep->struct_return = reg_struct_return;
9412
9413 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
9414 set_gdbarch_frame_align (gdbarch, arm_frame_align);
9415
9416 if (is_m)
9417 set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
9418
9419 set_gdbarch_write_pc (gdbarch, arm_write_pc);
9420
9421 /* Frame handling. */
9422 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
9423 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
9424 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
9425
9426 frame_base_set_default (gdbarch, &arm_normal_base);
9427
9428 /* Address manipulation. */
9429 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
9430
9431 /* Advance PC across function entry code. */
9432 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
9433
9434 /* Detect whether PC is at a point where the stack has been destroyed. */
9435 set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
9436
9437 /* Skip trampolines. */
9438 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
9439
9440 /* The stack grows downward. */
9441 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9442
9443 /* Breakpoint manipulation. */
9444 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc);
9445 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind);
9446 set_gdbarch_breakpoint_kind_from_current_state (gdbarch,
9447 arm_breakpoint_kind_from_current_state);
9448
9449 /* Information about registers, etc. */
9450 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
9451 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9452 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
9453 set_gdbarch_register_type (gdbarch, arm_register_type);
9454 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
9455
9456 /* This "info float" is FPA-specific. Use the generic version if we
9457 do not have FPA. */
9458 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
9459 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
9460
9461 /* Internal <-> external register number maps. */
9462 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
9463 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
9464
9465 set_gdbarch_register_name (gdbarch, arm_register_name);
9466
9467 /* Returning results. */
9468 set_gdbarch_return_value (gdbarch, arm_return_value);
9469
9470 /* Disassembly. */
9471 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
9472
9473 /* Minsymbol frobbing. */
9474 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
9475 set_gdbarch_coff_make_msymbol_special (gdbarch,
9476 arm_coff_make_msymbol_special);
9477 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
9478
9479 /* Thumb-2 IT block support. */
9480 set_gdbarch_adjust_breakpoint_address (gdbarch,
9481 arm_adjust_breakpoint_address);
9482
9483 /* Virtual tables. */
9484 set_gdbarch_vbit_in_delta (gdbarch, 1);
9485
9486 /* Hook in the ABI-specific overrides, if they have been registered. */
9487 gdbarch_init_osabi (info, gdbarch);
9488
9489 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
9490
9491 /* Add some default predicates. */
9492 if (is_m)
9493 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
9494 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
9495 dwarf2_append_unwinders (gdbarch);
9496 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
9497 frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
9498 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
9499
9500 /* Now we have tuned the configuration, set a few final things,
9501 based on what the OS ABI has told us. */
9502
9503 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
9504 binaries are always marked. */
9505 if (tdep->arm_abi == ARM_ABI_AUTO)
9506 tdep->arm_abi = ARM_ABI_APCS;
9507
9508 /* Watchpoints are not steppable. */
9509 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9510
9511 /* We used to default to FPA for generic ARM, but almost nobody
9512 uses that now, and we now provide a way for the user to force
9513 the model. So default to the most useful variant. */
9514 if (tdep->fp_model == ARM_FLOAT_AUTO)
9515 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
9516
9517 if (tdep->jb_pc >= 0)
9518 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
9519
9520 /* Floating point sizes and format. */
9521 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
9522 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
9523 {
9524 set_gdbarch_double_format
9525 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9526 set_gdbarch_long_double_format
9527 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9528 }
9529 else
9530 {
9531 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
9532 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
9533 }
9534
9535 if (have_vfp_pseudos)
9536 {
9537 /* NOTE: These are the only pseudo registers used by
9538 the ARM target at the moment. If more are added, a
9539 little more care in numbering will be needed. */
9540
9541 int num_pseudos = 32;
9542 if (have_neon_pseudos)
9543 num_pseudos += 16;
9544 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
9545 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
9546 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
9547 }
9548
9549 if (tdesc_data)
9550 {
9551 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
9552
9553 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
9554
9555 /* Override tdesc_register_type to adjust the types of VFP
9556 registers for NEON. */
9557 set_gdbarch_register_type (gdbarch, arm_register_type);
9558 }
9559
9560 /* Add standard register aliases. We add aliases even for those
9561 nanes which are used by the current architecture - it's simpler,
9562 and does no harm, since nothing ever lists user registers. */
9563 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
9564 user_reg_add (gdbarch, arm_register_aliases[i].name,
9565 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
9566
9567 set_gdbarch_disassembler_options (gdbarch, &arm_disassembler_options);
9568 set_gdbarch_valid_disassembler_options (gdbarch, disassembler_options_arm ());
9569
9570 return gdbarch;
9571}
9572
9573static void
9574arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
9575{
9576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9577
9578 if (tdep == NULL)
9579 return;
9580
9581 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
9582 (unsigned long) tdep->lowest_pc);
9583}
9584
9585#if GDB_SELF_TEST
9586namespace selftests
9587{
9588static void arm_record_test (void);
9589}
9590#endif
9591
9592void
9593_initialize_arm_tdep (void)
9594{
9595 long length;
9596 const char *setname;
9597 const char *setdesc;
9598 int i, j;
9599 char regdesc[1024], *rdptr = regdesc;
9600 size_t rest = sizeof (regdesc);
9601
9602 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
9603
9604 arm_objfile_data_key
9605 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
9606
9607 /* Add ourselves to objfile event chain. */
9608 observer_attach_new_objfile (arm_exidx_new_objfile);
9609 arm_exidx_data_key
9610 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
9611
9612 /* Register an ELF OS ABI sniffer for ARM binaries. */
9613 gdbarch_register_osabi_sniffer (bfd_arch_arm,
9614 bfd_target_elf_flavour,
9615 arm_elf_osabi_sniffer);
9616
9617 /* Initialize the standard target descriptions. */
9618 initialize_tdesc_arm_with_m ();
9619 initialize_tdesc_arm_with_m_fpa_layout ();
9620 initialize_tdesc_arm_with_m_vfp_d16 ();
9621 initialize_tdesc_arm_with_iwmmxt ();
9622 initialize_tdesc_arm_with_vfpv2 ();
9623 initialize_tdesc_arm_with_vfpv3 ();
9624 initialize_tdesc_arm_with_neon ();
9625
9626 /* Add root prefix command for all "set arm"/"show arm" commands. */
9627 add_prefix_cmd ("arm", no_class, set_arm_command,
9628 _("Various ARM-specific commands."),
9629 &setarmcmdlist, "set arm ", 0, &setlist);
9630
9631 add_prefix_cmd ("arm", no_class, show_arm_command,
9632 _("Various ARM-specific commands."),
9633 &showarmcmdlist, "show arm ", 0, &showlist);
9634
9635
9636 arm_disassembler_options = xstrdup ("reg-names-std");
9637 const disasm_options_t *disasm_options = disassembler_options_arm ();
9638 int num_disassembly_styles = 0;
9639 for (i = 0; disasm_options->name[i] != NULL; i++)
9640 if (CONST_STRNEQ (disasm_options->name[i], "reg-names-"))
9641 num_disassembly_styles++;
9642
9643 /* Initialize the array that will be passed to add_setshow_enum_cmd(). */
9644 valid_disassembly_styles = XNEWVEC (const char *,
9645 num_disassembly_styles + 1);
9646 for (i = j = 0; disasm_options->name[i] != NULL; i++)
9647 if (CONST_STRNEQ (disasm_options->name[i], "reg-names-"))
9648 {
9649 size_t offset = strlen ("reg-names-");
9650 const char *style = disasm_options->name[i];
9651 valid_disassembly_styles[j++] = &style[offset];
9652 length = snprintf (rdptr, rest, "%s - %s\n", &style[offset],
9653 disasm_options->description[i]);
9654 rdptr += length;
9655 rest -= length;
9656 }
9657 /* Mark the end of valid options. */
9658 valid_disassembly_styles[num_disassembly_styles] = NULL;
9659
9660 /* Create the help text. */
9661 std::string helptext = string_printf ("%s%s%s",
9662 _("The valid values are:\n"),
9663 regdesc,
9664 _("The default is \"std\"."));
9665
9666 add_setshow_enum_cmd("disassembler", no_class,
9667 valid_disassembly_styles, &disassembly_style,
9668 _("Set the disassembly style."),
9669 _("Show the disassembly style."),
9670 helptext.c_str (),
9671 set_disassembly_style_sfunc,
9672 show_disassembly_style_sfunc,
9673 &setarmcmdlist, &showarmcmdlist);
9674
9675 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
9676 _("Set usage of ARM 32-bit mode."),
9677 _("Show usage of ARM 32-bit mode."),
9678 _("When off, a 26-bit PC will be used."),
9679 NULL,
9680 NULL, /* FIXME: i18n: Usage of ARM 32-bit
9681 mode is %s. */
9682 &setarmcmdlist, &showarmcmdlist);
9683
9684 /* Add a command to allow the user to force the FPU model. */
9685 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
9686 _("Set the floating point type."),
9687 _("Show the floating point type."),
9688 _("auto - Determine the FP typefrom the OS-ABI.\n\
9689softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
9690fpa - FPA co-processor (GCC compiled).\n\
9691softvfp - Software FP with pure-endian doubles.\n\
9692vfp - VFP co-processor."),
9693 set_fp_model_sfunc, show_fp_model,
9694 &setarmcmdlist, &showarmcmdlist);
9695
9696 /* Add a command to allow the user to force the ABI. */
9697 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
9698 _("Set the ABI."),
9699 _("Show the ABI."),
9700 NULL, arm_set_abi, arm_show_abi,
9701 &setarmcmdlist, &showarmcmdlist);
9702
9703 /* Add two commands to allow the user to force the assumed
9704 execution mode. */
9705 add_setshow_enum_cmd ("fallback-mode", class_support,
9706 arm_mode_strings, &arm_fallback_mode_string,
9707 _("Set the mode assumed when symbols are unavailable."),
9708 _("Show the mode assumed when symbols are unavailable."),
9709 NULL, NULL, arm_show_fallback_mode,
9710 &setarmcmdlist, &showarmcmdlist);
9711 add_setshow_enum_cmd ("force-mode", class_support,
9712 arm_mode_strings, &arm_force_mode_string,
9713 _("Set the mode assumed even when symbols are available."),
9714 _("Show the mode assumed even when symbols are available."),
9715 NULL, NULL, arm_show_force_mode,
9716 &setarmcmdlist, &showarmcmdlist);
9717
9718 /* Debugging flag. */
9719 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
9720 _("Set ARM debugging."),
9721 _("Show ARM debugging."),
9722 _("When on, arm-specific debugging is enabled."),
9723 NULL,
9724 NULL, /* FIXME: i18n: "ARM debugging is %s. */
9725 &setdebuglist, &showdebuglist);
9726
9727#if GDB_SELF_TEST
9728 selftests::register_test ("arm-record", selftests::arm_record_test);
9729#endif
9730
9731}
9732
9733/* ARM-reversible process record data structures. */
9734
9735#define ARM_INSN_SIZE_BYTES 4
9736#define THUMB_INSN_SIZE_BYTES 2
9737#define THUMB2_INSN_SIZE_BYTES 4
9738
9739
9740/* Position of the bit within a 32-bit ARM instruction
9741 that defines whether the instruction is a load or store. */
9742#define INSN_S_L_BIT_NUM 20
9743
9744#define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
9745 do \
9746 { \
9747 unsigned int reg_len = LENGTH; \
9748 if (reg_len) \
9749 { \
9750 REGS = XNEWVEC (uint32_t, reg_len); \
9751 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
9752 } \
9753 } \
9754 while (0)
9755
9756#define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
9757 do \
9758 { \
9759 unsigned int mem_len = LENGTH; \
9760 if (mem_len) \
9761 { \
9762 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
9763 memcpy(&MEMS->len, &RECORD_BUF[0], \
9764 sizeof(struct arm_mem_r) * LENGTH); \
9765 } \
9766 } \
9767 while (0)
9768
9769/* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
9770#define INSN_RECORDED(ARM_RECORD) \
9771 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
9772
9773/* ARM memory record structure. */
9774struct arm_mem_r
9775{
9776 uint32_t len; /* Record length. */
9777 uint32_t addr; /* Memory address. */
9778};
9779
9780/* ARM instruction record contains opcode of current insn
9781 and execution state (before entry to decode_insn()),
9782 contains list of to-be-modified registers and
9783 memory blocks (on return from decode_insn()). */
9784
9785typedef struct insn_decode_record_t
9786{
9787 struct gdbarch *gdbarch;
9788 struct regcache *regcache;
9789 CORE_ADDR this_addr; /* Address of the insn being decoded. */
9790 uint32_t arm_insn; /* Should accommodate thumb. */
9791 uint32_t cond; /* Condition code. */
9792 uint32_t opcode; /* Insn opcode. */
9793 uint32_t decode; /* Insn decode bits. */
9794 uint32_t mem_rec_count; /* No of mem records. */
9795 uint32_t reg_rec_count; /* No of reg records. */
9796 uint32_t *arm_regs; /* Registers to be saved for this record. */
9797 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
9798} insn_decode_record;
9799
9800
9801/* Checks ARM SBZ and SBO mandatory fields. */
9802
9803static int
9804sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
9805{
9806 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
9807
9808 if (!len)
9809 return 1;
9810
9811 if (!sbo)
9812 ones = ~ones;
9813
9814 while (ones)
9815 {
9816 if (!(ones & sbo))
9817 {
9818 return 0;
9819 }
9820 ones = ones >> 1;
9821 }
9822 return 1;
9823}
9824
9825enum arm_record_result
9826{
9827 ARM_RECORD_SUCCESS = 0,
9828 ARM_RECORD_FAILURE = 1
9829};
9830
9831typedef enum
9832{
9833 ARM_RECORD_STRH=1,
9834 ARM_RECORD_STRD
9835} arm_record_strx_t;
9836
9837typedef enum
9838{
9839 ARM_RECORD=1,
9840 THUMB_RECORD,
9841 THUMB2_RECORD
9842} record_type_t;
9843
9844
9845static int
9846arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
9847 uint32_t *record_buf_mem, arm_record_strx_t str_type)
9848{
9849
9850 struct regcache *reg_cache = arm_insn_r->regcache;
9851 ULONGEST u_regval[2]= {0};
9852
9853 uint32_t reg_src1 = 0, reg_src2 = 0;
9854 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
9855
9856 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
9857 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
9858
9859 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
9860 {
9861 /* 1) Handle misc store, immediate offset. */
9862 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9863 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9864 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9865 regcache_raw_read_unsigned (reg_cache, reg_src1,
9866 &u_regval[0]);
9867 if (ARM_PC_REGNUM == reg_src1)
9868 {
9869 /* If R15 was used as Rn, hence current PC+8. */
9870 u_regval[0] = u_regval[0] + 8;
9871 }
9872 offset_8 = (immed_high << 4) | immed_low;
9873 /* Calculate target store address. */
9874 if (14 == arm_insn_r->opcode)
9875 {
9876 tgt_mem_addr = u_regval[0] + offset_8;
9877 }
9878 else
9879 {
9880 tgt_mem_addr = u_regval[0] - offset_8;
9881 }
9882 if (ARM_RECORD_STRH == str_type)
9883 {
9884 record_buf_mem[0] = 2;
9885 record_buf_mem[1] = tgt_mem_addr;
9886 arm_insn_r->mem_rec_count = 1;
9887 }
9888 else if (ARM_RECORD_STRD == str_type)
9889 {
9890 record_buf_mem[0] = 4;
9891 record_buf_mem[1] = tgt_mem_addr;
9892 record_buf_mem[2] = 4;
9893 record_buf_mem[3] = tgt_mem_addr + 4;
9894 arm_insn_r->mem_rec_count = 2;
9895 }
9896 }
9897 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
9898 {
9899 /* 2) Store, register offset. */
9900 /* Get Rm. */
9901 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9902 /* Get Rn. */
9903 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9904 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9905 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9906 if (15 == reg_src2)
9907 {
9908 /* If R15 was used as Rn, hence current PC+8. */
9909 u_regval[0] = u_regval[0] + 8;
9910 }
9911 /* Calculate target store address, Rn +/- Rm, register offset. */
9912 if (12 == arm_insn_r->opcode)
9913 {
9914 tgt_mem_addr = u_regval[0] + u_regval[1];
9915 }
9916 else
9917 {
9918 tgt_mem_addr = u_regval[1] - u_regval[0];
9919 }
9920 if (ARM_RECORD_STRH == str_type)
9921 {
9922 record_buf_mem[0] = 2;
9923 record_buf_mem[1] = tgt_mem_addr;
9924 arm_insn_r->mem_rec_count = 1;
9925 }
9926 else if (ARM_RECORD_STRD == str_type)
9927 {
9928 record_buf_mem[0] = 4;
9929 record_buf_mem[1] = tgt_mem_addr;
9930 record_buf_mem[2] = 4;
9931 record_buf_mem[3] = tgt_mem_addr + 4;
9932 arm_insn_r->mem_rec_count = 2;
9933 }
9934 }
9935 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
9936 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9937 {
9938 /* 3) Store, immediate pre-indexed. */
9939 /* 5) Store, immediate post-indexed. */
9940 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9941 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9942 offset_8 = (immed_high << 4) | immed_low;
9943 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9944 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9945 /* Calculate target store address, Rn +/- Rm, register offset. */
9946 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9947 {
9948 tgt_mem_addr = u_regval[0] + offset_8;
9949 }
9950 else
9951 {
9952 tgt_mem_addr = u_regval[0] - offset_8;
9953 }
9954 if (ARM_RECORD_STRH == str_type)
9955 {
9956 record_buf_mem[0] = 2;
9957 record_buf_mem[1] = tgt_mem_addr;
9958 arm_insn_r->mem_rec_count = 1;
9959 }
9960 else if (ARM_RECORD_STRD == str_type)
9961 {
9962 record_buf_mem[0] = 4;
9963 record_buf_mem[1] = tgt_mem_addr;
9964 record_buf_mem[2] = 4;
9965 record_buf_mem[3] = tgt_mem_addr + 4;
9966 arm_insn_r->mem_rec_count = 2;
9967 }
9968 /* Record Rn also as it changes. */
9969 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9970 arm_insn_r->reg_rec_count = 1;
9971 }
9972 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
9973 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9974 {
9975 /* 4) Store, register pre-indexed. */
9976 /* 6) Store, register post -indexed. */
9977 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9978 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9979 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9980 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9981 /* Calculate target store address, Rn +/- Rm, register offset. */
9982 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9983 {
9984 tgt_mem_addr = u_regval[0] + u_regval[1];
9985 }
9986 else
9987 {
9988 tgt_mem_addr = u_regval[1] - u_regval[0];
9989 }
9990 if (ARM_RECORD_STRH == str_type)
9991 {
9992 record_buf_mem[0] = 2;
9993 record_buf_mem[1] = tgt_mem_addr;
9994 arm_insn_r->mem_rec_count = 1;
9995 }
9996 else if (ARM_RECORD_STRD == str_type)
9997 {
9998 record_buf_mem[0] = 4;
9999 record_buf_mem[1] = tgt_mem_addr;
10000 record_buf_mem[2] = 4;
10001 record_buf_mem[3] = tgt_mem_addr + 4;
10002 arm_insn_r->mem_rec_count = 2;
10003 }
10004 /* Record Rn also as it changes. */
10005 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
10006 arm_insn_r->reg_rec_count = 1;
10007 }
10008 return 0;
10009}
10010
10011/* Handling ARM extension space insns. */
10012
10013static int
10014arm_record_extension_space (insn_decode_record *arm_insn_r)
10015{
10016 uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */
10017 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
10018 uint32_t record_buf[8], record_buf_mem[8];
10019 uint32_t reg_src1 = 0;
10020 struct regcache *reg_cache = arm_insn_r->regcache;
10021 ULONGEST u_regval = 0;
10022
10023 gdb_assert (!INSN_RECORDED(arm_insn_r));
10024 /* Handle unconditional insn extension space. */
10025
10026 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
10027 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10028 if (arm_insn_r->cond)
10029 {
10030 /* PLD has no affect on architectural state, it just affects
10031 the caches. */
10032 if (5 == ((opcode1 & 0xE0) >> 5))
10033 {
10034 /* BLX(1) */
10035 record_buf[0] = ARM_PS_REGNUM;
10036 record_buf[1] = ARM_LR_REGNUM;
10037 arm_insn_r->reg_rec_count = 2;
10038 }
10039 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
10040 }
10041
10042
10043 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10044 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
10045 {
10046 ret = -1;
10047 /* Undefined instruction on ARM V5; need to handle if later
10048 versions define it. */
10049 }
10050
10051 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
10052 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10053 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
10054
10055 /* Handle arithmetic insn extension space. */
10056 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
10057 && !INSN_RECORDED(arm_insn_r))
10058 {
10059 /* Handle MLA(S) and MUL(S). */
10060 if (0 <= insn_op1 && 3 >= insn_op1)
10061 {
10062 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10063 record_buf[1] = ARM_PS_REGNUM;
10064 arm_insn_r->reg_rec_count = 2;
10065 }
10066 else if (4 <= insn_op1 && 15 >= insn_op1)
10067 {
10068 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
10069 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10070 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10071 record_buf[2] = ARM_PS_REGNUM;
10072 arm_insn_r->reg_rec_count = 3;
10073 }
10074 }
10075
10076 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
10077 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
10078 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
10079
10080 /* Handle control insn extension space. */
10081
10082 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
10083 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
10084 {
10085 if (!bit (arm_insn_r->arm_insn,25))
10086 {
10087 if (!bits (arm_insn_r->arm_insn, 4, 7))
10088 {
10089 if ((0 == insn_op1) || (2 == insn_op1))
10090 {
10091 /* MRS. */
10092 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10093 arm_insn_r->reg_rec_count = 1;
10094 }
10095 else if (1 == insn_op1)
10096 {
10097 /* CSPR is going to be changed. */
10098 record_buf[0] = ARM_PS_REGNUM;
10099 arm_insn_r->reg_rec_count = 1;
10100 }
10101 else if (3 == insn_op1)
10102 {
10103 /* SPSR is going to be changed. */
10104 /* We need to get SPSR value, which is yet to be done. */
10105 return -1;
10106 }
10107 }
10108 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
10109 {
10110 if (1 == insn_op1)
10111 {
10112 /* BX. */
10113 record_buf[0] = ARM_PS_REGNUM;
10114 arm_insn_r->reg_rec_count = 1;
10115 }
10116 else if (3 == insn_op1)
10117 {
10118 /* CLZ. */
10119 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10120 arm_insn_r->reg_rec_count = 1;
10121 }
10122 }
10123 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
10124 {
10125 /* BLX. */
10126 record_buf[0] = ARM_PS_REGNUM;
10127 record_buf[1] = ARM_LR_REGNUM;
10128 arm_insn_r->reg_rec_count = 2;
10129 }
10130 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
10131 {
10132 /* QADD, QSUB, QDADD, QDSUB */
10133 record_buf[0] = ARM_PS_REGNUM;
10134 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10135 arm_insn_r->reg_rec_count = 2;
10136 }
10137 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
10138 {
10139 /* BKPT. */
10140 record_buf[0] = ARM_PS_REGNUM;
10141 record_buf[1] = ARM_LR_REGNUM;
10142 arm_insn_r->reg_rec_count = 2;
10143
10144 /* Save SPSR also;how? */
10145 return -1;
10146 }
10147 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
10148 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
10149 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
10150 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
10151 )
10152 {
10153 if (0 == insn_op1 || 1 == insn_op1)
10154 {
10155 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
10156 /* We dont do optimization for SMULW<y> where we
10157 need only Rd. */
10158 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10159 record_buf[1] = ARM_PS_REGNUM;
10160 arm_insn_r->reg_rec_count = 2;
10161 }
10162 else if (2 == insn_op1)
10163 {
10164 /* SMLAL<x><y>. */
10165 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10166 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
10167 arm_insn_r->reg_rec_count = 2;
10168 }
10169 else if (3 == insn_op1)
10170 {
10171 /* SMUL<x><y>. */
10172 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10173 arm_insn_r->reg_rec_count = 1;
10174 }
10175 }
10176 }
10177 else
10178 {
10179 /* MSR : immediate form. */
10180 if (1 == insn_op1)
10181 {
10182 /* CSPR is going to be changed. */
10183 record_buf[0] = ARM_PS_REGNUM;
10184 arm_insn_r->reg_rec_count = 1;
10185 }
10186 else if (3 == insn_op1)
10187 {
10188 /* SPSR is going to be changed. */
10189 /* we need to get SPSR value, which is yet to be done */
10190 return -1;
10191 }
10192 }
10193 }
10194
10195 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10196 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
10197 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
10198
10199 /* Handle load/store insn extension space. */
10200
10201 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
10202 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
10203 && !INSN_RECORDED(arm_insn_r))
10204 {
10205 /* SWP/SWPB. */
10206 if (0 == insn_op1)
10207 {
10208 /* These insn, changes register and memory as well. */
10209 /* SWP or SWPB insn. */
10210 /* Get memory address given by Rn. */
10211 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10212 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
10213 /* SWP insn ?, swaps word. */
10214 if (8 == arm_insn_r->opcode)
10215 {
10216 record_buf_mem[0] = 4;
10217 }
10218 else
10219 {
10220 /* SWPB insn, swaps only byte. */
10221 record_buf_mem[0] = 1;
10222 }
10223 record_buf_mem[1] = u_regval;
10224 arm_insn_r->mem_rec_count = 1;
10225 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10226 arm_insn_r->reg_rec_count = 1;
10227 }
10228 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10229 {
10230 /* STRH. */
10231 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10232 ARM_RECORD_STRH);
10233 }
10234 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10235 {
10236 /* LDRD. */
10237 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10238 record_buf[1] = record_buf[0] + 1;
10239 arm_insn_r->reg_rec_count = 2;
10240 }
10241 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10242 {
10243 /* STRD. */
10244 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10245 ARM_RECORD_STRD);
10246 }
10247 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
10248 {
10249 /* LDRH, LDRSB, LDRSH. */
10250 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10251 arm_insn_r->reg_rec_count = 1;
10252 }
10253
10254 }
10255
10256 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
10257 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
10258 && !INSN_RECORDED(arm_insn_r))
10259 {
10260 ret = -1;
10261 /* Handle coprocessor insn extension space. */
10262 }
10263
10264 /* To be done for ARMv5 and later; as of now we return -1. */
10265 if (-1 == ret)
10266 return ret;
10267
10268 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10269 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10270
10271 return ret;
10272}
10273
10274/* Handling opcode 000 insns. */
10275
10276static int
10277arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
10278{
10279 struct regcache *reg_cache = arm_insn_r->regcache;
10280 uint32_t record_buf[8], record_buf_mem[8];
10281 ULONGEST u_regval[2] = {0};
10282
10283 uint32_t reg_src1 = 0, reg_dest = 0;
10284 uint32_t opcode1 = 0;
10285
10286 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10287 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10288 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
10289
10290 /* Data processing insn /multiply insn. */
10291 if (9 == arm_insn_r->decode
10292 && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10293 || (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)))
10294 {
10295 /* Handle multiply instructions. */
10296 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
10297 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
10298 {
10299 /* Handle MLA and MUL. */
10300 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10301 record_buf[1] = ARM_PS_REGNUM;
10302 arm_insn_r->reg_rec_count = 2;
10303 }
10304 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10305 {
10306 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
10307 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10308 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10309 record_buf[2] = ARM_PS_REGNUM;
10310 arm_insn_r->reg_rec_count = 3;
10311 }
10312 }
10313 else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10314 && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode))
10315 {
10316 /* Handle misc load insns, as 20th bit (L = 1). */
10317 /* LDR insn has a capability to do branching, if
10318 MOV LR, PC is precceded by LDR insn having Rn as R15
10319 in that case, it emulates branch and link insn, and hence we
10320 need to save CSPR and PC as well. I am not sure this is right
10321 place; as opcode = 010 LDR insn make this happen, if R15 was
10322 used. */
10323 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10324 if (15 != reg_dest)
10325 {
10326 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10327 arm_insn_r->reg_rec_count = 1;
10328 }
10329 else
10330 {
10331 record_buf[0] = reg_dest;
10332 record_buf[1] = ARM_PS_REGNUM;
10333 arm_insn_r->reg_rec_count = 2;
10334 }
10335 }
10336 else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10337 && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0)
10338 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10339 && 2 == bits (arm_insn_r->arm_insn, 20, 21))
10340 {
10341 /* Handle MSR insn. */
10342 if (9 == arm_insn_r->opcode)
10343 {
10344 /* CSPR is going to be changed. */
10345 record_buf[0] = ARM_PS_REGNUM;
10346 arm_insn_r->reg_rec_count = 1;
10347 }
10348 else
10349 {
10350 /* SPSR is going to be changed. */
10351 /* How to read SPSR value? */
10352 return -1;
10353 }
10354 }
10355 else if (9 == arm_insn_r->decode
10356 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10357 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10358 {
10359 /* Handling SWP, SWPB. */
10360 /* These insn, changes register and memory as well. */
10361 /* SWP or SWPB insn. */
10362
10363 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10364 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10365 /* SWP insn ?, swaps word. */
10366 if (8 == arm_insn_r->opcode)
10367 {
10368 record_buf_mem[0] = 4;
10369 }
10370 else
10371 {
10372 /* SWPB insn, swaps only byte. */
10373 record_buf_mem[0] = 1;
10374 }
10375 record_buf_mem[1] = u_regval[0];
10376 arm_insn_r->mem_rec_count = 1;
10377 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10378 arm_insn_r->reg_rec_count = 1;
10379 }
10380 else if (3 == arm_insn_r->decode && 0x12 == opcode1
10381 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10382 {
10383 /* Handle BLX, branch and link/exchange. */
10384 if (9 == arm_insn_r->opcode)
10385 {
10386 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
10387 and R14 stores the return address. */
10388 record_buf[0] = ARM_PS_REGNUM;
10389 record_buf[1] = ARM_LR_REGNUM;
10390 arm_insn_r->reg_rec_count = 2;
10391 }
10392 }
10393 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
10394 {
10395 /* Handle enhanced software breakpoint insn, BKPT. */
10396 /* CPSR is changed to be executed in ARM state, disabling normal
10397 interrupts, entering abort mode. */
10398 /* According to high vector configuration PC is set. */
10399 /* user hit breakpoint and type reverse, in
10400 that case, we need to go back with previous CPSR and
10401 Program Counter. */
10402 record_buf[0] = ARM_PS_REGNUM;
10403 record_buf[1] = ARM_LR_REGNUM;
10404 arm_insn_r->reg_rec_count = 2;
10405
10406 /* Save SPSR also; how? */
10407 return -1;
10408 }
10409 else if (11 == arm_insn_r->decode
10410 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10411 {
10412 /* Handle enhanced store insns and DSP insns (e.g. LDRD). */
10413
10414 /* Handle str(x) insn */
10415 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10416 ARM_RECORD_STRH);
10417 }
10418 else if (1 == arm_insn_r->decode && 0x12 == opcode1
10419 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10420 {
10421 /* Handle BX, branch and link/exchange. */
10422 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
10423 record_buf[0] = ARM_PS_REGNUM;
10424 arm_insn_r->reg_rec_count = 1;
10425 }
10426 else if (1 == arm_insn_r->decode && 0x16 == opcode1
10427 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
10428 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
10429 {
10430 /* Count leading zeros: CLZ. */
10431 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10432 arm_insn_r->reg_rec_count = 1;
10433 }
10434 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10435 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10436 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
10437 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)
10438 )
10439 {
10440 /* Handle MRS insn. */
10441 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10442 arm_insn_r->reg_rec_count = 1;
10443 }
10444 else if (arm_insn_r->opcode <= 15)
10445 {
10446 /* Normal data processing insns. */
10447 /* Out of 11 shifter operands mode, all the insn modifies destination
10448 register, which is specified by 13-16 decode. */
10449 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10450 record_buf[1] = ARM_PS_REGNUM;
10451 arm_insn_r->reg_rec_count = 2;
10452 }
10453 else
10454 {
10455 return -1;
10456 }
10457
10458 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10459 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10460 return 0;
10461}
10462
10463/* Handling opcode 001 insns. */
10464
10465static int
10466arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
10467{
10468 uint32_t record_buf[8], record_buf_mem[8];
10469
10470 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10471 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10472
10473 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10474 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
10475 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10476 )
10477 {
10478 /* Handle MSR insn. */
10479 if (9 == arm_insn_r->opcode)
10480 {
10481 /* CSPR is going to be changed. */
10482 record_buf[0] = ARM_PS_REGNUM;
10483 arm_insn_r->reg_rec_count = 1;
10484 }
10485 else
10486 {
10487 /* SPSR is going to be changed. */
10488 }
10489 }
10490 else if (arm_insn_r->opcode <= 15)
10491 {
10492 /* Normal data processing insns. */
10493 /* Out of 11 shifter operands mode, all the insn modifies destination
10494 register, which is specified by 13-16 decode. */
10495 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10496 record_buf[1] = ARM_PS_REGNUM;
10497 arm_insn_r->reg_rec_count = 2;
10498 }
10499 else
10500 {
10501 return -1;
10502 }
10503
10504 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10505 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10506 return 0;
10507}
10508
10509static int
10510arm_record_media (insn_decode_record *arm_insn_r)
10511{
10512 uint32_t record_buf[8];
10513
10514 switch (bits (arm_insn_r->arm_insn, 22, 24))
10515 {
10516 case 0:
10517 /* Parallel addition and subtraction, signed */
10518 case 1:
10519 /* Parallel addition and subtraction, unsigned */
10520 case 2:
10521 case 3:
10522 /* Packing, unpacking, saturation and reversal */
10523 {
10524 int rd = bits (arm_insn_r->arm_insn, 12, 15);
10525
10526 record_buf[arm_insn_r->reg_rec_count++] = rd;
10527 }
10528 break;
10529
10530 case 4:
10531 case 5:
10532 /* Signed multiplies */
10533 {
10534 int rd = bits (arm_insn_r->arm_insn, 16, 19);
10535 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
10536
10537 record_buf[arm_insn_r->reg_rec_count++] = rd;
10538 if (op1 == 0x0)
10539 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10540 else if (op1 == 0x4)
10541 record_buf[arm_insn_r->reg_rec_count++]
10542 = bits (arm_insn_r->arm_insn, 12, 15);
10543 }
10544 break;
10545
10546 case 6:
10547 {
10548 if (bit (arm_insn_r->arm_insn, 21)
10549 && bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
10550 {
10551 /* SBFX */
10552 record_buf[arm_insn_r->reg_rec_count++]
10553 = bits (arm_insn_r->arm_insn, 12, 15);
10554 }
10555 else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
10556 && bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
10557 {
10558 /* USAD8 and USADA8 */
10559 record_buf[arm_insn_r->reg_rec_count++]
10560 = bits (arm_insn_r->arm_insn, 16, 19);
10561 }
10562 }
10563 break;
10564
10565 case 7:
10566 {
10567 if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
10568 && bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
10569 {
10570 /* Permanently UNDEFINED */
10571 return -1;
10572 }
10573 else
10574 {
10575 /* BFC, BFI and UBFX */
10576 record_buf[arm_insn_r->reg_rec_count++]
10577 = bits (arm_insn_r->arm_insn, 12, 15);
10578 }
10579 }
10580 break;
10581
10582 default:
10583 return -1;
10584 }
10585
10586 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10587
10588 return 0;
10589}
10590
10591/* Handle ARM mode instructions with opcode 010. */
10592
10593static int
10594arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
10595{
10596 struct regcache *reg_cache = arm_insn_r->regcache;
10597
10598 uint32_t reg_base , reg_dest;
10599 uint32_t offset_12, tgt_mem_addr;
10600 uint32_t record_buf[8], record_buf_mem[8];
10601 unsigned char wback;
10602 ULONGEST u_regval;
10603
10604 /* Calculate wback. */
10605 wback = (bit (arm_insn_r->arm_insn, 24) == 0)
10606 || (bit (arm_insn_r->arm_insn, 21) == 1);
10607
10608 arm_insn_r->reg_rec_count = 0;
10609 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10610
10611 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10612 {
10613 /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
10614 and LDRT. */
10615
10616 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10617 record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
10618
10619 /* The LDR instruction is capable of doing branching. If MOV LR, PC
10620 preceeds a LDR instruction having R15 as reg_base, it
10621 emulates a branch and link instruction, and hence we need to save
10622 CPSR and PC as well. */
10623 if (ARM_PC_REGNUM == reg_dest)
10624 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10625
10626 /* If wback is true, also save the base register, which is going to be
10627 written to. */
10628 if (wback)
10629 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10630 }
10631 else
10632 {
10633 /* STR (immediate), STRB (immediate), STRBT and STRT. */
10634
10635 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
10636 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10637
10638 /* Handle bit U. */
10639 if (bit (arm_insn_r->arm_insn, 23))
10640 {
10641 /* U == 1: Add the offset. */
10642 tgt_mem_addr = (uint32_t) u_regval + offset_12;
10643 }
10644 else
10645 {
10646 /* U == 0: subtract the offset. */
10647 tgt_mem_addr = (uint32_t) u_regval - offset_12;
10648 }
10649
10650 /* Bit 22 tells us whether the store instruction writes 1 byte or 4
10651 bytes. */
10652 if (bit (arm_insn_r->arm_insn, 22))
10653 {
10654 /* STRB and STRBT: 1 byte. */
10655 record_buf_mem[0] = 1;
10656 }
10657 else
10658 {
10659 /* STR and STRT: 4 bytes. */
10660 record_buf_mem[0] = 4;
10661 }
10662
10663 /* Handle bit P. */
10664 if (bit (arm_insn_r->arm_insn, 24))
10665 record_buf_mem[1] = tgt_mem_addr;
10666 else
10667 record_buf_mem[1] = (uint32_t) u_regval;
10668
10669 arm_insn_r->mem_rec_count = 1;
10670
10671 /* If wback is true, also save the base register, which is going to be
10672 written to. */
10673 if (wback)
10674 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10675 }
10676
10677 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10678 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10679 return 0;
10680}
10681
10682/* Handling opcode 011 insns. */
10683
10684static int
10685arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
10686{
10687 struct regcache *reg_cache = arm_insn_r->regcache;
10688
10689 uint32_t shift_imm = 0;
10690 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
10691 uint32_t offset_12 = 0, tgt_mem_addr = 0;
10692 uint32_t record_buf[8], record_buf_mem[8];
10693
10694 LONGEST s_word;
10695 ULONGEST u_regval[2];
10696
10697 if (bit (arm_insn_r->arm_insn, 4))
10698 return arm_record_media (arm_insn_r);
10699
10700 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10701 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10702
10703 /* Handle enhanced store insns and LDRD DSP insn,
10704 order begins according to addressing modes for store insns
10705 STRH insn. */
10706
10707 /* LDR or STR? */
10708 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10709 {
10710 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10711 /* LDR insn has a capability to do branching, if
10712 MOV LR, PC is precedded by LDR insn having Rn as R15
10713 in that case, it emulates branch and link insn, and hence we
10714 need to save CSPR and PC as well. */
10715 if (15 != reg_dest)
10716 {
10717 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10718 arm_insn_r->reg_rec_count = 1;
10719 }
10720 else
10721 {
10722 record_buf[0] = reg_dest;
10723 record_buf[1] = ARM_PS_REGNUM;
10724 arm_insn_r->reg_rec_count = 2;
10725 }
10726 }
10727 else
10728 {
10729 if (! bits (arm_insn_r->arm_insn, 4, 11))
10730 {
10731 /* Store insn, register offset and register pre-indexed,
10732 register post-indexed. */
10733 /* Get Rm. */
10734 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10735 /* Get Rn. */
10736 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10737 regcache_raw_read_unsigned (reg_cache, reg_src1
10738 , &u_regval[0]);
10739 regcache_raw_read_unsigned (reg_cache, reg_src2
10740 , &u_regval[1]);
10741 if (15 == reg_src2)
10742 {
10743 /* If R15 was used as Rn, hence current PC+8. */
10744 /* Pre-indexed mode doesnt reach here ; illegal insn. */
10745 u_regval[0] = u_regval[0] + 8;
10746 }
10747 /* Calculate target store address, Rn +/- Rm, register offset. */
10748 /* U == 1. */
10749 if (bit (arm_insn_r->arm_insn, 23))
10750 {
10751 tgt_mem_addr = u_regval[0] + u_regval[1];
10752 }
10753 else
10754 {
10755 tgt_mem_addr = u_regval[1] - u_regval[0];
10756 }
10757
10758 switch (arm_insn_r->opcode)
10759 {
10760 /* STR. */
10761 case 8:
10762 case 12:
10763 /* STR. */
10764 case 9:
10765 case 13:
10766 /* STRT. */
10767 case 1:
10768 case 5:
10769 /* STR. */
10770 case 0:
10771 case 4:
10772 record_buf_mem[0] = 4;
10773 break;
10774
10775 /* STRB. */
10776 case 10:
10777 case 14:
10778 /* STRB. */
10779 case 11:
10780 case 15:
10781 /* STRBT. */
10782 case 3:
10783 case 7:
10784 /* STRB. */
10785 case 2:
10786 case 6:
10787 record_buf_mem[0] = 1;
10788 break;
10789
10790 default:
10791 gdb_assert_not_reached ("no decoding pattern found");
10792 break;
10793 }
10794 record_buf_mem[1] = tgt_mem_addr;
10795 arm_insn_r->mem_rec_count = 1;
10796
10797 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10798 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10799 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10800 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10801 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10802 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10803 )
10804 {
10805 /* Rn is going to be changed in pre-indexed mode and
10806 post-indexed mode as well. */
10807 record_buf[0] = reg_src2;
10808 arm_insn_r->reg_rec_count = 1;
10809 }
10810 }
10811 else
10812 {
10813 /* Store insn, scaled register offset; scaled pre-indexed. */
10814 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
10815 /* Get Rm. */
10816 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10817 /* Get Rn. */
10818 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10819 /* Get shift_imm. */
10820 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
10821 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10822 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
10823 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10824 /* Offset_12 used as shift. */
10825 switch (offset_12)
10826 {
10827 case 0:
10828 /* Offset_12 used as index. */
10829 offset_12 = u_regval[0] << shift_imm;
10830 break;
10831
10832 case 1:
10833 offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
10834 break;
10835
10836 case 2:
10837 if (!shift_imm)
10838 {
10839 if (bit (u_regval[0], 31))
10840 {
10841 offset_12 = 0xFFFFFFFF;
10842 }
10843 else
10844 {
10845 offset_12 = 0;
10846 }
10847 }
10848 else
10849 {
10850 /* This is arithmetic shift. */
10851 offset_12 = s_word >> shift_imm;
10852 }
10853 break;
10854
10855 case 3:
10856 if (!shift_imm)
10857 {
10858 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
10859 &u_regval[1]);
10860 /* Get C flag value and shift it by 31. */
10861 offset_12 = (((bit (u_regval[1], 29)) << 31) \
10862 | (u_regval[0]) >> 1);
10863 }
10864 else
10865 {
10866 offset_12 = (u_regval[0] >> shift_imm) \
10867 | (u_regval[0] <<
10868 (sizeof(uint32_t) - shift_imm));
10869 }
10870 break;
10871
10872 default:
10873 gdb_assert_not_reached ("no decoding pattern found");
10874 break;
10875 }
10876
10877 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10878 /* bit U set. */
10879 if (bit (arm_insn_r->arm_insn, 23))
10880 {
10881 tgt_mem_addr = u_regval[1] + offset_12;
10882 }
10883 else
10884 {
10885 tgt_mem_addr = u_regval[1] - offset_12;
10886 }
10887
10888 switch (arm_insn_r->opcode)
10889 {
10890 /* STR. */
10891 case 8:
10892 case 12:
10893 /* STR. */
10894 case 9:
10895 case 13:
10896 /* STRT. */
10897 case 1:
10898 case 5:
10899 /* STR. */
10900 case 0:
10901 case 4:
10902 record_buf_mem[0] = 4;
10903 break;
10904
10905 /* STRB. */
10906 case 10:
10907 case 14:
10908 /* STRB. */
10909 case 11:
10910 case 15:
10911 /* STRBT. */
10912 case 3:
10913 case 7:
10914 /* STRB. */
10915 case 2:
10916 case 6:
10917 record_buf_mem[0] = 1;
10918 break;
10919
10920 default:
10921 gdb_assert_not_reached ("no decoding pattern found");
10922 break;
10923 }
10924 record_buf_mem[1] = tgt_mem_addr;
10925 arm_insn_r->mem_rec_count = 1;
10926
10927 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10928 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10929 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10930 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10931 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10932 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10933 )
10934 {
10935 /* Rn is going to be changed in register scaled pre-indexed
10936 mode,and scaled post indexed mode. */
10937 record_buf[0] = reg_src2;
10938 arm_insn_r->reg_rec_count = 1;
10939 }
10940 }
10941 }
10942
10943 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10944 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10945 return 0;
10946}
10947
10948/* Handle ARM mode instructions with opcode 100. */
10949
10950static int
10951arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
10952{
10953 struct regcache *reg_cache = arm_insn_r->regcache;
10954 uint32_t register_count = 0, register_bits;
10955 uint32_t reg_base, addr_mode;
10956 uint32_t record_buf[24], record_buf_mem[48];
10957 uint32_t wback;
10958 ULONGEST u_regval;
10959
10960 /* Fetch the list of registers. */
10961 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
10962 arm_insn_r->reg_rec_count = 0;
10963
10964 /* Fetch the base register that contains the address we are loading data
10965 to. */
10966 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10967
10968 /* Calculate wback. */
10969 wback = (bit (arm_insn_r->arm_insn, 21) == 1);
10970
10971 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10972 {
10973 /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
10974
10975 /* Find out which registers are going to be loaded from memory. */
10976 while (register_bits)
10977 {
10978 if (register_bits & 0x00000001)
10979 record_buf[arm_insn_r->reg_rec_count++] = register_count;
10980 register_bits = register_bits >> 1;
10981 register_count++;
10982 }
10983
10984
10985 /* If wback is true, also save the base register, which is going to be
10986 written to. */
10987 if (wback)
10988 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10989
10990 /* Save the CPSR register. */
10991 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10992 }
10993 else
10994 {
10995 /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
10996
10997 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
10998
10999 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
11000
11001 /* Find out how many registers are going to be stored to memory. */
11002 while (register_bits)
11003 {
11004 if (register_bits & 0x00000001)
11005 register_count++;
11006 register_bits = register_bits >> 1;
11007 }
11008
11009 switch (addr_mode)
11010 {
11011 /* STMDA (STMED): Decrement after. */
11012 case 0:
11013 record_buf_mem[1] = (uint32_t) u_regval
11014 - register_count * INT_REGISTER_SIZE + 4;
11015 break;
11016 /* STM (STMIA, STMEA): Increment after. */
11017 case 1:
11018 record_buf_mem[1] = (uint32_t) u_regval;
11019 break;
11020 /* STMDB (STMFD): Decrement before. */
11021 case 2:
11022 record_buf_mem[1] = (uint32_t) u_regval
11023 - register_count * INT_REGISTER_SIZE;
11024 break;
11025 /* STMIB (STMFA): Increment before. */
11026 case 3:
11027 record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE;
11028 break;
11029 default:
11030 gdb_assert_not_reached ("no decoding pattern found");
11031 break;
11032 }
11033
11034 record_buf_mem[0] = register_count * INT_REGISTER_SIZE;
11035 arm_insn_r->mem_rec_count = 1;
11036
11037 /* If wback is true, also save the base register, which is going to be
11038 written to. */
11039 if (wback)
11040 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
11041 }
11042
11043 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11044 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11045 return 0;
11046}
11047
11048/* Handling opcode 101 insns. */
11049
11050static int
11051arm_record_b_bl (insn_decode_record *arm_insn_r)
11052{
11053 uint32_t record_buf[8];
11054
11055 /* Handle B, BL, BLX(1) insns. */
11056 /* B simply branches so we do nothing here. */
11057 /* Note: BLX(1) doesnt fall here but instead it falls into
11058 extension space. */
11059 if (bit (arm_insn_r->arm_insn, 24))
11060 {
11061 record_buf[0] = ARM_LR_REGNUM;
11062 arm_insn_r->reg_rec_count = 1;
11063 }
11064
11065 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11066
11067 return 0;
11068}
11069
11070static int
11071arm_record_unsupported_insn (insn_decode_record *arm_insn_r)
11072{
11073 printf_unfiltered (_("Process record does not support instruction "
11074 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11075 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
11076
11077 return -1;
11078}
11079
11080/* Record handler for vector data transfer instructions. */
11081
11082static int
11083arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r)
11084{
11085 uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
11086 uint32_t record_buf[4];
11087
11088 reg_t = bits (arm_insn_r->arm_insn, 12, 15);
11089 reg_v = bits (arm_insn_r->arm_insn, 21, 23);
11090 bits_a = bits (arm_insn_r->arm_insn, 21, 23);
11091 bit_l = bit (arm_insn_r->arm_insn, 20);
11092 bit_c = bit (arm_insn_r->arm_insn, 8);
11093
11094 /* Handle VMOV instruction. */
11095 if (bit_l && bit_c)
11096 {
11097 record_buf[0] = reg_t;
11098 arm_insn_r->reg_rec_count = 1;
11099 }
11100 else if (bit_l && !bit_c)
11101 {
11102 /* Handle VMOV instruction. */
11103 if (bits_a == 0x00)
11104 {
11105 record_buf[0] = reg_t;
11106 arm_insn_r->reg_rec_count = 1;
11107 }
11108 /* Handle VMRS instruction. */
11109 else if (bits_a == 0x07)
11110 {
11111 if (reg_t == 15)
11112 reg_t = ARM_PS_REGNUM;
11113
11114 record_buf[0] = reg_t;
11115 arm_insn_r->reg_rec_count = 1;
11116 }
11117 }
11118 else if (!bit_l && !bit_c)
11119 {
11120 /* Handle VMOV instruction. */
11121 if (bits_a == 0x00)
11122 {
11123 record_buf[0] = ARM_D0_REGNUM + reg_v;
11124
11125 arm_insn_r->reg_rec_count = 1;
11126 }
11127 /* Handle VMSR instruction. */
11128 else if (bits_a == 0x07)
11129 {
11130 record_buf[0] = ARM_FPSCR_REGNUM;
11131 arm_insn_r->reg_rec_count = 1;
11132 }
11133 }
11134 else if (!bit_l && bit_c)
11135 {
11136 /* Handle VMOV instruction. */
11137 if (!(bits_a & 0x04))
11138 {
11139 record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
11140 + ARM_D0_REGNUM;
11141 arm_insn_r->reg_rec_count = 1;
11142 }
11143 /* Handle VDUP instruction. */
11144 else
11145 {
11146 if (bit (arm_insn_r->arm_insn, 21))
11147 {
11148 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11149 record_buf[0] = reg_v + ARM_D0_REGNUM;
11150 record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
11151 arm_insn_r->reg_rec_count = 2;
11152 }
11153 else
11154 {
11155 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11156 record_buf[0] = reg_v + ARM_D0_REGNUM;
11157 arm_insn_r->reg_rec_count = 1;
11158 }
11159 }
11160 }
11161
11162 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11163 return 0;
11164}
11165
11166/* Record handler for extension register load/store instructions. */
11167
11168static int
11169arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r)
11170{
11171 uint32_t opcode, single_reg;
11172 uint8_t op_vldm_vstm;
11173 uint32_t record_buf[8], record_buf_mem[128];
11174 ULONGEST u_regval = 0;
11175
11176 struct regcache *reg_cache = arm_insn_r->regcache;
11177
11178 opcode = bits (arm_insn_r->arm_insn, 20, 24);
11179 single_reg = !bit (arm_insn_r->arm_insn, 8);
11180 op_vldm_vstm = opcode & 0x1b;
11181
11182 /* Handle VMOV instructions. */
11183 if ((opcode & 0x1e) == 0x04)
11184 {
11185 if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
11186 {
11187 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11188 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11189 arm_insn_r->reg_rec_count = 2;
11190 }
11191 else
11192 {
11193 uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
11194 uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
11195
11196 if (single_reg)
11197 {
11198 /* The first S register number m is REG_M:M (M is bit 5),
11199 the corresponding D register number is REG_M:M / 2, which
11200 is REG_M. */
11201 record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
11202 /* The second S register number is REG_M:M + 1, the
11203 corresponding D register number is (REG_M:M + 1) / 2.
11204 IOW, if bit M is 1, the first and second S registers
11205 are mapped to different D registers, otherwise, they are
11206 in the same D register. */
11207 if (bit_m)
11208 {
11209 record_buf[arm_insn_r->reg_rec_count++]
11210 = ARM_D0_REGNUM + reg_m + 1;
11211 }
11212 }
11213 else
11214 {
11215 record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
11216 arm_insn_r->reg_rec_count = 1;
11217 }
11218 }
11219 }
11220 /* Handle VSTM and VPUSH instructions. */
11221 else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
11222 || op_vldm_vstm == 0x12)
11223 {
11224 uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
11225 uint32_t memory_index = 0;
11226
11227 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11228 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11229 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11230 imm_off32 = imm_off8 << 2;
11231 memory_count = imm_off8;
11232
11233 if (bit (arm_insn_r->arm_insn, 23))
11234 start_address = u_regval;
11235 else
11236 start_address = u_regval - imm_off32;
11237
11238 if (bit (arm_insn_r->arm_insn, 21))
11239 {
11240 record_buf[0] = reg_rn;
11241 arm_insn_r->reg_rec_count = 1;
11242 }
11243
11244 while (memory_count > 0)
11245 {
11246 if (single_reg)
11247 {
11248 record_buf_mem[memory_index] = 4;
11249 record_buf_mem[memory_index + 1] = start_address;
11250 start_address = start_address + 4;
11251 memory_index = memory_index + 2;
11252 }
11253 else
11254 {
11255 record_buf_mem[memory_index] = 4;
11256 record_buf_mem[memory_index + 1] = start_address;
11257 record_buf_mem[memory_index + 2] = 4;
11258 record_buf_mem[memory_index + 3] = start_address + 4;
11259 start_address = start_address + 8;
11260 memory_index = memory_index + 4;
11261 }
11262 memory_count--;
11263 }
11264 arm_insn_r->mem_rec_count = (memory_index >> 1);
11265 }
11266 /* Handle VLDM instructions. */
11267 else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
11268 || op_vldm_vstm == 0x13)
11269 {
11270 uint32_t reg_count, reg_vd;
11271 uint32_t reg_index = 0;
11272 uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
11273
11274 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11275 reg_count = bits (arm_insn_r->arm_insn, 0, 7);
11276
11277 /* REG_VD is the first D register number. If the instruction
11278 loads memory to S registers (SINGLE_REG is TRUE), the register
11279 number is (REG_VD << 1 | bit D), so the corresponding D
11280 register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
11281 if (!single_reg)
11282 reg_vd = reg_vd | (bit_d << 4);
11283
11284 if (bit (arm_insn_r->arm_insn, 21) /* write back */)
11285 record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
11286
11287 /* If the instruction loads memory to D register, REG_COUNT should
11288 be divided by 2, according to the ARM Architecture Reference
11289 Manual. If the instruction loads memory to S register, divide by
11290 2 as well because two S registers are mapped to D register. */
11291 reg_count = reg_count / 2;
11292 if (single_reg && bit_d)
11293 {
11294 /* Increase the register count if S register list starts from
11295 an odd number (bit d is one). */
11296 reg_count++;
11297 }
11298
11299 while (reg_count > 0)
11300 {
11301 record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
11302 reg_count--;
11303 }
11304 arm_insn_r->reg_rec_count = reg_index;
11305 }
11306 /* VSTR Vector store register. */
11307 else if ((opcode & 0x13) == 0x10)
11308 {
11309 uint32_t start_address, reg_rn, imm_off32, imm_off8;
11310 uint32_t memory_index = 0;
11311
11312 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11313 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11314 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11315 imm_off32 = imm_off8 << 2;
11316
11317 if (bit (arm_insn_r->arm_insn, 23))
11318 start_address = u_regval + imm_off32;
11319 else
11320 start_address = u_regval - imm_off32;
11321
11322 if (single_reg)
11323 {
11324 record_buf_mem[memory_index] = 4;
11325 record_buf_mem[memory_index + 1] = start_address;
11326 arm_insn_r->mem_rec_count = 1;
11327 }
11328 else
11329 {
11330 record_buf_mem[memory_index] = 4;
11331 record_buf_mem[memory_index + 1] = start_address;
11332 record_buf_mem[memory_index + 2] = 4;
11333 record_buf_mem[memory_index + 3] = start_address + 4;
11334 arm_insn_r->mem_rec_count = 2;
11335 }
11336 }
11337 /* VLDR Vector load register. */
11338 else if ((opcode & 0x13) == 0x11)
11339 {
11340 uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11341
11342 if (!single_reg)
11343 {
11344 reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
11345 record_buf[0] = ARM_D0_REGNUM + reg_vd;
11346 }
11347 else
11348 {
11349 reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
11350 /* Record register D rather than pseudo register S. */
11351 record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
11352 }
11353 arm_insn_r->reg_rec_count = 1;
11354 }
11355
11356 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11357 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11358 return 0;
11359}
11360
11361/* Record handler for arm/thumb mode VFP data processing instructions. */
11362
11363static int
11364arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r)
11365{
11366 uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
11367 uint32_t record_buf[4];
11368 enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
11369 enum insn_types curr_insn_type = INSN_INV;
11370
11371 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11372 opc1 = bits (arm_insn_r->arm_insn, 20, 23);
11373 opc2 = bits (arm_insn_r->arm_insn, 16, 19);
11374 opc3 = bits (arm_insn_r->arm_insn, 6, 7);
11375 dp_op_sz = bit (arm_insn_r->arm_insn, 8);
11376 bit_d = bit (arm_insn_r->arm_insn, 22);
11377 opc1 = opc1 & 0x04;
11378
11379 /* Handle VMLA, VMLS. */
11380 if (opc1 == 0x00)
11381 {
11382 if (bit (arm_insn_r->arm_insn, 10))
11383 {
11384 if (bit (arm_insn_r->arm_insn, 6))
11385 curr_insn_type = INSN_T0;
11386 else
11387 curr_insn_type = INSN_T1;
11388 }
11389 else
11390 {
11391 if (dp_op_sz)
11392 curr_insn_type = INSN_T1;
11393 else
11394 curr_insn_type = INSN_T2;
11395 }
11396 }
11397 /* Handle VNMLA, VNMLS, VNMUL. */
11398 else if (opc1 == 0x01)
11399 {
11400 if (dp_op_sz)
11401 curr_insn_type = INSN_T1;
11402 else
11403 curr_insn_type = INSN_T2;
11404 }
11405 /* Handle VMUL. */
11406 else if (opc1 == 0x02 && !(opc3 & 0x01))
11407 {
11408 if (bit (arm_insn_r->arm_insn, 10))
11409 {
11410 if (bit (arm_insn_r->arm_insn, 6))
11411 curr_insn_type = INSN_T0;
11412 else
11413 curr_insn_type = INSN_T1;
11414 }
11415 else
11416 {
11417 if (dp_op_sz)
11418 curr_insn_type = INSN_T1;
11419 else
11420 curr_insn_type = INSN_T2;
11421 }
11422 }
11423 /* Handle VADD, VSUB. */
11424 else if (opc1 == 0x03)
11425 {
11426 if (!bit (arm_insn_r->arm_insn, 9))
11427 {
11428 if (bit (arm_insn_r->arm_insn, 6))
11429 curr_insn_type = INSN_T0;
11430 else
11431 curr_insn_type = INSN_T1;
11432 }
11433 else
11434 {
11435 if (dp_op_sz)
11436 curr_insn_type = INSN_T1;
11437 else
11438 curr_insn_type = INSN_T2;
11439 }
11440 }
11441 /* Handle VDIV. */
11442 else if (opc1 == 0x0b)
11443 {
11444 if (dp_op_sz)
11445 curr_insn_type = INSN_T1;
11446 else
11447 curr_insn_type = INSN_T2;
11448 }
11449 /* Handle all other vfp data processing instructions. */
11450 else if (opc1 == 0x0b)
11451 {
11452 /* Handle VMOV. */
11453 if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
11454 {
11455 if (bit (arm_insn_r->arm_insn, 4))
11456 {
11457 if (bit (arm_insn_r->arm_insn, 6))
11458 curr_insn_type = INSN_T0;
11459 else
11460 curr_insn_type = INSN_T1;
11461 }
11462 else
11463 {
11464 if (dp_op_sz)
11465 curr_insn_type = INSN_T1;
11466 else
11467 curr_insn_type = INSN_T2;
11468 }
11469 }
11470 /* Handle VNEG and VABS. */
11471 else if ((opc2 == 0x01 && opc3 == 0x01)
11472 || (opc2 == 0x00 && opc3 == 0x03))
11473 {
11474 if (!bit (arm_insn_r->arm_insn, 11))
11475 {
11476 if (bit (arm_insn_r->arm_insn, 6))
11477 curr_insn_type = INSN_T0;
11478 else
11479 curr_insn_type = INSN_T1;
11480 }
11481 else
11482 {
11483 if (dp_op_sz)
11484 curr_insn_type = INSN_T1;
11485 else
11486 curr_insn_type = INSN_T2;
11487 }
11488 }
11489 /* Handle VSQRT. */
11490 else if (opc2 == 0x01 && opc3 == 0x03)
11491 {
11492 if (dp_op_sz)
11493 curr_insn_type = INSN_T1;
11494 else
11495 curr_insn_type = INSN_T2;
11496 }
11497 /* Handle VCVT. */
11498 else if (opc2 == 0x07 && opc3 == 0x03)
11499 {
11500 if (!dp_op_sz)
11501 curr_insn_type = INSN_T1;
11502 else
11503 curr_insn_type = INSN_T2;
11504 }
11505 else if (opc3 & 0x01)
11506 {
11507 /* Handle VCVT. */
11508 if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
11509 {
11510 if (!bit (arm_insn_r->arm_insn, 18))
11511 curr_insn_type = INSN_T2;
11512 else
11513 {
11514 if (dp_op_sz)
11515 curr_insn_type = INSN_T1;
11516 else
11517 curr_insn_type = INSN_T2;
11518 }
11519 }
11520 /* Handle VCVT. */
11521 else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
11522 {
11523 if (dp_op_sz)
11524 curr_insn_type = INSN_T1;
11525 else
11526 curr_insn_type = INSN_T2;
11527 }
11528 /* Handle VCVTB, VCVTT. */
11529 else if ((opc2 & 0x0e) == 0x02)
11530 curr_insn_type = INSN_T2;
11531 /* Handle VCMP, VCMPE. */
11532 else if ((opc2 & 0x0e) == 0x04)
11533 curr_insn_type = INSN_T3;
11534 }
11535 }
11536
11537 switch (curr_insn_type)
11538 {
11539 case INSN_T0:
11540 reg_vd = reg_vd | (bit_d << 4);
11541 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11542 record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
11543 arm_insn_r->reg_rec_count = 2;
11544 break;
11545
11546 case INSN_T1:
11547 reg_vd = reg_vd | (bit_d << 4);
11548 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11549 arm_insn_r->reg_rec_count = 1;
11550 break;
11551
11552 case INSN_T2:
11553 reg_vd = (reg_vd << 1) | bit_d;
11554 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11555 arm_insn_r->reg_rec_count = 1;
11556 break;
11557
11558 case INSN_T3:
11559 record_buf[0] = ARM_FPSCR_REGNUM;
11560 arm_insn_r->reg_rec_count = 1;
11561 break;
11562
11563 default:
11564 gdb_assert_not_reached ("no decoding pattern found");
11565 break;
11566 }
11567
11568 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11569 return 0;
11570}
11571
11572/* Handling opcode 110 insns. */
11573
11574static int
11575arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r)
11576{
11577 uint32_t op1, op1_ebit, coproc;
11578
11579 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11580 op1 = bits (arm_insn_r->arm_insn, 20, 25);
11581 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11582
11583 if ((coproc & 0x0e) == 0x0a)
11584 {
11585 /* Handle extension register ld/st instructions. */
11586 if (!(op1 & 0x20))
11587 return arm_record_exreg_ld_st_insn (arm_insn_r);
11588
11589 /* 64-bit transfers between arm core and extension registers. */
11590 if ((op1 & 0x3e) == 0x04)
11591 return arm_record_exreg_ld_st_insn (arm_insn_r);
11592 }
11593 else
11594 {
11595 /* Handle coprocessor ld/st instructions. */
11596 if (!(op1 & 0x3a))
11597 {
11598 /* Store. */
11599 if (!op1_ebit)
11600 return arm_record_unsupported_insn (arm_insn_r);
11601 else
11602 /* Load. */
11603 return arm_record_unsupported_insn (arm_insn_r);
11604 }
11605
11606 /* Move to coprocessor from two arm core registers. */
11607 if (op1 == 0x4)
11608 return arm_record_unsupported_insn (arm_insn_r);
11609
11610 /* Move to two arm core registers from coprocessor. */
11611 if (op1 == 0x5)
11612 {
11613 uint32_t reg_t[2];
11614
11615 reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
11616 reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
11617 arm_insn_r->reg_rec_count = 2;
11618
11619 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
11620 return 0;
11621 }
11622 }
11623 return arm_record_unsupported_insn (arm_insn_r);
11624}
11625
11626/* Handling opcode 111 insns. */
11627
11628static int
11629arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
11630{
11631 uint32_t op, op1_sbit, op1_ebit, coproc;
11632 struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
11633 struct regcache *reg_cache = arm_insn_r->regcache;
11634
11635 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
11636 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11637 op1_sbit = bit (arm_insn_r->arm_insn, 24);
11638 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11639 op = bit (arm_insn_r->arm_insn, 4);
11640
11641 /* Handle arm SWI/SVC system call instructions. */
11642 if (op1_sbit)
11643 {
11644 if (tdep->arm_syscall_record != NULL)
11645 {
11646 ULONGEST svc_operand, svc_number;
11647
11648 svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
11649
11650 if (svc_operand) /* OABI. */
11651 svc_number = svc_operand - 0x900000;
11652 else /* EABI. */
11653 regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
11654
11655 return tdep->arm_syscall_record (reg_cache, svc_number);
11656 }
11657 else
11658 {
11659 printf_unfiltered (_("no syscall record support\n"));
11660 return -1;
11661 }
11662 }
11663
11664 if ((coproc & 0x0e) == 0x0a)
11665 {
11666 /* VFP data-processing instructions. */
11667 if (!op1_sbit && !op)
11668 return arm_record_vfp_data_proc_insn (arm_insn_r);
11669
11670 /* Advanced SIMD, VFP instructions. */
11671 if (!op1_sbit && op)
11672 return arm_record_vdata_transfer_insn (arm_insn_r);
11673 }
11674 else
11675 {
11676 /* Coprocessor data operations. */
11677 if (!op1_sbit && !op)
11678 return arm_record_unsupported_insn (arm_insn_r);
11679
11680 /* Move to Coprocessor from ARM core register. */
11681 if (!op1_sbit && !op1_ebit && op)
11682 return arm_record_unsupported_insn (arm_insn_r);
11683
11684 /* Move to arm core register from coprocessor. */
11685 if (!op1_sbit && op1_ebit && op)
11686 {
11687 uint32_t record_buf[1];
11688
11689 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11690 if (record_buf[0] == 15)
11691 record_buf[0] = ARM_PS_REGNUM;
11692
11693 arm_insn_r->reg_rec_count = 1;
11694 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
11695 record_buf);
11696 return 0;
11697 }
11698 }
11699
11700 return arm_record_unsupported_insn (arm_insn_r);
11701}
11702
11703/* Handling opcode 000 insns. */
11704
11705static int
11706thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
11707{
11708 uint32_t record_buf[8];
11709 uint32_t reg_src1 = 0;
11710
11711 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11712
11713 record_buf[0] = ARM_PS_REGNUM;
11714 record_buf[1] = reg_src1;
11715 thumb_insn_r->reg_rec_count = 2;
11716
11717 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11718
11719 return 0;
11720}
11721
11722
11723/* Handling opcode 001 insns. */
11724
11725static int
11726thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
11727{
11728 uint32_t record_buf[8];
11729 uint32_t reg_src1 = 0;
11730
11731 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11732
11733 record_buf[0] = ARM_PS_REGNUM;
11734 record_buf[1] = reg_src1;
11735 thumb_insn_r->reg_rec_count = 2;
11736
11737 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11738
11739 return 0;
11740}
11741
11742/* Handling opcode 010 insns. */
11743
11744static int
11745thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
11746{
11747 struct regcache *reg_cache = thumb_insn_r->regcache;
11748 uint32_t record_buf[8], record_buf_mem[8];
11749
11750 uint32_t reg_src1 = 0, reg_src2 = 0;
11751 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
11752
11753 ULONGEST u_regval[2] = {0};
11754
11755 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
11756
11757 if (bit (thumb_insn_r->arm_insn, 12))
11758 {
11759 /* Handle load/store register offset. */
11760 uint32_t opB = bits (thumb_insn_r->arm_insn, 9, 11);
11761
11762 if (opB >= 4 && opB <= 7)
11763 {
11764 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
11765 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
11766 record_buf[0] = reg_src1;
11767 thumb_insn_r->reg_rec_count = 1;
11768 }
11769 else if (opB >= 0 && opB <= 2)
11770 {
11771 /* STR(2), STRB(2), STRH(2) . */
11772 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11773 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
11774 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11775 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11776 if (0 == opB)
11777 record_buf_mem[0] = 4; /* STR (2). */
11778 else if (2 == opB)
11779 record_buf_mem[0] = 1; /* STRB (2). */
11780 else if (1 == opB)
11781 record_buf_mem[0] = 2; /* STRH (2). */
11782 record_buf_mem[1] = u_regval[0] + u_regval[1];
11783 thumb_insn_r->mem_rec_count = 1;
11784 }
11785 }
11786 else if (bit (thumb_insn_r->arm_insn, 11))
11787 {
11788 /* Handle load from literal pool. */
11789 /* LDR(3). */
11790 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11791 record_buf[0] = reg_src1;
11792 thumb_insn_r->reg_rec_count = 1;
11793 }
11794 else if (opcode1)
11795 {
11796 /* Special data instructions and branch and exchange */
11797 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
11798 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
11799 if ((3 == opcode2) && (!opcode3))
11800 {
11801 /* Branch with exchange. */
11802 record_buf[0] = ARM_PS_REGNUM;
11803 thumb_insn_r->reg_rec_count = 1;
11804 }
11805 else
11806 {
11807 /* Format 8; special data processing insns. */
11808 record_buf[0] = ARM_PS_REGNUM;
11809 record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
11810 | bits (thumb_insn_r->arm_insn, 0, 2));
11811 thumb_insn_r->reg_rec_count = 2;
11812 }
11813 }
11814 else
11815 {
11816 /* Format 5; data processing insns. */
11817 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11818 if (bit (thumb_insn_r->arm_insn, 7))
11819 {
11820 reg_src1 = reg_src1 + 8;
11821 }
11822 record_buf[0] = ARM_PS_REGNUM;
11823 record_buf[1] = reg_src1;
11824 thumb_insn_r->reg_rec_count = 2;
11825 }
11826
11827 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11828 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11829 record_buf_mem);
11830
11831 return 0;
11832}
11833
11834/* Handling opcode 001 insns. */
11835
11836static int
11837thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
11838{
11839 struct regcache *reg_cache = thumb_insn_r->regcache;
11840 uint32_t record_buf[8], record_buf_mem[8];
11841
11842 uint32_t reg_src1 = 0;
11843 uint32_t opcode = 0, immed_5 = 0;
11844
11845 ULONGEST u_regval = 0;
11846
11847 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11848
11849 if (opcode)
11850 {
11851 /* LDR(1). */
11852 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11853 record_buf[0] = reg_src1;
11854 thumb_insn_r->reg_rec_count = 1;
11855 }
11856 else
11857 {
11858 /* STR(1). */
11859 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11860 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11861 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11862 record_buf_mem[0] = 4;
11863 record_buf_mem[1] = u_regval + (immed_5 * 4);
11864 thumb_insn_r->mem_rec_count = 1;
11865 }
11866
11867 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11868 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11869 record_buf_mem);
11870
11871 return 0;
11872}
11873
11874/* Handling opcode 100 insns. */
11875
11876static int
11877thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
11878{
11879 struct regcache *reg_cache = thumb_insn_r->regcache;
11880 uint32_t record_buf[8], record_buf_mem[8];
11881
11882 uint32_t reg_src1 = 0;
11883 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
11884
11885 ULONGEST u_regval = 0;
11886
11887 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11888
11889 if (3 == opcode)
11890 {
11891 /* LDR(4). */
11892 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11893 record_buf[0] = reg_src1;
11894 thumb_insn_r->reg_rec_count = 1;
11895 }
11896 else if (1 == opcode)
11897 {
11898 /* LDRH(1). */
11899 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11900 record_buf[0] = reg_src1;
11901 thumb_insn_r->reg_rec_count = 1;
11902 }
11903 else if (2 == opcode)
11904 {
11905 /* STR(3). */
11906 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
11907 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11908 record_buf_mem[0] = 4;
11909 record_buf_mem[1] = u_regval + (immed_8 * 4);
11910 thumb_insn_r->mem_rec_count = 1;
11911 }
11912 else if (0 == opcode)
11913 {
11914 /* STRH(1). */
11915 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11916 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11917 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11918 record_buf_mem[0] = 2;
11919 record_buf_mem[1] = u_regval + (immed_5 * 2);
11920 thumb_insn_r->mem_rec_count = 1;
11921 }
11922
11923 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11924 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11925 record_buf_mem);
11926
11927 return 0;
11928}
11929
11930/* Handling opcode 101 insns. */
11931
11932static int
11933thumb_record_misc (insn_decode_record *thumb_insn_r)
11934{
11935 struct regcache *reg_cache = thumb_insn_r->regcache;
11936
11937 uint32_t opcode = 0;
11938 uint32_t register_bits = 0, register_count = 0;
11939 uint32_t index = 0, start_address = 0;
11940 uint32_t record_buf[24], record_buf_mem[48];
11941 uint32_t reg_src1;
11942
11943 ULONGEST u_regval = 0;
11944
11945 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11946
11947 if (opcode == 0 || opcode == 1)
11948 {
11949 /* ADR and ADD (SP plus immediate) */
11950
11951 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11952 record_buf[0] = reg_src1;
11953 thumb_insn_r->reg_rec_count = 1;
11954 }
11955 else
11956 {
11957 /* Miscellaneous 16-bit instructions */
11958 uint32_t opcode2 = bits (thumb_insn_r->arm_insn, 8, 11);
11959
11960 switch (opcode2)
11961 {
11962 case 6:
11963 /* SETEND and CPS */
11964 break;
11965 case 0:
11966 /* ADD/SUB (SP plus immediate) */
11967 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11968 record_buf[0] = ARM_SP_REGNUM;
11969 thumb_insn_r->reg_rec_count = 1;
11970 break;
11971 case 1: /* fall through */
11972 case 3: /* fall through */
11973 case 9: /* fall through */
11974 case 11:
11975 /* CBNZ, CBZ */
11976 break;
11977 case 2:
11978 /* SXTH, SXTB, UXTH, UXTB */
11979 record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
11980 thumb_insn_r->reg_rec_count = 1;
11981 break;
11982 case 4: /* fall through */
11983 case 5:
11984 /* PUSH. */
11985 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11986 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11987 while (register_bits)
11988 {
11989 if (register_bits & 0x00000001)
11990 register_count++;
11991 register_bits = register_bits >> 1;
11992 }
11993 start_address = u_regval - \
11994 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
11995 thumb_insn_r->mem_rec_count = register_count;
11996 while (register_count)
11997 {
11998 record_buf_mem[(register_count * 2) - 1] = start_address;
11999 record_buf_mem[(register_count * 2) - 2] = 4;
12000 start_address = start_address + 4;
12001 register_count--;
12002 }
12003 record_buf[0] = ARM_SP_REGNUM;
12004 thumb_insn_r->reg_rec_count = 1;
12005 break;
12006 case 10:
12007 /* REV, REV16, REVSH */
12008 record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
12009 thumb_insn_r->reg_rec_count = 1;
12010 break;
12011 case 12: /* fall through */
12012 case 13:
12013 /* POP. */
12014 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12015 while (register_bits)
12016 {
12017 if (register_bits & 0x00000001)
12018 record_buf[index++] = register_count;
12019 register_bits = register_bits >> 1;
12020 register_count++;
12021 }
12022 record_buf[index++] = ARM_PS_REGNUM;
12023 record_buf[index++] = ARM_SP_REGNUM;
12024 thumb_insn_r->reg_rec_count = index;
12025 break;
12026 case 0xe:
12027 /* BKPT insn. */
12028 /* Handle enhanced software breakpoint insn, BKPT. */
12029 /* CPSR is changed to be executed in ARM state, disabling normal
12030 interrupts, entering abort mode. */
12031 /* According to high vector configuration PC is set. */
12032 /* User hits breakpoint and type reverse, in that case, we need to go back with
12033 previous CPSR and Program Counter. */
12034 record_buf[0] = ARM_PS_REGNUM;
12035 record_buf[1] = ARM_LR_REGNUM;
12036 thumb_insn_r->reg_rec_count = 2;
12037 /* We need to save SPSR value, which is not yet done. */
12038 printf_unfiltered (_("Process record does not support instruction "
12039 "0x%0x at address %s.\n"),
12040 thumb_insn_r->arm_insn,
12041 paddress (thumb_insn_r->gdbarch,
12042 thumb_insn_r->this_addr));
12043 return -1;
12044
12045 case 0xf:
12046 /* If-Then, and hints */
12047 break;
12048 default:
12049 return -1;
12050 };
12051 }
12052
12053 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12054 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12055 record_buf_mem);
12056
12057 return 0;
12058}
12059
12060/* Handling opcode 110 insns. */
12061
12062static int
12063thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
12064{
12065 struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
12066 struct regcache *reg_cache = thumb_insn_r->regcache;
12067
12068 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
12069 uint32_t reg_src1 = 0;
12070 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
12071 uint32_t index = 0, start_address = 0;
12072 uint32_t record_buf[24], record_buf_mem[48];
12073
12074 ULONGEST u_regval = 0;
12075
12076 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12077 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
12078
12079 if (1 == opcode2)
12080 {
12081
12082 /* LDMIA. */
12083 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12084 /* Get Rn. */
12085 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12086 while (register_bits)
12087 {
12088 if (register_bits & 0x00000001)
12089 record_buf[index++] = register_count;
12090 register_bits = register_bits >> 1;
12091 register_count++;
12092 }
12093 record_buf[index++] = reg_src1;
12094 thumb_insn_r->reg_rec_count = index;
12095 }
12096 else if (0 == opcode2)
12097 {
12098 /* It handles both STMIA. */
12099 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12100 /* Get Rn. */
12101 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12102 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12103 while (register_bits)
12104 {
12105 if (register_bits & 0x00000001)
12106 register_count++;
12107 register_bits = register_bits >> 1;
12108 }
12109 start_address = u_regval;
12110 thumb_insn_r->mem_rec_count = register_count;
12111 while (register_count)
12112 {
12113 record_buf_mem[(register_count * 2) - 1] = start_address;
12114 record_buf_mem[(register_count * 2) - 2] = 4;
12115 start_address = start_address + 4;
12116 register_count--;
12117 }
12118 }
12119 else if (0x1F == opcode1)
12120 {
12121 /* Handle arm syscall insn. */
12122 if (tdep->arm_syscall_record != NULL)
12123 {
12124 regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
12125 ret = tdep->arm_syscall_record (reg_cache, u_regval);
12126 }
12127 else
12128 {
12129 printf_unfiltered (_("no syscall record support\n"));
12130 return -1;
12131 }
12132 }
12133
12134 /* B (1), conditional branch is automatically taken care in process_record,
12135 as PC is saved there. */
12136
12137 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12138 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12139 record_buf_mem);
12140
12141 return ret;
12142}
12143
12144/* Handling opcode 111 insns. */
12145
12146static int
12147thumb_record_branch (insn_decode_record *thumb_insn_r)
12148{
12149 uint32_t record_buf[8];
12150 uint32_t bits_h = 0;
12151
12152 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
12153
12154 if (2 == bits_h || 3 == bits_h)
12155 {
12156 /* BL */
12157 record_buf[0] = ARM_LR_REGNUM;
12158 thumb_insn_r->reg_rec_count = 1;
12159 }
12160 else if (1 == bits_h)
12161 {
12162 /* BLX(1). */
12163 record_buf[0] = ARM_PS_REGNUM;
12164 record_buf[1] = ARM_LR_REGNUM;
12165 thumb_insn_r->reg_rec_count = 2;
12166 }
12167
12168 /* B(2) is automatically taken care in process_record, as PC is
12169 saved there. */
12170
12171 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12172
12173 return 0;
12174}
12175
12176/* Handler for thumb2 load/store multiple instructions. */
12177
12178static int
12179thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r)
12180{
12181 struct regcache *reg_cache = thumb2_insn_r->regcache;
12182
12183 uint32_t reg_rn, op;
12184 uint32_t register_bits = 0, register_count = 0;
12185 uint32_t index = 0, start_address = 0;
12186 uint32_t record_buf[24], record_buf_mem[48];
12187
12188 ULONGEST u_regval = 0;
12189
12190 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12191 op = bits (thumb2_insn_r->arm_insn, 23, 24);
12192
12193 if (0 == op || 3 == op)
12194 {
12195 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12196 {
12197 /* Handle RFE instruction. */
12198 record_buf[0] = ARM_PS_REGNUM;
12199 thumb2_insn_r->reg_rec_count = 1;
12200 }
12201 else
12202 {
12203 /* Handle SRS instruction after reading banked SP. */
12204 return arm_record_unsupported_insn (thumb2_insn_r);
12205 }
12206 }
12207 else if (1 == op || 2 == op)
12208 {
12209 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12210 {
12211 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
12212 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12213 while (register_bits)
12214 {
12215 if (register_bits & 0x00000001)
12216 record_buf[index++] = register_count;
12217
12218 register_count++;
12219 register_bits = register_bits >> 1;
12220 }
12221 record_buf[index++] = reg_rn;
12222 record_buf[index++] = ARM_PS_REGNUM;
12223 thumb2_insn_r->reg_rec_count = index;
12224 }
12225 else
12226 {
12227 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
12228 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12229 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12230 while (register_bits)
12231 {
12232 if (register_bits & 0x00000001)
12233 register_count++;
12234
12235 register_bits = register_bits >> 1;
12236 }
12237
12238 if (1 == op)
12239 {
12240 /* Start address calculation for LDMDB/LDMEA. */
12241 start_address = u_regval;
12242 }
12243 else if (2 == op)
12244 {
12245 /* Start address calculation for LDMDB/LDMEA. */
12246 start_address = u_regval - register_count * 4;
12247 }
12248
12249 thumb2_insn_r->mem_rec_count = register_count;
12250 while (register_count)
12251 {
12252 record_buf_mem[register_count * 2 - 1] = start_address;
12253 record_buf_mem[register_count * 2 - 2] = 4;
12254 start_address = start_address + 4;
12255 register_count--;
12256 }
12257 record_buf[0] = reg_rn;
12258 record_buf[1] = ARM_PS_REGNUM;
12259 thumb2_insn_r->reg_rec_count = 2;
12260 }
12261 }
12262
12263 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12264 record_buf_mem);
12265 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12266 record_buf);
12267 return ARM_RECORD_SUCCESS;
12268}
12269
12270/* Handler for thumb2 load/store (dual/exclusive) and table branch
12271 instructions. */
12272
12273static int
12274thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r)
12275{
12276 struct regcache *reg_cache = thumb2_insn_r->regcache;
12277
12278 uint32_t reg_rd, reg_rn, offset_imm;
12279 uint32_t reg_dest1, reg_dest2;
12280 uint32_t address, offset_addr;
12281 uint32_t record_buf[8], record_buf_mem[8];
12282 uint32_t op1, op2, op3;
12283
12284 ULONGEST u_regval[2];
12285
12286 op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
12287 op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
12288 op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
12289
12290 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12291 {
12292 if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
12293 {
12294 reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
12295 record_buf[0] = reg_dest1;
12296 record_buf[1] = ARM_PS_REGNUM;
12297 thumb2_insn_r->reg_rec_count = 2;
12298 }
12299
12300 if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
12301 {
12302 reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12303 record_buf[2] = reg_dest2;
12304 thumb2_insn_r->reg_rec_count = 3;
12305 }
12306 }
12307 else
12308 {
12309 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12310 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12311
12312 if (0 == op1 && 0 == op2)
12313 {
12314 /* Handle STREX. */
12315 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12316 address = u_regval[0] + (offset_imm * 4);
12317 record_buf_mem[0] = 4;
12318 record_buf_mem[1] = address;
12319 thumb2_insn_r->mem_rec_count = 1;
12320 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12321 record_buf[0] = reg_rd;
12322 thumb2_insn_r->reg_rec_count = 1;
12323 }
12324 else if (1 == op1 && 0 == op2)
12325 {
12326 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12327 record_buf[0] = reg_rd;
12328 thumb2_insn_r->reg_rec_count = 1;
12329 address = u_regval[0];
12330 record_buf_mem[1] = address;
12331
12332 if (4 == op3)
12333 {
12334 /* Handle STREXB. */
12335 record_buf_mem[0] = 1;
12336 thumb2_insn_r->mem_rec_count = 1;
12337 }
12338 else if (5 == op3)
12339 {
12340 /* Handle STREXH. */
12341 record_buf_mem[0] = 2 ;
12342 thumb2_insn_r->mem_rec_count = 1;
12343 }
12344 else if (7 == op3)
12345 {
12346 /* Handle STREXD. */
12347 address = u_regval[0];
12348 record_buf_mem[0] = 4;
12349 record_buf_mem[2] = 4;
12350 record_buf_mem[3] = address + 4;
12351 thumb2_insn_r->mem_rec_count = 2;
12352 }
12353 }
12354 else
12355 {
12356 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12357
12358 if (bit (thumb2_insn_r->arm_insn, 24))
12359 {
12360 if (bit (thumb2_insn_r->arm_insn, 23))
12361 offset_addr = u_regval[0] + (offset_imm * 4);
12362 else
12363 offset_addr = u_regval[0] - (offset_imm * 4);
12364
12365 address = offset_addr;
12366 }
12367 else
12368 address = u_regval[0];
12369
12370 record_buf_mem[0] = 4;
12371 record_buf_mem[1] = address;
12372 record_buf_mem[2] = 4;
12373 record_buf_mem[3] = address + 4;
12374 thumb2_insn_r->mem_rec_count = 2;
12375 record_buf[0] = reg_rn;
12376 thumb2_insn_r->reg_rec_count = 1;
12377 }
12378 }
12379
12380 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12381 record_buf);
12382 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12383 record_buf_mem);
12384 return ARM_RECORD_SUCCESS;
12385}
12386
12387/* Handler for thumb2 data processing (shift register and modified immediate)
12388 instructions. */
12389
12390static int
12391thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r)
12392{
12393 uint32_t reg_rd, op;
12394 uint32_t record_buf[8];
12395
12396 op = bits (thumb2_insn_r->arm_insn, 21, 24);
12397 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12398
12399 if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
12400 {
12401 record_buf[0] = ARM_PS_REGNUM;
12402 thumb2_insn_r->reg_rec_count = 1;
12403 }
12404 else
12405 {
12406 record_buf[0] = reg_rd;
12407 record_buf[1] = ARM_PS_REGNUM;
12408 thumb2_insn_r->reg_rec_count = 2;
12409 }
12410
12411 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12412 record_buf);
12413 return ARM_RECORD_SUCCESS;
12414}
12415
12416/* Generic handler for thumb2 instructions which effect destination and PS
12417 registers. */
12418
12419static int
12420thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r)
12421{
12422 uint32_t reg_rd;
12423 uint32_t record_buf[8];
12424
12425 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12426
12427 record_buf[0] = reg_rd;
12428 record_buf[1] = ARM_PS_REGNUM;
12429 thumb2_insn_r->reg_rec_count = 2;
12430
12431 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12432 record_buf);
12433 return ARM_RECORD_SUCCESS;
12434}
12435
12436/* Handler for thumb2 branch and miscellaneous control instructions. */
12437
12438static int
12439thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r)
12440{
12441 uint32_t op, op1, op2;
12442 uint32_t record_buf[8];
12443
12444 op = bits (thumb2_insn_r->arm_insn, 20, 26);
12445 op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
12446 op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12447
12448 /* Handle MSR insn. */
12449 if (!(op1 & 0x2) && 0x38 == op)
12450 {
12451 if (!(op2 & 0x3))
12452 {
12453 /* CPSR is going to be changed. */
12454 record_buf[0] = ARM_PS_REGNUM;
12455 thumb2_insn_r->reg_rec_count = 1;
12456 }
12457 else
12458 {
12459 arm_record_unsupported_insn(thumb2_insn_r);
12460 return -1;
12461 }
12462 }
12463 else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
12464 {
12465 /* BLX. */
12466 record_buf[0] = ARM_PS_REGNUM;
12467 record_buf[1] = ARM_LR_REGNUM;
12468 thumb2_insn_r->reg_rec_count = 2;
12469 }
12470
12471 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12472 record_buf);
12473 return ARM_RECORD_SUCCESS;
12474}
12475
12476/* Handler for thumb2 store single data item instructions. */
12477
12478static int
12479thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r)
12480{
12481 struct regcache *reg_cache = thumb2_insn_r->regcache;
12482
12483 uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
12484 uint32_t address, offset_addr;
12485 uint32_t record_buf[8], record_buf_mem[8];
12486 uint32_t op1, op2;
12487
12488 ULONGEST u_regval[2];
12489
12490 op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
12491 op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
12492 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12493 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12494
12495 if (bit (thumb2_insn_r->arm_insn, 23))
12496 {
12497 /* T2 encoding. */
12498 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
12499 offset_addr = u_regval[0] + offset_imm;
12500 address = offset_addr;
12501 }
12502 else
12503 {
12504 /* T3 encoding. */
12505 if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
12506 {
12507 /* Handle STRB (register). */
12508 reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
12509 regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
12510 shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
12511 offset_addr = u_regval[1] << shift_imm;
12512 address = u_regval[0] + offset_addr;
12513 }
12514 else
12515 {
12516 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12517 if (bit (thumb2_insn_r->arm_insn, 10))
12518 {
12519 if (bit (thumb2_insn_r->arm_insn, 9))
12520 offset_addr = u_regval[0] + offset_imm;
12521 else
12522 offset_addr = u_regval[0] - offset_imm;
12523
12524 address = offset_addr;
12525 }
12526 else
12527 address = u_regval[0];
12528 }
12529 }
12530
12531 switch (op1)
12532 {
12533 /* Store byte instructions. */
12534 case 4:
12535 case 0:
12536 record_buf_mem[0] = 1;
12537 break;
12538 /* Store half word instructions. */
12539 case 1:
12540 case 5:
12541 record_buf_mem[0] = 2;
12542 break;
12543 /* Store word instructions. */
12544 case 2:
12545 case 6:
12546 record_buf_mem[0] = 4;
12547 break;
12548
12549 default:
12550 gdb_assert_not_reached ("no decoding pattern found");
12551 break;
12552 }
12553
12554 record_buf_mem[1] = address;
12555 thumb2_insn_r->mem_rec_count = 1;
12556 record_buf[0] = reg_rn;
12557 thumb2_insn_r->reg_rec_count = 1;
12558
12559 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12560 record_buf);
12561 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12562 record_buf_mem);
12563 return ARM_RECORD_SUCCESS;
12564}
12565
12566/* Handler for thumb2 load memory hints instructions. */
12567
12568static int
12569thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r)
12570{
12571 uint32_t record_buf[8];
12572 uint32_t reg_rt, reg_rn;
12573
12574 reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
12575 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12576
12577 if (ARM_PC_REGNUM != reg_rt)
12578 {
12579 record_buf[0] = reg_rt;
12580 record_buf[1] = reg_rn;
12581 record_buf[2] = ARM_PS_REGNUM;
12582 thumb2_insn_r->reg_rec_count = 3;
12583
12584 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12585 record_buf);
12586 return ARM_RECORD_SUCCESS;
12587 }
12588
12589 return ARM_RECORD_FAILURE;
12590}
12591
12592/* Handler for thumb2 load word instructions. */
12593
12594static int
12595thumb2_record_ld_word (insn_decode_record *thumb2_insn_r)
12596{
12597 uint32_t record_buf[8];
12598
12599 record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
12600 record_buf[1] = ARM_PS_REGNUM;
12601 thumb2_insn_r->reg_rec_count = 2;
12602
12603 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12604 record_buf);
12605 return ARM_RECORD_SUCCESS;
12606}
12607
12608/* Handler for thumb2 long multiply, long multiply accumulate, and
12609 divide instructions. */
12610
12611static int
12612thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r)
12613{
12614 uint32_t opcode1 = 0, opcode2 = 0;
12615 uint32_t record_buf[8];
12616
12617 opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
12618 opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
12619
12620 if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
12621 {
12622 /* Handle SMULL, UMULL, SMULAL. */
12623 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
12624 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12625 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12626 record_buf[2] = ARM_PS_REGNUM;
12627 thumb2_insn_r->reg_rec_count = 3;
12628 }
12629 else if (1 == opcode1 || 3 == opcode2)
12630 {
12631 /* Handle SDIV and UDIV. */
12632 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12633 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12634 record_buf[2] = ARM_PS_REGNUM;
12635 thumb2_insn_r->reg_rec_count = 3;
12636 }
12637 else
12638 return ARM_RECORD_FAILURE;
12639
12640 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12641 record_buf);
12642 return ARM_RECORD_SUCCESS;
12643}
12644
12645/* Record handler for thumb32 coprocessor instructions. */
12646
12647static int
12648thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r)
12649{
12650 if (bit (thumb2_insn_r->arm_insn, 25))
12651 return arm_record_coproc_data_proc (thumb2_insn_r);
12652 else
12653 return arm_record_asimd_vfp_coproc (thumb2_insn_r);
12654}
12655
12656/* Record handler for advance SIMD structure load/store instructions. */
12657
12658static int
12659thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r)
12660{
12661 struct regcache *reg_cache = thumb2_insn_r->regcache;
12662 uint32_t l_bit, a_bit, b_bits;
12663 uint32_t record_buf[128], record_buf_mem[128];
12664 uint32_t reg_rn, reg_vd, address, f_elem;
12665 uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
12666 uint8_t f_ebytes;
12667
12668 l_bit = bit (thumb2_insn_r->arm_insn, 21);
12669 a_bit = bit (thumb2_insn_r->arm_insn, 23);
12670 b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
12671 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12672 reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
12673 reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
12674 f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
12675 f_elem = 8 / f_ebytes;
12676
12677 if (!l_bit)
12678 {
12679 ULONGEST u_regval = 0;
12680 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12681 address = u_regval;
12682
12683 if (!a_bit)
12684 {
12685 /* Handle VST1. */
12686 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12687 {
12688 if (b_bits == 0x07)
12689 bf_regs = 1;
12690 else if (b_bits == 0x0a)
12691 bf_regs = 2;
12692 else if (b_bits == 0x06)
12693 bf_regs = 3;
12694 else if (b_bits == 0x02)
12695 bf_regs = 4;
12696 else
12697 bf_regs = 0;
12698
12699 for (index_r = 0; index_r < bf_regs; index_r++)
12700 {
12701 for (index_e = 0; index_e < f_elem; index_e++)
12702 {
12703 record_buf_mem[index_m++] = f_ebytes;
12704 record_buf_mem[index_m++] = address;
12705 address = address + f_ebytes;
12706 thumb2_insn_r->mem_rec_count += 1;
12707 }
12708 }
12709 }
12710 /* Handle VST2. */
12711 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12712 {
12713 if (b_bits == 0x09 || b_bits == 0x08)
12714 bf_regs = 1;
12715 else if (b_bits == 0x03)
12716 bf_regs = 2;
12717 else
12718 bf_regs = 0;
12719
12720 for (index_r = 0; index_r < bf_regs; index_r++)
12721 for (index_e = 0; index_e < f_elem; index_e++)
12722 {
12723 for (loop_t = 0; loop_t < 2; loop_t++)
12724 {
12725 record_buf_mem[index_m++] = f_ebytes;
12726 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12727 thumb2_insn_r->mem_rec_count += 1;
12728 }
12729 address = address + (2 * f_ebytes);
12730 }
12731 }
12732 /* Handle VST3. */
12733 else if ((b_bits & 0x0e) == 0x04)
12734 {
12735 for (index_e = 0; index_e < f_elem; index_e++)
12736 {
12737 for (loop_t = 0; loop_t < 3; loop_t++)
12738 {
12739 record_buf_mem[index_m++] = f_ebytes;
12740 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12741 thumb2_insn_r->mem_rec_count += 1;
12742 }
12743 address = address + (3 * f_ebytes);
12744 }
12745 }
12746 /* Handle VST4. */
12747 else if (!(b_bits & 0x0e))
12748 {
12749 for (index_e = 0; index_e < f_elem; index_e++)
12750 {
12751 for (loop_t = 0; loop_t < 4; loop_t++)
12752 {
12753 record_buf_mem[index_m++] = f_ebytes;
12754 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12755 thumb2_insn_r->mem_rec_count += 1;
12756 }
12757 address = address + (4 * f_ebytes);
12758 }
12759 }
12760 }
12761 else
12762 {
12763 uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
12764
12765 if (bft_size == 0x00)
12766 f_ebytes = 1;
12767 else if (bft_size == 0x01)
12768 f_ebytes = 2;
12769 else if (bft_size == 0x02)
12770 f_ebytes = 4;
12771 else
12772 f_ebytes = 0;
12773
12774 /* Handle VST1. */
12775 if (!(b_bits & 0x0b) || b_bits == 0x08)
12776 thumb2_insn_r->mem_rec_count = 1;
12777 /* Handle VST2. */
12778 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
12779 thumb2_insn_r->mem_rec_count = 2;
12780 /* Handle VST3. */
12781 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
12782 thumb2_insn_r->mem_rec_count = 3;
12783 /* Handle VST4. */
12784 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
12785 thumb2_insn_r->mem_rec_count = 4;
12786
12787 for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
12788 {
12789 record_buf_mem[index_m] = f_ebytes;
12790 record_buf_mem[index_m] = address + (index_m * f_ebytes);
12791 }
12792 }
12793 }
12794 else
12795 {
12796 if (!a_bit)
12797 {
12798 /* Handle VLD1. */
12799 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12800 thumb2_insn_r->reg_rec_count = 1;
12801 /* Handle VLD2. */
12802 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12803 thumb2_insn_r->reg_rec_count = 2;
12804 /* Handle VLD3. */
12805 else if ((b_bits & 0x0e) == 0x04)
12806 thumb2_insn_r->reg_rec_count = 3;
12807 /* Handle VLD4. */
12808 else if (!(b_bits & 0x0e))
12809 thumb2_insn_r->reg_rec_count = 4;
12810 }
12811 else
12812 {
12813 /* Handle VLD1. */
12814 if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
12815 thumb2_insn_r->reg_rec_count = 1;
12816 /* Handle VLD2. */
12817 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
12818 thumb2_insn_r->reg_rec_count = 2;
12819 /* Handle VLD3. */
12820 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
12821 thumb2_insn_r->reg_rec_count = 3;
12822 /* Handle VLD4. */
12823 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
12824 thumb2_insn_r->reg_rec_count = 4;
12825
12826 for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
12827 record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
12828 }
12829 }
12830
12831 if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
12832 {
12833 record_buf[index_r] = reg_rn;
12834 thumb2_insn_r->reg_rec_count += 1;
12835 }
12836
12837 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12838 record_buf);
12839 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12840 record_buf_mem);
12841 return 0;
12842}
12843
12844/* Decodes thumb2 instruction type and invokes its record handler. */
12845
12846static unsigned int
12847thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r)
12848{
12849 uint32_t op, op1, op2;
12850
12851 op = bit (thumb2_insn_r->arm_insn, 15);
12852 op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
12853 op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
12854
12855 if (op1 == 0x01)
12856 {
12857 if (!(op2 & 0x64 ))
12858 {
12859 /* Load/store multiple instruction. */
12860 return thumb2_record_ld_st_multiple (thumb2_insn_r);
12861 }
12862 else if ((op2 & 0x64) == 0x4)
12863 {
12864 /* Load/store (dual/exclusive) and table branch instruction. */
12865 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
12866 }
12867 else if ((op2 & 0x60) == 0x20)
12868 {
12869 /* Data-processing (shifted register). */
12870 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12871 }
12872 else if (op2 & 0x40)
12873 {
12874 /* Co-processor instructions. */
12875 return thumb2_record_coproc_insn (thumb2_insn_r);
12876 }
12877 }
12878 else if (op1 == 0x02)
12879 {
12880 if (op)
12881 {
12882 /* Branches and miscellaneous control instructions. */
12883 return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
12884 }
12885 else if (op2 & 0x20)
12886 {
12887 /* Data-processing (plain binary immediate) instruction. */
12888 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12889 }
12890 else
12891 {
12892 /* Data-processing (modified immediate). */
12893 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12894 }
12895 }
12896 else if (op1 == 0x03)
12897 {
12898 if (!(op2 & 0x71 ))
12899 {
12900 /* Store single data item. */
12901 return thumb2_record_str_single_data (thumb2_insn_r);
12902 }
12903 else if (!((op2 & 0x71) ^ 0x10))
12904 {
12905 /* Advanced SIMD or structure load/store instructions. */
12906 return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
12907 }
12908 else if (!((op2 & 0x67) ^ 0x01))
12909 {
12910 /* Load byte, memory hints instruction. */
12911 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12912 }
12913 else if (!((op2 & 0x67) ^ 0x03))
12914 {
12915 /* Load halfword, memory hints instruction. */
12916 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12917 }
12918 else if (!((op2 & 0x67) ^ 0x05))
12919 {
12920 /* Load word instruction. */
12921 return thumb2_record_ld_word (thumb2_insn_r);
12922 }
12923 else if (!((op2 & 0x70) ^ 0x20))
12924 {
12925 /* Data-processing (register) instruction. */
12926 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12927 }
12928 else if (!((op2 & 0x78) ^ 0x30))
12929 {
12930 /* Multiply, multiply accumulate, abs diff instruction. */
12931 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12932 }
12933 else if (!((op2 & 0x78) ^ 0x38))
12934 {
12935 /* Long multiply, long multiply accumulate, and divide. */
12936 return thumb2_record_lmul_lmla_div (thumb2_insn_r);
12937 }
12938 else if (op2 & 0x40)
12939 {
12940 /* Co-processor instructions. */
12941 return thumb2_record_coproc_insn (thumb2_insn_r);
12942 }
12943 }
12944
12945 return -1;
12946}
12947
12948namespace {
12949/* Abstract memory reader. */
12950
12951class abstract_memory_reader
12952{
12953public:
12954 /* Read LEN bytes of target memory at address MEMADDR, placing the
12955 results in GDB's memory at BUF. Return true on success. */
12956
12957 virtual bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) = 0;
12958};
12959
12960/* Instruction reader from real target. */
12961
12962class instruction_reader : public abstract_memory_reader
12963{
12964 public:
12965 bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len)
12966 {
12967 if (target_read_memory (memaddr, buf, len))
12968 return false;
12969 else
12970 return true;
12971 }
12972};
12973
12974} // namespace
12975
12976/* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
12977and positive val on fauilure. */
12978
12979static int
12980extract_arm_insn (abstract_memory_reader& reader,
12981 insn_decode_record *insn_record, uint32_t insn_size)
12982{
12983 gdb_byte buf[insn_size];
12984
12985 memset (&buf[0], 0, insn_size);
12986
12987 if (!reader.read (insn_record->this_addr, buf, insn_size))
12988 return 1;
12989 insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
12990 insn_size,
12991 gdbarch_byte_order_for_code (insn_record->gdbarch));
12992 return 0;
12993}
12994
12995typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
12996
12997/* Decode arm/thumb insn depending on condition cods and opcodes; and
12998 dispatch it. */
12999
13000static int
13001decode_insn (abstract_memory_reader &reader, insn_decode_record *arm_record,
13002 record_type_t record_type, uint32_t insn_size)
13003{
13004
13005 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
13006 instruction. */
13007 static const sti_arm_hdl_fp_t arm_handle_insn[8] =
13008 {
13009 arm_record_data_proc_misc_ld_str, /* 000. */
13010 arm_record_data_proc_imm, /* 001. */
13011 arm_record_ld_st_imm_offset, /* 010. */
13012 arm_record_ld_st_reg_offset, /* 011. */
13013 arm_record_ld_st_multiple, /* 100. */
13014 arm_record_b_bl, /* 101. */
13015 arm_record_asimd_vfp_coproc, /* 110. */
13016 arm_record_coproc_data_proc /* 111. */
13017 };
13018
13019 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
13020 instruction. */
13021 static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
13022 { \
13023 thumb_record_shift_add_sub, /* 000. */
13024 thumb_record_add_sub_cmp_mov, /* 001. */
13025 thumb_record_ld_st_reg_offset, /* 010. */
13026 thumb_record_ld_st_imm_offset, /* 011. */
13027 thumb_record_ld_st_stack, /* 100. */
13028 thumb_record_misc, /* 101. */
13029 thumb_record_ldm_stm_swi, /* 110. */
13030 thumb_record_branch /* 111. */
13031 };
13032
13033 uint32_t ret = 0; /* return value: negative:failure 0:success. */
13034 uint32_t insn_id = 0;
13035
13036 if (extract_arm_insn (reader, arm_record, insn_size))
13037 {
13038 if (record_debug)
13039 {
13040 printf_unfiltered (_("Process record: error reading memory at "
13041 "addr %s len = %d.\n"),
13042 paddress (arm_record->gdbarch,
13043 arm_record->this_addr), insn_size);
13044 }
13045 return -1;
13046 }
13047 else if (ARM_RECORD == record_type)
13048 {
13049 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
13050 insn_id = bits (arm_record->arm_insn, 25, 27);
13051
13052 if (arm_record->cond == 0xf)
13053 ret = arm_record_extension_space (arm_record);
13054 else
13055 {
13056 /* If this insn has fallen into extension space
13057 then we need not decode it anymore. */
13058 ret = arm_handle_insn[insn_id] (arm_record);
13059 }
13060 if (ret != ARM_RECORD_SUCCESS)
13061 {
13062 arm_record_unsupported_insn (arm_record);
13063 ret = -1;
13064 }
13065 }
13066 else if (THUMB_RECORD == record_type)
13067 {
13068 /* As thumb does not have condition codes, we set negative. */
13069 arm_record->cond = -1;
13070 insn_id = bits (arm_record->arm_insn, 13, 15);
13071 ret = thumb_handle_insn[insn_id] (arm_record);
13072 if (ret != ARM_RECORD_SUCCESS)
13073 {
13074 arm_record_unsupported_insn (arm_record);
13075 ret = -1;
13076 }
13077 }
13078 else if (THUMB2_RECORD == record_type)
13079 {
13080 /* As thumb does not have condition codes, we set negative. */
13081 arm_record->cond = -1;
13082
13083 /* Swap first half of 32bit thumb instruction with second half. */
13084 arm_record->arm_insn
13085 = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
13086
13087 ret = thumb2_record_decode_insn_handler (arm_record);
13088
13089 if (ret != ARM_RECORD_SUCCESS)
13090 {
13091 arm_record_unsupported_insn (arm_record);
13092 ret = -1;
13093 }
13094 }
13095 else
13096 {
13097 /* Throw assertion. */
13098 gdb_assert_not_reached ("not a valid instruction, could not decode");
13099 }
13100
13101 return ret;
13102}
13103
13104#if GDB_SELF_TEST
13105namespace selftests {
13106
13107/* Provide both 16-bit and 32-bit thumb instructions. */
13108
13109class instruction_reader_thumb : public abstract_memory_reader
13110{
13111public:
13112 template<size_t SIZE>
13113 instruction_reader_thumb (enum bfd_endian endian,
13114 const uint16_t (&insns)[SIZE])
13115 : m_endian (endian), m_insns (insns), m_insns_size (SIZE)
13116 {}
13117
13118 bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len)
13119 {
13120 SELF_CHECK (len == 4 || len == 2);
13121 SELF_CHECK (memaddr % 2 == 0);
13122 SELF_CHECK ((memaddr / 2) < m_insns_size);
13123
13124 store_unsigned_integer (buf, 2, m_endian, m_insns[memaddr / 2]);
13125 if (len == 4)
13126 {
13127 store_unsigned_integer (&buf[2], 2, m_endian,
13128 m_insns[memaddr / 2 + 1]);
13129 }
13130 return true;
13131 }
13132
13133private:
13134 enum bfd_endian m_endian;
13135 const uint16_t *m_insns;
13136 size_t m_insns_size;
13137};
13138
13139static void
13140arm_record_test (void)
13141{
13142 struct gdbarch_info info;
13143 gdbarch_info_init (&info);
13144 info.bfd_arch_info = bfd_scan_arch ("arm");
13145
13146 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
13147
13148 SELF_CHECK (gdbarch != NULL);
13149
13150 /* 16-bit Thumb instructions. */
13151 {
13152 insn_decode_record arm_record;
13153
13154 memset (&arm_record, 0, sizeof (insn_decode_record));
13155 arm_record.gdbarch = gdbarch;
13156
13157 static const uint16_t insns[] = {
13158 /* db b2 uxtb r3, r3 */
13159 0xb2db,
13160 /* cd 58 ldr r5, [r1, r3] */
13161 0x58cd,
13162 };
13163
13164 enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch);
13165 instruction_reader_thumb reader (endian, insns);
13166 int ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13167 THUMB_INSN_SIZE_BYTES);
13168
13169 SELF_CHECK (ret == 0);
13170 SELF_CHECK (arm_record.mem_rec_count == 0);
13171 SELF_CHECK (arm_record.reg_rec_count == 1);
13172 SELF_CHECK (arm_record.arm_regs[0] == 3);
13173
13174 arm_record.this_addr += 2;
13175 ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13176 THUMB_INSN_SIZE_BYTES);
13177
13178 SELF_CHECK (ret == 0);
13179 SELF_CHECK (arm_record.mem_rec_count == 0);
13180 SELF_CHECK (arm_record.reg_rec_count == 1);
13181 SELF_CHECK (arm_record.arm_regs[0] == 5);
13182 }
13183
13184 /* 32-bit Thumb-2 instructions. */
13185 {
13186 insn_decode_record arm_record;
13187
13188 memset (&arm_record, 0, sizeof (insn_decode_record));
13189 arm_record.gdbarch = gdbarch;
13190
13191 static const uint16_t insns[] = {
13192 /* 1d ee 70 7f mrc 15, 0, r7, cr13, cr0, {3} */
13193 0xee1d, 0x7f70,
13194 };
13195
13196 enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch);
13197 instruction_reader_thumb reader (endian, insns);
13198 int ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
13199 THUMB2_INSN_SIZE_BYTES);
13200
13201 SELF_CHECK (ret == 0);
13202 SELF_CHECK (arm_record.mem_rec_count == 0);
13203 SELF_CHECK (arm_record.reg_rec_count == 1);
13204 SELF_CHECK (arm_record.arm_regs[0] == 7);
13205 }
13206}
13207} // namespace selftests
13208#endif /* GDB_SELF_TEST */
13209
13210/* Cleans up local record registers and memory allocations. */
13211
13212static void
13213deallocate_reg_mem (insn_decode_record *record)
13214{
13215 xfree (record->arm_regs);
13216 xfree (record->arm_mems);
13217}
13218
13219
13220/* Parse the current instruction and record the values of the registers and
13221 memory that will be changed in current instruction to record_arch_list".
13222 Return -1 if something is wrong. */
13223
13224int
13225arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
13226 CORE_ADDR insn_addr)
13227{
13228
13229 uint32_t no_of_rec = 0;
13230 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
13231 ULONGEST t_bit = 0, insn_id = 0;
13232
13233 ULONGEST u_regval = 0;
13234
13235 insn_decode_record arm_record;
13236
13237 memset (&arm_record, 0, sizeof (insn_decode_record));
13238 arm_record.regcache = regcache;
13239 arm_record.this_addr = insn_addr;
13240 arm_record.gdbarch = gdbarch;
13241
13242
13243 if (record_debug > 1)
13244 {
13245 fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
13246 "addr = %s\n",
13247 paddress (gdbarch, arm_record.this_addr));
13248 }
13249
13250 instruction_reader reader;
13251 if (extract_arm_insn (reader, &arm_record, 2))
13252 {
13253 if (record_debug)
13254 {
13255 printf_unfiltered (_("Process record: error reading memory at "
13256 "addr %s len = %d.\n"),
13257 paddress (arm_record.gdbarch,
13258 arm_record.this_addr), 2);
13259 }
13260 return -1;
13261 }
13262
13263 /* Check the insn, whether it is thumb or arm one. */
13264
13265 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
13266 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
13267
13268
13269 if (!(u_regval & t_bit))
13270 {
13271 /* We are decoding arm insn. */
13272 ret = decode_insn (reader, &arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
13273 }
13274 else
13275 {
13276 insn_id = bits (arm_record.arm_insn, 11, 15);
13277 /* is it thumb2 insn? */
13278 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
13279 {
13280 ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
13281 THUMB2_INSN_SIZE_BYTES);
13282 }
13283 else
13284 {
13285 /* We are decoding thumb insn. */
13286 ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13287 THUMB_INSN_SIZE_BYTES);
13288 }
13289 }
13290
13291 if (0 == ret)
13292 {
13293 /* Record registers. */
13294 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
13295 if (arm_record.arm_regs)
13296 {
13297 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
13298 {
13299 if (record_full_arch_list_add_reg
13300 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
13301 ret = -1;
13302 }
13303 }
13304 /* Record memories. */
13305 if (arm_record.arm_mems)
13306 {
13307 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
13308 {
13309 if (record_full_arch_list_add_mem
13310 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
13311 arm_record.arm_mems[no_of_rec].len))
13312 ret = -1;
13313 }
13314 }
13315
13316 if (record_full_arch_list_add_end ())
13317 ret = -1;
13318 }
13319
13320
13321 deallocate_reg_mem (&arm_record);
13322
13323 return ret;
13324}
This page took 0.064983 seconds and 4 git commands to generate.