Phase 1 of the ptid_t changes.
[deliverable/binutils-gdb.git] / gdb / blockframe.c
... / ...
CommitLineData
1/* Get info from stack frames;
2 convert between frames, blocks, functions and pc values.
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23#include "defs.h"
24#include "symtab.h"
25#include "bfd.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "frame.h"
29#include "gdbcore.h"
30#include "value.h" /* for read_register */
31#include "target.h" /* for target_has_stack */
32#include "inferior.h" /* for read_pc */
33#include "annotate.h"
34#include "regcache.h"
35
36/* Prototypes for exported functions. */
37
38void _initialize_blockframe (void);
39
40/* A default FRAME_CHAIN_VALID, in the form that is suitable for most
41 targets. If FRAME_CHAIN_VALID returns zero it means that the given
42 frame is the outermost one and has no caller. */
43
44int
45file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
46{
47 return ((chain) != 0
48 && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
49}
50
51/* Use the alternate method of avoiding running up off the end of the
52 frame chain or following frames back into the startup code. See
53 the comments in objfiles.h. */
54
55int
56func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
57{
58 return ((chain) != 0
59 && !inside_main_func ((thisframe)->pc)
60 && !inside_entry_func ((thisframe)->pc));
61}
62
63/* A very simple method of determining a valid frame */
64
65int
66nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
67{
68 return ((chain) != 0);
69}
70
71/* Is ADDR inside the startup file? Note that if your machine
72 has a way to detect the bottom of the stack, there is no need
73 to call this function from FRAME_CHAIN_VALID; the reason for
74 doing so is that some machines have no way of detecting bottom
75 of stack.
76
77 A PC of zero is always considered to be the bottom of the stack. */
78
79int
80inside_entry_file (CORE_ADDR addr)
81{
82 if (addr == 0)
83 return 1;
84 if (symfile_objfile == 0)
85 return 0;
86 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
87 {
88 /* Do not stop backtracing if the pc is in the call dummy
89 at the entry point. */
90 /* FIXME: Won't always work with zeros for the last two arguments */
91 if (PC_IN_CALL_DUMMY (addr, 0, 0))
92 return 0;
93 }
94 return (addr >= symfile_objfile->ei.entry_file_lowpc &&
95 addr < symfile_objfile->ei.entry_file_highpc);
96}
97
98/* Test a specified PC value to see if it is in the range of addresses
99 that correspond to the main() function. See comments above for why
100 we might want to do this.
101
102 Typically called from FRAME_CHAIN_VALID.
103
104 A PC of zero is always considered to be the bottom of the stack. */
105
106int
107inside_main_func (CORE_ADDR pc)
108{
109 if (pc == 0)
110 return 1;
111 if (symfile_objfile == 0)
112 return 0;
113
114 /* If the addr range is not set up at symbol reading time, set it up now.
115 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
116 it is unable to set it up and symbol reading time. */
117
118 if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
119 symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
120 {
121 struct symbol *mainsym;
122
123 mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL);
124 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
125 {
126 symfile_objfile->ei.main_func_lowpc =
127 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
128 symfile_objfile->ei.main_func_highpc =
129 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
130 }
131 }
132 return (symfile_objfile->ei.main_func_lowpc <= pc &&
133 symfile_objfile->ei.main_func_highpc > pc);
134}
135
136/* Test a specified PC value to see if it is in the range of addresses
137 that correspond to the process entry point function. See comments
138 in objfiles.h for why we might want to do this.
139
140 Typically called from FRAME_CHAIN_VALID.
141
142 A PC of zero is always considered to be the bottom of the stack. */
143
144int
145inside_entry_func (CORE_ADDR pc)
146{
147 if (pc == 0)
148 return 1;
149 if (symfile_objfile == 0)
150 return 0;
151 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
152 {
153 /* Do not stop backtracing if the pc is in the call dummy
154 at the entry point. */
155 /* FIXME: Won't always work with zeros for the last two arguments */
156 if (PC_IN_CALL_DUMMY (pc, 0, 0))
157 return 0;
158 }
159 return (symfile_objfile->ei.entry_func_lowpc <= pc &&
160 symfile_objfile->ei.entry_func_highpc > pc);
161}
162
163/* Info about the innermost stack frame (contents of FP register) */
164
165static struct frame_info *current_frame;
166
167/* Cache for frame addresses already read by gdb. Valid only while
168 inferior is stopped. Control variables for the frame cache should
169 be local to this module. */
170
171static struct obstack frame_cache_obstack;
172
173void *
174frame_obstack_alloc (unsigned long size)
175{
176 return obstack_alloc (&frame_cache_obstack, size);
177}
178
179void
180frame_saved_regs_zalloc (struct frame_info *fi)
181{
182 fi->saved_regs = (CORE_ADDR *)
183 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
184 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
185}
186
187
188/* Return the innermost (currently executing) stack frame. */
189
190struct frame_info *
191get_current_frame (void)
192{
193 if (current_frame == NULL)
194 {
195 if (target_has_stack)
196 current_frame = create_new_frame (read_fp (), read_pc ());
197 else
198 error ("No stack.");
199 }
200 return current_frame;
201}
202
203void
204set_current_frame (struct frame_info *frame)
205{
206 current_frame = frame;
207}
208
209/* Create an arbitrary (i.e. address specified by user) or innermost frame.
210 Always returns a non-NULL value. */
211
212struct frame_info *
213create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
214{
215 struct frame_info *fi;
216 char *name;
217
218 fi = (struct frame_info *)
219 obstack_alloc (&frame_cache_obstack,
220 sizeof (struct frame_info));
221
222 /* Arbitrary frame */
223 fi->saved_regs = NULL;
224 fi->next = NULL;
225 fi->prev = NULL;
226 fi->frame = addr;
227 fi->pc = pc;
228 find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
229 fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name);
230
231#ifdef INIT_EXTRA_FRAME_INFO
232 INIT_EXTRA_FRAME_INFO (0, fi);
233#endif
234
235 return fi;
236}
237
238/* Return the frame that FRAME calls (NULL if FRAME is the innermost
239 frame). */
240
241struct frame_info *
242get_next_frame (struct frame_info *frame)
243{
244 return frame->next;
245}
246
247/* Flush the entire frame cache. */
248
249void
250flush_cached_frames (void)
251{
252 /* Since we can't really be sure what the first object allocated was */
253 obstack_free (&frame_cache_obstack, 0);
254 obstack_init (&frame_cache_obstack);
255
256 current_frame = NULL; /* Invalidate cache */
257 select_frame (NULL, -1);
258 annotate_frames_invalid ();
259}
260
261/* Flush the frame cache, and start a new one if necessary. */
262
263void
264reinit_frame_cache (void)
265{
266 flush_cached_frames ();
267
268 /* FIXME: The inferior_ptid test is wrong if there is a corefile. */
269 if (PIDGET (inferior_ptid) != 0)
270 {
271 select_frame (get_current_frame (), 0);
272 }
273}
274
275/* Return nonzero if the function for this frame lacks a prologue. Many
276 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
277 function. */
278
279int
280frameless_look_for_prologue (struct frame_info *frame)
281{
282 CORE_ADDR func_start, after_prologue;
283
284 func_start = get_pc_function_start (frame->pc);
285 if (func_start)
286 {
287 func_start += FUNCTION_START_OFFSET;
288 /* This is faster, since only care whether there *is* a
289 prologue, not how long it is. */
290 return PROLOGUE_FRAMELESS_P (func_start);
291 }
292 else if (frame->pc == 0)
293 /* A frame with a zero PC is usually created by dereferencing a
294 NULL function pointer, normally causing an immediate core dump
295 of the inferior. Mark function as frameless, as the inferior
296 has no chance of setting up a stack frame. */
297 return 1;
298 else
299 /* If we can't find the start of the function, we don't really
300 know whether the function is frameless, but we should be able
301 to get a reasonable (i.e. best we can do under the
302 circumstances) backtrace by saying that it isn't. */
303 return 0;
304}
305
306/* Default a few macros that people seldom redefine. */
307
308#if !defined (INIT_FRAME_PC)
309#define INIT_FRAME_PC(fromleaf, prev) \
310 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
311 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
312#endif
313
314#ifndef FRAME_CHAIN_COMBINE
315#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
316#endif
317
318/* Return a structure containing various interesting information
319 about the frame that called NEXT_FRAME. Returns NULL
320 if there is no such frame. */
321
322struct frame_info *
323get_prev_frame (struct frame_info *next_frame)
324{
325 CORE_ADDR address = 0;
326 struct frame_info *prev;
327 int fromleaf = 0;
328 char *name;
329
330 /* If the requested entry is in the cache, return it.
331 Otherwise, figure out what the address should be for the entry
332 we're about to add to the cache. */
333
334 if (!next_frame)
335 {
336#if 0
337 /* This screws value_of_variable, which just wants a nice clean
338 NULL return from block_innermost_frame if there are no frames.
339 I don't think I've ever seen this message happen otherwise.
340 And returning NULL here is a perfectly legitimate thing to do. */
341 if (!current_frame)
342 {
343 error ("You haven't set up a process's stack to examine.");
344 }
345#endif
346
347 return current_frame;
348 }
349
350 /* If we have the prev one, return it */
351 if (next_frame->prev)
352 return next_frame->prev;
353
354 /* On some machines it is possible to call a function without
355 setting up a stack frame for it. On these machines, we
356 define this macro to take two args; a frameinfo pointer
357 identifying a frame and a variable to set or clear if it is
358 or isn't leafless. */
359
360 /* Still don't want to worry about this except on the innermost
361 frame. This macro will set FROMLEAF if NEXT_FRAME is a
362 frameless function invocation. */
363 if (!(next_frame->next))
364 {
365 fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
366 if (fromleaf)
367 address = FRAME_FP (next_frame);
368 }
369
370 if (!fromleaf)
371 {
372 /* Two macros defined in tm.h specify the machine-dependent
373 actions to be performed here.
374 First, get the frame's chain-pointer.
375 If that is zero, the frame is the outermost frame or a leaf
376 called by the outermost frame. This means that if start
377 calls main without a frame, we'll return 0 (which is fine
378 anyway).
379
380 Nope; there's a problem. This also returns when the current
381 routine is a leaf of main. This is unacceptable. We move
382 this to after the ffi test; I'd rather have backtraces from
383 start go curfluy than have an abort called from main not show
384 main. */
385 address = FRAME_CHAIN (next_frame);
386 if (!FRAME_CHAIN_VALID (address, next_frame))
387 return 0;
388 address = FRAME_CHAIN_COMBINE (address, next_frame);
389 }
390 if (address == 0)
391 return 0;
392
393 prev = (struct frame_info *)
394 obstack_alloc (&frame_cache_obstack,
395 sizeof (struct frame_info));
396
397 /* Zero all fields by default. */
398 memset (prev, 0, sizeof (struct frame_info));
399
400 if (next_frame)
401 next_frame->prev = prev;
402 prev->next = next_frame;
403 prev->frame = address;
404
405/* This change should not be needed, FIXME! We should
406 determine whether any targets *need* INIT_FRAME_PC to happen
407 after INIT_EXTRA_FRAME_INFO and come up with a simple way to
408 express what goes on here.
409
410 INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
411 (where the PC is already set up) and here (where it isn't).
412 INIT_FRAME_PC is only called from here, always after
413 INIT_EXTRA_FRAME_INFO.
414
415 The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
416 value (which hasn't been set yet). Some other machines appear to
417 require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
418
419 We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
420 an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
421
422 Assuming that some machines need INIT_FRAME_PC after
423 INIT_EXTRA_FRAME_INFO, one possible scheme:
424
425 SETUP_INNERMOST_FRAME()
426 Default version is just create_new_frame (read_fp ()),
427 read_pc ()). Machines with extra frame info would do that (or the
428 local equivalent) and then set the extra fields.
429 SETUP_ARBITRARY_FRAME(argc, argv)
430 Only change here is that create_new_frame would no longer init extra
431 frame info; SETUP_ARBITRARY_FRAME would have to do that.
432 INIT_PREV_FRAME(fromleaf, prev)
433 Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
434 also return a flag saying whether to keep the new frame, or
435 whether to discard it, because on some machines (e.g. mips) it
436 is really awkward to have FRAME_CHAIN_VALID called *before*
437 INIT_EXTRA_FRAME_INFO (there is no good way to get information
438 deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
439 std_frame_pc(fromleaf, prev)
440 This is the default setting for INIT_PREV_FRAME. It just does what
441 the default INIT_FRAME_PC does. Some machines will call it from
442 INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
443 Some machines won't use it.
444 kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
445
446#ifdef INIT_FRAME_PC_FIRST
447 INIT_FRAME_PC_FIRST (fromleaf, prev);
448#endif
449
450#ifdef INIT_EXTRA_FRAME_INFO
451 INIT_EXTRA_FRAME_INFO (fromleaf, prev);
452#endif
453
454 /* This entry is in the frame queue now, which is good since
455 FRAME_SAVED_PC may use that queue to figure out its value
456 (see tm-sparc.h). We want the pc saved in the inferior frame. */
457 INIT_FRAME_PC (fromleaf, prev);
458
459 /* If ->frame and ->pc are unchanged, we are in the process of getting
460 ourselves into an infinite backtrace. Some architectures check this
461 in FRAME_CHAIN or thereabouts, but it seems like there is no reason
462 this can't be an architecture-independent check. */
463 if (next_frame != NULL)
464 {
465 if (prev->frame == next_frame->frame
466 && prev->pc == next_frame->pc)
467 {
468 next_frame->prev = NULL;
469 obstack_free (&frame_cache_obstack, prev);
470 return NULL;
471 }
472 }
473
474 find_pc_partial_function (prev->pc, &name,
475 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
476 if (IN_SIGTRAMP (prev->pc, name))
477 prev->signal_handler_caller = 1;
478
479 return prev;
480}
481
482CORE_ADDR
483get_frame_pc (struct frame_info *frame)
484{
485 return frame->pc;
486}
487
488
489#ifdef FRAME_FIND_SAVED_REGS
490/* XXX - deprecated. This is a compatibility function for targets
491 that do not yet implement FRAME_INIT_SAVED_REGS. */
492/* Find the addresses in which registers are saved in FRAME. */
493
494void
495get_frame_saved_regs (struct frame_info *frame,
496 struct frame_saved_regs *saved_regs_addr)
497{
498 if (frame->saved_regs == NULL)
499 {
500 frame->saved_regs = (CORE_ADDR *)
501 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
502 }
503 if (saved_regs_addr == NULL)
504 {
505 struct frame_saved_regs saved_regs;
506 FRAME_FIND_SAVED_REGS (frame, saved_regs);
507 memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
508 }
509 else
510 {
511 FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
512 memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
513 }
514}
515#endif
516
517/* Return the innermost lexical block in execution
518 in a specified stack frame. The frame address is assumed valid. */
519
520struct block *
521get_frame_block (struct frame_info *frame)
522{
523 CORE_ADDR pc;
524
525 pc = frame->pc;
526 if (frame->next != 0 && frame->next->signal_handler_caller == 0)
527 /* We are not in the innermost frame and we were not interrupted
528 by a signal. We need to subtract one to get the correct block,
529 in case the call instruction was the last instruction of the block.
530 If there are any machines on which the saved pc does not point to
531 after the call insn, we probably want to make frame->pc point after
532 the call insn anyway. */
533 --pc;
534 return block_for_pc (pc);
535}
536
537struct block *
538get_current_block (void)
539{
540 return block_for_pc (read_pc ());
541}
542
543CORE_ADDR
544get_pc_function_start (CORE_ADDR pc)
545{
546 register struct block *bl;
547 register struct symbol *symbol;
548 register struct minimal_symbol *msymbol;
549 CORE_ADDR fstart;
550
551 if ((bl = block_for_pc (pc)) != NULL &&
552 (symbol = block_function (bl)) != NULL)
553 {
554 bl = SYMBOL_BLOCK_VALUE (symbol);
555 fstart = BLOCK_START (bl);
556 }
557 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
558 {
559 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
560 }
561 else
562 {
563 fstart = 0;
564 }
565 return (fstart);
566}
567
568/* Return the symbol for the function executing in frame FRAME. */
569
570struct symbol *
571get_frame_function (struct frame_info *frame)
572{
573 register struct block *bl = get_frame_block (frame);
574 if (bl == 0)
575 return 0;
576 return block_function (bl);
577}
578\f
579
580/* Return the blockvector immediately containing the innermost lexical block
581 containing the specified pc value and section, or 0 if there is none.
582 PINDEX is a pointer to the index value of the block. If PINDEX
583 is NULL, we don't pass this information back to the caller. */
584
585struct blockvector *
586blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
587 int *pindex, struct symtab *symtab)
588{
589 register struct block *b;
590 register int bot, top, half;
591 struct blockvector *bl;
592
593 if (symtab == 0) /* if no symtab specified by caller */
594 {
595 /* First search all symtabs for one whose file contains our pc */
596 if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
597 return 0;
598 }
599
600 bl = BLOCKVECTOR (symtab);
601 b = BLOCKVECTOR_BLOCK (bl, 0);
602
603 /* Then search that symtab for the smallest block that wins. */
604 /* Use binary search to find the last block that starts before PC. */
605
606 bot = 0;
607 top = BLOCKVECTOR_NBLOCKS (bl);
608
609 while (top - bot > 1)
610 {
611 half = (top - bot + 1) >> 1;
612 b = BLOCKVECTOR_BLOCK (bl, bot + half);
613 if (BLOCK_START (b) <= pc)
614 bot += half;
615 else
616 top = bot + half;
617 }
618
619 /* Now search backward for a block that ends after PC. */
620
621 while (bot >= 0)
622 {
623 b = BLOCKVECTOR_BLOCK (bl, bot);
624 if (BLOCK_END (b) > pc)
625 {
626 if (pindex)
627 *pindex = bot;
628 return bl;
629 }
630 bot--;
631 }
632 return 0;
633}
634
635/* Return the blockvector immediately containing the innermost lexical block
636 containing the specified pc value, or 0 if there is none.
637 Backward compatibility, no section. */
638
639struct blockvector *
640blockvector_for_pc (register CORE_ADDR pc, int *pindex)
641{
642 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
643 pindex, NULL);
644}
645
646/* Return the innermost lexical block containing the specified pc value
647 in the specified section, or 0 if there is none. */
648
649struct block *
650block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
651{
652 register struct blockvector *bl;
653 int index;
654
655 bl = blockvector_for_pc_sect (pc, section, &index, NULL);
656 if (bl)
657 return BLOCKVECTOR_BLOCK (bl, index);
658 return 0;
659}
660
661/* Return the innermost lexical block containing the specified pc value,
662 or 0 if there is none. Backward compatibility, no section. */
663
664struct block *
665block_for_pc (register CORE_ADDR pc)
666{
667 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
668}
669
670/* Return the function containing pc value PC in section SECTION.
671 Returns 0 if function is not known. */
672
673struct symbol *
674find_pc_sect_function (CORE_ADDR pc, struct sec *section)
675{
676 register struct block *b = block_for_pc_sect (pc, section);
677 if (b == 0)
678 return 0;
679 return block_function (b);
680}
681
682/* Return the function containing pc value PC.
683 Returns 0 if function is not known. Backward compatibility, no section */
684
685struct symbol *
686find_pc_function (CORE_ADDR pc)
687{
688 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
689}
690
691/* These variables are used to cache the most recent result
692 * of find_pc_partial_function. */
693
694static CORE_ADDR cache_pc_function_low = 0;
695static CORE_ADDR cache_pc_function_high = 0;
696static char *cache_pc_function_name = 0;
697static struct sec *cache_pc_function_section = NULL;
698
699/* Clear cache, e.g. when symbol table is discarded. */
700
701void
702clear_pc_function_cache (void)
703{
704 cache_pc_function_low = 0;
705 cache_pc_function_high = 0;
706 cache_pc_function_name = (char *) 0;
707 cache_pc_function_section = NULL;
708}
709
710/* Finds the "function" (text symbol) that is smaller than PC but
711 greatest of all of the potential text symbols in SECTION. Sets
712 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
713 If ENDADDR is non-null, then set *ENDADDR to be the end of the
714 function (exclusive), but passing ENDADDR as non-null means that
715 the function might cause symbols to be read. This function either
716 succeeds or fails (not halfway succeeds). If it succeeds, it sets
717 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
718 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
719 returns 0. */
720
721int
722find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
723 CORE_ADDR *address, CORE_ADDR *endaddr)
724{
725 struct partial_symtab *pst;
726 struct symbol *f;
727 struct minimal_symbol *msymbol;
728 struct partial_symbol *psb;
729 struct obj_section *osect;
730 int i;
731 CORE_ADDR mapped_pc;
732
733 mapped_pc = overlay_mapped_address (pc, section);
734
735 if (mapped_pc >= cache_pc_function_low &&
736 mapped_pc < cache_pc_function_high &&
737 section == cache_pc_function_section)
738 goto return_cached_value;
739
740 /* If sigtramp is in the u area, it counts as a function (especially
741 important for step_1). */
742#if defined SIGTRAMP_START
743 if (IN_SIGTRAMP (mapped_pc, (char *) NULL))
744 {
745 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
746 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
747 cache_pc_function_name = "<sigtramp>";
748 cache_pc_function_section = section;
749 goto return_cached_value;
750 }
751#endif
752
753 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
754 pst = find_pc_sect_psymtab (mapped_pc, section);
755 if (pst)
756 {
757 /* Need to read the symbols to get a good value for the end address. */
758 if (endaddr != NULL && !pst->readin)
759 {
760 /* Need to get the terminal in case symbol-reading produces
761 output. */
762 target_terminal_ours_for_output ();
763 PSYMTAB_TO_SYMTAB (pst);
764 }
765
766 if (pst->readin)
767 {
768 /* Checking whether the msymbol has a larger value is for the
769 "pathological" case mentioned in print_frame_info. */
770 f = find_pc_sect_function (mapped_pc, section);
771 if (f != NULL
772 && (msymbol == NULL
773 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
774 >= SYMBOL_VALUE_ADDRESS (msymbol))))
775 {
776 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
777 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
778 cache_pc_function_name = SYMBOL_NAME (f);
779 cache_pc_function_section = section;
780 goto return_cached_value;
781 }
782 }
783 else
784 {
785 /* Now that static symbols go in the minimal symbol table, perhaps
786 we could just ignore the partial symbols. But at least for now
787 we use the partial or minimal symbol, whichever is larger. */
788 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
789
790 if (psb
791 && (msymbol == NULL ||
792 (SYMBOL_VALUE_ADDRESS (psb)
793 >= SYMBOL_VALUE_ADDRESS (msymbol))))
794 {
795 /* This case isn't being cached currently. */
796 if (address)
797 *address = SYMBOL_VALUE_ADDRESS (psb);
798 if (name)
799 *name = SYMBOL_NAME (psb);
800 /* endaddr non-NULL can't happen here. */
801 return 1;
802 }
803 }
804 }
805
806 /* Not in the normal symbol tables, see if the pc is in a known section.
807 If it's not, then give up. This ensures that anything beyond the end
808 of the text seg doesn't appear to be part of the last function in the
809 text segment. */
810
811 osect = find_pc_sect_section (mapped_pc, section);
812
813 if (!osect)
814 msymbol = NULL;
815
816 /* Must be in the minimal symbol table. */
817 if (msymbol == NULL)
818 {
819 /* No available symbol. */
820 if (name != NULL)
821 *name = 0;
822 if (address != NULL)
823 *address = 0;
824 if (endaddr != NULL)
825 *endaddr = 0;
826 return 0;
827 }
828
829 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
830 cache_pc_function_name = SYMBOL_NAME (msymbol);
831 cache_pc_function_section = section;
832
833 /* Use the lesser of the next minimal symbol in the same section, or
834 the end of the section, as the end of the function. */
835
836 /* Step over other symbols at this same address, and symbols in
837 other sections, to find the next symbol in this section with
838 a different address. */
839
840 for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
841 {
842 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
843 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
844 break;
845 }
846
847 if (SYMBOL_NAME (msymbol + i) != NULL
848 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
849 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
850 else
851 /* We got the start address from the last msymbol in the objfile.
852 So the end address is the end of the section. */
853 cache_pc_function_high = osect->endaddr;
854
855return_cached_value:
856
857 if (address)
858 {
859 if (pc_in_unmapped_range (pc, section))
860 *address = overlay_unmapped_address (cache_pc_function_low, section);
861 else
862 *address = cache_pc_function_low;
863 }
864
865 if (name)
866 *name = cache_pc_function_name;
867
868 if (endaddr)
869 {
870 if (pc_in_unmapped_range (pc, section))
871 {
872 /* Because the high address is actually beyond the end of
873 the function (and therefore possibly beyond the end of
874 the overlay), we must actually convert (high - 1)
875 and then add one to that. */
876
877 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
878 section);
879 }
880 else
881 *endaddr = cache_pc_function_high;
882 }
883
884 return 1;
885}
886
887/* Backward compatibility, no section argument */
888
889int
890find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
891 CORE_ADDR *endaddr)
892{
893 asection *section;
894
895 section = find_pc_overlay (pc);
896 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
897}
898
899/* Return the innermost stack frame executing inside of BLOCK,
900 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
901
902struct frame_info *
903block_innermost_frame (struct block *block)
904{
905 struct frame_info *frame;
906 register CORE_ADDR start;
907 register CORE_ADDR end;
908
909 if (block == NULL)
910 return NULL;
911
912 start = BLOCK_START (block);
913 end = BLOCK_END (block);
914
915 frame = NULL;
916 while (1)
917 {
918 frame = get_prev_frame (frame);
919 if (frame == NULL)
920 return NULL;
921 if (frame->pc >= start && frame->pc < end)
922 return frame;
923 }
924}
925
926/* Return the full FRAME which corresponds to the given CORE_ADDR
927 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
928
929struct frame_info *
930find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
931{
932 struct frame_info *frame = NULL;
933
934 if (frame_addr == (CORE_ADDR) 0)
935 return NULL;
936
937 while (1)
938 {
939 frame = get_prev_frame (frame);
940 if (frame == NULL)
941 return NULL;
942 if (FRAME_FP (frame) == frame_addr)
943 return frame;
944 }
945}
946
947#ifdef SIGCONTEXT_PC_OFFSET
948/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
949
950CORE_ADDR
951sigtramp_saved_pc (struct frame_info *frame)
952{
953 CORE_ADDR sigcontext_addr;
954 char *buf;
955 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
956 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
957
958 buf = alloca (ptrbytes);
959 /* Get sigcontext address, it is the third parameter on the stack. */
960 if (frame->next)
961 sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
962 + FRAME_ARGS_SKIP
963 + sigcontext_offs,
964 ptrbytes);
965 else
966 sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
967 + sigcontext_offs,
968 ptrbytes);
969
970 /* Don't cause a memory_error when accessing sigcontext in case the stack
971 layout has changed or the stack is corrupt. */
972 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
973 return extract_unsigned_integer (buf, ptrbytes);
974}
975#endif /* SIGCONTEXT_PC_OFFSET */
976
977
978/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
979 below is for infrun.c, which may give the macro a pc without that
980 subtracted out. */
981
982extern CORE_ADDR text_end;
983
984int
985pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
986 CORE_ADDR frame_address)
987{
988 return ((pc) >= text_end - CALL_DUMMY_LENGTH
989 && (pc) <= text_end + DECR_PC_AFTER_BREAK);
990}
991
992int
993pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
994 CORE_ADDR frame_address)
995{
996 return ((pc) >= text_end
997 && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
998}
999
1000/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
1001 top of the stack frame which we are checking, where "bottom" and
1002 "top" refer to some section of memory which contains the code for
1003 the call dummy. Calls to this macro assume that the contents of
1004 SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
1005 are the things to pass.
1006
1007 This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
1008 have that meaning, but the 29k doesn't use ON_STACK. This could be
1009 fixed by generalizing this scheme, perhaps by passing in a frame
1010 and adding a few fields, at least on machines which need them for
1011 PC_IN_CALL_DUMMY.
1012
1013 Something simpler, like checking for the stack segment, doesn't work,
1014 since various programs (threads implementations, gcc nested function
1015 stubs, etc) may either allocate stack frames in another segment, or
1016 allocate other kinds of code on the stack. */
1017
1018int
1019pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
1020{
1021 return (INNER_THAN ((sp), (pc))
1022 && (frame_address != 0)
1023 && INNER_THAN ((pc), (frame_address)));
1024}
1025
1026int
1027pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
1028 CORE_ADDR frame_address)
1029{
1030 return ((pc) >= CALL_DUMMY_ADDRESS ()
1031 && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
1032}
1033
1034
1035/*
1036 * GENERIC DUMMY FRAMES
1037 *
1038 * The following code serves to maintain the dummy stack frames for
1039 * inferior function calls (ie. when gdb calls into the inferior via
1040 * call_function_by_hand). This code saves the machine state before
1041 * the call in host memory, so we must maintain an independent stack
1042 * and keep it consistant etc. I am attempting to make this code
1043 * generic enough to be used by many targets.
1044 *
1045 * The cheapest and most generic way to do CALL_DUMMY on a new target
1046 * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
1047 * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
1048 * to define PUSH_RETURN_ADDRESS, because no call instruction will be
1049 * being executed by the target. Also FRAME_CHAIN_VALID as
1050 * generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
1051 * generic_fix_call_dummy. */
1052
1053/* Dummy frame. This saves the processor state just prior to setting
1054 up the inferior function call. Older targets save the registers
1055 on the target stack (but that really slows down function calls). */
1056
1057struct dummy_frame
1058{
1059 struct dummy_frame *next;
1060
1061 CORE_ADDR pc;
1062 CORE_ADDR fp;
1063 CORE_ADDR sp;
1064 CORE_ADDR top;
1065 char *registers;
1066};
1067
1068static struct dummy_frame *dummy_frame_stack = NULL;
1069
1070/* Function: find_dummy_frame(pc, fp, sp)
1071 Search the stack of dummy frames for one matching the given PC, FP and SP.
1072 This is the work-horse for pc_in_call_dummy and read_register_dummy */
1073
1074char *
1075generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
1076{
1077 struct dummy_frame *dummyframe;
1078
1079 if (pc != entry_point_address ())
1080 return 0;
1081
1082 for (dummyframe = dummy_frame_stack; dummyframe != NULL;
1083 dummyframe = dummyframe->next)
1084 if (fp == dummyframe->fp
1085 || fp == dummyframe->sp
1086 || fp == dummyframe->top)
1087 /* The frame in question lies between the saved fp and sp, inclusive */
1088 return dummyframe->registers;
1089
1090 return 0;
1091}
1092
1093/* Function: pc_in_call_dummy (pc, fp)
1094 Return true if this is a dummy frame created by gdb for an inferior call */
1095
1096int
1097generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1098{
1099 /* if find_dummy_frame succeeds, then PC is in a call dummy */
1100 /* Note: SP and not FP is passed on. */
1101 return (generic_find_dummy_frame (pc, sp) != 0);
1102}
1103
1104/* Function: read_register_dummy
1105 Find a saved register from before GDB calls a function in the inferior */
1106
1107CORE_ADDR
1108generic_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno)
1109{
1110 char *dummy_regs = generic_find_dummy_frame (pc, fp);
1111
1112 if (dummy_regs)
1113 return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
1114 REGISTER_RAW_SIZE (regno));
1115 else
1116 return 0;
1117}
1118
1119/* Save all the registers on the dummy frame stack. Most ports save the
1120 registers on the target stack. This results in lots of unnecessary memory
1121 references, which are slow when debugging via a serial line. Instead, we
1122 save all the registers internally, and never write them to the stack. The
1123 registers get restored when the called function returns to the entry point,
1124 where a breakpoint is laying in wait. */
1125
1126void
1127generic_push_dummy_frame (void)
1128{
1129 struct dummy_frame *dummy_frame;
1130 CORE_ADDR fp = (get_current_frame ())->frame;
1131
1132 /* check to see if there are stale dummy frames,
1133 perhaps left over from when a longjump took us out of a
1134 function that was called by the debugger */
1135
1136 dummy_frame = dummy_frame_stack;
1137 while (dummy_frame)
1138 if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
1139 {
1140 dummy_frame_stack = dummy_frame->next;
1141 xfree (dummy_frame->registers);
1142 xfree (dummy_frame);
1143 dummy_frame = dummy_frame_stack;
1144 }
1145 else
1146 dummy_frame = dummy_frame->next;
1147
1148 dummy_frame = xmalloc (sizeof (struct dummy_frame));
1149 dummy_frame->registers = xmalloc (REGISTER_BYTES);
1150
1151 dummy_frame->pc = read_pc ();
1152 dummy_frame->sp = read_sp ();
1153 dummy_frame->top = dummy_frame->sp;
1154 dummy_frame->fp = fp;
1155 read_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
1156 dummy_frame->next = dummy_frame_stack;
1157 dummy_frame_stack = dummy_frame;
1158}
1159
1160void
1161generic_save_dummy_frame_tos (CORE_ADDR sp)
1162{
1163 dummy_frame_stack->top = sp;
1164}
1165
1166/* Restore the machine state from either the saved dummy stack or a
1167 real stack frame. */
1168
1169void
1170generic_pop_current_frame (void (*popper) (struct frame_info * frame))
1171{
1172 struct frame_info *frame = get_current_frame ();
1173
1174 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1175 generic_pop_dummy_frame ();
1176 else
1177 (*popper) (frame);
1178}
1179
1180/* Function: pop_dummy_frame
1181 Restore the machine state from a saved dummy stack frame. */
1182
1183void
1184generic_pop_dummy_frame (void)
1185{
1186 struct dummy_frame *dummy_frame = dummy_frame_stack;
1187
1188 /* FIXME: what if the first frame isn't the right one, eg..
1189 because one call-by-hand function has done a longjmp into another one? */
1190
1191 if (!dummy_frame)
1192 error ("Can't pop dummy frame!");
1193 dummy_frame_stack = dummy_frame->next;
1194 write_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
1195 flush_cached_frames ();
1196
1197 xfree (dummy_frame->registers);
1198 xfree (dummy_frame);
1199}
1200
1201/* Function: frame_chain_valid
1202 Returns true for a user frame or a call_function_by_hand dummy frame,
1203 and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
1204
1205int
1206generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
1207{
1208 if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
1209 return 1; /* don't prune CALL_DUMMY frames */
1210 else /* fall back to default algorithm (see frame.h) */
1211 return (fp != 0
1212 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1213 && !inside_entry_file (FRAME_SAVED_PC (fi)));
1214}
1215
1216int
1217generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
1218{
1219 if (PC_IN_CALL_DUMMY ((fi)->pc, fp, fp))
1220 return 1; /* don't prune CALL_DUMMY frames */
1221 else /* fall back to default algorithm (see frame.h) */
1222 return (fp != 0
1223 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1224 && !inside_main_func ((fi)->pc)
1225 && !inside_entry_func ((fi)->pc));
1226}
1227
1228/* Function: fix_call_dummy
1229 Stub function. Generic dumy frames typically do not need to fix
1230 the frame being created */
1231
1232void
1233generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1234 struct value **args, struct type *type, int gcc_p)
1235{
1236 return;
1237}
1238
1239/* Function: get_saved_register
1240 Find register number REGNUM relative to FRAME and put its (raw,
1241 target format) contents in *RAW_BUFFER.
1242
1243 Set *OPTIMIZED if the variable was optimized out (and thus can't be
1244 fetched). Note that this is never set to anything other than zero
1245 in this implementation.
1246
1247 Set *LVAL to lval_memory, lval_register, or not_lval, depending on
1248 whether the value was fetched from memory, from a register, or in a
1249 strange and non-modifiable way (e.g. a frame pointer which was
1250 calculated rather than fetched). We will use not_lval for values
1251 fetched from generic dummy frames.
1252
1253 Set *ADDRP to the address, either in memory or as a REGISTER_BYTE
1254 offset into the registers array. If the value is stored in a dummy
1255 frame, set *ADDRP to zero.
1256
1257 To use this implementation, define a function called
1258 "get_saved_register" in your target code, which simply passes all
1259 of its arguments to this function.
1260
1261 The argument RAW_BUFFER must point to aligned memory. */
1262
1263void
1264generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
1265 struct frame_info *frame, int regnum,
1266 enum lval_type *lval)
1267{
1268 if (!target_has_registers)
1269 error ("No registers.");
1270
1271 /* Normal systems don't optimize out things with register numbers. */
1272 if (optimized != NULL)
1273 *optimized = 0;
1274
1275 if (addrp) /* default assumption: not found in memory */
1276 *addrp = 0;
1277
1278 /* Note: since the current frame's registers could only have been
1279 saved by frames INTERIOR TO the current frame, we skip examining
1280 the current frame itself: otherwise, we would be getting the
1281 previous frame's registers which were saved by the current frame. */
1282
1283 while (frame && ((frame = frame->next) != NULL))
1284 {
1285 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1286 {
1287 if (lval) /* found it in a CALL_DUMMY frame */
1288 *lval = not_lval;
1289 if (raw_buffer)
1290 memcpy (raw_buffer,
1291 generic_find_dummy_frame (frame->pc, frame->frame) +
1292 REGISTER_BYTE (regnum),
1293 REGISTER_RAW_SIZE (regnum));
1294 return;
1295 }
1296
1297 FRAME_INIT_SAVED_REGS (frame);
1298 if (frame->saved_regs != NULL
1299 && frame->saved_regs[regnum] != 0)
1300 {
1301 if (lval) /* found it saved on the stack */
1302 *lval = lval_memory;
1303 if (regnum == SP_REGNUM)
1304 {
1305 if (raw_buffer) /* SP register treated specially */
1306 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
1307 frame->saved_regs[regnum]);
1308 }
1309 else
1310 {
1311 if (addrp) /* any other register */
1312 *addrp = frame->saved_regs[regnum];
1313 if (raw_buffer)
1314 read_memory (frame->saved_regs[regnum], raw_buffer,
1315 REGISTER_RAW_SIZE (regnum));
1316 }
1317 return;
1318 }
1319 }
1320
1321 /* If we get thru the loop to this point, it means the register was
1322 not saved in any frame. Return the actual live-register value. */
1323
1324 if (lval) /* found it in a live register */
1325 *lval = lval_register;
1326 if (addrp)
1327 *addrp = REGISTER_BYTE (regnum);
1328 if (raw_buffer)
1329 read_register_gen (regnum, raw_buffer);
1330}
1331
1332void
1333_initialize_blockframe (void)
1334{
1335 obstack_init (&frame_cache_obstack);
1336}
This page took 0.026327 seconds and 4 git commands to generate.