Return unique_xmalloc_ptr for generate_c_for_variable_locations
[deliverable/binutils-gdb.git] / gdb / compile / compile-c-support.c
... / ...
CommitLineData
1/* C language support for compilation.
2
3 Copyright (C) 2014-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "compile-internal.h"
22#include "compile.h"
23#include "gdb-dlfcn.h"
24#include "c-lang.h"
25#include "macrotab.h"
26#include "macroscope.h"
27#include "regcache.h"
28#include "common/function-view.h"
29#include "common/preprocessor.h"
30
31/* See compile-internal.h. */
32
33const char *
34c_get_mode_for_size (int size)
35{
36 const char *mode = NULL;
37
38 switch (size)
39 {
40 case 1:
41 mode = "QI";
42 break;
43 case 2:
44 mode = "HI";
45 break;
46 case 4:
47 mode = "SI";
48 break;
49 case 8:
50 mode = "DI";
51 break;
52 default:
53 internal_error (__FILE__, __LINE__, _("Invalid GCC mode size %d."), size);
54 }
55
56 return mode;
57}
58
59/* See compile-internal.h. */
60
61std::string
62c_get_range_decl_name (const struct dynamic_prop *prop)
63{
64 return string_printf ("__gdb_prop_%s", host_address_to_string (prop));
65}
66
67\f
68
69/* Helper function for c_get_compile_context. Open the GCC front-end
70 shared library and return the symbol specified by the current
71 GCC_C_FE_CONTEXT. */
72
73static gcc_c_fe_context_function *
74load_libcc (void)
75{
76 gcc_c_fe_context_function *func;
77
78 /* gdb_dlopen will call error () on an error, so no need to check
79 value. */
80 gdb_dlhandle_up handle = gdb_dlopen (STRINGIFY (GCC_C_FE_LIBCC));
81 func = (gcc_c_fe_context_function *) gdb_dlsym (handle,
82 STRINGIFY (GCC_C_FE_CONTEXT));
83
84 if (func == NULL)
85 error (_("could not find symbol %s in library %s"),
86 STRINGIFY (GCC_C_FE_CONTEXT),
87 STRINGIFY (GCC_C_FE_LIBCC));
88
89 /* Leave the library open. */
90 handle.release ();
91 return func;
92}
93
94/* Return the compile instance associated with the current context.
95 This function calls the symbol returned from the load_libcc
96 function. This will provide the gcc_c_context. */
97
98struct compile_instance *
99c_get_compile_context (void)
100{
101 static gcc_c_fe_context_function *func;
102
103 struct gcc_c_context *context;
104
105 if (func == NULL)
106 {
107 func = load_libcc ();
108 gdb_assert (func != NULL);
109 }
110
111 context = (*func) (GCC_FE_VERSION_0, GCC_C_FE_VERSION_0);
112 if (context == NULL)
113 error (_("The loaded version of GCC does not support the required version "
114 "of the API."));
115
116 return new_compile_instance (context);
117}
118
119\f
120
121/* Write one macro definition. */
122
123static void
124print_one_macro (const char *name, const struct macro_definition *macro,
125 struct macro_source_file *source, int line,
126 ui_file *file)
127{
128 /* Don't print command-line defines. They will be supplied another
129 way. */
130 if (line == 0)
131 return;
132
133 /* None of -Wno-builtin-macro-redefined, #undef first
134 or plain #define of the same value would avoid a warning. */
135 fprintf_filtered (file, "#ifndef %s\n# define %s", name, name);
136
137 if (macro->kind == macro_function_like)
138 {
139 int i;
140
141 fputs_filtered ("(", file);
142 for (i = 0; i < macro->argc; i++)
143 {
144 fputs_filtered (macro->argv[i], file);
145 if (i + 1 < macro->argc)
146 fputs_filtered (", ", file);
147 }
148 fputs_filtered (")", file);
149 }
150
151 fprintf_filtered (file, " %s\n#endif\n", macro->replacement);
152}
153
154/* Write macro definitions at PC to FILE. */
155
156static void
157write_macro_definitions (const struct block *block, CORE_ADDR pc,
158 struct ui_file *file)
159{
160 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
161
162 if (block != NULL)
163 scope = sal_macro_scope (find_pc_line (pc, 0));
164 else
165 scope = default_macro_scope ();
166 if (scope == NULL)
167 scope = user_macro_scope ();
168
169 if (scope != NULL && scope->file != NULL && scope->file->table != NULL)
170 {
171 macro_for_each_in_scope (scope->file, scope->line,
172 [&] (const char *name,
173 const macro_definition *macro,
174 macro_source_file *source,
175 int line)
176 {
177 print_one_macro (name, macro, source, line, file);
178 });
179 }
180}
181
182/* Helper function to construct a header scope for a block of code.
183 Takes a scope argument which selects the correct header to
184 insert into BUF. */
185
186static void
187add_code_header (enum compile_i_scope_types type, struct ui_file *buf)
188{
189 switch (type)
190 {
191 case COMPILE_I_SIMPLE_SCOPE:
192 fputs_unfiltered ("void "
193 GCC_FE_WRAPPER_FUNCTION
194 " (struct "
195 COMPILE_I_SIMPLE_REGISTER_STRUCT_TAG
196 " *"
197 COMPILE_I_SIMPLE_REGISTER_ARG_NAME
198 ") {\n",
199 buf);
200 break;
201 case COMPILE_I_PRINT_ADDRESS_SCOPE:
202 case COMPILE_I_PRINT_VALUE_SCOPE:
203 /* <string.h> is needed for a memcpy call below. */
204 fputs_unfiltered ("#include <string.h>\n"
205 "void "
206 GCC_FE_WRAPPER_FUNCTION
207 " (struct "
208 COMPILE_I_SIMPLE_REGISTER_STRUCT_TAG
209 " *"
210 COMPILE_I_SIMPLE_REGISTER_ARG_NAME
211 ", "
212 COMPILE_I_PRINT_OUT_ARG_TYPE
213 " "
214 COMPILE_I_PRINT_OUT_ARG
215 ") {\n",
216 buf);
217 break;
218
219 case COMPILE_I_RAW_SCOPE:
220 break;
221 default:
222 gdb_assert_not_reached (_("Unknown compiler scope reached."));
223 }
224}
225
226/* Helper function to construct a footer scope for a block of code.
227 Takes a scope argument which selects the correct footer to
228 insert into BUF. */
229
230static void
231add_code_footer (enum compile_i_scope_types type, struct ui_file *buf)
232{
233 switch (type)
234 {
235 case COMPILE_I_SIMPLE_SCOPE:
236 case COMPILE_I_PRINT_ADDRESS_SCOPE:
237 case COMPILE_I_PRINT_VALUE_SCOPE:
238 fputs_unfiltered ("}\n", buf);
239 break;
240 case COMPILE_I_RAW_SCOPE:
241 break;
242 default:
243 gdb_assert_not_reached (_("Unknown compiler scope reached."));
244 }
245}
246
247/* Generate a structure holding all the registers used by the function
248 we're generating. */
249
250static void
251generate_register_struct (struct ui_file *stream, struct gdbarch *gdbarch,
252 const unsigned char *registers_used)
253{
254 int i;
255 int seen = 0;
256
257 fputs_unfiltered ("struct " COMPILE_I_SIMPLE_REGISTER_STRUCT_TAG " {\n",
258 stream);
259
260 if (registers_used != NULL)
261 for (i = 0; i < gdbarch_num_regs (gdbarch); ++i)
262 {
263 if (registers_used[i])
264 {
265 struct type *regtype = check_typedef (register_type (gdbarch, i));
266 std::string regname = compile_register_name_mangled (gdbarch, i);
267
268 seen = 1;
269
270 /* You might think we could use type_print here. However,
271 target descriptions often use types with names like
272 "int64_t", which may not be defined in the inferior
273 (and in any case would not be looked up due to the
274 #pragma business). So, we take a much simpler
275 approach: for pointer- or integer-typed registers, emit
276 the field in the most direct way; and for other
277 register types (typically flags or vectors), emit a
278 maximally-aligned array of the correct size. */
279
280 fputs_unfiltered (" ", stream);
281 switch (TYPE_CODE (regtype))
282 {
283 case TYPE_CODE_PTR:
284 fprintf_filtered (stream, "__gdb_uintptr %s",
285 regname.c_str ());
286 break;
287
288 case TYPE_CODE_INT:
289 {
290 const char *mode
291 = c_get_mode_for_size (TYPE_LENGTH (regtype));
292
293 if (mode != NULL)
294 {
295 if (TYPE_UNSIGNED (regtype))
296 fputs_unfiltered ("unsigned ", stream);
297 fprintf_unfiltered (stream,
298 "int %s"
299 " __attribute__ ((__mode__(__%s__)))",
300 regname.c_str (),
301 mode);
302 break;
303 }
304 }
305
306 /* Fall through. */
307
308 default:
309 fprintf_unfiltered (stream,
310 " unsigned char %s[%d]"
311 " __attribute__((__aligned__("
312 "__BIGGEST_ALIGNMENT__)))",
313 regname.c_str (),
314 TYPE_LENGTH (regtype));
315 }
316 fputs_unfiltered (";\n", stream);
317 }
318 }
319
320 if (!seen)
321 fputs_unfiltered (" char " COMPILE_I_SIMPLE_REGISTER_DUMMY ";\n",
322 stream);
323
324 fputs_unfiltered ("};\n\n", stream);
325}
326
327/* Take the source code provided by the user with the 'compile'
328 command, and compute the additional wrapping, macro, variable and
329 register operations needed. INPUT is the source code derived from
330 the 'compile' command, GDBARCH is the architecture to use when
331 computing above, EXPR_BLOCK denotes the block relevant contextually
332 to the inferior when the expression was created, and EXPR_PC
333 indicates the value of $PC. */
334
335std::string
336c_compute_program (struct compile_instance *inst,
337 const char *input,
338 struct gdbarch *gdbarch,
339 const struct block *expr_block,
340 CORE_ADDR expr_pc)
341{
342 struct compile_c_instance *context = (struct compile_c_instance *) inst;
343
344 string_file buf;
345 string_file var_stream;
346
347 write_macro_definitions (expr_block, expr_pc, &buf);
348
349 /* Do not generate local variable information for "raw"
350 compilations. In this case we aren't emitting our own function
351 and the user's code may only refer to globals. */
352 if (inst->scope != COMPILE_I_RAW_SCOPE)
353 {
354 int i;
355
356 /* Generate the code to compute variable locations, but do it
357 before generating the function header, so we can define the
358 register struct before the function body. This requires a
359 temporary stream. */
360 gdb::unique_xmalloc_ptr<unsigned char> registers_used
361 = generate_c_for_variable_locations (context, var_stream, gdbarch,
362 expr_block, expr_pc);
363
364 buf.puts ("typedef unsigned int"
365 " __attribute__ ((__mode__(__pointer__)))"
366 " __gdb_uintptr;\n");
367 buf.puts ("typedef int"
368 " __attribute__ ((__mode__(__pointer__)))"
369 " __gdb_intptr;\n");
370
371 /* Iterate all log2 sizes in bytes supported by c_get_mode_for_size. */
372 for (i = 0; i < 4; ++i)
373 {
374 const char *mode = c_get_mode_for_size (1 << i);
375
376 gdb_assert (mode != NULL);
377 buf.printf ("typedef int"
378 " __attribute__ ((__mode__(__%s__)))"
379 " __gdb_int_%s;\n",
380 mode, mode);
381 }
382
383 generate_register_struct (&buf, gdbarch, registers_used.get ());
384 }
385
386 add_code_header (inst->scope, &buf);
387
388 if (inst->scope == COMPILE_I_SIMPLE_SCOPE
389 || inst->scope == COMPILE_I_PRINT_ADDRESS_SCOPE
390 || inst->scope == COMPILE_I_PRINT_VALUE_SCOPE)
391 {
392 buf.write (var_stream.c_str (), var_stream.size ());
393 buf.puts ("#pragma GCC user_expression\n");
394 }
395
396 /* The user expression has to be in its own scope, so that "extern"
397 works properly. Otherwise gcc thinks that the "extern"
398 declaration is in the same scope as the declaration provided by
399 gdb. */
400 if (inst->scope != COMPILE_I_RAW_SCOPE)
401 buf.puts ("{\n");
402
403 buf.puts ("#line 1 \"gdb command line\"\n");
404
405 switch (inst->scope)
406 {
407 case COMPILE_I_PRINT_ADDRESS_SCOPE:
408 case COMPILE_I_PRINT_VALUE_SCOPE:
409 buf.printf (
410"__auto_type " COMPILE_I_EXPR_VAL " = %s;\n"
411"typeof (%s) *" COMPILE_I_EXPR_PTR_TYPE ";\n"
412"memcpy (" COMPILE_I_PRINT_OUT_ARG ", %s" COMPILE_I_EXPR_VAL ",\n"
413 "sizeof (*" COMPILE_I_EXPR_PTR_TYPE "));\n"
414 , input, input,
415 (inst->scope == COMPILE_I_PRINT_ADDRESS_SCOPE
416 ? "&" : ""));
417 break;
418 default:
419 buf.puts (input);
420 break;
421 }
422
423 buf.puts ("\n");
424
425 /* For larger user expressions the automatic semicolons may be
426 confusing. */
427 if (strchr (input, '\n') == NULL)
428 buf.puts (";\n");
429
430 if (inst->scope != COMPILE_I_RAW_SCOPE)
431 buf.puts ("}\n");
432
433 add_code_footer (inst->scope, &buf);
434 return std::move (buf.string ());
435}
This page took 0.043616 seconds and 4 git commands to generate.