*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / config / pa / tm-hppa.h
... / ...
CommitLineData
1/* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25#include "regcache.h"
26
27#define GDB_MULTI_ARCH 0
28
29/* Forward declarations of some types we use in prototypes */
30
31struct frame_info;
32struct frame_saved_regs;
33struct value;
34struct type;
35struct inferior_status;
36
37/* By default assume we don't have to worry about software floating point. */
38#ifndef SOFT_FLOAT
39#define SOFT_FLOAT 0
40#endif
41
42/* Get at various relevent fields of an instruction word. */
43
44#define MASK_5 0x1f
45#define MASK_11 0x7ff
46#define MASK_14 0x3fff
47#define MASK_21 0x1fffff
48
49/* This macro gets bit fields using HP's numbering (MSB = 0) */
50#ifndef GET_FIELD
51#define GET_FIELD(X, FROM, TO) \
52 ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
53#endif
54
55extern int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
56#define REG_STRUCT_HAS_ADDR(gcc_p,type) hppa_reg_struct_has_addr (gcc_p,type)
57
58/* Offset from address of function to start of its code.
59 Zero on most machines. */
60
61#define FUNCTION_START_OFFSET 0
62
63/* Advance PC across any function entry prologue instructions
64 to reach some "real" code. */
65
66extern CORE_ADDR hppa_skip_prologue (CORE_ADDR);
67#define SKIP_PROLOGUE(pc) (hppa_skip_prologue (pc))
68
69/* If PC is in some function-call trampoline code, return the PC
70 where the function itself actually starts. If not, return NULL. */
71
72#define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
73extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
74
75/* Return non-zero if we are in an appropriate trampoline. */
76
77#define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
78 in_solib_call_trampoline (pc, name)
79extern int in_solib_call_trampoline (CORE_ADDR, char *);
80
81#define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
82 in_solib_return_trampoline (pc, name)
83extern int in_solib_return_trampoline (CORE_ADDR, char *);
84
85#undef SAVED_PC_AFTER_CALL
86#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
87extern CORE_ADDR saved_pc_after_call (struct frame_info *);
88
89extern int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
90#define INNER_THAN(lhs,rhs) hppa_inner_than(lhs,rhs)
91
92extern CORE_ADDR hppa_stack_align (CORE_ADDR sp);
93#define STACK_ALIGN(sp) hppa_stack_align (sp)
94
95#define EXTRA_STACK_ALIGNMENT_NEEDED 0
96
97/* Sequence of bytes for breakpoint instruction. */
98
99#define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
100#define BREAKPOINT32 0x10004
101
102/* Amount PC must be decremented by after a breakpoint.
103 This is often the number of bytes in BREAKPOINT
104 but not always.
105
106 Not on the PA-RISC */
107
108#define DECR_PC_AFTER_BREAK 0
109
110extern int hppa_pc_requires_run_before_use (CORE_ADDR pc);
111#define PC_REQUIRES_RUN_BEFORE_USE(pc) hppa_pc_requires_run_before_use (pc)
112
113/* Say how long (ordinary) registers are. This is a piece of bogosity
114 used in push_word and a few other places; REGISTER_RAW_SIZE is the
115 real way to know how big a register is. */
116
117#define REGISTER_SIZE 4
118
119/* Number of machine registers */
120
121#define NUM_REGS 128
122
123/* Initializer for an array of names of registers.
124 There should be NUM_REGS strings in this initializer.
125 They are in rows of eight entries */
126
127#define REGISTER_NAMES \
128 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", \
129 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
130 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
131 "r24", "r25", "r26", "dp", "ret0", "ret1", "sp", "r31", \
132 "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", "eiem", "iir", "isr", \
133 "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", "sr3", \
134 "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", \
135 "cr13", "cr24", "cr25", "cr26", "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
136 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
137 "fr4", "fr4R", "fr5", "fr5R", "fr6", "fr6R", "fr7", "fr7R", \
138 "fr8", "fr8R", "fr9", "fr9R", "fr10", "fr10R", "fr11", "fr11R", \
139 "fr12", "fr12R", "fr13", "fr13R", "fr14", "fr14R", "fr15", "fr15R", \
140 "fr16", "fr16R", "fr17", "fr17R", "fr18", "fr18R", "fr19", "fr19R", \
141 "fr20", "fr20R", "fr21", "fr21R", "fr22", "fr22R", "fr23", "fr23R", \
142 "fr24", "fr24R", "fr25", "fr25R", "fr26", "fr26R", "fr27", "fr27R", \
143 "fr28", "fr28R", "fr29", "fr29R", "fr30", "fr30R", "fr31", "fr31R"}
144
145/* Register numbers of various important registers.
146 Note that some of these values are "real" register numbers,
147 and correspond to the general registers of the machine,
148 and some are "phony" register numbers which are too large
149 to be actual register numbers as far as the user is concerned
150 but do serve to get the desired values when passed to read_register. */
151
152#define R0_REGNUM 0 /* Doesn't actually exist, used as base for
153 other r registers. */
154#define FLAGS_REGNUM 0 /* Various status flags */
155#define RP_REGNUM 2 /* return pointer */
156#define FP_REGNUM 3 /* Contains address of executing stack */
157 /* frame */
158#define SP_REGNUM 30 /* Contains address of top of stack */
159#define SAR_REGNUM 32 /* Shift Amount Register */
160#define IPSW_REGNUM 41 /* Interrupt Processor Status Word */
161#define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
162#define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
163#define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
164#define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
165#define EIEM_REGNUM 37 /* External Interrupt Enable Mask */
166#define IIR_REGNUM 38 /* Interrupt Instruction Register */
167#define IOR_REGNUM 40 /* Interrupt Offset Register */
168#define SR4_REGNUM 43 /* space register 4 */
169#define RCR_REGNUM 51 /* Recover Counter (also known as cr0) */
170#define CCR_REGNUM 54 /* Coprocessor Configuration Register */
171#define TR0_REGNUM 57 /* Temporary Registers (cr24 -> cr31) */
172#define CR27_REGNUM 60 /* Base register for thread-local storage, cr27 */
173#define FP0_REGNUM 64 /* floating point reg. 0 (fspr) */
174#define FP4_REGNUM 72
175
176#define ARG0_REGNUM 26 /* The first argument of a callee. */
177#define ARG1_REGNUM 25 /* The second argument of a callee. */
178#define ARG2_REGNUM 24 /* The third argument of a callee. */
179#define ARG3_REGNUM 23 /* The fourth argument of a callee. */
180
181/* compatibility with the rest of gdb. */
182#define PC_REGNUM PCOQ_HEAD_REGNUM
183#define NPC_REGNUM PCOQ_TAIL_REGNUM
184
185/*
186 * Processor Status Word Masks
187 */
188
189#define PSW_T 0x01000000 /* Taken Branch Trap Enable */
190#define PSW_H 0x00800000 /* Higher-Privilege Transfer Trap Enable */
191#define PSW_L 0x00400000 /* Lower-Privilege Transfer Trap Enable */
192#define PSW_N 0x00200000 /* PC Queue Front Instruction Nullified */
193#define PSW_X 0x00100000 /* Data Memory Break Disable */
194#define PSW_B 0x00080000 /* Taken Branch in Previous Cycle */
195#define PSW_C 0x00040000 /* Code Address Translation Enable */
196#define PSW_V 0x00020000 /* Divide Step Correction */
197#define PSW_M 0x00010000 /* High-Priority Machine Check Disable */
198#define PSW_CB 0x0000ff00 /* Carry/Borrow Bits */
199#define PSW_R 0x00000010 /* Recovery Counter Enable */
200#define PSW_Q 0x00000008 /* Interruption State Collection Enable */
201#define PSW_P 0x00000004 /* Protection ID Validation Enable */
202#define PSW_D 0x00000002 /* Data Address Translation Enable */
203#define PSW_I 0x00000001 /* External, Power Failure, Low-Priority */
204 /* Machine Check Interruption Enable */
205
206/* When fetching register values from an inferior or a core file,
207 clean them up using this macro. BUF is a char pointer to
208 the raw value of the register in the registers[] array. */
209
210#define DEPRECATED_CLEAN_UP_REGISTER_VALUE(regno, buf) \
211 do { \
212 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
213 (buf)[sizeof(CORE_ADDR) -1] &= ~0x3; \
214 } while (0)
215
216/* Define DEPRECATED_REGISTERS_INFO() to do machine-specific formatting
217 of register dumps. */
218
219#define DEPRECATED_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
220extern void pa_do_registers_info (int, int);
221
222#if 0
223#define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
224extern void pa_do_strcat_registers_info (int, int, struct ui_file *, enum precision_type);
225#endif
226
227/* PA specific macro to see if the current instruction is nullified. */
228#ifndef INSTRUCTION_NULLIFIED
229extern int hppa_instruction_nullified (void);
230#define INSTRUCTION_NULLIFIED hppa_instruction_nullified ()
231#endif
232
233/* Number of bytes of storage in the actual machine representation
234 for register N. On the PA-RISC, all regs are 4 bytes, including
235 the FP registers (they're accessed as two 4 byte halves). */
236
237#define REGISTER_RAW_SIZE(N) 4
238
239/* Total amount of space needed to store our copies of the machine's
240 register state, the array `registers'. */
241#define REGISTER_BYTES (NUM_REGS * 4)
242
243extern int hppa_register_byte (int reg_nr);
244#define REGISTER_BYTE(N) hppa_register_byte (N)
245
246/* Number of bytes of storage in the program's representation
247 for register N. */
248
249#define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
250
251/* Largest value REGISTER_RAW_SIZE can have. */
252
253#define MAX_REGISTER_RAW_SIZE 4
254
255/* Largest value REGISTER_VIRTUAL_SIZE can have. */
256
257#define MAX_REGISTER_VIRTUAL_SIZE 8
258
259extern struct type * hppa_register_virtual_type (int reg_nr);
260#define REGISTER_VIRTUAL_TYPE(N) hppa_register_virtual_type (N)
261
262extern void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
263#define STORE_STRUCT_RETURN(ADDR, SP) hppa_store_struct_return (ADDR, SP)
264
265/* Extract from an array REGBUF containing the (raw) register state
266 a function return value of type TYPE, and copy that, in virtual format,
267 into VALBUF. */
268
269void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
270#define DEPRECATED_EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
271 hppa_extract_return_value (TYPE, REGBUF, VALBUF);
272
273 /* elz: decide whether the function returning a value of type type
274 will put it on the stack or in the registers.
275 The pa calling convention says that:
276 register 28 (called ret0 by gdb) contains any ASCII char,
277 and any non_floating point value up to 32-bits.
278 reg 28 and 29 contain non-floating point up tp 64 bits and larger
279 than 32 bits. (higer order word in reg 28).
280 fr4: floating point up to 64 bits
281 sr1: space identifier (32-bit)
282 stack: any lager than 64-bit, with the address in r28
283 */
284extern use_struct_convention_fn hppa_use_struct_convention;
285#define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
286
287/* Write into appropriate registers a function return value
288 of type TYPE, given in virtual format. */
289
290
291extern void hppa_store_return_value (struct type *type, char *valbuf);
292#define DEPRECATED_STORE_RETURN_VALUE(TYPE,VALBUF) \
293 hppa_store_return_value (TYPE, VALBUF);
294
295/* Extract from an array REGBUF containing the (raw) register state
296 the address in which a function should return its structure value,
297 as a CORE_ADDR (or an expression that can be used as one). */
298
299#define DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
300 (*(int *)((REGBUF) + REGISTER_BYTE (28)))
301
302/* elz: Return a large value, which is stored on the stack at addr.
303 This is defined only for the hppa, at this moment. The above macro
304 DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
305 because it assumes that on exit from a called function which
306 returns a large structure on the stack, the address of the ret
307 structure is still in register 28. Unfortunately this register is
308 usually overwritten by the called function itself, on hppa. This is
309 specified in the calling convention doc. As far as I know, the only
310 way to get the return value is to have the caller tell us where it
311 told the callee to put it, rather than have the callee tell us. */
312struct value *hppa_value_returned_from_stack (register struct type *valtype,
313 CORE_ADDR addr);
314#define VALUE_RETURNED_FROM_STACK(valtype,addr) \
315 hppa_value_returned_from_stack (valtype, addr)
316
317extern int hppa_cannot_store_register (int regnum);
318#define CANNOT_STORE_REGISTER(regno) hppa_cannot_store_register (regno)
319
320#define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
321extern void init_extra_frame_info (int, struct frame_info *);
322
323/* Describe the pointer in each stack frame to the previous stack frame
324 (its caller). */
325
326/* FRAME_CHAIN takes a frame's nominal address and produces the
327 frame's chain-pointer. */
328
329/* In the case of the PA-RISC, the frame's nominal address
330 is the address of a 4-byte word containing the calling frame's
331 address (previous FP). */
332
333#define FRAME_CHAIN(thisframe) frame_chain (thisframe)
334extern CORE_ADDR frame_chain (struct frame_info *);
335
336extern int hppa_frame_chain_valid (CORE_ADDR, struct frame_info *);
337#define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
338
339/* Define other aspects of the stack frame. */
340
341/* A macro that tells us whether the function invocation represented
342 by FI does not have a frame on the stack associated with it. If it
343 does not, FRAMELESS is set to 1, else 0. */
344#define FRAMELESS_FUNCTION_INVOCATION(FI) \
345 (frameless_function_invocation (FI))
346extern int frameless_function_invocation (struct frame_info *);
347
348extern CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
349#define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
350
351extern CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
352#define FRAME_ARGS_ADDRESS(fi) hppa_frame_args_address (fi)
353
354extern CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
355#define FRAME_LOCALS_ADDRESS(fi) hppa_frame_locals_address (fi)
356
357/* Set VAL to the number of args passed to frame described by FI.
358 Can set VAL to -1, meaning no way to tell. */
359
360/* We can't tell how many args there are
361 now that the C compiler delays popping them. */
362#define FRAME_NUM_ARGS(fi) (-1)
363
364/* Return number of bytes at start of arglist that are not really args. */
365
366#define FRAME_ARGS_SKIP 0
367
368#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
369 hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
370extern void
371hppa_frame_find_saved_regs (struct frame_info *, struct frame_saved_regs *);
372\f
373
374/* Things needed for making the inferior call functions. */
375
376/* Push an empty stack frame, to record the current PC, etc. */
377
378#define PUSH_DUMMY_FRAME push_dummy_frame (inf_status)
379extern void push_dummy_frame (struct inferior_status *);
380
381/* Discard from the stack the innermost frame,
382 restoring all saved registers. */
383#define POP_FRAME hppa_pop_frame ()
384extern void hppa_pop_frame (void);
385
386#define INSTRUCTION_SIZE 4
387
388#ifndef PA_LEVEL_0
389
390/* Non-level zero PA's have space registers (but they don't always have
391 floating-point, do they???? */
392
393/* This sequence of words is the instructions
394
395 ; Call stack frame has already been built by gdb. Since we could be calling
396 ; a varargs function, and we do not have the benefit of a stub to put things in
397 ; the right place, we load the first 4 word of arguments into both the general
398 ; and fp registers.
399 call_dummy
400 ldw -36(sp), arg0
401 ldw -40(sp), arg1
402 ldw -44(sp), arg2
403 ldw -48(sp), arg3
404 ldo -36(sp), r1
405 fldws 0(0, r1), fr4
406 fldds -4(0, r1), fr5
407 fldws -8(0, r1), fr6
408 fldds -12(0, r1), fr7
409 ldil 0, r22 ; FUNC_LDIL_OFFSET must point here
410 ldo 0(r22), r22 ; FUNC_LDO_OFFSET must point here
411 ldsid (0,r22), r4
412 ldil 0, r1 ; SR4EXPORT_LDIL_OFFSET must point here
413 ldo 0(r1), r1 ; SR4EXPORT_LDO_OFFSET must point here
414 ldsid (0,r1), r20
415 combt,=,n r4, r20, text_space ; If target is in data space, do a
416 ble 0(sr5, r22) ; "normal" procedure call
417 copy r31, r2
418 break 4, 8
419 mtsp r21, sr0
420 ble,n 0(sr0, r22)
421 text_space ; Otherwise, go through _sr4export,
422 ble (sr4, r1) ; which will return back here.
423 stw r31,-24(r30)
424 break 4, 8
425 mtsp r21, sr0
426 ble,n 0(sr0, r22)
427 nop ; To avoid kernel bugs
428 nop ; and keep the dummy 8 byte aligned
429
430 The dummy decides if the target is in text space or data space. If
431 it's in data space, there's no problem because the target can
432 return back to the dummy. However, if the target is in text space,
433 the dummy calls the secret, undocumented routine _sr4export, which
434 calls a function in text space and can return to any space. Instead
435 of including fake instructions to represent saved registers, we
436 know that the frame is associated with the call dummy and treat it
437 specially.
438
439 The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
440 kernels. If the memory at the location pointed to by the PC is
441 0xffffffff then a ptrace step call will fail (even if the instruction
442 is nullified).
443
444 The code to pop a dummy frame single steps three instructions
445 starting with the last mtsp. This includes the nullified "instruction"
446 following the ble (which is uninitialized junk). If the
447 "instruction" following the last BLE is 0xffffffff, then the ptrace
448 will fail and the dummy frame is not correctly popped.
449
450 By placing a NOP in the delay slot of the BLE instruction we can be
451 sure that we never try to execute a 0xffffffff instruction and
452 avoid the kernel bug. The second NOP is needed to keep the call
453 dummy 8 byte aligned. */
454
455/* Define offsets into the call dummy for the target function address */
456#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
457#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
458
459/* Define offsets into the call dummy for the _sr4export address */
460#define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
461#define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
462
463#define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
464 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
465 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
466 0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
467 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
468 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
469 0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
470
471#define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
472#define REG_PARM_STACK_SPACE 16
473
474#else /* defined PA_LEVEL_0 */
475
476/* This is the call dummy for a level 0 PA. Level 0's don't have space
477 registers (or floating point?), so we skip all that inter-space call stuff,
478 and avoid touching the fp regs.
479
480 call_dummy
481
482 ldw -36(%sp), %arg0
483 ldw -40(%sp), %arg1
484 ldw -44(%sp), %arg2
485 ldw -48(%sp), %arg3
486 ldil 0, %r31 ; FUNC_LDIL_OFFSET must point here
487 ldo 0(%r31), %r31 ; FUNC_LDO_OFFSET must point here
488 ble 0(%sr0, %r31)
489 copy %r31, %r2
490 break 4, 8
491 nop ; restore_pc_queue expects these
492 bv,n 0(%r22) ; instructions to be here...
493 nop
494 */
495
496/* Define offsets into the call dummy for the target function address */
497#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
498#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
499
500#define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
501 0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
502 0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
503
504#define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
505
506#endif
507
508#define CALL_DUMMY_START_OFFSET 0
509
510/* If we've reached a trap instruction within the call dummy, then
511 we'll consider that to mean that we've reached the call dummy's
512 end after its successful completion. */
513#define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
514 (PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
515 (read_memory_integer((pc), 4) == BREAKPOINT32))
516
517/*
518 * Insert the specified number of args and function address
519 * into a call sequence of the above form stored at DUMMYNAME.
520 *
521 * On the hppa we need to call the stack dummy through $$dyncall.
522 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
523 * real_pc, which is the location where gdb should start up the
524 * inferior to do the function call.
525 */
526
527#define FIX_CALL_DUMMY hppa_fix_call_dummy
528
529extern CORE_ADDR
530hppa_fix_call_dummy (char *, CORE_ADDR, CORE_ADDR, int,
531 struct value **, struct type *, int);
532
533#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
534 (hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
535extern CORE_ADDR
536hppa_push_arguments (int, struct value **, CORE_ADDR, int, CORE_ADDR);
537\f
538extern CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
539#define SMASH_TEXT_ADDRESS(addr) hppa_smash_text_address (addr)
540
541#define GDB_TARGET_IS_HPPA
542
543#define BELIEVE_PCC_PROMOTION 1
544
545/*
546 * Unwind table and descriptor.
547 */
548
549struct unwind_table_entry
550 {
551 CORE_ADDR region_start;
552 CORE_ADDR region_end;
553
554 unsigned int Cannot_unwind:1; /* 0 */
555 unsigned int Millicode:1; /* 1 */
556 unsigned int Millicode_save_sr0:1; /* 2 */
557 unsigned int Region_description:2; /* 3..4 */
558 unsigned int reserved1:1; /* 5 */
559 unsigned int Entry_SR:1; /* 6 */
560 unsigned int Entry_FR:4; /* number saved *//* 7..10 */
561 unsigned int Entry_GR:5; /* number saved *//* 11..15 */
562 unsigned int Args_stored:1; /* 16 */
563 unsigned int Variable_Frame:1; /* 17 */
564 unsigned int Separate_Package_Body:1; /* 18 */
565 unsigned int Frame_Extension_Millicode:1; /* 19 */
566 unsigned int Stack_Overflow_Check:1; /* 20 */
567 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
568 unsigned int Ada_Region:1; /* 22 */
569 unsigned int cxx_info:1; /* 23 */
570 unsigned int cxx_try_catch:1; /* 24 */
571 unsigned int sched_entry_seq:1; /* 25 */
572 unsigned int reserved2:1; /* 26 */
573 unsigned int Save_SP:1; /* 27 */
574 unsigned int Save_RP:1; /* 28 */
575 unsigned int Save_MRP_in_frame:1; /* 29 */
576 unsigned int extn_ptr_defined:1; /* 30 */
577 unsigned int Cleanup_defined:1; /* 31 */
578
579 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
580 unsigned int HP_UX_interrupt_marker:1; /* 1 */
581 unsigned int Large_frame:1; /* 2 */
582 unsigned int Pseudo_SP_Set:1; /* 3 */
583 unsigned int reserved4:1; /* 4 */
584 unsigned int Total_frame_size:27; /* 5..31 */
585
586 /* This is *NOT* part of an actual unwind_descriptor in an object
587 file. It is *ONLY* part of the "internalized" descriptors that
588 we create from those in a file.
589 */
590 struct
591 {
592 unsigned int stub_type:4; /* 0..3 */
593 unsigned int padding:28; /* 4..31 */
594 }
595 stub_unwind;
596 };
597
598/* HP linkers also generate unwinds for various linker-generated stubs.
599 GDB reads in the stubs from the $UNWIND_END$ subspace, then
600 "converts" them into normal unwind entries using some of the reserved
601 fields to store the stub type. */
602
603struct stub_unwind_entry
604 {
605 /* The offset within the executable for the associated stub. */
606 unsigned stub_offset;
607
608 /* The type of stub this unwind entry describes. */
609 char type;
610
611 /* Unknown. Not needed by GDB at this time. */
612 char prs_info;
613
614 /* Length (in instructions) of the associated stub. */
615 short stub_length;
616 };
617
618/* Sizes (in bytes) of the native unwind entries. */
619#define UNWIND_ENTRY_SIZE 16
620#define STUB_UNWIND_ENTRY_SIZE 8
621
622/* The gaps represent linker stubs used in MPE and space for future
623 expansion. */
624enum unwind_stub_types
625 {
626 LONG_BRANCH = 1,
627 PARAMETER_RELOCATION = 2,
628 EXPORT = 10,
629 IMPORT = 11,
630 IMPORT_SHLIB = 12,
631 };
632
633/* We use the objfile->obj_private pointer for two things:
634
635 * 1. An unwind table;
636 *
637 * 2. A pointer to any associated shared library object.
638 *
639 * #defines are used to help refer to these objects.
640 */
641
642/* Info about the unwind table associated with an object file.
643
644 * This is hung off of the "objfile->obj_private" pointer, and
645 * is allocated in the objfile's psymbol obstack. This allows
646 * us to have unique unwind info for each executable and shared
647 * library that we are debugging.
648 */
649struct obj_unwind_info
650 {
651 struct unwind_table_entry *table; /* Pointer to unwind info */
652 struct unwind_table_entry *cache; /* Pointer to last entry we found */
653 int last; /* Index of last entry */
654 };
655
656typedef struct obj_private_struct
657 {
658 struct obj_unwind_info *unwind_info; /* a pointer */
659 struct so_list *so_info; /* a pointer */
660 CORE_ADDR dp;
661 }
662obj_private_data_t;
663
664#if 0
665extern void target_write_pc (CORE_ADDR, int);
666extern CORE_ADDR target_read_pc (int);
667extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
668#endif
669
670#define TARGET_READ_PC(pid) target_read_pc (pid)
671extern CORE_ADDR target_read_pc (ptid_t);
672
673#define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
674extern void target_write_pc (CORE_ADDR, ptid_t);
675
676#define TARGET_READ_FP() target_read_fp (PIDGET (inferior_ptid))
677extern CORE_ADDR target_read_fp (int);
678
679/* For a number of horrible reasons we may have to adjust the location
680 of variables on the stack. Ugh. */
681#define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
682
683extern int hpread_adjust_stack_address (CORE_ADDR);
684
685/* If the current gcc for for this target does not produce correct debugging
686 information for float parameters, both prototyped and unprototyped, then
687 define this macro. This forces gdb to always assume that floats are
688 passed as doubles and then converted in the callee. */
689
690extern int hppa_coerce_float_to_double (struct type *formal,
691 struct type *actual);
692#define COERCE_FLOAT_TO_DOUBLE(formal, actual) \
693 hppa_coerce_float_to_double (formal, actual)
694
695/* Here's how to step off a permanent breakpoint. */
696#define SKIP_PERMANENT_BREAKPOINT (hppa_skip_permanent_breakpoint)
697extern void hppa_skip_permanent_breakpoint (void);
698
699/* On HP-UX, certain system routines (millicode) have names beginning
700 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
701 calls on PA-RISC. Tell the expression parser to check for those
702 when parsing tokens that begin with "$". */
703#define SYMBOLS_CAN_START_WITH_DOLLAR (1)
This page took 0.024763 seconds and 4 git commands to generate.