Refactor disassembly code
[deliverable/binutils-gdb.git] / gdb / disasm.c
... / ...
CommitLineData
1/* Disassemble support for GDB.
2
3 Copyright (C) 2000-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "target.h"
22#include "value.h"
23#include "ui-out.h"
24#include "disasm.h"
25#include "gdbcore.h"
26#include "dis-asm.h"
27#include "source.h"
28#include <algorithm>
29
30/* Disassemble functions.
31 FIXME: We should get rid of all the duplicate code in gdb that does
32 the same thing: disassemble_command() and the gdbtk variation. */
33
34/* This structure is used to store line number information for the
35 deprecated /m option.
36 We need a different sort of line table from the normal one cuz we can't
37 depend upon implicit line-end pc's for lines to do the
38 reordering in this function. */
39
40struct deprecated_dis_line_entry
41{
42 int line;
43 CORE_ADDR start_pc;
44 CORE_ADDR end_pc;
45};
46
47/* This Structure is used to store line number information.
48 We need a different sort of line table from the normal one cuz we can't
49 depend upon implicit line-end pc's for lines to do the
50 reordering in this function. */
51
52struct dis_line_entry
53{
54 struct symtab *symtab;
55 int line;
56};
57
58/* Hash function for dis_line_entry. */
59
60static hashval_t
61hash_dis_line_entry (const void *item)
62{
63 const struct dis_line_entry *dle = (const struct dis_line_entry *) item;
64
65 return htab_hash_pointer (dle->symtab) + dle->line;
66}
67
68/* Equal function for dis_line_entry. */
69
70static int
71eq_dis_line_entry (const void *item_lhs, const void *item_rhs)
72{
73 const struct dis_line_entry *lhs = (const struct dis_line_entry *) item_lhs;
74 const struct dis_line_entry *rhs = (const struct dis_line_entry *) item_rhs;
75
76 return (lhs->symtab == rhs->symtab
77 && lhs->line == rhs->line);
78}
79
80/* Create the table to manage lines for mixed source/disassembly. */
81
82static htab_t
83allocate_dis_line_table (void)
84{
85 return htab_create_alloc (41,
86 hash_dis_line_entry, eq_dis_line_entry,
87 xfree, xcalloc, xfree);
88}
89
90/* Add a new dis_line_entry containing SYMTAB and LINE to TABLE. */
91
92static void
93add_dis_line_entry (htab_t table, struct symtab *symtab, int line)
94{
95 void **slot;
96 struct dis_line_entry dle, *dlep;
97
98 dle.symtab = symtab;
99 dle.line = line;
100 slot = htab_find_slot (table, &dle, INSERT);
101 if (*slot == NULL)
102 {
103 dlep = XNEW (struct dis_line_entry);
104 dlep->symtab = symtab;
105 dlep->line = line;
106 *slot = dlep;
107 }
108}
109
110/* Return non-zero if SYMTAB, LINE are in TABLE. */
111
112static int
113line_has_code_p (htab_t table, struct symtab *symtab, int line)
114{
115 struct dis_line_entry dle;
116
117 dle.symtab = symtab;
118 dle.line = line;
119 return htab_find (table, &dle) != NULL;
120}
121
122/* Wrapper of target_read_code. */
123
124int
125gdb_disassembler::dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr,
126 unsigned int len,
127 struct disassemble_info *info)
128{
129 return target_read_code (memaddr, myaddr, len);
130}
131
132/* Wrapper of memory_error. */
133
134void
135gdb_disassembler::dis_asm_memory_error (int err, bfd_vma memaddr,
136 struct disassemble_info *info)
137{
138 memory_error (TARGET_XFER_E_IO, memaddr);
139}
140
141/* Wrapper of print_address. */
142
143void
144gdb_disassembler::dis_asm_print_address (bfd_vma addr,
145 struct disassemble_info *info)
146{
147 gdb_disassembler *self
148 = static_cast<gdb_disassembler *>(info->application_data);
149
150 print_address (self->arch (), addr, self->stream ());
151}
152
153static int
154compare_lines (const void *mle1p, const void *mle2p)
155{
156 struct deprecated_dis_line_entry *mle1, *mle2;
157 int val;
158
159 mle1 = (struct deprecated_dis_line_entry *) mle1p;
160 mle2 = (struct deprecated_dis_line_entry *) mle2p;
161
162 /* End of sequence markers have a line number of 0 but don't want to
163 be sorted to the head of the list, instead sort by PC. */
164 if (mle1->line == 0 || mle2->line == 0)
165 {
166 val = mle1->start_pc - mle2->start_pc;
167 if (val == 0)
168 val = mle1->line - mle2->line;
169 }
170 else
171 {
172 val = mle1->line - mle2->line;
173 if (val == 0)
174 val = mle1->start_pc - mle2->start_pc;
175 }
176 return val;
177}
178
179/* See disasm.h. */
180
181int
182gdb_disassembler::pretty_print_insn (struct ui_out *uiout,
183 const struct disasm_insn *insn,
184 int flags)
185{
186 /* parts of the symbolic representation of the address */
187 int unmapped;
188 int offset;
189 int line;
190 int size;
191 struct cleanup *ui_out_chain;
192 char *filename = NULL;
193 char *name = NULL;
194 CORE_ADDR pc;
195 struct ui_file *stb = stream ();
196 struct gdbarch *gdbarch = arch ();
197
198 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
199 pc = insn->addr;
200
201 if (insn->number != 0)
202 {
203 uiout->field_fmt ("insn-number", "%u", insn->number);
204 uiout->text ("\t");
205 }
206
207 if ((flags & DISASSEMBLY_SPECULATIVE) != 0)
208 {
209 if (insn->is_speculative)
210 {
211 uiout->field_string ("is-speculative", "?");
212
213 /* The speculative execution indication overwrites the first
214 character of the PC prefix.
215 We assume a PC prefix length of 3 characters. */
216 if ((flags & DISASSEMBLY_OMIT_PC) == 0)
217 uiout->text (pc_prefix (pc) + 1);
218 else
219 uiout->text (" ");
220 }
221 else if ((flags & DISASSEMBLY_OMIT_PC) == 0)
222 uiout->text (pc_prefix (pc));
223 else
224 uiout->text (" ");
225 }
226 else if ((flags & DISASSEMBLY_OMIT_PC) == 0)
227 uiout->text (pc_prefix (pc));
228 uiout->field_core_addr ("address", gdbarch, pc);
229
230 if (!build_address_symbolic (gdbarch, pc, 0, &name, &offset, &filename,
231 &line, &unmapped))
232 {
233 /* We don't care now about line, filename and unmapped. But we might in
234 the future. */
235 uiout->text (" <");
236 if ((flags & DISASSEMBLY_OMIT_FNAME) == 0)
237 uiout->field_string ("func-name", name);
238 uiout->text ("+");
239 uiout->field_int ("offset", offset);
240 uiout->text (">:\t");
241 }
242 else
243 uiout->text (":\t");
244
245 if (filename != NULL)
246 xfree (filename);
247 if (name != NULL)
248 xfree (name);
249
250 ui_file_rewind (stb);
251 if (flags & DISASSEMBLY_RAW_INSN)
252 {
253 CORE_ADDR end_pc;
254 bfd_byte data;
255 int err;
256 const char *spacer = "";
257
258 /* Build the opcodes using a temporary stream so we can
259 write them out in a single go for the MI. */
260 struct ui_file *opcode_stream = mem_fileopen ();
261 struct cleanup *cleanups =
262 make_cleanup_ui_file_delete (opcode_stream);
263
264 size = print_insn (pc);
265 end_pc = pc + size;
266
267 for (;pc < end_pc; ++pc)
268 {
269 err = m_di.read_memory_func (pc, &data, 1, &m_di);
270 if (err != 0)
271 m_di.memory_error_func (err, pc, &m_di);
272 fprintf_filtered (opcode_stream, "%s%02x",
273 spacer, (unsigned) data);
274 spacer = " ";
275 }
276
277 uiout->field_stream ("opcodes", opcode_stream);
278 uiout->text ("\t");
279
280 do_cleanups (cleanups);
281 }
282 else
283 size = print_insn (pc);
284
285 uiout->field_stream ("inst", stb);
286 ui_file_rewind (stb);
287 do_cleanups (ui_out_chain);
288 uiout->text ("\n");
289
290 return size;
291}
292
293static int
294dump_insns (struct ui_out *uiout, gdb_disassembler *di,
295 CORE_ADDR low, CORE_ADDR high,
296 int how_many, int flags,
297 CORE_ADDR *end_pc)
298{
299 struct disasm_insn insn;
300 int num_displayed = 0;
301
302 memset (&insn, 0, sizeof (insn));
303 insn.addr = low;
304
305 while (insn.addr < high && (how_many < 0 || num_displayed < how_many))
306 {
307 int size;
308
309 size = di->pretty_print_insn (uiout, &insn, flags);
310 if (size <= 0)
311 break;
312
313 ++num_displayed;
314 insn.addr += size;
315
316 /* Allow user to bail out with ^C. */
317 QUIT;
318 }
319
320 if (end_pc != NULL)
321 *end_pc = insn.addr;
322
323 return num_displayed;
324}
325
326/* The idea here is to present a source-O-centric view of a
327 function to the user. This means that things are presented
328 in source order, with (possibly) out of order assembly
329 immediately following.
330
331 N.B. This view is deprecated. */
332
333static void
334do_mixed_source_and_assembly_deprecated
335 (struct ui_out *uiout,
336 gdb_disassembler *di, struct symtab *symtab,
337 CORE_ADDR low, CORE_ADDR high,
338 int how_many, int flags)
339{
340 int newlines = 0;
341 int nlines;
342 struct linetable_entry *le;
343 struct deprecated_dis_line_entry *mle;
344 struct symtab_and_line sal;
345 int i;
346 int out_of_order = 0;
347 int next_line = 0;
348 int num_displayed = 0;
349 print_source_lines_flags psl_flags = 0;
350 struct cleanup *ui_out_chain;
351 struct cleanup *ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
352 struct cleanup *ui_out_list_chain = make_cleanup (null_cleanup, 0);
353
354 gdb_assert (symtab != NULL && SYMTAB_LINETABLE (symtab) != NULL);
355
356 nlines = SYMTAB_LINETABLE (symtab)->nitems;
357 le = SYMTAB_LINETABLE (symtab)->item;
358
359 if (flags & DISASSEMBLY_FILENAME)
360 psl_flags |= PRINT_SOURCE_LINES_FILENAME;
361
362 mle = (struct deprecated_dis_line_entry *)
363 alloca (nlines * sizeof (struct deprecated_dis_line_entry));
364
365 /* Copy linetable entries for this function into our data
366 structure, creating end_pc's and setting out_of_order as
367 appropriate. */
368
369 /* First, skip all the preceding functions. */
370
371 for (i = 0; i < nlines - 1 && le[i].pc < low; i++);
372
373 /* Now, copy all entries before the end of this function. */
374
375 for (; i < nlines - 1 && le[i].pc < high; i++)
376 {
377 if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc)
378 continue; /* Ignore duplicates. */
379
380 /* Skip any end-of-function markers. */
381 if (le[i].line == 0)
382 continue;
383
384 mle[newlines].line = le[i].line;
385 if (le[i].line > le[i + 1].line)
386 out_of_order = 1;
387 mle[newlines].start_pc = le[i].pc;
388 mle[newlines].end_pc = le[i + 1].pc;
389 newlines++;
390 }
391
392 /* If we're on the last line, and it's part of the function,
393 then we need to get the end pc in a special way. */
394
395 if (i == nlines - 1 && le[i].pc < high)
396 {
397 mle[newlines].line = le[i].line;
398 mle[newlines].start_pc = le[i].pc;
399 sal = find_pc_line (le[i].pc, 0);
400 mle[newlines].end_pc = sal.end;
401 newlines++;
402 }
403
404 /* Now, sort mle by line #s (and, then by addresses within lines). */
405
406 if (out_of_order)
407 qsort (mle, newlines, sizeof (struct deprecated_dis_line_entry),
408 compare_lines);
409
410 /* Now, for each line entry, emit the specified lines (unless
411 they have been emitted before), followed by the assembly code
412 for that line. */
413
414 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
415
416 for (i = 0; i < newlines; i++)
417 {
418 /* Print out everything from next_line to the current line. */
419 if (mle[i].line >= next_line)
420 {
421 if (next_line != 0)
422 {
423 /* Just one line to print. */
424 if (next_line == mle[i].line)
425 {
426 ui_out_tuple_chain
427 = make_cleanup_ui_out_tuple_begin_end (uiout,
428 "src_and_asm_line");
429 print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags);
430 }
431 else
432 {
433 /* Several source lines w/o asm instructions associated. */
434 for (; next_line < mle[i].line; next_line++)
435 {
436 struct cleanup *ui_out_list_chain_line;
437 struct cleanup *ui_out_tuple_chain_line;
438
439 ui_out_tuple_chain_line
440 = make_cleanup_ui_out_tuple_begin_end (uiout,
441 "src_and_asm_line");
442 print_source_lines (symtab, next_line, next_line + 1,
443 psl_flags);
444 ui_out_list_chain_line
445 = make_cleanup_ui_out_list_begin_end (uiout,
446 "line_asm_insn");
447 do_cleanups (ui_out_list_chain_line);
448 do_cleanups (ui_out_tuple_chain_line);
449 }
450 /* Print the last line and leave list open for
451 asm instructions to be added. */
452 ui_out_tuple_chain
453 = make_cleanup_ui_out_tuple_begin_end (uiout,
454 "src_and_asm_line");
455 print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags);
456 }
457 }
458 else
459 {
460 ui_out_tuple_chain
461 = make_cleanup_ui_out_tuple_begin_end (uiout,
462 "src_and_asm_line");
463 print_source_lines (symtab, mle[i].line, mle[i].line + 1, psl_flags);
464 }
465
466 next_line = mle[i].line + 1;
467 ui_out_list_chain
468 = make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
469 }
470
471 num_displayed += dump_insns (uiout, di,
472 mle[i].start_pc, mle[i].end_pc,
473 how_many, flags, NULL);
474
475 /* When we've reached the end of the mle array, or we've seen the last
476 assembly range for this source line, close out the list/tuple. */
477 if (i == (newlines - 1) || mle[i + 1].line > mle[i].line)
478 {
479 do_cleanups (ui_out_list_chain);
480 do_cleanups (ui_out_tuple_chain);
481 ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
482 ui_out_list_chain = make_cleanup (null_cleanup, 0);
483 uiout->text ("\n");
484 }
485 if (how_many >= 0 && num_displayed >= how_many)
486 break;
487 }
488 do_cleanups (ui_out_chain);
489}
490
491/* The idea here is to present a source-O-centric view of a
492 function to the user. This means that things are presented
493 in source order, with (possibly) out of order assembly
494 immediately following. */
495
496static void
497do_mixed_source_and_assembly (struct gdbarch *gdbarch,
498 struct ui_out *uiout,
499 gdb_disassembler *di,
500 struct symtab *main_symtab,
501 CORE_ADDR low, CORE_ADDR high,
502 int how_many, int flags)
503{
504 const struct linetable_entry *le, *first_le;
505 int i, nlines;
506 int num_displayed = 0;
507 print_source_lines_flags psl_flags = 0;
508 struct cleanup *ui_out_chain;
509 struct cleanup *ui_out_tuple_chain;
510 struct cleanup *ui_out_list_chain;
511 CORE_ADDR pc;
512 struct symtab *last_symtab;
513 int last_line;
514
515 gdb_assert (main_symtab != NULL && SYMTAB_LINETABLE (main_symtab) != NULL);
516
517 /* First pass: collect the list of all source files and lines.
518 We do this so that we can only print lines containing code once.
519 We try to print the source text leading up to the next instruction,
520 but if that text is for code that will be disassembled later, then
521 we'll want to defer printing it until later with its associated code. */
522
523 htab_up dis_line_table (allocate_dis_line_table ());
524
525 pc = low;
526
527 /* The prologue may be empty, but there may still be a line number entry
528 for the opening brace which is distinct from the first line of code.
529 If the prologue has been eliminated find_pc_line may return the source
530 line after the opening brace. We still want to print this opening brace.
531 first_le is used to implement this. */
532
533 nlines = SYMTAB_LINETABLE (main_symtab)->nitems;
534 le = SYMTAB_LINETABLE (main_symtab)->item;
535 first_le = NULL;
536
537 /* Skip all the preceding functions. */
538 for (i = 0; i < nlines && le[i].pc < low; i++)
539 continue;
540
541 if (i < nlines && le[i].pc < high)
542 first_le = &le[i];
543
544 /* Add lines for every pc value. */
545 while (pc < high)
546 {
547 struct symtab_and_line sal;
548 int length;
549
550 sal = find_pc_line (pc, 0);
551 length = gdb_insn_length (gdbarch, pc);
552 pc += length;
553
554 if (sal.symtab != NULL)
555 add_dis_line_entry (dis_line_table.get (), sal.symtab, sal.line);
556 }
557
558 /* Second pass: print the disassembly.
559
560 Output format, from an MI perspective:
561 The result is a ui_out list, field name "asm_insns", where elements have
562 name "src_and_asm_line".
563 Each element is a tuple of source line specs (field names line, file,
564 fullname), and field "line_asm_insn" which contains the disassembly.
565 Field "line_asm_insn" is a list of tuples: address, func-name, offset,
566 opcodes, inst.
567
568 CLI output works on top of this because MI ignores ui_out_text output,
569 which is where we put file name and source line contents output.
570
571 Cleanup usage:
572 ui_out_chain
573 Handles the outer "asm_insns" list.
574 ui_out_tuple_chain
575 The tuples for each group of consecutive disassemblies.
576 ui_out_list_chain
577 List of consecutive source lines or disassembled insns. */
578
579 if (flags & DISASSEMBLY_FILENAME)
580 psl_flags |= PRINT_SOURCE_LINES_FILENAME;
581
582 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
583
584 ui_out_tuple_chain = NULL;
585 ui_out_list_chain = NULL;
586
587 last_symtab = NULL;
588 last_line = 0;
589 pc = low;
590
591 while (pc < high)
592 {
593 struct symtab_and_line sal;
594 CORE_ADDR end_pc;
595 int start_preceding_line_to_display = 0;
596 int end_preceding_line_to_display = 0;
597 int new_source_line = 0;
598
599 sal = find_pc_line (pc, 0);
600
601 if (sal.symtab != last_symtab)
602 {
603 /* New source file. */
604 new_source_line = 1;
605
606 /* If this is the first line of output, check for any preceding
607 lines. */
608 if (last_line == 0
609 && first_le != NULL
610 && first_le->line < sal.line)
611 {
612 start_preceding_line_to_display = first_le->line;
613 end_preceding_line_to_display = sal.line;
614 }
615 }
616 else
617 {
618 /* Same source file as last time. */
619 if (sal.symtab != NULL)
620 {
621 if (sal.line > last_line + 1 && last_line != 0)
622 {
623 int l;
624
625 /* Several preceding source lines. Print the trailing ones
626 not associated with code that we'll print later. */
627 for (l = sal.line - 1; l > last_line; --l)
628 {
629 if (line_has_code_p (dis_line_table.get (),
630 sal.symtab, l))
631 break;
632 }
633 if (l < sal.line - 1)
634 {
635 start_preceding_line_to_display = l + 1;
636 end_preceding_line_to_display = sal.line;
637 }
638 }
639 if (sal.line != last_line)
640 new_source_line = 1;
641 else
642 {
643 /* Same source line as last time. This can happen, depending
644 on the debug info. */
645 }
646 }
647 }
648
649 if (new_source_line)
650 {
651 /* Skip the newline if this is the first instruction. */
652 if (pc > low)
653 uiout->text ("\n");
654 if (ui_out_tuple_chain != NULL)
655 {
656 gdb_assert (ui_out_list_chain != NULL);
657 do_cleanups (ui_out_list_chain);
658 do_cleanups (ui_out_tuple_chain);
659 }
660 if (sal.symtab != last_symtab
661 && !(flags & DISASSEMBLY_FILENAME))
662 {
663 /* Remember MI ignores ui_out_text.
664 We don't have to do anything here for MI because MI
665 output includes the source specs for each line. */
666 if (sal.symtab != NULL)
667 {
668 uiout->text (symtab_to_filename_for_display (sal.symtab));
669 }
670 else
671 uiout->text ("unknown");
672 uiout->text (":\n");
673 }
674 if (start_preceding_line_to_display > 0)
675 {
676 /* Several source lines w/o asm instructions associated.
677 We need to preserve the structure of the output, so output
678 a bunch of line tuples with no asm entries. */
679 int l;
680 struct cleanup *ui_out_list_chain_line;
681 struct cleanup *ui_out_tuple_chain_line;
682
683 gdb_assert (sal.symtab != NULL);
684 for (l = start_preceding_line_to_display;
685 l < end_preceding_line_to_display;
686 ++l)
687 {
688 ui_out_tuple_chain_line
689 = make_cleanup_ui_out_tuple_begin_end (uiout,
690 "src_and_asm_line");
691 print_source_lines (sal.symtab, l, l + 1, psl_flags);
692 ui_out_list_chain_line
693 = make_cleanup_ui_out_list_begin_end (uiout,
694 "line_asm_insn");
695 do_cleanups (ui_out_list_chain_line);
696 do_cleanups (ui_out_tuple_chain_line);
697 }
698 }
699 ui_out_tuple_chain
700 = make_cleanup_ui_out_tuple_begin_end (uiout, "src_and_asm_line");
701 if (sal.symtab != NULL)
702 print_source_lines (sal.symtab, sal.line, sal.line + 1, psl_flags);
703 else
704 uiout->text (_("--- no source info for this pc ---\n"));
705 ui_out_list_chain
706 = make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
707 }
708 else
709 {
710 /* Here we're appending instructions to an existing line.
711 By construction the very first insn will have a symtab
712 and follow the new_source_line path above. */
713 gdb_assert (ui_out_tuple_chain != NULL);
714 gdb_assert (ui_out_list_chain != NULL);
715 }
716
717 if (sal.end != 0)
718 end_pc = std::min (sal.end, high);
719 else
720 end_pc = pc + 1;
721 num_displayed += dump_insns (uiout, di, pc, end_pc,
722 how_many, flags, &end_pc);
723 pc = end_pc;
724
725 if (how_many >= 0 && num_displayed >= how_many)
726 break;
727
728 last_symtab = sal.symtab;
729 last_line = sal.line;
730 }
731
732 do_cleanups (ui_out_chain);
733}
734
735static void
736do_assembly_only (struct ui_out *uiout,
737 gdb_disassembler *di,
738 CORE_ADDR low, CORE_ADDR high,
739 int how_many, int flags)
740{
741 struct cleanup *ui_out_chain;
742
743 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
744
745 dump_insns (uiout, di, low, high, how_many, flags, NULL);
746
747 do_cleanups (ui_out_chain);
748}
749
750/* Initialize the disassemble info struct ready for the specified
751 stream. */
752
753static int ATTRIBUTE_PRINTF (2, 3)
754fprintf_disasm (void *stream, const char *format, ...)
755{
756 va_list args;
757
758 va_start (args, format);
759 vfprintf_filtered ((struct ui_file *) stream, format, args);
760 va_end (args);
761 /* Something non -ve. */
762 return 0;
763}
764
765gdb_disassembler::gdb_disassembler (struct gdbarch *gdbarch,
766 struct ui_file *file,
767 di_read_memory_ftype read_memory_func)
768 : m_gdbarch (gdbarch)
769{
770 init_disassemble_info (&m_di, file, fprintf_disasm);
771 m_di.flavour = bfd_target_unknown_flavour;
772 m_di.memory_error_func = dis_asm_memory_error;
773 m_di.print_address_func = dis_asm_print_address;
774 /* NOTE: cagney/2003-04-28: The original code, from the old Insight
775 disassembler had a local optomization here. By default it would
776 access the executable file, instead of the target memory (there
777 was a growing list of exceptions though). Unfortunately, the
778 heuristic was flawed. Commands like "disassemble &variable"
779 didn't work as they relied on the access going to the target.
780 Further, it has been supperseeded by trust-read-only-sections
781 (although that should be superseeded by target_trust..._p()). */
782 m_di.read_memory_func = read_memory_func;
783 m_di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
784 m_di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
785 m_di.endian = gdbarch_byte_order (gdbarch);
786 m_di.endian_code = gdbarch_byte_order_for_code (gdbarch);
787 m_di.application_data = this;
788 disassemble_init_for_target (&m_di);
789}
790
791int
792gdb_disassembler::print_insn (CORE_ADDR memaddr,
793 int *branch_delay_insns)
794{
795 int length = gdbarch_print_insn (arch (), memaddr, &m_di);
796
797 if (branch_delay_insns != NULL)
798 {
799 if (m_di.insn_info_valid)
800 *branch_delay_insns = m_di.branch_delay_insns;
801 else
802 *branch_delay_insns = 0;
803 }
804 return length;
805}
806
807void
808gdb_disassembly (struct gdbarch *gdbarch, struct ui_out *uiout,
809 char *file_string, int flags, int how_many,
810 CORE_ADDR low, CORE_ADDR high)
811{
812 struct ui_file *stb = mem_fileopen ();
813 struct cleanup *cleanups = make_cleanup_ui_file_delete (stb);
814 gdb_disassembler di (gdbarch, stb);
815 struct symtab *symtab;
816 int nlines = -1;
817
818 /* Assume symtab is valid for whole PC range. */
819 symtab = find_pc_line_symtab (low);
820
821 if (symtab != NULL && SYMTAB_LINETABLE (symtab) != NULL)
822 nlines = SYMTAB_LINETABLE (symtab)->nitems;
823
824 if (!(flags & (DISASSEMBLY_SOURCE_DEPRECATED | DISASSEMBLY_SOURCE))
825 || nlines <= 0)
826 do_assembly_only (uiout, &di, low, high, how_many, flags);
827
828 else if (flags & DISASSEMBLY_SOURCE)
829 do_mixed_source_and_assembly (gdbarch, uiout, &di, symtab, low, high,
830 how_many, flags);
831
832 else if (flags & DISASSEMBLY_SOURCE_DEPRECATED)
833 do_mixed_source_and_assembly_deprecated (uiout, &di, symtab,
834 low, high, how_many, flags);
835
836 do_cleanups (cleanups);
837 gdb_flush (gdb_stdout);
838}
839
840/* Print the instruction at address MEMADDR in debugged memory,
841 on STREAM. Returns the length of the instruction, in bytes,
842 and, if requested, the number of branch delay slot instructions. */
843
844int
845gdb_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr,
846 struct ui_file *stream, int *branch_delay_insns)
847{
848
849 gdb_disassembler di (gdbarch, stream);
850
851 return di.print_insn (memaddr, branch_delay_insns);
852}
853
854/* Return the length in bytes of the instruction at address MEMADDR in
855 debugged memory. */
856
857int
858gdb_insn_length (struct gdbarch *gdbarch, CORE_ADDR addr)
859{
860 return gdb_print_insn (gdbarch, addr, null_stream (), NULL);
861}
862
863/* fprintf-function for gdb_buffered_insn_length. This function is a
864 nop, we don't want to print anything, we just want to compute the
865 length of the insn. */
866
867static int ATTRIBUTE_PRINTF (2, 3)
868gdb_buffered_insn_length_fprintf (void *stream, const char *format, ...)
869{
870 return 0;
871}
872
873/* Initialize a struct disassemble_info for gdb_buffered_insn_length. */
874
875static void
876gdb_buffered_insn_length_init_dis (struct gdbarch *gdbarch,
877 struct disassemble_info *di,
878 const gdb_byte *insn, int max_len,
879 CORE_ADDR addr)
880{
881 init_disassemble_info (di, NULL, gdb_buffered_insn_length_fprintf);
882
883 /* init_disassemble_info installs buffer_read_memory, etc.
884 so we don't need to do that here.
885 The cast is necessary until disassemble_info is const-ified. */
886 di->buffer = (gdb_byte *) insn;
887 di->buffer_length = max_len;
888 di->buffer_vma = addr;
889
890 di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
891 di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
892 di->endian = gdbarch_byte_order (gdbarch);
893 di->endian_code = gdbarch_byte_order_for_code (gdbarch);
894
895 disassemble_init_for_target (di);
896}
897
898/* Return the length in bytes of INSN. MAX_LEN is the size of the
899 buffer containing INSN. */
900
901int
902gdb_buffered_insn_length (struct gdbarch *gdbarch,
903 const gdb_byte *insn, int max_len, CORE_ADDR addr)
904{
905 struct disassemble_info di;
906
907 gdb_buffered_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
908
909 return gdbarch_print_insn (gdbarch, addr, &di);
910}
This page took 0.025794 seconds and 4 git commands to generate.