make MSYMBOL_VALUE_ADDRESS an rvalue
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
... / ...
CommitLineData
1/* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31#include "defs.h"
32#include "bfd.h"
33#include "elf-bfd.h"
34#include "symtab.h"
35#include "gdbtypes.h"
36#include "objfiles.h"
37#include "dwarf2.h"
38#include "buildsym.h"
39#include "demangle.h"
40#include "gdb-demangle.h"
41#include "expression.h"
42#include "filenames.h" /* for DOSish file names */
43#include "macrotab.h"
44#include "language.h"
45#include "complaints.h"
46#include "bcache.h"
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
49#include "cp-support.h"
50#include "hashtab.h"
51#include "command.h"
52#include "gdbcmd.h"
53#include "block.h"
54#include "addrmap.h"
55#include "typeprint.h"
56#include "jv-lang.h"
57#include "psympriv.h"
58#include "exceptions.h"
59#include <sys/stat.h>
60#include "completer.h"
61#include "vec.h"
62#include "c-lang.h"
63#include "go-lang.h"
64#include "valprint.h"
65#include "gdbcore.h" /* for gnutarget */
66#include "gdb/gdb-index.h"
67#include <ctype.h>
68#include "gdb_bfd.h"
69#include "f-lang.h"
70#include "source.h"
71#include "filestuff.h"
72#include "build-id.h"
73
74#include <fcntl.h>
75#include <string.h>
76#include "gdb_assert.h"
77#include <sys/types.h>
78
79typedef struct symbol *symbolp;
80DEF_VEC_P (symbolp);
81
82/* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85static unsigned int dwarf2_read_debug = 0;
86
87/* When non-zero, dump DIEs after they are read in. */
88static unsigned int dwarf2_die_debug = 0;
89
90/* When non-zero, cross-check physname against demangler. */
91static int check_physname = 0;
92
93/* When non-zero, do not reject deprecated .gdb_index sections. */
94static int use_deprecated_index_sections = 0;
95
96static const struct objfile_data *dwarf2_objfile_data_key;
97
98/* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100static int dwarf2_locexpr_index;
101static int dwarf2_loclist_index;
102static int dwarf2_locexpr_block_index;
103static int dwarf2_loclist_block_index;
104
105/* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121struct dwarf2_section_info
122{
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143};
144
145typedef struct dwarf2_section_info dwarf2_section_info_def;
146DEF_VEC_O (dwarf2_section_info_def);
147
148/* All offsets in the index are of this type. It must be
149 architecture-independent. */
150typedef uint32_t offset_type;
151
152DEF_VEC_I (offset_type);
153
154/* Ensure only legit values are used. */
155#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161/* Ensure only legit values are used. */
162#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169/* Ensure we don't use more than the alloted nuber of bits for the CU. */
170#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176/* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178struct mapped_index
179{
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200};
201
202typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203DEF_VEC_P (dwarf2_per_cu_ptr);
204
205/* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208struct dwarf2_per_objfile
209{
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
240 struct signatured_type **all_type_units;
241
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
252
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
288
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
291 unsigned char using_index;
292
293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
294 struct mapped_index *index_table;
295
296 /* When using index_table, this keeps track of all quick_file_names entries.
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
303 htab_t quick_file_names_table;
304
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
308
309 /* Table mapping type DIEs to their struct type *.
310 This is NULL if not allocated yet.
311 The mapping is done via (CU/TU + DIE offset) -> type. */
312 htab_t die_type_hash;
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316};
317
318static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320/* Default names of the debugging sections. */
321
322/* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325static const struct dwarf2_debug_sections dwarf2_elf_names =
326{
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341};
342
343/* List of DWO/DWP sections. */
344
345static const struct dwop_section_names
346{
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358}
359dwop_section_names =
360{
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372};
373
374/* local data types */
375
376/* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378struct comp_unit_head
379{
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399};
400
401/* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403struct delayed_method_info
404{
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419};
420
421typedef struct delayed_method_info delayed_method_info;
422DEF_VEC_O (delayed_method_info);
423
424/* Internal state when decoding a particular compilation unit. */
425struct dwarf2_cu
426{
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554};
555
556/* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560struct dwarf2_per_cu_data
561{
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649};
650
651/* Entry in the signatured_types hash table. */
652
653struct signatured_type
654{
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688};
689
690typedef struct signatured_type *sig_type_ptr;
691DEF_VEC_P (sig_type_ptr);
692
693/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696struct stmt_list_hash
697{
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703};
704
705/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708struct type_unit_group
709{
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The primary symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
726 struct symtab *primary_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744};
745
746/* These sections are what may appear in a (real or virtual) DWO file. */
747
748struct dwo_sections
749{
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760};
761
762/* CUs/TUs in DWP/DWO files. */
763
764struct dwo_unit
765{
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783};
784
785/* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789enum dwp_v2_section_ids
790{
791 DW_SECT_MIN = 1
792};
793
794/* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805struct dwo_file
806{
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835};
836
837/* These sections are what may appear in a DWP file. */
838
839struct dwp_sections
840{
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862};
863
864/* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867struct virtual_v1_dwo_sections
868{
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878};
879
880/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885struct virtual_v2_dwo_sections
886{
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909};
910
911/* Contents of DWP hash tables. */
912
913struct dwp_hash_table
914{
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928#define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940};
941
942/* Data for one DWP file. */
943
944struct dwp_file
945{
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972};
973
974/* This represents a '.dwz' file. */
975
976struct dwz_file
977{
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988};
989
990/* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995struct die_reader_specs
996{
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018};
1019
1020/* Type of function passed to init_cutu_and_read_dies, et.al. */
1021typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027/* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030struct line_header
1031{
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
1036 unsigned char maximum_ops_per_instruction;
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
1053 const char **include_dirs;
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
1060 {
1061 const char *name;
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
1066 struct symtab *symtab; /* The associated symbol table, if any. */
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
1070 header. These point into dwarf2_per_objfile->line_buffer. */
1071 const gdb_byte *statement_program_start, *statement_program_end;
1072};
1073
1074/* When we construct a partial symbol table entry we only
1075 need this much information. */
1076struct partial_die_info
1077 {
1078 /* Offset of this DIE. */
1079 sect_offset offset;
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
1091 unsigned int may_be_inlined : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
1112 /* The name of this DIE. Normally the value of DW_AT_name, but
1113 sometimes a default name for unnamed DIEs. */
1114 const char *name;
1115
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
1122 const char *scope;
1123
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
1137
1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1139 DW_AT_sibling, if any. */
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
1142 const gdb_byte *sibling;
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
1147 sect_offset spec_offset;
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
1152 };
1153
1154/* This data structure holds the information of an abbrev. */
1155struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165struct attr_abbrev
1166 {
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
1169 };
1170
1171/* Size of abbrev_table.abbrev_hash_table. */
1172#define ABBREV_HASH_SIZE 121
1173
1174/* Top level data structure to contain an abbreviation table. */
1175
1176struct abbrev_table
1177{
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190};
1191
1192/* Attributes have a name and a value. */
1193struct attribute
1194 {
1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
1203 union
1204 {
1205 const char *str;
1206 struct dwarf_block *blk;
1207 ULONGEST unsnd;
1208 LONGEST snd;
1209 CORE_ADDR addr;
1210 ULONGEST signature;
1211 }
1212 u;
1213 };
1214
1215/* This data structure holds a complete die structure. */
1216struct die_info
1217 {
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
1227
1228 /* True if this die is in process. PR 16581. */
1229 unsigned char in_process : 1;
1230
1231 /* Abbrev number */
1232 unsigned int abbrev;
1233
1234 /* Offset in .debug_info or .debug_types section. */
1235 sect_offset offset;
1236
1237 /* The dies in a compilation unit form an n-ary tree. PARENT
1238 points to this die's parent; CHILD points to the first child of
1239 this node; and all the children of a given node are chained
1240 together via their SIBLING fields. */
1241 struct die_info *child; /* Its first child, if any. */
1242 struct die_info *sibling; /* Its next sibling, if any. */
1243 struct die_info *parent; /* Its parent, if any. */
1244
1245 /* An array of attributes, with NUM_ATTRS elements. There may be
1246 zero, but it's not common and zero-sized arrays are not
1247 sufficiently portable C. */
1248 struct attribute attrs[1];
1249 };
1250
1251/* Get at parts of an attribute structure. */
1252
1253#define DW_STRING(attr) ((attr)->u.str)
1254#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1255#define DW_UNSND(attr) ((attr)->u.unsnd)
1256#define DW_BLOCK(attr) ((attr)->u.blk)
1257#define DW_SND(attr) ((attr)->u.snd)
1258#define DW_ADDR(attr) ((attr)->u.addr)
1259#define DW_SIGNATURE(attr) ((attr)->u.signature)
1260
1261/* Blocks are a bunch of untyped bytes. */
1262struct dwarf_block
1263 {
1264 size_t size;
1265
1266 /* Valid only if SIZE is not zero. */
1267 const gdb_byte *data;
1268 };
1269
1270#ifndef ATTR_ALLOC_CHUNK
1271#define ATTR_ALLOC_CHUNK 4
1272#endif
1273
1274/* Allocate fields for structs, unions and enums in this size. */
1275#ifndef DW_FIELD_ALLOC_CHUNK
1276#define DW_FIELD_ALLOC_CHUNK 4
1277#endif
1278
1279/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1280 but this would require a corresponding change in unpack_field_as_long
1281 and friends. */
1282static int bits_per_byte = 8;
1283
1284/* The routines that read and process dies for a C struct or C++ class
1285 pass lists of data member fields and lists of member function fields
1286 in an instance of a field_info structure, as defined below. */
1287struct field_info
1288 {
1289 /* List of data member and baseclasses fields. */
1290 struct nextfield
1291 {
1292 struct nextfield *next;
1293 int accessibility;
1294 int virtuality;
1295 struct field field;
1296 }
1297 *fields, *baseclasses;
1298
1299 /* Number of fields (including baseclasses). */
1300 int nfields;
1301
1302 /* Number of baseclasses. */
1303 int nbaseclasses;
1304
1305 /* Set if the accesibility of one of the fields is not public. */
1306 int non_public_fields;
1307
1308 /* Member function fields array, entries are allocated in the order they
1309 are encountered in the object file. */
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 }
1315 *fnfields;
1316
1317 /* Member function fieldlist array, contains name of possibly overloaded
1318 member function, number of overloaded member functions and a pointer
1319 to the head of the member function field chain. */
1320 struct fnfieldlist
1321 {
1322 const char *name;
1323 int length;
1324 struct nextfnfield *head;
1325 }
1326 *fnfieldlists;
1327
1328 /* Number of entries in the fnfieldlists array. */
1329 int nfnfields;
1330
1331 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1332 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1333 struct typedef_field_list
1334 {
1335 struct typedef_field field;
1336 struct typedef_field_list *next;
1337 }
1338 *typedef_field_list;
1339 unsigned typedef_field_list_count;
1340 };
1341
1342/* One item on the queue of compilation units to read in full symbols
1343 for. */
1344struct dwarf2_queue_item
1345{
1346 struct dwarf2_per_cu_data *per_cu;
1347 enum language pretend_language;
1348 struct dwarf2_queue_item *next;
1349};
1350
1351/* The current queue. */
1352static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1353
1354/* Loaded secondary compilation units are kept in memory until they
1355 have not been referenced for the processing of this many
1356 compilation units. Set this to zero to disable caching. Cache
1357 sizes of up to at least twenty will improve startup time for
1358 typical inter-CU-reference binaries, at an obvious memory cost. */
1359static int dwarf2_max_cache_age = 5;
1360static void
1361show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1362 struct cmd_list_element *c, const char *value)
1363{
1364 fprintf_filtered (file, _("The upper bound on the age of cached "
1365 "dwarf2 compilation units is %s.\n"),
1366 value);
1367}
1368\f
1369/* local function prototypes */
1370
1371static const char *get_section_name (const struct dwarf2_section_info *);
1372
1373static const char *get_section_file_name (const struct dwarf2_section_info *);
1374
1375static void dwarf2_locate_sections (bfd *, asection *, void *);
1376
1377static void dwarf2_find_base_address (struct die_info *die,
1378 struct dwarf2_cu *cu);
1379
1380static struct partial_symtab *create_partial_symtab
1381 (struct dwarf2_per_cu_data *per_cu, const char *name);
1382
1383static void dwarf2_build_psymtabs_hard (struct objfile *);
1384
1385static void scan_partial_symbols (struct partial_die_info *,
1386 CORE_ADDR *, CORE_ADDR *,
1387 int, struct dwarf2_cu *);
1388
1389static void add_partial_symbol (struct partial_die_info *,
1390 struct dwarf2_cu *);
1391
1392static void add_partial_namespace (struct partial_die_info *pdi,
1393 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1394 int need_pc, struct dwarf2_cu *cu);
1395
1396static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1397 CORE_ADDR *highpc, int need_pc,
1398 struct dwarf2_cu *cu);
1399
1400static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1401 struct dwarf2_cu *cu);
1402
1403static void add_partial_subprogram (struct partial_die_info *pdi,
1404 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1405 int need_pc, struct dwarf2_cu *cu);
1406
1407static void dwarf2_read_symtab (struct partial_symtab *,
1408 struct objfile *);
1409
1410static void psymtab_to_symtab_1 (struct partial_symtab *);
1411
1412static struct abbrev_info *abbrev_table_lookup_abbrev
1413 (const struct abbrev_table *, unsigned int);
1414
1415static struct abbrev_table *abbrev_table_read_table
1416 (struct dwarf2_section_info *, sect_offset);
1417
1418static void abbrev_table_free (struct abbrev_table *);
1419
1420static void abbrev_table_free_cleanup (void *);
1421
1422static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1423 struct dwarf2_section_info *);
1424
1425static void dwarf2_free_abbrev_table (void *);
1426
1427static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1428
1429static struct partial_die_info *load_partial_dies
1430 (const struct die_reader_specs *, const gdb_byte *, int);
1431
1432static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1433 struct partial_die_info *,
1434 struct abbrev_info *,
1435 unsigned int,
1436 const gdb_byte *);
1437
1438static struct partial_die_info *find_partial_die (sect_offset, int,
1439 struct dwarf2_cu *);
1440
1441static void fixup_partial_die (struct partial_die_info *,
1442 struct dwarf2_cu *);
1443
1444static const gdb_byte *read_attribute (const struct die_reader_specs *,
1445 struct attribute *, struct attr_abbrev *,
1446 const gdb_byte *);
1447
1448static unsigned int read_1_byte (bfd *, const gdb_byte *);
1449
1450static int read_1_signed_byte (bfd *, const gdb_byte *);
1451
1452static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1453
1454static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1455
1456static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1457
1458static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1459 unsigned int *);
1460
1461static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1462
1463static LONGEST read_checked_initial_length_and_offset
1464 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1465 unsigned int *, unsigned int *);
1466
1467static LONGEST read_offset (bfd *, const gdb_byte *,
1468 const struct comp_unit_head *,
1469 unsigned int *);
1470
1471static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1472
1473static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1474 sect_offset);
1475
1476static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1477
1478static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1479
1480static const char *read_indirect_string (bfd *, const gdb_byte *,
1481 const struct comp_unit_head *,
1482 unsigned int *);
1483
1484static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1485
1486static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1487
1488static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1489
1490static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1491 const gdb_byte *,
1492 unsigned int *);
1493
1494static const char *read_str_index (const struct die_reader_specs *reader,
1495 struct dwarf2_cu *cu, ULONGEST str_index);
1496
1497static void set_cu_language (unsigned int, struct dwarf2_cu *);
1498
1499static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1500 struct dwarf2_cu *);
1501
1502static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1503 unsigned int);
1504
1505static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1506 struct dwarf2_cu *cu);
1507
1508static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1509
1510static struct die_info *die_specification (struct die_info *die,
1511 struct dwarf2_cu **);
1512
1513static void free_line_header (struct line_header *lh);
1514
1515static struct line_header *dwarf_decode_line_header (unsigned int offset,
1516 struct dwarf2_cu *cu);
1517
1518static void dwarf_decode_lines (struct line_header *, const char *,
1519 struct dwarf2_cu *, struct partial_symtab *,
1520 int);
1521
1522static void dwarf2_start_subfile (const char *, const char *, const char *);
1523
1524static void dwarf2_start_symtab (struct dwarf2_cu *,
1525 const char *, const char *, CORE_ADDR);
1526
1527static struct symbol *new_symbol (struct die_info *, struct type *,
1528 struct dwarf2_cu *);
1529
1530static struct symbol *new_symbol_full (struct die_info *, struct type *,
1531 struct dwarf2_cu *, struct symbol *);
1532
1533static void dwarf2_const_value (const struct attribute *, struct symbol *,
1534 struct dwarf2_cu *);
1535
1536static void dwarf2_const_value_attr (const struct attribute *attr,
1537 struct type *type,
1538 const char *name,
1539 struct obstack *obstack,
1540 struct dwarf2_cu *cu, LONGEST *value,
1541 const gdb_byte **bytes,
1542 struct dwarf2_locexpr_baton **baton);
1543
1544static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1545
1546static int need_gnat_info (struct dwarf2_cu *);
1547
1548static struct type *die_descriptive_type (struct die_info *,
1549 struct dwarf2_cu *);
1550
1551static void set_descriptive_type (struct type *, struct die_info *,
1552 struct dwarf2_cu *);
1553
1554static struct type *die_containing_type (struct die_info *,
1555 struct dwarf2_cu *);
1556
1557static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1558 struct dwarf2_cu *);
1559
1560static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1561
1562static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1563
1564static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1565
1566static char *typename_concat (struct obstack *obs, const char *prefix,
1567 const char *suffix, int physname,
1568 struct dwarf2_cu *cu);
1569
1570static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1571
1572static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1573
1574static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1575
1576static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1577
1578static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1579
1580static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1581 struct dwarf2_cu *, struct partial_symtab *);
1582
1583static int dwarf2_get_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1585 struct partial_symtab *);
1586
1587static void get_scope_pc_bounds (struct die_info *,
1588 CORE_ADDR *, CORE_ADDR *,
1589 struct dwarf2_cu *);
1590
1591static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1592 CORE_ADDR, struct dwarf2_cu *);
1593
1594static void dwarf2_add_field (struct field_info *, struct die_info *,
1595 struct dwarf2_cu *);
1596
1597static void dwarf2_attach_fields_to_type (struct field_info *,
1598 struct type *, struct dwarf2_cu *);
1599
1600static void dwarf2_add_member_fn (struct field_info *,
1601 struct die_info *, struct type *,
1602 struct dwarf2_cu *);
1603
1604static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1605 struct type *,
1606 struct dwarf2_cu *);
1607
1608static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1609
1610static void read_common_block (struct die_info *, struct dwarf2_cu *);
1611
1612static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1613
1614static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1615
1616static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1617
1618static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1619
1620static struct type *read_module_type (struct die_info *die,
1621 struct dwarf2_cu *cu);
1622
1623static const char *namespace_name (struct die_info *die,
1624 int *is_anonymous, struct dwarf2_cu *);
1625
1626static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1627
1628static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1629
1630static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1631 struct dwarf2_cu *);
1632
1633static struct die_info *read_die_and_siblings_1
1634 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1635 struct die_info *);
1636
1637static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1638 const gdb_byte *info_ptr,
1639 const gdb_byte **new_info_ptr,
1640 struct die_info *parent);
1641
1642static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *, int);
1645
1646static const gdb_byte *read_full_die (const struct die_reader_specs *,
1647 struct die_info **, const gdb_byte *,
1648 int *);
1649
1650static void process_die (struct die_info *, struct dwarf2_cu *);
1651
1652static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1653 struct obstack *);
1654
1655static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1656
1657static const char *dwarf2_full_name (const char *name,
1658 struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661static const char *dwarf2_physname (const char *name, struct die_info *die,
1662 struct dwarf2_cu *cu);
1663
1664static struct die_info *dwarf2_extension (struct die_info *die,
1665 struct dwarf2_cu **);
1666
1667static const char *dwarf_tag_name (unsigned int);
1668
1669static const char *dwarf_attr_name (unsigned int);
1670
1671static const char *dwarf_form_name (unsigned int);
1672
1673static char *dwarf_bool_name (unsigned int);
1674
1675static const char *dwarf_type_encoding_name (unsigned int);
1676
1677static struct die_info *sibling_die (struct die_info *);
1678
1679static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1680
1681static void dump_die_for_error (struct die_info *);
1682
1683static void dump_die_1 (struct ui_file *, int level, int max_level,
1684 struct die_info *);
1685
1686/*static*/ void dump_die (struct die_info *, int max_level);
1687
1688static void store_in_ref_table (struct die_info *,
1689 struct dwarf2_cu *);
1690
1691static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1692
1693static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1694
1695static struct die_info *follow_die_ref_or_sig (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1698
1699static struct die_info *follow_die_ref (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1702
1703static struct die_info *follow_die_sig (struct die_info *,
1704 const struct attribute *,
1705 struct dwarf2_cu **);
1706
1707static struct type *get_signatured_type (struct die_info *, ULONGEST,
1708 struct dwarf2_cu *);
1709
1710static struct type *get_DW_AT_signature_type (struct die_info *,
1711 const struct attribute *,
1712 struct dwarf2_cu *);
1713
1714static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1715
1716static void read_signatured_type (struct signatured_type *);
1717
1718static struct type_unit_group *get_type_unit_group
1719 (struct dwarf2_cu *, const struct attribute *);
1720
1721static void build_type_unit_groups (die_reader_func_ftype *, void *);
1722
1723/* memory allocation interface */
1724
1725static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1726
1727static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1728
1729static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1730 const char *, int);
1731
1732static int attr_form_is_block (const struct attribute *);
1733
1734static int attr_form_is_section_offset (const struct attribute *);
1735
1736static int attr_form_is_constant (const struct attribute *);
1737
1738static int attr_form_is_ref (const struct attribute *);
1739
1740static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1741 struct dwarf2_loclist_baton *baton,
1742 const struct attribute *attr);
1743
1744static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1745 struct symbol *sym,
1746 struct dwarf2_cu *cu,
1747 int is_block);
1748
1749static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1750 const gdb_byte *info_ptr,
1751 struct abbrev_info *abbrev);
1752
1753static void free_stack_comp_unit (void *);
1754
1755static hashval_t partial_die_hash (const void *item);
1756
1757static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1758
1759static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1760 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1761
1762static void init_one_comp_unit (struct dwarf2_cu *cu,
1763 struct dwarf2_per_cu_data *per_cu);
1764
1765static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1766 struct die_info *comp_unit_die,
1767 enum language pretend_language);
1768
1769static void free_heap_comp_unit (void *);
1770
1771static void free_cached_comp_units (void *);
1772
1773static void age_cached_comp_units (void);
1774
1775static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1776
1777static struct type *set_die_type (struct die_info *, struct type *,
1778 struct dwarf2_cu *);
1779
1780static void create_all_comp_units (struct objfile *);
1781
1782static int create_all_type_units (struct objfile *);
1783
1784static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
1786
1787static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1788 enum language);
1789
1790static void process_full_type_unit (struct dwarf2_per_cu_data *,
1791 enum language);
1792
1793static void dwarf2_add_dependence (struct dwarf2_cu *,
1794 struct dwarf2_per_cu_data *);
1795
1796static void dwarf2_mark (struct dwarf2_cu *);
1797
1798static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1799
1800static struct type *get_die_type_at_offset (sect_offset,
1801 struct dwarf2_per_cu_data *);
1802
1803static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1804
1805static void dwarf2_release_queue (void *dummy);
1806
1807static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1808 enum language pretend_language);
1809
1810static void process_queue (void);
1811
1812static void find_file_and_directory (struct die_info *die,
1813 struct dwarf2_cu *cu,
1814 const char **name, const char **comp_dir);
1815
1816static char *file_full_name (int file, struct line_header *lh,
1817 const char *comp_dir);
1818
1819static const gdb_byte *read_and_check_comp_unit_head
1820 (struct comp_unit_head *header,
1821 struct dwarf2_section_info *section,
1822 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1823 int is_debug_types_section);
1824
1825static void init_cutu_and_read_dies
1826 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1827 int use_existing_cu, int keep,
1828 die_reader_func_ftype *die_reader_func, void *data);
1829
1830static void init_cutu_and_read_dies_simple
1831 (struct dwarf2_per_cu_data *this_cu,
1832 die_reader_func_ftype *die_reader_func, void *data);
1833
1834static htab_t allocate_signatured_type_table (struct objfile *objfile);
1835
1836static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1837
1838static struct dwo_unit *lookup_dwo_unit_in_dwp
1839 (struct dwp_file *dwp_file, const char *comp_dir,
1840 ULONGEST signature, int is_debug_types);
1841
1842static struct dwp_file *get_dwp_file (void);
1843
1844static struct dwo_unit *lookup_dwo_comp_unit
1845 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1846
1847static struct dwo_unit *lookup_dwo_type_unit
1848 (struct signatured_type *, const char *, const char *);
1849
1850static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1851
1852static void free_dwo_file_cleanup (void *);
1853
1854static void process_cu_includes (void);
1855
1856static void check_producer (struct dwarf2_cu *cu);
1857\f
1858/* Various complaints about symbol reading that don't abort the process. */
1859
1860static void
1861dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1862{
1863 complaint (&symfile_complaints,
1864 _("statement list doesn't fit in .debug_line section"));
1865}
1866
1867static void
1868dwarf2_debug_line_missing_file_complaint (void)
1869{
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line data without a file"));
1872}
1873
1874static void
1875dwarf2_debug_line_missing_end_sequence_complaint (void)
1876{
1877 complaint (&symfile_complaints,
1878 _(".debug_line section has line "
1879 "program sequence without an end"));
1880}
1881
1882static void
1883dwarf2_complex_location_expr_complaint (void)
1884{
1885 complaint (&symfile_complaints, _("location expression too complex"));
1886}
1887
1888static void
1889dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1890 int arg3)
1891{
1892 complaint (&symfile_complaints,
1893 _("const value length mismatch for '%s', got %d, expected %d"),
1894 arg1, arg2, arg3);
1895}
1896
1897static void
1898dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1899{
1900 complaint (&symfile_complaints,
1901 _("debug info runs off end of %s section"
1902 " [in module %s]"),
1903 get_section_name (section),
1904 get_section_file_name (section));
1905}
1906
1907static void
1908dwarf2_macro_malformed_definition_complaint (const char *arg1)
1909{
1910 complaint (&symfile_complaints,
1911 _("macro debug info contains a "
1912 "malformed macro definition:\n`%s'"),
1913 arg1);
1914}
1915
1916static void
1917dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1918{
1919 complaint (&symfile_complaints,
1920 _("invalid attribute class or form for '%s' in '%s'"),
1921 arg1, arg2);
1922}
1923\f
1924#if WORDS_BIGENDIAN
1925
1926/* Convert VALUE between big- and little-endian. */
1927static offset_type
1928byte_swap (offset_type value)
1929{
1930 offset_type result;
1931
1932 result = (value & 0xff) << 24;
1933 result |= (value & 0xff00) << 8;
1934 result |= (value & 0xff0000) >> 8;
1935 result |= (value & 0xff000000) >> 24;
1936 return result;
1937}
1938
1939#define MAYBE_SWAP(V) byte_swap (V)
1940
1941#else
1942#define MAYBE_SWAP(V) (V)
1943#endif /* WORDS_BIGENDIAN */
1944
1945/* The suffix for an index file. */
1946#define INDEX_SUFFIX ".gdb-index"
1947
1948/* Try to locate the sections we need for DWARF 2 debugging
1949 information and return true if we have enough to do something.
1950 NAMES points to the dwarf2 section names, or is NULL if the standard
1951 ELF names are used. */
1952
1953int
1954dwarf2_has_info (struct objfile *objfile,
1955 const struct dwarf2_debug_sections *names)
1956{
1957 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1958 if (!dwarf2_per_objfile)
1959 {
1960 /* Initialize per-objfile state. */
1961 struct dwarf2_per_objfile *data
1962 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1963
1964 memset (data, 0, sizeof (*data));
1965 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1966 dwarf2_per_objfile = data;
1967
1968 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1969 (void *) names);
1970 dwarf2_per_objfile->objfile = objfile;
1971 }
1972 return (!dwarf2_per_objfile->info.is_virtual
1973 && dwarf2_per_objfile->info.s.asection != NULL
1974 && !dwarf2_per_objfile->abbrev.is_virtual
1975 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1976}
1977
1978/* Return the containing section of virtual section SECTION. */
1979
1980static struct dwarf2_section_info *
1981get_containing_section (const struct dwarf2_section_info *section)
1982{
1983 gdb_assert (section->is_virtual);
1984 return section->s.containing_section;
1985}
1986
1987/* Return the bfd owner of SECTION. */
1988
1989static struct bfd *
1990get_section_bfd_owner (const struct dwarf2_section_info *section)
1991{
1992 if (section->is_virtual)
1993 {
1994 section = get_containing_section (section);
1995 gdb_assert (!section->is_virtual);
1996 }
1997 return section->s.asection->owner;
1998}
1999
2000/* Return the bfd section of SECTION.
2001 Returns NULL if the section is not present. */
2002
2003static asection *
2004get_section_bfd_section (const struct dwarf2_section_info *section)
2005{
2006 if (section->is_virtual)
2007 {
2008 section = get_containing_section (section);
2009 gdb_assert (!section->is_virtual);
2010 }
2011 return section->s.asection;
2012}
2013
2014/* Return the name of SECTION. */
2015
2016static const char *
2017get_section_name (const struct dwarf2_section_info *section)
2018{
2019 asection *sectp = get_section_bfd_section (section);
2020
2021 gdb_assert (sectp != NULL);
2022 return bfd_section_name (get_section_bfd_owner (section), sectp);
2023}
2024
2025/* Return the name of the file SECTION is in. */
2026
2027static const char *
2028get_section_file_name (const struct dwarf2_section_info *section)
2029{
2030 bfd *abfd = get_section_bfd_owner (section);
2031
2032 return bfd_get_filename (abfd);
2033}
2034
2035/* Return the id of SECTION.
2036 Returns 0 if SECTION doesn't exist. */
2037
2038static int
2039get_section_id (const struct dwarf2_section_info *section)
2040{
2041 asection *sectp = get_section_bfd_section (section);
2042
2043 if (sectp == NULL)
2044 return 0;
2045 return sectp->id;
2046}
2047
2048/* Return the flags of SECTION.
2049 SECTION (or containing section if this is a virtual section) must exist. */
2050
2051static int
2052get_section_flags (const struct dwarf2_section_info *section)
2053{
2054 asection *sectp = get_section_bfd_section (section);
2055
2056 gdb_assert (sectp != NULL);
2057 return bfd_get_section_flags (sectp->owner, sectp);
2058}
2059
2060/* When loading sections, we look either for uncompressed section or for
2061 compressed section names. */
2062
2063static int
2064section_is_p (const char *section_name,
2065 const struct dwarf2_section_names *names)
2066{
2067 if (names->normal != NULL
2068 && strcmp (section_name, names->normal) == 0)
2069 return 1;
2070 if (names->compressed != NULL
2071 && strcmp (section_name, names->compressed) == 0)
2072 return 1;
2073 return 0;
2074}
2075
2076/* This function is mapped across the sections and remembers the
2077 offset and size of each of the debugging sections we are interested
2078 in. */
2079
2080static void
2081dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2082{
2083 const struct dwarf2_debug_sections *names;
2084 flagword aflag = bfd_get_section_flags (abfd, sectp);
2085
2086 if (vnames == NULL)
2087 names = &dwarf2_elf_names;
2088 else
2089 names = (const struct dwarf2_debug_sections *) vnames;
2090
2091 if ((aflag & SEC_HAS_CONTENTS) == 0)
2092 {
2093 }
2094 else if (section_is_p (sectp->name, &names->info))
2095 {
2096 dwarf2_per_objfile->info.s.asection = sectp;
2097 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2098 }
2099 else if (section_is_p (sectp->name, &names->abbrev))
2100 {
2101 dwarf2_per_objfile->abbrev.s.asection = sectp;
2102 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2103 }
2104 else if (section_is_p (sectp->name, &names->line))
2105 {
2106 dwarf2_per_objfile->line.s.asection = sectp;
2107 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2108 }
2109 else if (section_is_p (sectp->name, &names->loc))
2110 {
2111 dwarf2_per_objfile->loc.s.asection = sectp;
2112 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2113 }
2114 else if (section_is_p (sectp->name, &names->macinfo))
2115 {
2116 dwarf2_per_objfile->macinfo.s.asection = sectp;
2117 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->macro))
2120 {
2121 dwarf2_per_objfile->macro.s.asection = sectp;
2122 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->str))
2125 {
2126 dwarf2_per_objfile->str.s.asection = sectp;
2127 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->addr))
2130 {
2131 dwarf2_per_objfile->addr.s.asection = sectp;
2132 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->frame))
2135 {
2136 dwarf2_per_objfile->frame.s.asection = sectp;
2137 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->eh_frame))
2140 {
2141 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2142 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->ranges))
2145 {
2146 dwarf2_per_objfile->ranges.s.asection = sectp;
2147 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->types))
2150 {
2151 struct dwarf2_section_info type_section;
2152
2153 memset (&type_section, 0, sizeof (type_section));
2154 type_section.s.asection = sectp;
2155 type_section.size = bfd_get_section_size (sectp);
2156
2157 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2158 &type_section);
2159 }
2160 else if (section_is_p (sectp->name, &names->gdb_index))
2161 {
2162 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2163 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2164 }
2165
2166 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2167 && bfd_section_vma (abfd, sectp) == 0)
2168 dwarf2_per_objfile->has_section_at_zero = 1;
2169}
2170
2171/* A helper function that decides whether a section is empty,
2172 or not present. */
2173
2174static int
2175dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2176{
2177 if (section->is_virtual)
2178 return section->size == 0;
2179 return section->s.asection == NULL || section->size == 0;
2180}
2181
2182/* Read the contents of the section INFO.
2183 OBJFILE is the main object file, but not necessarily the file where
2184 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2185 of the DWO file.
2186 If the section is compressed, uncompress it before returning. */
2187
2188static void
2189dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2190{
2191 asection *sectp;
2192 bfd *abfd;
2193 gdb_byte *buf, *retbuf;
2194
2195 if (info->readin)
2196 return;
2197 info->buffer = NULL;
2198 info->readin = 1;
2199
2200 if (dwarf2_section_empty_p (info))
2201 return;
2202
2203 sectp = get_section_bfd_section (info);
2204
2205 /* If this is a virtual section we need to read in the real one first. */
2206 if (info->is_virtual)
2207 {
2208 struct dwarf2_section_info *containing_section =
2209 get_containing_section (info);
2210
2211 gdb_assert (sectp != NULL);
2212 if ((sectp->flags & SEC_RELOC) != 0)
2213 {
2214 error (_("Dwarf Error: DWP format V2 with relocations is not"
2215 " supported in section %s [in module %s]"),
2216 get_section_name (info), get_section_file_name (info));
2217 }
2218 dwarf2_read_section (objfile, containing_section);
2219 /* Other code should have already caught virtual sections that don't
2220 fit. */
2221 gdb_assert (info->virtual_offset + info->size
2222 <= containing_section->size);
2223 /* If the real section is empty or there was a problem reading the
2224 section we shouldn't get here. */
2225 gdb_assert (containing_section->buffer != NULL);
2226 info->buffer = containing_section->buffer + info->virtual_offset;
2227 return;
2228 }
2229
2230 /* If the section has relocations, we must read it ourselves.
2231 Otherwise we attach it to the BFD. */
2232 if ((sectp->flags & SEC_RELOC) == 0)
2233 {
2234 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2235 return;
2236 }
2237
2238 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2239 info->buffer = buf;
2240
2241 /* When debugging .o files, we may need to apply relocations; see
2242 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2243 We never compress sections in .o files, so we only need to
2244 try this when the section is not compressed. */
2245 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2246 if (retbuf != NULL)
2247 {
2248 info->buffer = retbuf;
2249 return;
2250 }
2251
2252 abfd = get_section_bfd_owner (info);
2253 gdb_assert (abfd != NULL);
2254
2255 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2256 || bfd_bread (buf, info->size, abfd) != info->size)
2257 {
2258 error (_("Dwarf Error: Can't read DWARF data"
2259 " in section %s [in module %s]"),
2260 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2261 }
2262}
2263
2264/* A helper function that returns the size of a section in a safe way.
2265 If you are positive that the section has been read before using the
2266 size, then it is safe to refer to the dwarf2_section_info object's
2267 "size" field directly. In other cases, you must call this
2268 function, because for compressed sections the size field is not set
2269 correctly until the section has been read. */
2270
2271static bfd_size_type
2272dwarf2_section_size (struct objfile *objfile,
2273 struct dwarf2_section_info *info)
2274{
2275 if (!info->readin)
2276 dwarf2_read_section (objfile, info);
2277 return info->size;
2278}
2279
2280/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2281 SECTION_NAME. */
2282
2283void
2284dwarf2_get_section_info (struct objfile *objfile,
2285 enum dwarf2_section_enum sect,
2286 asection **sectp, const gdb_byte **bufp,
2287 bfd_size_type *sizep)
2288{
2289 struct dwarf2_per_objfile *data
2290 = objfile_data (objfile, dwarf2_objfile_data_key);
2291 struct dwarf2_section_info *info;
2292
2293 /* We may see an objfile without any DWARF, in which case we just
2294 return nothing. */
2295 if (data == NULL)
2296 {
2297 *sectp = NULL;
2298 *bufp = NULL;
2299 *sizep = 0;
2300 return;
2301 }
2302 switch (sect)
2303 {
2304 case DWARF2_DEBUG_FRAME:
2305 info = &data->frame;
2306 break;
2307 case DWARF2_EH_FRAME:
2308 info = &data->eh_frame;
2309 break;
2310 default:
2311 gdb_assert_not_reached ("unexpected section");
2312 }
2313
2314 dwarf2_read_section (objfile, info);
2315
2316 *sectp = get_section_bfd_section (info);
2317 *bufp = info->buffer;
2318 *sizep = info->size;
2319}
2320
2321/* A helper function to find the sections for a .dwz file. */
2322
2323static void
2324locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2325{
2326 struct dwz_file *dwz_file = arg;
2327
2328 /* Note that we only support the standard ELF names, because .dwz
2329 is ELF-only (at the time of writing). */
2330 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2331 {
2332 dwz_file->abbrev.s.asection = sectp;
2333 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2334 }
2335 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2336 {
2337 dwz_file->info.s.asection = sectp;
2338 dwz_file->info.size = bfd_get_section_size (sectp);
2339 }
2340 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2341 {
2342 dwz_file->str.s.asection = sectp;
2343 dwz_file->str.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2346 {
2347 dwz_file->line.s.asection = sectp;
2348 dwz_file->line.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2351 {
2352 dwz_file->macro.s.asection = sectp;
2353 dwz_file->macro.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2356 {
2357 dwz_file->gdb_index.s.asection = sectp;
2358 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2359 }
2360}
2361
2362/* Open the separate '.dwz' debug file, if needed. Return NULL if
2363 there is no .gnu_debugaltlink section in the file. Error if there
2364 is such a section but the file cannot be found. */
2365
2366static struct dwz_file *
2367dwarf2_get_dwz_file (void)
2368{
2369 bfd *dwz_bfd;
2370 char *data;
2371 struct cleanup *cleanup;
2372 const char *filename;
2373 struct dwz_file *result;
2374 bfd_size_type buildid_len_arg;
2375 size_t buildid_len;
2376 bfd_byte *buildid;
2377
2378 if (dwarf2_per_objfile->dwz_file != NULL)
2379 return dwarf2_per_objfile->dwz_file;
2380
2381 bfd_set_error (bfd_error_no_error);
2382 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2383 &buildid_len_arg, &buildid);
2384 if (data == NULL)
2385 {
2386 if (bfd_get_error () == bfd_error_no_error)
2387 return NULL;
2388 error (_("could not read '.gnu_debugaltlink' section: %s"),
2389 bfd_errmsg (bfd_get_error ()));
2390 }
2391 cleanup = make_cleanup (xfree, data);
2392 make_cleanup (xfree, buildid);
2393
2394 buildid_len = (size_t) buildid_len_arg;
2395
2396 filename = (const char *) data;
2397 if (!IS_ABSOLUTE_PATH (filename))
2398 {
2399 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2400 char *rel;
2401
2402 make_cleanup (xfree, abs);
2403 abs = ldirname (abs);
2404 make_cleanup (xfree, abs);
2405
2406 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2407 make_cleanup (xfree, rel);
2408 filename = rel;
2409 }
2410
2411 /* First try the file name given in the section. If that doesn't
2412 work, try to use the build-id instead. */
2413 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2414 if (dwz_bfd != NULL)
2415 {
2416 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2417 {
2418 gdb_bfd_unref (dwz_bfd);
2419 dwz_bfd = NULL;
2420 }
2421 }
2422
2423 if (dwz_bfd == NULL)
2424 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2425
2426 if (dwz_bfd == NULL)
2427 error (_("could not find '.gnu_debugaltlink' file for %s"),
2428 objfile_name (dwarf2_per_objfile->objfile));
2429
2430 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2431 struct dwz_file);
2432 result->dwz_bfd = dwz_bfd;
2433
2434 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2435
2436 do_cleanups (cleanup);
2437
2438 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2439 dwarf2_per_objfile->dwz_file = result;
2440 return result;
2441}
2442\f
2443/* DWARF quick_symbols_functions support. */
2444
2445/* TUs can share .debug_line entries, and there can be a lot more TUs than
2446 unique line tables, so we maintain a separate table of all .debug_line
2447 derived entries to support the sharing.
2448 All the quick functions need is the list of file names. We discard the
2449 line_header when we're done and don't need to record it here. */
2450struct quick_file_names
2451{
2452 /* The data used to construct the hash key. */
2453 struct stmt_list_hash hash;
2454
2455 /* The number of entries in file_names, real_names. */
2456 unsigned int num_file_names;
2457
2458 /* The file names from the line table, after being run through
2459 file_full_name. */
2460 const char **file_names;
2461
2462 /* The file names from the line table after being run through
2463 gdb_realpath. These are computed lazily. */
2464 const char **real_names;
2465};
2466
2467/* When using the index (and thus not using psymtabs), each CU has an
2468 object of this type. This is used to hold information needed by
2469 the various "quick" methods. */
2470struct dwarf2_per_cu_quick_data
2471{
2472 /* The file table. This can be NULL if there was no file table
2473 or it's currently not read in.
2474 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2475 struct quick_file_names *file_names;
2476
2477 /* The corresponding symbol table. This is NULL if symbols for this
2478 CU have not yet been read. */
2479 struct symtab *symtab;
2480
2481 /* A temporary mark bit used when iterating over all CUs in
2482 expand_symtabs_matching. */
2483 unsigned int mark : 1;
2484
2485 /* True if we've tried to read the file table and found there isn't one.
2486 There will be no point in trying to read it again next time. */
2487 unsigned int no_file_data : 1;
2488};
2489
2490/* Utility hash function for a stmt_list_hash. */
2491
2492static hashval_t
2493hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2494{
2495 hashval_t v = 0;
2496
2497 if (stmt_list_hash->dwo_unit != NULL)
2498 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2499 v += stmt_list_hash->line_offset.sect_off;
2500 return v;
2501}
2502
2503/* Utility equality function for a stmt_list_hash. */
2504
2505static int
2506eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2507 const struct stmt_list_hash *rhs)
2508{
2509 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2510 return 0;
2511 if (lhs->dwo_unit != NULL
2512 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2513 return 0;
2514
2515 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2516}
2517
2518/* Hash function for a quick_file_names. */
2519
2520static hashval_t
2521hash_file_name_entry (const void *e)
2522{
2523 const struct quick_file_names *file_data = e;
2524
2525 return hash_stmt_list_entry (&file_data->hash);
2526}
2527
2528/* Equality function for a quick_file_names. */
2529
2530static int
2531eq_file_name_entry (const void *a, const void *b)
2532{
2533 const struct quick_file_names *ea = a;
2534 const struct quick_file_names *eb = b;
2535
2536 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2537}
2538
2539/* Delete function for a quick_file_names. */
2540
2541static void
2542delete_file_name_entry (void *e)
2543{
2544 struct quick_file_names *file_data = e;
2545 int i;
2546
2547 for (i = 0; i < file_data->num_file_names; ++i)
2548 {
2549 xfree ((void*) file_data->file_names[i]);
2550 if (file_data->real_names)
2551 xfree ((void*) file_data->real_names[i]);
2552 }
2553
2554 /* The space for the struct itself lives on objfile_obstack,
2555 so we don't free it here. */
2556}
2557
2558/* Create a quick_file_names hash table. */
2559
2560static htab_t
2561create_quick_file_names_table (unsigned int nr_initial_entries)
2562{
2563 return htab_create_alloc (nr_initial_entries,
2564 hash_file_name_entry, eq_file_name_entry,
2565 delete_file_name_entry, xcalloc, xfree);
2566}
2567
2568/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2569 have to be created afterwards. You should call age_cached_comp_units after
2570 processing PER_CU->CU. dw2_setup must have been already called. */
2571
2572static void
2573load_cu (struct dwarf2_per_cu_data *per_cu)
2574{
2575 if (per_cu->is_debug_types)
2576 load_full_type_unit (per_cu);
2577 else
2578 load_full_comp_unit (per_cu, language_minimal);
2579
2580 gdb_assert (per_cu->cu != NULL);
2581
2582 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2583}
2584
2585/* Read in the symbols for PER_CU. */
2586
2587static void
2588dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2589{
2590 struct cleanup *back_to;
2591
2592 /* Skip type_unit_groups, reading the type units they contain
2593 is handled elsewhere. */
2594 if (IS_TYPE_UNIT_GROUP (per_cu))
2595 return;
2596
2597 back_to = make_cleanup (dwarf2_release_queue, NULL);
2598
2599 if (dwarf2_per_objfile->using_index
2600 ? per_cu->v.quick->symtab == NULL
2601 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2602 {
2603 queue_comp_unit (per_cu, language_minimal);
2604 load_cu (per_cu);
2605
2606 /* If we just loaded a CU from a DWO, and we're working with an index
2607 that may badly handle TUs, load all the TUs in that DWO as well.
2608 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2609 if (!per_cu->is_debug_types
2610 && per_cu->cu->dwo_unit != NULL
2611 && dwarf2_per_objfile->index_table != NULL
2612 && dwarf2_per_objfile->index_table->version <= 7
2613 /* DWP files aren't supported yet. */
2614 && get_dwp_file () == NULL)
2615 queue_and_load_all_dwo_tus (per_cu);
2616 }
2617
2618 process_queue ();
2619
2620 /* Age the cache, releasing compilation units that have not
2621 been used recently. */
2622 age_cached_comp_units ();
2623
2624 do_cleanups (back_to);
2625}
2626
2627/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2628 the objfile from which this CU came. Returns the resulting symbol
2629 table. */
2630
2631static struct symtab *
2632dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2633{
2634 gdb_assert (dwarf2_per_objfile->using_index);
2635 if (!per_cu->v.quick->symtab)
2636 {
2637 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2638 increment_reading_symtab ();
2639 dw2_do_instantiate_symtab (per_cu);
2640 process_cu_includes ();
2641 do_cleanups (back_to);
2642 }
2643 return per_cu->v.quick->symtab;
2644}
2645
2646/* Return the CU given its index.
2647
2648 This is intended for loops like:
2649
2650 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2651 + dwarf2_per_objfile->n_type_units); ++i)
2652 {
2653 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2654
2655 ...;
2656 }
2657*/
2658
2659static struct dwarf2_per_cu_data *
2660dw2_get_cu (int index)
2661{
2662 if (index >= dwarf2_per_objfile->n_comp_units)
2663 {
2664 index -= dwarf2_per_objfile->n_comp_units;
2665 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2666 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2667 }
2668
2669 return dwarf2_per_objfile->all_comp_units[index];
2670}
2671
2672/* Return the primary CU given its index.
2673 The difference between this function and dw2_get_cu is in the handling
2674 of type units (TUs). Here we return the type_unit_group object.
2675
2676 This is intended for loops like:
2677
2678 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2679 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2680 {
2681 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2682
2683 ...;
2684 }
2685*/
2686
2687static struct dwarf2_per_cu_data *
2688dw2_get_primary_cu (int index)
2689{
2690 if (index >= dwarf2_per_objfile->n_comp_units)
2691 {
2692 index -= dwarf2_per_objfile->n_comp_units;
2693 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2694 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2695 }
2696
2697 return dwarf2_per_objfile->all_comp_units[index];
2698}
2699
2700/* A helper for create_cus_from_index that handles a given list of
2701 CUs. */
2702
2703static void
2704create_cus_from_index_list (struct objfile *objfile,
2705 const gdb_byte *cu_list, offset_type n_elements,
2706 struct dwarf2_section_info *section,
2707 int is_dwz,
2708 int base_offset)
2709{
2710 offset_type i;
2711
2712 for (i = 0; i < n_elements; i += 2)
2713 {
2714 struct dwarf2_per_cu_data *the_cu;
2715 ULONGEST offset, length;
2716
2717 gdb_static_assert (sizeof (ULONGEST) >= 8);
2718 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2719 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2720 cu_list += 2 * 8;
2721
2722 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2723 struct dwarf2_per_cu_data);
2724 the_cu->offset.sect_off = offset;
2725 the_cu->length = length;
2726 the_cu->objfile = objfile;
2727 the_cu->section = section;
2728 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2729 struct dwarf2_per_cu_quick_data);
2730 the_cu->is_dwz = is_dwz;
2731 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2732 }
2733}
2734
2735/* Read the CU list from the mapped index, and use it to create all
2736 the CU objects for this objfile. */
2737
2738static void
2739create_cus_from_index (struct objfile *objfile,
2740 const gdb_byte *cu_list, offset_type cu_list_elements,
2741 const gdb_byte *dwz_list, offset_type dwz_elements)
2742{
2743 struct dwz_file *dwz;
2744
2745 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2746 dwarf2_per_objfile->all_comp_units
2747 = obstack_alloc (&objfile->objfile_obstack,
2748 dwarf2_per_objfile->n_comp_units
2749 * sizeof (struct dwarf2_per_cu_data *));
2750
2751 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2752 &dwarf2_per_objfile->info, 0, 0);
2753
2754 if (dwz_elements == 0)
2755 return;
2756
2757 dwz = dwarf2_get_dwz_file ();
2758 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2759 cu_list_elements / 2);
2760}
2761
2762/* Create the signatured type hash table from the index. */
2763
2764static void
2765create_signatured_type_table_from_index (struct objfile *objfile,
2766 struct dwarf2_section_info *section,
2767 const gdb_byte *bytes,
2768 offset_type elements)
2769{
2770 offset_type i;
2771 htab_t sig_types_hash;
2772
2773 dwarf2_per_objfile->n_type_units = elements / 3;
2774 dwarf2_per_objfile->all_type_units
2775 = xmalloc (dwarf2_per_objfile->n_type_units
2776 * sizeof (struct signatured_type *));
2777
2778 sig_types_hash = allocate_signatured_type_table (objfile);
2779
2780 for (i = 0; i < elements; i += 3)
2781 {
2782 struct signatured_type *sig_type;
2783 ULONGEST offset, type_offset_in_tu, signature;
2784 void **slot;
2785
2786 gdb_static_assert (sizeof (ULONGEST) >= 8);
2787 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2788 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2789 BFD_ENDIAN_LITTLE);
2790 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2791 bytes += 3 * 8;
2792
2793 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2794 struct signatured_type);
2795 sig_type->signature = signature;
2796 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2797 sig_type->per_cu.is_debug_types = 1;
2798 sig_type->per_cu.section = section;
2799 sig_type->per_cu.offset.sect_off = offset;
2800 sig_type->per_cu.objfile = objfile;
2801 sig_type->per_cu.v.quick
2802 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2803 struct dwarf2_per_cu_quick_data);
2804
2805 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2806 *slot = sig_type;
2807
2808 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2809 }
2810
2811 dwarf2_per_objfile->signatured_types = sig_types_hash;
2812}
2813
2814/* Read the address map data from the mapped index, and use it to
2815 populate the objfile's psymtabs_addrmap. */
2816
2817static void
2818create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2819{
2820 const gdb_byte *iter, *end;
2821 struct obstack temp_obstack;
2822 struct addrmap *mutable_map;
2823 struct cleanup *cleanup;
2824 CORE_ADDR baseaddr;
2825
2826 obstack_init (&temp_obstack);
2827 cleanup = make_cleanup_obstack_free (&temp_obstack);
2828 mutable_map = addrmap_create_mutable (&temp_obstack);
2829
2830 iter = index->address_table;
2831 end = iter + index->address_table_size;
2832
2833 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2834
2835 while (iter < end)
2836 {
2837 ULONGEST hi, lo, cu_index;
2838 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2839 iter += 8;
2840 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2841 iter += 8;
2842 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2843 iter += 4;
2844
2845 if (lo > hi)
2846 {
2847 complaint (&symfile_complaints,
2848 _(".gdb_index address table has invalid range (%s - %s)"),
2849 hex_string (lo), hex_string (hi));
2850 continue;
2851 }
2852
2853 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2854 {
2855 complaint (&symfile_complaints,
2856 _(".gdb_index address table has invalid CU number %u"),
2857 (unsigned) cu_index);
2858 continue;
2859 }
2860
2861 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2862 dw2_get_cu (cu_index));
2863 }
2864
2865 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2866 &objfile->objfile_obstack);
2867 do_cleanups (cleanup);
2868}
2869
2870/* The hash function for strings in the mapped index. This is the same as
2871 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2872 implementation. This is necessary because the hash function is tied to the
2873 format of the mapped index file. The hash values do not have to match with
2874 SYMBOL_HASH_NEXT.
2875
2876 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2877
2878static hashval_t
2879mapped_index_string_hash (int index_version, const void *p)
2880{
2881 const unsigned char *str = (const unsigned char *) p;
2882 hashval_t r = 0;
2883 unsigned char c;
2884
2885 while ((c = *str++) != 0)
2886 {
2887 if (index_version >= 5)
2888 c = tolower (c);
2889 r = r * 67 + c - 113;
2890 }
2891
2892 return r;
2893}
2894
2895/* Find a slot in the mapped index INDEX for the object named NAME.
2896 If NAME is found, set *VEC_OUT to point to the CU vector in the
2897 constant pool and return 1. If NAME cannot be found, return 0. */
2898
2899static int
2900find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2901 offset_type **vec_out)
2902{
2903 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2904 offset_type hash;
2905 offset_type slot, step;
2906 int (*cmp) (const char *, const char *);
2907
2908 if (current_language->la_language == language_cplus
2909 || current_language->la_language == language_java
2910 || current_language->la_language == language_fortran)
2911 {
2912 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2913 not contain any. */
2914 const char *paren = strchr (name, '(');
2915
2916 if (paren)
2917 {
2918 char *dup;
2919
2920 dup = xmalloc (paren - name + 1);
2921 memcpy (dup, name, paren - name);
2922 dup[paren - name] = 0;
2923
2924 make_cleanup (xfree, dup);
2925 name = dup;
2926 }
2927 }
2928
2929 /* Index version 4 did not support case insensitive searches. But the
2930 indices for case insensitive languages are built in lowercase, therefore
2931 simulate our NAME being searched is also lowercased. */
2932 hash = mapped_index_string_hash ((index->version == 4
2933 && case_sensitivity == case_sensitive_off
2934 ? 5 : index->version),
2935 name);
2936
2937 slot = hash & (index->symbol_table_slots - 1);
2938 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2939 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2940
2941 for (;;)
2942 {
2943 /* Convert a slot number to an offset into the table. */
2944 offset_type i = 2 * slot;
2945 const char *str;
2946 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2947 {
2948 do_cleanups (back_to);
2949 return 0;
2950 }
2951
2952 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2953 if (!cmp (name, str))
2954 {
2955 *vec_out = (offset_type *) (index->constant_pool
2956 + MAYBE_SWAP (index->symbol_table[i + 1]));
2957 do_cleanups (back_to);
2958 return 1;
2959 }
2960
2961 slot = (slot + step) & (index->symbol_table_slots - 1);
2962 }
2963}
2964
2965/* A helper function that reads the .gdb_index from SECTION and fills
2966 in MAP. FILENAME is the name of the file containing the section;
2967 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2968 ok to use deprecated sections.
2969
2970 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2971 out parameters that are filled in with information about the CU and
2972 TU lists in the section.
2973
2974 Returns 1 if all went well, 0 otherwise. */
2975
2976static int
2977read_index_from_section (struct objfile *objfile,
2978 const char *filename,
2979 int deprecated_ok,
2980 struct dwarf2_section_info *section,
2981 struct mapped_index *map,
2982 const gdb_byte **cu_list,
2983 offset_type *cu_list_elements,
2984 const gdb_byte **types_list,
2985 offset_type *types_list_elements)
2986{
2987 const gdb_byte *addr;
2988 offset_type version;
2989 offset_type *metadata;
2990 int i;
2991
2992 if (dwarf2_section_empty_p (section))
2993 return 0;
2994
2995 /* Older elfutils strip versions could keep the section in the main
2996 executable while splitting it for the separate debug info file. */
2997 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
2998 return 0;
2999
3000 dwarf2_read_section (objfile, section);
3001
3002 addr = section->buffer;
3003 /* Version check. */
3004 version = MAYBE_SWAP (*(offset_type *) addr);
3005 /* Versions earlier than 3 emitted every copy of a psymbol. This
3006 causes the index to behave very poorly for certain requests. Version 3
3007 contained incomplete addrmap. So, it seems better to just ignore such
3008 indices. */
3009 if (version < 4)
3010 {
3011 static int warning_printed = 0;
3012 if (!warning_printed)
3013 {
3014 warning (_("Skipping obsolete .gdb_index section in %s."),
3015 filename);
3016 warning_printed = 1;
3017 }
3018 return 0;
3019 }
3020 /* Index version 4 uses a different hash function than index version
3021 5 and later.
3022
3023 Versions earlier than 6 did not emit psymbols for inlined
3024 functions. Using these files will cause GDB not to be able to
3025 set breakpoints on inlined functions by name, so we ignore these
3026 indices unless the user has done
3027 "set use-deprecated-index-sections on". */
3028 if (version < 6 && !deprecated_ok)
3029 {
3030 static int warning_printed = 0;
3031 if (!warning_printed)
3032 {
3033 warning (_("\
3034Skipping deprecated .gdb_index section in %s.\n\
3035Do \"set use-deprecated-index-sections on\" before the file is read\n\
3036to use the section anyway."),
3037 filename);
3038 warning_printed = 1;
3039 }
3040 return 0;
3041 }
3042 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3043 of the TU (for symbols coming from TUs),
3044 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3045 Plus gold-generated indices can have duplicate entries for global symbols,
3046 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3047 These are just performance bugs, and we can't distinguish gdb-generated
3048 indices from gold-generated ones, so issue no warning here. */
3049
3050 /* Indexes with higher version than the one supported by GDB may be no
3051 longer backward compatible. */
3052 if (version > 8)
3053 return 0;
3054
3055 map->version = version;
3056 map->total_size = section->size;
3057
3058 metadata = (offset_type *) (addr + sizeof (offset_type));
3059
3060 i = 0;
3061 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3062 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3063 / 8);
3064 ++i;
3065
3066 *types_list = addr + MAYBE_SWAP (metadata[i]);
3067 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3068 - MAYBE_SWAP (metadata[i]))
3069 / 8);
3070 ++i;
3071
3072 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3073 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3074 - MAYBE_SWAP (metadata[i]));
3075 ++i;
3076
3077 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3078 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3079 - MAYBE_SWAP (metadata[i]))
3080 / (2 * sizeof (offset_type)));
3081 ++i;
3082
3083 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3084
3085 return 1;
3086}
3087
3088
3089/* Read the index file. If everything went ok, initialize the "quick"
3090 elements of all the CUs and return 1. Otherwise, return 0. */
3091
3092static int
3093dwarf2_read_index (struct objfile *objfile)
3094{
3095 struct mapped_index local_map, *map;
3096 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3097 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3098 struct dwz_file *dwz;
3099
3100 if (!read_index_from_section (objfile, objfile_name (objfile),
3101 use_deprecated_index_sections,
3102 &dwarf2_per_objfile->gdb_index, &local_map,
3103 &cu_list, &cu_list_elements,
3104 &types_list, &types_list_elements))
3105 return 0;
3106
3107 /* Don't use the index if it's empty. */
3108 if (local_map.symbol_table_slots == 0)
3109 return 0;
3110
3111 /* If there is a .dwz file, read it so we can get its CU list as
3112 well. */
3113 dwz = dwarf2_get_dwz_file ();
3114 if (dwz != NULL)
3115 {
3116 struct mapped_index dwz_map;
3117 const gdb_byte *dwz_types_ignore;
3118 offset_type dwz_types_elements_ignore;
3119
3120 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3121 1,
3122 &dwz->gdb_index, &dwz_map,
3123 &dwz_list, &dwz_list_elements,
3124 &dwz_types_ignore,
3125 &dwz_types_elements_ignore))
3126 {
3127 warning (_("could not read '.gdb_index' section from %s; skipping"),
3128 bfd_get_filename (dwz->dwz_bfd));
3129 return 0;
3130 }
3131 }
3132
3133 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3134 dwz_list_elements);
3135
3136 if (types_list_elements)
3137 {
3138 struct dwarf2_section_info *section;
3139
3140 /* We can only handle a single .debug_types when we have an
3141 index. */
3142 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3143 return 0;
3144
3145 section = VEC_index (dwarf2_section_info_def,
3146 dwarf2_per_objfile->types, 0);
3147
3148 create_signatured_type_table_from_index (objfile, section, types_list,
3149 types_list_elements);
3150 }
3151
3152 create_addrmap_from_index (objfile, &local_map);
3153
3154 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3155 *map = local_map;
3156
3157 dwarf2_per_objfile->index_table = map;
3158 dwarf2_per_objfile->using_index = 1;
3159 dwarf2_per_objfile->quick_file_names_table =
3160 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3161
3162 return 1;
3163}
3164
3165/* A helper for the "quick" functions which sets the global
3166 dwarf2_per_objfile according to OBJFILE. */
3167
3168static void
3169dw2_setup (struct objfile *objfile)
3170{
3171 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3172 gdb_assert (dwarf2_per_objfile);
3173}
3174
3175/* die_reader_func for dw2_get_file_names. */
3176
3177static void
3178dw2_get_file_names_reader (const struct die_reader_specs *reader,
3179 const gdb_byte *info_ptr,
3180 struct die_info *comp_unit_die,
3181 int has_children,
3182 void *data)
3183{
3184 struct dwarf2_cu *cu = reader->cu;
3185 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3186 struct objfile *objfile = dwarf2_per_objfile->objfile;
3187 struct dwarf2_per_cu_data *lh_cu;
3188 struct line_header *lh;
3189 struct attribute *attr;
3190 int i;
3191 const char *name, *comp_dir;
3192 void **slot;
3193 struct quick_file_names *qfn;
3194 unsigned int line_offset;
3195
3196 gdb_assert (! this_cu->is_debug_types);
3197
3198 /* Our callers never want to match partial units -- instead they
3199 will match the enclosing full CU. */
3200 if (comp_unit_die->tag == DW_TAG_partial_unit)
3201 {
3202 this_cu->v.quick->no_file_data = 1;
3203 return;
3204 }
3205
3206 lh_cu = this_cu;
3207 lh = NULL;
3208 slot = NULL;
3209 line_offset = 0;
3210
3211 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3212 if (attr)
3213 {
3214 struct quick_file_names find_entry;
3215
3216 line_offset = DW_UNSND (attr);
3217
3218 /* We may have already read in this line header (TU line header sharing).
3219 If we have we're done. */
3220 find_entry.hash.dwo_unit = cu->dwo_unit;
3221 find_entry.hash.line_offset.sect_off = line_offset;
3222 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3223 &find_entry, INSERT);
3224 if (*slot != NULL)
3225 {
3226 lh_cu->v.quick->file_names = *slot;
3227 return;
3228 }
3229
3230 lh = dwarf_decode_line_header (line_offset, cu);
3231 }
3232 if (lh == NULL)
3233 {
3234 lh_cu->v.quick->no_file_data = 1;
3235 return;
3236 }
3237
3238 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3239 qfn->hash.dwo_unit = cu->dwo_unit;
3240 qfn->hash.line_offset.sect_off = line_offset;
3241 gdb_assert (slot != NULL);
3242 *slot = qfn;
3243
3244 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3245
3246 qfn->num_file_names = lh->num_file_names;
3247 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3248 lh->num_file_names * sizeof (char *));
3249 for (i = 0; i < lh->num_file_names; ++i)
3250 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3251 qfn->real_names = NULL;
3252
3253 free_line_header (lh);
3254
3255 lh_cu->v.quick->file_names = qfn;
3256}
3257
3258/* A helper for the "quick" functions which attempts to read the line
3259 table for THIS_CU. */
3260
3261static struct quick_file_names *
3262dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3263{
3264 /* This should never be called for TUs. */
3265 gdb_assert (! this_cu->is_debug_types);
3266 /* Nor type unit groups. */
3267 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3268
3269 if (this_cu->v.quick->file_names != NULL)
3270 return this_cu->v.quick->file_names;
3271 /* If we know there is no line data, no point in looking again. */
3272 if (this_cu->v.quick->no_file_data)
3273 return NULL;
3274
3275 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3276
3277 if (this_cu->v.quick->no_file_data)
3278 return NULL;
3279 return this_cu->v.quick->file_names;
3280}
3281
3282/* A helper for the "quick" functions which computes and caches the
3283 real path for a given file name from the line table. */
3284
3285static const char *
3286dw2_get_real_path (struct objfile *objfile,
3287 struct quick_file_names *qfn, int index)
3288{
3289 if (qfn->real_names == NULL)
3290 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3291 qfn->num_file_names, char *);
3292
3293 if (qfn->real_names[index] == NULL)
3294 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3295
3296 return qfn->real_names[index];
3297}
3298
3299static struct symtab *
3300dw2_find_last_source_symtab (struct objfile *objfile)
3301{
3302 int index;
3303
3304 dw2_setup (objfile);
3305 index = dwarf2_per_objfile->n_comp_units - 1;
3306 return dw2_instantiate_symtab (dw2_get_cu (index));
3307}
3308
3309/* Traversal function for dw2_forget_cached_source_info. */
3310
3311static int
3312dw2_free_cached_file_names (void **slot, void *info)
3313{
3314 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3315
3316 if (file_data->real_names)
3317 {
3318 int i;
3319
3320 for (i = 0; i < file_data->num_file_names; ++i)
3321 {
3322 xfree ((void*) file_data->real_names[i]);
3323 file_data->real_names[i] = NULL;
3324 }
3325 }
3326
3327 return 1;
3328}
3329
3330static void
3331dw2_forget_cached_source_info (struct objfile *objfile)
3332{
3333 dw2_setup (objfile);
3334
3335 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3336 dw2_free_cached_file_names, NULL);
3337}
3338
3339/* Helper function for dw2_map_symtabs_matching_filename that expands
3340 the symtabs and calls the iterator. */
3341
3342static int
3343dw2_map_expand_apply (struct objfile *objfile,
3344 struct dwarf2_per_cu_data *per_cu,
3345 const char *name, const char *real_path,
3346 int (*callback) (struct symtab *, void *),
3347 void *data)
3348{
3349 struct symtab *last_made = objfile->symtabs;
3350
3351 /* Don't visit already-expanded CUs. */
3352 if (per_cu->v.quick->symtab)
3353 return 0;
3354
3355 /* This may expand more than one symtab, and we want to iterate over
3356 all of them. */
3357 dw2_instantiate_symtab (per_cu);
3358
3359 return iterate_over_some_symtabs (name, real_path, callback, data,
3360 objfile->symtabs, last_made);
3361}
3362
3363/* Implementation of the map_symtabs_matching_filename method. */
3364
3365static int
3366dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3367 const char *real_path,
3368 int (*callback) (struct symtab *, void *),
3369 void *data)
3370{
3371 int i;
3372 const char *name_basename = lbasename (name);
3373
3374 dw2_setup (objfile);
3375
3376 /* The rule is CUs specify all the files, including those used by
3377 any TU, so there's no need to scan TUs here. */
3378
3379 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3380 {
3381 int j;
3382 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3383 struct quick_file_names *file_data;
3384
3385 /* We only need to look at symtabs not already expanded. */
3386 if (per_cu->v.quick->symtab)
3387 continue;
3388
3389 file_data = dw2_get_file_names (per_cu);
3390 if (file_data == NULL)
3391 continue;
3392
3393 for (j = 0; j < file_data->num_file_names; ++j)
3394 {
3395 const char *this_name = file_data->file_names[j];
3396 const char *this_real_name;
3397
3398 if (compare_filenames_for_search (this_name, name))
3399 {
3400 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3401 callback, data))
3402 return 1;
3403 continue;
3404 }
3405
3406 /* Before we invoke realpath, which can get expensive when many
3407 files are involved, do a quick comparison of the basenames. */
3408 if (! basenames_may_differ
3409 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3410 continue;
3411
3412 this_real_name = dw2_get_real_path (objfile, file_data, j);
3413 if (compare_filenames_for_search (this_real_name, name))
3414 {
3415 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3416 callback, data))
3417 return 1;
3418 continue;
3419 }
3420
3421 if (real_path != NULL)
3422 {
3423 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3424 gdb_assert (IS_ABSOLUTE_PATH (name));
3425 if (this_real_name != NULL
3426 && FILENAME_CMP (real_path, this_real_name) == 0)
3427 {
3428 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3429 callback, data))
3430 return 1;
3431 continue;
3432 }
3433 }
3434 }
3435 }
3436
3437 return 0;
3438}
3439
3440/* Struct used to manage iterating over all CUs looking for a symbol. */
3441
3442struct dw2_symtab_iterator
3443{
3444 /* The internalized form of .gdb_index. */
3445 struct mapped_index *index;
3446 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3447 int want_specific_block;
3448 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3449 Unused if !WANT_SPECIFIC_BLOCK. */
3450 int block_index;
3451 /* The kind of symbol we're looking for. */
3452 domain_enum domain;
3453 /* The list of CUs from the index entry of the symbol,
3454 or NULL if not found. */
3455 offset_type *vec;
3456 /* The next element in VEC to look at. */
3457 int next;
3458 /* The number of elements in VEC, or zero if there is no match. */
3459 int length;
3460 /* Have we seen a global version of the symbol?
3461 If so we can ignore all further global instances.
3462 This is to work around gold/15646, inefficient gold-generated
3463 indices. */
3464 int global_seen;
3465};
3466
3467/* Initialize the index symtab iterator ITER.
3468 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3469 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3470
3471static void
3472dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3473 struct mapped_index *index,
3474 int want_specific_block,
3475 int block_index,
3476 domain_enum domain,
3477 const char *name)
3478{
3479 iter->index = index;
3480 iter->want_specific_block = want_specific_block;
3481 iter->block_index = block_index;
3482 iter->domain = domain;
3483 iter->next = 0;
3484 iter->global_seen = 0;
3485
3486 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3487 iter->length = MAYBE_SWAP (*iter->vec);
3488 else
3489 {
3490 iter->vec = NULL;
3491 iter->length = 0;
3492 }
3493}
3494
3495/* Return the next matching CU or NULL if there are no more. */
3496
3497static struct dwarf2_per_cu_data *
3498dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3499{
3500 for ( ; iter->next < iter->length; ++iter->next)
3501 {
3502 offset_type cu_index_and_attrs =
3503 MAYBE_SWAP (iter->vec[iter->next + 1]);
3504 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3505 struct dwarf2_per_cu_data *per_cu;
3506 int want_static = iter->block_index != GLOBAL_BLOCK;
3507 /* This value is only valid for index versions >= 7. */
3508 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3509 gdb_index_symbol_kind symbol_kind =
3510 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3511 /* Only check the symbol attributes if they're present.
3512 Indices prior to version 7 don't record them,
3513 and indices >= 7 may elide them for certain symbols
3514 (gold does this). */
3515 int attrs_valid =
3516 (iter->index->version >= 7
3517 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3518
3519 /* Don't crash on bad data. */
3520 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3521 + dwarf2_per_objfile->n_type_units))
3522 {
3523 complaint (&symfile_complaints,
3524 _(".gdb_index entry has bad CU index"
3525 " [in module %s]"),
3526 objfile_name (dwarf2_per_objfile->objfile));
3527 continue;
3528 }
3529
3530 per_cu = dw2_get_cu (cu_index);
3531
3532 /* Skip if already read in. */
3533 if (per_cu->v.quick->symtab)
3534 continue;
3535
3536 /* Check static vs global. */
3537 if (attrs_valid)
3538 {
3539 if (iter->want_specific_block
3540 && want_static != is_static)
3541 continue;
3542 /* Work around gold/15646. */
3543 if (!is_static && iter->global_seen)
3544 continue;
3545 if (!is_static)
3546 iter->global_seen = 1;
3547 }
3548
3549 /* Only check the symbol's kind if it has one. */
3550 if (attrs_valid)
3551 {
3552 switch (iter->domain)
3553 {
3554 case VAR_DOMAIN:
3555 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3556 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3557 /* Some types are also in VAR_DOMAIN. */
3558 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3559 continue;
3560 break;
3561 case STRUCT_DOMAIN:
3562 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3563 continue;
3564 break;
3565 case LABEL_DOMAIN:
3566 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3567 continue;
3568 break;
3569 default:
3570 break;
3571 }
3572 }
3573
3574 ++iter->next;
3575 return per_cu;
3576 }
3577
3578 return NULL;
3579}
3580
3581static struct symtab *
3582dw2_lookup_symbol (struct objfile *objfile, int block_index,
3583 const char *name, domain_enum domain)
3584{
3585 struct symtab *stab_best = NULL;
3586 struct mapped_index *index;
3587
3588 dw2_setup (objfile);
3589
3590 index = dwarf2_per_objfile->index_table;
3591
3592 /* index is NULL if OBJF_READNOW. */
3593 if (index)
3594 {
3595 struct dw2_symtab_iterator iter;
3596 struct dwarf2_per_cu_data *per_cu;
3597
3598 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3599
3600 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3601 {
3602 struct symbol *sym = NULL;
3603 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3604
3605 /* Some caution must be observed with overloaded functions
3606 and methods, since the index will not contain any overload
3607 information (but NAME might contain it). */
3608 if (stab->primary)
3609 {
3610 struct blockvector *bv = BLOCKVECTOR (stab);
3611 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3612
3613 sym = lookup_block_symbol (block, name, domain);
3614 }
3615
3616 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3617 {
3618 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3619 return stab;
3620
3621 stab_best = stab;
3622 }
3623
3624 /* Keep looking through other CUs. */
3625 }
3626 }
3627
3628 return stab_best;
3629}
3630
3631static void
3632dw2_print_stats (struct objfile *objfile)
3633{
3634 int i, total, count;
3635
3636 dw2_setup (objfile);
3637 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3638 count = 0;
3639 for (i = 0; i < total; ++i)
3640 {
3641 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3642
3643 if (!per_cu->v.quick->symtab)
3644 ++count;
3645 }
3646 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3647 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3648}
3649
3650/* This dumps minimal information about the index.
3651 It is called via "mt print objfiles".
3652 One use is to verify .gdb_index has been loaded by the
3653 gdb.dwarf2/gdb-index.exp testcase. */
3654
3655static void
3656dw2_dump (struct objfile *objfile)
3657{
3658 dw2_setup (objfile);
3659 gdb_assert (dwarf2_per_objfile->using_index);
3660 printf_filtered (".gdb_index:");
3661 if (dwarf2_per_objfile->index_table != NULL)
3662 {
3663 printf_filtered (" version %d\n",
3664 dwarf2_per_objfile->index_table->version);
3665 }
3666 else
3667 printf_filtered (" faked for \"readnow\"\n");
3668 printf_filtered ("\n");
3669}
3670
3671static void
3672dw2_relocate (struct objfile *objfile,
3673 const struct section_offsets *new_offsets,
3674 const struct section_offsets *delta)
3675{
3676 /* There's nothing to relocate here. */
3677}
3678
3679static void
3680dw2_expand_symtabs_for_function (struct objfile *objfile,
3681 const char *func_name)
3682{
3683 struct mapped_index *index;
3684
3685 dw2_setup (objfile);
3686
3687 index = dwarf2_per_objfile->index_table;
3688
3689 /* index is NULL if OBJF_READNOW. */
3690 if (index)
3691 {
3692 struct dw2_symtab_iterator iter;
3693 struct dwarf2_per_cu_data *per_cu;
3694
3695 /* Note: It doesn't matter what we pass for block_index here. */
3696 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3697 func_name);
3698
3699 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3700 dw2_instantiate_symtab (per_cu);
3701 }
3702}
3703
3704static void
3705dw2_expand_all_symtabs (struct objfile *objfile)
3706{
3707 int i;
3708
3709 dw2_setup (objfile);
3710
3711 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3712 + dwarf2_per_objfile->n_type_units); ++i)
3713 {
3714 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3715
3716 dw2_instantiate_symtab (per_cu);
3717 }
3718}
3719
3720static void
3721dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3722 const char *fullname)
3723{
3724 int i;
3725
3726 dw2_setup (objfile);
3727
3728 /* We don't need to consider type units here.
3729 This is only called for examining code, e.g. expand_line_sal.
3730 There can be an order of magnitude (or more) more type units
3731 than comp units, and we avoid them if we can. */
3732
3733 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3734 {
3735 int j;
3736 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3737 struct quick_file_names *file_data;
3738
3739 /* We only need to look at symtabs not already expanded. */
3740 if (per_cu->v.quick->symtab)
3741 continue;
3742
3743 file_data = dw2_get_file_names (per_cu);
3744 if (file_data == NULL)
3745 continue;
3746
3747 for (j = 0; j < file_data->num_file_names; ++j)
3748 {
3749 const char *this_fullname = file_data->file_names[j];
3750
3751 if (filename_cmp (this_fullname, fullname) == 0)
3752 {
3753 dw2_instantiate_symtab (per_cu);
3754 break;
3755 }
3756 }
3757 }
3758}
3759
3760static void
3761dw2_map_matching_symbols (struct objfile *objfile,
3762 const char * name, domain_enum namespace,
3763 int global,
3764 int (*callback) (struct block *,
3765 struct symbol *, void *),
3766 void *data, symbol_compare_ftype *match,
3767 symbol_compare_ftype *ordered_compare)
3768{
3769 /* Currently unimplemented; used for Ada. The function can be called if the
3770 current language is Ada for a non-Ada objfile using GNU index. As Ada
3771 does not look for non-Ada symbols this function should just return. */
3772}
3773
3774static void
3775dw2_expand_symtabs_matching
3776 (struct objfile *objfile,
3777 expand_symtabs_file_matcher_ftype *file_matcher,
3778 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3779 enum search_domain kind,
3780 void *data)
3781{
3782 int i;
3783 offset_type iter;
3784 struct mapped_index *index;
3785
3786 dw2_setup (objfile);
3787
3788 /* index_table is NULL if OBJF_READNOW. */
3789 if (!dwarf2_per_objfile->index_table)
3790 return;
3791 index = dwarf2_per_objfile->index_table;
3792
3793 if (file_matcher != NULL)
3794 {
3795 struct cleanup *cleanup;
3796 htab_t visited_found, visited_not_found;
3797
3798 visited_found = htab_create_alloc (10,
3799 htab_hash_pointer, htab_eq_pointer,
3800 NULL, xcalloc, xfree);
3801 cleanup = make_cleanup_htab_delete (visited_found);
3802 visited_not_found = htab_create_alloc (10,
3803 htab_hash_pointer, htab_eq_pointer,
3804 NULL, xcalloc, xfree);
3805 make_cleanup_htab_delete (visited_not_found);
3806
3807 /* The rule is CUs specify all the files, including those used by
3808 any TU, so there's no need to scan TUs here. */
3809
3810 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3811 {
3812 int j;
3813 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3814 struct quick_file_names *file_data;
3815 void **slot;
3816
3817 per_cu->v.quick->mark = 0;
3818
3819 /* We only need to look at symtabs not already expanded. */
3820 if (per_cu->v.quick->symtab)
3821 continue;
3822
3823 file_data = dw2_get_file_names (per_cu);
3824 if (file_data == NULL)
3825 continue;
3826
3827 if (htab_find (visited_not_found, file_data) != NULL)
3828 continue;
3829 else if (htab_find (visited_found, file_data) != NULL)
3830 {
3831 per_cu->v.quick->mark = 1;
3832 continue;
3833 }
3834
3835 for (j = 0; j < file_data->num_file_names; ++j)
3836 {
3837 const char *this_real_name;
3838
3839 if (file_matcher (file_data->file_names[j], data, 0))
3840 {
3841 per_cu->v.quick->mark = 1;
3842 break;
3843 }
3844
3845 /* Before we invoke realpath, which can get expensive when many
3846 files are involved, do a quick comparison of the basenames. */
3847 if (!basenames_may_differ
3848 && !file_matcher (lbasename (file_data->file_names[j]),
3849 data, 1))
3850 continue;
3851
3852 this_real_name = dw2_get_real_path (objfile, file_data, j);
3853 if (file_matcher (this_real_name, data, 0))
3854 {
3855 per_cu->v.quick->mark = 1;
3856 break;
3857 }
3858 }
3859
3860 slot = htab_find_slot (per_cu->v.quick->mark
3861 ? visited_found
3862 : visited_not_found,
3863 file_data, INSERT);
3864 *slot = file_data;
3865 }
3866
3867 do_cleanups (cleanup);
3868 }
3869
3870 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3871 {
3872 offset_type idx = 2 * iter;
3873 const char *name;
3874 offset_type *vec, vec_len, vec_idx;
3875 int global_seen = 0;
3876
3877 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3878 continue;
3879
3880 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3881
3882 if (! (*symbol_matcher) (name, data))
3883 continue;
3884
3885 /* The name was matched, now expand corresponding CUs that were
3886 marked. */
3887 vec = (offset_type *) (index->constant_pool
3888 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3889 vec_len = MAYBE_SWAP (vec[0]);
3890 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3891 {
3892 struct dwarf2_per_cu_data *per_cu;
3893 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3894 /* This value is only valid for index versions >= 7. */
3895 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3896 gdb_index_symbol_kind symbol_kind =
3897 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3898 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3899 /* Only check the symbol attributes if they're present.
3900 Indices prior to version 7 don't record them,
3901 and indices >= 7 may elide them for certain symbols
3902 (gold does this). */
3903 int attrs_valid =
3904 (index->version >= 7
3905 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3906
3907 /* Work around gold/15646. */
3908 if (attrs_valid)
3909 {
3910 if (!is_static && global_seen)
3911 continue;
3912 if (!is_static)
3913 global_seen = 1;
3914 }
3915
3916 /* Only check the symbol's kind if it has one. */
3917 if (attrs_valid)
3918 {
3919 switch (kind)
3920 {
3921 case VARIABLES_DOMAIN:
3922 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3923 continue;
3924 break;
3925 case FUNCTIONS_DOMAIN:
3926 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3927 continue;
3928 break;
3929 case TYPES_DOMAIN:
3930 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3931 continue;
3932 break;
3933 default:
3934 break;
3935 }
3936 }
3937
3938 /* Don't crash on bad data. */
3939 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3940 + dwarf2_per_objfile->n_type_units))
3941 {
3942 complaint (&symfile_complaints,
3943 _(".gdb_index entry has bad CU index"
3944 " [in module %s]"), objfile_name (objfile));
3945 continue;
3946 }
3947
3948 per_cu = dw2_get_cu (cu_index);
3949 if (file_matcher == NULL || per_cu->v.quick->mark)
3950 dw2_instantiate_symtab (per_cu);
3951 }
3952 }
3953}
3954
3955/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3956 symtab. */
3957
3958static struct symtab *
3959recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3960{
3961 int i;
3962
3963 if (BLOCKVECTOR (symtab) != NULL
3964 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3965 return symtab;
3966
3967 if (symtab->includes == NULL)
3968 return NULL;
3969
3970 for (i = 0; symtab->includes[i]; ++i)
3971 {
3972 struct symtab *s = symtab->includes[i];
3973
3974 s = recursively_find_pc_sect_symtab (s, pc);
3975 if (s != NULL)
3976 return s;
3977 }
3978
3979 return NULL;
3980}
3981
3982static struct symtab *
3983dw2_find_pc_sect_symtab (struct objfile *objfile,
3984 struct minimal_symbol *msymbol,
3985 CORE_ADDR pc,
3986 struct obj_section *section,
3987 int warn_if_readin)
3988{
3989 struct dwarf2_per_cu_data *data;
3990 struct symtab *result;
3991
3992 dw2_setup (objfile);
3993
3994 if (!objfile->psymtabs_addrmap)
3995 return NULL;
3996
3997 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3998 if (!data)
3999 return NULL;
4000
4001 if (warn_if_readin && data->v.quick->symtab)
4002 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4003 paddress (get_objfile_arch (objfile), pc));
4004
4005 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4006 gdb_assert (result != NULL);
4007 return result;
4008}
4009
4010static void
4011dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4012 void *data, int need_fullname)
4013{
4014 int i;
4015 struct cleanup *cleanup;
4016 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4017 NULL, xcalloc, xfree);
4018
4019 cleanup = make_cleanup_htab_delete (visited);
4020 dw2_setup (objfile);
4021
4022 /* The rule is CUs specify all the files, including those used by
4023 any TU, so there's no need to scan TUs here.
4024 We can ignore file names coming from already-expanded CUs. */
4025
4026 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4027 {
4028 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4029
4030 if (per_cu->v.quick->symtab)
4031 {
4032 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4033 INSERT);
4034
4035 *slot = per_cu->v.quick->file_names;
4036 }
4037 }
4038
4039 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4040 {
4041 int j;
4042 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
4043 struct quick_file_names *file_data;
4044 void **slot;
4045
4046 /* We only need to look at symtabs not already expanded. */
4047 if (per_cu->v.quick->symtab)
4048 continue;
4049
4050 file_data = dw2_get_file_names (per_cu);
4051 if (file_data == NULL)
4052 continue;
4053
4054 slot = htab_find_slot (visited, file_data, INSERT);
4055 if (*slot)
4056 {
4057 /* Already visited. */
4058 continue;
4059 }
4060 *slot = file_data;
4061
4062 for (j = 0; j < file_data->num_file_names; ++j)
4063 {
4064 const char *this_real_name;
4065
4066 if (need_fullname)
4067 this_real_name = dw2_get_real_path (objfile, file_data, j);
4068 else
4069 this_real_name = NULL;
4070 (*fun) (file_data->file_names[j], this_real_name, data);
4071 }
4072 }
4073
4074 do_cleanups (cleanup);
4075}
4076
4077static int
4078dw2_has_symbols (struct objfile *objfile)
4079{
4080 return 1;
4081}
4082
4083const struct quick_symbol_functions dwarf2_gdb_index_functions =
4084{
4085 dw2_has_symbols,
4086 dw2_find_last_source_symtab,
4087 dw2_forget_cached_source_info,
4088 dw2_map_symtabs_matching_filename,
4089 dw2_lookup_symbol,
4090 dw2_print_stats,
4091 dw2_dump,
4092 dw2_relocate,
4093 dw2_expand_symtabs_for_function,
4094 dw2_expand_all_symtabs,
4095 dw2_expand_symtabs_with_fullname,
4096 dw2_map_matching_symbols,
4097 dw2_expand_symtabs_matching,
4098 dw2_find_pc_sect_symtab,
4099 dw2_map_symbol_filenames
4100};
4101
4102/* Initialize for reading DWARF for this objfile. Return 0 if this
4103 file will use psymtabs, or 1 if using the GNU index. */
4104
4105int
4106dwarf2_initialize_objfile (struct objfile *objfile)
4107{
4108 /* If we're about to read full symbols, don't bother with the
4109 indices. In this case we also don't care if some other debug
4110 format is making psymtabs, because they are all about to be
4111 expanded anyway. */
4112 if ((objfile->flags & OBJF_READNOW))
4113 {
4114 int i;
4115
4116 dwarf2_per_objfile->using_index = 1;
4117 create_all_comp_units (objfile);
4118 create_all_type_units (objfile);
4119 dwarf2_per_objfile->quick_file_names_table =
4120 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4121
4122 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4123 + dwarf2_per_objfile->n_type_units); ++i)
4124 {
4125 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4126
4127 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4128 struct dwarf2_per_cu_quick_data);
4129 }
4130
4131 /* Return 1 so that gdb sees the "quick" functions. However,
4132 these functions will be no-ops because we will have expanded
4133 all symtabs. */
4134 return 1;
4135 }
4136
4137 if (dwarf2_read_index (objfile))
4138 return 1;
4139
4140 return 0;
4141}
4142
4143\f
4144
4145/* Build a partial symbol table. */
4146
4147void
4148dwarf2_build_psymtabs (struct objfile *objfile)
4149{
4150 volatile struct gdb_exception except;
4151
4152 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4153 {
4154 init_psymbol_list (objfile, 1024);
4155 }
4156
4157 TRY_CATCH (except, RETURN_MASK_ERROR)
4158 {
4159 /* This isn't really ideal: all the data we allocate on the
4160 objfile's obstack is still uselessly kept around. However,
4161 freeing it seems unsafe. */
4162 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4163
4164 dwarf2_build_psymtabs_hard (objfile);
4165 discard_cleanups (cleanups);
4166 }
4167 if (except.reason < 0)
4168 exception_print (gdb_stderr, except);
4169}
4170
4171/* Return the total length of the CU described by HEADER. */
4172
4173static unsigned int
4174get_cu_length (const struct comp_unit_head *header)
4175{
4176 return header->initial_length_size + header->length;
4177}
4178
4179/* Return TRUE if OFFSET is within CU_HEADER. */
4180
4181static inline int
4182offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4183{
4184 sect_offset bottom = { cu_header->offset.sect_off };
4185 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4186
4187 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4188}
4189
4190/* Find the base address of the compilation unit for range lists and
4191 location lists. It will normally be specified by DW_AT_low_pc.
4192 In DWARF-3 draft 4, the base address could be overridden by
4193 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4194 compilation units with discontinuous ranges. */
4195
4196static void
4197dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4198{
4199 struct attribute *attr;
4200
4201 cu->base_known = 0;
4202 cu->base_address = 0;
4203
4204 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4205 if (attr)
4206 {
4207 cu->base_address = DW_ADDR (attr);
4208 cu->base_known = 1;
4209 }
4210 else
4211 {
4212 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4213 if (attr)
4214 {
4215 cu->base_address = DW_ADDR (attr);
4216 cu->base_known = 1;
4217 }
4218 }
4219}
4220
4221/* Read in the comp unit header information from the debug_info at info_ptr.
4222 NOTE: This leaves members offset, first_die_offset to be filled in
4223 by the caller. */
4224
4225static const gdb_byte *
4226read_comp_unit_head (struct comp_unit_head *cu_header,
4227 const gdb_byte *info_ptr, bfd *abfd)
4228{
4229 int signed_addr;
4230 unsigned int bytes_read;
4231
4232 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4233 cu_header->initial_length_size = bytes_read;
4234 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4235 info_ptr += bytes_read;
4236 cu_header->version = read_2_bytes (abfd, info_ptr);
4237 info_ptr += 2;
4238 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4239 &bytes_read);
4240 info_ptr += bytes_read;
4241 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4242 info_ptr += 1;
4243 signed_addr = bfd_get_sign_extend_vma (abfd);
4244 if (signed_addr < 0)
4245 internal_error (__FILE__, __LINE__,
4246 _("read_comp_unit_head: dwarf from non elf file"));
4247 cu_header->signed_addr_p = signed_addr;
4248
4249 return info_ptr;
4250}
4251
4252/* Helper function that returns the proper abbrev section for
4253 THIS_CU. */
4254
4255static struct dwarf2_section_info *
4256get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4257{
4258 struct dwarf2_section_info *abbrev;
4259
4260 if (this_cu->is_dwz)
4261 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4262 else
4263 abbrev = &dwarf2_per_objfile->abbrev;
4264
4265 return abbrev;
4266}
4267
4268/* Subroutine of read_and_check_comp_unit_head and
4269 read_and_check_type_unit_head to simplify them.
4270 Perform various error checking on the header. */
4271
4272static void
4273error_check_comp_unit_head (struct comp_unit_head *header,
4274 struct dwarf2_section_info *section,
4275 struct dwarf2_section_info *abbrev_section)
4276{
4277 bfd *abfd = get_section_bfd_owner (section);
4278 const char *filename = get_section_file_name (section);
4279
4280 if (header->version != 2 && header->version != 3 && header->version != 4)
4281 error (_("Dwarf Error: wrong version in compilation unit header "
4282 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4283 filename);
4284
4285 if (header->abbrev_offset.sect_off
4286 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4287 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4288 "(offset 0x%lx + 6) [in module %s]"),
4289 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4290 filename);
4291
4292 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4293 avoid potential 32-bit overflow. */
4294 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4295 > section->size)
4296 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4297 "(offset 0x%lx + 0) [in module %s]"),
4298 (long) header->length, (long) header->offset.sect_off,
4299 filename);
4300}
4301
4302/* Read in a CU/TU header and perform some basic error checking.
4303 The contents of the header are stored in HEADER.
4304 The result is a pointer to the start of the first DIE. */
4305
4306static const gdb_byte *
4307read_and_check_comp_unit_head (struct comp_unit_head *header,
4308 struct dwarf2_section_info *section,
4309 struct dwarf2_section_info *abbrev_section,
4310 const gdb_byte *info_ptr,
4311 int is_debug_types_section)
4312{
4313 const gdb_byte *beg_of_comp_unit = info_ptr;
4314 bfd *abfd = get_section_bfd_owner (section);
4315
4316 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4317
4318 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4319
4320 /* If we're reading a type unit, skip over the signature and
4321 type_offset fields. */
4322 if (is_debug_types_section)
4323 info_ptr += 8 /*signature*/ + header->offset_size;
4324
4325 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4326
4327 error_check_comp_unit_head (header, section, abbrev_section);
4328
4329 return info_ptr;
4330}
4331
4332/* Read in the types comp unit header information from .debug_types entry at
4333 types_ptr. The result is a pointer to one past the end of the header. */
4334
4335static const gdb_byte *
4336read_and_check_type_unit_head (struct comp_unit_head *header,
4337 struct dwarf2_section_info *section,
4338 struct dwarf2_section_info *abbrev_section,
4339 const gdb_byte *info_ptr,
4340 ULONGEST *signature,
4341 cu_offset *type_offset_in_tu)
4342{
4343 const gdb_byte *beg_of_comp_unit = info_ptr;
4344 bfd *abfd = get_section_bfd_owner (section);
4345
4346 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4347
4348 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4349
4350 /* If we're reading a type unit, skip over the signature and
4351 type_offset fields. */
4352 if (signature != NULL)
4353 *signature = read_8_bytes (abfd, info_ptr);
4354 info_ptr += 8;
4355 if (type_offset_in_tu != NULL)
4356 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4357 header->offset_size);
4358 info_ptr += header->offset_size;
4359
4360 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4361
4362 error_check_comp_unit_head (header, section, abbrev_section);
4363
4364 return info_ptr;
4365}
4366
4367/* Fetch the abbreviation table offset from a comp or type unit header. */
4368
4369static sect_offset
4370read_abbrev_offset (struct dwarf2_section_info *section,
4371 sect_offset offset)
4372{
4373 bfd *abfd = get_section_bfd_owner (section);
4374 const gdb_byte *info_ptr;
4375 unsigned int length, initial_length_size, offset_size;
4376 sect_offset abbrev_offset;
4377
4378 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4379 info_ptr = section->buffer + offset.sect_off;
4380 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4381 offset_size = initial_length_size == 4 ? 4 : 8;
4382 info_ptr += initial_length_size + 2 /*version*/;
4383 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4384 return abbrev_offset;
4385}
4386
4387/* Allocate a new partial symtab for file named NAME and mark this new
4388 partial symtab as being an include of PST. */
4389
4390static void
4391dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4392 struct objfile *objfile)
4393{
4394 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4395
4396 if (!IS_ABSOLUTE_PATH (subpst->filename))
4397 {
4398 /* It shares objfile->objfile_obstack. */
4399 subpst->dirname = pst->dirname;
4400 }
4401
4402 subpst->section_offsets = pst->section_offsets;
4403 subpst->textlow = 0;
4404 subpst->texthigh = 0;
4405
4406 subpst->dependencies = (struct partial_symtab **)
4407 obstack_alloc (&objfile->objfile_obstack,
4408 sizeof (struct partial_symtab *));
4409 subpst->dependencies[0] = pst;
4410 subpst->number_of_dependencies = 1;
4411
4412 subpst->globals_offset = 0;
4413 subpst->n_global_syms = 0;
4414 subpst->statics_offset = 0;
4415 subpst->n_static_syms = 0;
4416 subpst->symtab = NULL;
4417 subpst->read_symtab = pst->read_symtab;
4418 subpst->readin = 0;
4419
4420 /* No private part is necessary for include psymtabs. This property
4421 can be used to differentiate between such include psymtabs and
4422 the regular ones. */
4423 subpst->read_symtab_private = NULL;
4424}
4425
4426/* Read the Line Number Program data and extract the list of files
4427 included by the source file represented by PST. Build an include
4428 partial symtab for each of these included files. */
4429
4430static void
4431dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4432 struct die_info *die,
4433 struct partial_symtab *pst)
4434{
4435 struct line_header *lh = NULL;
4436 struct attribute *attr;
4437
4438 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4439 if (attr)
4440 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4441 if (lh == NULL)
4442 return; /* No linetable, so no includes. */
4443
4444 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4445 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4446
4447 free_line_header (lh);
4448}
4449
4450static hashval_t
4451hash_signatured_type (const void *item)
4452{
4453 const struct signatured_type *sig_type = item;
4454
4455 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4456 return sig_type->signature;
4457}
4458
4459static int
4460eq_signatured_type (const void *item_lhs, const void *item_rhs)
4461{
4462 const struct signatured_type *lhs = item_lhs;
4463 const struct signatured_type *rhs = item_rhs;
4464
4465 return lhs->signature == rhs->signature;
4466}
4467
4468/* Allocate a hash table for signatured types. */
4469
4470static htab_t
4471allocate_signatured_type_table (struct objfile *objfile)
4472{
4473 return htab_create_alloc_ex (41,
4474 hash_signatured_type,
4475 eq_signatured_type,
4476 NULL,
4477 &objfile->objfile_obstack,
4478 hashtab_obstack_allocate,
4479 dummy_obstack_deallocate);
4480}
4481
4482/* A helper function to add a signatured type CU to a table. */
4483
4484static int
4485add_signatured_type_cu_to_table (void **slot, void *datum)
4486{
4487 struct signatured_type *sigt = *slot;
4488 struct signatured_type ***datap = datum;
4489
4490 **datap = sigt;
4491 ++*datap;
4492
4493 return 1;
4494}
4495
4496/* Create the hash table of all entries in the .debug_types
4497 (or .debug_types.dwo) section(s).
4498 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4499 otherwise it is NULL.
4500
4501 The result is a pointer to the hash table or NULL if there are no types.
4502
4503 Note: This function processes DWO files only, not DWP files. */
4504
4505static htab_t
4506create_debug_types_hash_table (struct dwo_file *dwo_file,
4507 VEC (dwarf2_section_info_def) *types)
4508{
4509 struct objfile *objfile = dwarf2_per_objfile->objfile;
4510 htab_t types_htab = NULL;
4511 int ix;
4512 struct dwarf2_section_info *section;
4513 struct dwarf2_section_info *abbrev_section;
4514
4515 if (VEC_empty (dwarf2_section_info_def, types))
4516 return NULL;
4517
4518 abbrev_section = (dwo_file != NULL
4519 ? &dwo_file->sections.abbrev
4520 : &dwarf2_per_objfile->abbrev);
4521
4522 if (dwarf2_read_debug)
4523 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4524 dwo_file ? ".dwo" : "",
4525 get_section_file_name (abbrev_section));
4526
4527 for (ix = 0;
4528 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4529 ++ix)
4530 {
4531 bfd *abfd;
4532 const gdb_byte *info_ptr, *end_ptr;
4533
4534 dwarf2_read_section (objfile, section);
4535 info_ptr = section->buffer;
4536
4537 if (info_ptr == NULL)
4538 continue;
4539
4540 /* We can't set abfd until now because the section may be empty or
4541 not present, in which case the bfd is unknown. */
4542 abfd = get_section_bfd_owner (section);
4543
4544 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4545 because we don't need to read any dies: the signature is in the
4546 header. */
4547
4548 end_ptr = info_ptr + section->size;
4549 while (info_ptr < end_ptr)
4550 {
4551 sect_offset offset;
4552 cu_offset type_offset_in_tu;
4553 ULONGEST signature;
4554 struct signatured_type *sig_type;
4555 struct dwo_unit *dwo_tu;
4556 void **slot;
4557 const gdb_byte *ptr = info_ptr;
4558 struct comp_unit_head header;
4559 unsigned int length;
4560
4561 offset.sect_off = ptr - section->buffer;
4562
4563 /* We need to read the type's signature in order to build the hash
4564 table, but we don't need anything else just yet. */
4565
4566 ptr = read_and_check_type_unit_head (&header, section,
4567 abbrev_section, ptr,
4568 &signature, &type_offset_in_tu);
4569
4570 length = get_cu_length (&header);
4571
4572 /* Skip dummy type units. */
4573 if (ptr >= info_ptr + length
4574 || peek_abbrev_code (abfd, ptr) == 0)
4575 {
4576 info_ptr += length;
4577 continue;
4578 }
4579
4580 if (types_htab == NULL)
4581 {
4582 if (dwo_file)
4583 types_htab = allocate_dwo_unit_table (objfile);
4584 else
4585 types_htab = allocate_signatured_type_table (objfile);
4586 }
4587
4588 if (dwo_file)
4589 {
4590 sig_type = NULL;
4591 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4592 struct dwo_unit);
4593 dwo_tu->dwo_file = dwo_file;
4594 dwo_tu->signature = signature;
4595 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4596 dwo_tu->section = section;
4597 dwo_tu->offset = offset;
4598 dwo_tu->length = length;
4599 }
4600 else
4601 {
4602 /* N.B.: type_offset is not usable if this type uses a DWO file.
4603 The real type_offset is in the DWO file. */
4604 dwo_tu = NULL;
4605 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4606 struct signatured_type);
4607 sig_type->signature = signature;
4608 sig_type->type_offset_in_tu = type_offset_in_tu;
4609 sig_type->per_cu.objfile = objfile;
4610 sig_type->per_cu.is_debug_types = 1;
4611 sig_type->per_cu.section = section;
4612 sig_type->per_cu.offset = offset;
4613 sig_type->per_cu.length = length;
4614 }
4615
4616 slot = htab_find_slot (types_htab,
4617 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4618 INSERT);
4619 gdb_assert (slot != NULL);
4620 if (*slot != NULL)
4621 {
4622 sect_offset dup_offset;
4623
4624 if (dwo_file)
4625 {
4626 const struct dwo_unit *dup_tu = *slot;
4627
4628 dup_offset = dup_tu->offset;
4629 }
4630 else
4631 {
4632 const struct signatured_type *dup_tu = *slot;
4633
4634 dup_offset = dup_tu->per_cu.offset;
4635 }
4636
4637 complaint (&symfile_complaints,
4638 _("debug type entry at offset 0x%x is duplicate to"
4639 " the entry at offset 0x%x, signature %s"),
4640 offset.sect_off, dup_offset.sect_off,
4641 hex_string (signature));
4642 }
4643 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4644
4645 if (dwarf2_read_debug > 1)
4646 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4647 offset.sect_off,
4648 hex_string (signature));
4649
4650 info_ptr += length;
4651 }
4652 }
4653
4654 return types_htab;
4655}
4656
4657/* Create the hash table of all entries in the .debug_types section,
4658 and initialize all_type_units.
4659 The result is zero if there is an error (e.g. missing .debug_types section),
4660 otherwise non-zero. */
4661
4662static int
4663create_all_type_units (struct objfile *objfile)
4664{
4665 htab_t types_htab;
4666 struct signatured_type **iter;
4667
4668 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4669 if (types_htab == NULL)
4670 {
4671 dwarf2_per_objfile->signatured_types = NULL;
4672 return 0;
4673 }
4674
4675 dwarf2_per_objfile->signatured_types = types_htab;
4676
4677 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4678 dwarf2_per_objfile->all_type_units
4679 = xmalloc (dwarf2_per_objfile->n_type_units
4680 * sizeof (struct signatured_type *));
4681 iter = &dwarf2_per_objfile->all_type_units[0];
4682 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4683 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4684 == dwarf2_per_objfile->n_type_units);
4685
4686 return 1;
4687}
4688
4689/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4690 Fill in SIG_ENTRY with DWO_ENTRY. */
4691
4692static void
4693fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4694 struct signatured_type *sig_entry,
4695 struct dwo_unit *dwo_entry)
4696{
4697 /* Make sure we're not clobbering something we don't expect to. */
4698 gdb_assert (! sig_entry->per_cu.queued);
4699 gdb_assert (sig_entry->per_cu.cu == NULL);
4700 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4701 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4702 gdb_assert (sig_entry->signature == dwo_entry->signature);
4703 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4704 gdb_assert (sig_entry->type_unit_group == NULL);
4705 gdb_assert (sig_entry->dwo_unit == NULL);
4706
4707 sig_entry->per_cu.section = dwo_entry->section;
4708 sig_entry->per_cu.offset = dwo_entry->offset;
4709 sig_entry->per_cu.length = dwo_entry->length;
4710 sig_entry->per_cu.reading_dwo_directly = 1;
4711 sig_entry->per_cu.objfile = objfile;
4712 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4713 sig_entry->dwo_unit = dwo_entry;
4714}
4715
4716/* Subroutine of lookup_signatured_type.
4717 If we haven't read the TU yet, create the signatured_type data structure
4718 for a TU to be read in directly from a DWO file, bypassing the stub.
4719 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4720 using .gdb_index, then when reading a CU we want to stay in the DWO file
4721 containing that CU. Otherwise we could end up reading several other DWO
4722 files (due to comdat folding) to process the transitive closure of all the
4723 mentioned TUs, and that can be slow. The current DWO file will have every
4724 type signature that it needs.
4725 We only do this for .gdb_index because in the psymtab case we already have
4726 to read all the DWOs to build the type unit groups. */
4727
4728static struct signatured_type *
4729lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4730{
4731 struct objfile *objfile = dwarf2_per_objfile->objfile;
4732 struct dwo_file *dwo_file;
4733 struct dwo_unit find_dwo_entry, *dwo_entry;
4734 struct signatured_type find_sig_entry, *sig_entry;
4735
4736 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4737
4738 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4739 dwo_unit of the TU itself. */
4740 dwo_file = cu->dwo_unit->dwo_file;
4741
4742 /* We only ever need to read in one copy of a signatured type.
4743 Just use the global signatured_types array. If this is the first time
4744 we're reading this type, replace the recorded data from .gdb_index with
4745 this TU. */
4746
4747 if (dwarf2_per_objfile->signatured_types == NULL)
4748 return NULL;
4749 find_sig_entry.signature = sig;
4750 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4751 if (sig_entry == NULL)
4752 return NULL;
4753
4754 /* We can get here with the TU already read, *or* in the process of being
4755 read. Don't reassign it if that's the case. Also note that if the TU is
4756 already being read, it may not have come from a DWO, the program may be
4757 a mix of Fission-compiled code and non-Fission-compiled code. */
4758 /* Have we already tried to read this TU? */
4759 if (sig_entry->per_cu.tu_read)
4760 return sig_entry;
4761
4762 /* Ok, this is the first time we're reading this TU. */
4763 if (dwo_file->tus == NULL)
4764 return NULL;
4765 find_dwo_entry.signature = sig;
4766 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4767 if (dwo_entry == NULL)
4768 return NULL;
4769
4770 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4771 sig_entry->per_cu.tu_read = 1;
4772 return sig_entry;
4773}
4774
4775/* Subroutine of lookup_dwp_signatured_type.
4776 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4777
4778static struct signatured_type *
4779add_type_unit (ULONGEST sig)
4780{
4781 struct objfile *objfile = dwarf2_per_objfile->objfile;
4782 int n_type_units = dwarf2_per_objfile->n_type_units;
4783 struct signatured_type *sig_type;
4784 void **slot;
4785
4786 ++n_type_units;
4787 dwarf2_per_objfile->all_type_units =
4788 xrealloc (dwarf2_per_objfile->all_type_units,
4789 n_type_units * sizeof (struct signatured_type *));
4790 dwarf2_per_objfile->n_type_units = n_type_units;
4791 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4792 struct signatured_type);
4793 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4794 sig_type->signature = sig;
4795 sig_type->per_cu.is_debug_types = 1;
4796 sig_type->per_cu.v.quick =
4797 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4798 struct dwarf2_per_cu_quick_data);
4799 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4800 sig_type, INSERT);
4801 gdb_assert (*slot == NULL);
4802 *slot = sig_type;
4803 /* The rest of sig_type must be filled in by the caller. */
4804 return sig_type;
4805}
4806
4807/* Subroutine of lookup_signatured_type.
4808 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4809 then try the DWP file.
4810 Normally this "can't happen", but if there's a bug in signature
4811 generation and/or the DWP file is built incorrectly, it can happen.
4812 Using the type directly from the DWP file means we don't have the stub
4813 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4814 not critical. [Eventually the stub may go away for type units anyway.] */
4815
4816static struct signatured_type *
4817lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4818{
4819 struct objfile *objfile = dwarf2_per_objfile->objfile;
4820 struct dwp_file *dwp_file = get_dwp_file ();
4821 struct dwo_unit *dwo_entry;
4822 struct signatured_type find_sig_entry, *sig_entry;
4823
4824 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4825 gdb_assert (dwp_file != NULL);
4826
4827 if (dwarf2_per_objfile->signatured_types != NULL)
4828 {
4829 find_sig_entry.signature = sig;
4830 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4831 &find_sig_entry);
4832 if (sig_entry != NULL)
4833 return sig_entry;
4834 }
4835
4836 /* This is the "shouldn't happen" case.
4837 Try the DWP file and hope for the best. */
4838 if (dwp_file->tus == NULL)
4839 return NULL;
4840 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4841 sig, 1 /* is_debug_types */);
4842 if (dwo_entry == NULL)
4843 return NULL;
4844
4845 sig_entry = add_type_unit (sig);
4846 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4847
4848 /* The caller will signal a complaint if we return NULL.
4849 Here we don't return NULL but we still want to complain. */
4850 complaint (&symfile_complaints,
4851 _("Bad type signature %s referenced by %s at 0x%x,"
4852 " coping by using copy in DWP [in module %s]"),
4853 hex_string (sig),
4854 cu->per_cu->is_debug_types ? "TU" : "CU",
4855 cu->per_cu->offset.sect_off,
4856 objfile_name (objfile));
4857
4858 return sig_entry;
4859}
4860
4861/* Lookup a signature based type for DW_FORM_ref_sig8.
4862 Returns NULL if signature SIG is not present in the table.
4863 It is up to the caller to complain about this. */
4864
4865static struct signatured_type *
4866lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4867{
4868 if (cu->dwo_unit
4869 && dwarf2_per_objfile->using_index)
4870 {
4871 /* We're in a DWO/DWP file, and we're using .gdb_index.
4872 These cases require special processing. */
4873 if (get_dwp_file () == NULL)
4874 return lookup_dwo_signatured_type (cu, sig);
4875 else
4876 return lookup_dwp_signatured_type (cu, sig);
4877 }
4878 else
4879 {
4880 struct signatured_type find_entry, *entry;
4881
4882 if (dwarf2_per_objfile->signatured_types == NULL)
4883 return NULL;
4884 find_entry.signature = sig;
4885 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4886 return entry;
4887 }
4888}
4889\f
4890/* Low level DIE reading support. */
4891
4892/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4893
4894static void
4895init_cu_die_reader (struct die_reader_specs *reader,
4896 struct dwarf2_cu *cu,
4897 struct dwarf2_section_info *section,
4898 struct dwo_file *dwo_file)
4899{
4900 gdb_assert (section->readin && section->buffer != NULL);
4901 reader->abfd = get_section_bfd_owner (section);
4902 reader->cu = cu;
4903 reader->dwo_file = dwo_file;
4904 reader->die_section = section;
4905 reader->buffer = section->buffer;
4906 reader->buffer_end = section->buffer + section->size;
4907 reader->comp_dir = NULL;
4908}
4909
4910/* Subroutine of init_cutu_and_read_dies to simplify it.
4911 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4912 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4913 already.
4914
4915 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4916 from it to the DIE in the DWO. If NULL we are skipping the stub.
4917 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4918 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4919 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4920 COMP_DIR must be non-NULL.
4921 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4922 are filled in with the info of the DIE from the DWO file.
4923 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4924 provided an abbrev table to use.
4925 The result is non-zero if a valid (non-dummy) DIE was found. */
4926
4927static int
4928read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4929 struct dwo_unit *dwo_unit,
4930 int abbrev_table_provided,
4931 struct die_info *stub_comp_unit_die,
4932 const char *stub_comp_dir,
4933 struct die_reader_specs *result_reader,
4934 const gdb_byte **result_info_ptr,
4935 struct die_info **result_comp_unit_die,
4936 int *result_has_children)
4937{
4938 struct objfile *objfile = dwarf2_per_objfile->objfile;
4939 struct dwarf2_cu *cu = this_cu->cu;
4940 struct dwarf2_section_info *section;
4941 bfd *abfd;
4942 const gdb_byte *begin_info_ptr, *info_ptr;
4943 const char *comp_dir_string;
4944 ULONGEST signature; /* Or dwo_id. */
4945 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4946 int i,num_extra_attrs;
4947 struct dwarf2_section_info *dwo_abbrev_section;
4948 struct attribute *attr;
4949 struct attribute comp_dir_attr;
4950 struct die_info *comp_unit_die;
4951
4952 /* Both can't be provided. */
4953 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4954
4955 /* These attributes aren't processed until later:
4956 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4957 However, the attribute is found in the stub which we won't have later.
4958 In order to not impose this complication on the rest of the code,
4959 we read them here and copy them to the DWO CU/TU die. */
4960
4961 stmt_list = NULL;
4962 low_pc = NULL;
4963 high_pc = NULL;
4964 ranges = NULL;
4965 comp_dir = NULL;
4966
4967 if (stub_comp_unit_die != NULL)
4968 {
4969 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4970 DWO file. */
4971 if (! this_cu->is_debug_types)
4972 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4973 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4974 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4975 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4976 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4977
4978 /* There should be a DW_AT_addr_base attribute here (if needed).
4979 We need the value before we can process DW_FORM_GNU_addr_index. */
4980 cu->addr_base = 0;
4981 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4982 if (attr)
4983 cu->addr_base = DW_UNSND (attr);
4984
4985 /* There should be a DW_AT_ranges_base attribute here (if needed).
4986 We need the value before we can process DW_AT_ranges. */
4987 cu->ranges_base = 0;
4988 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4989 if (attr)
4990 cu->ranges_base = DW_UNSND (attr);
4991 }
4992 else if (stub_comp_dir != NULL)
4993 {
4994 /* Reconstruct the comp_dir attribute to simplify the code below. */
4995 comp_dir = (struct attribute *)
4996 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4997 comp_dir->name = DW_AT_comp_dir;
4998 comp_dir->form = DW_FORM_string;
4999 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5000 DW_STRING (comp_dir) = stub_comp_dir;
5001 }
5002
5003 /* Set up for reading the DWO CU/TU. */
5004 cu->dwo_unit = dwo_unit;
5005 section = dwo_unit->section;
5006 dwarf2_read_section (objfile, section);
5007 abfd = get_section_bfd_owner (section);
5008 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5009 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5010 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5011
5012 if (this_cu->is_debug_types)
5013 {
5014 ULONGEST header_signature;
5015 cu_offset type_offset_in_tu;
5016 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5017
5018 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5019 dwo_abbrev_section,
5020 info_ptr,
5021 &header_signature,
5022 &type_offset_in_tu);
5023 /* This is not an assert because it can be caused by bad debug info. */
5024 if (sig_type->signature != header_signature)
5025 {
5026 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5027 " TU at offset 0x%x [in module %s]"),
5028 hex_string (sig_type->signature),
5029 hex_string (header_signature),
5030 dwo_unit->offset.sect_off,
5031 bfd_get_filename (abfd));
5032 }
5033 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5034 /* For DWOs coming from DWP files, we don't know the CU length
5035 nor the type's offset in the TU until now. */
5036 dwo_unit->length = get_cu_length (&cu->header);
5037 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5038
5039 /* Establish the type offset that can be used to lookup the type.
5040 For DWO files, we don't know it until now. */
5041 sig_type->type_offset_in_section.sect_off =
5042 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5043 }
5044 else
5045 {
5046 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5047 dwo_abbrev_section,
5048 info_ptr, 0);
5049 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5050 /* For DWOs coming from DWP files, we don't know the CU length
5051 until now. */
5052 dwo_unit->length = get_cu_length (&cu->header);
5053 }
5054
5055 /* Replace the CU's original abbrev table with the DWO's.
5056 Reminder: We can't read the abbrev table until we've read the header. */
5057 if (abbrev_table_provided)
5058 {
5059 /* Don't free the provided abbrev table, the caller of
5060 init_cutu_and_read_dies owns it. */
5061 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5062 /* Ensure the DWO abbrev table gets freed. */
5063 make_cleanup (dwarf2_free_abbrev_table, cu);
5064 }
5065 else
5066 {
5067 dwarf2_free_abbrev_table (cu);
5068 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5069 /* Leave any existing abbrev table cleanup as is. */
5070 }
5071
5072 /* Read in the die, but leave space to copy over the attributes
5073 from the stub. This has the benefit of simplifying the rest of
5074 the code - all the work to maintain the illusion of a single
5075 DW_TAG_{compile,type}_unit DIE is done here. */
5076 num_extra_attrs = ((stmt_list != NULL)
5077 + (low_pc != NULL)
5078 + (high_pc != NULL)
5079 + (ranges != NULL)
5080 + (comp_dir != NULL));
5081 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5082 result_has_children, num_extra_attrs);
5083
5084 /* Copy over the attributes from the stub to the DIE we just read in. */
5085 comp_unit_die = *result_comp_unit_die;
5086 i = comp_unit_die->num_attrs;
5087 if (stmt_list != NULL)
5088 comp_unit_die->attrs[i++] = *stmt_list;
5089 if (low_pc != NULL)
5090 comp_unit_die->attrs[i++] = *low_pc;
5091 if (high_pc != NULL)
5092 comp_unit_die->attrs[i++] = *high_pc;
5093 if (ranges != NULL)
5094 comp_unit_die->attrs[i++] = *ranges;
5095 if (comp_dir != NULL)
5096 comp_unit_die->attrs[i++] = *comp_dir;
5097 comp_unit_die->num_attrs += num_extra_attrs;
5098
5099 if (dwarf2_die_debug)
5100 {
5101 fprintf_unfiltered (gdb_stdlog,
5102 "Read die from %s@0x%x of %s:\n",
5103 get_section_name (section),
5104 (unsigned) (begin_info_ptr - section->buffer),
5105 bfd_get_filename (abfd));
5106 dump_die (comp_unit_die, dwarf2_die_debug);
5107 }
5108
5109 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5110 TUs by skipping the stub and going directly to the entry in the DWO file.
5111 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5112 to get it via circuitous means. Blech. */
5113 if (comp_dir != NULL)
5114 result_reader->comp_dir = DW_STRING (comp_dir);
5115
5116 /* Skip dummy compilation units. */
5117 if (info_ptr >= begin_info_ptr + dwo_unit->length
5118 || peek_abbrev_code (abfd, info_ptr) == 0)
5119 return 0;
5120
5121 *result_info_ptr = info_ptr;
5122 return 1;
5123}
5124
5125/* Subroutine of init_cutu_and_read_dies to simplify it.
5126 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5127 Returns NULL if the specified DWO unit cannot be found. */
5128
5129static struct dwo_unit *
5130lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5131 struct die_info *comp_unit_die)
5132{
5133 struct dwarf2_cu *cu = this_cu->cu;
5134 struct attribute *attr;
5135 ULONGEST signature;
5136 struct dwo_unit *dwo_unit;
5137 const char *comp_dir, *dwo_name;
5138
5139 gdb_assert (cu != NULL);
5140
5141 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5142 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5143 gdb_assert (attr != NULL);
5144 dwo_name = DW_STRING (attr);
5145 comp_dir = NULL;
5146 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5147 if (attr)
5148 comp_dir = DW_STRING (attr);
5149
5150 if (this_cu->is_debug_types)
5151 {
5152 struct signatured_type *sig_type;
5153
5154 /* Since this_cu is the first member of struct signatured_type,
5155 we can go from a pointer to one to a pointer to the other. */
5156 sig_type = (struct signatured_type *) this_cu;
5157 signature = sig_type->signature;
5158 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5159 }
5160 else
5161 {
5162 struct attribute *attr;
5163
5164 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5165 if (! attr)
5166 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5167 " [in module %s]"),
5168 dwo_name, objfile_name (this_cu->objfile));
5169 signature = DW_UNSND (attr);
5170 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5171 signature);
5172 }
5173
5174 return dwo_unit;
5175}
5176
5177/* Subroutine of init_cutu_and_read_dies to simplify it.
5178 Read a TU directly from a DWO file, bypassing the stub. */
5179
5180static void
5181init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5182 die_reader_func_ftype *die_reader_func,
5183 void *data)
5184{
5185 struct dwarf2_cu *cu;
5186 struct signatured_type *sig_type;
5187 struct cleanup *cleanups, *free_cu_cleanup;
5188 struct die_reader_specs reader;
5189 const gdb_byte *info_ptr;
5190 struct die_info *comp_unit_die;
5191 int has_children;
5192
5193 /* Verify we can do the following downcast, and that we have the
5194 data we need. */
5195 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5196 sig_type = (struct signatured_type *) this_cu;
5197 gdb_assert (sig_type->dwo_unit != NULL);
5198
5199 cleanups = make_cleanup (null_cleanup, NULL);
5200
5201 gdb_assert (this_cu->cu == NULL);
5202 cu = xmalloc (sizeof (*cu));
5203 init_one_comp_unit (cu, this_cu);
5204 /* If an error occurs while loading, release our storage. */
5205 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5206
5207 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5208 0 /* abbrev_table_provided */,
5209 NULL /* stub_comp_unit_die */,
5210 sig_type->dwo_unit->dwo_file->comp_dir,
5211 &reader, &info_ptr,
5212 &comp_unit_die, &has_children) == 0)
5213 {
5214 /* Dummy die. */
5215 do_cleanups (cleanups);
5216 return;
5217 }
5218
5219 /* All the "real" work is done here. */
5220 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5221
5222 /* This duplicates some code in init_cutu_and_read_dies,
5223 but the alternative is making the latter more complex.
5224 This function is only for the special case of using DWO files directly:
5225 no point in overly complicating the general case just to handle this. */
5226 if (keep)
5227 {
5228 /* We've successfully allocated this compilation unit. Let our
5229 caller clean it up when finished with it. */
5230 discard_cleanups (free_cu_cleanup);
5231
5232 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5233 So we have to manually free the abbrev table. */
5234 dwarf2_free_abbrev_table (cu);
5235
5236 /* Link this CU into read_in_chain. */
5237 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5238 dwarf2_per_objfile->read_in_chain = this_cu;
5239 }
5240 else
5241 do_cleanups (free_cu_cleanup);
5242
5243 do_cleanups (cleanups);
5244}
5245
5246/* Initialize a CU (or TU) and read its DIEs.
5247 If the CU defers to a DWO file, read the DWO file as well.
5248
5249 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5250 Otherwise the table specified in the comp unit header is read in and used.
5251 This is an optimization for when we already have the abbrev table.
5252
5253 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5254 Otherwise, a new CU is allocated with xmalloc.
5255
5256 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5257 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5258
5259 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5260 linker) then DIE_READER_FUNC will not get called. */
5261
5262static void
5263init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5264 struct abbrev_table *abbrev_table,
5265 int use_existing_cu, int keep,
5266 die_reader_func_ftype *die_reader_func,
5267 void *data)
5268{
5269 struct objfile *objfile = dwarf2_per_objfile->objfile;
5270 struct dwarf2_section_info *section = this_cu->section;
5271 bfd *abfd = get_section_bfd_owner (section);
5272 struct dwarf2_cu *cu;
5273 const gdb_byte *begin_info_ptr, *info_ptr;
5274 struct die_reader_specs reader;
5275 struct die_info *comp_unit_die;
5276 int has_children;
5277 struct attribute *attr;
5278 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5279 struct signatured_type *sig_type = NULL;
5280 struct dwarf2_section_info *abbrev_section;
5281 /* Non-zero if CU currently points to a DWO file and we need to
5282 reread it. When this happens we need to reread the skeleton die
5283 before we can reread the DWO file (this only applies to CUs, not TUs). */
5284 int rereading_dwo_cu = 0;
5285
5286 if (dwarf2_die_debug)
5287 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5288 this_cu->is_debug_types ? "type" : "comp",
5289 this_cu->offset.sect_off);
5290
5291 if (use_existing_cu)
5292 gdb_assert (keep);
5293
5294 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5295 file (instead of going through the stub), short-circuit all of this. */
5296 if (this_cu->reading_dwo_directly)
5297 {
5298 /* Narrow down the scope of possibilities to have to understand. */
5299 gdb_assert (this_cu->is_debug_types);
5300 gdb_assert (abbrev_table == NULL);
5301 gdb_assert (!use_existing_cu);
5302 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5303 return;
5304 }
5305
5306 cleanups = make_cleanup (null_cleanup, NULL);
5307
5308 /* This is cheap if the section is already read in. */
5309 dwarf2_read_section (objfile, section);
5310
5311 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5312
5313 abbrev_section = get_abbrev_section_for_cu (this_cu);
5314
5315 if (use_existing_cu && this_cu->cu != NULL)
5316 {
5317 cu = this_cu->cu;
5318
5319 /* If this CU is from a DWO file we need to start over, we need to
5320 refetch the attributes from the skeleton CU.
5321 This could be optimized by retrieving those attributes from when we
5322 were here the first time: the previous comp_unit_die was stored in
5323 comp_unit_obstack. But there's no data yet that we need this
5324 optimization. */
5325 if (cu->dwo_unit != NULL)
5326 rereading_dwo_cu = 1;
5327 }
5328 else
5329 {
5330 /* If !use_existing_cu, this_cu->cu must be NULL. */
5331 gdb_assert (this_cu->cu == NULL);
5332
5333 cu = xmalloc (sizeof (*cu));
5334 init_one_comp_unit (cu, this_cu);
5335
5336 /* If an error occurs while loading, release our storage. */
5337 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5338 }
5339
5340 /* Get the header. */
5341 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5342 {
5343 /* We already have the header, there's no need to read it in again. */
5344 info_ptr += cu->header.first_die_offset.cu_off;
5345 }
5346 else
5347 {
5348 if (this_cu->is_debug_types)
5349 {
5350 ULONGEST signature;
5351 cu_offset type_offset_in_tu;
5352
5353 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5354 abbrev_section, info_ptr,
5355 &signature,
5356 &type_offset_in_tu);
5357
5358 /* Since per_cu is the first member of struct signatured_type,
5359 we can go from a pointer to one to a pointer to the other. */
5360 sig_type = (struct signatured_type *) this_cu;
5361 gdb_assert (sig_type->signature == signature);
5362 gdb_assert (sig_type->type_offset_in_tu.cu_off
5363 == type_offset_in_tu.cu_off);
5364 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5365
5366 /* LENGTH has not been set yet for type units if we're
5367 using .gdb_index. */
5368 this_cu->length = get_cu_length (&cu->header);
5369
5370 /* Establish the type offset that can be used to lookup the type. */
5371 sig_type->type_offset_in_section.sect_off =
5372 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5373 }
5374 else
5375 {
5376 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5377 abbrev_section,
5378 info_ptr, 0);
5379
5380 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5381 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5382 }
5383 }
5384
5385 /* Skip dummy compilation units. */
5386 if (info_ptr >= begin_info_ptr + this_cu->length
5387 || peek_abbrev_code (abfd, info_ptr) == 0)
5388 {
5389 do_cleanups (cleanups);
5390 return;
5391 }
5392
5393 /* If we don't have them yet, read the abbrevs for this compilation unit.
5394 And if we need to read them now, make sure they're freed when we're
5395 done. Note that it's important that if the CU had an abbrev table
5396 on entry we don't free it when we're done: Somewhere up the call stack
5397 it may be in use. */
5398 if (abbrev_table != NULL)
5399 {
5400 gdb_assert (cu->abbrev_table == NULL);
5401 gdb_assert (cu->header.abbrev_offset.sect_off
5402 == abbrev_table->offset.sect_off);
5403 cu->abbrev_table = abbrev_table;
5404 }
5405 else if (cu->abbrev_table == NULL)
5406 {
5407 dwarf2_read_abbrevs (cu, abbrev_section);
5408 make_cleanup (dwarf2_free_abbrev_table, cu);
5409 }
5410 else if (rereading_dwo_cu)
5411 {
5412 dwarf2_free_abbrev_table (cu);
5413 dwarf2_read_abbrevs (cu, abbrev_section);
5414 }
5415
5416 /* Read the top level CU/TU die. */
5417 init_cu_die_reader (&reader, cu, section, NULL);
5418 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5419
5420 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5421 from the DWO file.
5422 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5423 DWO CU, that this test will fail (the attribute will not be present). */
5424 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5425 if (attr)
5426 {
5427 struct dwo_unit *dwo_unit;
5428 struct die_info *dwo_comp_unit_die;
5429
5430 if (has_children)
5431 {
5432 complaint (&symfile_complaints,
5433 _("compilation unit with DW_AT_GNU_dwo_name"
5434 " has children (offset 0x%x) [in module %s]"),
5435 this_cu->offset.sect_off, bfd_get_filename (abfd));
5436 }
5437 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5438 if (dwo_unit != NULL)
5439 {
5440 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5441 abbrev_table != NULL,
5442 comp_unit_die, NULL,
5443 &reader, &info_ptr,
5444 &dwo_comp_unit_die, &has_children) == 0)
5445 {
5446 /* Dummy die. */
5447 do_cleanups (cleanups);
5448 return;
5449 }
5450 comp_unit_die = dwo_comp_unit_die;
5451 }
5452 else
5453 {
5454 /* Yikes, we couldn't find the rest of the DIE, we only have
5455 the stub. A complaint has already been logged. There's
5456 not much more we can do except pass on the stub DIE to
5457 die_reader_func. We don't want to throw an error on bad
5458 debug info. */
5459 }
5460 }
5461
5462 /* All of the above is setup for this call. Yikes. */
5463 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5464
5465 /* Done, clean up. */
5466 if (free_cu_cleanup != NULL)
5467 {
5468 if (keep)
5469 {
5470 /* We've successfully allocated this compilation unit. Let our
5471 caller clean it up when finished with it. */
5472 discard_cleanups (free_cu_cleanup);
5473
5474 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5475 So we have to manually free the abbrev table. */
5476 dwarf2_free_abbrev_table (cu);
5477
5478 /* Link this CU into read_in_chain. */
5479 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5480 dwarf2_per_objfile->read_in_chain = this_cu;
5481 }
5482 else
5483 do_cleanups (free_cu_cleanup);
5484 }
5485
5486 do_cleanups (cleanups);
5487}
5488
5489/* Read CU/TU THIS_CU in section SECTION,
5490 but do not follow DW_AT_GNU_dwo_name if present.
5491 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5492 to have already done the lookup to find the DWO/DWP file).
5493
5494 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5495 THIS_CU->is_debug_types, but nothing else.
5496
5497 We fill in THIS_CU->length.
5498
5499 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5500 linker) then DIE_READER_FUNC will not get called.
5501
5502 THIS_CU->cu is always freed when done.
5503 This is done in order to not leave THIS_CU->cu in a state where we have
5504 to care whether it refers to the "main" CU or the DWO CU. */
5505
5506static void
5507init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5508 struct dwarf2_section_info *abbrev_section,
5509 struct dwo_file *dwo_file,
5510 die_reader_func_ftype *die_reader_func,
5511 void *data)
5512{
5513 struct objfile *objfile = dwarf2_per_objfile->objfile;
5514 struct dwarf2_section_info *section = this_cu->section;
5515 bfd *abfd = get_section_bfd_owner (section);
5516 struct dwarf2_cu cu;
5517 const gdb_byte *begin_info_ptr, *info_ptr;
5518 struct die_reader_specs reader;
5519 struct cleanup *cleanups;
5520 struct die_info *comp_unit_die;
5521 int has_children;
5522
5523 if (dwarf2_die_debug)
5524 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5525 this_cu->is_debug_types ? "type" : "comp",
5526 this_cu->offset.sect_off);
5527
5528 gdb_assert (this_cu->cu == NULL);
5529
5530 /* This is cheap if the section is already read in. */
5531 dwarf2_read_section (objfile, section);
5532
5533 init_one_comp_unit (&cu, this_cu);
5534
5535 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5536
5537 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5538 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5539 abbrev_section, info_ptr,
5540 this_cu->is_debug_types);
5541
5542 this_cu->length = get_cu_length (&cu.header);
5543
5544 /* Skip dummy compilation units. */
5545 if (info_ptr >= begin_info_ptr + this_cu->length
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5547 {
5548 do_cleanups (cleanups);
5549 return;
5550 }
5551
5552 dwarf2_read_abbrevs (&cu, abbrev_section);
5553 make_cleanup (dwarf2_free_abbrev_table, &cu);
5554
5555 init_cu_die_reader (&reader, &cu, section, dwo_file);
5556 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5557
5558 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5559
5560 do_cleanups (cleanups);
5561}
5562
5563/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5564 does not lookup the specified DWO file.
5565 This cannot be used to read DWO files.
5566
5567 THIS_CU->cu is always freed when done.
5568 This is done in order to not leave THIS_CU->cu in a state where we have
5569 to care whether it refers to the "main" CU or the DWO CU.
5570 We can revisit this if the data shows there's a performance issue. */
5571
5572static void
5573init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5574 die_reader_func_ftype *die_reader_func,
5575 void *data)
5576{
5577 init_cutu_and_read_dies_no_follow (this_cu,
5578 get_abbrev_section_for_cu (this_cu),
5579 NULL,
5580 die_reader_func, data);
5581}
5582\f
5583/* Type Unit Groups.
5584
5585 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5586 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5587 so that all types coming from the same compilation (.o file) are grouped
5588 together. A future step could be to put the types in the same symtab as
5589 the CU the types ultimately came from. */
5590
5591static hashval_t
5592hash_type_unit_group (const void *item)
5593{
5594 const struct type_unit_group *tu_group = item;
5595
5596 return hash_stmt_list_entry (&tu_group->hash);
5597}
5598
5599static int
5600eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5601{
5602 const struct type_unit_group *lhs = item_lhs;
5603 const struct type_unit_group *rhs = item_rhs;
5604
5605 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5606}
5607
5608/* Allocate a hash table for type unit groups. */
5609
5610static htab_t
5611allocate_type_unit_groups_table (void)
5612{
5613 return htab_create_alloc_ex (3,
5614 hash_type_unit_group,
5615 eq_type_unit_group,
5616 NULL,
5617 &dwarf2_per_objfile->objfile->objfile_obstack,
5618 hashtab_obstack_allocate,
5619 dummy_obstack_deallocate);
5620}
5621
5622/* Type units that don't have DW_AT_stmt_list are grouped into their own
5623 partial symtabs. We combine several TUs per psymtab to not let the size
5624 of any one psymtab grow too big. */
5625#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5626#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5627
5628/* Helper routine for get_type_unit_group.
5629 Create the type_unit_group object used to hold one or more TUs. */
5630
5631static struct type_unit_group *
5632create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5633{
5634 struct objfile *objfile = dwarf2_per_objfile->objfile;
5635 struct dwarf2_per_cu_data *per_cu;
5636 struct type_unit_group *tu_group;
5637
5638 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5639 struct type_unit_group);
5640 per_cu = &tu_group->per_cu;
5641 per_cu->objfile = objfile;
5642
5643 if (dwarf2_per_objfile->using_index)
5644 {
5645 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5646 struct dwarf2_per_cu_quick_data);
5647 }
5648 else
5649 {
5650 unsigned int line_offset = line_offset_struct.sect_off;
5651 struct partial_symtab *pst;
5652 char *name;
5653
5654 /* Give the symtab a useful name for debug purposes. */
5655 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5656 name = xstrprintf ("<type_units_%d>",
5657 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5658 else
5659 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5660
5661 pst = create_partial_symtab (per_cu, name);
5662 pst->anonymous = 1;
5663
5664 xfree (name);
5665 }
5666
5667 tu_group->hash.dwo_unit = cu->dwo_unit;
5668 tu_group->hash.line_offset = line_offset_struct;
5669
5670 return tu_group;
5671}
5672
5673/* Look up the type_unit_group for type unit CU, and create it if necessary.
5674 STMT_LIST is a DW_AT_stmt_list attribute. */
5675
5676static struct type_unit_group *
5677get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5678{
5679 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5680 struct type_unit_group *tu_group;
5681 void **slot;
5682 unsigned int line_offset;
5683 struct type_unit_group type_unit_group_for_lookup;
5684
5685 if (dwarf2_per_objfile->type_unit_groups == NULL)
5686 {
5687 dwarf2_per_objfile->type_unit_groups =
5688 allocate_type_unit_groups_table ();
5689 }
5690
5691 /* Do we need to create a new group, or can we use an existing one? */
5692
5693 if (stmt_list)
5694 {
5695 line_offset = DW_UNSND (stmt_list);
5696 ++tu_stats->nr_symtab_sharers;
5697 }
5698 else
5699 {
5700 /* Ugh, no stmt_list. Rare, but we have to handle it.
5701 We can do various things here like create one group per TU or
5702 spread them over multiple groups to split up the expansion work.
5703 To avoid worst case scenarios (too many groups or too large groups)
5704 we, umm, group them in bunches. */
5705 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5706 | (tu_stats->nr_stmt_less_type_units
5707 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5708 ++tu_stats->nr_stmt_less_type_units;
5709 }
5710
5711 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5712 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5713 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5714 &type_unit_group_for_lookup, INSERT);
5715 if (*slot != NULL)
5716 {
5717 tu_group = *slot;
5718 gdb_assert (tu_group != NULL);
5719 }
5720 else
5721 {
5722 sect_offset line_offset_struct;
5723
5724 line_offset_struct.sect_off = line_offset;
5725 tu_group = create_type_unit_group (cu, line_offset_struct);
5726 *slot = tu_group;
5727 ++tu_stats->nr_symtabs;
5728 }
5729
5730 return tu_group;
5731}
5732
5733/* Struct used to sort TUs by their abbreviation table offset. */
5734
5735struct tu_abbrev_offset
5736{
5737 struct signatured_type *sig_type;
5738 sect_offset abbrev_offset;
5739};
5740
5741/* Helper routine for build_type_unit_groups, passed to qsort. */
5742
5743static int
5744sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5745{
5746 const struct tu_abbrev_offset * const *a = ap;
5747 const struct tu_abbrev_offset * const *b = bp;
5748 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5749 unsigned int boff = (*b)->abbrev_offset.sect_off;
5750
5751 return (aoff > boff) - (aoff < boff);
5752}
5753
5754/* A helper function to add a type_unit_group to a table. */
5755
5756static int
5757add_type_unit_group_to_table (void **slot, void *datum)
5758{
5759 struct type_unit_group *tu_group = *slot;
5760 struct type_unit_group ***datap = datum;
5761
5762 **datap = tu_group;
5763 ++*datap;
5764
5765 return 1;
5766}
5767
5768/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5769 each one passing FUNC,DATA.
5770
5771 The efficiency is because we sort TUs by the abbrev table they use and
5772 only read each abbrev table once. In one program there are 200K TUs
5773 sharing 8K abbrev tables.
5774
5775 The main purpose of this function is to support building the
5776 dwarf2_per_objfile->type_unit_groups table.
5777 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5778 can collapse the search space by grouping them by stmt_list.
5779 The savings can be significant, in the same program from above the 200K TUs
5780 share 8K stmt_list tables.
5781
5782 FUNC is expected to call get_type_unit_group, which will create the
5783 struct type_unit_group if necessary and add it to
5784 dwarf2_per_objfile->type_unit_groups. */
5785
5786static void
5787build_type_unit_groups (die_reader_func_ftype *func, void *data)
5788{
5789 struct objfile *objfile = dwarf2_per_objfile->objfile;
5790 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5791 struct cleanup *cleanups;
5792 struct abbrev_table *abbrev_table;
5793 sect_offset abbrev_offset;
5794 struct tu_abbrev_offset *sorted_by_abbrev;
5795 struct type_unit_group **iter;
5796 int i;
5797
5798 /* It's up to the caller to not call us multiple times. */
5799 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5800
5801 if (dwarf2_per_objfile->n_type_units == 0)
5802 return;
5803
5804 /* TUs typically share abbrev tables, and there can be way more TUs than
5805 abbrev tables. Sort by abbrev table to reduce the number of times we
5806 read each abbrev table in.
5807 Alternatives are to punt or to maintain a cache of abbrev tables.
5808 This is simpler and efficient enough for now.
5809
5810 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5811 symtab to use). Typically TUs with the same abbrev offset have the same
5812 stmt_list value too so in practice this should work well.
5813
5814 The basic algorithm here is:
5815
5816 sort TUs by abbrev table
5817 for each TU with same abbrev table:
5818 read abbrev table if first user
5819 read TU top level DIE
5820 [IWBN if DWO skeletons had DW_AT_stmt_list]
5821 call FUNC */
5822
5823 if (dwarf2_read_debug)
5824 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5825
5826 /* Sort in a separate table to maintain the order of all_type_units
5827 for .gdb_index: TU indices directly index all_type_units. */
5828 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5829 dwarf2_per_objfile->n_type_units);
5830 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5831 {
5832 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5833
5834 sorted_by_abbrev[i].sig_type = sig_type;
5835 sorted_by_abbrev[i].abbrev_offset =
5836 read_abbrev_offset (sig_type->per_cu.section,
5837 sig_type->per_cu.offset);
5838 }
5839 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5840 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5841 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5842
5843 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5844 called any number of times, so we don't reset tu_stats here. */
5845
5846 abbrev_offset.sect_off = ~(unsigned) 0;
5847 abbrev_table = NULL;
5848 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5849
5850 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5851 {
5852 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5853
5854 /* Switch to the next abbrev table if necessary. */
5855 if (abbrev_table == NULL
5856 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5857 {
5858 if (abbrev_table != NULL)
5859 {
5860 abbrev_table_free (abbrev_table);
5861 /* Reset to NULL in case abbrev_table_read_table throws
5862 an error: abbrev_table_free_cleanup will get called. */
5863 abbrev_table = NULL;
5864 }
5865 abbrev_offset = tu->abbrev_offset;
5866 abbrev_table =
5867 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5868 abbrev_offset);
5869 ++tu_stats->nr_uniq_abbrev_tables;
5870 }
5871
5872 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5873 func, data);
5874 }
5875
5876 /* type_unit_groups can be NULL if there is an error in the debug info.
5877 Just create an empty table so the rest of gdb doesn't have to watch
5878 for this error case. */
5879 if (dwarf2_per_objfile->type_unit_groups == NULL)
5880 {
5881 dwarf2_per_objfile->type_unit_groups =
5882 allocate_type_unit_groups_table ();
5883 dwarf2_per_objfile->n_type_unit_groups = 0;
5884 }
5885
5886 /* Create a vector of pointers to primary type units to make it easy to
5887 iterate over them and CUs. See dw2_get_primary_cu. */
5888 dwarf2_per_objfile->n_type_unit_groups =
5889 htab_elements (dwarf2_per_objfile->type_unit_groups);
5890 dwarf2_per_objfile->all_type_unit_groups =
5891 obstack_alloc (&objfile->objfile_obstack,
5892 dwarf2_per_objfile->n_type_unit_groups
5893 * sizeof (struct type_unit_group *));
5894 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5895 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5896 add_type_unit_group_to_table, &iter);
5897 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5898 == dwarf2_per_objfile->n_type_unit_groups);
5899
5900 do_cleanups (cleanups);
5901
5902 if (dwarf2_read_debug)
5903 {
5904 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5905 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5906 dwarf2_per_objfile->n_type_units);
5907 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5908 tu_stats->nr_uniq_abbrev_tables);
5909 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5910 tu_stats->nr_symtabs);
5911 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5912 tu_stats->nr_symtab_sharers);
5913 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5914 tu_stats->nr_stmt_less_type_units);
5915 }
5916}
5917\f
5918/* Partial symbol tables. */
5919
5920/* Create a psymtab named NAME and assign it to PER_CU.
5921
5922 The caller must fill in the following details:
5923 dirname, textlow, texthigh. */
5924
5925static struct partial_symtab *
5926create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5927{
5928 struct objfile *objfile = per_cu->objfile;
5929 struct partial_symtab *pst;
5930
5931 pst = start_psymtab_common (objfile, objfile->section_offsets,
5932 name, 0,
5933 objfile->global_psymbols.next,
5934 objfile->static_psymbols.next);
5935
5936 pst->psymtabs_addrmap_supported = 1;
5937
5938 /* This is the glue that links PST into GDB's symbol API. */
5939 pst->read_symtab_private = per_cu;
5940 pst->read_symtab = dwarf2_read_symtab;
5941 per_cu->v.psymtab = pst;
5942
5943 return pst;
5944}
5945
5946/* The DATA object passed to process_psymtab_comp_unit_reader has this
5947 type. */
5948
5949struct process_psymtab_comp_unit_data
5950{
5951 /* True if we are reading a DW_TAG_partial_unit. */
5952
5953 int want_partial_unit;
5954
5955 /* The "pretend" language that is used if the CU doesn't declare a
5956 language. */
5957
5958 enum language pretend_language;
5959};
5960
5961/* die_reader_func for process_psymtab_comp_unit. */
5962
5963static void
5964process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5965 const gdb_byte *info_ptr,
5966 struct die_info *comp_unit_die,
5967 int has_children,
5968 void *data)
5969{
5970 struct dwarf2_cu *cu = reader->cu;
5971 struct objfile *objfile = cu->objfile;
5972 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5973 struct attribute *attr;
5974 CORE_ADDR baseaddr;
5975 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5976 struct partial_symtab *pst;
5977 int has_pc_info;
5978 const char *filename;
5979 struct process_psymtab_comp_unit_data *info = data;
5980
5981 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5982 return;
5983
5984 gdb_assert (! per_cu->is_debug_types);
5985
5986 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5987
5988 cu->list_in_scope = &file_symbols;
5989
5990 /* Allocate a new partial symbol table structure. */
5991 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5992 if (attr == NULL || !DW_STRING (attr))
5993 filename = "";
5994 else
5995 filename = DW_STRING (attr);
5996
5997 pst = create_partial_symtab (per_cu, filename);
5998
5999 /* This must be done before calling dwarf2_build_include_psymtabs. */
6000 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
6001 if (attr != NULL)
6002 pst->dirname = DW_STRING (attr);
6003
6004 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6005
6006 dwarf2_find_base_address (comp_unit_die, cu);
6007
6008 /* Possibly set the default values of LOWPC and HIGHPC from
6009 `DW_AT_ranges'. */
6010 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6011 &best_highpc, cu, pst);
6012 if (has_pc_info == 1 && best_lowpc < best_highpc)
6013 /* Store the contiguous range if it is not empty; it can be empty for
6014 CUs with no code. */
6015 addrmap_set_empty (objfile->psymtabs_addrmap,
6016 best_lowpc + baseaddr,
6017 best_highpc + baseaddr - 1, pst);
6018
6019 /* Check if comp unit has_children.
6020 If so, read the rest of the partial symbols from this comp unit.
6021 If not, there's no more debug_info for this comp unit. */
6022 if (has_children)
6023 {
6024 struct partial_die_info *first_die;
6025 CORE_ADDR lowpc, highpc;
6026
6027 lowpc = ((CORE_ADDR) -1);
6028 highpc = ((CORE_ADDR) 0);
6029
6030 first_die = load_partial_dies (reader, info_ptr, 1);
6031
6032 scan_partial_symbols (first_die, &lowpc, &highpc,
6033 ! has_pc_info, cu);
6034
6035 /* If we didn't find a lowpc, set it to highpc to avoid
6036 complaints from `maint check'. */
6037 if (lowpc == ((CORE_ADDR) -1))
6038 lowpc = highpc;
6039
6040 /* If the compilation unit didn't have an explicit address range,
6041 then use the information extracted from its child dies. */
6042 if (! has_pc_info)
6043 {
6044 best_lowpc = lowpc;
6045 best_highpc = highpc;
6046 }
6047 }
6048 pst->textlow = best_lowpc + baseaddr;
6049 pst->texthigh = best_highpc + baseaddr;
6050
6051 pst->n_global_syms = objfile->global_psymbols.next -
6052 (objfile->global_psymbols.list + pst->globals_offset);
6053 pst->n_static_syms = objfile->static_psymbols.next -
6054 (objfile->static_psymbols.list + pst->statics_offset);
6055 sort_pst_symbols (objfile, pst);
6056
6057 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6058 {
6059 int i;
6060 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6061 struct dwarf2_per_cu_data *iter;
6062
6063 /* Fill in 'dependencies' here; we fill in 'users' in a
6064 post-pass. */
6065 pst->number_of_dependencies = len;
6066 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6067 len * sizeof (struct symtab *));
6068 for (i = 0;
6069 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6070 i, iter);
6071 ++i)
6072 pst->dependencies[i] = iter->v.psymtab;
6073
6074 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6075 }
6076
6077 /* Get the list of files included in the current compilation unit,
6078 and build a psymtab for each of them. */
6079 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6080
6081 if (dwarf2_read_debug)
6082 {
6083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6084
6085 fprintf_unfiltered (gdb_stdlog,
6086 "Psymtab for %s unit @0x%x: %s - %s"
6087 ", %d global, %d static syms\n",
6088 per_cu->is_debug_types ? "type" : "comp",
6089 per_cu->offset.sect_off,
6090 paddress (gdbarch, pst->textlow),
6091 paddress (gdbarch, pst->texthigh),
6092 pst->n_global_syms, pst->n_static_syms);
6093 }
6094}
6095
6096/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6097 Process compilation unit THIS_CU for a psymtab. */
6098
6099static void
6100process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6101 int want_partial_unit,
6102 enum language pretend_language)
6103{
6104 struct process_psymtab_comp_unit_data info;
6105
6106 /* If this compilation unit was already read in, free the
6107 cached copy in order to read it in again. This is
6108 necessary because we skipped some symbols when we first
6109 read in the compilation unit (see load_partial_dies).
6110 This problem could be avoided, but the benefit is unclear. */
6111 if (this_cu->cu != NULL)
6112 free_one_cached_comp_unit (this_cu);
6113
6114 gdb_assert (! this_cu->is_debug_types);
6115 info.want_partial_unit = want_partial_unit;
6116 info.pretend_language = pretend_language;
6117 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6118 process_psymtab_comp_unit_reader,
6119 &info);
6120
6121 /* Age out any secondary CUs. */
6122 age_cached_comp_units ();
6123}
6124
6125/* Reader function for build_type_psymtabs. */
6126
6127static void
6128build_type_psymtabs_reader (const struct die_reader_specs *reader,
6129 const gdb_byte *info_ptr,
6130 struct die_info *type_unit_die,
6131 int has_children,
6132 void *data)
6133{
6134 struct objfile *objfile = dwarf2_per_objfile->objfile;
6135 struct dwarf2_cu *cu = reader->cu;
6136 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6137 struct signatured_type *sig_type;
6138 struct type_unit_group *tu_group;
6139 struct attribute *attr;
6140 struct partial_die_info *first_die;
6141 CORE_ADDR lowpc, highpc;
6142 struct partial_symtab *pst;
6143
6144 gdb_assert (data == NULL);
6145 gdb_assert (per_cu->is_debug_types);
6146 sig_type = (struct signatured_type *) per_cu;
6147
6148 if (! has_children)
6149 return;
6150
6151 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6152 tu_group = get_type_unit_group (cu, attr);
6153
6154 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6155
6156 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6157 cu->list_in_scope = &file_symbols;
6158 pst = create_partial_symtab (per_cu, "");
6159 pst->anonymous = 1;
6160
6161 first_die = load_partial_dies (reader, info_ptr, 1);
6162
6163 lowpc = (CORE_ADDR) -1;
6164 highpc = (CORE_ADDR) 0;
6165 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6166
6167 pst->n_global_syms = objfile->global_psymbols.next -
6168 (objfile->global_psymbols.list + pst->globals_offset);
6169 pst->n_static_syms = objfile->static_psymbols.next -
6170 (objfile->static_psymbols.list + pst->statics_offset);
6171 sort_pst_symbols (objfile, pst);
6172}
6173
6174/* Traversal function for build_type_psymtabs. */
6175
6176static int
6177build_type_psymtab_dependencies (void **slot, void *info)
6178{
6179 struct objfile *objfile = dwarf2_per_objfile->objfile;
6180 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6181 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6182 struct partial_symtab *pst = per_cu->v.psymtab;
6183 int len = VEC_length (sig_type_ptr, tu_group->tus);
6184 struct signatured_type *iter;
6185 int i;
6186
6187 gdb_assert (len > 0);
6188 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6189
6190 pst->number_of_dependencies = len;
6191 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6192 len * sizeof (struct psymtab *));
6193 for (i = 0;
6194 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6195 ++i)
6196 {
6197 gdb_assert (iter->per_cu.is_debug_types);
6198 pst->dependencies[i] = iter->per_cu.v.psymtab;
6199 iter->type_unit_group = tu_group;
6200 }
6201
6202 VEC_free (sig_type_ptr, tu_group->tus);
6203
6204 return 1;
6205}
6206
6207/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6208 Build partial symbol tables for the .debug_types comp-units. */
6209
6210static void
6211build_type_psymtabs (struct objfile *objfile)
6212{
6213 if (! create_all_type_units (objfile))
6214 return;
6215
6216 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6217
6218 /* Now that all TUs have been processed we can fill in the dependencies. */
6219 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6220 build_type_psymtab_dependencies, NULL);
6221}
6222
6223/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6224
6225static void
6226psymtabs_addrmap_cleanup (void *o)
6227{
6228 struct objfile *objfile = o;
6229
6230 objfile->psymtabs_addrmap = NULL;
6231}
6232
6233/* Compute the 'user' field for each psymtab in OBJFILE. */
6234
6235static void
6236set_partial_user (struct objfile *objfile)
6237{
6238 int i;
6239
6240 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6241 {
6242 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6243 struct partial_symtab *pst = per_cu->v.psymtab;
6244 int j;
6245
6246 if (pst == NULL)
6247 continue;
6248
6249 for (j = 0; j < pst->number_of_dependencies; ++j)
6250 {
6251 /* Set the 'user' field only if it is not already set. */
6252 if (pst->dependencies[j]->user == NULL)
6253 pst->dependencies[j]->user = pst;
6254 }
6255 }
6256}
6257
6258/* Build the partial symbol table by doing a quick pass through the
6259 .debug_info and .debug_abbrev sections. */
6260
6261static void
6262dwarf2_build_psymtabs_hard (struct objfile *objfile)
6263{
6264 struct cleanup *back_to, *addrmap_cleanup;
6265 struct obstack temp_obstack;
6266 int i;
6267
6268 if (dwarf2_read_debug)
6269 {
6270 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6271 objfile_name (objfile));
6272 }
6273
6274 dwarf2_per_objfile->reading_partial_symbols = 1;
6275
6276 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6277
6278 /* Any cached compilation units will be linked by the per-objfile
6279 read_in_chain. Make sure to free them when we're done. */
6280 back_to = make_cleanup (free_cached_comp_units, NULL);
6281
6282 build_type_psymtabs (objfile);
6283
6284 create_all_comp_units (objfile);
6285
6286 /* Create a temporary address map on a temporary obstack. We later
6287 copy this to the final obstack. */
6288 obstack_init (&temp_obstack);
6289 make_cleanup_obstack_free (&temp_obstack);
6290 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6291 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6292
6293 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6294 {
6295 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6296
6297 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6298 }
6299
6300 set_partial_user (objfile);
6301
6302 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6303 &objfile->objfile_obstack);
6304 discard_cleanups (addrmap_cleanup);
6305
6306 do_cleanups (back_to);
6307
6308 if (dwarf2_read_debug)
6309 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6310 objfile_name (objfile));
6311}
6312
6313/* die_reader_func for load_partial_comp_unit. */
6314
6315static void
6316load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6317 const gdb_byte *info_ptr,
6318 struct die_info *comp_unit_die,
6319 int has_children,
6320 void *data)
6321{
6322 struct dwarf2_cu *cu = reader->cu;
6323
6324 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6325
6326 /* Check if comp unit has_children.
6327 If so, read the rest of the partial symbols from this comp unit.
6328 If not, there's no more debug_info for this comp unit. */
6329 if (has_children)
6330 load_partial_dies (reader, info_ptr, 0);
6331}
6332
6333/* Load the partial DIEs for a secondary CU into memory.
6334 This is also used when rereading a primary CU with load_all_dies. */
6335
6336static void
6337load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6338{
6339 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6340 load_partial_comp_unit_reader, NULL);
6341}
6342
6343static void
6344read_comp_units_from_section (struct objfile *objfile,
6345 struct dwarf2_section_info *section,
6346 unsigned int is_dwz,
6347 int *n_allocated,
6348 int *n_comp_units,
6349 struct dwarf2_per_cu_data ***all_comp_units)
6350{
6351 const gdb_byte *info_ptr;
6352 bfd *abfd = get_section_bfd_owner (section);
6353
6354 if (dwarf2_read_debug)
6355 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6356 get_section_name (section),
6357 get_section_file_name (section));
6358
6359 dwarf2_read_section (objfile, section);
6360
6361 info_ptr = section->buffer;
6362
6363 while (info_ptr < section->buffer + section->size)
6364 {
6365 unsigned int length, initial_length_size;
6366 struct dwarf2_per_cu_data *this_cu;
6367 sect_offset offset;
6368
6369 offset.sect_off = info_ptr - section->buffer;
6370
6371 /* Read just enough information to find out where the next
6372 compilation unit is. */
6373 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6374
6375 /* Save the compilation unit for later lookup. */
6376 this_cu = obstack_alloc (&objfile->objfile_obstack,
6377 sizeof (struct dwarf2_per_cu_data));
6378 memset (this_cu, 0, sizeof (*this_cu));
6379 this_cu->offset = offset;
6380 this_cu->length = length + initial_length_size;
6381 this_cu->is_dwz = is_dwz;
6382 this_cu->objfile = objfile;
6383 this_cu->section = section;
6384
6385 if (*n_comp_units == *n_allocated)
6386 {
6387 *n_allocated *= 2;
6388 *all_comp_units = xrealloc (*all_comp_units,
6389 *n_allocated
6390 * sizeof (struct dwarf2_per_cu_data *));
6391 }
6392 (*all_comp_units)[*n_comp_units] = this_cu;
6393 ++*n_comp_units;
6394
6395 info_ptr = info_ptr + this_cu->length;
6396 }
6397}
6398
6399/* Create a list of all compilation units in OBJFILE.
6400 This is only done for -readnow and building partial symtabs. */
6401
6402static void
6403create_all_comp_units (struct objfile *objfile)
6404{
6405 int n_allocated;
6406 int n_comp_units;
6407 struct dwarf2_per_cu_data **all_comp_units;
6408 struct dwz_file *dwz;
6409
6410 n_comp_units = 0;
6411 n_allocated = 10;
6412 all_comp_units = xmalloc (n_allocated
6413 * sizeof (struct dwarf2_per_cu_data *));
6414
6415 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6416 &n_allocated, &n_comp_units, &all_comp_units);
6417
6418 dwz = dwarf2_get_dwz_file ();
6419 if (dwz != NULL)
6420 read_comp_units_from_section (objfile, &dwz->info, 1,
6421 &n_allocated, &n_comp_units,
6422 &all_comp_units);
6423
6424 dwarf2_per_objfile->all_comp_units
6425 = obstack_alloc (&objfile->objfile_obstack,
6426 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6427 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6428 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6429 xfree (all_comp_units);
6430 dwarf2_per_objfile->n_comp_units = n_comp_units;
6431}
6432
6433/* Process all loaded DIEs for compilation unit CU, starting at
6434 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6435 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6436 DW_AT_ranges). If NEED_PC is set, then this function will set
6437 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6438 and record the covered ranges in the addrmap. */
6439
6440static void
6441scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6442 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6443{
6444 struct partial_die_info *pdi;
6445
6446 /* Now, march along the PDI's, descending into ones which have
6447 interesting children but skipping the children of the other ones,
6448 until we reach the end of the compilation unit. */
6449
6450 pdi = first_die;
6451
6452 while (pdi != NULL)
6453 {
6454 fixup_partial_die (pdi, cu);
6455
6456 /* Anonymous namespaces or modules have no name but have interesting
6457 children, so we need to look at them. Ditto for anonymous
6458 enums. */
6459
6460 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6461 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6462 || pdi->tag == DW_TAG_imported_unit)
6463 {
6464 switch (pdi->tag)
6465 {
6466 case DW_TAG_subprogram:
6467 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6468 break;
6469 case DW_TAG_constant:
6470 case DW_TAG_variable:
6471 case DW_TAG_typedef:
6472 case DW_TAG_union_type:
6473 if (!pdi->is_declaration)
6474 {
6475 add_partial_symbol (pdi, cu);
6476 }
6477 break;
6478 case DW_TAG_class_type:
6479 case DW_TAG_interface_type:
6480 case DW_TAG_structure_type:
6481 if (!pdi->is_declaration)
6482 {
6483 add_partial_symbol (pdi, cu);
6484 }
6485 break;
6486 case DW_TAG_enumeration_type:
6487 if (!pdi->is_declaration)
6488 add_partial_enumeration (pdi, cu);
6489 break;
6490 case DW_TAG_base_type:
6491 case DW_TAG_subrange_type:
6492 /* File scope base type definitions are added to the partial
6493 symbol table. */
6494 add_partial_symbol (pdi, cu);
6495 break;
6496 case DW_TAG_namespace:
6497 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6498 break;
6499 case DW_TAG_module:
6500 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6501 break;
6502 case DW_TAG_imported_unit:
6503 {
6504 struct dwarf2_per_cu_data *per_cu;
6505
6506 /* For now we don't handle imported units in type units. */
6507 if (cu->per_cu->is_debug_types)
6508 {
6509 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6510 " supported in type units [in module %s]"),
6511 objfile_name (cu->objfile));
6512 }
6513
6514 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6515 pdi->is_dwz,
6516 cu->objfile);
6517
6518 /* Go read the partial unit, if needed. */
6519 if (per_cu->v.psymtab == NULL)
6520 process_psymtab_comp_unit (per_cu, 1, cu->language);
6521
6522 VEC_safe_push (dwarf2_per_cu_ptr,
6523 cu->per_cu->imported_symtabs, per_cu);
6524 }
6525 break;
6526 case DW_TAG_imported_declaration:
6527 add_partial_symbol (pdi, cu);
6528 break;
6529 default:
6530 break;
6531 }
6532 }
6533
6534 /* If the die has a sibling, skip to the sibling. */
6535
6536 pdi = pdi->die_sibling;
6537 }
6538}
6539
6540/* Functions used to compute the fully scoped name of a partial DIE.
6541
6542 Normally, this is simple. For C++, the parent DIE's fully scoped
6543 name is concatenated with "::" and the partial DIE's name. For
6544 Java, the same thing occurs except that "." is used instead of "::".
6545 Enumerators are an exception; they use the scope of their parent
6546 enumeration type, i.e. the name of the enumeration type is not
6547 prepended to the enumerator.
6548
6549 There are two complexities. One is DW_AT_specification; in this
6550 case "parent" means the parent of the target of the specification,
6551 instead of the direct parent of the DIE. The other is compilers
6552 which do not emit DW_TAG_namespace; in this case we try to guess
6553 the fully qualified name of structure types from their members'
6554 linkage names. This must be done using the DIE's children rather
6555 than the children of any DW_AT_specification target. We only need
6556 to do this for structures at the top level, i.e. if the target of
6557 any DW_AT_specification (if any; otherwise the DIE itself) does not
6558 have a parent. */
6559
6560/* Compute the scope prefix associated with PDI's parent, in
6561 compilation unit CU. The result will be allocated on CU's
6562 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6563 field. NULL is returned if no prefix is necessary. */
6564static const char *
6565partial_die_parent_scope (struct partial_die_info *pdi,
6566 struct dwarf2_cu *cu)
6567{
6568 const char *grandparent_scope;
6569 struct partial_die_info *parent, *real_pdi;
6570
6571 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6572 then this means the parent of the specification DIE. */
6573
6574 real_pdi = pdi;
6575 while (real_pdi->has_specification)
6576 real_pdi = find_partial_die (real_pdi->spec_offset,
6577 real_pdi->spec_is_dwz, cu);
6578
6579 parent = real_pdi->die_parent;
6580 if (parent == NULL)
6581 return NULL;
6582
6583 if (parent->scope_set)
6584 return parent->scope;
6585
6586 fixup_partial_die (parent, cu);
6587
6588 grandparent_scope = partial_die_parent_scope (parent, cu);
6589
6590 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6591 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6592 Work around this problem here. */
6593 if (cu->language == language_cplus
6594 && parent->tag == DW_TAG_namespace
6595 && strcmp (parent->name, "::") == 0
6596 && grandparent_scope == NULL)
6597 {
6598 parent->scope = NULL;
6599 parent->scope_set = 1;
6600 return NULL;
6601 }
6602
6603 if (pdi->tag == DW_TAG_enumerator)
6604 /* Enumerators should not get the name of the enumeration as a prefix. */
6605 parent->scope = grandparent_scope;
6606 else if (parent->tag == DW_TAG_namespace
6607 || parent->tag == DW_TAG_module
6608 || parent->tag == DW_TAG_structure_type
6609 || parent->tag == DW_TAG_class_type
6610 || parent->tag == DW_TAG_interface_type
6611 || parent->tag == DW_TAG_union_type
6612 || parent->tag == DW_TAG_enumeration_type)
6613 {
6614 if (grandparent_scope == NULL)
6615 parent->scope = parent->name;
6616 else
6617 parent->scope = typename_concat (&cu->comp_unit_obstack,
6618 grandparent_scope,
6619 parent->name, 0, cu);
6620 }
6621 else
6622 {
6623 /* FIXME drow/2004-04-01: What should we be doing with
6624 function-local names? For partial symbols, we should probably be
6625 ignoring them. */
6626 complaint (&symfile_complaints,
6627 _("unhandled containing DIE tag %d for DIE at %d"),
6628 parent->tag, pdi->offset.sect_off);
6629 parent->scope = grandparent_scope;
6630 }
6631
6632 parent->scope_set = 1;
6633 return parent->scope;
6634}
6635
6636/* Return the fully scoped name associated with PDI, from compilation unit
6637 CU. The result will be allocated with malloc. */
6638
6639static char *
6640partial_die_full_name (struct partial_die_info *pdi,
6641 struct dwarf2_cu *cu)
6642{
6643 const char *parent_scope;
6644
6645 /* If this is a template instantiation, we can not work out the
6646 template arguments from partial DIEs. So, unfortunately, we have
6647 to go through the full DIEs. At least any work we do building
6648 types here will be reused if full symbols are loaded later. */
6649 if (pdi->has_template_arguments)
6650 {
6651 fixup_partial_die (pdi, cu);
6652
6653 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6654 {
6655 struct die_info *die;
6656 struct attribute attr;
6657 struct dwarf2_cu *ref_cu = cu;
6658
6659 /* DW_FORM_ref_addr is using section offset. */
6660 attr.name = 0;
6661 attr.form = DW_FORM_ref_addr;
6662 attr.u.unsnd = pdi->offset.sect_off;
6663 die = follow_die_ref (NULL, &attr, &ref_cu);
6664
6665 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6666 }
6667 }
6668
6669 parent_scope = partial_die_parent_scope (pdi, cu);
6670 if (parent_scope == NULL)
6671 return NULL;
6672 else
6673 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6674}
6675
6676static void
6677add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6678{
6679 struct objfile *objfile = cu->objfile;
6680 CORE_ADDR addr = 0;
6681 const char *actual_name = NULL;
6682 CORE_ADDR baseaddr;
6683 char *built_actual_name;
6684
6685 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6686
6687 built_actual_name = partial_die_full_name (pdi, cu);
6688 if (built_actual_name != NULL)
6689 actual_name = built_actual_name;
6690
6691 if (actual_name == NULL)
6692 actual_name = pdi->name;
6693
6694 switch (pdi->tag)
6695 {
6696 case DW_TAG_subprogram:
6697 if (pdi->is_external || cu->language == language_ada)
6698 {
6699 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6700 of the global scope. But in Ada, we want to be able to access
6701 nested procedures globally. So all Ada subprograms are stored
6702 in the global scope. */
6703 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6704 mst_text, objfile); */
6705 add_psymbol_to_list (actual_name, strlen (actual_name),
6706 built_actual_name != NULL,
6707 VAR_DOMAIN, LOC_BLOCK,
6708 &objfile->global_psymbols,
6709 0, pdi->lowpc + baseaddr,
6710 cu->language, objfile);
6711 }
6712 else
6713 {
6714 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6715 mst_file_text, objfile); */
6716 add_psymbol_to_list (actual_name, strlen (actual_name),
6717 built_actual_name != NULL,
6718 VAR_DOMAIN, LOC_BLOCK,
6719 &objfile->static_psymbols,
6720 0, pdi->lowpc + baseaddr,
6721 cu->language, objfile);
6722 }
6723 break;
6724 case DW_TAG_constant:
6725 {
6726 struct psymbol_allocation_list *list;
6727
6728 if (pdi->is_external)
6729 list = &objfile->global_psymbols;
6730 else
6731 list = &objfile->static_psymbols;
6732 add_psymbol_to_list (actual_name, strlen (actual_name),
6733 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6734 list, 0, 0, cu->language, objfile);
6735 }
6736 break;
6737 case DW_TAG_variable:
6738 if (pdi->d.locdesc)
6739 addr = decode_locdesc (pdi->d.locdesc, cu);
6740
6741 if (pdi->d.locdesc
6742 && addr == 0
6743 && !dwarf2_per_objfile->has_section_at_zero)
6744 {
6745 /* A global or static variable may also have been stripped
6746 out by the linker if unused, in which case its address
6747 will be nullified; do not add such variables into partial
6748 symbol table then. */
6749 }
6750 else if (pdi->is_external)
6751 {
6752 /* Global Variable.
6753 Don't enter into the minimal symbol tables as there is
6754 a minimal symbol table entry from the ELF symbols already.
6755 Enter into partial symbol table if it has a location
6756 descriptor or a type.
6757 If the location descriptor is missing, new_symbol will create
6758 a LOC_UNRESOLVED symbol, the address of the variable will then
6759 be determined from the minimal symbol table whenever the variable
6760 is referenced.
6761 The address for the partial symbol table entry is not
6762 used by GDB, but it comes in handy for debugging partial symbol
6763 table building. */
6764
6765 if (pdi->d.locdesc || pdi->has_type)
6766 add_psymbol_to_list (actual_name, strlen (actual_name),
6767 built_actual_name != NULL,
6768 VAR_DOMAIN, LOC_STATIC,
6769 &objfile->global_psymbols,
6770 0, addr + baseaddr,
6771 cu->language, objfile);
6772 }
6773 else
6774 {
6775 /* Static Variable. Skip symbols without location descriptors. */
6776 if (pdi->d.locdesc == NULL)
6777 {
6778 xfree (built_actual_name);
6779 return;
6780 }
6781 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6782 mst_file_data, objfile); */
6783 add_psymbol_to_list (actual_name, strlen (actual_name),
6784 built_actual_name != NULL,
6785 VAR_DOMAIN, LOC_STATIC,
6786 &objfile->static_psymbols,
6787 0, addr + baseaddr,
6788 cu->language, objfile);
6789 }
6790 break;
6791 case DW_TAG_typedef:
6792 case DW_TAG_base_type:
6793 case DW_TAG_subrange_type:
6794 add_psymbol_to_list (actual_name, strlen (actual_name),
6795 built_actual_name != NULL,
6796 VAR_DOMAIN, LOC_TYPEDEF,
6797 &objfile->static_psymbols,
6798 0, (CORE_ADDR) 0, cu->language, objfile);
6799 break;
6800 case DW_TAG_imported_declaration:
6801 case DW_TAG_namespace:
6802 add_psymbol_to_list (actual_name, strlen (actual_name),
6803 built_actual_name != NULL,
6804 VAR_DOMAIN, LOC_TYPEDEF,
6805 &objfile->global_psymbols,
6806 0, (CORE_ADDR) 0, cu->language, objfile);
6807 break;
6808 case DW_TAG_module:
6809 add_psymbol_to_list (actual_name, strlen (actual_name),
6810 built_actual_name != NULL,
6811 MODULE_DOMAIN, LOC_TYPEDEF,
6812 &objfile->global_psymbols,
6813 0, (CORE_ADDR) 0, cu->language, objfile);
6814 break;
6815 case DW_TAG_class_type:
6816 case DW_TAG_interface_type:
6817 case DW_TAG_structure_type:
6818 case DW_TAG_union_type:
6819 case DW_TAG_enumeration_type:
6820 /* Skip external references. The DWARF standard says in the section
6821 about "Structure, Union, and Class Type Entries": "An incomplete
6822 structure, union or class type is represented by a structure,
6823 union or class entry that does not have a byte size attribute
6824 and that has a DW_AT_declaration attribute." */
6825 if (!pdi->has_byte_size && pdi->is_declaration)
6826 {
6827 xfree (built_actual_name);
6828 return;
6829 }
6830
6831 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6832 static vs. global. */
6833 add_psymbol_to_list (actual_name, strlen (actual_name),
6834 built_actual_name != NULL,
6835 STRUCT_DOMAIN, LOC_TYPEDEF,
6836 (cu->language == language_cplus
6837 || cu->language == language_java)
6838 ? &objfile->global_psymbols
6839 : &objfile->static_psymbols,
6840 0, (CORE_ADDR) 0, cu->language, objfile);
6841
6842 break;
6843 case DW_TAG_enumerator:
6844 add_psymbol_to_list (actual_name, strlen (actual_name),
6845 built_actual_name != NULL,
6846 VAR_DOMAIN, LOC_CONST,
6847 (cu->language == language_cplus
6848 || cu->language == language_java)
6849 ? &objfile->global_psymbols
6850 : &objfile->static_psymbols,
6851 0, (CORE_ADDR) 0, cu->language, objfile);
6852 break;
6853 default:
6854 break;
6855 }
6856
6857 xfree (built_actual_name);
6858}
6859
6860/* Read a partial die corresponding to a namespace; also, add a symbol
6861 corresponding to that namespace to the symbol table. NAMESPACE is
6862 the name of the enclosing namespace. */
6863
6864static void
6865add_partial_namespace (struct partial_die_info *pdi,
6866 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6867 int need_pc, struct dwarf2_cu *cu)
6868{
6869 /* Add a symbol for the namespace. */
6870
6871 add_partial_symbol (pdi, cu);
6872
6873 /* Now scan partial symbols in that namespace. */
6874
6875 if (pdi->has_children)
6876 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6877}
6878
6879/* Read a partial die corresponding to a Fortran module. */
6880
6881static void
6882add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6883 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6884{
6885 /* Add a symbol for the namespace. */
6886
6887 add_partial_symbol (pdi, cu);
6888
6889 /* Now scan partial symbols in that module. */
6890
6891 if (pdi->has_children)
6892 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6893}
6894
6895/* Read a partial die corresponding to a subprogram and create a partial
6896 symbol for that subprogram. When the CU language allows it, this
6897 routine also defines a partial symbol for each nested subprogram
6898 that this subprogram contains.
6899
6900 DIE my also be a lexical block, in which case we simply search
6901 recursively for suprograms defined inside that lexical block.
6902 Again, this is only performed when the CU language allows this
6903 type of definitions. */
6904
6905static void
6906add_partial_subprogram (struct partial_die_info *pdi,
6907 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6908 int need_pc, struct dwarf2_cu *cu)
6909{
6910 if (pdi->tag == DW_TAG_subprogram)
6911 {
6912 if (pdi->has_pc_info)
6913 {
6914 if (pdi->lowpc < *lowpc)
6915 *lowpc = pdi->lowpc;
6916 if (pdi->highpc > *highpc)
6917 *highpc = pdi->highpc;
6918 if (need_pc)
6919 {
6920 CORE_ADDR baseaddr;
6921 struct objfile *objfile = cu->objfile;
6922
6923 baseaddr = ANOFFSET (objfile->section_offsets,
6924 SECT_OFF_TEXT (objfile));
6925 addrmap_set_empty (objfile->psymtabs_addrmap,
6926 pdi->lowpc + baseaddr,
6927 pdi->highpc - 1 + baseaddr,
6928 cu->per_cu->v.psymtab);
6929 }
6930 }
6931
6932 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6933 {
6934 if (!pdi->is_declaration)
6935 /* Ignore subprogram DIEs that do not have a name, they are
6936 illegal. Do not emit a complaint at this point, we will
6937 do so when we convert this psymtab into a symtab. */
6938 if (pdi->name)
6939 add_partial_symbol (pdi, cu);
6940 }
6941 }
6942
6943 if (! pdi->has_children)
6944 return;
6945
6946 if (cu->language == language_ada)
6947 {
6948 pdi = pdi->die_child;
6949 while (pdi != NULL)
6950 {
6951 fixup_partial_die (pdi, cu);
6952 if (pdi->tag == DW_TAG_subprogram
6953 || pdi->tag == DW_TAG_lexical_block)
6954 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6955 pdi = pdi->die_sibling;
6956 }
6957 }
6958}
6959
6960/* Read a partial die corresponding to an enumeration type. */
6961
6962static void
6963add_partial_enumeration (struct partial_die_info *enum_pdi,
6964 struct dwarf2_cu *cu)
6965{
6966 struct partial_die_info *pdi;
6967
6968 if (enum_pdi->name != NULL)
6969 add_partial_symbol (enum_pdi, cu);
6970
6971 pdi = enum_pdi->die_child;
6972 while (pdi)
6973 {
6974 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6975 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6976 else
6977 add_partial_symbol (pdi, cu);
6978 pdi = pdi->die_sibling;
6979 }
6980}
6981
6982/* Return the initial uleb128 in the die at INFO_PTR. */
6983
6984static unsigned int
6985peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6986{
6987 unsigned int bytes_read;
6988
6989 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6990}
6991
6992/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6993 Return the corresponding abbrev, or NULL if the number is zero (indicating
6994 an empty DIE). In either case *BYTES_READ will be set to the length of
6995 the initial number. */
6996
6997static struct abbrev_info *
6998peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6999 struct dwarf2_cu *cu)
7000{
7001 bfd *abfd = cu->objfile->obfd;
7002 unsigned int abbrev_number;
7003 struct abbrev_info *abbrev;
7004
7005 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7006
7007 if (abbrev_number == 0)
7008 return NULL;
7009
7010 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7011 if (!abbrev)
7012 {
7013 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7014 abbrev_number, bfd_get_filename (abfd));
7015 }
7016
7017 return abbrev;
7018}
7019
7020/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7021 Returns a pointer to the end of a series of DIEs, terminated by an empty
7022 DIE. Any children of the skipped DIEs will also be skipped. */
7023
7024static const gdb_byte *
7025skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7026{
7027 struct dwarf2_cu *cu = reader->cu;
7028 struct abbrev_info *abbrev;
7029 unsigned int bytes_read;
7030
7031 while (1)
7032 {
7033 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7034 if (abbrev == NULL)
7035 return info_ptr + bytes_read;
7036 else
7037 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7038 }
7039}
7040
7041/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7042 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7043 abbrev corresponding to that skipped uleb128 should be passed in
7044 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7045 children. */
7046
7047static const gdb_byte *
7048skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7049 struct abbrev_info *abbrev)
7050{
7051 unsigned int bytes_read;
7052 struct attribute attr;
7053 bfd *abfd = reader->abfd;
7054 struct dwarf2_cu *cu = reader->cu;
7055 const gdb_byte *buffer = reader->buffer;
7056 const gdb_byte *buffer_end = reader->buffer_end;
7057 const gdb_byte *start_info_ptr = info_ptr;
7058 unsigned int form, i;
7059
7060 for (i = 0; i < abbrev->num_attrs; i++)
7061 {
7062 /* The only abbrev we care about is DW_AT_sibling. */
7063 if (abbrev->attrs[i].name == DW_AT_sibling)
7064 {
7065 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7066 if (attr.form == DW_FORM_ref_addr)
7067 complaint (&symfile_complaints,
7068 _("ignoring absolute DW_AT_sibling"));
7069 else
7070 {
7071 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7072 const gdb_byte *sibling_ptr = buffer + off;
7073
7074 if (sibling_ptr < info_ptr)
7075 complaint (&symfile_complaints,
7076 _("DW_AT_sibling points backwards"));
7077 else
7078 return sibling_ptr;
7079 }
7080 }
7081
7082 /* If it isn't DW_AT_sibling, skip this attribute. */
7083 form = abbrev->attrs[i].form;
7084 skip_attribute:
7085 switch (form)
7086 {
7087 case DW_FORM_ref_addr:
7088 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7089 and later it is offset sized. */
7090 if (cu->header.version == 2)
7091 info_ptr += cu->header.addr_size;
7092 else
7093 info_ptr += cu->header.offset_size;
7094 break;
7095 case DW_FORM_GNU_ref_alt:
7096 info_ptr += cu->header.offset_size;
7097 break;
7098 case DW_FORM_addr:
7099 info_ptr += cu->header.addr_size;
7100 break;
7101 case DW_FORM_data1:
7102 case DW_FORM_ref1:
7103 case DW_FORM_flag:
7104 info_ptr += 1;
7105 break;
7106 case DW_FORM_flag_present:
7107 break;
7108 case DW_FORM_data2:
7109 case DW_FORM_ref2:
7110 info_ptr += 2;
7111 break;
7112 case DW_FORM_data4:
7113 case DW_FORM_ref4:
7114 info_ptr += 4;
7115 break;
7116 case DW_FORM_data8:
7117 case DW_FORM_ref8:
7118 case DW_FORM_ref_sig8:
7119 info_ptr += 8;
7120 break;
7121 case DW_FORM_string:
7122 read_direct_string (abfd, info_ptr, &bytes_read);
7123 info_ptr += bytes_read;
7124 break;
7125 case DW_FORM_sec_offset:
7126 case DW_FORM_strp:
7127 case DW_FORM_GNU_strp_alt:
7128 info_ptr += cu->header.offset_size;
7129 break;
7130 case DW_FORM_exprloc:
7131 case DW_FORM_block:
7132 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7133 info_ptr += bytes_read;
7134 break;
7135 case DW_FORM_block1:
7136 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7137 break;
7138 case DW_FORM_block2:
7139 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7140 break;
7141 case DW_FORM_block4:
7142 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7143 break;
7144 case DW_FORM_sdata:
7145 case DW_FORM_udata:
7146 case DW_FORM_ref_udata:
7147 case DW_FORM_GNU_addr_index:
7148 case DW_FORM_GNU_str_index:
7149 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7150 break;
7151 case DW_FORM_indirect:
7152 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7153 info_ptr += bytes_read;
7154 /* We need to continue parsing from here, so just go back to
7155 the top. */
7156 goto skip_attribute;
7157
7158 default:
7159 error (_("Dwarf Error: Cannot handle %s "
7160 "in DWARF reader [in module %s]"),
7161 dwarf_form_name (form),
7162 bfd_get_filename (abfd));
7163 }
7164 }
7165
7166 if (abbrev->has_children)
7167 return skip_children (reader, info_ptr);
7168 else
7169 return info_ptr;
7170}
7171
7172/* Locate ORIG_PDI's sibling.
7173 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7174
7175static const gdb_byte *
7176locate_pdi_sibling (const struct die_reader_specs *reader,
7177 struct partial_die_info *orig_pdi,
7178 const gdb_byte *info_ptr)
7179{
7180 /* Do we know the sibling already? */
7181
7182 if (orig_pdi->sibling)
7183 return orig_pdi->sibling;
7184
7185 /* Are there any children to deal with? */
7186
7187 if (!orig_pdi->has_children)
7188 return info_ptr;
7189
7190 /* Skip the children the long way. */
7191
7192 return skip_children (reader, info_ptr);
7193}
7194
7195/* Expand this partial symbol table into a full symbol table. SELF is
7196 not NULL. */
7197
7198static void
7199dwarf2_read_symtab (struct partial_symtab *self,
7200 struct objfile *objfile)
7201{
7202 if (self->readin)
7203 {
7204 warning (_("bug: psymtab for %s is already read in."),
7205 self->filename);
7206 }
7207 else
7208 {
7209 if (info_verbose)
7210 {
7211 printf_filtered (_("Reading in symbols for %s..."),
7212 self->filename);
7213 gdb_flush (gdb_stdout);
7214 }
7215
7216 /* Restore our global data. */
7217 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7218
7219 /* If this psymtab is constructed from a debug-only objfile, the
7220 has_section_at_zero flag will not necessarily be correct. We
7221 can get the correct value for this flag by looking at the data
7222 associated with the (presumably stripped) associated objfile. */
7223 if (objfile->separate_debug_objfile_backlink)
7224 {
7225 struct dwarf2_per_objfile *dpo_backlink
7226 = objfile_data (objfile->separate_debug_objfile_backlink,
7227 dwarf2_objfile_data_key);
7228
7229 dwarf2_per_objfile->has_section_at_zero
7230 = dpo_backlink->has_section_at_zero;
7231 }
7232
7233 dwarf2_per_objfile->reading_partial_symbols = 0;
7234
7235 psymtab_to_symtab_1 (self);
7236
7237 /* Finish up the debug error message. */
7238 if (info_verbose)
7239 printf_filtered (_("done.\n"));
7240 }
7241
7242 process_cu_includes ();
7243}
7244\f
7245/* Reading in full CUs. */
7246
7247/* Add PER_CU to the queue. */
7248
7249static void
7250queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7251 enum language pretend_language)
7252{
7253 struct dwarf2_queue_item *item;
7254
7255 per_cu->queued = 1;
7256 item = xmalloc (sizeof (*item));
7257 item->per_cu = per_cu;
7258 item->pretend_language = pretend_language;
7259 item->next = NULL;
7260
7261 if (dwarf2_queue == NULL)
7262 dwarf2_queue = item;
7263 else
7264 dwarf2_queue_tail->next = item;
7265
7266 dwarf2_queue_tail = item;
7267}
7268
7269/* If PER_CU is not yet queued, add it to the queue.
7270 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7271 dependency.
7272 The result is non-zero if PER_CU was queued, otherwise the result is zero
7273 meaning either PER_CU is already queued or it is already loaded.
7274
7275 N.B. There is an invariant here that if a CU is queued then it is loaded.
7276 The caller is required to load PER_CU if we return non-zero. */
7277
7278static int
7279maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7280 struct dwarf2_per_cu_data *per_cu,
7281 enum language pretend_language)
7282{
7283 /* We may arrive here during partial symbol reading, if we need full
7284 DIEs to process an unusual case (e.g. template arguments). Do
7285 not queue PER_CU, just tell our caller to load its DIEs. */
7286 if (dwarf2_per_objfile->reading_partial_symbols)
7287 {
7288 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7289 return 1;
7290 return 0;
7291 }
7292
7293 /* Mark the dependence relation so that we don't flush PER_CU
7294 too early. */
7295 if (dependent_cu != NULL)
7296 dwarf2_add_dependence (dependent_cu, per_cu);
7297
7298 /* If it's already on the queue, we have nothing to do. */
7299 if (per_cu->queued)
7300 return 0;
7301
7302 /* If the compilation unit is already loaded, just mark it as
7303 used. */
7304 if (per_cu->cu != NULL)
7305 {
7306 per_cu->cu->last_used = 0;
7307 return 0;
7308 }
7309
7310 /* Add it to the queue. */
7311 queue_comp_unit (per_cu, pretend_language);
7312
7313 return 1;
7314}
7315
7316/* Process the queue. */
7317
7318static void
7319process_queue (void)
7320{
7321 struct dwarf2_queue_item *item, *next_item;
7322
7323 if (dwarf2_read_debug)
7324 {
7325 fprintf_unfiltered (gdb_stdlog,
7326 "Expanding one or more symtabs of objfile %s ...\n",
7327 objfile_name (dwarf2_per_objfile->objfile));
7328 }
7329
7330 /* The queue starts out with one item, but following a DIE reference
7331 may load a new CU, adding it to the end of the queue. */
7332 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7333 {
7334 if (dwarf2_per_objfile->using_index
7335 ? !item->per_cu->v.quick->symtab
7336 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7337 {
7338 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7339 unsigned int debug_print_threshold;
7340 char buf[100];
7341
7342 if (per_cu->is_debug_types)
7343 {
7344 struct signatured_type *sig_type =
7345 (struct signatured_type *) per_cu;
7346
7347 sprintf (buf, "TU %s at offset 0x%x",
7348 hex_string (sig_type->signature),
7349 per_cu->offset.sect_off);
7350 /* There can be 100s of TUs.
7351 Only print them in verbose mode. */
7352 debug_print_threshold = 2;
7353 }
7354 else
7355 {
7356 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7357 debug_print_threshold = 1;
7358 }
7359
7360 if (dwarf2_read_debug >= debug_print_threshold)
7361 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7362
7363 if (per_cu->is_debug_types)
7364 process_full_type_unit (per_cu, item->pretend_language);
7365 else
7366 process_full_comp_unit (per_cu, item->pretend_language);
7367
7368 if (dwarf2_read_debug >= debug_print_threshold)
7369 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7370 }
7371
7372 item->per_cu->queued = 0;
7373 next_item = item->next;
7374 xfree (item);
7375 }
7376
7377 dwarf2_queue_tail = NULL;
7378
7379 if (dwarf2_read_debug)
7380 {
7381 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7382 objfile_name (dwarf2_per_objfile->objfile));
7383 }
7384}
7385
7386/* Free all allocated queue entries. This function only releases anything if
7387 an error was thrown; if the queue was processed then it would have been
7388 freed as we went along. */
7389
7390static void
7391dwarf2_release_queue (void *dummy)
7392{
7393 struct dwarf2_queue_item *item, *last;
7394
7395 item = dwarf2_queue;
7396 while (item)
7397 {
7398 /* Anything still marked queued is likely to be in an
7399 inconsistent state, so discard it. */
7400 if (item->per_cu->queued)
7401 {
7402 if (item->per_cu->cu != NULL)
7403 free_one_cached_comp_unit (item->per_cu);
7404 item->per_cu->queued = 0;
7405 }
7406
7407 last = item;
7408 item = item->next;
7409 xfree (last);
7410 }
7411
7412 dwarf2_queue = dwarf2_queue_tail = NULL;
7413}
7414
7415/* Read in full symbols for PST, and anything it depends on. */
7416
7417static void
7418psymtab_to_symtab_1 (struct partial_symtab *pst)
7419{
7420 struct dwarf2_per_cu_data *per_cu;
7421 int i;
7422
7423 if (pst->readin)
7424 return;
7425
7426 for (i = 0; i < pst->number_of_dependencies; i++)
7427 if (!pst->dependencies[i]->readin
7428 && pst->dependencies[i]->user == NULL)
7429 {
7430 /* Inform about additional files that need to be read in. */
7431 if (info_verbose)
7432 {
7433 /* FIXME: i18n: Need to make this a single string. */
7434 fputs_filtered (" ", gdb_stdout);
7435 wrap_here ("");
7436 fputs_filtered ("and ", gdb_stdout);
7437 wrap_here ("");
7438 printf_filtered ("%s...", pst->dependencies[i]->filename);
7439 wrap_here (""); /* Flush output. */
7440 gdb_flush (gdb_stdout);
7441 }
7442 psymtab_to_symtab_1 (pst->dependencies[i]);
7443 }
7444
7445 per_cu = pst->read_symtab_private;
7446
7447 if (per_cu == NULL)
7448 {
7449 /* It's an include file, no symbols to read for it.
7450 Everything is in the parent symtab. */
7451 pst->readin = 1;
7452 return;
7453 }
7454
7455 dw2_do_instantiate_symtab (per_cu);
7456}
7457
7458/* Trivial hash function for die_info: the hash value of a DIE
7459 is its offset in .debug_info for this objfile. */
7460
7461static hashval_t
7462die_hash (const void *item)
7463{
7464 const struct die_info *die = item;
7465
7466 return die->offset.sect_off;
7467}
7468
7469/* Trivial comparison function for die_info structures: two DIEs
7470 are equal if they have the same offset. */
7471
7472static int
7473die_eq (const void *item_lhs, const void *item_rhs)
7474{
7475 const struct die_info *die_lhs = item_lhs;
7476 const struct die_info *die_rhs = item_rhs;
7477
7478 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7479}
7480
7481/* die_reader_func for load_full_comp_unit.
7482 This is identical to read_signatured_type_reader,
7483 but is kept separate for now. */
7484
7485static void
7486load_full_comp_unit_reader (const struct die_reader_specs *reader,
7487 const gdb_byte *info_ptr,
7488 struct die_info *comp_unit_die,
7489 int has_children,
7490 void *data)
7491{
7492 struct dwarf2_cu *cu = reader->cu;
7493 enum language *language_ptr = data;
7494
7495 gdb_assert (cu->die_hash == NULL);
7496 cu->die_hash =
7497 htab_create_alloc_ex (cu->header.length / 12,
7498 die_hash,
7499 die_eq,
7500 NULL,
7501 &cu->comp_unit_obstack,
7502 hashtab_obstack_allocate,
7503 dummy_obstack_deallocate);
7504
7505 if (has_children)
7506 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7507 &info_ptr, comp_unit_die);
7508 cu->dies = comp_unit_die;
7509 /* comp_unit_die is not stored in die_hash, no need. */
7510
7511 /* We try not to read any attributes in this function, because not
7512 all CUs needed for references have been loaded yet, and symbol
7513 table processing isn't initialized. But we have to set the CU language,
7514 or we won't be able to build types correctly.
7515 Similarly, if we do not read the producer, we can not apply
7516 producer-specific interpretation. */
7517 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7518}
7519
7520/* Load the DIEs associated with PER_CU into memory. */
7521
7522static void
7523load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7524 enum language pretend_language)
7525{
7526 gdb_assert (! this_cu->is_debug_types);
7527
7528 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7529 load_full_comp_unit_reader, &pretend_language);
7530}
7531
7532/* Add a DIE to the delayed physname list. */
7533
7534static void
7535add_to_method_list (struct type *type, int fnfield_index, int index,
7536 const char *name, struct die_info *die,
7537 struct dwarf2_cu *cu)
7538{
7539 struct delayed_method_info mi;
7540 mi.type = type;
7541 mi.fnfield_index = fnfield_index;
7542 mi.index = index;
7543 mi.name = name;
7544 mi.die = die;
7545 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7546}
7547
7548/* A cleanup for freeing the delayed method list. */
7549
7550static void
7551free_delayed_list (void *ptr)
7552{
7553 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7554 if (cu->method_list != NULL)
7555 {
7556 VEC_free (delayed_method_info, cu->method_list);
7557 cu->method_list = NULL;
7558 }
7559}
7560
7561/* Compute the physnames of any methods on the CU's method list.
7562
7563 The computation of method physnames is delayed in order to avoid the
7564 (bad) condition that one of the method's formal parameters is of an as yet
7565 incomplete type. */
7566
7567static void
7568compute_delayed_physnames (struct dwarf2_cu *cu)
7569{
7570 int i;
7571 struct delayed_method_info *mi;
7572 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7573 {
7574 const char *physname;
7575 struct fn_fieldlist *fn_flp
7576 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7577 physname = dwarf2_physname (mi->name, mi->die, cu);
7578 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7579 }
7580}
7581
7582/* Go objects should be embedded in a DW_TAG_module DIE,
7583 and it's not clear if/how imported objects will appear.
7584 To keep Go support simple until that's worked out,
7585 go back through what we've read and create something usable.
7586 We could do this while processing each DIE, and feels kinda cleaner,
7587 but that way is more invasive.
7588 This is to, for example, allow the user to type "p var" or "b main"
7589 without having to specify the package name, and allow lookups
7590 of module.object to work in contexts that use the expression
7591 parser. */
7592
7593static void
7594fixup_go_packaging (struct dwarf2_cu *cu)
7595{
7596 char *package_name = NULL;
7597 struct pending *list;
7598 int i;
7599
7600 for (list = global_symbols; list != NULL; list = list->next)
7601 {
7602 for (i = 0; i < list->nsyms; ++i)
7603 {
7604 struct symbol *sym = list->symbol[i];
7605
7606 if (SYMBOL_LANGUAGE (sym) == language_go
7607 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7608 {
7609 char *this_package_name = go_symbol_package_name (sym);
7610
7611 if (this_package_name == NULL)
7612 continue;
7613 if (package_name == NULL)
7614 package_name = this_package_name;
7615 else
7616 {
7617 if (strcmp (package_name, this_package_name) != 0)
7618 complaint (&symfile_complaints,
7619 _("Symtab %s has objects from two different Go packages: %s and %s"),
7620 (SYMBOL_SYMTAB (sym)
7621 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7622 : objfile_name (cu->objfile)),
7623 this_package_name, package_name);
7624 xfree (this_package_name);
7625 }
7626 }
7627 }
7628 }
7629
7630 if (package_name != NULL)
7631 {
7632 struct objfile *objfile = cu->objfile;
7633 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7634 package_name,
7635 strlen (package_name));
7636 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7637 saved_package_name, objfile);
7638 struct symbol *sym;
7639
7640 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7641
7642 sym = allocate_symbol (objfile);
7643 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7644 SYMBOL_SET_NAMES (sym, saved_package_name,
7645 strlen (saved_package_name), 0, objfile);
7646 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7647 e.g., "main" finds the "main" module and not C's main(). */
7648 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7649 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7650 SYMBOL_TYPE (sym) = type;
7651
7652 add_symbol_to_list (sym, &global_symbols);
7653
7654 xfree (package_name);
7655 }
7656}
7657
7658/* Return the symtab for PER_CU. This works properly regardless of
7659 whether we're using the index or psymtabs. */
7660
7661static struct symtab *
7662get_symtab (struct dwarf2_per_cu_data *per_cu)
7663{
7664 return (dwarf2_per_objfile->using_index
7665 ? per_cu->v.quick->symtab
7666 : per_cu->v.psymtab->symtab);
7667}
7668
7669/* A helper function for computing the list of all symbol tables
7670 included by PER_CU. */
7671
7672static void
7673recursively_compute_inclusions (VEC (symtab_ptr) **result,
7674 htab_t all_children, htab_t all_type_symtabs,
7675 struct dwarf2_per_cu_data *per_cu,
7676 struct symtab *immediate_parent)
7677{
7678 void **slot;
7679 int ix;
7680 struct symtab *symtab;
7681 struct dwarf2_per_cu_data *iter;
7682
7683 slot = htab_find_slot (all_children, per_cu, INSERT);
7684 if (*slot != NULL)
7685 {
7686 /* This inclusion and its children have been processed. */
7687 return;
7688 }
7689
7690 *slot = per_cu;
7691 /* Only add a CU if it has a symbol table. */
7692 symtab = get_symtab (per_cu);
7693 if (symtab != NULL)
7694 {
7695 /* If this is a type unit only add its symbol table if we haven't
7696 seen it yet (type unit per_cu's can share symtabs). */
7697 if (per_cu->is_debug_types)
7698 {
7699 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7700 if (*slot == NULL)
7701 {
7702 *slot = symtab;
7703 VEC_safe_push (symtab_ptr, *result, symtab);
7704 if (symtab->user == NULL)
7705 symtab->user = immediate_parent;
7706 }
7707 }
7708 else
7709 {
7710 VEC_safe_push (symtab_ptr, *result, symtab);
7711 if (symtab->user == NULL)
7712 symtab->user = immediate_parent;
7713 }
7714 }
7715
7716 for (ix = 0;
7717 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7718 ++ix)
7719 {
7720 recursively_compute_inclusions (result, all_children,
7721 all_type_symtabs, iter, symtab);
7722 }
7723}
7724
7725/* Compute the symtab 'includes' fields for the symtab related to
7726 PER_CU. */
7727
7728static void
7729compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7730{
7731 gdb_assert (! per_cu->is_debug_types);
7732
7733 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7734 {
7735 int ix, len;
7736 struct dwarf2_per_cu_data *per_cu_iter;
7737 struct symtab *symtab_iter;
7738 VEC (symtab_ptr) *result_symtabs = NULL;
7739 htab_t all_children, all_type_symtabs;
7740 struct symtab *symtab = get_symtab (per_cu);
7741
7742 /* If we don't have a symtab, we can just skip this case. */
7743 if (symtab == NULL)
7744 return;
7745
7746 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7747 NULL, xcalloc, xfree);
7748 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7749 NULL, xcalloc, xfree);
7750
7751 for (ix = 0;
7752 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7753 ix, per_cu_iter);
7754 ++ix)
7755 {
7756 recursively_compute_inclusions (&result_symtabs, all_children,
7757 all_type_symtabs, per_cu_iter,
7758 symtab);
7759 }
7760
7761 /* Now we have a transitive closure of all the included symtabs. */
7762 len = VEC_length (symtab_ptr, result_symtabs);
7763 symtab->includes
7764 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7765 (len + 1) * sizeof (struct symtab *));
7766 for (ix = 0;
7767 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7768 ++ix)
7769 symtab->includes[ix] = symtab_iter;
7770 symtab->includes[len] = NULL;
7771
7772 VEC_free (symtab_ptr, result_symtabs);
7773 htab_delete (all_children);
7774 htab_delete (all_type_symtabs);
7775 }
7776}
7777
7778/* Compute the 'includes' field for the symtabs of all the CUs we just
7779 read. */
7780
7781static void
7782process_cu_includes (void)
7783{
7784 int ix;
7785 struct dwarf2_per_cu_data *iter;
7786
7787 for (ix = 0;
7788 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7789 ix, iter);
7790 ++ix)
7791 {
7792 if (! iter->is_debug_types)
7793 compute_symtab_includes (iter);
7794 }
7795
7796 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7797}
7798
7799/* Generate full symbol information for PER_CU, whose DIEs have
7800 already been loaded into memory. */
7801
7802static void
7803process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7804 enum language pretend_language)
7805{
7806 struct dwarf2_cu *cu = per_cu->cu;
7807 struct objfile *objfile = per_cu->objfile;
7808 CORE_ADDR lowpc, highpc;
7809 struct symtab *symtab;
7810 struct cleanup *back_to, *delayed_list_cleanup;
7811 CORE_ADDR baseaddr;
7812 struct block *static_block;
7813
7814 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7815
7816 buildsym_init ();
7817 back_to = make_cleanup (really_free_pendings, NULL);
7818 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7819
7820 cu->list_in_scope = &file_symbols;
7821
7822 cu->language = pretend_language;
7823 cu->language_defn = language_def (cu->language);
7824
7825 /* Do line number decoding in read_file_scope () */
7826 process_die (cu->dies, cu);
7827
7828 /* For now fudge the Go package. */
7829 if (cu->language == language_go)
7830 fixup_go_packaging (cu);
7831
7832 /* Now that we have processed all the DIEs in the CU, all the types
7833 should be complete, and it should now be safe to compute all of the
7834 physnames. */
7835 compute_delayed_physnames (cu);
7836 do_cleanups (delayed_list_cleanup);
7837
7838 /* Some compilers don't define a DW_AT_high_pc attribute for the
7839 compilation unit. If the DW_AT_high_pc is missing, synthesize
7840 it, by scanning the DIE's below the compilation unit. */
7841 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7842
7843 static_block
7844 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7845
7846 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7847 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7848 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7849 addrmap to help ensure it has an accurate map of pc values belonging to
7850 this comp unit. */
7851 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7852
7853 symtab = end_symtab_from_static_block (static_block, objfile,
7854 SECT_OFF_TEXT (objfile), 0);
7855
7856 if (symtab != NULL)
7857 {
7858 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7859
7860 /* Set symtab language to language from DW_AT_language. If the
7861 compilation is from a C file generated by language preprocessors, do
7862 not set the language if it was already deduced by start_subfile. */
7863 if (!(cu->language == language_c && symtab->language != language_c))
7864 symtab->language = cu->language;
7865
7866 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7867 produce DW_AT_location with location lists but it can be possibly
7868 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7869 there were bugs in prologue debug info, fixed later in GCC-4.5
7870 by "unwind info for epilogues" patch (which is not directly related).
7871
7872 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7873 needed, it would be wrong due to missing DW_AT_producer there.
7874
7875 Still one can confuse GDB by using non-standard GCC compilation
7876 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7877 */
7878 if (cu->has_loclist && gcc_4_minor >= 5)
7879 symtab->locations_valid = 1;
7880
7881 if (gcc_4_minor >= 5)
7882 symtab->epilogue_unwind_valid = 1;
7883
7884 symtab->call_site_htab = cu->call_site_htab;
7885 }
7886
7887 if (dwarf2_per_objfile->using_index)
7888 per_cu->v.quick->symtab = symtab;
7889 else
7890 {
7891 struct partial_symtab *pst = per_cu->v.psymtab;
7892 pst->symtab = symtab;
7893 pst->readin = 1;
7894 }
7895
7896 /* Push it for inclusion processing later. */
7897 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7898
7899 do_cleanups (back_to);
7900}
7901
7902/* Generate full symbol information for type unit PER_CU, whose DIEs have
7903 already been loaded into memory. */
7904
7905static void
7906process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7907 enum language pretend_language)
7908{
7909 struct dwarf2_cu *cu = per_cu->cu;
7910 struct objfile *objfile = per_cu->objfile;
7911 struct symtab *symtab;
7912 struct cleanup *back_to, *delayed_list_cleanup;
7913 struct signatured_type *sig_type;
7914
7915 gdb_assert (per_cu->is_debug_types);
7916 sig_type = (struct signatured_type *) per_cu;
7917
7918 buildsym_init ();
7919 back_to = make_cleanup (really_free_pendings, NULL);
7920 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7921
7922 cu->list_in_scope = &file_symbols;
7923
7924 cu->language = pretend_language;
7925 cu->language_defn = language_def (cu->language);
7926
7927 /* The symbol tables are set up in read_type_unit_scope. */
7928 process_die (cu->dies, cu);
7929
7930 /* For now fudge the Go package. */
7931 if (cu->language == language_go)
7932 fixup_go_packaging (cu);
7933
7934 /* Now that we have processed all the DIEs in the CU, all the types
7935 should be complete, and it should now be safe to compute all of the
7936 physnames. */
7937 compute_delayed_physnames (cu);
7938 do_cleanups (delayed_list_cleanup);
7939
7940 /* TUs share symbol tables.
7941 If this is the first TU to use this symtab, complete the construction
7942 of it with end_expandable_symtab. Otherwise, complete the addition of
7943 this TU's symbols to the existing symtab. */
7944 if (sig_type->type_unit_group->primary_symtab == NULL)
7945 {
7946 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7947 sig_type->type_unit_group->primary_symtab = symtab;
7948
7949 if (symtab != NULL)
7950 {
7951 /* Set symtab language to language from DW_AT_language. If the
7952 compilation is from a C file generated by language preprocessors,
7953 do not set the language if it was already deduced by
7954 start_subfile. */
7955 if (!(cu->language == language_c && symtab->language != language_c))
7956 symtab->language = cu->language;
7957 }
7958 }
7959 else
7960 {
7961 augment_type_symtab (objfile,
7962 sig_type->type_unit_group->primary_symtab);
7963 symtab = sig_type->type_unit_group->primary_symtab;
7964 }
7965
7966 if (dwarf2_per_objfile->using_index)
7967 per_cu->v.quick->symtab = symtab;
7968 else
7969 {
7970 struct partial_symtab *pst = per_cu->v.psymtab;
7971 pst->symtab = symtab;
7972 pst->readin = 1;
7973 }
7974
7975 do_cleanups (back_to);
7976}
7977
7978/* Process an imported unit DIE. */
7979
7980static void
7981process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7982{
7983 struct attribute *attr;
7984
7985 /* For now we don't handle imported units in type units. */
7986 if (cu->per_cu->is_debug_types)
7987 {
7988 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7989 " supported in type units [in module %s]"),
7990 objfile_name (cu->objfile));
7991 }
7992
7993 attr = dwarf2_attr (die, DW_AT_import, cu);
7994 if (attr != NULL)
7995 {
7996 struct dwarf2_per_cu_data *per_cu;
7997 struct symtab *imported_symtab;
7998 sect_offset offset;
7999 int is_dwz;
8000
8001 offset = dwarf2_get_ref_die_offset (attr);
8002 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8003 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8004
8005 /* If necessary, add it to the queue and load its DIEs. */
8006 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8007 load_full_comp_unit (per_cu, cu->language);
8008
8009 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8010 per_cu);
8011 }
8012}
8013
8014/* Reset the in_process bit of a die. */
8015
8016static void
8017reset_die_in_process (void *arg)
8018{
8019 struct die_info *die = arg;
8020
8021 die->in_process = 0;
8022}
8023
8024/* Process a die and its children. */
8025
8026static void
8027process_die (struct die_info *die, struct dwarf2_cu *cu)
8028{
8029 struct cleanup *in_process;
8030
8031 /* We should only be processing those not already in process. */
8032 gdb_assert (!die->in_process);
8033
8034 die->in_process = 1;
8035 in_process = make_cleanup (reset_die_in_process,die);
8036
8037 switch (die->tag)
8038 {
8039 case DW_TAG_padding:
8040 break;
8041 case DW_TAG_compile_unit:
8042 case DW_TAG_partial_unit:
8043 read_file_scope (die, cu);
8044 break;
8045 case DW_TAG_type_unit:
8046 read_type_unit_scope (die, cu);
8047 break;
8048 case DW_TAG_subprogram:
8049 case DW_TAG_inlined_subroutine:
8050 read_func_scope (die, cu);
8051 break;
8052 case DW_TAG_lexical_block:
8053 case DW_TAG_try_block:
8054 case DW_TAG_catch_block:
8055 read_lexical_block_scope (die, cu);
8056 break;
8057 case DW_TAG_GNU_call_site:
8058 read_call_site_scope (die, cu);
8059 break;
8060 case DW_TAG_class_type:
8061 case DW_TAG_interface_type:
8062 case DW_TAG_structure_type:
8063 case DW_TAG_union_type:
8064 process_structure_scope (die, cu);
8065 break;
8066 case DW_TAG_enumeration_type:
8067 process_enumeration_scope (die, cu);
8068 break;
8069
8070 /* These dies have a type, but processing them does not create
8071 a symbol or recurse to process the children. Therefore we can
8072 read them on-demand through read_type_die. */
8073 case DW_TAG_subroutine_type:
8074 case DW_TAG_set_type:
8075 case DW_TAG_array_type:
8076 case DW_TAG_pointer_type:
8077 case DW_TAG_ptr_to_member_type:
8078 case DW_TAG_reference_type:
8079 case DW_TAG_string_type:
8080 break;
8081
8082 case DW_TAG_base_type:
8083 case DW_TAG_subrange_type:
8084 case DW_TAG_typedef:
8085 /* Add a typedef symbol for the type definition, if it has a
8086 DW_AT_name. */
8087 new_symbol (die, read_type_die (die, cu), cu);
8088 break;
8089 case DW_TAG_common_block:
8090 read_common_block (die, cu);
8091 break;
8092 case DW_TAG_common_inclusion:
8093 break;
8094 case DW_TAG_namespace:
8095 cu->processing_has_namespace_info = 1;
8096 read_namespace (die, cu);
8097 break;
8098 case DW_TAG_module:
8099 cu->processing_has_namespace_info = 1;
8100 read_module (die, cu);
8101 break;
8102 case DW_TAG_imported_declaration:
8103 cu->processing_has_namespace_info = 1;
8104 if (read_namespace_alias (die, cu))
8105 break;
8106 /* The declaration is not a global namespace alias: fall through. */
8107 case DW_TAG_imported_module:
8108 cu->processing_has_namespace_info = 1;
8109 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8110 || cu->language != language_fortran))
8111 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8112 dwarf_tag_name (die->tag));
8113 read_import_statement (die, cu);
8114 break;
8115
8116 case DW_TAG_imported_unit:
8117 process_imported_unit_die (die, cu);
8118 break;
8119
8120 default:
8121 new_symbol (die, NULL, cu);
8122 break;
8123 }
8124
8125 do_cleanups (in_process);
8126}
8127\f
8128/* DWARF name computation. */
8129
8130/* A helper function for dwarf2_compute_name which determines whether DIE
8131 needs to have the name of the scope prepended to the name listed in the
8132 die. */
8133
8134static int
8135die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8136{
8137 struct attribute *attr;
8138
8139 switch (die->tag)
8140 {
8141 case DW_TAG_namespace:
8142 case DW_TAG_typedef:
8143 case DW_TAG_class_type:
8144 case DW_TAG_interface_type:
8145 case DW_TAG_structure_type:
8146 case DW_TAG_union_type:
8147 case DW_TAG_enumeration_type:
8148 case DW_TAG_enumerator:
8149 case DW_TAG_subprogram:
8150 case DW_TAG_member:
8151 case DW_TAG_imported_declaration:
8152 return 1;
8153
8154 case DW_TAG_variable:
8155 case DW_TAG_constant:
8156 /* We only need to prefix "globally" visible variables. These include
8157 any variable marked with DW_AT_external or any variable that
8158 lives in a namespace. [Variables in anonymous namespaces
8159 require prefixing, but they are not DW_AT_external.] */
8160
8161 if (dwarf2_attr (die, DW_AT_specification, cu))
8162 {
8163 struct dwarf2_cu *spec_cu = cu;
8164
8165 return die_needs_namespace (die_specification (die, &spec_cu),
8166 spec_cu);
8167 }
8168
8169 attr = dwarf2_attr (die, DW_AT_external, cu);
8170 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8171 && die->parent->tag != DW_TAG_module)
8172 return 0;
8173 /* A variable in a lexical block of some kind does not need a
8174 namespace, even though in C++ such variables may be external
8175 and have a mangled name. */
8176 if (die->parent->tag == DW_TAG_lexical_block
8177 || die->parent->tag == DW_TAG_try_block
8178 || die->parent->tag == DW_TAG_catch_block
8179 || die->parent->tag == DW_TAG_subprogram)
8180 return 0;
8181 return 1;
8182
8183 default:
8184 return 0;
8185 }
8186}
8187
8188/* Retrieve the last character from a mem_file. */
8189
8190static void
8191do_ui_file_peek_last (void *object, const char *buffer, long length)
8192{
8193 char *last_char_p = (char *) object;
8194
8195 if (length > 0)
8196 *last_char_p = buffer[length - 1];
8197}
8198
8199/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8200 compute the physname for the object, which include a method's:
8201 - formal parameters (C++/Java),
8202 - receiver type (Go),
8203 - return type (Java).
8204
8205 The term "physname" is a bit confusing.
8206 For C++, for example, it is the demangled name.
8207 For Go, for example, it's the mangled name.
8208
8209 For Ada, return the DIE's linkage name rather than the fully qualified
8210 name. PHYSNAME is ignored..
8211
8212 The result is allocated on the objfile_obstack and canonicalized. */
8213
8214static const char *
8215dwarf2_compute_name (const char *name,
8216 struct die_info *die, struct dwarf2_cu *cu,
8217 int physname)
8218{
8219 struct objfile *objfile = cu->objfile;
8220
8221 if (name == NULL)
8222 name = dwarf2_name (die, cu);
8223
8224 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8225 compute it by typename_concat inside GDB. */
8226 if (cu->language == language_ada
8227 || (cu->language == language_fortran && physname))
8228 {
8229 /* For Ada unit, we prefer the linkage name over the name, as
8230 the former contains the exported name, which the user expects
8231 to be able to reference. Ideally, we want the user to be able
8232 to reference this entity using either natural or linkage name,
8233 but we haven't started looking at this enhancement yet. */
8234 struct attribute *attr;
8235
8236 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8237 if (attr == NULL)
8238 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8239 if (attr && DW_STRING (attr))
8240 return DW_STRING (attr);
8241 }
8242
8243 /* These are the only languages we know how to qualify names in. */
8244 if (name != NULL
8245 && (cu->language == language_cplus || cu->language == language_java
8246 || cu->language == language_fortran))
8247 {
8248 if (die_needs_namespace (die, cu))
8249 {
8250 long length;
8251 const char *prefix;
8252 struct ui_file *buf;
8253
8254 prefix = determine_prefix (die, cu);
8255 buf = mem_fileopen ();
8256 if (*prefix != '\0')
8257 {
8258 char *prefixed_name = typename_concat (NULL, prefix, name,
8259 physname, cu);
8260
8261 fputs_unfiltered (prefixed_name, buf);
8262 xfree (prefixed_name);
8263 }
8264 else
8265 fputs_unfiltered (name, buf);
8266
8267 /* Template parameters may be specified in the DIE's DW_AT_name, or
8268 as children with DW_TAG_template_type_param or
8269 DW_TAG_value_type_param. If the latter, add them to the name
8270 here. If the name already has template parameters, then
8271 skip this step; some versions of GCC emit both, and
8272 it is more efficient to use the pre-computed name.
8273
8274 Something to keep in mind about this process: it is very
8275 unlikely, or in some cases downright impossible, to produce
8276 something that will match the mangled name of a function.
8277 If the definition of the function has the same debug info,
8278 we should be able to match up with it anyway. But fallbacks
8279 using the minimal symbol, for instance to find a method
8280 implemented in a stripped copy of libstdc++, will not work.
8281 If we do not have debug info for the definition, we will have to
8282 match them up some other way.
8283
8284 When we do name matching there is a related problem with function
8285 templates; two instantiated function templates are allowed to
8286 differ only by their return types, which we do not add here. */
8287
8288 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8289 {
8290 struct attribute *attr;
8291 struct die_info *child;
8292 int first = 1;
8293
8294 die->building_fullname = 1;
8295
8296 for (child = die->child; child != NULL; child = child->sibling)
8297 {
8298 struct type *type;
8299 LONGEST value;
8300 const gdb_byte *bytes;
8301 struct dwarf2_locexpr_baton *baton;
8302 struct value *v;
8303
8304 if (child->tag != DW_TAG_template_type_param
8305 && child->tag != DW_TAG_template_value_param)
8306 continue;
8307
8308 if (first)
8309 {
8310 fputs_unfiltered ("<", buf);
8311 first = 0;
8312 }
8313 else
8314 fputs_unfiltered (", ", buf);
8315
8316 attr = dwarf2_attr (child, DW_AT_type, cu);
8317 if (attr == NULL)
8318 {
8319 complaint (&symfile_complaints,
8320 _("template parameter missing DW_AT_type"));
8321 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8322 continue;
8323 }
8324 type = die_type (child, cu);
8325
8326 if (child->tag == DW_TAG_template_type_param)
8327 {
8328 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8329 continue;
8330 }
8331
8332 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8333 if (attr == NULL)
8334 {
8335 complaint (&symfile_complaints,
8336 _("template parameter missing "
8337 "DW_AT_const_value"));
8338 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8339 continue;
8340 }
8341
8342 dwarf2_const_value_attr (attr, type, name,
8343 &cu->comp_unit_obstack, cu,
8344 &value, &bytes, &baton);
8345
8346 if (TYPE_NOSIGN (type))
8347 /* GDB prints characters as NUMBER 'CHAR'. If that's
8348 changed, this can use value_print instead. */
8349 c_printchar (value, type, buf);
8350 else
8351 {
8352 struct value_print_options opts;
8353
8354 if (baton != NULL)
8355 v = dwarf2_evaluate_loc_desc (type, NULL,
8356 baton->data,
8357 baton->size,
8358 baton->per_cu);
8359 else if (bytes != NULL)
8360 {
8361 v = allocate_value (type);
8362 memcpy (value_contents_writeable (v), bytes,
8363 TYPE_LENGTH (type));
8364 }
8365 else
8366 v = value_from_longest (type, value);
8367
8368 /* Specify decimal so that we do not depend on
8369 the radix. */
8370 get_formatted_print_options (&opts, 'd');
8371 opts.raw = 1;
8372 value_print (v, buf, &opts);
8373 release_value (v);
8374 value_free (v);
8375 }
8376 }
8377
8378 die->building_fullname = 0;
8379
8380 if (!first)
8381 {
8382 /* Close the argument list, with a space if necessary
8383 (nested templates). */
8384 char last_char = '\0';
8385 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8386 if (last_char == '>')
8387 fputs_unfiltered (" >", buf);
8388 else
8389 fputs_unfiltered (">", buf);
8390 }
8391 }
8392
8393 /* For Java and C++ methods, append formal parameter type
8394 information, if PHYSNAME. */
8395
8396 if (physname && die->tag == DW_TAG_subprogram
8397 && (cu->language == language_cplus
8398 || cu->language == language_java))
8399 {
8400 struct type *type = read_type_die (die, cu);
8401
8402 c_type_print_args (type, buf, 1, cu->language,
8403 &type_print_raw_options);
8404
8405 if (cu->language == language_java)
8406 {
8407 /* For java, we must append the return type to method
8408 names. */
8409 if (die->tag == DW_TAG_subprogram)
8410 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8411 0, 0, &type_print_raw_options);
8412 }
8413 else if (cu->language == language_cplus)
8414 {
8415 /* Assume that an artificial first parameter is
8416 "this", but do not crash if it is not. RealView
8417 marks unnamed (and thus unused) parameters as
8418 artificial; there is no way to differentiate
8419 the two cases. */
8420 if (TYPE_NFIELDS (type) > 0
8421 && TYPE_FIELD_ARTIFICIAL (type, 0)
8422 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8423 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8424 0))))
8425 fputs_unfiltered (" const", buf);
8426 }
8427 }
8428
8429 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8430 &length);
8431 ui_file_delete (buf);
8432
8433 if (cu->language == language_cplus)
8434 {
8435 const char *cname
8436 = dwarf2_canonicalize_name (name, cu,
8437 &objfile->objfile_obstack);
8438
8439 if (cname != NULL)
8440 name = cname;
8441 }
8442 }
8443 }
8444
8445 return name;
8446}
8447
8448/* Return the fully qualified name of DIE, based on its DW_AT_name.
8449 If scope qualifiers are appropriate they will be added. The result
8450 will be allocated on the objfile_obstack, or NULL if the DIE does
8451 not have a name. NAME may either be from a previous call to
8452 dwarf2_name or NULL.
8453
8454 The output string will be canonicalized (if C++/Java). */
8455
8456static const char *
8457dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8458{
8459 return dwarf2_compute_name (name, die, cu, 0);
8460}
8461
8462/* Construct a physname for the given DIE in CU. NAME may either be
8463 from a previous call to dwarf2_name or NULL. The result will be
8464 allocated on the objfile_objstack or NULL if the DIE does not have a
8465 name.
8466
8467 The output string will be canonicalized (if C++/Java). */
8468
8469static const char *
8470dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8471{
8472 struct objfile *objfile = cu->objfile;
8473 struct attribute *attr;
8474 const char *retval, *mangled = NULL, *canon = NULL;
8475 struct cleanup *back_to;
8476 int need_copy = 1;
8477
8478 /* In this case dwarf2_compute_name is just a shortcut not building anything
8479 on its own. */
8480 if (!die_needs_namespace (die, cu))
8481 return dwarf2_compute_name (name, die, cu, 1);
8482
8483 back_to = make_cleanup (null_cleanup, NULL);
8484
8485 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8486 if (!attr)
8487 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8488
8489 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8490 has computed. */
8491 if (attr && DW_STRING (attr))
8492 {
8493 char *demangled;
8494
8495 mangled = DW_STRING (attr);
8496
8497 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8498 type. It is easier for GDB users to search for such functions as
8499 `name(params)' than `long name(params)'. In such case the minimal
8500 symbol names do not match the full symbol names but for template
8501 functions there is never a need to look up their definition from their
8502 declaration so the only disadvantage remains the minimal symbol
8503 variant `long name(params)' does not have the proper inferior type.
8504 */
8505
8506 if (cu->language == language_go)
8507 {
8508 /* This is a lie, but we already lie to the caller new_symbol_full.
8509 new_symbol_full assumes we return the mangled name.
8510 This just undoes that lie until things are cleaned up. */
8511 demangled = NULL;
8512 }
8513 else
8514 {
8515 demangled = gdb_demangle (mangled,
8516 (DMGL_PARAMS | DMGL_ANSI
8517 | (cu->language == language_java
8518 ? DMGL_JAVA | DMGL_RET_POSTFIX
8519 : DMGL_RET_DROP)));
8520 }
8521 if (demangled)
8522 {
8523 make_cleanup (xfree, demangled);
8524 canon = demangled;
8525 }
8526 else
8527 {
8528 canon = mangled;
8529 need_copy = 0;
8530 }
8531 }
8532
8533 if (canon == NULL || check_physname)
8534 {
8535 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8536
8537 if (canon != NULL && strcmp (physname, canon) != 0)
8538 {
8539 /* It may not mean a bug in GDB. The compiler could also
8540 compute DW_AT_linkage_name incorrectly. But in such case
8541 GDB would need to be bug-to-bug compatible. */
8542
8543 complaint (&symfile_complaints,
8544 _("Computed physname <%s> does not match demangled <%s> "
8545 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8546 physname, canon, mangled, die->offset.sect_off,
8547 objfile_name (objfile));
8548
8549 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8550 is available here - over computed PHYSNAME. It is safer
8551 against both buggy GDB and buggy compilers. */
8552
8553 retval = canon;
8554 }
8555 else
8556 {
8557 retval = physname;
8558 need_copy = 0;
8559 }
8560 }
8561 else
8562 retval = canon;
8563
8564 if (need_copy)
8565 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8566
8567 do_cleanups (back_to);
8568 return retval;
8569}
8570
8571/* Inspect DIE in CU for a namespace alias. If one exists, record
8572 a new symbol for it.
8573
8574 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8575
8576static int
8577read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8578{
8579 struct attribute *attr;
8580
8581 /* If the die does not have a name, this is not a namespace
8582 alias. */
8583 attr = dwarf2_attr (die, DW_AT_name, cu);
8584 if (attr != NULL)
8585 {
8586 int num;
8587 struct die_info *d = die;
8588 struct dwarf2_cu *imported_cu = cu;
8589
8590 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8591 keep inspecting DIEs until we hit the underlying import. */
8592#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8593 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8594 {
8595 attr = dwarf2_attr (d, DW_AT_import, cu);
8596 if (attr == NULL)
8597 break;
8598
8599 d = follow_die_ref (d, attr, &imported_cu);
8600 if (d->tag != DW_TAG_imported_declaration)
8601 break;
8602 }
8603
8604 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8605 {
8606 complaint (&symfile_complaints,
8607 _("DIE at 0x%x has too many recursively imported "
8608 "declarations"), d->offset.sect_off);
8609 return 0;
8610 }
8611
8612 if (attr != NULL)
8613 {
8614 struct type *type;
8615 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8616
8617 type = get_die_type_at_offset (offset, cu->per_cu);
8618 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8619 {
8620 /* This declaration is a global namespace alias. Add
8621 a symbol for it whose type is the aliased namespace. */
8622 new_symbol (die, type, cu);
8623 return 1;
8624 }
8625 }
8626 }
8627
8628 return 0;
8629}
8630
8631/* Read the import statement specified by the given die and record it. */
8632
8633static void
8634read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8635{
8636 struct objfile *objfile = cu->objfile;
8637 struct attribute *import_attr;
8638 struct die_info *imported_die, *child_die;
8639 struct dwarf2_cu *imported_cu;
8640 const char *imported_name;
8641 const char *imported_name_prefix;
8642 const char *canonical_name;
8643 const char *import_alias;
8644 const char *imported_declaration = NULL;
8645 const char *import_prefix;
8646 VEC (const_char_ptr) *excludes = NULL;
8647 struct cleanup *cleanups;
8648
8649 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8650 if (import_attr == NULL)
8651 {
8652 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8653 dwarf_tag_name (die->tag));
8654 return;
8655 }
8656
8657 imported_cu = cu;
8658 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8659 imported_name = dwarf2_name (imported_die, imported_cu);
8660 if (imported_name == NULL)
8661 {
8662 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8663
8664 The import in the following code:
8665 namespace A
8666 {
8667 typedef int B;
8668 }
8669
8670 int main ()
8671 {
8672 using A::B;
8673 B b;
8674 return b;
8675 }
8676
8677 ...
8678 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8679 <52> DW_AT_decl_file : 1
8680 <53> DW_AT_decl_line : 6
8681 <54> DW_AT_import : <0x75>
8682 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8683 <59> DW_AT_name : B
8684 <5b> DW_AT_decl_file : 1
8685 <5c> DW_AT_decl_line : 2
8686 <5d> DW_AT_type : <0x6e>
8687 ...
8688 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8689 <76> DW_AT_byte_size : 4
8690 <77> DW_AT_encoding : 5 (signed)
8691
8692 imports the wrong die ( 0x75 instead of 0x58 ).
8693 This case will be ignored until the gcc bug is fixed. */
8694 return;
8695 }
8696
8697 /* Figure out the local name after import. */
8698 import_alias = dwarf2_name (die, cu);
8699
8700 /* Figure out where the statement is being imported to. */
8701 import_prefix = determine_prefix (die, cu);
8702
8703 /* Figure out what the scope of the imported die is and prepend it
8704 to the name of the imported die. */
8705 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8706
8707 if (imported_die->tag != DW_TAG_namespace
8708 && imported_die->tag != DW_TAG_module)
8709 {
8710 imported_declaration = imported_name;
8711 canonical_name = imported_name_prefix;
8712 }
8713 else if (strlen (imported_name_prefix) > 0)
8714 canonical_name = obconcat (&objfile->objfile_obstack,
8715 imported_name_prefix, "::", imported_name,
8716 (char *) NULL);
8717 else
8718 canonical_name = imported_name;
8719
8720 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8721
8722 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8723 for (child_die = die->child; child_die && child_die->tag;
8724 child_die = sibling_die (child_die))
8725 {
8726 /* DWARF-4: A Fortran use statement with a “rename list” may be
8727 represented by an imported module entry with an import attribute
8728 referring to the module and owned entries corresponding to those
8729 entities that are renamed as part of being imported. */
8730
8731 if (child_die->tag != DW_TAG_imported_declaration)
8732 {
8733 complaint (&symfile_complaints,
8734 _("child DW_TAG_imported_declaration expected "
8735 "- DIE at 0x%x [in module %s]"),
8736 child_die->offset.sect_off, objfile_name (objfile));
8737 continue;
8738 }
8739
8740 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8741 if (import_attr == NULL)
8742 {
8743 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8744 dwarf_tag_name (child_die->tag));
8745 continue;
8746 }
8747
8748 imported_cu = cu;
8749 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8750 &imported_cu);
8751 imported_name = dwarf2_name (imported_die, imported_cu);
8752 if (imported_name == NULL)
8753 {
8754 complaint (&symfile_complaints,
8755 _("child DW_TAG_imported_declaration has unknown "
8756 "imported name - DIE at 0x%x [in module %s]"),
8757 child_die->offset.sect_off, objfile_name (objfile));
8758 continue;
8759 }
8760
8761 VEC_safe_push (const_char_ptr, excludes, imported_name);
8762
8763 process_die (child_die, cu);
8764 }
8765
8766 cp_add_using_directive (import_prefix,
8767 canonical_name,
8768 import_alias,
8769 imported_declaration,
8770 excludes,
8771 0,
8772 &objfile->objfile_obstack);
8773
8774 do_cleanups (cleanups);
8775}
8776
8777/* Cleanup function for handle_DW_AT_stmt_list. */
8778
8779static void
8780free_cu_line_header (void *arg)
8781{
8782 struct dwarf2_cu *cu = arg;
8783
8784 free_line_header (cu->line_header);
8785 cu->line_header = NULL;
8786}
8787
8788/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8789 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8790 this, it was first present in GCC release 4.3.0. */
8791
8792static int
8793producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8794{
8795 if (!cu->checked_producer)
8796 check_producer (cu);
8797
8798 return cu->producer_is_gcc_lt_4_3;
8799}
8800
8801static void
8802find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8803 const char **name, const char **comp_dir)
8804{
8805 struct attribute *attr;
8806
8807 *name = NULL;
8808 *comp_dir = NULL;
8809
8810 /* Find the filename. Do not use dwarf2_name here, since the filename
8811 is not a source language identifier. */
8812 attr = dwarf2_attr (die, DW_AT_name, cu);
8813 if (attr)
8814 {
8815 *name = DW_STRING (attr);
8816 }
8817
8818 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8819 if (attr)
8820 *comp_dir = DW_STRING (attr);
8821 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8822 && IS_ABSOLUTE_PATH (*name))
8823 {
8824 char *d = ldirname (*name);
8825
8826 *comp_dir = d;
8827 if (d != NULL)
8828 make_cleanup (xfree, d);
8829 }
8830 if (*comp_dir != NULL)
8831 {
8832 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8833 directory, get rid of it. */
8834 char *cp = strchr (*comp_dir, ':');
8835
8836 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8837 *comp_dir = cp + 1;
8838 }
8839
8840 if (*name == NULL)
8841 *name = "<unknown>";
8842}
8843
8844/* Handle DW_AT_stmt_list for a compilation unit.
8845 DIE is the DW_TAG_compile_unit die for CU.
8846 COMP_DIR is the compilation directory.
8847 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8848
8849static void
8850handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8851 const char *comp_dir) /* ARI: editCase function */
8852{
8853 struct attribute *attr;
8854
8855 gdb_assert (! cu->per_cu->is_debug_types);
8856
8857 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8858 if (attr)
8859 {
8860 unsigned int line_offset = DW_UNSND (attr);
8861 struct line_header *line_header
8862 = dwarf_decode_line_header (line_offset, cu);
8863
8864 if (line_header)
8865 {
8866 cu->line_header = line_header;
8867 make_cleanup (free_cu_line_header, cu);
8868 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8869 }
8870 }
8871}
8872
8873/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8874
8875static void
8876read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8877{
8878 struct objfile *objfile = dwarf2_per_objfile->objfile;
8879 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8880 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8881 CORE_ADDR highpc = ((CORE_ADDR) 0);
8882 struct attribute *attr;
8883 const char *name = NULL;
8884 const char *comp_dir = NULL;
8885 struct die_info *child_die;
8886 bfd *abfd = objfile->obfd;
8887 CORE_ADDR baseaddr;
8888
8889 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8890
8891 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8892
8893 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8894 from finish_block. */
8895 if (lowpc == ((CORE_ADDR) -1))
8896 lowpc = highpc;
8897 lowpc += baseaddr;
8898 highpc += baseaddr;
8899
8900 find_file_and_directory (die, cu, &name, &comp_dir);
8901
8902 prepare_one_comp_unit (cu, die, cu->language);
8903
8904 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8905 standardised yet. As a workaround for the language detection we fall
8906 back to the DW_AT_producer string. */
8907 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8908 cu->language = language_opencl;
8909
8910 /* Similar hack for Go. */
8911 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8912 set_cu_language (DW_LANG_Go, cu);
8913
8914 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8915
8916 /* Decode line number information if present. We do this before
8917 processing child DIEs, so that the line header table is available
8918 for DW_AT_decl_file. */
8919 handle_DW_AT_stmt_list (die, cu, comp_dir);
8920
8921 /* Process all dies in compilation unit. */
8922 if (die->child != NULL)
8923 {
8924 child_die = die->child;
8925 while (child_die && child_die->tag)
8926 {
8927 process_die (child_die, cu);
8928 child_die = sibling_die (child_die);
8929 }
8930 }
8931
8932 /* Decode macro information, if present. Dwarf 2 macro information
8933 refers to information in the line number info statement program
8934 header, so we can only read it if we've read the header
8935 successfully. */
8936 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8937 if (attr && cu->line_header)
8938 {
8939 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8940 complaint (&symfile_complaints,
8941 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8942
8943 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8944 }
8945 else
8946 {
8947 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8948 if (attr && cu->line_header)
8949 {
8950 unsigned int macro_offset = DW_UNSND (attr);
8951
8952 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8953 }
8954 }
8955
8956 do_cleanups (back_to);
8957}
8958
8959/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8960 Create the set of symtabs used by this TU, or if this TU is sharing
8961 symtabs with another TU and the symtabs have already been created
8962 then restore those symtabs in the line header.
8963 We don't need the pc/line-number mapping for type units. */
8964
8965static void
8966setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8967{
8968 struct objfile *objfile = dwarf2_per_objfile->objfile;
8969 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8970 struct type_unit_group *tu_group;
8971 int first_time;
8972 struct line_header *lh;
8973 struct attribute *attr;
8974 unsigned int i, line_offset;
8975 struct signatured_type *sig_type;
8976
8977 gdb_assert (per_cu->is_debug_types);
8978 sig_type = (struct signatured_type *) per_cu;
8979
8980 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8981
8982 /* If we're using .gdb_index (includes -readnow) then
8983 per_cu->type_unit_group may not have been set up yet. */
8984 if (sig_type->type_unit_group == NULL)
8985 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8986 tu_group = sig_type->type_unit_group;
8987
8988 /* If we've already processed this stmt_list there's no real need to
8989 do it again, we could fake it and just recreate the part we need
8990 (file name,index -> symtab mapping). If data shows this optimization
8991 is useful we can do it then. */
8992 first_time = tu_group->primary_symtab == NULL;
8993
8994 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8995 debug info. */
8996 lh = NULL;
8997 if (attr != NULL)
8998 {
8999 line_offset = DW_UNSND (attr);
9000 lh = dwarf_decode_line_header (line_offset, cu);
9001 }
9002 if (lh == NULL)
9003 {
9004 if (first_time)
9005 dwarf2_start_symtab (cu, "", NULL, 0);
9006 else
9007 {
9008 gdb_assert (tu_group->symtabs == NULL);
9009 restart_symtab (0);
9010 }
9011 /* Note: The primary symtab will get allocated at the end. */
9012 return;
9013 }
9014
9015 cu->line_header = lh;
9016 make_cleanup (free_cu_line_header, cu);
9017
9018 if (first_time)
9019 {
9020 dwarf2_start_symtab (cu, "", NULL, 0);
9021
9022 tu_group->num_symtabs = lh->num_file_names;
9023 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9024
9025 for (i = 0; i < lh->num_file_names; ++i)
9026 {
9027 const char *dir = NULL;
9028 struct file_entry *fe = &lh->file_names[i];
9029
9030 if (fe->dir_index)
9031 dir = lh->include_dirs[fe->dir_index - 1];
9032 dwarf2_start_subfile (fe->name, dir, NULL);
9033
9034 /* Note: We don't have to watch for the main subfile here, type units
9035 don't have DW_AT_name. */
9036
9037 if (current_subfile->symtab == NULL)
9038 {
9039 /* NOTE: start_subfile will recognize when it's been passed
9040 a file it has already seen. So we can't assume there's a
9041 simple mapping from lh->file_names to subfiles,
9042 lh->file_names may contain dups. */
9043 current_subfile->symtab = allocate_symtab (current_subfile->name,
9044 objfile);
9045 }
9046
9047 fe->symtab = current_subfile->symtab;
9048 tu_group->symtabs[i] = fe->symtab;
9049 }
9050 }
9051 else
9052 {
9053 restart_symtab (0);
9054
9055 for (i = 0; i < lh->num_file_names; ++i)
9056 {
9057 struct file_entry *fe = &lh->file_names[i];
9058
9059 fe->symtab = tu_group->symtabs[i];
9060 }
9061 }
9062
9063 /* The main symtab is allocated last. Type units don't have DW_AT_name
9064 so they don't have a "real" (so to speak) symtab anyway.
9065 There is later code that will assign the main symtab to all symbols
9066 that don't have one. We need to handle the case of a symbol with a
9067 missing symtab (DW_AT_decl_file) anyway. */
9068}
9069
9070/* Process DW_TAG_type_unit.
9071 For TUs we want to skip the first top level sibling if it's not the
9072 actual type being defined by this TU. In this case the first top
9073 level sibling is there to provide context only. */
9074
9075static void
9076read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9077{
9078 struct die_info *child_die;
9079
9080 prepare_one_comp_unit (cu, die, language_minimal);
9081
9082 /* Initialize (or reinitialize) the machinery for building symtabs.
9083 We do this before processing child DIEs, so that the line header table
9084 is available for DW_AT_decl_file. */
9085 setup_type_unit_groups (die, cu);
9086
9087 if (die->child != NULL)
9088 {
9089 child_die = die->child;
9090 while (child_die && child_die->tag)
9091 {
9092 process_die (child_die, cu);
9093 child_die = sibling_die (child_die);
9094 }
9095 }
9096}
9097\f
9098/* DWO/DWP files.
9099
9100 http://gcc.gnu.org/wiki/DebugFission
9101 http://gcc.gnu.org/wiki/DebugFissionDWP
9102
9103 To simplify handling of both DWO files ("object" files with the DWARF info)
9104 and DWP files (a file with the DWOs packaged up into one file), we treat
9105 DWP files as having a collection of virtual DWO files. */
9106
9107static hashval_t
9108hash_dwo_file (const void *item)
9109{
9110 const struct dwo_file *dwo_file = item;
9111 hashval_t hash;
9112
9113 hash = htab_hash_string (dwo_file->dwo_name);
9114 if (dwo_file->comp_dir != NULL)
9115 hash += htab_hash_string (dwo_file->comp_dir);
9116 return hash;
9117}
9118
9119static int
9120eq_dwo_file (const void *item_lhs, const void *item_rhs)
9121{
9122 const struct dwo_file *lhs = item_lhs;
9123 const struct dwo_file *rhs = item_rhs;
9124
9125 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9126 return 0;
9127 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9128 return lhs->comp_dir == rhs->comp_dir;
9129 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9130}
9131
9132/* Allocate a hash table for DWO files. */
9133
9134static htab_t
9135allocate_dwo_file_hash_table (void)
9136{
9137 struct objfile *objfile = dwarf2_per_objfile->objfile;
9138
9139 return htab_create_alloc_ex (41,
9140 hash_dwo_file,
9141 eq_dwo_file,
9142 NULL,
9143 &objfile->objfile_obstack,
9144 hashtab_obstack_allocate,
9145 dummy_obstack_deallocate);
9146}
9147
9148/* Lookup DWO file DWO_NAME. */
9149
9150static void **
9151lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9152{
9153 struct dwo_file find_entry;
9154 void **slot;
9155
9156 if (dwarf2_per_objfile->dwo_files == NULL)
9157 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9158
9159 memset (&find_entry, 0, sizeof (find_entry));
9160 find_entry.dwo_name = dwo_name;
9161 find_entry.comp_dir = comp_dir;
9162 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9163
9164 return slot;
9165}
9166
9167static hashval_t
9168hash_dwo_unit (const void *item)
9169{
9170 const struct dwo_unit *dwo_unit = item;
9171
9172 /* This drops the top 32 bits of the id, but is ok for a hash. */
9173 return dwo_unit->signature;
9174}
9175
9176static int
9177eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9178{
9179 const struct dwo_unit *lhs = item_lhs;
9180 const struct dwo_unit *rhs = item_rhs;
9181
9182 /* The signature is assumed to be unique within the DWO file.
9183 So while object file CU dwo_id's always have the value zero,
9184 that's OK, assuming each object file DWO file has only one CU,
9185 and that's the rule for now. */
9186 return lhs->signature == rhs->signature;
9187}
9188
9189/* Allocate a hash table for DWO CUs,TUs.
9190 There is one of these tables for each of CUs,TUs for each DWO file. */
9191
9192static htab_t
9193allocate_dwo_unit_table (struct objfile *objfile)
9194{
9195 /* Start out with a pretty small number.
9196 Generally DWO files contain only one CU and maybe some TUs. */
9197 return htab_create_alloc_ex (3,
9198 hash_dwo_unit,
9199 eq_dwo_unit,
9200 NULL,
9201 &objfile->objfile_obstack,
9202 hashtab_obstack_allocate,
9203 dummy_obstack_deallocate);
9204}
9205
9206/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9207
9208struct create_dwo_cu_data
9209{
9210 struct dwo_file *dwo_file;
9211 struct dwo_unit dwo_unit;
9212};
9213
9214/* die_reader_func for create_dwo_cu. */
9215
9216static void
9217create_dwo_cu_reader (const struct die_reader_specs *reader,
9218 const gdb_byte *info_ptr,
9219 struct die_info *comp_unit_die,
9220 int has_children,
9221 void *datap)
9222{
9223 struct dwarf2_cu *cu = reader->cu;
9224 struct objfile *objfile = dwarf2_per_objfile->objfile;
9225 sect_offset offset = cu->per_cu->offset;
9226 struct dwarf2_section_info *section = cu->per_cu->section;
9227 struct create_dwo_cu_data *data = datap;
9228 struct dwo_file *dwo_file = data->dwo_file;
9229 struct dwo_unit *dwo_unit = &data->dwo_unit;
9230 struct attribute *attr;
9231
9232 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9233 if (attr == NULL)
9234 {
9235 complaint (&symfile_complaints,
9236 _("Dwarf Error: debug entry at offset 0x%x is missing"
9237 " its dwo_id [in module %s]"),
9238 offset.sect_off, dwo_file->dwo_name);
9239 return;
9240 }
9241
9242 dwo_unit->dwo_file = dwo_file;
9243 dwo_unit->signature = DW_UNSND (attr);
9244 dwo_unit->section = section;
9245 dwo_unit->offset = offset;
9246 dwo_unit->length = cu->per_cu->length;
9247
9248 if (dwarf2_read_debug)
9249 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9250 offset.sect_off, hex_string (dwo_unit->signature));
9251}
9252
9253/* Create the dwo_unit for the lone CU in DWO_FILE.
9254 Note: This function processes DWO files only, not DWP files. */
9255
9256static struct dwo_unit *
9257create_dwo_cu (struct dwo_file *dwo_file)
9258{
9259 struct objfile *objfile = dwarf2_per_objfile->objfile;
9260 struct dwarf2_section_info *section = &dwo_file->sections.info;
9261 bfd *abfd;
9262 htab_t cu_htab;
9263 const gdb_byte *info_ptr, *end_ptr;
9264 struct create_dwo_cu_data create_dwo_cu_data;
9265 struct dwo_unit *dwo_unit;
9266
9267 dwarf2_read_section (objfile, section);
9268 info_ptr = section->buffer;
9269
9270 if (info_ptr == NULL)
9271 return NULL;
9272
9273 /* We can't set abfd until now because the section may be empty or
9274 not present, in which case section->asection will be NULL. */
9275 abfd = get_section_bfd_owner (section);
9276
9277 if (dwarf2_read_debug)
9278 {
9279 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9280 get_section_name (section),
9281 get_section_file_name (section));
9282 }
9283
9284 create_dwo_cu_data.dwo_file = dwo_file;
9285 dwo_unit = NULL;
9286
9287 end_ptr = info_ptr + section->size;
9288 while (info_ptr < end_ptr)
9289 {
9290 struct dwarf2_per_cu_data per_cu;
9291
9292 memset (&create_dwo_cu_data.dwo_unit, 0,
9293 sizeof (create_dwo_cu_data.dwo_unit));
9294 memset (&per_cu, 0, sizeof (per_cu));
9295 per_cu.objfile = objfile;
9296 per_cu.is_debug_types = 0;
9297 per_cu.offset.sect_off = info_ptr - section->buffer;
9298 per_cu.section = section;
9299
9300 init_cutu_and_read_dies_no_follow (&per_cu,
9301 &dwo_file->sections.abbrev,
9302 dwo_file,
9303 create_dwo_cu_reader,
9304 &create_dwo_cu_data);
9305
9306 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9307 {
9308 /* If we've already found one, complain. We only support one
9309 because having more than one requires hacking the dwo_name of
9310 each to match, which is highly unlikely to happen. */
9311 if (dwo_unit != NULL)
9312 {
9313 complaint (&symfile_complaints,
9314 _("Multiple CUs in DWO file %s [in module %s]"),
9315 dwo_file->dwo_name, objfile_name (objfile));
9316 break;
9317 }
9318
9319 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9320 *dwo_unit = create_dwo_cu_data.dwo_unit;
9321 }
9322
9323 info_ptr += per_cu.length;
9324 }
9325
9326 return dwo_unit;
9327}
9328
9329/* DWP file .debug_{cu,tu}_index section format:
9330 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9331
9332 DWP Version 1:
9333
9334 Both index sections have the same format, and serve to map a 64-bit
9335 signature to a set of section numbers. Each section begins with a header,
9336 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9337 indexes, and a pool of 32-bit section numbers. The index sections will be
9338 aligned at 8-byte boundaries in the file.
9339
9340 The index section header consists of:
9341
9342 V, 32 bit version number
9343 -, 32 bits unused
9344 N, 32 bit number of compilation units or type units in the index
9345 M, 32 bit number of slots in the hash table
9346
9347 Numbers are recorded using the byte order of the application binary.
9348
9349 The hash table begins at offset 16 in the section, and consists of an array
9350 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9351 order of the application binary). Unused slots in the hash table are 0.
9352 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9353
9354 The parallel table begins immediately after the hash table
9355 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9356 array of 32-bit indexes (using the byte order of the application binary),
9357 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9358 table contains a 32-bit index into the pool of section numbers. For unused
9359 hash table slots, the corresponding entry in the parallel table will be 0.
9360
9361 The pool of section numbers begins immediately following the hash table
9362 (at offset 16 + 12 * M from the beginning of the section). The pool of
9363 section numbers consists of an array of 32-bit words (using the byte order
9364 of the application binary). Each item in the array is indexed starting
9365 from 0. The hash table entry provides the index of the first section
9366 number in the set. Additional section numbers in the set follow, and the
9367 set is terminated by a 0 entry (section number 0 is not used in ELF).
9368
9369 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9370 section must be the first entry in the set, and the .debug_abbrev.dwo must
9371 be the second entry. Other members of the set may follow in any order.
9372
9373 ---
9374
9375 DWP Version 2:
9376
9377 DWP Version 2 combines all the .debug_info, etc. sections into one,
9378 and the entries in the index tables are now offsets into these sections.
9379 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9380 section.
9381
9382 Index Section Contents:
9383 Header
9384 Hash Table of Signatures dwp_hash_table.hash_table
9385 Parallel Table of Indices dwp_hash_table.unit_table
9386 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9387 Table of Section Sizes dwp_hash_table.v2.sizes
9388
9389 The index section header consists of:
9390
9391 V, 32 bit version number
9392 L, 32 bit number of columns in the table of section offsets
9393 N, 32 bit number of compilation units or type units in the index
9394 M, 32 bit number of slots in the hash table
9395
9396 Numbers are recorded using the byte order of the application binary.
9397
9398 The hash table has the same format as version 1.
9399 The parallel table of indices has the same format as version 1,
9400 except that the entries are origin-1 indices into the table of sections
9401 offsets and the table of section sizes.
9402
9403 The table of offsets begins immediately following the parallel table
9404 (at offset 16 + 12 * M from the beginning of the section). The table is
9405 a two-dimensional array of 32-bit words (using the byte order of the
9406 application binary), with L columns and N+1 rows, in row-major order.
9407 Each row in the array is indexed starting from 0. The first row provides
9408 a key to the remaining rows: each column in this row provides an identifier
9409 for a debug section, and the offsets in the same column of subsequent rows
9410 refer to that section. The section identifiers are:
9411
9412 DW_SECT_INFO 1 .debug_info.dwo
9413 DW_SECT_TYPES 2 .debug_types.dwo
9414 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9415 DW_SECT_LINE 4 .debug_line.dwo
9416 DW_SECT_LOC 5 .debug_loc.dwo
9417 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9418 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9419 DW_SECT_MACRO 8 .debug_macro.dwo
9420
9421 The offsets provided by the CU and TU index sections are the base offsets
9422 for the contributions made by each CU or TU to the corresponding section
9423 in the package file. Each CU and TU header contains an abbrev_offset
9424 field, used to find the abbreviations table for that CU or TU within the
9425 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9426 be interpreted as relative to the base offset given in the index section.
9427 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9428 should be interpreted as relative to the base offset for .debug_line.dwo,
9429 and offsets into other debug sections obtained from DWARF attributes should
9430 also be interpreted as relative to the corresponding base offset.
9431
9432 The table of sizes begins immediately following the table of offsets.
9433 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9434 with L columns and N rows, in row-major order. Each row in the array is
9435 indexed starting from 1 (row 0 is shared by the two tables).
9436
9437 ---
9438
9439 Hash table lookup is handled the same in version 1 and 2:
9440
9441 We assume that N and M will not exceed 2^32 - 1.
9442 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9443
9444 Given a 64-bit compilation unit signature or a type signature S, an entry
9445 in the hash table is located as follows:
9446
9447 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9448 the low-order k bits all set to 1.
9449
9450 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9451
9452 3) If the hash table entry at index H matches the signature, use that
9453 entry. If the hash table entry at index H is unused (all zeroes),
9454 terminate the search: the signature is not present in the table.
9455
9456 4) Let H = (H + H') modulo M. Repeat at Step 3.
9457
9458 Because M > N and H' and M are relatively prime, the search is guaranteed
9459 to stop at an unused slot or find the match. */
9460
9461/* Create a hash table to map DWO IDs to their CU/TU entry in
9462 .debug_{info,types}.dwo in DWP_FILE.
9463 Returns NULL if there isn't one.
9464 Note: This function processes DWP files only, not DWO files. */
9465
9466static struct dwp_hash_table *
9467create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9468{
9469 struct objfile *objfile = dwarf2_per_objfile->objfile;
9470 bfd *dbfd = dwp_file->dbfd;
9471 const gdb_byte *index_ptr, *index_end;
9472 struct dwarf2_section_info *index;
9473 uint32_t version, nr_columns, nr_units, nr_slots;
9474 struct dwp_hash_table *htab;
9475
9476 if (is_debug_types)
9477 index = &dwp_file->sections.tu_index;
9478 else
9479 index = &dwp_file->sections.cu_index;
9480
9481 if (dwarf2_section_empty_p (index))
9482 return NULL;
9483 dwarf2_read_section (objfile, index);
9484
9485 index_ptr = index->buffer;
9486 index_end = index_ptr + index->size;
9487
9488 version = read_4_bytes (dbfd, index_ptr);
9489 index_ptr += 4;
9490 if (version == 2)
9491 nr_columns = read_4_bytes (dbfd, index_ptr);
9492 else
9493 nr_columns = 0;
9494 index_ptr += 4;
9495 nr_units = read_4_bytes (dbfd, index_ptr);
9496 index_ptr += 4;
9497 nr_slots = read_4_bytes (dbfd, index_ptr);
9498 index_ptr += 4;
9499
9500 if (version != 1 && version != 2)
9501 {
9502 error (_("Dwarf Error: unsupported DWP file version (%s)"
9503 " [in module %s]"),
9504 pulongest (version), dwp_file->name);
9505 }
9506 if (nr_slots != (nr_slots & -nr_slots))
9507 {
9508 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9509 " is not power of 2 [in module %s]"),
9510 pulongest (nr_slots), dwp_file->name);
9511 }
9512
9513 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9514 htab->version = version;
9515 htab->nr_columns = nr_columns;
9516 htab->nr_units = nr_units;
9517 htab->nr_slots = nr_slots;
9518 htab->hash_table = index_ptr;
9519 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9520
9521 /* Exit early if the table is empty. */
9522 if (nr_slots == 0 || nr_units == 0
9523 || (version == 2 && nr_columns == 0))
9524 {
9525 /* All must be zero. */
9526 if (nr_slots != 0 || nr_units != 0
9527 || (version == 2 && nr_columns != 0))
9528 {
9529 complaint (&symfile_complaints,
9530 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9531 " all zero [in modules %s]"),
9532 dwp_file->name);
9533 }
9534 return htab;
9535 }
9536
9537 if (version == 1)
9538 {
9539 htab->section_pool.v1.indices =
9540 htab->unit_table + sizeof (uint32_t) * nr_slots;
9541 /* It's harder to decide whether the section is too small in v1.
9542 V1 is deprecated anyway so we punt. */
9543 }
9544 else
9545 {
9546 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9547 int *ids = htab->section_pool.v2.section_ids;
9548 /* Reverse map for error checking. */
9549 int ids_seen[DW_SECT_MAX + 1];
9550 int i;
9551
9552 if (nr_columns < 2)
9553 {
9554 error (_("Dwarf Error: bad DWP hash table, too few columns"
9555 " in section table [in module %s]"),
9556 dwp_file->name);
9557 }
9558 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9559 {
9560 error (_("Dwarf Error: bad DWP hash table, too many columns"
9561 " in section table [in module %s]"),
9562 dwp_file->name);
9563 }
9564 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9565 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9566 for (i = 0; i < nr_columns; ++i)
9567 {
9568 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9569
9570 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9571 {
9572 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9573 " in section table [in module %s]"),
9574 id, dwp_file->name);
9575 }
9576 if (ids_seen[id] != -1)
9577 {
9578 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9579 " id %d in section table [in module %s]"),
9580 id, dwp_file->name);
9581 }
9582 ids_seen[id] = i;
9583 ids[i] = id;
9584 }
9585 /* Must have exactly one info or types section. */
9586 if (((ids_seen[DW_SECT_INFO] != -1)
9587 + (ids_seen[DW_SECT_TYPES] != -1))
9588 != 1)
9589 {
9590 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9591 " DWO info/types section [in module %s]"),
9592 dwp_file->name);
9593 }
9594 /* Must have an abbrev section. */
9595 if (ids_seen[DW_SECT_ABBREV] == -1)
9596 {
9597 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9598 " section [in module %s]"),
9599 dwp_file->name);
9600 }
9601 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9602 htab->section_pool.v2.sizes =
9603 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9604 * nr_units * nr_columns);
9605 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9606 * nr_units * nr_columns))
9607 > index_end)
9608 {
9609 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9610 " [in module %s]"),
9611 dwp_file->name);
9612 }
9613 }
9614
9615 return htab;
9616}
9617
9618/* Update SECTIONS with the data from SECTP.
9619
9620 This function is like the other "locate" section routines that are
9621 passed to bfd_map_over_sections, but in this context the sections to
9622 read comes from the DWP V1 hash table, not the full ELF section table.
9623
9624 The result is non-zero for success, or zero if an error was found. */
9625
9626static int
9627locate_v1_virtual_dwo_sections (asection *sectp,
9628 struct virtual_v1_dwo_sections *sections)
9629{
9630 const struct dwop_section_names *names = &dwop_section_names;
9631
9632 if (section_is_p (sectp->name, &names->abbrev_dwo))
9633 {
9634 /* There can be only one. */
9635 if (sections->abbrev.s.asection != NULL)
9636 return 0;
9637 sections->abbrev.s.asection = sectp;
9638 sections->abbrev.size = bfd_get_section_size (sectp);
9639 }
9640 else if (section_is_p (sectp->name, &names->info_dwo)
9641 || section_is_p (sectp->name, &names->types_dwo))
9642 {
9643 /* There can be only one. */
9644 if (sections->info_or_types.s.asection != NULL)
9645 return 0;
9646 sections->info_or_types.s.asection = sectp;
9647 sections->info_or_types.size = bfd_get_section_size (sectp);
9648 }
9649 else if (section_is_p (sectp->name, &names->line_dwo))
9650 {
9651 /* There can be only one. */
9652 if (sections->line.s.asection != NULL)
9653 return 0;
9654 sections->line.s.asection = sectp;
9655 sections->line.size = bfd_get_section_size (sectp);
9656 }
9657 else if (section_is_p (sectp->name, &names->loc_dwo))
9658 {
9659 /* There can be only one. */
9660 if (sections->loc.s.asection != NULL)
9661 return 0;
9662 sections->loc.s.asection = sectp;
9663 sections->loc.size = bfd_get_section_size (sectp);
9664 }
9665 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9666 {
9667 /* There can be only one. */
9668 if (sections->macinfo.s.asection != NULL)
9669 return 0;
9670 sections->macinfo.s.asection = sectp;
9671 sections->macinfo.size = bfd_get_section_size (sectp);
9672 }
9673 else if (section_is_p (sectp->name, &names->macro_dwo))
9674 {
9675 /* There can be only one. */
9676 if (sections->macro.s.asection != NULL)
9677 return 0;
9678 sections->macro.s.asection = sectp;
9679 sections->macro.size = bfd_get_section_size (sectp);
9680 }
9681 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9682 {
9683 /* There can be only one. */
9684 if (sections->str_offsets.s.asection != NULL)
9685 return 0;
9686 sections->str_offsets.s.asection = sectp;
9687 sections->str_offsets.size = bfd_get_section_size (sectp);
9688 }
9689 else
9690 {
9691 /* No other kind of section is valid. */
9692 return 0;
9693 }
9694
9695 return 1;
9696}
9697
9698/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9699 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9700 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9701 This is for DWP version 1 files. */
9702
9703static struct dwo_unit *
9704create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9705 uint32_t unit_index,
9706 const char *comp_dir,
9707 ULONGEST signature, int is_debug_types)
9708{
9709 struct objfile *objfile = dwarf2_per_objfile->objfile;
9710 const struct dwp_hash_table *dwp_htab =
9711 is_debug_types ? dwp_file->tus : dwp_file->cus;
9712 bfd *dbfd = dwp_file->dbfd;
9713 const char *kind = is_debug_types ? "TU" : "CU";
9714 struct dwo_file *dwo_file;
9715 struct dwo_unit *dwo_unit;
9716 struct virtual_v1_dwo_sections sections;
9717 void **dwo_file_slot;
9718 char *virtual_dwo_name;
9719 struct dwarf2_section_info *cutu;
9720 struct cleanup *cleanups;
9721 int i;
9722
9723 gdb_assert (dwp_file->version == 1);
9724
9725 if (dwarf2_read_debug)
9726 {
9727 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9728 kind,
9729 pulongest (unit_index), hex_string (signature),
9730 dwp_file->name);
9731 }
9732
9733 /* Fetch the sections of this DWO unit.
9734 Put a limit on the number of sections we look for so that bad data
9735 doesn't cause us to loop forever. */
9736
9737#define MAX_NR_V1_DWO_SECTIONS \
9738 (1 /* .debug_info or .debug_types */ \
9739 + 1 /* .debug_abbrev */ \
9740 + 1 /* .debug_line */ \
9741 + 1 /* .debug_loc */ \
9742 + 1 /* .debug_str_offsets */ \
9743 + 1 /* .debug_macro or .debug_macinfo */ \
9744 + 1 /* trailing zero */)
9745
9746 memset (&sections, 0, sizeof (sections));
9747 cleanups = make_cleanup (null_cleanup, 0);
9748
9749 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9750 {
9751 asection *sectp;
9752 uint32_t section_nr =
9753 read_4_bytes (dbfd,
9754 dwp_htab->section_pool.v1.indices
9755 + (unit_index + i) * sizeof (uint32_t));
9756
9757 if (section_nr == 0)
9758 break;
9759 if (section_nr >= dwp_file->num_sections)
9760 {
9761 error (_("Dwarf Error: bad DWP hash table, section number too large"
9762 " [in module %s]"),
9763 dwp_file->name);
9764 }
9765
9766 sectp = dwp_file->elf_sections[section_nr];
9767 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9768 {
9769 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9770 " [in module %s]"),
9771 dwp_file->name);
9772 }
9773 }
9774
9775 if (i < 2
9776 || dwarf2_section_empty_p (&sections.info_or_types)
9777 || dwarf2_section_empty_p (&sections.abbrev))
9778 {
9779 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9780 " [in module %s]"),
9781 dwp_file->name);
9782 }
9783 if (i == MAX_NR_V1_DWO_SECTIONS)
9784 {
9785 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9786 " [in module %s]"),
9787 dwp_file->name);
9788 }
9789
9790 /* It's easier for the rest of the code if we fake a struct dwo_file and
9791 have dwo_unit "live" in that. At least for now.
9792
9793 The DWP file can be made up of a random collection of CUs and TUs.
9794 However, for each CU + set of TUs that came from the same original DWO
9795 file, we can combine them back into a virtual DWO file to save space
9796 (fewer struct dwo_file objects to allocate). Remember that for really
9797 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9798
9799 virtual_dwo_name =
9800 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9801 get_section_id (&sections.abbrev),
9802 get_section_id (&sections.line),
9803 get_section_id (&sections.loc),
9804 get_section_id (&sections.str_offsets));
9805 make_cleanup (xfree, virtual_dwo_name);
9806 /* Can we use an existing virtual DWO file? */
9807 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9808 /* Create one if necessary. */
9809 if (*dwo_file_slot == NULL)
9810 {
9811 if (dwarf2_read_debug)
9812 {
9813 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9814 virtual_dwo_name);
9815 }
9816 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9817 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9818 virtual_dwo_name,
9819 strlen (virtual_dwo_name));
9820 dwo_file->comp_dir = comp_dir;
9821 dwo_file->sections.abbrev = sections.abbrev;
9822 dwo_file->sections.line = sections.line;
9823 dwo_file->sections.loc = sections.loc;
9824 dwo_file->sections.macinfo = sections.macinfo;
9825 dwo_file->sections.macro = sections.macro;
9826 dwo_file->sections.str_offsets = sections.str_offsets;
9827 /* The "str" section is global to the entire DWP file. */
9828 dwo_file->sections.str = dwp_file->sections.str;
9829 /* The info or types section is assigned below to dwo_unit,
9830 there's no need to record it in dwo_file.
9831 Also, we can't simply record type sections in dwo_file because
9832 we record a pointer into the vector in dwo_unit. As we collect more
9833 types we'll grow the vector and eventually have to reallocate space
9834 for it, invalidating all copies of pointers into the previous
9835 contents. */
9836 *dwo_file_slot = dwo_file;
9837 }
9838 else
9839 {
9840 if (dwarf2_read_debug)
9841 {
9842 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9843 virtual_dwo_name);
9844 }
9845 dwo_file = *dwo_file_slot;
9846 }
9847 do_cleanups (cleanups);
9848
9849 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9850 dwo_unit->dwo_file = dwo_file;
9851 dwo_unit->signature = signature;
9852 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9853 sizeof (struct dwarf2_section_info));
9854 *dwo_unit->section = sections.info_or_types;
9855 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9856
9857 return dwo_unit;
9858}
9859
9860/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9861 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9862 piece within that section used by a TU/CU, return a virtual section
9863 of just that piece. */
9864
9865static struct dwarf2_section_info
9866create_dwp_v2_section (struct dwarf2_section_info *section,
9867 bfd_size_type offset, bfd_size_type size)
9868{
9869 struct dwarf2_section_info result;
9870 asection *sectp;
9871
9872 gdb_assert (section != NULL);
9873 gdb_assert (!section->is_virtual);
9874
9875 memset (&result, 0, sizeof (result));
9876 result.s.containing_section = section;
9877 result.is_virtual = 1;
9878
9879 if (size == 0)
9880 return result;
9881
9882 sectp = get_section_bfd_section (section);
9883
9884 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9885 bounds of the real section. This is a pretty-rare event, so just
9886 flag an error (easier) instead of a warning and trying to cope. */
9887 if (sectp == NULL
9888 || offset + size > bfd_get_section_size (sectp))
9889 {
9890 bfd *abfd = sectp->owner;
9891
9892 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9893 " in section %s [in module %s]"),
9894 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9895 objfile_name (dwarf2_per_objfile->objfile));
9896 }
9897
9898 result.virtual_offset = offset;
9899 result.size = size;
9900 return result;
9901}
9902
9903/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9904 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9905 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9906 This is for DWP version 2 files. */
9907
9908static struct dwo_unit *
9909create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9910 uint32_t unit_index,
9911 const char *comp_dir,
9912 ULONGEST signature, int is_debug_types)
9913{
9914 struct objfile *objfile = dwarf2_per_objfile->objfile;
9915 const struct dwp_hash_table *dwp_htab =
9916 is_debug_types ? dwp_file->tus : dwp_file->cus;
9917 bfd *dbfd = dwp_file->dbfd;
9918 const char *kind = is_debug_types ? "TU" : "CU";
9919 struct dwo_file *dwo_file;
9920 struct dwo_unit *dwo_unit;
9921 struct virtual_v2_dwo_sections sections;
9922 void **dwo_file_slot;
9923 char *virtual_dwo_name;
9924 struct dwarf2_section_info *cutu;
9925 struct cleanup *cleanups;
9926 int i;
9927
9928 gdb_assert (dwp_file->version == 2);
9929
9930 if (dwarf2_read_debug)
9931 {
9932 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9933 kind,
9934 pulongest (unit_index), hex_string (signature),
9935 dwp_file->name);
9936 }
9937
9938 /* Fetch the section offsets of this DWO unit. */
9939
9940 memset (&sections, 0, sizeof (sections));
9941 cleanups = make_cleanup (null_cleanup, 0);
9942
9943 for (i = 0; i < dwp_htab->nr_columns; ++i)
9944 {
9945 uint32_t offset = read_4_bytes (dbfd,
9946 dwp_htab->section_pool.v2.offsets
9947 + (((unit_index - 1) * dwp_htab->nr_columns
9948 + i)
9949 * sizeof (uint32_t)));
9950 uint32_t size = read_4_bytes (dbfd,
9951 dwp_htab->section_pool.v2.sizes
9952 + (((unit_index - 1) * dwp_htab->nr_columns
9953 + i)
9954 * sizeof (uint32_t)));
9955
9956 switch (dwp_htab->section_pool.v2.section_ids[i])
9957 {
9958 case DW_SECT_INFO:
9959 case DW_SECT_TYPES:
9960 sections.info_or_types_offset = offset;
9961 sections.info_or_types_size = size;
9962 break;
9963 case DW_SECT_ABBREV:
9964 sections.abbrev_offset = offset;
9965 sections.abbrev_size = size;
9966 break;
9967 case DW_SECT_LINE:
9968 sections.line_offset = offset;
9969 sections.line_size = size;
9970 break;
9971 case DW_SECT_LOC:
9972 sections.loc_offset = offset;
9973 sections.loc_size = size;
9974 break;
9975 case DW_SECT_STR_OFFSETS:
9976 sections.str_offsets_offset = offset;
9977 sections.str_offsets_size = size;
9978 break;
9979 case DW_SECT_MACINFO:
9980 sections.macinfo_offset = offset;
9981 sections.macinfo_size = size;
9982 break;
9983 case DW_SECT_MACRO:
9984 sections.macro_offset = offset;
9985 sections.macro_size = size;
9986 break;
9987 }
9988 }
9989
9990 /* It's easier for the rest of the code if we fake a struct dwo_file and
9991 have dwo_unit "live" in that. At least for now.
9992
9993 The DWP file can be made up of a random collection of CUs and TUs.
9994 However, for each CU + set of TUs that came from the same original DWO
9995 file, we can combine them back into a virtual DWO file to save space
9996 (fewer struct dwo_file objects to allocate). Remember that for really
9997 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9998
9999 virtual_dwo_name =
10000 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10001 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10002 (long) (sections.line_size ? sections.line_offset : 0),
10003 (long) (sections.loc_size ? sections.loc_offset : 0),
10004 (long) (sections.str_offsets_size
10005 ? sections.str_offsets_offset : 0));
10006 make_cleanup (xfree, virtual_dwo_name);
10007 /* Can we use an existing virtual DWO file? */
10008 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10009 /* Create one if necessary. */
10010 if (*dwo_file_slot == NULL)
10011 {
10012 if (dwarf2_read_debug)
10013 {
10014 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10015 virtual_dwo_name);
10016 }
10017 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10018 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10019 virtual_dwo_name,
10020 strlen (virtual_dwo_name));
10021 dwo_file->comp_dir = comp_dir;
10022 dwo_file->sections.abbrev =
10023 create_dwp_v2_section (&dwp_file->sections.abbrev,
10024 sections.abbrev_offset, sections.abbrev_size);
10025 dwo_file->sections.line =
10026 create_dwp_v2_section (&dwp_file->sections.line,
10027 sections.line_offset, sections.line_size);
10028 dwo_file->sections.loc =
10029 create_dwp_v2_section (&dwp_file->sections.loc,
10030 sections.loc_offset, sections.loc_size);
10031 dwo_file->sections.macinfo =
10032 create_dwp_v2_section (&dwp_file->sections.macinfo,
10033 sections.macinfo_offset, sections.macinfo_size);
10034 dwo_file->sections.macro =
10035 create_dwp_v2_section (&dwp_file->sections.macro,
10036 sections.macro_offset, sections.macro_size);
10037 dwo_file->sections.str_offsets =
10038 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10039 sections.str_offsets_offset,
10040 sections.str_offsets_size);
10041 /* The "str" section is global to the entire DWP file. */
10042 dwo_file->sections.str = dwp_file->sections.str;
10043 /* The info or types section is assigned below to dwo_unit,
10044 there's no need to record it in dwo_file.
10045 Also, we can't simply record type sections in dwo_file because
10046 we record a pointer into the vector in dwo_unit. As we collect more
10047 types we'll grow the vector and eventually have to reallocate space
10048 for it, invalidating all copies of pointers into the previous
10049 contents. */
10050 *dwo_file_slot = dwo_file;
10051 }
10052 else
10053 {
10054 if (dwarf2_read_debug)
10055 {
10056 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10057 virtual_dwo_name);
10058 }
10059 dwo_file = *dwo_file_slot;
10060 }
10061 do_cleanups (cleanups);
10062
10063 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10064 dwo_unit->dwo_file = dwo_file;
10065 dwo_unit->signature = signature;
10066 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10067 sizeof (struct dwarf2_section_info));
10068 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10069 ? &dwp_file->sections.types
10070 : &dwp_file->sections.info,
10071 sections.info_or_types_offset,
10072 sections.info_or_types_size);
10073 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10074
10075 return dwo_unit;
10076}
10077
10078/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10079 Returns NULL if the signature isn't found. */
10080
10081static struct dwo_unit *
10082lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10083 ULONGEST signature, int is_debug_types)
10084{
10085 const struct dwp_hash_table *dwp_htab =
10086 is_debug_types ? dwp_file->tus : dwp_file->cus;
10087 bfd *dbfd = dwp_file->dbfd;
10088 uint32_t mask = dwp_htab->nr_slots - 1;
10089 uint32_t hash = signature & mask;
10090 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10091 unsigned int i;
10092 void **slot;
10093 struct dwo_unit find_dwo_cu, *dwo_cu;
10094
10095 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10096 find_dwo_cu.signature = signature;
10097 slot = htab_find_slot (is_debug_types
10098 ? dwp_file->loaded_tus
10099 : dwp_file->loaded_cus,
10100 &find_dwo_cu, INSERT);
10101
10102 if (*slot != NULL)
10103 return *slot;
10104
10105 /* Use a for loop so that we don't loop forever on bad debug info. */
10106 for (i = 0; i < dwp_htab->nr_slots; ++i)
10107 {
10108 ULONGEST signature_in_table;
10109
10110 signature_in_table =
10111 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10112 if (signature_in_table == signature)
10113 {
10114 uint32_t unit_index =
10115 read_4_bytes (dbfd,
10116 dwp_htab->unit_table + hash * sizeof (uint32_t));
10117
10118 if (dwp_file->version == 1)
10119 {
10120 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10121 comp_dir, signature,
10122 is_debug_types);
10123 }
10124 else
10125 {
10126 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10127 comp_dir, signature,
10128 is_debug_types);
10129 }
10130 return *slot;
10131 }
10132 if (signature_in_table == 0)
10133 return NULL;
10134 hash = (hash + hash2) & mask;
10135 }
10136
10137 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10138 " [in module %s]"),
10139 dwp_file->name);
10140}
10141
10142/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10143 Open the file specified by FILE_NAME and hand it off to BFD for
10144 preliminary analysis. Return a newly initialized bfd *, which
10145 includes a canonicalized copy of FILE_NAME.
10146 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10147 SEARCH_CWD is true if the current directory is to be searched.
10148 It will be searched before debug-file-directory.
10149 If successful, the file is added to the bfd include table of the
10150 objfile's bfd (see gdb_bfd_record_inclusion).
10151 If unable to find/open the file, return NULL.
10152 NOTE: This function is derived from symfile_bfd_open. */
10153
10154static bfd *
10155try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10156{
10157 bfd *sym_bfd;
10158 int desc, flags;
10159 char *absolute_name;
10160 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10161 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10162 to debug_file_directory. */
10163 char *search_path;
10164 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10165
10166 if (search_cwd)
10167 {
10168 if (*debug_file_directory != '\0')
10169 search_path = concat (".", dirname_separator_string,
10170 debug_file_directory, NULL);
10171 else
10172 search_path = xstrdup (".");
10173 }
10174 else
10175 search_path = xstrdup (debug_file_directory);
10176
10177 flags = OPF_RETURN_REALPATH;
10178 if (is_dwp)
10179 flags |= OPF_SEARCH_IN_PATH;
10180 desc = openp (search_path, flags, file_name,
10181 O_RDONLY | O_BINARY, &absolute_name);
10182 xfree (search_path);
10183 if (desc < 0)
10184 return NULL;
10185
10186 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10187 xfree (absolute_name);
10188 if (sym_bfd == NULL)
10189 return NULL;
10190 bfd_set_cacheable (sym_bfd, 1);
10191
10192 if (!bfd_check_format (sym_bfd, bfd_object))
10193 {
10194 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10195 return NULL;
10196 }
10197
10198 /* Success. Record the bfd as having been included by the objfile's bfd.
10199 This is important because things like demangled_names_hash lives in the
10200 objfile's per_bfd space and may have references to things like symbol
10201 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10202 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10203
10204 return sym_bfd;
10205}
10206
10207/* Try to open DWO file FILE_NAME.
10208 COMP_DIR is the DW_AT_comp_dir attribute.
10209 The result is the bfd handle of the file.
10210 If there is a problem finding or opening the file, return NULL.
10211 Upon success, the canonicalized path of the file is stored in the bfd,
10212 same as symfile_bfd_open. */
10213
10214static bfd *
10215open_dwo_file (const char *file_name, const char *comp_dir)
10216{
10217 bfd *abfd;
10218
10219 if (IS_ABSOLUTE_PATH (file_name))
10220 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10221
10222 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10223
10224 if (comp_dir != NULL)
10225 {
10226 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10227
10228 /* NOTE: If comp_dir is a relative path, this will also try the
10229 search path, which seems useful. */
10230 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10231 xfree (path_to_try);
10232 if (abfd != NULL)
10233 return abfd;
10234 }
10235
10236 /* That didn't work, try debug-file-directory, which, despite its name,
10237 is a list of paths. */
10238
10239 if (*debug_file_directory == '\0')
10240 return NULL;
10241
10242 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10243}
10244
10245/* This function is mapped across the sections and remembers the offset and
10246 size of each of the DWO debugging sections we are interested in. */
10247
10248static void
10249dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10250{
10251 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10252 const struct dwop_section_names *names = &dwop_section_names;
10253
10254 if (section_is_p (sectp->name, &names->abbrev_dwo))
10255 {
10256 dwo_sections->abbrev.s.asection = sectp;
10257 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10258 }
10259 else if (section_is_p (sectp->name, &names->info_dwo))
10260 {
10261 dwo_sections->info.s.asection = sectp;
10262 dwo_sections->info.size = bfd_get_section_size (sectp);
10263 }
10264 else if (section_is_p (sectp->name, &names->line_dwo))
10265 {
10266 dwo_sections->line.s.asection = sectp;
10267 dwo_sections->line.size = bfd_get_section_size (sectp);
10268 }
10269 else if (section_is_p (sectp->name, &names->loc_dwo))
10270 {
10271 dwo_sections->loc.s.asection = sectp;
10272 dwo_sections->loc.size = bfd_get_section_size (sectp);
10273 }
10274 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10275 {
10276 dwo_sections->macinfo.s.asection = sectp;
10277 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10278 }
10279 else if (section_is_p (sectp->name, &names->macro_dwo))
10280 {
10281 dwo_sections->macro.s.asection = sectp;
10282 dwo_sections->macro.size = bfd_get_section_size (sectp);
10283 }
10284 else if (section_is_p (sectp->name, &names->str_dwo))
10285 {
10286 dwo_sections->str.s.asection = sectp;
10287 dwo_sections->str.size = bfd_get_section_size (sectp);
10288 }
10289 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10290 {
10291 dwo_sections->str_offsets.s.asection = sectp;
10292 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10293 }
10294 else if (section_is_p (sectp->name, &names->types_dwo))
10295 {
10296 struct dwarf2_section_info type_section;
10297
10298 memset (&type_section, 0, sizeof (type_section));
10299 type_section.s.asection = sectp;
10300 type_section.size = bfd_get_section_size (sectp);
10301 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10302 &type_section);
10303 }
10304}
10305
10306/* Initialize the use of the DWO file specified by DWO_NAME and referenced
10307 by PER_CU. This is for the non-DWP case.
10308 The result is NULL if DWO_NAME can't be found. */
10309
10310static struct dwo_file *
10311open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10312 const char *dwo_name, const char *comp_dir)
10313{
10314 struct objfile *objfile = dwarf2_per_objfile->objfile;
10315 struct dwo_file *dwo_file;
10316 bfd *dbfd;
10317 struct cleanup *cleanups;
10318
10319 dbfd = open_dwo_file (dwo_name, comp_dir);
10320 if (dbfd == NULL)
10321 {
10322 if (dwarf2_read_debug)
10323 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10324 return NULL;
10325 }
10326 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10327 dwo_file->dwo_name = dwo_name;
10328 dwo_file->comp_dir = comp_dir;
10329 dwo_file->dbfd = dbfd;
10330
10331 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10332
10333 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10334
10335 dwo_file->cu = create_dwo_cu (dwo_file);
10336
10337 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10338 dwo_file->sections.types);
10339
10340 discard_cleanups (cleanups);
10341
10342 if (dwarf2_read_debug)
10343 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10344
10345 return dwo_file;
10346}
10347
10348/* This function is mapped across the sections and remembers the offset and
10349 size of each of the DWP debugging sections common to version 1 and 2 that
10350 we are interested in. */
10351
10352static void
10353dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10354 void *dwp_file_ptr)
10355{
10356 struct dwp_file *dwp_file = dwp_file_ptr;
10357 const struct dwop_section_names *names = &dwop_section_names;
10358 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10359
10360 /* Record the ELF section number for later lookup: this is what the
10361 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10362 gdb_assert (elf_section_nr < dwp_file->num_sections);
10363 dwp_file->elf_sections[elf_section_nr] = sectp;
10364
10365 /* Look for specific sections that we need. */
10366 if (section_is_p (sectp->name, &names->str_dwo))
10367 {
10368 dwp_file->sections.str.s.asection = sectp;
10369 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10370 }
10371 else if (section_is_p (sectp->name, &names->cu_index))
10372 {
10373 dwp_file->sections.cu_index.s.asection = sectp;
10374 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10375 }
10376 else if (section_is_p (sectp->name, &names->tu_index))
10377 {
10378 dwp_file->sections.tu_index.s.asection = sectp;
10379 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10380 }
10381}
10382
10383/* This function is mapped across the sections and remembers the offset and
10384 size of each of the DWP version 2 debugging sections that we are interested
10385 in. This is split into a separate function because we don't know if we
10386 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10387
10388static void
10389dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10390{
10391 struct dwp_file *dwp_file = dwp_file_ptr;
10392 const struct dwop_section_names *names = &dwop_section_names;
10393 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10394
10395 /* Record the ELF section number for later lookup: this is what the
10396 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10397 gdb_assert (elf_section_nr < dwp_file->num_sections);
10398 dwp_file->elf_sections[elf_section_nr] = sectp;
10399
10400 /* Look for specific sections that we need. */
10401 if (section_is_p (sectp->name, &names->abbrev_dwo))
10402 {
10403 dwp_file->sections.abbrev.s.asection = sectp;
10404 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10405 }
10406 else if (section_is_p (sectp->name, &names->info_dwo))
10407 {
10408 dwp_file->sections.info.s.asection = sectp;
10409 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10410 }
10411 else if (section_is_p (sectp->name, &names->line_dwo))
10412 {
10413 dwp_file->sections.line.s.asection = sectp;
10414 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10415 }
10416 else if (section_is_p (sectp->name, &names->loc_dwo))
10417 {
10418 dwp_file->sections.loc.s.asection = sectp;
10419 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10420 }
10421 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10422 {
10423 dwp_file->sections.macinfo.s.asection = sectp;
10424 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10425 }
10426 else if (section_is_p (sectp->name, &names->macro_dwo))
10427 {
10428 dwp_file->sections.macro.s.asection = sectp;
10429 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10430 }
10431 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10432 {
10433 dwp_file->sections.str_offsets.s.asection = sectp;
10434 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10435 }
10436 else if (section_is_p (sectp->name, &names->types_dwo))
10437 {
10438 dwp_file->sections.types.s.asection = sectp;
10439 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10440 }
10441}
10442
10443/* Hash function for dwp_file loaded CUs/TUs. */
10444
10445static hashval_t
10446hash_dwp_loaded_cutus (const void *item)
10447{
10448 const struct dwo_unit *dwo_unit = item;
10449
10450 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10451 return dwo_unit->signature;
10452}
10453
10454/* Equality function for dwp_file loaded CUs/TUs. */
10455
10456static int
10457eq_dwp_loaded_cutus (const void *a, const void *b)
10458{
10459 const struct dwo_unit *dua = a;
10460 const struct dwo_unit *dub = b;
10461
10462 return dua->signature == dub->signature;
10463}
10464
10465/* Allocate a hash table for dwp_file loaded CUs/TUs. */
10466
10467static htab_t
10468allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10469{
10470 return htab_create_alloc_ex (3,
10471 hash_dwp_loaded_cutus,
10472 eq_dwp_loaded_cutus,
10473 NULL,
10474 &objfile->objfile_obstack,
10475 hashtab_obstack_allocate,
10476 dummy_obstack_deallocate);
10477}
10478
10479/* Try to open DWP file FILE_NAME.
10480 The result is the bfd handle of the file.
10481 If there is a problem finding or opening the file, return NULL.
10482 Upon success, the canonicalized path of the file is stored in the bfd,
10483 same as symfile_bfd_open. */
10484
10485static bfd *
10486open_dwp_file (const char *file_name)
10487{
10488 bfd *abfd;
10489
10490 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10491 if (abfd != NULL)
10492 return abfd;
10493
10494 /* Work around upstream bug 15652.
10495 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10496 [Whether that's a "bug" is debatable, but it is getting in our way.]
10497 We have no real idea where the dwp file is, because gdb's realpath-ing
10498 of the executable's path may have discarded the needed info.
10499 [IWBN if the dwp file name was recorded in the executable, akin to
10500 .gnu_debuglink, but that doesn't exist yet.]
10501 Strip the directory from FILE_NAME and search again. */
10502 if (*debug_file_directory != '\0')
10503 {
10504 /* Don't implicitly search the current directory here.
10505 If the user wants to search "." to handle this case,
10506 it must be added to debug-file-directory. */
10507 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10508 0 /*search_cwd*/);
10509 }
10510
10511 return NULL;
10512}
10513
10514/* Initialize the use of the DWP file for the current objfile.
10515 By convention the name of the DWP file is ${objfile}.dwp.
10516 The result is NULL if it can't be found. */
10517
10518static struct dwp_file *
10519open_and_init_dwp_file (void)
10520{
10521 struct objfile *objfile = dwarf2_per_objfile->objfile;
10522 struct dwp_file *dwp_file;
10523 char *dwp_name;
10524 bfd *dbfd;
10525 struct cleanup *cleanups;
10526
10527 /* Try to find first .dwp for the binary file before any symbolic links
10528 resolving. */
10529 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10530 cleanups = make_cleanup (xfree, dwp_name);
10531
10532 dbfd = open_dwp_file (dwp_name);
10533 if (dbfd == NULL
10534 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10535 {
10536 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10537 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10538 make_cleanup (xfree, dwp_name);
10539 dbfd = open_dwp_file (dwp_name);
10540 }
10541
10542 if (dbfd == NULL)
10543 {
10544 if (dwarf2_read_debug)
10545 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10546 do_cleanups (cleanups);
10547 return NULL;
10548 }
10549 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10550 dwp_file->name = bfd_get_filename (dbfd);
10551 dwp_file->dbfd = dbfd;
10552 do_cleanups (cleanups);
10553
10554 /* +1: section 0 is unused */
10555 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10556 dwp_file->elf_sections =
10557 OBSTACK_CALLOC (&objfile->objfile_obstack,
10558 dwp_file->num_sections, asection *);
10559
10560 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10561
10562 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10563
10564 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10565
10566 /* The DWP file version is stored in the hash table. Oh well. */
10567 if (dwp_file->cus->version != dwp_file->tus->version)
10568 {
10569 /* Technically speaking, we should try to limp along, but this is
10570 pretty bizarre. We use pulongest here because that's the established
10571 portability solution (e.g, we cannot use %u for uint32_t). */
10572 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10573 " TU version %s [in DWP file %s]"),
10574 pulongest (dwp_file->cus->version),
10575 pulongest (dwp_file->tus->version), dwp_name);
10576 }
10577 dwp_file->version = dwp_file->cus->version;
10578
10579 if (dwp_file->version == 2)
10580 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10581
10582 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10583 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10584
10585 if (dwarf2_read_debug)
10586 {
10587 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10588 fprintf_unfiltered (gdb_stdlog,
10589 " %s CUs, %s TUs\n",
10590 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10591 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10592 }
10593
10594 return dwp_file;
10595}
10596
10597/* Wrapper around open_and_init_dwp_file, only open it once. */
10598
10599static struct dwp_file *
10600get_dwp_file (void)
10601{
10602 if (! dwarf2_per_objfile->dwp_checked)
10603 {
10604 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10605 dwarf2_per_objfile->dwp_checked = 1;
10606 }
10607 return dwarf2_per_objfile->dwp_file;
10608}
10609
10610/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10611 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10612 or in the DWP file for the objfile, referenced by THIS_UNIT.
10613 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10614 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10615
10616 This is called, for example, when wanting to read a variable with a
10617 complex location. Therefore we don't want to do file i/o for every call.
10618 Therefore we don't want to look for a DWO file on every call.
10619 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10620 then we check if we've already seen DWO_NAME, and only THEN do we check
10621 for a DWO file.
10622
10623 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10624 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10625
10626static struct dwo_unit *
10627lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10628 const char *dwo_name, const char *comp_dir,
10629 ULONGEST signature, int is_debug_types)
10630{
10631 struct objfile *objfile = dwarf2_per_objfile->objfile;
10632 const char *kind = is_debug_types ? "TU" : "CU";
10633 void **dwo_file_slot;
10634 struct dwo_file *dwo_file;
10635 struct dwp_file *dwp_file;
10636
10637 /* First see if there's a DWP file.
10638 If we have a DWP file but didn't find the DWO inside it, don't
10639 look for the original DWO file. It makes gdb behave differently
10640 depending on whether one is debugging in the build tree. */
10641
10642 dwp_file = get_dwp_file ();
10643 if (dwp_file != NULL)
10644 {
10645 const struct dwp_hash_table *dwp_htab =
10646 is_debug_types ? dwp_file->tus : dwp_file->cus;
10647
10648 if (dwp_htab != NULL)
10649 {
10650 struct dwo_unit *dwo_cutu =
10651 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10652 signature, is_debug_types);
10653
10654 if (dwo_cutu != NULL)
10655 {
10656 if (dwarf2_read_debug)
10657 {
10658 fprintf_unfiltered (gdb_stdlog,
10659 "Virtual DWO %s %s found: @%s\n",
10660 kind, hex_string (signature),
10661 host_address_to_string (dwo_cutu));
10662 }
10663 return dwo_cutu;
10664 }
10665 }
10666 }
10667 else
10668 {
10669 /* No DWP file, look for the DWO file. */
10670
10671 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10672 if (*dwo_file_slot == NULL)
10673 {
10674 /* Read in the file and build a table of the CUs/TUs it contains. */
10675 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10676 }
10677 /* NOTE: This will be NULL if unable to open the file. */
10678 dwo_file = *dwo_file_slot;
10679
10680 if (dwo_file != NULL)
10681 {
10682 struct dwo_unit *dwo_cutu = NULL;
10683
10684 if (is_debug_types && dwo_file->tus)
10685 {
10686 struct dwo_unit find_dwo_cutu;
10687
10688 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10689 find_dwo_cutu.signature = signature;
10690 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10691 }
10692 else if (!is_debug_types && dwo_file->cu)
10693 {
10694 if (signature == dwo_file->cu->signature)
10695 dwo_cutu = dwo_file->cu;
10696 }
10697
10698 if (dwo_cutu != NULL)
10699 {
10700 if (dwarf2_read_debug)
10701 {
10702 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10703 kind, dwo_name, hex_string (signature),
10704 host_address_to_string (dwo_cutu));
10705 }
10706 return dwo_cutu;
10707 }
10708 }
10709 }
10710
10711 /* We didn't find it. This could mean a dwo_id mismatch, or
10712 someone deleted the DWO/DWP file, or the search path isn't set up
10713 correctly to find the file. */
10714
10715 if (dwarf2_read_debug)
10716 {
10717 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10718 kind, dwo_name, hex_string (signature));
10719 }
10720
10721 /* This is a warning and not a complaint because it can be caused by
10722 pilot error (e.g., user accidentally deleting the DWO). */
10723 {
10724 /* Print the name of the DWP file if we looked there, helps the user
10725 better diagnose the problem. */
10726 char *dwp_text = NULL;
10727 struct cleanup *cleanups;
10728
10729 if (dwp_file != NULL)
10730 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10731 cleanups = make_cleanup (xfree, dwp_text);
10732
10733 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10734 " [in module %s]"),
10735 kind, dwo_name, hex_string (signature),
10736 dwp_text != NULL ? dwp_text : "",
10737 this_unit->is_debug_types ? "TU" : "CU",
10738 this_unit->offset.sect_off, objfile_name (objfile));
10739
10740 do_cleanups (cleanups);
10741 }
10742 return NULL;
10743}
10744
10745/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10746 See lookup_dwo_cutu_unit for details. */
10747
10748static struct dwo_unit *
10749lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10750 const char *dwo_name, const char *comp_dir,
10751 ULONGEST signature)
10752{
10753 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10754}
10755
10756/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10757 See lookup_dwo_cutu_unit for details. */
10758
10759static struct dwo_unit *
10760lookup_dwo_type_unit (struct signatured_type *this_tu,
10761 const char *dwo_name, const char *comp_dir)
10762{
10763 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10764}
10765
10766/* Traversal function for queue_and_load_all_dwo_tus. */
10767
10768static int
10769queue_and_load_dwo_tu (void **slot, void *info)
10770{
10771 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10772 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10773 ULONGEST signature = dwo_unit->signature;
10774 struct signatured_type *sig_type =
10775 lookup_dwo_signatured_type (per_cu->cu, signature);
10776
10777 if (sig_type != NULL)
10778 {
10779 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10780
10781 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10782 a real dependency of PER_CU on SIG_TYPE. That is detected later
10783 while processing PER_CU. */
10784 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10785 load_full_type_unit (sig_cu);
10786 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10787 }
10788
10789 return 1;
10790}
10791
10792/* Queue all TUs contained in the DWO of PER_CU to be read in.
10793 The DWO may have the only definition of the type, though it may not be
10794 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10795 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10796
10797static void
10798queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10799{
10800 struct dwo_unit *dwo_unit;
10801 struct dwo_file *dwo_file;
10802
10803 gdb_assert (!per_cu->is_debug_types);
10804 gdb_assert (get_dwp_file () == NULL);
10805 gdb_assert (per_cu->cu != NULL);
10806
10807 dwo_unit = per_cu->cu->dwo_unit;
10808 gdb_assert (dwo_unit != NULL);
10809
10810 dwo_file = dwo_unit->dwo_file;
10811 if (dwo_file->tus != NULL)
10812 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10813}
10814
10815/* Free all resources associated with DWO_FILE.
10816 Close the DWO file and munmap the sections.
10817 All memory should be on the objfile obstack. */
10818
10819static void
10820free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10821{
10822 int ix;
10823 struct dwarf2_section_info *section;
10824
10825 /* Note: dbfd is NULL for virtual DWO files. */
10826 gdb_bfd_unref (dwo_file->dbfd);
10827
10828 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10829}
10830
10831/* Wrapper for free_dwo_file for use in cleanups. */
10832
10833static void
10834free_dwo_file_cleanup (void *arg)
10835{
10836 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10837 struct objfile *objfile = dwarf2_per_objfile->objfile;
10838
10839 free_dwo_file (dwo_file, objfile);
10840}
10841
10842/* Traversal function for free_dwo_files. */
10843
10844static int
10845free_dwo_file_from_slot (void **slot, void *info)
10846{
10847 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10848 struct objfile *objfile = (struct objfile *) info;
10849
10850 free_dwo_file (dwo_file, objfile);
10851
10852 return 1;
10853}
10854
10855/* Free all resources associated with DWO_FILES. */
10856
10857static void
10858free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10859{
10860 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10861}
10862\f
10863/* Read in various DIEs. */
10864
10865/* qsort helper for inherit_abstract_dies. */
10866
10867static int
10868unsigned_int_compar (const void *ap, const void *bp)
10869{
10870 unsigned int a = *(unsigned int *) ap;
10871 unsigned int b = *(unsigned int *) bp;
10872
10873 return (a > b) - (b > a);
10874}
10875
10876/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10877 Inherit only the children of the DW_AT_abstract_origin DIE not being
10878 already referenced by DW_AT_abstract_origin from the children of the
10879 current DIE. */
10880
10881static void
10882inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10883{
10884 struct die_info *child_die;
10885 unsigned die_children_count;
10886 /* CU offsets which were referenced by children of the current DIE. */
10887 sect_offset *offsets;
10888 sect_offset *offsets_end, *offsetp;
10889 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10890 struct die_info *origin_die;
10891 /* Iterator of the ORIGIN_DIE children. */
10892 struct die_info *origin_child_die;
10893 struct cleanup *cleanups;
10894 struct attribute *attr;
10895 struct dwarf2_cu *origin_cu;
10896 struct pending **origin_previous_list_in_scope;
10897
10898 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10899 if (!attr)
10900 return;
10901
10902 /* Note that following die references may follow to a die in a
10903 different cu. */
10904
10905 origin_cu = cu;
10906 origin_die = follow_die_ref (die, attr, &origin_cu);
10907
10908 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10909 symbols in. */
10910 origin_previous_list_in_scope = origin_cu->list_in_scope;
10911 origin_cu->list_in_scope = cu->list_in_scope;
10912
10913 if (die->tag != origin_die->tag
10914 && !(die->tag == DW_TAG_inlined_subroutine
10915 && origin_die->tag == DW_TAG_subprogram))
10916 complaint (&symfile_complaints,
10917 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10918 die->offset.sect_off, origin_die->offset.sect_off);
10919
10920 child_die = die->child;
10921 die_children_count = 0;
10922 while (child_die && child_die->tag)
10923 {
10924 child_die = sibling_die (child_die);
10925 die_children_count++;
10926 }
10927 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10928 cleanups = make_cleanup (xfree, offsets);
10929
10930 offsets_end = offsets;
10931 child_die = die->child;
10932 while (child_die && child_die->tag)
10933 {
10934 /* For each CHILD_DIE, find the corresponding child of
10935 ORIGIN_DIE. If there is more than one layer of
10936 DW_AT_abstract_origin, follow them all; there shouldn't be,
10937 but GCC versions at least through 4.4 generate this (GCC PR
10938 40573). */
10939 struct die_info *child_origin_die = child_die;
10940 struct dwarf2_cu *child_origin_cu = cu;
10941
10942 while (1)
10943 {
10944 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10945 child_origin_cu);
10946 if (attr == NULL)
10947 break;
10948 child_origin_die = follow_die_ref (child_origin_die, attr,
10949 &child_origin_cu);
10950 }
10951
10952 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10953 counterpart may exist. */
10954 if (child_origin_die != child_die)
10955 {
10956 if (child_die->tag != child_origin_die->tag
10957 && !(child_die->tag == DW_TAG_inlined_subroutine
10958 && child_origin_die->tag == DW_TAG_subprogram))
10959 complaint (&symfile_complaints,
10960 _("Child DIE 0x%x and its abstract origin 0x%x have "
10961 "different tags"), child_die->offset.sect_off,
10962 child_origin_die->offset.sect_off);
10963 if (child_origin_die->parent != origin_die)
10964 complaint (&symfile_complaints,
10965 _("Child DIE 0x%x and its abstract origin 0x%x have "
10966 "different parents"), child_die->offset.sect_off,
10967 child_origin_die->offset.sect_off);
10968 else
10969 *offsets_end++ = child_origin_die->offset;
10970 }
10971 child_die = sibling_die (child_die);
10972 }
10973 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
10974 unsigned_int_compar);
10975 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
10976 if (offsetp[-1].sect_off == offsetp->sect_off)
10977 complaint (&symfile_complaints,
10978 _("Multiple children of DIE 0x%x refer "
10979 "to DIE 0x%x as their abstract origin"),
10980 die->offset.sect_off, offsetp->sect_off);
10981
10982 offsetp = offsets;
10983 origin_child_die = origin_die->child;
10984 while (origin_child_die && origin_child_die->tag)
10985 {
10986 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
10987 while (offsetp < offsets_end
10988 && offsetp->sect_off < origin_child_die->offset.sect_off)
10989 offsetp++;
10990 if (offsetp >= offsets_end
10991 || offsetp->sect_off > origin_child_die->offset.sect_off)
10992 {
10993 /* Found that ORIGIN_CHILD_DIE is really not referenced.
10994 Check whether we're already processing ORIGIN_CHILD_DIE.
10995 This can happen with mutually referenced abstract_origins.
10996 PR 16581. */
10997 if (!origin_child_die->in_process)
10998 process_die (origin_child_die, origin_cu);
10999 }
11000 origin_child_die = sibling_die (origin_child_die);
11001 }
11002 origin_cu->list_in_scope = origin_previous_list_in_scope;
11003
11004 do_cleanups (cleanups);
11005}
11006
11007static void
11008read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11009{
11010 struct objfile *objfile = cu->objfile;
11011 struct context_stack *new;
11012 CORE_ADDR lowpc;
11013 CORE_ADDR highpc;
11014 struct die_info *child_die;
11015 struct attribute *attr, *call_line, *call_file;
11016 const char *name;
11017 CORE_ADDR baseaddr;
11018 struct block *block;
11019 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11020 VEC (symbolp) *template_args = NULL;
11021 struct template_symbol *templ_func = NULL;
11022
11023 if (inlined_func)
11024 {
11025 /* If we do not have call site information, we can't show the
11026 caller of this inlined function. That's too confusing, so
11027 only use the scope for local variables. */
11028 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11029 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11030 if (call_line == NULL || call_file == NULL)
11031 {
11032 read_lexical_block_scope (die, cu);
11033 return;
11034 }
11035 }
11036
11037 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11038
11039 name = dwarf2_name (die, cu);
11040
11041 /* Ignore functions with missing or empty names. These are actually
11042 illegal according to the DWARF standard. */
11043 if (name == NULL)
11044 {
11045 complaint (&symfile_complaints,
11046 _("missing name for subprogram DIE at %d"),
11047 die->offset.sect_off);
11048 return;
11049 }
11050
11051 /* Ignore functions with missing or invalid low and high pc attributes. */
11052 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11053 {
11054 attr = dwarf2_attr (die, DW_AT_external, cu);
11055 if (!attr || !DW_UNSND (attr))
11056 complaint (&symfile_complaints,
11057 _("cannot get low and high bounds "
11058 "for subprogram DIE at %d"),
11059 die->offset.sect_off);
11060 return;
11061 }
11062
11063 lowpc += baseaddr;
11064 highpc += baseaddr;
11065
11066 /* If we have any template arguments, then we must allocate a
11067 different sort of symbol. */
11068 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11069 {
11070 if (child_die->tag == DW_TAG_template_type_param
11071 || child_die->tag == DW_TAG_template_value_param)
11072 {
11073 templ_func = allocate_template_symbol (objfile);
11074 templ_func->base.is_cplus_template_function = 1;
11075 break;
11076 }
11077 }
11078
11079 new = push_context (0, lowpc);
11080 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11081 (struct symbol *) templ_func);
11082
11083 /* If there is a location expression for DW_AT_frame_base, record
11084 it. */
11085 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11086 if (attr)
11087 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11088
11089 cu->list_in_scope = &local_symbols;
11090
11091 if (die->child != NULL)
11092 {
11093 child_die = die->child;
11094 while (child_die && child_die->tag)
11095 {
11096 if (child_die->tag == DW_TAG_template_type_param
11097 || child_die->tag == DW_TAG_template_value_param)
11098 {
11099 struct symbol *arg = new_symbol (child_die, NULL, cu);
11100
11101 if (arg != NULL)
11102 VEC_safe_push (symbolp, template_args, arg);
11103 }
11104 else
11105 process_die (child_die, cu);
11106 child_die = sibling_die (child_die);
11107 }
11108 }
11109
11110 inherit_abstract_dies (die, cu);
11111
11112 /* If we have a DW_AT_specification, we might need to import using
11113 directives from the context of the specification DIE. See the
11114 comment in determine_prefix. */
11115 if (cu->language == language_cplus
11116 && dwarf2_attr (die, DW_AT_specification, cu))
11117 {
11118 struct dwarf2_cu *spec_cu = cu;
11119 struct die_info *spec_die = die_specification (die, &spec_cu);
11120
11121 while (spec_die)
11122 {
11123 child_die = spec_die->child;
11124 while (child_die && child_die->tag)
11125 {
11126 if (child_die->tag == DW_TAG_imported_module)
11127 process_die (child_die, spec_cu);
11128 child_die = sibling_die (child_die);
11129 }
11130
11131 /* In some cases, GCC generates specification DIEs that
11132 themselves contain DW_AT_specification attributes. */
11133 spec_die = die_specification (spec_die, &spec_cu);
11134 }
11135 }
11136
11137 new = pop_context ();
11138 /* Make a block for the local symbols within. */
11139 block = finish_block (new->name, &local_symbols, new->old_blocks,
11140 lowpc, highpc, objfile);
11141
11142 /* For C++, set the block's scope. */
11143 if ((cu->language == language_cplus || cu->language == language_fortran)
11144 && cu->processing_has_namespace_info)
11145 block_set_scope (block, determine_prefix (die, cu),
11146 &objfile->objfile_obstack);
11147
11148 /* If we have address ranges, record them. */
11149 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11150
11151 /* Attach template arguments to function. */
11152 if (! VEC_empty (symbolp, template_args))
11153 {
11154 gdb_assert (templ_func != NULL);
11155
11156 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11157 templ_func->template_arguments
11158 = obstack_alloc (&objfile->objfile_obstack,
11159 (templ_func->n_template_arguments
11160 * sizeof (struct symbol *)));
11161 memcpy (templ_func->template_arguments,
11162 VEC_address (symbolp, template_args),
11163 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11164 VEC_free (symbolp, template_args);
11165 }
11166
11167 /* In C++, we can have functions nested inside functions (e.g., when
11168 a function declares a class that has methods). This means that
11169 when we finish processing a function scope, we may need to go
11170 back to building a containing block's symbol lists. */
11171 local_symbols = new->locals;
11172 using_directives = new->using_directives;
11173
11174 /* If we've finished processing a top-level function, subsequent
11175 symbols go in the file symbol list. */
11176 if (outermost_context_p ())
11177 cu->list_in_scope = &file_symbols;
11178}
11179
11180/* Process all the DIES contained within a lexical block scope. Start
11181 a new scope, process the dies, and then close the scope. */
11182
11183static void
11184read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11185{
11186 struct objfile *objfile = cu->objfile;
11187 struct context_stack *new;
11188 CORE_ADDR lowpc, highpc;
11189 struct die_info *child_die;
11190 CORE_ADDR baseaddr;
11191
11192 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11193
11194 /* Ignore blocks with missing or invalid low and high pc attributes. */
11195 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11196 as multiple lexical blocks? Handling children in a sane way would
11197 be nasty. Might be easier to properly extend generic blocks to
11198 describe ranges. */
11199 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11200 return;
11201 lowpc += baseaddr;
11202 highpc += baseaddr;
11203
11204 push_context (0, lowpc);
11205 if (die->child != NULL)
11206 {
11207 child_die = die->child;
11208 while (child_die && child_die->tag)
11209 {
11210 process_die (child_die, cu);
11211 child_die = sibling_die (child_die);
11212 }
11213 }
11214 new = pop_context ();
11215
11216 if (local_symbols != NULL || using_directives != NULL)
11217 {
11218 struct block *block
11219 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11220 highpc, objfile);
11221
11222 /* Note that recording ranges after traversing children, as we
11223 do here, means that recording a parent's ranges entails
11224 walking across all its children's ranges as they appear in
11225 the address map, which is quadratic behavior.
11226
11227 It would be nicer to record the parent's ranges before
11228 traversing its children, simply overriding whatever you find
11229 there. But since we don't even decide whether to create a
11230 block until after we've traversed its children, that's hard
11231 to do. */
11232 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11233 }
11234 local_symbols = new->locals;
11235 using_directives = new->using_directives;
11236}
11237
11238/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11239
11240static void
11241read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11242{
11243 struct objfile *objfile = cu->objfile;
11244 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11245 CORE_ADDR pc, baseaddr;
11246 struct attribute *attr;
11247 struct call_site *call_site, call_site_local;
11248 void **slot;
11249 int nparams;
11250 struct die_info *child_die;
11251
11252 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11253
11254 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11255 if (!attr)
11256 {
11257 complaint (&symfile_complaints,
11258 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11259 "DIE 0x%x [in module %s]"),
11260 die->offset.sect_off, objfile_name (objfile));
11261 return;
11262 }
11263 pc = DW_ADDR (attr) + baseaddr;
11264
11265 if (cu->call_site_htab == NULL)
11266 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11267 NULL, &objfile->objfile_obstack,
11268 hashtab_obstack_allocate, NULL);
11269 call_site_local.pc = pc;
11270 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11271 if (*slot != NULL)
11272 {
11273 complaint (&symfile_complaints,
11274 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11275 "DIE 0x%x [in module %s]"),
11276 paddress (gdbarch, pc), die->offset.sect_off,
11277 objfile_name (objfile));
11278 return;
11279 }
11280
11281 /* Count parameters at the caller. */
11282
11283 nparams = 0;
11284 for (child_die = die->child; child_die && child_die->tag;
11285 child_die = sibling_die (child_die))
11286 {
11287 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11288 {
11289 complaint (&symfile_complaints,
11290 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11291 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11292 child_die->tag, child_die->offset.sect_off,
11293 objfile_name (objfile));
11294 continue;
11295 }
11296
11297 nparams++;
11298 }
11299
11300 call_site = obstack_alloc (&objfile->objfile_obstack,
11301 (sizeof (*call_site)
11302 + (sizeof (*call_site->parameter)
11303 * (nparams - 1))));
11304 *slot = call_site;
11305 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11306 call_site->pc = pc;
11307
11308 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11309 {
11310 struct die_info *func_die;
11311
11312 /* Skip also over DW_TAG_inlined_subroutine. */
11313 for (func_die = die->parent;
11314 func_die && func_die->tag != DW_TAG_subprogram
11315 && func_die->tag != DW_TAG_subroutine_type;
11316 func_die = func_die->parent);
11317
11318 /* DW_AT_GNU_all_call_sites is a superset
11319 of DW_AT_GNU_all_tail_call_sites. */
11320 if (func_die
11321 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11322 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11323 {
11324 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11325 not complete. But keep CALL_SITE for look ups via call_site_htab,
11326 both the initial caller containing the real return address PC and
11327 the final callee containing the current PC of a chain of tail
11328 calls do not need to have the tail call list complete. But any
11329 function candidate for a virtual tail call frame searched via
11330 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11331 determined unambiguously. */
11332 }
11333 else
11334 {
11335 struct type *func_type = NULL;
11336
11337 if (func_die)
11338 func_type = get_die_type (func_die, cu);
11339 if (func_type != NULL)
11340 {
11341 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11342
11343 /* Enlist this call site to the function. */
11344 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11345 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11346 }
11347 else
11348 complaint (&symfile_complaints,
11349 _("Cannot find function owning DW_TAG_GNU_call_site "
11350 "DIE 0x%x [in module %s]"),
11351 die->offset.sect_off, objfile_name (objfile));
11352 }
11353 }
11354
11355 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11356 if (attr == NULL)
11357 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11358 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11359 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11360 /* Keep NULL DWARF_BLOCK. */;
11361 else if (attr_form_is_block (attr))
11362 {
11363 struct dwarf2_locexpr_baton *dlbaton;
11364
11365 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11366 dlbaton->data = DW_BLOCK (attr)->data;
11367 dlbaton->size = DW_BLOCK (attr)->size;
11368 dlbaton->per_cu = cu->per_cu;
11369
11370 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11371 }
11372 else if (attr_form_is_ref (attr))
11373 {
11374 struct dwarf2_cu *target_cu = cu;
11375 struct die_info *target_die;
11376
11377 target_die = follow_die_ref (die, attr, &target_cu);
11378 gdb_assert (target_cu->objfile == objfile);
11379 if (die_is_declaration (target_die, target_cu))
11380 {
11381 const char *target_physname = NULL;
11382 struct attribute *target_attr;
11383
11384 /* Prefer the mangled name; otherwise compute the demangled one. */
11385 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11386 if (target_attr == NULL)
11387 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11388 target_cu);
11389 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11390 target_physname = DW_STRING (target_attr);
11391 else
11392 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11393 if (target_physname == NULL)
11394 complaint (&symfile_complaints,
11395 _("DW_AT_GNU_call_site_target target DIE has invalid "
11396 "physname, for referencing DIE 0x%x [in module %s]"),
11397 die->offset.sect_off, objfile_name (objfile));
11398 else
11399 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11400 }
11401 else
11402 {
11403 CORE_ADDR lowpc;
11404
11405 /* DW_AT_entry_pc should be preferred. */
11406 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11407 complaint (&symfile_complaints,
11408 _("DW_AT_GNU_call_site_target target DIE has invalid "
11409 "low pc, for referencing DIE 0x%x [in module %s]"),
11410 die->offset.sect_off, objfile_name (objfile));
11411 else
11412 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11413 }
11414 }
11415 else
11416 complaint (&symfile_complaints,
11417 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11418 "block nor reference, for DIE 0x%x [in module %s]"),
11419 die->offset.sect_off, objfile_name (objfile));
11420
11421 call_site->per_cu = cu->per_cu;
11422
11423 for (child_die = die->child;
11424 child_die && child_die->tag;
11425 child_die = sibling_die (child_die))
11426 {
11427 struct call_site_parameter *parameter;
11428 struct attribute *loc, *origin;
11429
11430 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11431 {
11432 /* Already printed the complaint above. */
11433 continue;
11434 }
11435
11436 gdb_assert (call_site->parameter_count < nparams);
11437 parameter = &call_site->parameter[call_site->parameter_count];
11438
11439 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11440 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11441 register is contained in DW_AT_GNU_call_site_value. */
11442
11443 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11444 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11445 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11446 {
11447 sect_offset offset;
11448
11449 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11450 offset = dwarf2_get_ref_die_offset (origin);
11451 if (!offset_in_cu_p (&cu->header, offset))
11452 {
11453 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11454 binding can be done only inside one CU. Such referenced DIE
11455 therefore cannot be even moved to DW_TAG_partial_unit. */
11456 complaint (&symfile_complaints,
11457 _("DW_AT_abstract_origin offset is not in CU for "
11458 "DW_TAG_GNU_call_site child DIE 0x%x "
11459 "[in module %s]"),
11460 child_die->offset.sect_off, objfile_name (objfile));
11461 continue;
11462 }
11463 parameter->u.param_offset.cu_off = (offset.sect_off
11464 - cu->header.offset.sect_off);
11465 }
11466 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11467 {
11468 complaint (&symfile_complaints,
11469 _("No DW_FORM_block* DW_AT_location for "
11470 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11471 child_die->offset.sect_off, objfile_name (objfile));
11472 continue;
11473 }
11474 else
11475 {
11476 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11477 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11478 if (parameter->u.dwarf_reg != -1)
11479 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11480 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11481 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11482 &parameter->u.fb_offset))
11483 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11484 else
11485 {
11486 complaint (&symfile_complaints,
11487 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11488 "for DW_FORM_block* DW_AT_location is supported for "
11489 "DW_TAG_GNU_call_site child DIE 0x%x "
11490 "[in module %s]"),
11491 child_die->offset.sect_off, objfile_name (objfile));
11492 continue;
11493 }
11494 }
11495
11496 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11497 if (!attr_form_is_block (attr))
11498 {
11499 complaint (&symfile_complaints,
11500 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11501 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11502 child_die->offset.sect_off, objfile_name (objfile));
11503 continue;
11504 }
11505 parameter->value = DW_BLOCK (attr)->data;
11506 parameter->value_size = DW_BLOCK (attr)->size;
11507
11508 /* Parameters are not pre-cleared by memset above. */
11509 parameter->data_value = NULL;
11510 parameter->data_value_size = 0;
11511 call_site->parameter_count++;
11512
11513 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11514 if (attr)
11515 {
11516 if (!attr_form_is_block (attr))
11517 complaint (&symfile_complaints,
11518 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11519 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11520 child_die->offset.sect_off, objfile_name (objfile));
11521 else
11522 {
11523 parameter->data_value = DW_BLOCK (attr)->data;
11524 parameter->data_value_size = DW_BLOCK (attr)->size;
11525 }
11526 }
11527 }
11528}
11529
11530/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11531 Return 1 if the attributes are present and valid, otherwise, return 0.
11532 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11533
11534static int
11535dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11536 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11537 struct partial_symtab *ranges_pst)
11538{
11539 struct objfile *objfile = cu->objfile;
11540 struct comp_unit_head *cu_header = &cu->header;
11541 bfd *obfd = objfile->obfd;
11542 unsigned int addr_size = cu_header->addr_size;
11543 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11544 /* Base address selection entry. */
11545 CORE_ADDR base;
11546 int found_base;
11547 unsigned int dummy;
11548 const gdb_byte *buffer;
11549 CORE_ADDR marker;
11550 int low_set;
11551 CORE_ADDR low = 0;
11552 CORE_ADDR high = 0;
11553 CORE_ADDR baseaddr;
11554
11555 found_base = cu->base_known;
11556 base = cu->base_address;
11557
11558 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11559 if (offset >= dwarf2_per_objfile->ranges.size)
11560 {
11561 complaint (&symfile_complaints,
11562 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11563 offset);
11564 return 0;
11565 }
11566 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11567
11568 /* Read in the largest possible address. */
11569 marker = read_address (obfd, buffer, cu, &dummy);
11570 if ((marker & mask) == mask)
11571 {
11572 /* If we found the largest possible address, then
11573 read the base address. */
11574 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11575 buffer += 2 * addr_size;
11576 offset += 2 * addr_size;
11577 found_base = 1;
11578 }
11579
11580 low_set = 0;
11581
11582 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11583
11584 while (1)
11585 {
11586 CORE_ADDR range_beginning, range_end;
11587
11588 range_beginning = read_address (obfd, buffer, cu, &dummy);
11589 buffer += addr_size;
11590 range_end = read_address (obfd, buffer, cu, &dummy);
11591 buffer += addr_size;
11592 offset += 2 * addr_size;
11593
11594 /* An end of list marker is a pair of zero addresses. */
11595 if (range_beginning == 0 && range_end == 0)
11596 /* Found the end of list entry. */
11597 break;
11598
11599 /* Each base address selection entry is a pair of 2 values.
11600 The first is the largest possible address, the second is
11601 the base address. Check for a base address here. */
11602 if ((range_beginning & mask) == mask)
11603 {
11604 /* If we found the largest possible address, then
11605 read the base address. */
11606 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11607 found_base = 1;
11608 continue;
11609 }
11610
11611 if (!found_base)
11612 {
11613 /* We have no valid base address for the ranges
11614 data. */
11615 complaint (&symfile_complaints,
11616 _("Invalid .debug_ranges data (no base address)"));
11617 return 0;
11618 }
11619
11620 if (range_beginning > range_end)
11621 {
11622 /* Inverted range entries are invalid. */
11623 complaint (&symfile_complaints,
11624 _("Invalid .debug_ranges data (inverted range)"));
11625 return 0;
11626 }
11627
11628 /* Empty range entries have no effect. */
11629 if (range_beginning == range_end)
11630 continue;
11631
11632 range_beginning += base;
11633 range_end += base;
11634
11635 /* A not-uncommon case of bad debug info.
11636 Don't pollute the addrmap with bad data. */
11637 if (range_beginning + baseaddr == 0
11638 && !dwarf2_per_objfile->has_section_at_zero)
11639 {
11640 complaint (&symfile_complaints,
11641 _(".debug_ranges entry has start address of zero"
11642 " [in module %s]"), objfile_name (objfile));
11643 continue;
11644 }
11645
11646 if (ranges_pst != NULL)
11647 addrmap_set_empty (objfile->psymtabs_addrmap,
11648 range_beginning + baseaddr,
11649 range_end - 1 + baseaddr,
11650 ranges_pst);
11651
11652 /* FIXME: This is recording everything as a low-high
11653 segment of consecutive addresses. We should have a
11654 data structure for discontiguous block ranges
11655 instead. */
11656 if (! low_set)
11657 {
11658 low = range_beginning;
11659 high = range_end;
11660 low_set = 1;
11661 }
11662 else
11663 {
11664 if (range_beginning < low)
11665 low = range_beginning;
11666 if (range_end > high)
11667 high = range_end;
11668 }
11669 }
11670
11671 if (! low_set)
11672 /* If the first entry is an end-of-list marker, the range
11673 describes an empty scope, i.e. no instructions. */
11674 return 0;
11675
11676 if (low_return)
11677 *low_return = low;
11678 if (high_return)
11679 *high_return = high;
11680 return 1;
11681}
11682
11683/* Get low and high pc attributes from a die. Return 1 if the attributes
11684 are present and valid, otherwise, return 0. Return -1 if the range is
11685 discontinuous, i.e. derived from DW_AT_ranges information. */
11686
11687static int
11688dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11689 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11690 struct partial_symtab *pst)
11691{
11692 struct attribute *attr;
11693 struct attribute *attr_high;
11694 CORE_ADDR low = 0;
11695 CORE_ADDR high = 0;
11696 int ret = 0;
11697
11698 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11699 if (attr_high)
11700 {
11701 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11702 if (attr)
11703 {
11704 low = DW_ADDR (attr);
11705 if (attr_high->form == DW_FORM_addr
11706 || attr_high->form == DW_FORM_GNU_addr_index)
11707 high = DW_ADDR (attr_high);
11708 else
11709 high = low + DW_UNSND (attr_high);
11710 }
11711 else
11712 /* Found high w/o low attribute. */
11713 return 0;
11714
11715 /* Found consecutive range of addresses. */
11716 ret = 1;
11717 }
11718 else
11719 {
11720 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11721 if (attr != NULL)
11722 {
11723 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11724 We take advantage of the fact that DW_AT_ranges does not appear
11725 in DW_TAG_compile_unit of DWO files. */
11726 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11727 unsigned int ranges_offset = (DW_UNSND (attr)
11728 + (need_ranges_base
11729 ? cu->ranges_base
11730 : 0));
11731
11732 /* Value of the DW_AT_ranges attribute is the offset in the
11733 .debug_ranges section. */
11734 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11735 return 0;
11736 /* Found discontinuous range of addresses. */
11737 ret = -1;
11738 }
11739 }
11740
11741 /* read_partial_die has also the strict LOW < HIGH requirement. */
11742 if (high <= low)
11743 return 0;
11744
11745 /* When using the GNU linker, .gnu.linkonce. sections are used to
11746 eliminate duplicate copies of functions and vtables and such.
11747 The linker will arbitrarily choose one and discard the others.
11748 The AT_*_pc values for such functions refer to local labels in
11749 these sections. If the section from that file was discarded, the
11750 labels are not in the output, so the relocs get a value of 0.
11751 If this is a discarded function, mark the pc bounds as invalid,
11752 so that GDB will ignore it. */
11753 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11754 return 0;
11755
11756 *lowpc = low;
11757 if (highpc)
11758 *highpc = high;
11759 return ret;
11760}
11761
11762/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11763 its low and high PC addresses. Do nothing if these addresses could not
11764 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11765 and HIGHPC to the high address if greater than HIGHPC. */
11766
11767static void
11768dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11769 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11770 struct dwarf2_cu *cu)
11771{
11772 CORE_ADDR low, high;
11773 struct die_info *child = die->child;
11774
11775 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11776 {
11777 *lowpc = min (*lowpc, low);
11778 *highpc = max (*highpc, high);
11779 }
11780
11781 /* If the language does not allow nested subprograms (either inside
11782 subprograms or lexical blocks), we're done. */
11783 if (cu->language != language_ada)
11784 return;
11785
11786 /* Check all the children of the given DIE. If it contains nested
11787 subprograms, then check their pc bounds. Likewise, we need to
11788 check lexical blocks as well, as they may also contain subprogram
11789 definitions. */
11790 while (child && child->tag)
11791 {
11792 if (child->tag == DW_TAG_subprogram
11793 || child->tag == DW_TAG_lexical_block)
11794 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11795 child = sibling_die (child);
11796 }
11797}
11798
11799/* Get the low and high pc's represented by the scope DIE, and store
11800 them in *LOWPC and *HIGHPC. If the correct values can't be
11801 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11802
11803static void
11804get_scope_pc_bounds (struct die_info *die,
11805 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11806 struct dwarf2_cu *cu)
11807{
11808 CORE_ADDR best_low = (CORE_ADDR) -1;
11809 CORE_ADDR best_high = (CORE_ADDR) 0;
11810 CORE_ADDR current_low, current_high;
11811
11812 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11813 {
11814 best_low = current_low;
11815 best_high = current_high;
11816 }
11817 else
11818 {
11819 struct die_info *child = die->child;
11820
11821 while (child && child->tag)
11822 {
11823 switch (child->tag) {
11824 case DW_TAG_subprogram:
11825 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11826 break;
11827 case DW_TAG_namespace:
11828 case DW_TAG_module:
11829 /* FIXME: carlton/2004-01-16: Should we do this for
11830 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11831 that current GCC's always emit the DIEs corresponding
11832 to definitions of methods of classes as children of a
11833 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11834 the DIEs giving the declarations, which could be
11835 anywhere). But I don't see any reason why the
11836 standards says that they have to be there. */
11837 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11838
11839 if (current_low != ((CORE_ADDR) -1))
11840 {
11841 best_low = min (best_low, current_low);
11842 best_high = max (best_high, current_high);
11843 }
11844 break;
11845 default:
11846 /* Ignore. */
11847 break;
11848 }
11849
11850 child = sibling_die (child);
11851 }
11852 }
11853
11854 *lowpc = best_low;
11855 *highpc = best_high;
11856}
11857
11858/* Record the address ranges for BLOCK, offset by BASEADDR, as given
11859 in DIE. */
11860
11861static void
11862dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11863 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11864{
11865 struct objfile *objfile = cu->objfile;
11866 struct attribute *attr;
11867 struct attribute *attr_high;
11868
11869 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11870 if (attr_high)
11871 {
11872 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11873 if (attr)
11874 {
11875 CORE_ADDR low = DW_ADDR (attr);
11876 CORE_ADDR high;
11877 if (attr_high->form == DW_FORM_addr
11878 || attr_high->form == DW_FORM_GNU_addr_index)
11879 high = DW_ADDR (attr_high);
11880 else
11881 high = low + DW_UNSND (attr_high);
11882
11883 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11884 }
11885 }
11886
11887 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11888 if (attr)
11889 {
11890 bfd *obfd = objfile->obfd;
11891 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11892 We take advantage of the fact that DW_AT_ranges does not appear
11893 in DW_TAG_compile_unit of DWO files. */
11894 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11895
11896 /* The value of the DW_AT_ranges attribute is the offset of the
11897 address range list in the .debug_ranges section. */
11898 unsigned long offset = (DW_UNSND (attr)
11899 + (need_ranges_base ? cu->ranges_base : 0));
11900 const gdb_byte *buffer;
11901
11902 /* For some target architectures, but not others, the
11903 read_address function sign-extends the addresses it returns.
11904 To recognize base address selection entries, we need a
11905 mask. */
11906 unsigned int addr_size = cu->header.addr_size;
11907 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11908
11909 /* The base address, to which the next pair is relative. Note
11910 that this 'base' is a DWARF concept: most entries in a range
11911 list are relative, to reduce the number of relocs against the
11912 debugging information. This is separate from this function's
11913 'baseaddr' argument, which GDB uses to relocate debugging
11914 information from a shared library based on the address at
11915 which the library was loaded. */
11916 CORE_ADDR base = cu->base_address;
11917 int base_known = cu->base_known;
11918
11919 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11920 if (offset >= dwarf2_per_objfile->ranges.size)
11921 {
11922 complaint (&symfile_complaints,
11923 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11924 offset);
11925 return;
11926 }
11927 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11928
11929 for (;;)
11930 {
11931 unsigned int bytes_read;
11932 CORE_ADDR start, end;
11933
11934 start = read_address (obfd, buffer, cu, &bytes_read);
11935 buffer += bytes_read;
11936 end = read_address (obfd, buffer, cu, &bytes_read);
11937 buffer += bytes_read;
11938
11939 /* Did we find the end of the range list? */
11940 if (start == 0 && end == 0)
11941 break;
11942
11943 /* Did we find a base address selection entry? */
11944 else if ((start & base_select_mask) == base_select_mask)
11945 {
11946 base = end;
11947 base_known = 1;
11948 }
11949
11950 /* We found an ordinary address range. */
11951 else
11952 {
11953 if (!base_known)
11954 {
11955 complaint (&symfile_complaints,
11956 _("Invalid .debug_ranges data "
11957 "(no base address)"));
11958 return;
11959 }
11960
11961 if (start > end)
11962 {
11963 /* Inverted range entries are invalid. */
11964 complaint (&symfile_complaints,
11965 _("Invalid .debug_ranges data "
11966 "(inverted range)"));
11967 return;
11968 }
11969
11970 /* Empty range entries have no effect. */
11971 if (start == end)
11972 continue;
11973
11974 start += base + baseaddr;
11975 end += base + baseaddr;
11976
11977 /* A not-uncommon case of bad debug info.
11978 Don't pollute the addrmap with bad data. */
11979 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
11980 {
11981 complaint (&symfile_complaints,
11982 _(".debug_ranges entry has start address of zero"
11983 " [in module %s]"), objfile_name (objfile));
11984 continue;
11985 }
11986
11987 record_block_range (block, start, end - 1);
11988 }
11989 }
11990 }
11991}
11992
11993/* Check whether the producer field indicates either of GCC < 4.6, or the
11994 Intel C/C++ compiler, and cache the result in CU. */
11995
11996static void
11997check_producer (struct dwarf2_cu *cu)
11998{
11999 const char *cs;
12000 int major, minor, release;
12001
12002 if (cu->producer == NULL)
12003 {
12004 /* For unknown compilers expect their behavior is DWARF version
12005 compliant.
12006
12007 GCC started to support .debug_types sections by -gdwarf-4 since
12008 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12009 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12010 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12011 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12012 }
12013 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12014 {
12015 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12016
12017 cs = &cu->producer[strlen ("GNU ")];
12018 while (*cs && !isdigit (*cs))
12019 cs++;
12020 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12021 {
12022 /* Not recognized as GCC. */
12023 }
12024 else
12025 {
12026 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12027 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12028 }
12029 }
12030 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12031 cu->producer_is_icc = 1;
12032 else
12033 {
12034 /* For other non-GCC compilers, expect their behavior is DWARF version
12035 compliant. */
12036 }
12037
12038 cu->checked_producer = 1;
12039}
12040
12041/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12042 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12043 during 4.6.0 experimental. */
12044
12045static int
12046producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12047{
12048 if (!cu->checked_producer)
12049 check_producer (cu);
12050
12051 return cu->producer_is_gxx_lt_4_6;
12052}
12053
12054/* Return the default accessibility type if it is not overriden by
12055 DW_AT_accessibility. */
12056
12057static enum dwarf_access_attribute
12058dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12059{
12060 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12061 {
12062 /* The default DWARF 2 accessibility for members is public, the default
12063 accessibility for inheritance is private. */
12064
12065 if (die->tag != DW_TAG_inheritance)
12066 return DW_ACCESS_public;
12067 else
12068 return DW_ACCESS_private;
12069 }
12070 else
12071 {
12072 /* DWARF 3+ defines the default accessibility a different way. The same
12073 rules apply now for DW_TAG_inheritance as for the members and it only
12074 depends on the container kind. */
12075
12076 if (die->parent->tag == DW_TAG_class_type)
12077 return DW_ACCESS_private;
12078 else
12079 return DW_ACCESS_public;
12080 }
12081}
12082
12083/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12084 offset. If the attribute was not found return 0, otherwise return
12085 1. If it was found but could not properly be handled, set *OFFSET
12086 to 0. */
12087
12088static int
12089handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12090 LONGEST *offset)
12091{
12092 struct attribute *attr;
12093
12094 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12095 if (attr != NULL)
12096 {
12097 *offset = 0;
12098
12099 /* Note that we do not check for a section offset first here.
12100 This is because DW_AT_data_member_location is new in DWARF 4,
12101 so if we see it, we can assume that a constant form is really
12102 a constant and not a section offset. */
12103 if (attr_form_is_constant (attr))
12104 *offset = dwarf2_get_attr_constant_value (attr, 0);
12105 else if (attr_form_is_section_offset (attr))
12106 dwarf2_complex_location_expr_complaint ();
12107 else if (attr_form_is_block (attr))
12108 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12109 else
12110 dwarf2_complex_location_expr_complaint ();
12111
12112 return 1;
12113 }
12114
12115 return 0;
12116}
12117
12118/* Add an aggregate field to the field list. */
12119
12120static void
12121dwarf2_add_field (struct field_info *fip, struct die_info *die,
12122 struct dwarf2_cu *cu)
12123{
12124 struct objfile *objfile = cu->objfile;
12125 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12126 struct nextfield *new_field;
12127 struct attribute *attr;
12128 struct field *fp;
12129 const char *fieldname = "";
12130
12131 /* Allocate a new field list entry and link it in. */
12132 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12133 make_cleanup (xfree, new_field);
12134 memset (new_field, 0, sizeof (struct nextfield));
12135
12136 if (die->tag == DW_TAG_inheritance)
12137 {
12138 new_field->next = fip->baseclasses;
12139 fip->baseclasses = new_field;
12140 }
12141 else
12142 {
12143 new_field->next = fip->fields;
12144 fip->fields = new_field;
12145 }
12146 fip->nfields++;
12147
12148 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12149 if (attr)
12150 new_field->accessibility = DW_UNSND (attr);
12151 else
12152 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12153 if (new_field->accessibility != DW_ACCESS_public)
12154 fip->non_public_fields = 1;
12155
12156 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12157 if (attr)
12158 new_field->virtuality = DW_UNSND (attr);
12159 else
12160 new_field->virtuality = DW_VIRTUALITY_none;
12161
12162 fp = &new_field->field;
12163
12164 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12165 {
12166 LONGEST offset;
12167
12168 /* Data member other than a C++ static data member. */
12169
12170 /* Get type of field. */
12171 fp->type = die_type (die, cu);
12172
12173 SET_FIELD_BITPOS (*fp, 0);
12174
12175 /* Get bit size of field (zero if none). */
12176 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12177 if (attr)
12178 {
12179 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12180 }
12181 else
12182 {
12183 FIELD_BITSIZE (*fp) = 0;
12184 }
12185
12186 /* Get bit offset of field. */
12187 if (handle_data_member_location (die, cu, &offset))
12188 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12189 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12190 if (attr)
12191 {
12192 if (gdbarch_bits_big_endian (gdbarch))
12193 {
12194 /* For big endian bits, the DW_AT_bit_offset gives the
12195 additional bit offset from the MSB of the containing
12196 anonymous object to the MSB of the field. We don't
12197 have to do anything special since we don't need to
12198 know the size of the anonymous object. */
12199 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12200 }
12201 else
12202 {
12203 /* For little endian bits, compute the bit offset to the
12204 MSB of the anonymous object, subtract off the number of
12205 bits from the MSB of the field to the MSB of the
12206 object, and then subtract off the number of bits of
12207 the field itself. The result is the bit offset of
12208 the LSB of the field. */
12209 int anonymous_size;
12210 int bit_offset = DW_UNSND (attr);
12211
12212 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12213 if (attr)
12214 {
12215 /* The size of the anonymous object containing
12216 the bit field is explicit, so use the
12217 indicated size (in bytes). */
12218 anonymous_size = DW_UNSND (attr);
12219 }
12220 else
12221 {
12222 /* The size of the anonymous object containing
12223 the bit field must be inferred from the type
12224 attribute of the data member containing the
12225 bit field. */
12226 anonymous_size = TYPE_LENGTH (fp->type);
12227 }
12228 SET_FIELD_BITPOS (*fp,
12229 (FIELD_BITPOS (*fp)
12230 + anonymous_size * bits_per_byte
12231 - bit_offset - FIELD_BITSIZE (*fp)));
12232 }
12233 }
12234
12235 /* Get name of field. */
12236 fieldname = dwarf2_name (die, cu);
12237 if (fieldname == NULL)
12238 fieldname = "";
12239
12240 /* The name is already allocated along with this objfile, so we don't
12241 need to duplicate it for the type. */
12242 fp->name = fieldname;
12243
12244 /* Change accessibility for artificial fields (e.g. virtual table
12245 pointer or virtual base class pointer) to private. */
12246 if (dwarf2_attr (die, DW_AT_artificial, cu))
12247 {
12248 FIELD_ARTIFICIAL (*fp) = 1;
12249 new_field->accessibility = DW_ACCESS_private;
12250 fip->non_public_fields = 1;
12251 }
12252 }
12253 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12254 {
12255 /* C++ static member. */
12256
12257 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12258 is a declaration, but all versions of G++ as of this writing
12259 (so through at least 3.2.1) incorrectly generate
12260 DW_TAG_variable tags. */
12261
12262 const char *physname;
12263
12264 /* Get name of field. */
12265 fieldname = dwarf2_name (die, cu);
12266 if (fieldname == NULL)
12267 return;
12268
12269 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12270 if (attr
12271 /* Only create a symbol if this is an external value.
12272 new_symbol checks this and puts the value in the global symbol
12273 table, which we want. If it is not external, new_symbol
12274 will try to put the value in cu->list_in_scope which is wrong. */
12275 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12276 {
12277 /* A static const member, not much different than an enum as far as
12278 we're concerned, except that we can support more types. */
12279 new_symbol (die, NULL, cu);
12280 }
12281
12282 /* Get physical name. */
12283 physname = dwarf2_physname (fieldname, die, cu);
12284
12285 /* The name is already allocated along with this objfile, so we don't
12286 need to duplicate it for the type. */
12287 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12288 FIELD_TYPE (*fp) = die_type (die, cu);
12289 FIELD_NAME (*fp) = fieldname;
12290 }
12291 else if (die->tag == DW_TAG_inheritance)
12292 {
12293 LONGEST offset;
12294
12295 /* C++ base class field. */
12296 if (handle_data_member_location (die, cu, &offset))
12297 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12298 FIELD_BITSIZE (*fp) = 0;
12299 FIELD_TYPE (*fp) = die_type (die, cu);
12300 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12301 fip->nbaseclasses++;
12302 }
12303}
12304
12305/* Add a typedef defined in the scope of the FIP's class. */
12306
12307static void
12308dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12309 struct dwarf2_cu *cu)
12310{
12311 struct objfile *objfile = cu->objfile;
12312 struct typedef_field_list *new_field;
12313 struct attribute *attr;
12314 struct typedef_field *fp;
12315 char *fieldname = "";
12316
12317 /* Allocate a new field list entry and link it in. */
12318 new_field = xzalloc (sizeof (*new_field));
12319 make_cleanup (xfree, new_field);
12320
12321 gdb_assert (die->tag == DW_TAG_typedef);
12322
12323 fp = &new_field->field;
12324
12325 /* Get name of field. */
12326 fp->name = dwarf2_name (die, cu);
12327 if (fp->name == NULL)
12328 return;
12329
12330 fp->type = read_type_die (die, cu);
12331
12332 new_field->next = fip->typedef_field_list;
12333 fip->typedef_field_list = new_field;
12334 fip->typedef_field_list_count++;
12335}
12336
12337/* Create the vector of fields, and attach it to the type. */
12338
12339static void
12340dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12341 struct dwarf2_cu *cu)
12342{
12343 int nfields = fip->nfields;
12344
12345 /* Record the field count, allocate space for the array of fields,
12346 and create blank accessibility bitfields if necessary. */
12347 TYPE_NFIELDS (type) = nfields;
12348 TYPE_FIELDS (type) = (struct field *)
12349 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12350 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12351
12352 if (fip->non_public_fields && cu->language != language_ada)
12353 {
12354 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12355
12356 TYPE_FIELD_PRIVATE_BITS (type) =
12357 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12358 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12359
12360 TYPE_FIELD_PROTECTED_BITS (type) =
12361 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12362 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12363
12364 TYPE_FIELD_IGNORE_BITS (type) =
12365 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12366 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12367 }
12368
12369 /* If the type has baseclasses, allocate and clear a bit vector for
12370 TYPE_FIELD_VIRTUAL_BITS. */
12371 if (fip->nbaseclasses && cu->language != language_ada)
12372 {
12373 int num_bytes = B_BYTES (fip->nbaseclasses);
12374 unsigned char *pointer;
12375
12376 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12377 pointer = TYPE_ALLOC (type, num_bytes);
12378 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12379 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12380 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12381 }
12382
12383 /* Copy the saved-up fields into the field vector. Start from the head of
12384 the list, adding to the tail of the field array, so that they end up in
12385 the same order in the array in which they were added to the list. */
12386 while (nfields-- > 0)
12387 {
12388 struct nextfield *fieldp;
12389
12390 if (fip->fields)
12391 {
12392 fieldp = fip->fields;
12393 fip->fields = fieldp->next;
12394 }
12395 else
12396 {
12397 fieldp = fip->baseclasses;
12398 fip->baseclasses = fieldp->next;
12399 }
12400
12401 TYPE_FIELD (type, nfields) = fieldp->field;
12402 switch (fieldp->accessibility)
12403 {
12404 case DW_ACCESS_private:
12405 if (cu->language != language_ada)
12406 SET_TYPE_FIELD_PRIVATE (type, nfields);
12407 break;
12408
12409 case DW_ACCESS_protected:
12410 if (cu->language != language_ada)
12411 SET_TYPE_FIELD_PROTECTED (type, nfields);
12412 break;
12413
12414 case DW_ACCESS_public:
12415 break;
12416
12417 default:
12418 /* Unknown accessibility. Complain and treat it as public. */
12419 {
12420 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12421 fieldp->accessibility);
12422 }
12423 break;
12424 }
12425 if (nfields < fip->nbaseclasses)
12426 {
12427 switch (fieldp->virtuality)
12428 {
12429 case DW_VIRTUALITY_virtual:
12430 case DW_VIRTUALITY_pure_virtual:
12431 if (cu->language == language_ada)
12432 error (_("unexpected virtuality in component of Ada type"));
12433 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12434 break;
12435 }
12436 }
12437 }
12438}
12439
12440/* Return true if this member function is a constructor, false
12441 otherwise. */
12442
12443static int
12444dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12445{
12446 const char *fieldname;
12447 const char *typename;
12448 int len;
12449
12450 if (die->parent == NULL)
12451 return 0;
12452
12453 if (die->parent->tag != DW_TAG_structure_type
12454 && die->parent->tag != DW_TAG_union_type
12455 && die->parent->tag != DW_TAG_class_type)
12456 return 0;
12457
12458 fieldname = dwarf2_name (die, cu);
12459 typename = dwarf2_name (die->parent, cu);
12460 if (fieldname == NULL || typename == NULL)
12461 return 0;
12462
12463 len = strlen (fieldname);
12464 return (strncmp (fieldname, typename, len) == 0
12465 && (typename[len] == '\0' || typename[len] == '<'));
12466}
12467
12468/* Add a member function to the proper fieldlist. */
12469
12470static void
12471dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12472 struct type *type, struct dwarf2_cu *cu)
12473{
12474 struct objfile *objfile = cu->objfile;
12475 struct attribute *attr;
12476 struct fnfieldlist *flp;
12477 int i;
12478 struct fn_field *fnp;
12479 const char *fieldname;
12480 struct nextfnfield *new_fnfield;
12481 struct type *this_type;
12482 enum dwarf_access_attribute accessibility;
12483
12484 if (cu->language == language_ada)
12485 error (_("unexpected member function in Ada type"));
12486
12487 /* Get name of member function. */
12488 fieldname = dwarf2_name (die, cu);
12489 if (fieldname == NULL)
12490 return;
12491
12492 /* Look up member function name in fieldlist. */
12493 for (i = 0; i < fip->nfnfields; i++)
12494 {
12495 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12496 break;
12497 }
12498
12499 /* Create new list element if necessary. */
12500 if (i < fip->nfnfields)
12501 flp = &fip->fnfieldlists[i];
12502 else
12503 {
12504 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12505 {
12506 fip->fnfieldlists = (struct fnfieldlist *)
12507 xrealloc (fip->fnfieldlists,
12508 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12509 * sizeof (struct fnfieldlist));
12510 if (fip->nfnfields == 0)
12511 make_cleanup (free_current_contents, &fip->fnfieldlists);
12512 }
12513 flp = &fip->fnfieldlists[fip->nfnfields];
12514 flp->name = fieldname;
12515 flp->length = 0;
12516 flp->head = NULL;
12517 i = fip->nfnfields++;
12518 }
12519
12520 /* Create a new member function field and chain it to the field list
12521 entry. */
12522 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12523 make_cleanup (xfree, new_fnfield);
12524 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12525 new_fnfield->next = flp->head;
12526 flp->head = new_fnfield;
12527 flp->length++;
12528
12529 /* Fill in the member function field info. */
12530 fnp = &new_fnfield->fnfield;
12531
12532 /* Delay processing of the physname until later. */
12533 if (cu->language == language_cplus || cu->language == language_java)
12534 {
12535 add_to_method_list (type, i, flp->length - 1, fieldname,
12536 die, cu);
12537 }
12538 else
12539 {
12540 const char *physname = dwarf2_physname (fieldname, die, cu);
12541 fnp->physname = physname ? physname : "";
12542 }
12543
12544 fnp->type = alloc_type (objfile);
12545 this_type = read_type_die (die, cu);
12546 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12547 {
12548 int nparams = TYPE_NFIELDS (this_type);
12549
12550 /* TYPE is the domain of this method, and THIS_TYPE is the type
12551 of the method itself (TYPE_CODE_METHOD). */
12552 smash_to_method_type (fnp->type, type,
12553 TYPE_TARGET_TYPE (this_type),
12554 TYPE_FIELDS (this_type),
12555 TYPE_NFIELDS (this_type),
12556 TYPE_VARARGS (this_type));
12557
12558 /* Handle static member functions.
12559 Dwarf2 has no clean way to discern C++ static and non-static
12560 member functions. G++ helps GDB by marking the first
12561 parameter for non-static member functions (which is the this
12562 pointer) as artificial. We obtain this information from
12563 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12564 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12565 fnp->voffset = VOFFSET_STATIC;
12566 }
12567 else
12568 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12569 dwarf2_full_name (fieldname, die, cu));
12570
12571 /* Get fcontext from DW_AT_containing_type if present. */
12572 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12573 fnp->fcontext = die_containing_type (die, cu);
12574
12575 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12576 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12577
12578 /* Get accessibility. */
12579 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12580 if (attr)
12581 accessibility = DW_UNSND (attr);
12582 else
12583 accessibility = dwarf2_default_access_attribute (die, cu);
12584 switch (accessibility)
12585 {
12586 case DW_ACCESS_private:
12587 fnp->is_private = 1;
12588 break;
12589 case DW_ACCESS_protected:
12590 fnp->is_protected = 1;
12591 break;
12592 }
12593
12594 /* Check for artificial methods. */
12595 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12596 if (attr && DW_UNSND (attr) != 0)
12597 fnp->is_artificial = 1;
12598
12599 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12600
12601 /* Get index in virtual function table if it is a virtual member
12602 function. For older versions of GCC, this is an offset in the
12603 appropriate virtual table, as specified by DW_AT_containing_type.
12604 For everyone else, it is an expression to be evaluated relative
12605 to the object address. */
12606
12607 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12608 if (attr)
12609 {
12610 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12611 {
12612 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12613 {
12614 /* Old-style GCC. */
12615 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12616 }
12617 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12618 || (DW_BLOCK (attr)->size > 1
12619 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12620 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12621 {
12622 struct dwarf_block blk;
12623 int offset;
12624
12625 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12626 ? 1 : 2);
12627 blk.size = DW_BLOCK (attr)->size - offset;
12628 blk.data = DW_BLOCK (attr)->data + offset;
12629 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12630 if ((fnp->voffset % cu->header.addr_size) != 0)
12631 dwarf2_complex_location_expr_complaint ();
12632 else
12633 fnp->voffset /= cu->header.addr_size;
12634 fnp->voffset += 2;
12635 }
12636 else
12637 dwarf2_complex_location_expr_complaint ();
12638
12639 if (!fnp->fcontext)
12640 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12641 }
12642 else if (attr_form_is_section_offset (attr))
12643 {
12644 dwarf2_complex_location_expr_complaint ();
12645 }
12646 else
12647 {
12648 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12649 fieldname);
12650 }
12651 }
12652 else
12653 {
12654 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12655 if (attr && DW_UNSND (attr))
12656 {
12657 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12658 complaint (&symfile_complaints,
12659 _("Member function \"%s\" (offset %d) is virtual "
12660 "but the vtable offset is not specified"),
12661 fieldname, die->offset.sect_off);
12662 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12663 TYPE_CPLUS_DYNAMIC (type) = 1;
12664 }
12665 }
12666}
12667
12668/* Create the vector of member function fields, and attach it to the type. */
12669
12670static void
12671dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12672 struct dwarf2_cu *cu)
12673{
12674 struct fnfieldlist *flp;
12675 int i;
12676
12677 if (cu->language == language_ada)
12678 error (_("unexpected member functions in Ada type"));
12679
12680 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12681 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12682 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12683
12684 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12685 {
12686 struct nextfnfield *nfp = flp->head;
12687 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12688 int k;
12689
12690 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12691 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12692 fn_flp->fn_fields = (struct fn_field *)
12693 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12694 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12695 fn_flp->fn_fields[k] = nfp->fnfield;
12696 }
12697
12698 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12699}
12700
12701/* Returns non-zero if NAME is the name of a vtable member in CU's
12702 language, zero otherwise. */
12703static int
12704is_vtable_name (const char *name, struct dwarf2_cu *cu)
12705{
12706 static const char vptr[] = "_vptr";
12707 static const char vtable[] = "vtable";
12708
12709 /* Look for the C++ and Java forms of the vtable. */
12710 if ((cu->language == language_java
12711 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12712 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12713 && is_cplus_marker (name[sizeof (vptr) - 1])))
12714 return 1;
12715
12716 return 0;
12717}
12718
12719/* GCC outputs unnamed structures that are really pointers to member
12720 functions, with the ABI-specified layout. If TYPE describes
12721 such a structure, smash it into a member function type.
12722
12723 GCC shouldn't do this; it should just output pointer to member DIEs.
12724 This is GCC PR debug/28767. */
12725
12726static void
12727quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12728{
12729 struct type *pfn_type, *domain_type, *new_type;
12730
12731 /* Check for a structure with no name and two children. */
12732 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12733 return;
12734
12735 /* Check for __pfn and __delta members. */
12736 if (TYPE_FIELD_NAME (type, 0) == NULL
12737 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12738 || TYPE_FIELD_NAME (type, 1) == NULL
12739 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12740 return;
12741
12742 /* Find the type of the method. */
12743 pfn_type = TYPE_FIELD_TYPE (type, 0);
12744 if (pfn_type == NULL
12745 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12746 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12747 return;
12748
12749 /* Look for the "this" argument. */
12750 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12751 if (TYPE_NFIELDS (pfn_type) == 0
12752 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12753 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12754 return;
12755
12756 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12757 new_type = alloc_type (objfile);
12758 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12759 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12760 TYPE_VARARGS (pfn_type));
12761 smash_to_methodptr_type (type, new_type);
12762}
12763
12764/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12765 (icc). */
12766
12767static int
12768producer_is_icc (struct dwarf2_cu *cu)
12769{
12770 if (!cu->checked_producer)
12771 check_producer (cu);
12772
12773 return cu->producer_is_icc;
12774}
12775
12776/* Called when we find the DIE that starts a structure or union scope
12777 (definition) to create a type for the structure or union. Fill in
12778 the type's name and general properties; the members will not be
12779 processed until process_structure_scope.
12780
12781 NOTE: we need to call these functions regardless of whether or not the
12782 DIE has a DW_AT_name attribute, since it might be an anonymous
12783 structure or union. This gets the type entered into our set of
12784 user defined types.
12785
12786 However, if the structure is incomplete (an opaque struct/union)
12787 then suppress creating a symbol table entry for it since gdb only
12788 wants to find the one with the complete definition. Note that if
12789 it is complete, we just call new_symbol, which does it's own
12790 checking about whether the struct/union is anonymous or not (and
12791 suppresses creating a symbol table entry itself). */
12792
12793static struct type *
12794read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12795{
12796 struct objfile *objfile = cu->objfile;
12797 struct type *type;
12798 struct attribute *attr;
12799 const char *name;
12800
12801 /* If the definition of this type lives in .debug_types, read that type.
12802 Don't follow DW_AT_specification though, that will take us back up
12803 the chain and we want to go down. */
12804 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12805 if (attr)
12806 {
12807 type = get_DW_AT_signature_type (die, attr, cu);
12808
12809 /* The type's CU may not be the same as CU.
12810 Ensure TYPE is recorded with CU in die_type_hash. */
12811 return set_die_type (die, type, cu);
12812 }
12813
12814 type = alloc_type (objfile);
12815 INIT_CPLUS_SPECIFIC (type);
12816
12817 name = dwarf2_name (die, cu);
12818 if (name != NULL)
12819 {
12820 if (cu->language == language_cplus
12821 || cu->language == language_java)
12822 {
12823 const char *full_name = dwarf2_full_name (name, die, cu);
12824
12825 /* dwarf2_full_name might have already finished building the DIE's
12826 type. If so, there is no need to continue. */
12827 if (get_die_type (die, cu) != NULL)
12828 return get_die_type (die, cu);
12829
12830 TYPE_TAG_NAME (type) = full_name;
12831 if (die->tag == DW_TAG_structure_type
12832 || die->tag == DW_TAG_class_type)
12833 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12834 }
12835 else
12836 {
12837 /* The name is already allocated along with this objfile, so
12838 we don't need to duplicate it for the type. */
12839 TYPE_TAG_NAME (type) = name;
12840 if (die->tag == DW_TAG_class_type)
12841 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12842 }
12843 }
12844
12845 if (die->tag == DW_TAG_structure_type)
12846 {
12847 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12848 }
12849 else if (die->tag == DW_TAG_union_type)
12850 {
12851 TYPE_CODE (type) = TYPE_CODE_UNION;
12852 }
12853 else
12854 {
12855 TYPE_CODE (type) = TYPE_CODE_CLASS;
12856 }
12857
12858 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12859 TYPE_DECLARED_CLASS (type) = 1;
12860
12861 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12862 if (attr)
12863 {
12864 TYPE_LENGTH (type) = DW_UNSND (attr);
12865 }
12866 else
12867 {
12868 TYPE_LENGTH (type) = 0;
12869 }
12870
12871 if (producer_is_icc (cu))
12872 {
12873 /* ICC does not output the required DW_AT_declaration
12874 on incomplete types, but gives them a size of zero. */
12875 }
12876 else
12877 TYPE_STUB_SUPPORTED (type) = 1;
12878
12879 if (die_is_declaration (die, cu))
12880 TYPE_STUB (type) = 1;
12881 else if (attr == NULL && die->child == NULL
12882 && producer_is_realview (cu->producer))
12883 /* RealView does not output the required DW_AT_declaration
12884 on incomplete types. */
12885 TYPE_STUB (type) = 1;
12886
12887 /* We need to add the type field to the die immediately so we don't
12888 infinitely recurse when dealing with pointers to the structure
12889 type within the structure itself. */
12890 set_die_type (die, type, cu);
12891
12892 /* set_die_type should be already done. */
12893 set_descriptive_type (type, die, cu);
12894
12895 return type;
12896}
12897
12898/* Finish creating a structure or union type, including filling in
12899 its members and creating a symbol for it. */
12900
12901static void
12902process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12903{
12904 struct objfile *objfile = cu->objfile;
12905 struct die_info *child_die = die->child;
12906 struct type *type;
12907
12908 type = get_die_type (die, cu);
12909 if (type == NULL)
12910 type = read_structure_type (die, cu);
12911
12912 if (die->child != NULL && ! die_is_declaration (die, cu))
12913 {
12914 struct field_info fi;
12915 struct die_info *child_die;
12916 VEC (symbolp) *template_args = NULL;
12917 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12918
12919 memset (&fi, 0, sizeof (struct field_info));
12920
12921 child_die = die->child;
12922
12923 while (child_die && child_die->tag)
12924 {
12925 if (child_die->tag == DW_TAG_member
12926 || child_die->tag == DW_TAG_variable)
12927 {
12928 /* NOTE: carlton/2002-11-05: A C++ static data member
12929 should be a DW_TAG_member that is a declaration, but
12930 all versions of G++ as of this writing (so through at
12931 least 3.2.1) incorrectly generate DW_TAG_variable
12932 tags for them instead. */
12933 dwarf2_add_field (&fi, child_die, cu);
12934 }
12935 else if (child_die->tag == DW_TAG_subprogram)
12936 {
12937 /* C++ member function. */
12938 dwarf2_add_member_fn (&fi, child_die, type, cu);
12939 }
12940 else if (child_die->tag == DW_TAG_inheritance)
12941 {
12942 /* C++ base class field. */
12943 dwarf2_add_field (&fi, child_die, cu);
12944 }
12945 else if (child_die->tag == DW_TAG_typedef)
12946 dwarf2_add_typedef (&fi, child_die, cu);
12947 else if (child_die->tag == DW_TAG_template_type_param
12948 || child_die->tag == DW_TAG_template_value_param)
12949 {
12950 struct symbol *arg = new_symbol (child_die, NULL, cu);
12951
12952 if (arg != NULL)
12953 VEC_safe_push (symbolp, template_args, arg);
12954 }
12955
12956 child_die = sibling_die (child_die);
12957 }
12958
12959 /* Attach template arguments to type. */
12960 if (! VEC_empty (symbolp, template_args))
12961 {
12962 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12963 TYPE_N_TEMPLATE_ARGUMENTS (type)
12964 = VEC_length (symbolp, template_args);
12965 TYPE_TEMPLATE_ARGUMENTS (type)
12966 = obstack_alloc (&objfile->objfile_obstack,
12967 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12968 * sizeof (struct symbol *)));
12969 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12970 VEC_address (symbolp, template_args),
12971 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12972 * sizeof (struct symbol *)));
12973 VEC_free (symbolp, template_args);
12974 }
12975
12976 /* Attach fields and member functions to the type. */
12977 if (fi.nfields)
12978 dwarf2_attach_fields_to_type (&fi, type, cu);
12979 if (fi.nfnfields)
12980 {
12981 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
12982
12983 /* Get the type which refers to the base class (possibly this
12984 class itself) which contains the vtable pointer for the current
12985 class from the DW_AT_containing_type attribute. This use of
12986 DW_AT_containing_type is a GNU extension. */
12987
12988 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12989 {
12990 struct type *t = die_containing_type (die, cu);
12991
12992 TYPE_VPTR_BASETYPE (type) = t;
12993 if (type == t)
12994 {
12995 int i;
12996
12997 /* Our own class provides vtbl ptr. */
12998 for (i = TYPE_NFIELDS (t) - 1;
12999 i >= TYPE_N_BASECLASSES (t);
13000 --i)
13001 {
13002 const char *fieldname = TYPE_FIELD_NAME (t, i);
13003
13004 if (is_vtable_name (fieldname, cu))
13005 {
13006 TYPE_VPTR_FIELDNO (type) = i;
13007 break;
13008 }
13009 }
13010
13011 /* Complain if virtual function table field not found. */
13012 if (i < TYPE_N_BASECLASSES (t))
13013 complaint (&symfile_complaints,
13014 _("virtual function table pointer "
13015 "not found when defining class '%s'"),
13016 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13017 "");
13018 }
13019 else
13020 {
13021 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13022 }
13023 }
13024 else if (cu->producer
13025 && strncmp (cu->producer,
13026 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13027 {
13028 /* The IBM XLC compiler does not provide direct indication
13029 of the containing type, but the vtable pointer is
13030 always named __vfp. */
13031
13032 int i;
13033
13034 for (i = TYPE_NFIELDS (type) - 1;
13035 i >= TYPE_N_BASECLASSES (type);
13036 --i)
13037 {
13038 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13039 {
13040 TYPE_VPTR_FIELDNO (type) = i;
13041 TYPE_VPTR_BASETYPE (type) = type;
13042 break;
13043 }
13044 }
13045 }
13046 }
13047
13048 /* Copy fi.typedef_field_list linked list elements content into the
13049 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13050 if (fi.typedef_field_list)
13051 {
13052 int i = fi.typedef_field_list_count;
13053
13054 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13055 TYPE_TYPEDEF_FIELD_ARRAY (type)
13056 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13057 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13058
13059 /* Reverse the list order to keep the debug info elements order. */
13060 while (--i >= 0)
13061 {
13062 struct typedef_field *dest, *src;
13063
13064 dest = &TYPE_TYPEDEF_FIELD (type, i);
13065 src = &fi.typedef_field_list->field;
13066 fi.typedef_field_list = fi.typedef_field_list->next;
13067 *dest = *src;
13068 }
13069 }
13070
13071 do_cleanups (back_to);
13072
13073 if (HAVE_CPLUS_STRUCT (type))
13074 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13075 }
13076
13077 quirk_gcc_member_function_pointer (type, objfile);
13078
13079 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13080 snapshots) has been known to create a die giving a declaration
13081 for a class that has, as a child, a die giving a definition for a
13082 nested class. So we have to process our children even if the
13083 current die is a declaration. Normally, of course, a declaration
13084 won't have any children at all. */
13085
13086 while (child_die != NULL && child_die->tag)
13087 {
13088 if (child_die->tag == DW_TAG_member
13089 || child_die->tag == DW_TAG_variable
13090 || child_die->tag == DW_TAG_inheritance
13091 || child_die->tag == DW_TAG_template_value_param
13092 || child_die->tag == DW_TAG_template_type_param)
13093 {
13094 /* Do nothing. */
13095 }
13096 else
13097 process_die (child_die, cu);
13098
13099 child_die = sibling_die (child_die);
13100 }
13101
13102 /* Do not consider external references. According to the DWARF standard,
13103 these DIEs are identified by the fact that they have no byte_size
13104 attribute, and a declaration attribute. */
13105 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13106 || !die_is_declaration (die, cu))
13107 new_symbol (die, type, cu);
13108}
13109
13110/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13111 update TYPE using some information only available in DIE's children. */
13112
13113static void
13114update_enumeration_type_from_children (struct die_info *die,
13115 struct type *type,
13116 struct dwarf2_cu *cu)
13117{
13118 struct obstack obstack;
13119 struct die_info *child_die = die->child;
13120 int unsigned_enum = 1;
13121 int flag_enum = 1;
13122 ULONGEST mask = 0;
13123 struct cleanup *old_chain;
13124
13125 obstack_init (&obstack);
13126 old_chain = make_cleanup_obstack_free (&obstack);
13127
13128 while (child_die != NULL && child_die->tag)
13129 {
13130 struct attribute *attr;
13131 LONGEST value;
13132 const gdb_byte *bytes;
13133 struct dwarf2_locexpr_baton *baton;
13134 const char *name;
13135 if (child_die->tag != DW_TAG_enumerator)
13136 continue;
13137
13138 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13139 if (attr == NULL)
13140 continue;
13141
13142 name = dwarf2_name (child_die, cu);
13143 if (name == NULL)
13144 name = "<anonymous enumerator>";
13145
13146 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13147 &value, &bytes, &baton);
13148 if (value < 0)
13149 {
13150 unsigned_enum = 0;
13151 flag_enum = 0;
13152 }
13153 else if ((mask & value) != 0)
13154 flag_enum = 0;
13155 else
13156 mask |= value;
13157
13158 /* If we already know that the enum type is neither unsigned, nor
13159 a flag type, no need to look at the rest of the enumerates. */
13160 if (!unsigned_enum && !flag_enum)
13161 break;
13162 child_die = sibling_die (child_die);
13163 }
13164
13165 if (unsigned_enum)
13166 TYPE_UNSIGNED (type) = 1;
13167 if (flag_enum)
13168 TYPE_FLAG_ENUM (type) = 1;
13169
13170 do_cleanups (old_chain);
13171}
13172
13173/* Given a DW_AT_enumeration_type die, set its type. We do not
13174 complete the type's fields yet, or create any symbols. */
13175
13176static struct type *
13177read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13178{
13179 struct objfile *objfile = cu->objfile;
13180 struct type *type;
13181 struct attribute *attr;
13182 const char *name;
13183
13184 /* If the definition of this type lives in .debug_types, read that type.
13185 Don't follow DW_AT_specification though, that will take us back up
13186 the chain and we want to go down. */
13187 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13188 if (attr)
13189 {
13190 type = get_DW_AT_signature_type (die, attr, cu);
13191
13192 /* The type's CU may not be the same as CU.
13193 Ensure TYPE is recorded with CU in die_type_hash. */
13194 return set_die_type (die, type, cu);
13195 }
13196
13197 type = alloc_type (objfile);
13198
13199 TYPE_CODE (type) = TYPE_CODE_ENUM;
13200 name = dwarf2_full_name (NULL, die, cu);
13201 if (name != NULL)
13202 TYPE_TAG_NAME (type) = name;
13203
13204 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13205 if (attr)
13206 {
13207 TYPE_LENGTH (type) = DW_UNSND (attr);
13208 }
13209 else
13210 {
13211 TYPE_LENGTH (type) = 0;
13212 }
13213
13214 /* The enumeration DIE can be incomplete. In Ada, any type can be
13215 declared as private in the package spec, and then defined only
13216 inside the package body. Such types are known as Taft Amendment
13217 Types. When another package uses such a type, an incomplete DIE
13218 may be generated by the compiler. */
13219 if (die_is_declaration (die, cu))
13220 TYPE_STUB (type) = 1;
13221
13222 /* Finish the creation of this type by using the enum's children. */
13223 update_enumeration_type_from_children (die, type, cu);
13224
13225 return set_die_type (die, type, cu);
13226}
13227
13228/* Given a pointer to a die which begins an enumeration, process all
13229 the dies that define the members of the enumeration, and create the
13230 symbol for the enumeration type.
13231
13232 NOTE: We reverse the order of the element list. */
13233
13234static void
13235process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13236{
13237 struct type *this_type;
13238
13239 this_type = get_die_type (die, cu);
13240 if (this_type == NULL)
13241 this_type = read_enumeration_type (die, cu);
13242
13243 if (die->child != NULL)
13244 {
13245 struct die_info *child_die;
13246 struct symbol *sym;
13247 struct field *fields = NULL;
13248 int num_fields = 0;
13249 const char *name;
13250
13251 child_die = die->child;
13252 while (child_die && child_die->tag)
13253 {
13254 if (child_die->tag != DW_TAG_enumerator)
13255 {
13256 process_die (child_die, cu);
13257 }
13258 else
13259 {
13260 name = dwarf2_name (child_die, cu);
13261 if (name)
13262 {
13263 sym = new_symbol (child_die, this_type, cu);
13264
13265 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13266 {
13267 fields = (struct field *)
13268 xrealloc (fields,
13269 (num_fields + DW_FIELD_ALLOC_CHUNK)
13270 * sizeof (struct field));
13271 }
13272
13273 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13274 FIELD_TYPE (fields[num_fields]) = NULL;
13275 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13276 FIELD_BITSIZE (fields[num_fields]) = 0;
13277
13278 num_fields++;
13279 }
13280 }
13281
13282 child_die = sibling_die (child_die);
13283 }
13284
13285 if (num_fields)
13286 {
13287 TYPE_NFIELDS (this_type) = num_fields;
13288 TYPE_FIELDS (this_type) = (struct field *)
13289 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13290 memcpy (TYPE_FIELDS (this_type), fields,
13291 sizeof (struct field) * num_fields);
13292 xfree (fields);
13293 }
13294 }
13295
13296 /* If we are reading an enum from a .debug_types unit, and the enum
13297 is a declaration, and the enum is not the signatured type in the
13298 unit, then we do not want to add a symbol for it. Adding a
13299 symbol would in some cases obscure the true definition of the
13300 enum, giving users an incomplete type when the definition is
13301 actually available. Note that we do not want to do this for all
13302 enums which are just declarations, because C++0x allows forward
13303 enum declarations. */
13304 if (cu->per_cu->is_debug_types
13305 && die_is_declaration (die, cu))
13306 {
13307 struct signatured_type *sig_type;
13308
13309 sig_type = (struct signatured_type *) cu->per_cu;
13310 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13311 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13312 return;
13313 }
13314
13315 new_symbol (die, this_type, cu);
13316}
13317
13318/* Extract all information from a DW_TAG_array_type DIE and put it in
13319 the DIE's type field. For now, this only handles one dimensional
13320 arrays. */
13321
13322static struct type *
13323read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13324{
13325 struct objfile *objfile = cu->objfile;
13326 struct die_info *child_die;
13327 struct type *type;
13328 struct type *element_type, *range_type, *index_type;
13329 struct type **range_types = NULL;
13330 struct attribute *attr;
13331 int ndim = 0;
13332 struct cleanup *back_to;
13333 const char *name;
13334 unsigned int bit_stride = 0;
13335
13336 element_type = die_type (die, cu);
13337
13338 /* The die_type call above may have already set the type for this DIE. */
13339 type = get_die_type (die, cu);
13340 if (type)
13341 return type;
13342
13343 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13344 if (attr != NULL)
13345 bit_stride = DW_UNSND (attr) * 8;
13346
13347 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13348 if (attr != NULL)
13349 bit_stride = DW_UNSND (attr);
13350
13351 /* Irix 6.2 native cc creates array types without children for
13352 arrays with unspecified length. */
13353 if (die->child == NULL)
13354 {
13355 index_type = objfile_type (objfile)->builtin_int;
13356 range_type = create_range_type (NULL, index_type, 0, -1);
13357 type = create_array_type_with_stride (NULL, element_type, range_type,
13358 bit_stride);
13359 return set_die_type (die, type, cu);
13360 }
13361
13362 back_to = make_cleanup (null_cleanup, NULL);
13363 child_die = die->child;
13364 while (child_die && child_die->tag)
13365 {
13366 if (child_die->tag == DW_TAG_subrange_type)
13367 {
13368 struct type *child_type = read_type_die (child_die, cu);
13369
13370 if (child_type != NULL)
13371 {
13372 /* The range type was succesfully read. Save it for the
13373 array type creation. */
13374 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13375 {
13376 range_types = (struct type **)
13377 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13378 * sizeof (struct type *));
13379 if (ndim == 0)
13380 make_cleanup (free_current_contents, &range_types);
13381 }
13382 range_types[ndim++] = child_type;
13383 }
13384 }
13385 child_die = sibling_die (child_die);
13386 }
13387
13388 /* Dwarf2 dimensions are output from left to right, create the
13389 necessary array types in backwards order. */
13390
13391 type = element_type;
13392
13393 if (read_array_order (die, cu) == DW_ORD_col_major)
13394 {
13395 int i = 0;
13396
13397 while (i < ndim)
13398 type = create_array_type_with_stride (NULL, type, range_types[i++],
13399 bit_stride);
13400 }
13401 else
13402 {
13403 while (ndim-- > 0)
13404 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13405 bit_stride);
13406 }
13407
13408 /* Understand Dwarf2 support for vector types (like they occur on
13409 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13410 array type. This is not part of the Dwarf2/3 standard yet, but a
13411 custom vendor extension. The main difference between a regular
13412 array and the vector variant is that vectors are passed by value
13413 to functions. */
13414 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13415 if (attr)
13416 make_vector_type (type);
13417
13418 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13419 implementation may choose to implement triple vectors using this
13420 attribute. */
13421 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13422 if (attr)
13423 {
13424 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13425 TYPE_LENGTH (type) = DW_UNSND (attr);
13426 else
13427 complaint (&symfile_complaints,
13428 _("DW_AT_byte_size for array type smaller "
13429 "than the total size of elements"));
13430 }
13431
13432 name = dwarf2_name (die, cu);
13433 if (name)
13434 TYPE_NAME (type) = name;
13435
13436 /* Install the type in the die. */
13437 set_die_type (die, type, cu);
13438
13439 /* set_die_type should be already done. */
13440 set_descriptive_type (type, die, cu);
13441
13442 do_cleanups (back_to);
13443
13444 return type;
13445}
13446
13447static enum dwarf_array_dim_ordering
13448read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13449{
13450 struct attribute *attr;
13451
13452 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13453
13454 if (attr) return DW_SND (attr);
13455
13456 /* GNU F77 is a special case, as at 08/2004 array type info is the
13457 opposite order to the dwarf2 specification, but data is still
13458 laid out as per normal fortran.
13459
13460 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13461 version checking. */
13462
13463 if (cu->language == language_fortran
13464 && cu->producer && strstr (cu->producer, "GNU F77"))
13465 {
13466 return DW_ORD_row_major;
13467 }
13468
13469 switch (cu->language_defn->la_array_ordering)
13470 {
13471 case array_column_major:
13472 return DW_ORD_col_major;
13473 case array_row_major:
13474 default:
13475 return DW_ORD_row_major;
13476 };
13477}
13478
13479/* Extract all information from a DW_TAG_set_type DIE and put it in
13480 the DIE's type field. */
13481
13482static struct type *
13483read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13484{
13485 struct type *domain_type, *set_type;
13486 struct attribute *attr;
13487
13488 domain_type = die_type (die, cu);
13489
13490 /* The die_type call above may have already set the type for this DIE. */
13491 set_type = get_die_type (die, cu);
13492 if (set_type)
13493 return set_type;
13494
13495 set_type = create_set_type (NULL, domain_type);
13496
13497 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13498 if (attr)
13499 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13500
13501 return set_die_type (die, set_type, cu);
13502}
13503
13504/* A helper for read_common_block that creates a locexpr baton.
13505 SYM is the symbol which we are marking as computed.
13506 COMMON_DIE is the DIE for the common block.
13507 COMMON_LOC is the location expression attribute for the common
13508 block itself.
13509 MEMBER_LOC is the location expression attribute for the particular
13510 member of the common block that we are processing.
13511 CU is the CU from which the above come. */
13512
13513static void
13514mark_common_block_symbol_computed (struct symbol *sym,
13515 struct die_info *common_die,
13516 struct attribute *common_loc,
13517 struct attribute *member_loc,
13518 struct dwarf2_cu *cu)
13519{
13520 struct objfile *objfile = dwarf2_per_objfile->objfile;
13521 struct dwarf2_locexpr_baton *baton;
13522 gdb_byte *ptr;
13523 unsigned int cu_off;
13524 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13525 LONGEST offset = 0;
13526
13527 gdb_assert (common_loc && member_loc);
13528 gdb_assert (attr_form_is_block (common_loc));
13529 gdb_assert (attr_form_is_block (member_loc)
13530 || attr_form_is_constant (member_loc));
13531
13532 baton = obstack_alloc (&objfile->objfile_obstack,
13533 sizeof (struct dwarf2_locexpr_baton));
13534 baton->per_cu = cu->per_cu;
13535 gdb_assert (baton->per_cu);
13536
13537 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13538
13539 if (attr_form_is_constant (member_loc))
13540 {
13541 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13542 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13543 }
13544 else
13545 baton->size += DW_BLOCK (member_loc)->size;
13546
13547 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13548 baton->data = ptr;
13549
13550 *ptr++ = DW_OP_call4;
13551 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13552 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13553 ptr += 4;
13554
13555 if (attr_form_is_constant (member_loc))
13556 {
13557 *ptr++ = DW_OP_addr;
13558 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13559 ptr += cu->header.addr_size;
13560 }
13561 else
13562 {
13563 /* We have to copy the data here, because DW_OP_call4 will only
13564 use a DW_AT_location attribute. */
13565 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13566 ptr += DW_BLOCK (member_loc)->size;
13567 }
13568
13569 *ptr++ = DW_OP_plus;
13570 gdb_assert (ptr - baton->data == baton->size);
13571
13572 SYMBOL_LOCATION_BATON (sym) = baton;
13573 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13574}
13575
13576/* Create appropriate locally-scoped variables for all the
13577 DW_TAG_common_block entries. Also create a struct common_block
13578 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13579 is used to sepate the common blocks name namespace from regular
13580 variable names. */
13581
13582static void
13583read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13584{
13585 struct attribute *attr;
13586
13587 attr = dwarf2_attr (die, DW_AT_location, cu);
13588 if (attr)
13589 {
13590 /* Support the .debug_loc offsets. */
13591 if (attr_form_is_block (attr))
13592 {
13593 /* Ok. */
13594 }
13595 else if (attr_form_is_section_offset (attr))
13596 {
13597 dwarf2_complex_location_expr_complaint ();
13598 attr = NULL;
13599 }
13600 else
13601 {
13602 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13603 "common block member");
13604 attr = NULL;
13605 }
13606 }
13607
13608 if (die->child != NULL)
13609 {
13610 struct objfile *objfile = cu->objfile;
13611 struct die_info *child_die;
13612 size_t n_entries = 0, size;
13613 struct common_block *common_block;
13614 struct symbol *sym;
13615
13616 for (child_die = die->child;
13617 child_die && child_die->tag;
13618 child_die = sibling_die (child_die))
13619 ++n_entries;
13620
13621 size = (sizeof (struct common_block)
13622 + (n_entries - 1) * sizeof (struct symbol *));
13623 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13624 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13625 common_block->n_entries = 0;
13626
13627 for (child_die = die->child;
13628 child_die && child_die->tag;
13629 child_die = sibling_die (child_die))
13630 {
13631 /* Create the symbol in the DW_TAG_common_block block in the current
13632 symbol scope. */
13633 sym = new_symbol (child_die, NULL, cu);
13634 if (sym != NULL)
13635 {
13636 struct attribute *member_loc;
13637
13638 common_block->contents[common_block->n_entries++] = sym;
13639
13640 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13641 cu);
13642 if (member_loc)
13643 {
13644 /* GDB has handled this for a long time, but it is
13645 not specified by DWARF. It seems to have been
13646 emitted by gfortran at least as recently as:
13647 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13648 complaint (&symfile_complaints,
13649 _("Variable in common block has "
13650 "DW_AT_data_member_location "
13651 "- DIE at 0x%x [in module %s]"),
13652 child_die->offset.sect_off,
13653 objfile_name (cu->objfile));
13654
13655 if (attr_form_is_section_offset (member_loc))
13656 dwarf2_complex_location_expr_complaint ();
13657 else if (attr_form_is_constant (member_loc)
13658 || attr_form_is_block (member_loc))
13659 {
13660 if (attr)
13661 mark_common_block_symbol_computed (sym, die, attr,
13662 member_loc, cu);
13663 }
13664 else
13665 dwarf2_complex_location_expr_complaint ();
13666 }
13667 }
13668 }
13669
13670 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13671 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13672 }
13673}
13674
13675/* Create a type for a C++ namespace. */
13676
13677static struct type *
13678read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13679{
13680 struct objfile *objfile = cu->objfile;
13681 const char *previous_prefix, *name;
13682 int is_anonymous;
13683 struct type *type;
13684
13685 /* For extensions, reuse the type of the original namespace. */
13686 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13687 {
13688 struct die_info *ext_die;
13689 struct dwarf2_cu *ext_cu = cu;
13690
13691 ext_die = dwarf2_extension (die, &ext_cu);
13692 type = read_type_die (ext_die, ext_cu);
13693
13694 /* EXT_CU may not be the same as CU.
13695 Ensure TYPE is recorded with CU in die_type_hash. */
13696 return set_die_type (die, type, cu);
13697 }
13698
13699 name = namespace_name (die, &is_anonymous, cu);
13700
13701 /* Now build the name of the current namespace. */
13702
13703 previous_prefix = determine_prefix (die, cu);
13704 if (previous_prefix[0] != '\0')
13705 name = typename_concat (&objfile->objfile_obstack,
13706 previous_prefix, name, 0, cu);
13707
13708 /* Create the type. */
13709 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13710 objfile);
13711 TYPE_NAME (type) = name;
13712 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13713
13714 return set_die_type (die, type, cu);
13715}
13716
13717/* Read a C++ namespace. */
13718
13719static void
13720read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13721{
13722 struct objfile *objfile = cu->objfile;
13723 int is_anonymous;
13724
13725 /* Add a symbol associated to this if we haven't seen the namespace
13726 before. Also, add a using directive if it's an anonymous
13727 namespace. */
13728
13729 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13730 {
13731 struct type *type;
13732
13733 type = read_type_die (die, cu);
13734 new_symbol (die, type, cu);
13735
13736 namespace_name (die, &is_anonymous, cu);
13737 if (is_anonymous)
13738 {
13739 const char *previous_prefix = determine_prefix (die, cu);
13740
13741 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13742 NULL, NULL, 0, &objfile->objfile_obstack);
13743 }
13744 }
13745
13746 if (die->child != NULL)
13747 {
13748 struct die_info *child_die = die->child;
13749
13750 while (child_die && child_die->tag)
13751 {
13752 process_die (child_die, cu);
13753 child_die = sibling_die (child_die);
13754 }
13755 }
13756}
13757
13758/* Read a Fortran module as type. This DIE can be only a declaration used for
13759 imported module. Still we need that type as local Fortran "use ... only"
13760 declaration imports depend on the created type in determine_prefix. */
13761
13762static struct type *
13763read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13764{
13765 struct objfile *objfile = cu->objfile;
13766 const char *module_name;
13767 struct type *type;
13768
13769 module_name = dwarf2_name (die, cu);
13770 if (!module_name)
13771 complaint (&symfile_complaints,
13772 _("DW_TAG_module has no name, offset 0x%x"),
13773 die->offset.sect_off);
13774 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13775
13776 /* determine_prefix uses TYPE_TAG_NAME. */
13777 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13778
13779 return set_die_type (die, type, cu);
13780}
13781
13782/* Read a Fortran module. */
13783
13784static void
13785read_module (struct die_info *die, struct dwarf2_cu *cu)
13786{
13787 struct die_info *child_die = die->child;
13788 struct type *type;
13789
13790 type = read_type_die (die, cu);
13791 new_symbol (die, type, cu);
13792
13793 while (child_die && child_die->tag)
13794 {
13795 process_die (child_die, cu);
13796 child_die = sibling_die (child_die);
13797 }
13798}
13799
13800/* Return the name of the namespace represented by DIE. Set
13801 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13802 namespace. */
13803
13804static const char *
13805namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13806{
13807 struct die_info *current_die;
13808 const char *name = NULL;
13809
13810 /* Loop through the extensions until we find a name. */
13811
13812 for (current_die = die;
13813 current_die != NULL;
13814 current_die = dwarf2_extension (die, &cu))
13815 {
13816 name = dwarf2_name (current_die, cu);
13817 if (name != NULL)
13818 break;
13819 }
13820
13821 /* Is it an anonymous namespace? */
13822
13823 *is_anonymous = (name == NULL);
13824 if (*is_anonymous)
13825 name = CP_ANONYMOUS_NAMESPACE_STR;
13826
13827 return name;
13828}
13829
13830/* Extract all information from a DW_TAG_pointer_type DIE and add to
13831 the user defined type vector. */
13832
13833static struct type *
13834read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13835{
13836 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13837 struct comp_unit_head *cu_header = &cu->header;
13838 struct type *type;
13839 struct attribute *attr_byte_size;
13840 struct attribute *attr_address_class;
13841 int byte_size, addr_class;
13842 struct type *target_type;
13843
13844 target_type = die_type (die, cu);
13845
13846 /* The die_type call above may have already set the type for this DIE. */
13847 type = get_die_type (die, cu);
13848 if (type)
13849 return type;
13850
13851 type = lookup_pointer_type (target_type);
13852
13853 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13854 if (attr_byte_size)
13855 byte_size = DW_UNSND (attr_byte_size);
13856 else
13857 byte_size = cu_header->addr_size;
13858
13859 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13860 if (attr_address_class)
13861 addr_class = DW_UNSND (attr_address_class);
13862 else
13863 addr_class = DW_ADDR_none;
13864
13865 /* If the pointer size or address class is different than the
13866 default, create a type variant marked as such and set the
13867 length accordingly. */
13868 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13869 {
13870 if (gdbarch_address_class_type_flags_p (gdbarch))
13871 {
13872 int type_flags;
13873
13874 type_flags = gdbarch_address_class_type_flags
13875 (gdbarch, byte_size, addr_class);
13876 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13877 == 0);
13878 type = make_type_with_address_space (type, type_flags);
13879 }
13880 else if (TYPE_LENGTH (type) != byte_size)
13881 {
13882 complaint (&symfile_complaints,
13883 _("invalid pointer size %d"), byte_size);
13884 }
13885 else
13886 {
13887 /* Should we also complain about unhandled address classes? */
13888 }
13889 }
13890
13891 TYPE_LENGTH (type) = byte_size;
13892 return set_die_type (die, type, cu);
13893}
13894
13895/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13896 the user defined type vector. */
13897
13898static struct type *
13899read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13900{
13901 struct type *type;
13902 struct type *to_type;
13903 struct type *domain;
13904
13905 to_type = die_type (die, cu);
13906 domain = die_containing_type (die, cu);
13907
13908 /* The calls above may have already set the type for this DIE. */
13909 type = get_die_type (die, cu);
13910 if (type)
13911 return type;
13912
13913 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13914 type = lookup_methodptr_type (to_type);
13915 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13916 {
13917 struct type *new_type = alloc_type (cu->objfile);
13918
13919 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13920 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13921 TYPE_VARARGS (to_type));
13922 type = lookup_methodptr_type (new_type);
13923 }
13924 else
13925 type = lookup_memberptr_type (to_type, domain);
13926
13927 return set_die_type (die, type, cu);
13928}
13929
13930/* Extract all information from a DW_TAG_reference_type DIE and add to
13931 the user defined type vector. */
13932
13933static struct type *
13934read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13935{
13936 struct comp_unit_head *cu_header = &cu->header;
13937 struct type *type, *target_type;
13938 struct attribute *attr;
13939
13940 target_type = die_type (die, cu);
13941
13942 /* The die_type call above may have already set the type for this DIE. */
13943 type = get_die_type (die, cu);
13944 if (type)
13945 return type;
13946
13947 type = lookup_reference_type (target_type);
13948 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13949 if (attr)
13950 {
13951 TYPE_LENGTH (type) = DW_UNSND (attr);
13952 }
13953 else
13954 {
13955 TYPE_LENGTH (type) = cu_header->addr_size;
13956 }
13957 return set_die_type (die, type, cu);
13958}
13959
13960static struct type *
13961read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13962{
13963 struct type *base_type, *cv_type;
13964
13965 base_type = die_type (die, cu);
13966
13967 /* The die_type call above may have already set the type for this DIE. */
13968 cv_type = get_die_type (die, cu);
13969 if (cv_type)
13970 return cv_type;
13971
13972 /* In case the const qualifier is applied to an array type, the element type
13973 is so qualified, not the array type (section 6.7.3 of C99). */
13974 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13975 {
13976 struct type *el_type, *inner_array;
13977
13978 base_type = copy_type (base_type);
13979 inner_array = base_type;
13980
13981 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
13982 {
13983 TYPE_TARGET_TYPE (inner_array) =
13984 copy_type (TYPE_TARGET_TYPE (inner_array));
13985 inner_array = TYPE_TARGET_TYPE (inner_array);
13986 }
13987
13988 el_type = TYPE_TARGET_TYPE (inner_array);
13989 TYPE_TARGET_TYPE (inner_array) =
13990 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
13991
13992 return set_die_type (die, base_type, cu);
13993 }
13994
13995 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
13996 return set_die_type (die, cv_type, cu);
13997}
13998
13999static struct type *
14000read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14001{
14002 struct type *base_type, *cv_type;
14003
14004 base_type = die_type (die, cu);
14005
14006 /* The die_type call above may have already set the type for this DIE. */
14007 cv_type = get_die_type (die, cu);
14008 if (cv_type)
14009 return cv_type;
14010
14011 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14012 return set_die_type (die, cv_type, cu);
14013}
14014
14015/* Handle DW_TAG_restrict_type. */
14016
14017static struct type *
14018read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14019{
14020 struct type *base_type, *cv_type;
14021
14022 base_type = die_type (die, cu);
14023
14024 /* The die_type call above may have already set the type for this DIE. */
14025 cv_type = get_die_type (die, cu);
14026 if (cv_type)
14027 return cv_type;
14028
14029 cv_type = make_restrict_type (base_type);
14030 return set_die_type (die, cv_type, cu);
14031}
14032
14033/* Extract all information from a DW_TAG_string_type DIE and add to
14034 the user defined type vector. It isn't really a user defined type,
14035 but it behaves like one, with other DIE's using an AT_user_def_type
14036 attribute to reference it. */
14037
14038static struct type *
14039read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14040{
14041 struct objfile *objfile = cu->objfile;
14042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14043 struct type *type, *range_type, *index_type, *char_type;
14044 struct attribute *attr;
14045 unsigned int length;
14046
14047 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14048 if (attr)
14049 {
14050 length = DW_UNSND (attr);
14051 }
14052 else
14053 {
14054 /* Check for the DW_AT_byte_size attribute. */
14055 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14056 if (attr)
14057 {
14058 length = DW_UNSND (attr);
14059 }
14060 else
14061 {
14062 length = 1;
14063 }
14064 }
14065
14066 index_type = objfile_type (objfile)->builtin_int;
14067 range_type = create_range_type (NULL, index_type, 1, length);
14068 char_type = language_string_char_type (cu->language_defn, gdbarch);
14069 type = create_string_type (NULL, char_type, range_type);
14070
14071 return set_die_type (die, type, cu);
14072}
14073
14074/* Assuming that DIE corresponds to a function, returns nonzero
14075 if the function is prototyped. */
14076
14077static int
14078prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14079{
14080 struct attribute *attr;
14081
14082 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14083 if (attr && (DW_UNSND (attr) != 0))
14084 return 1;
14085
14086 /* The DWARF standard implies that the DW_AT_prototyped attribute
14087 is only meaninful for C, but the concept also extends to other
14088 languages that allow unprototyped functions (Eg: Objective C).
14089 For all other languages, assume that functions are always
14090 prototyped. */
14091 if (cu->language != language_c
14092 && cu->language != language_objc
14093 && cu->language != language_opencl)
14094 return 1;
14095
14096 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14097 prototyped and unprototyped functions; default to prototyped,
14098 since that is more common in modern code (and RealView warns
14099 about unprototyped functions). */
14100 if (producer_is_realview (cu->producer))
14101 return 1;
14102
14103 return 0;
14104}
14105
14106/* Handle DIES due to C code like:
14107
14108 struct foo
14109 {
14110 int (*funcp)(int a, long l);
14111 int b;
14112 };
14113
14114 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14115
14116static struct type *
14117read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14118{
14119 struct objfile *objfile = cu->objfile;
14120 struct type *type; /* Type that this function returns. */
14121 struct type *ftype; /* Function that returns above type. */
14122 struct attribute *attr;
14123
14124 type = die_type (die, cu);
14125
14126 /* The die_type call above may have already set the type for this DIE. */
14127 ftype = get_die_type (die, cu);
14128 if (ftype)
14129 return ftype;
14130
14131 ftype = lookup_function_type (type);
14132
14133 if (prototyped_function_p (die, cu))
14134 TYPE_PROTOTYPED (ftype) = 1;
14135
14136 /* Store the calling convention in the type if it's available in
14137 the subroutine die. Otherwise set the calling convention to
14138 the default value DW_CC_normal. */
14139 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14140 if (attr)
14141 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14142 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14143 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14144 else
14145 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14146
14147 /* We need to add the subroutine type to the die immediately so
14148 we don't infinitely recurse when dealing with parameters
14149 declared as the same subroutine type. */
14150 set_die_type (die, ftype, cu);
14151
14152 if (die->child != NULL)
14153 {
14154 struct type *void_type = objfile_type (objfile)->builtin_void;
14155 struct die_info *child_die;
14156 int nparams, iparams;
14157
14158 /* Count the number of parameters.
14159 FIXME: GDB currently ignores vararg functions, but knows about
14160 vararg member functions. */
14161 nparams = 0;
14162 child_die = die->child;
14163 while (child_die && child_die->tag)
14164 {
14165 if (child_die->tag == DW_TAG_formal_parameter)
14166 nparams++;
14167 else if (child_die->tag == DW_TAG_unspecified_parameters)
14168 TYPE_VARARGS (ftype) = 1;
14169 child_die = sibling_die (child_die);
14170 }
14171
14172 /* Allocate storage for parameters and fill them in. */
14173 TYPE_NFIELDS (ftype) = nparams;
14174 TYPE_FIELDS (ftype) = (struct field *)
14175 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14176
14177 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14178 even if we error out during the parameters reading below. */
14179 for (iparams = 0; iparams < nparams; iparams++)
14180 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14181
14182 iparams = 0;
14183 child_die = die->child;
14184 while (child_die && child_die->tag)
14185 {
14186 if (child_die->tag == DW_TAG_formal_parameter)
14187 {
14188 struct type *arg_type;
14189
14190 /* DWARF version 2 has no clean way to discern C++
14191 static and non-static member functions. G++ helps
14192 GDB by marking the first parameter for non-static
14193 member functions (which is the this pointer) as
14194 artificial. We pass this information to
14195 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14196
14197 DWARF version 3 added DW_AT_object_pointer, which GCC
14198 4.5 does not yet generate. */
14199 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14200 if (attr)
14201 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14202 else
14203 {
14204 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14205
14206 /* GCC/43521: In java, the formal parameter
14207 "this" is sometimes not marked with DW_AT_artificial. */
14208 if (cu->language == language_java)
14209 {
14210 const char *name = dwarf2_name (child_die, cu);
14211
14212 if (name && !strcmp (name, "this"))
14213 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14214 }
14215 }
14216 arg_type = die_type (child_die, cu);
14217
14218 /* RealView does not mark THIS as const, which the testsuite
14219 expects. GCC marks THIS as const in method definitions,
14220 but not in the class specifications (GCC PR 43053). */
14221 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14222 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14223 {
14224 int is_this = 0;
14225 struct dwarf2_cu *arg_cu = cu;
14226 const char *name = dwarf2_name (child_die, cu);
14227
14228 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14229 if (attr)
14230 {
14231 /* If the compiler emits this, use it. */
14232 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14233 is_this = 1;
14234 }
14235 else if (name && strcmp (name, "this") == 0)
14236 /* Function definitions will have the argument names. */
14237 is_this = 1;
14238 else if (name == NULL && iparams == 0)
14239 /* Declarations may not have the names, so like
14240 elsewhere in GDB, assume an artificial first
14241 argument is "this". */
14242 is_this = 1;
14243
14244 if (is_this)
14245 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14246 arg_type, 0);
14247 }
14248
14249 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14250 iparams++;
14251 }
14252 child_die = sibling_die (child_die);
14253 }
14254 }
14255
14256 return ftype;
14257}
14258
14259static struct type *
14260read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14261{
14262 struct objfile *objfile = cu->objfile;
14263 const char *name = NULL;
14264 struct type *this_type, *target_type;
14265
14266 name = dwarf2_full_name (NULL, die, cu);
14267 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14268 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14269 TYPE_NAME (this_type) = name;
14270 set_die_type (die, this_type, cu);
14271 target_type = die_type (die, cu);
14272 if (target_type != this_type)
14273 TYPE_TARGET_TYPE (this_type) = target_type;
14274 else
14275 {
14276 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14277 spec and cause infinite loops in GDB. */
14278 complaint (&symfile_complaints,
14279 _("Self-referential DW_TAG_typedef "
14280 "- DIE at 0x%x [in module %s]"),
14281 die->offset.sect_off, objfile_name (objfile));
14282 TYPE_TARGET_TYPE (this_type) = NULL;
14283 }
14284 return this_type;
14285}
14286
14287/* Find a representation of a given base type and install
14288 it in the TYPE field of the die. */
14289
14290static struct type *
14291read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14292{
14293 struct objfile *objfile = cu->objfile;
14294 struct type *type;
14295 struct attribute *attr;
14296 int encoding = 0, size = 0;
14297 const char *name;
14298 enum type_code code = TYPE_CODE_INT;
14299 int type_flags = 0;
14300 struct type *target_type = NULL;
14301
14302 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14303 if (attr)
14304 {
14305 encoding = DW_UNSND (attr);
14306 }
14307 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14308 if (attr)
14309 {
14310 size = DW_UNSND (attr);
14311 }
14312 name = dwarf2_name (die, cu);
14313 if (!name)
14314 {
14315 complaint (&symfile_complaints,
14316 _("DW_AT_name missing from DW_TAG_base_type"));
14317 }
14318
14319 switch (encoding)
14320 {
14321 case DW_ATE_address:
14322 /* Turn DW_ATE_address into a void * pointer. */
14323 code = TYPE_CODE_PTR;
14324 type_flags |= TYPE_FLAG_UNSIGNED;
14325 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14326 break;
14327 case DW_ATE_boolean:
14328 code = TYPE_CODE_BOOL;
14329 type_flags |= TYPE_FLAG_UNSIGNED;
14330 break;
14331 case DW_ATE_complex_float:
14332 code = TYPE_CODE_COMPLEX;
14333 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14334 break;
14335 case DW_ATE_decimal_float:
14336 code = TYPE_CODE_DECFLOAT;
14337 break;
14338 case DW_ATE_float:
14339 code = TYPE_CODE_FLT;
14340 break;
14341 case DW_ATE_signed:
14342 break;
14343 case DW_ATE_unsigned:
14344 type_flags |= TYPE_FLAG_UNSIGNED;
14345 if (cu->language == language_fortran
14346 && name
14347 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14348 code = TYPE_CODE_CHAR;
14349 break;
14350 case DW_ATE_signed_char:
14351 if (cu->language == language_ada || cu->language == language_m2
14352 || cu->language == language_pascal
14353 || cu->language == language_fortran)
14354 code = TYPE_CODE_CHAR;
14355 break;
14356 case DW_ATE_unsigned_char:
14357 if (cu->language == language_ada || cu->language == language_m2
14358 || cu->language == language_pascal
14359 || cu->language == language_fortran)
14360 code = TYPE_CODE_CHAR;
14361 type_flags |= TYPE_FLAG_UNSIGNED;
14362 break;
14363 case DW_ATE_UTF:
14364 /* We just treat this as an integer and then recognize the
14365 type by name elsewhere. */
14366 break;
14367
14368 default:
14369 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14370 dwarf_type_encoding_name (encoding));
14371 break;
14372 }
14373
14374 type = init_type (code, size, type_flags, NULL, objfile);
14375 TYPE_NAME (type) = name;
14376 TYPE_TARGET_TYPE (type) = target_type;
14377
14378 if (name && strcmp (name, "char") == 0)
14379 TYPE_NOSIGN (type) = 1;
14380
14381 return set_die_type (die, type, cu);
14382}
14383
14384/* Read the given DW_AT_subrange DIE. */
14385
14386static struct type *
14387read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14388{
14389 struct type *base_type, *orig_base_type;
14390 struct type *range_type;
14391 struct attribute *attr;
14392 LONGEST low, high;
14393 int low_default_is_valid;
14394 const char *name;
14395 LONGEST negative_mask;
14396
14397 orig_base_type = die_type (die, cu);
14398 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14399 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14400 creating the range type, but we use the result of check_typedef
14401 when examining properties of the type. */
14402 base_type = check_typedef (orig_base_type);
14403
14404 /* The die_type call above may have already set the type for this DIE. */
14405 range_type = get_die_type (die, cu);
14406 if (range_type)
14407 return range_type;
14408
14409 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14410 omitting DW_AT_lower_bound. */
14411 switch (cu->language)
14412 {
14413 case language_c:
14414 case language_cplus:
14415 low = 0;
14416 low_default_is_valid = 1;
14417 break;
14418 case language_fortran:
14419 low = 1;
14420 low_default_is_valid = 1;
14421 break;
14422 case language_d:
14423 case language_java:
14424 case language_objc:
14425 low = 0;
14426 low_default_is_valid = (cu->header.version >= 4);
14427 break;
14428 case language_ada:
14429 case language_m2:
14430 case language_pascal:
14431 low = 1;
14432 low_default_is_valid = (cu->header.version >= 4);
14433 break;
14434 default:
14435 low = 0;
14436 low_default_is_valid = 0;
14437 break;
14438 }
14439
14440 /* FIXME: For variable sized arrays either of these could be
14441 a variable rather than a constant value. We'll allow it,
14442 but we don't know how to handle it. */
14443 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14444 if (attr)
14445 low = dwarf2_get_attr_constant_value (attr, low);
14446 else if (!low_default_is_valid)
14447 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14448 "- DIE at 0x%x [in module %s]"),
14449 die->offset.sect_off, objfile_name (cu->objfile));
14450
14451 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14452 if (attr)
14453 {
14454 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
14455 {
14456 /* GCC encodes arrays with unspecified or dynamic length
14457 with a DW_FORM_block1 attribute or a reference attribute.
14458 FIXME: GDB does not yet know how to handle dynamic
14459 arrays properly, treat them as arrays with unspecified
14460 length for now.
14461
14462 FIXME: jimb/2003-09-22: GDB does not really know
14463 how to handle arrays of unspecified length
14464 either; we just represent them as zero-length
14465 arrays. Choose an appropriate upper bound given
14466 the lower bound we've computed above. */
14467 high = low - 1;
14468 }
14469 else
14470 high = dwarf2_get_attr_constant_value (attr, 1);
14471 }
14472 else
14473 {
14474 attr = dwarf2_attr (die, DW_AT_count, cu);
14475 if (attr)
14476 {
14477 int count = dwarf2_get_attr_constant_value (attr, 1);
14478 high = low + count - 1;
14479 }
14480 else
14481 {
14482 /* Unspecified array length. */
14483 high = low - 1;
14484 }
14485 }
14486
14487 /* Dwarf-2 specifications explicitly allows to create subrange types
14488 without specifying a base type.
14489 In that case, the base type must be set to the type of
14490 the lower bound, upper bound or count, in that order, if any of these
14491 three attributes references an object that has a type.
14492 If no base type is found, the Dwarf-2 specifications say that
14493 a signed integer type of size equal to the size of an address should
14494 be used.
14495 For the following C code: `extern char gdb_int [];'
14496 GCC produces an empty range DIE.
14497 FIXME: muller/2010-05-28: Possible references to object for low bound,
14498 high bound or count are not yet handled by this code. */
14499 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14500 {
14501 struct objfile *objfile = cu->objfile;
14502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14503 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14504 struct type *int_type = objfile_type (objfile)->builtin_int;
14505
14506 /* Test "int", "long int", and "long long int" objfile types,
14507 and select the first one having a size above or equal to the
14508 architecture address size. */
14509 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14510 base_type = int_type;
14511 else
14512 {
14513 int_type = objfile_type (objfile)->builtin_long;
14514 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14515 base_type = int_type;
14516 else
14517 {
14518 int_type = objfile_type (objfile)->builtin_long_long;
14519 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14520 base_type = int_type;
14521 }
14522 }
14523 }
14524
14525 /* Normally, the DWARF producers are expected to use a signed
14526 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14527 But this is unfortunately not always the case, as witnessed
14528 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14529 is used instead. To work around that ambiguity, we treat
14530 the bounds as signed, and thus sign-extend their values, when
14531 the base type is signed. */
14532 negative_mask =
14533 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14534 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14535 low |= negative_mask;
14536 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14537 high |= negative_mask;
14538
14539 range_type = create_range_type (NULL, orig_base_type, low, high);
14540
14541 /* Mark arrays with dynamic length at least as an array of unspecified
14542 length. GDB could check the boundary but before it gets implemented at
14543 least allow accessing the array elements. */
14544 if (attr && attr_form_is_block (attr))
14545 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14546
14547 /* Ada expects an empty array on no boundary attributes. */
14548 if (attr == NULL && cu->language != language_ada)
14549 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14550
14551 name = dwarf2_name (die, cu);
14552 if (name)
14553 TYPE_NAME (range_type) = name;
14554
14555 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14556 if (attr)
14557 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14558
14559 set_die_type (die, range_type, cu);
14560
14561 /* set_die_type should be already done. */
14562 set_descriptive_type (range_type, die, cu);
14563
14564 return range_type;
14565}
14566
14567static struct type *
14568read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14569{
14570 struct type *type;
14571
14572 /* For now, we only support the C meaning of an unspecified type: void. */
14573
14574 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14575 TYPE_NAME (type) = dwarf2_name (die, cu);
14576
14577 return set_die_type (die, type, cu);
14578}
14579
14580/* Read a single die and all its descendents. Set the die's sibling
14581 field to NULL; set other fields in the die correctly, and set all
14582 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14583 location of the info_ptr after reading all of those dies. PARENT
14584 is the parent of the die in question. */
14585
14586static struct die_info *
14587read_die_and_children (const struct die_reader_specs *reader,
14588 const gdb_byte *info_ptr,
14589 const gdb_byte **new_info_ptr,
14590 struct die_info *parent)
14591{
14592 struct die_info *die;
14593 const gdb_byte *cur_ptr;
14594 int has_children;
14595
14596 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14597 if (die == NULL)
14598 {
14599 *new_info_ptr = cur_ptr;
14600 return NULL;
14601 }
14602 store_in_ref_table (die, reader->cu);
14603
14604 if (has_children)
14605 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14606 else
14607 {
14608 die->child = NULL;
14609 *new_info_ptr = cur_ptr;
14610 }
14611
14612 die->sibling = NULL;
14613 die->parent = parent;
14614 return die;
14615}
14616
14617/* Read a die, all of its descendents, and all of its siblings; set
14618 all of the fields of all of the dies correctly. Arguments are as
14619 in read_die_and_children. */
14620
14621static struct die_info *
14622read_die_and_siblings_1 (const struct die_reader_specs *reader,
14623 const gdb_byte *info_ptr,
14624 const gdb_byte **new_info_ptr,
14625 struct die_info *parent)
14626{
14627 struct die_info *first_die, *last_sibling;
14628 const gdb_byte *cur_ptr;
14629
14630 cur_ptr = info_ptr;
14631 first_die = last_sibling = NULL;
14632
14633 while (1)
14634 {
14635 struct die_info *die
14636 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14637
14638 if (die == NULL)
14639 {
14640 *new_info_ptr = cur_ptr;
14641 return first_die;
14642 }
14643
14644 if (!first_die)
14645 first_die = die;
14646 else
14647 last_sibling->sibling = die;
14648
14649 last_sibling = die;
14650 }
14651}
14652
14653/* Read a die, all of its descendents, and all of its siblings; set
14654 all of the fields of all of the dies correctly. Arguments are as
14655 in read_die_and_children.
14656 This the main entry point for reading a DIE and all its children. */
14657
14658static struct die_info *
14659read_die_and_siblings (const struct die_reader_specs *reader,
14660 const gdb_byte *info_ptr,
14661 const gdb_byte **new_info_ptr,
14662 struct die_info *parent)
14663{
14664 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14665 new_info_ptr, parent);
14666
14667 if (dwarf2_die_debug)
14668 {
14669 fprintf_unfiltered (gdb_stdlog,
14670 "Read die from %s@0x%x of %s:\n",
14671 get_section_name (reader->die_section),
14672 (unsigned) (info_ptr - reader->die_section->buffer),
14673 bfd_get_filename (reader->abfd));
14674 dump_die (die, dwarf2_die_debug);
14675 }
14676
14677 return die;
14678}
14679
14680/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14681 attributes.
14682 The caller is responsible for filling in the extra attributes
14683 and updating (*DIEP)->num_attrs.
14684 Set DIEP to point to a newly allocated die with its information,
14685 except for its child, sibling, and parent fields.
14686 Set HAS_CHILDREN to tell whether the die has children or not. */
14687
14688static const gdb_byte *
14689read_full_die_1 (const struct die_reader_specs *reader,
14690 struct die_info **diep, const gdb_byte *info_ptr,
14691 int *has_children, int num_extra_attrs)
14692{
14693 unsigned int abbrev_number, bytes_read, i;
14694 sect_offset offset;
14695 struct abbrev_info *abbrev;
14696 struct die_info *die;
14697 struct dwarf2_cu *cu = reader->cu;
14698 bfd *abfd = reader->abfd;
14699
14700 offset.sect_off = info_ptr - reader->buffer;
14701 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14702 info_ptr += bytes_read;
14703 if (!abbrev_number)
14704 {
14705 *diep = NULL;
14706 *has_children = 0;
14707 return info_ptr;
14708 }
14709
14710 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14711 if (!abbrev)
14712 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14713 abbrev_number,
14714 bfd_get_filename (abfd));
14715
14716 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14717 die->offset = offset;
14718 die->tag = abbrev->tag;
14719 die->abbrev = abbrev_number;
14720
14721 /* Make the result usable.
14722 The caller needs to update num_attrs after adding the extra
14723 attributes. */
14724 die->num_attrs = abbrev->num_attrs;
14725
14726 for (i = 0; i < abbrev->num_attrs; ++i)
14727 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14728 info_ptr);
14729
14730 *diep = die;
14731 *has_children = abbrev->has_children;
14732 return info_ptr;
14733}
14734
14735/* Read a die and all its attributes.
14736 Set DIEP to point to a newly allocated die with its information,
14737 except for its child, sibling, and parent fields.
14738 Set HAS_CHILDREN to tell whether the die has children or not. */
14739
14740static const gdb_byte *
14741read_full_die (const struct die_reader_specs *reader,
14742 struct die_info **diep, const gdb_byte *info_ptr,
14743 int *has_children)
14744{
14745 const gdb_byte *result;
14746
14747 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14748
14749 if (dwarf2_die_debug)
14750 {
14751 fprintf_unfiltered (gdb_stdlog,
14752 "Read die from %s@0x%x of %s:\n",
14753 get_section_name (reader->die_section),
14754 (unsigned) (info_ptr - reader->die_section->buffer),
14755 bfd_get_filename (reader->abfd));
14756 dump_die (*diep, dwarf2_die_debug);
14757 }
14758
14759 return result;
14760}
14761\f
14762/* Abbreviation tables.
14763
14764 In DWARF version 2, the description of the debugging information is
14765 stored in a separate .debug_abbrev section. Before we read any
14766 dies from a section we read in all abbreviations and install them
14767 in a hash table. */
14768
14769/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14770
14771static struct abbrev_info *
14772abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14773{
14774 struct abbrev_info *abbrev;
14775
14776 abbrev = (struct abbrev_info *)
14777 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14778 memset (abbrev, 0, sizeof (struct abbrev_info));
14779 return abbrev;
14780}
14781
14782/* Add an abbreviation to the table. */
14783
14784static void
14785abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14786 unsigned int abbrev_number,
14787 struct abbrev_info *abbrev)
14788{
14789 unsigned int hash_number;
14790
14791 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14792 abbrev->next = abbrev_table->abbrevs[hash_number];
14793 abbrev_table->abbrevs[hash_number] = abbrev;
14794}
14795
14796/* Look up an abbrev in the table.
14797 Returns NULL if the abbrev is not found. */
14798
14799static struct abbrev_info *
14800abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14801 unsigned int abbrev_number)
14802{
14803 unsigned int hash_number;
14804 struct abbrev_info *abbrev;
14805
14806 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14807 abbrev = abbrev_table->abbrevs[hash_number];
14808
14809 while (abbrev)
14810 {
14811 if (abbrev->number == abbrev_number)
14812 return abbrev;
14813 abbrev = abbrev->next;
14814 }
14815 return NULL;
14816}
14817
14818/* Read in an abbrev table. */
14819
14820static struct abbrev_table *
14821abbrev_table_read_table (struct dwarf2_section_info *section,
14822 sect_offset offset)
14823{
14824 struct objfile *objfile = dwarf2_per_objfile->objfile;
14825 bfd *abfd = get_section_bfd_owner (section);
14826 struct abbrev_table *abbrev_table;
14827 const gdb_byte *abbrev_ptr;
14828 struct abbrev_info *cur_abbrev;
14829 unsigned int abbrev_number, bytes_read, abbrev_name;
14830 unsigned int abbrev_form;
14831 struct attr_abbrev *cur_attrs;
14832 unsigned int allocated_attrs;
14833
14834 abbrev_table = XNEW (struct abbrev_table);
14835 abbrev_table->offset = offset;
14836 obstack_init (&abbrev_table->abbrev_obstack);
14837 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14838 (ABBREV_HASH_SIZE
14839 * sizeof (struct abbrev_info *)));
14840 memset (abbrev_table->abbrevs, 0,
14841 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14842
14843 dwarf2_read_section (objfile, section);
14844 abbrev_ptr = section->buffer + offset.sect_off;
14845 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14846 abbrev_ptr += bytes_read;
14847
14848 allocated_attrs = ATTR_ALLOC_CHUNK;
14849 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14850
14851 /* Loop until we reach an abbrev number of 0. */
14852 while (abbrev_number)
14853 {
14854 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14855
14856 /* read in abbrev header */
14857 cur_abbrev->number = abbrev_number;
14858 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14859 abbrev_ptr += bytes_read;
14860 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14861 abbrev_ptr += 1;
14862
14863 /* now read in declarations */
14864 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14865 abbrev_ptr += bytes_read;
14866 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14867 abbrev_ptr += bytes_read;
14868 while (abbrev_name)
14869 {
14870 if (cur_abbrev->num_attrs == allocated_attrs)
14871 {
14872 allocated_attrs += ATTR_ALLOC_CHUNK;
14873 cur_attrs
14874 = xrealloc (cur_attrs, (allocated_attrs
14875 * sizeof (struct attr_abbrev)));
14876 }
14877
14878 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14879 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14880 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14881 abbrev_ptr += bytes_read;
14882 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14883 abbrev_ptr += bytes_read;
14884 }
14885
14886 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14887 (cur_abbrev->num_attrs
14888 * sizeof (struct attr_abbrev)));
14889 memcpy (cur_abbrev->attrs, cur_attrs,
14890 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14891
14892 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14893
14894 /* Get next abbreviation.
14895 Under Irix6 the abbreviations for a compilation unit are not
14896 always properly terminated with an abbrev number of 0.
14897 Exit loop if we encounter an abbreviation which we have
14898 already read (which means we are about to read the abbreviations
14899 for the next compile unit) or if the end of the abbreviation
14900 table is reached. */
14901 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14902 break;
14903 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14904 abbrev_ptr += bytes_read;
14905 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14906 break;
14907 }
14908
14909 xfree (cur_attrs);
14910 return abbrev_table;
14911}
14912
14913/* Free the resources held by ABBREV_TABLE. */
14914
14915static void
14916abbrev_table_free (struct abbrev_table *abbrev_table)
14917{
14918 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14919 xfree (abbrev_table);
14920}
14921
14922/* Same as abbrev_table_free but as a cleanup.
14923 We pass in a pointer to the pointer to the table so that we can
14924 set the pointer to NULL when we're done. It also simplifies
14925 build_type_unit_groups. */
14926
14927static void
14928abbrev_table_free_cleanup (void *table_ptr)
14929{
14930 struct abbrev_table **abbrev_table_ptr = table_ptr;
14931
14932 if (*abbrev_table_ptr != NULL)
14933 abbrev_table_free (*abbrev_table_ptr);
14934 *abbrev_table_ptr = NULL;
14935}
14936
14937/* Read the abbrev table for CU from ABBREV_SECTION. */
14938
14939static void
14940dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14941 struct dwarf2_section_info *abbrev_section)
14942{
14943 cu->abbrev_table =
14944 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14945}
14946
14947/* Release the memory used by the abbrev table for a compilation unit. */
14948
14949static void
14950dwarf2_free_abbrev_table (void *ptr_to_cu)
14951{
14952 struct dwarf2_cu *cu = ptr_to_cu;
14953
14954 if (cu->abbrev_table != NULL)
14955 abbrev_table_free (cu->abbrev_table);
14956 /* Set this to NULL so that we SEGV if we try to read it later,
14957 and also because free_comp_unit verifies this is NULL. */
14958 cu->abbrev_table = NULL;
14959}
14960\f
14961/* Returns nonzero if TAG represents a type that we might generate a partial
14962 symbol for. */
14963
14964static int
14965is_type_tag_for_partial (int tag)
14966{
14967 switch (tag)
14968 {
14969#if 0
14970 /* Some types that would be reasonable to generate partial symbols for,
14971 that we don't at present. */
14972 case DW_TAG_array_type:
14973 case DW_TAG_file_type:
14974 case DW_TAG_ptr_to_member_type:
14975 case DW_TAG_set_type:
14976 case DW_TAG_string_type:
14977 case DW_TAG_subroutine_type:
14978#endif
14979 case DW_TAG_base_type:
14980 case DW_TAG_class_type:
14981 case DW_TAG_interface_type:
14982 case DW_TAG_enumeration_type:
14983 case DW_TAG_structure_type:
14984 case DW_TAG_subrange_type:
14985 case DW_TAG_typedef:
14986 case DW_TAG_union_type:
14987 return 1;
14988 default:
14989 return 0;
14990 }
14991}
14992
14993/* Load all DIEs that are interesting for partial symbols into memory. */
14994
14995static struct partial_die_info *
14996load_partial_dies (const struct die_reader_specs *reader,
14997 const gdb_byte *info_ptr, int building_psymtab)
14998{
14999 struct dwarf2_cu *cu = reader->cu;
15000 struct objfile *objfile = cu->objfile;
15001 struct partial_die_info *part_die;
15002 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15003 struct abbrev_info *abbrev;
15004 unsigned int bytes_read;
15005 unsigned int load_all = 0;
15006 int nesting_level = 1;
15007
15008 parent_die = NULL;
15009 last_die = NULL;
15010
15011 gdb_assert (cu->per_cu != NULL);
15012 if (cu->per_cu->load_all_dies)
15013 load_all = 1;
15014
15015 cu->partial_dies
15016 = htab_create_alloc_ex (cu->header.length / 12,
15017 partial_die_hash,
15018 partial_die_eq,
15019 NULL,
15020 &cu->comp_unit_obstack,
15021 hashtab_obstack_allocate,
15022 dummy_obstack_deallocate);
15023
15024 part_die = obstack_alloc (&cu->comp_unit_obstack,
15025 sizeof (struct partial_die_info));
15026
15027 while (1)
15028 {
15029 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15030
15031 /* A NULL abbrev means the end of a series of children. */
15032 if (abbrev == NULL)
15033 {
15034 if (--nesting_level == 0)
15035 {
15036 /* PART_DIE was probably the last thing allocated on the
15037 comp_unit_obstack, so we could call obstack_free
15038 here. We don't do that because the waste is small,
15039 and will be cleaned up when we're done with this
15040 compilation unit. This way, we're also more robust
15041 against other users of the comp_unit_obstack. */
15042 return first_die;
15043 }
15044 info_ptr += bytes_read;
15045 last_die = parent_die;
15046 parent_die = parent_die->die_parent;
15047 continue;
15048 }
15049
15050 /* Check for template arguments. We never save these; if
15051 they're seen, we just mark the parent, and go on our way. */
15052 if (parent_die != NULL
15053 && cu->language == language_cplus
15054 && (abbrev->tag == DW_TAG_template_type_param
15055 || abbrev->tag == DW_TAG_template_value_param))
15056 {
15057 parent_die->has_template_arguments = 1;
15058
15059 if (!load_all)
15060 {
15061 /* We don't need a partial DIE for the template argument. */
15062 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15063 continue;
15064 }
15065 }
15066
15067 /* We only recurse into c++ subprograms looking for template arguments.
15068 Skip their other children. */
15069 if (!load_all
15070 && cu->language == language_cplus
15071 && parent_die != NULL
15072 && parent_die->tag == DW_TAG_subprogram)
15073 {
15074 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15075 continue;
15076 }
15077
15078 /* Check whether this DIE is interesting enough to save. Normally
15079 we would not be interested in members here, but there may be
15080 later variables referencing them via DW_AT_specification (for
15081 static members). */
15082 if (!load_all
15083 && !is_type_tag_for_partial (abbrev->tag)
15084 && abbrev->tag != DW_TAG_constant
15085 && abbrev->tag != DW_TAG_enumerator
15086 && abbrev->tag != DW_TAG_subprogram
15087 && abbrev->tag != DW_TAG_lexical_block
15088 && abbrev->tag != DW_TAG_variable
15089 && abbrev->tag != DW_TAG_namespace
15090 && abbrev->tag != DW_TAG_module
15091 && abbrev->tag != DW_TAG_member
15092 && abbrev->tag != DW_TAG_imported_unit
15093 && abbrev->tag != DW_TAG_imported_declaration)
15094 {
15095 /* Otherwise we skip to the next sibling, if any. */
15096 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15097 continue;
15098 }
15099
15100 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15101 info_ptr);
15102
15103 /* This two-pass algorithm for processing partial symbols has a
15104 high cost in cache pressure. Thus, handle some simple cases
15105 here which cover the majority of C partial symbols. DIEs
15106 which neither have specification tags in them, nor could have
15107 specification tags elsewhere pointing at them, can simply be
15108 processed and discarded.
15109
15110 This segment is also optional; scan_partial_symbols and
15111 add_partial_symbol will handle these DIEs if we chain
15112 them in normally. When compilers which do not emit large
15113 quantities of duplicate debug information are more common,
15114 this code can probably be removed. */
15115
15116 /* Any complete simple types at the top level (pretty much all
15117 of them, for a language without namespaces), can be processed
15118 directly. */
15119 if (parent_die == NULL
15120 && part_die->has_specification == 0
15121 && part_die->is_declaration == 0
15122 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15123 || part_die->tag == DW_TAG_base_type
15124 || part_die->tag == DW_TAG_subrange_type))
15125 {
15126 if (building_psymtab && part_die->name != NULL)
15127 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15128 VAR_DOMAIN, LOC_TYPEDEF,
15129 &objfile->static_psymbols,
15130 0, (CORE_ADDR) 0, cu->language, objfile);
15131 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15132 continue;
15133 }
15134
15135 /* The exception for DW_TAG_typedef with has_children above is
15136 a workaround of GCC PR debug/47510. In the case of this complaint
15137 type_name_no_tag_or_error will error on such types later.
15138
15139 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15140 it could not find the child DIEs referenced later, this is checked
15141 above. In correct DWARF DW_TAG_typedef should have no children. */
15142
15143 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15144 complaint (&symfile_complaints,
15145 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15146 "- DIE at 0x%x [in module %s]"),
15147 part_die->offset.sect_off, objfile_name (objfile));
15148
15149 /* If we're at the second level, and we're an enumerator, and
15150 our parent has no specification (meaning possibly lives in a
15151 namespace elsewhere), then we can add the partial symbol now
15152 instead of queueing it. */
15153 if (part_die->tag == DW_TAG_enumerator
15154 && parent_die != NULL
15155 && parent_die->die_parent == NULL
15156 && parent_die->tag == DW_TAG_enumeration_type
15157 && parent_die->has_specification == 0)
15158 {
15159 if (part_die->name == NULL)
15160 complaint (&symfile_complaints,
15161 _("malformed enumerator DIE ignored"));
15162 else if (building_psymtab)
15163 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15164 VAR_DOMAIN, LOC_CONST,
15165 (cu->language == language_cplus
15166 || cu->language == language_java)
15167 ? &objfile->global_psymbols
15168 : &objfile->static_psymbols,
15169 0, (CORE_ADDR) 0, cu->language, objfile);
15170
15171 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15172 continue;
15173 }
15174
15175 /* We'll save this DIE so link it in. */
15176 part_die->die_parent = parent_die;
15177 part_die->die_sibling = NULL;
15178 part_die->die_child = NULL;
15179
15180 if (last_die && last_die == parent_die)
15181 last_die->die_child = part_die;
15182 else if (last_die)
15183 last_die->die_sibling = part_die;
15184
15185 last_die = part_die;
15186
15187 if (first_die == NULL)
15188 first_die = part_die;
15189
15190 /* Maybe add the DIE to the hash table. Not all DIEs that we
15191 find interesting need to be in the hash table, because we
15192 also have the parent/sibling/child chains; only those that we
15193 might refer to by offset later during partial symbol reading.
15194
15195 For now this means things that might have be the target of a
15196 DW_AT_specification, DW_AT_abstract_origin, or
15197 DW_AT_extension. DW_AT_extension will refer only to
15198 namespaces; DW_AT_abstract_origin refers to functions (and
15199 many things under the function DIE, but we do not recurse
15200 into function DIEs during partial symbol reading) and
15201 possibly variables as well; DW_AT_specification refers to
15202 declarations. Declarations ought to have the DW_AT_declaration
15203 flag. It happens that GCC forgets to put it in sometimes, but
15204 only for functions, not for types.
15205
15206 Adding more things than necessary to the hash table is harmless
15207 except for the performance cost. Adding too few will result in
15208 wasted time in find_partial_die, when we reread the compilation
15209 unit with load_all_dies set. */
15210
15211 if (load_all
15212 || abbrev->tag == DW_TAG_constant
15213 || abbrev->tag == DW_TAG_subprogram
15214 || abbrev->tag == DW_TAG_variable
15215 || abbrev->tag == DW_TAG_namespace
15216 || part_die->is_declaration)
15217 {
15218 void **slot;
15219
15220 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15221 part_die->offset.sect_off, INSERT);
15222 *slot = part_die;
15223 }
15224
15225 part_die = obstack_alloc (&cu->comp_unit_obstack,
15226 sizeof (struct partial_die_info));
15227
15228 /* For some DIEs we want to follow their children (if any). For C
15229 we have no reason to follow the children of structures; for other
15230 languages we have to, so that we can get at method physnames
15231 to infer fully qualified class names, for DW_AT_specification,
15232 and for C++ template arguments. For C++, we also look one level
15233 inside functions to find template arguments (if the name of the
15234 function does not already contain the template arguments).
15235
15236 For Ada, we need to scan the children of subprograms and lexical
15237 blocks as well because Ada allows the definition of nested
15238 entities that could be interesting for the debugger, such as
15239 nested subprograms for instance. */
15240 if (last_die->has_children
15241 && (load_all
15242 || last_die->tag == DW_TAG_namespace
15243 || last_die->tag == DW_TAG_module
15244 || last_die->tag == DW_TAG_enumeration_type
15245 || (cu->language == language_cplus
15246 && last_die->tag == DW_TAG_subprogram
15247 && (last_die->name == NULL
15248 || strchr (last_die->name, '<') == NULL))
15249 || (cu->language != language_c
15250 && (last_die->tag == DW_TAG_class_type
15251 || last_die->tag == DW_TAG_interface_type
15252 || last_die->tag == DW_TAG_structure_type
15253 || last_die->tag == DW_TAG_union_type))
15254 || (cu->language == language_ada
15255 && (last_die->tag == DW_TAG_subprogram
15256 || last_die->tag == DW_TAG_lexical_block))))
15257 {
15258 nesting_level++;
15259 parent_die = last_die;
15260 continue;
15261 }
15262
15263 /* Otherwise we skip to the next sibling, if any. */
15264 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15265
15266 /* Back to the top, do it again. */
15267 }
15268}
15269
15270/* Read a minimal amount of information into the minimal die structure. */
15271
15272static const gdb_byte *
15273read_partial_die (const struct die_reader_specs *reader,
15274 struct partial_die_info *part_die,
15275 struct abbrev_info *abbrev, unsigned int abbrev_len,
15276 const gdb_byte *info_ptr)
15277{
15278 struct dwarf2_cu *cu = reader->cu;
15279 struct objfile *objfile = cu->objfile;
15280 const gdb_byte *buffer = reader->buffer;
15281 unsigned int i;
15282 struct attribute attr;
15283 int has_low_pc_attr = 0;
15284 int has_high_pc_attr = 0;
15285 int high_pc_relative = 0;
15286
15287 memset (part_die, 0, sizeof (struct partial_die_info));
15288
15289 part_die->offset.sect_off = info_ptr - buffer;
15290
15291 info_ptr += abbrev_len;
15292
15293 if (abbrev == NULL)
15294 return info_ptr;
15295
15296 part_die->tag = abbrev->tag;
15297 part_die->has_children = abbrev->has_children;
15298
15299 for (i = 0; i < abbrev->num_attrs; ++i)
15300 {
15301 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15302
15303 /* Store the data if it is of an attribute we want to keep in a
15304 partial symbol table. */
15305 switch (attr.name)
15306 {
15307 case DW_AT_name:
15308 switch (part_die->tag)
15309 {
15310 case DW_TAG_compile_unit:
15311 case DW_TAG_partial_unit:
15312 case DW_TAG_type_unit:
15313 /* Compilation units have a DW_AT_name that is a filename, not
15314 a source language identifier. */
15315 case DW_TAG_enumeration_type:
15316 case DW_TAG_enumerator:
15317 /* These tags always have simple identifiers already; no need
15318 to canonicalize them. */
15319 part_die->name = DW_STRING (&attr);
15320 break;
15321 default:
15322 part_die->name
15323 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15324 &objfile->objfile_obstack);
15325 break;
15326 }
15327 break;
15328 case DW_AT_linkage_name:
15329 case DW_AT_MIPS_linkage_name:
15330 /* Note that both forms of linkage name might appear. We
15331 assume they will be the same, and we only store the last
15332 one we see. */
15333 if (cu->language == language_ada)
15334 part_die->name = DW_STRING (&attr);
15335 part_die->linkage_name = DW_STRING (&attr);
15336 break;
15337 case DW_AT_low_pc:
15338 has_low_pc_attr = 1;
15339 part_die->lowpc = DW_ADDR (&attr);
15340 break;
15341 case DW_AT_high_pc:
15342 has_high_pc_attr = 1;
15343 if (attr.form == DW_FORM_addr
15344 || attr.form == DW_FORM_GNU_addr_index)
15345 part_die->highpc = DW_ADDR (&attr);
15346 else
15347 {
15348 high_pc_relative = 1;
15349 part_die->highpc = DW_UNSND (&attr);
15350 }
15351 break;
15352 case DW_AT_location:
15353 /* Support the .debug_loc offsets. */
15354 if (attr_form_is_block (&attr))
15355 {
15356 part_die->d.locdesc = DW_BLOCK (&attr);
15357 }
15358 else if (attr_form_is_section_offset (&attr))
15359 {
15360 dwarf2_complex_location_expr_complaint ();
15361 }
15362 else
15363 {
15364 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15365 "partial symbol information");
15366 }
15367 break;
15368 case DW_AT_external:
15369 part_die->is_external = DW_UNSND (&attr);
15370 break;
15371 case DW_AT_declaration:
15372 part_die->is_declaration = DW_UNSND (&attr);
15373 break;
15374 case DW_AT_type:
15375 part_die->has_type = 1;
15376 break;
15377 case DW_AT_abstract_origin:
15378 case DW_AT_specification:
15379 case DW_AT_extension:
15380 part_die->has_specification = 1;
15381 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15382 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15383 || cu->per_cu->is_dwz);
15384 break;
15385 case DW_AT_sibling:
15386 /* Ignore absolute siblings, they might point outside of
15387 the current compile unit. */
15388 if (attr.form == DW_FORM_ref_addr)
15389 complaint (&symfile_complaints,
15390 _("ignoring absolute DW_AT_sibling"));
15391 else
15392 {
15393 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15394 const gdb_byte *sibling_ptr = buffer + off;
15395
15396 if (sibling_ptr < info_ptr)
15397 complaint (&symfile_complaints,
15398 _("DW_AT_sibling points backwards"));
15399 else
15400 part_die->sibling = sibling_ptr;
15401 }
15402 break;
15403 case DW_AT_byte_size:
15404 part_die->has_byte_size = 1;
15405 break;
15406 case DW_AT_calling_convention:
15407 /* DWARF doesn't provide a way to identify a program's source-level
15408 entry point. DW_AT_calling_convention attributes are only meant
15409 to describe functions' calling conventions.
15410
15411 However, because it's a necessary piece of information in
15412 Fortran, and because DW_CC_program is the only piece of debugging
15413 information whose definition refers to a 'main program' at all,
15414 several compilers have begun marking Fortran main programs with
15415 DW_CC_program --- even when those functions use the standard
15416 calling conventions.
15417
15418 So until DWARF specifies a way to provide this information and
15419 compilers pick up the new representation, we'll support this
15420 practice. */
15421 if (DW_UNSND (&attr) == DW_CC_program
15422 && cu->language == language_fortran)
15423 set_objfile_main_name (objfile, part_die->name, language_fortran);
15424 break;
15425 case DW_AT_inline:
15426 if (DW_UNSND (&attr) == DW_INL_inlined
15427 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15428 part_die->may_be_inlined = 1;
15429 break;
15430
15431 case DW_AT_import:
15432 if (part_die->tag == DW_TAG_imported_unit)
15433 {
15434 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15435 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15436 || cu->per_cu->is_dwz);
15437 }
15438 break;
15439
15440 default:
15441 break;
15442 }
15443 }
15444
15445 if (high_pc_relative)
15446 part_die->highpc += part_die->lowpc;
15447
15448 if (has_low_pc_attr && has_high_pc_attr)
15449 {
15450 /* When using the GNU linker, .gnu.linkonce. sections are used to
15451 eliminate duplicate copies of functions and vtables and such.
15452 The linker will arbitrarily choose one and discard the others.
15453 The AT_*_pc values for such functions refer to local labels in
15454 these sections. If the section from that file was discarded, the
15455 labels are not in the output, so the relocs get a value of 0.
15456 If this is a discarded function, mark the pc bounds as invalid,
15457 so that GDB will ignore it. */
15458 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15459 {
15460 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15461
15462 complaint (&symfile_complaints,
15463 _("DW_AT_low_pc %s is zero "
15464 "for DIE at 0x%x [in module %s]"),
15465 paddress (gdbarch, part_die->lowpc),
15466 part_die->offset.sect_off, objfile_name (objfile));
15467 }
15468 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15469 else if (part_die->lowpc >= part_die->highpc)
15470 {
15471 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15472
15473 complaint (&symfile_complaints,
15474 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15475 "for DIE at 0x%x [in module %s]"),
15476 paddress (gdbarch, part_die->lowpc),
15477 paddress (gdbarch, part_die->highpc),
15478 part_die->offset.sect_off, objfile_name (objfile));
15479 }
15480 else
15481 part_die->has_pc_info = 1;
15482 }
15483
15484 return info_ptr;
15485}
15486
15487/* Find a cached partial DIE at OFFSET in CU. */
15488
15489static struct partial_die_info *
15490find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15491{
15492 struct partial_die_info *lookup_die = NULL;
15493 struct partial_die_info part_die;
15494
15495 part_die.offset = offset;
15496 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15497 offset.sect_off);
15498
15499 return lookup_die;
15500}
15501
15502/* Find a partial DIE at OFFSET, which may or may not be in CU,
15503 except in the case of .debug_types DIEs which do not reference
15504 outside their CU (they do however referencing other types via
15505 DW_FORM_ref_sig8). */
15506
15507static struct partial_die_info *
15508find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15509{
15510 struct objfile *objfile = cu->objfile;
15511 struct dwarf2_per_cu_data *per_cu = NULL;
15512 struct partial_die_info *pd = NULL;
15513
15514 if (offset_in_dwz == cu->per_cu->is_dwz
15515 && offset_in_cu_p (&cu->header, offset))
15516 {
15517 pd = find_partial_die_in_comp_unit (offset, cu);
15518 if (pd != NULL)
15519 return pd;
15520 /* We missed recording what we needed.
15521 Load all dies and try again. */
15522 per_cu = cu->per_cu;
15523 }
15524 else
15525 {
15526 /* TUs don't reference other CUs/TUs (except via type signatures). */
15527 if (cu->per_cu->is_debug_types)
15528 {
15529 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15530 " external reference to offset 0x%lx [in module %s].\n"),
15531 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15532 bfd_get_filename (objfile->obfd));
15533 }
15534 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15535 objfile);
15536
15537 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15538 load_partial_comp_unit (per_cu);
15539
15540 per_cu->cu->last_used = 0;
15541 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15542 }
15543
15544 /* If we didn't find it, and not all dies have been loaded,
15545 load them all and try again. */
15546
15547 if (pd == NULL && per_cu->load_all_dies == 0)
15548 {
15549 per_cu->load_all_dies = 1;
15550
15551 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15552 THIS_CU->cu may already be in use. So we can't just free it and
15553 replace its DIEs with the ones we read in. Instead, we leave those
15554 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15555 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15556 set. */
15557 load_partial_comp_unit (per_cu);
15558
15559 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15560 }
15561
15562 if (pd == NULL)
15563 internal_error (__FILE__, __LINE__,
15564 _("could not find partial DIE 0x%x "
15565 "in cache [from module %s]\n"),
15566 offset.sect_off, bfd_get_filename (objfile->obfd));
15567 return pd;
15568}
15569
15570/* See if we can figure out if the class lives in a namespace. We do
15571 this by looking for a member function; its demangled name will
15572 contain namespace info, if there is any. */
15573
15574static void
15575guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15576 struct dwarf2_cu *cu)
15577{
15578 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15579 what template types look like, because the demangler
15580 frequently doesn't give the same name as the debug info. We
15581 could fix this by only using the demangled name to get the
15582 prefix (but see comment in read_structure_type). */
15583
15584 struct partial_die_info *real_pdi;
15585 struct partial_die_info *child_pdi;
15586
15587 /* If this DIE (this DIE's specification, if any) has a parent, then
15588 we should not do this. We'll prepend the parent's fully qualified
15589 name when we create the partial symbol. */
15590
15591 real_pdi = struct_pdi;
15592 while (real_pdi->has_specification)
15593 real_pdi = find_partial_die (real_pdi->spec_offset,
15594 real_pdi->spec_is_dwz, cu);
15595
15596 if (real_pdi->die_parent != NULL)
15597 return;
15598
15599 for (child_pdi = struct_pdi->die_child;
15600 child_pdi != NULL;
15601 child_pdi = child_pdi->die_sibling)
15602 {
15603 if (child_pdi->tag == DW_TAG_subprogram
15604 && child_pdi->linkage_name != NULL)
15605 {
15606 char *actual_class_name
15607 = language_class_name_from_physname (cu->language_defn,
15608 child_pdi->linkage_name);
15609 if (actual_class_name != NULL)
15610 {
15611 struct_pdi->name
15612 = obstack_copy0 (&cu->objfile->objfile_obstack,
15613 actual_class_name,
15614 strlen (actual_class_name));
15615 xfree (actual_class_name);
15616 }
15617 break;
15618 }
15619 }
15620}
15621
15622/* Adjust PART_DIE before generating a symbol for it. This function
15623 may set the is_external flag or change the DIE's name. */
15624
15625static void
15626fixup_partial_die (struct partial_die_info *part_die,
15627 struct dwarf2_cu *cu)
15628{
15629 /* Once we've fixed up a die, there's no point in doing so again.
15630 This also avoids a memory leak if we were to call
15631 guess_partial_die_structure_name multiple times. */
15632 if (part_die->fixup_called)
15633 return;
15634
15635 /* If we found a reference attribute and the DIE has no name, try
15636 to find a name in the referred to DIE. */
15637
15638 if (part_die->name == NULL && part_die->has_specification)
15639 {
15640 struct partial_die_info *spec_die;
15641
15642 spec_die = find_partial_die (part_die->spec_offset,
15643 part_die->spec_is_dwz, cu);
15644
15645 fixup_partial_die (spec_die, cu);
15646
15647 if (spec_die->name)
15648 {
15649 part_die->name = spec_die->name;
15650
15651 /* Copy DW_AT_external attribute if it is set. */
15652 if (spec_die->is_external)
15653 part_die->is_external = spec_die->is_external;
15654 }
15655 }
15656
15657 /* Set default names for some unnamed DIEs. */
15658
15659 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15660 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15661
15662 /* If there is no parent die to provide a namespace, and there are
15663 children, see if we can determine the namespace from their linkage
15664 name. */
15665 if (cu->language == language_cplus
15666 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15667 && part_die->die_parent == NULL
15668 && part_die->has_children
15669 && (part_die->tag == DW_TAG_class_type
15670 || part_die->tag == DW_TAG_structure_type
15671 || part_die->tag == DW_TAG_union_type))
15672 guess_partial_die_structure_name (part_die, cu);
15673
15674 /* GCC might emit a nameless struct or union that has a linkage
15675 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15676 if (part_die->name == NULL
15677 && (part_die->tag == DW_TAG_class_type
15678 || part_die->tag == DW_TAG_interface_type
15679 || part_die->tag == DW_TAG_structure_type
15680 || part_die->tag == DW_TAG_union_type)
15681 && part_die->linkage_name != NULL)
15682 {
15683 char *demangled;
15684
15685 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15686 if (demangled)
15687 {
15688 const char *base;
15689
15690 /* Strip any leading namespaces/classes, keep only the base name.
15691 DW_AT_name for named DIEs does not contain the prefixes. */
15692 base = strrchr (demangled, ':');
15693 if (base && base > demangled && base[-1] == ':')
15694 base++;
15695 else
15696 base = demangled;
15697
15698 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15699 base, strlen (base));
15700 xfree (demangled);
15701 }
15702 }
15703
15704 part_die->fixup_called = 1;
15705}
15706
15707/* Read an attribute value described by an attribute form. */
15708
15709static const gdb_byte *
15710read_attribute_value (const struct die_reader_specs *reader,
15711 struct attribute *attr, unsigned form,
15712 const gdb_byte *info_ptr)
15713{
15714 struct dwarf2_cu *cu = reader->cu;
15715 bfd *abfd = reader->abfd;
15716 struct comp_unit_head *cu_header = &cu->header;
15717 unsigned int bytes_read;
15718 struct dwarf_block *blk;
15719
15720 attr->form = form;
15721 switch (form)
15722 {
15723 case DW_FORM_ref_addr:
15724 if (cu->header.version == 2)
15725 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15726 else
15727 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15728 &cu->header, &bytes_read);
15729 info_ptr += bytes_read;
15730 break;
15731 case DW_FORM_GNU_ref_alt:
15732 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15733 info_ptr += bytes_read;
15734 break;
15735 case DW_FORM_addr:
15736 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15737 info_ptr += bytes_read;
15738 break;
15739 case DW_FORM_block2:
15740 blk = dwarf_alloc_block (cu);
15741 blk->size = read_2_bytes (abfd, info_ptr);
15742 info_ptr += 2;
15743 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15744 info_ptr += blk->size;
15745 DW_BLOCK (attr) = blk;
15746 break;
15747 case DW_FORM_block4:
15748 blk = dwarf_alloc_block (cu);
15749 blk->size = read_4_bytes (abfd, info_ptr);
15750 info_ptr += 4;
15751 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15752 info_ptr += blk->size;
15753 DW_BLOCK (attr) = blk;
15754 break;
15755 case DW_FORM_data2:
15756 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15757 info_ptr += 2;
15758 break;
15759 case DW_FORM_data4:
15760 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15761 info_ptr += 4;
15762 break;
15763 case DW_FORM_data8:
15764 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15765 info_ptr += 8;
15766 break;
15767 case DW_FORM_sec_offset:
15768 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15769 info_ptr += bytes_read;
15770 break;
15771 case DW_FORM_string:
15772 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15773 DW_STRING_IS_CANONICAL (attr) = 0;
15774 info_ptr += bytes_read;
15775 break;
15776 case DW_FORM_strp:
15777 if (!cu->per_cu->is_dwz)
15778 {
15779 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15780 &bytes_read);
15781 DW_STRING_IS_CANONICAL (attr) = 0;
15782 info_ptr += bytes_read;
15783 break;
15784 }
15785 /* FALLTHROUGH */
15786 case DW_FORM_GNU_strp_alt:
15787 {
15788 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15789 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15790 &bytes_read);
15791
15792 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15793 DW_STRING_IS_CANONICAL (attr) = 0;
15794 info_ptr += bytes_read;
15795 }
15796 break;
15797 case DW_FORM_exprloc:
15798 case DW_FORM_block:
15799 blk = dwarf_alloc_block (cu);
15800 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15801 info_ptr += bytes_read;
15802 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15803 info_ptr += blk->size;
15804 DW_BLOCK (attr) = blk;
15805 break;
15806 case DW_FORM_block1:
15807 blk = dwarf_alloc_block (cu);
15808 blk->size = read_1_byte (abfd, info_ptr);
15809 info_ptr += 1;
15810 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15811 info_ptr += blk->size;
15812 DW_BLOCK (attr) = blk;
15813 break;
15814 case DW_FORM_data1:
15815 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15816 info_ptr += 1;
15817 break;
15818 case DW_FORM_flag:
15819 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15820 info_ptr += 1;
15821 break;
15822 case DW_FORM_flag_present:
15823 DW_UNSND (attr) = 1;
15824 break;
15825 case DW_FORM_sdata:
15826 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15827 info_ptr += bytes_read;
15828 break;
15829 case DW_FORM_udata:
15830 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15831 info_ptr += bytes_read;
15832 break;
15833 case DW_FORM_ref1:
15834 DW_UNSND (attr) = (cu->header.offset.sect_off
15835 + read_1_byte (abfd, info_ptr));
15836 info_ptr += 1;
15837 break;
15838 case DW_FORM_ref2:
15839 DW_UNSND (attr) = (cu->header.offset.sect_off
15840 + read_2_bytes (abfd, info_ptr));
15841 info_ptr += 2;
15842 break;
15843 case DW_FORM_ref4:
15844 DW_UNSND (attr) = (cu->header.offset.sect_off
15845 + read_4_bytes (abfd, info_ptr));
15846 info_ptr += 4;
15847 break;
15848 case DW_FORM_ref8:
15849 DW_UNSND (attr) = (cu->header.offset.sect_off
15850 + read_8_bytes (abfd, info_ptr));
15851 info_ptr += 8;
15852 break;
15853 case DW_FORM_ref_sig8:
15854 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15855 info_ptr += 8;
15856 break;
15857 case DW_FORM_ref_udata:
15858 DW_UNSND (attr) = (cu->header.offset.sect_off
15859 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15860 info_ptr += bytes_read;
15861 break;
15862 case DW_FORM_indirect:
15863 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15864 info_ptr += bytes_read;
15865 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15866 break;
15867 case DW_FORM_GNU_addr_index:
15868 if (reader->dwo_file == NULL)
15869 {
15870 /* For now flag a hard error.
15871 Later we can turn this into a complaint. */
15872 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15873 dwarf_form_name (form),
15874 bfd_get_filename (abfd));
15875 }
15876 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15877 info_ptr += bytes_read;
15878 break;
15879 case DW_FORM_GNU_str_index:
15880 if (reader->dwo_file == NULL)
15881 {
15882 /* For now flag a hard error.
15883 Later we can turn this into a complaint if warranted. */
15884 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15885 dwarf_form_name (form),
15886 bfd_get_filename (abfd));
15887 }
15888 {
15889 ULONGEST str_index =
15890 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15891
15892 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15893 DW_STRING_IS_CANONICAL (attr) = 0;
15894 info_ptr += bytes_read;
15895 }
15896 break;
15897 default:
15898 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15899 dwarf_form_name (form),
15900 bfd_get_filename (abfd));
15901 }
15902
15903 /* Super hack. */
15904 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15905 attr->form = DW_FORM_GNU_ref_alt;
15906
15907 /* We have seen instances where the compiler tried to emit a byte
15908 size attribute of -1 which ended up being encoded as an unsigned
15909 0xffffffff. Although 0xffffffff is technically a valid size value,
15910 an object of this size seems pretty unlikely so we can relatively
15911 safely treat these cases as if the size attribute was invalid and
15912 treat them as zero by default. */
15913 if (attr->name == DW_AT_byte_size
15914 && form == DW_FORM_data4
15915 && DW_UNSND (attr) >= 0xffffffff)
15916 {
15917 complaint
15918 (&symfile_complaints,
15919 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15920 hex_string (DW_UNSND (attr)));
15921 DW_UNSND (attr) = 0;
15922 }
15923
15924 return info_ptr;
15925}
15926
15927/* Read an attribute described by an abbreviated attribute. */
15928
15929static const gdb_byte *
15930read_attribute (const struct die_reader_specs *reader,
15931 struct attribute *attr, struct attr_abbrev *abbrev,
15932 const gdb_byte *info_ptr)
15933{
15934 attr->name = abbrev->name;
15935 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15936}
15937
15938/* Read dwarf information from a buffer. */
15939
15940static unsigned int
15941read_1_byte (bfd *abfd, const gdb_byte *buf)
15942{
15943 return bfd_get_8 (abfd, buf);
15944}
15945
15946static int
15947read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15948{
15949 return bfd_get_signed_8 (abfd, buf);
15950}
15951
15952static unsigned int
15953read_2_bytes (bfd *abfd, const gdb_byte *buf)
15954{
15955 return bfd_get_16 (abfd, buf);
15956}
15957
15958static int
15959read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15960{
15961 return bfd_get_signed_16 (abfd, buf);
15962}
15963
15964static unsigned int
15965read_4_bytes (bfd *abfd, const gdb_byte *buf)
15966{
15967 return bfd_get_32 (abfd, buf);
15968}
15969
15970static int
15971read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15972{
15973 return bfd_get_signed_32 (abfd, buf);
15974}
15975
15976static ULONGEST
15977read_8_bytes (bfd *abfd, const gdb_byte *buf)
15978{
15979 return bfd_get_64 (abfd, buf);
15980}
15981
15982static CORE_ADDR
15983read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
15984 unsigned int *bytes_read)
15985{
15986 struct comp_unit_head *cu_header = &cu->header;
15987 CORE_ADDR retval = 0;
15988
15989 if (cu_header->signed_addr_p)
15990 {
15991 switch (cu_header->addr_size)
15992 {
15993 case 2:
15994 retval = bfd_get_signed_16 (abfd, buf);
15995 break;
15996 case 4:
15997 retval = bfd_get_signed_32 (abfd, buf);
15998 break;
15999 case 8:
16000 retval = bfd_get_signed_64 (abfd, buf);
16001 break;
16002 default:
16003 internal_error (__FILE__, __LINE__,
16004 _("read_address: bad switch, signed [in module %s]"),
16005 bfd_get_filename (abfd));
16006 }
16007 }
16008 else
16009 {
16010 switch (cu_header->addr_size)
16011 {
16012 case 2:
16013 retval = bfd_get_16 (abfd, buf);
16014 break;
16015 case 4:
16016 retval = bfd_get_32 (abfd, buf);
16017 break;
16018 case 8:
16019 retval = bfd_get_64 (abfd, buf);
16020 break;
16021 default:
16022 internal_error (__FILE__, __LINE__,
16023 _("read_address: bad switch, "
16024 "unsigned [in module %s]"),
16025 bfd_get_filename (abfd));
16026 }
16027 }
16028
16029 *bytes_read = cu_header->addr_size;
16030 return retval;
16031}
16032
16033/* Read the initial length from a section. The (draft) DWARF 3
16034 specification allows the initial length to take up either 4 bytes
16035 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16036 bytes describe the length and all offsets will be 8 bytes in length
16037 instead of 4.
16038
16039 An older, non-standard 64-bit format is also handled by this
16040 function. The older format in question stores the initial length
16041 as an 8-byte quantity without an escape value. Lengths greater
16042 than 2^32 aren't very common which means that the initial 4 bytes
16043 is almost always zero. Since a length value of zero doesn't make
16044 sense for the 32-bit format, this initial zero can be considered to
16045 be an escape value which indicates the presence of the older 64-bit
16046 format. As written, the code can't detect (old format) lengths
16047 greater than 4GB. If it becomes necessary to handle lengths
16048 somewhat larger than 4GB, we could allow other small values (such
16049 as the non-sensical values of 1, 2, and 3) to also be used as
16050 escape values indicating the presence of the old format.
16051
16052 The value returned via bytes_read should be used to increment the
16053 relevant pointer after calling read_initial_length().
16054
16055 [ Note: read_initial_length() and read_offset() are based on the
16056 document entitled "DWARF Debugging Information Format", revision
16057 3, draft 8, dated November 19, 2001. This document was obtained
16058 from:
16059
16060 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16061
16062 This document is only a draft and is subject to change. (So beware.)
16063
16064 Details regarding the older, non-standard 64-bit format were
16065 determined empirically by examining 64-bit ELF files produced by
16066 the SGI toolchain on an IRIX 6.5 machine.
16067
16068 - Kevin, July 16, 2002
16069 ] */
16070
16071static LONGEST
16072read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16073{
16074 LONGEST length = bfd_get_32 (abfd, buf);
16075
16076 if (length == 0xffffffff)
16077 {
16078 length = bfd_get_64 (abfd, buf + 4);
16079 *bytes_read = 12;
16080 }
16081 else if (length == 0)
16082 {
16083 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16084 length = bfd_get_64 (abfd, buf);
16085 *bytes_read = 8;
16086 }
16087 else
16088 {
16089 *bytes_read = 4;
16090 }
16091
16092 return length;
16093}
16094
16095/* Cover function for read_initial_length.
16096 Returns the length of the object at BUF, and stores the size of the
16097 initial length in *BYTES_READ and stores the size that offsets will be in
16098 *OFFSET_SIZE.
16099 If the initial length size is not equivalent to that specified in
16100 CU_HEADER then issue a complaint.
16101 This is useful when reading non-comp-unit headers. */
16102
16103static LONGEST
16104read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16105 const struct comp_unit_head *cu_header,
16106 unsigned int *bytes_read,
16107 unsigned int *offset_size)
16108{
16109 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16110
16111 gdb_assert (cu_header->initial_length_size == 4
16112 || cu_header->initial_length_size == 8
16113 || cu_header->initial_length_size == 12);
16114
16115 if (cu_header->initial_length_size != *bytes_read)
16116 complaint (&symfile_complaints,
16117 _("intermixed 32-bit and 64-bit DWARF sections"));
16118
16119 *offset_size = (*bytes_read == 4) ? 4 : 8;
16120 return length;
16121}
16122
16123/* Read an offset from the data stream. The size of the offset is
16124 given by cu_header->offset_size. */
16125
16126static LONGEST
16127read_offset (bfd *abfd, const gdb_byte *buf,
16128 const struct comp_unit_head *cu_header,
16129 unsigned int *bytes_read)
16130{
16131 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16132
16133 *bytes_read = cu_header->offset_size;
16134 return offset;
16135}
16136
16137/* Read an offset from the data stream. */
16138
16139static LONGEST
16140read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16141{
16142 LONGEST retval = 0;
16143
16144 switch (offset_size)
16145 {
16146 case 4:
16147 retval = bfd_get_32 (abfd, buf);
16148 break;
16149 case 8:
16150 retval = bfd_get_64 (abfd, buf);
16151 break;
16152 default:
16153 internal_error (__FILE__, __LINE__,
16154 _("read_offset_1: bad switch [in module %s]"),
16155 bfd_get_filename (abfd));
16156 }
16157
16158 return retval;
16159}
16160
16161static const gdb_byte *
16162read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16163{
16164 /* If the size of a host char is 8 bits, we can return a pointer
16165 to the buffer, otherwise we have to copy the data to a buffer
16166 allocated on the temporary obstack. */
16167 gdb_assert (HOST_CHAR_BIT == 8);
16168 return buf;
16169}
16170
16171static const char *
16172read_direct_string (bfd *abfd, const gdb_byte *buf,
16173 unsigned int *bytes_read_ptr)
16174{
16175 /* If the size of a host char is 8 bits, we can return a pointer
16176 to the string, otherwise we have to copy the string to a buffer
16177 allocated on the temporary obstack. */
16178 gdb_assert (HOST_CHAR_BIT == 8);
16179 if (*buf == '\0')
16180 {
16181 *bytes_read_ptr = 1;
16182 return NULL;
16183 }
16184 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16185 return (const char *) buf;
16186}
16187
16188static const char *
16189read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16190{
16191 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16192 if (dwarf2_per_objfile->str.buffer == NULL)
16193 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16194 bfd_get_filename (abfd));
16195 if (str_offset >= dwarf2_per_objfile->str.size)
16196 error (_("DW_FORM_strp pointing outside of "
16197 ".debug_str section [in module %s]"),
16198 bfd_get_filename (abfd));
16199 gdb_assert (HOST_CHAR_BIT == 8);
16200 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16201 return NULL;
16202 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16203}
16204
16205/* Read a string at offset STR_OFFSET in the .debug_str section from
16206 the .dwz file DWZ. Throw an error if the offset is too large. If
16207 the string consists of a single NUL byte, return NULL; otherwise
16208 return a pointer to the string. */
16209
16210static const char *
16211read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16212{
16213 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16214
16215 if (dwz->str.buffer == NULL)
16216 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16217 "section [in module %s]"),
16218 bfd_get_filename (dwz->dwz_bfd));
16219 if (str_offset >= dwz->str.size)
16220 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16221 ".debug_str section [in module %s]"),
16222 bfd_get_filename (dwz->dwz_bfd));
16223 gdb_assert (HOST_CHAR_BIT == 8);
16224 if (dwz->str.buffer[str_offset] == '\0')
16225 return NULL;
16226 return (const char *) (dwz->str.buffer + str_offset);
16227}
16228
16229static const char *
16230read_indirect_string (bfd *abfd, const gdb_byte *buf,
16231 const struct comp_unit_head *cu_header,
16232 unsigned int *bytes_read_ptr)
16233{
16234 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16235
16236 return read_indirect_string_at_offset (abfd, str_offset);
16237}
16238
16239static ULONGEST
16240read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16241 unsigned int *bytes_read_ptr)
16242{
16243 ULONGEST result;
16244 unsigned int num_read;
16245 int i, shift;
16246 unsigned char byte;
16247
16248 result = 0;
16249 shift = 0;
16250 num_read = 0;
16251 i = 0;
16252 while (1)
16253 {
16254 byte = bfd_get_8 (abfd, buf);
16255 buf++;
16256 num_read++;
16257 result |= ((ULONGEST) (byte & 127) << shift);
16258 if ((byte & 128) == 0)
16259 {
16260 break;
16261 }
16262 shift += 7;
16263 }
16264 *bytes_read_ptr = num_read;
16265 return result;
16266}
16267
16268static LONGEST
16269read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16270 unsigned int *bytes_read_ptr)
16271{
16272 LONGEST result;
16273 int i, shift, num_read;
16274 unsigned char byte;
16275
16276 result = 0;
16277 shift = 0;
16278 num_read = 0;
16279 i = 0;
16280 while (1)
16281 {
16282 byte = bfd_get_8 (abfd, buf);
16283 buf++;
16284 num_read++;
16285 result |= ((LONGEST) (byte & 127) << shift);
16286 shift += 7;
16287 if ((byte & 128) == 0)
16288 {
16289 break;
16290 }
16291 }
16292 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16293 result |= -(((LONGEST) 1) << shift);
16294 *bytes_read_ptr = num_read;
16295 return result;
16296}
16297
16298/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16299 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16300 ADDR_SIZE is the size of addresses from the CU header. */
16301
16302static CORE_ADDR
16303read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16304{
16305 struct objfile *objfile = dwarf2_per_objfile->objfile;
16306 bfd *abfd = objfile->obfd;
16307 const gdb_byte *info_ptr;
16308
16309 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16310 if (dwarf2_per_objfile->addr.buffer == NULL)
16311 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16312 objfile_name (objfile));
16313 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16314 error (_("DW_FORM_addr_index pointing outside of "
16315 ".debug_addr section [in module %s]"),
16316 objfile_name (objfile));
16317 info_ptr = (dwarf2_per_objfile->addr.buffer
16318 + addr_base + addr_index * addr_size);
16319 if (addr_size == 4)
16320 return bfd_get_32 (abfd, info_ptr);
16321 else
16322 return bfd_get_64 (abfd, info_ptr);
16323}
16324
16325/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16326
16327static CORE_ADDR
16328read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16329{
16330 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16331}
16332
16333/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16334
16335static CORE_ADDR
16336read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16337 unsigned int *bytes_read)
16338{
16339 bfd *abfd = cu->objfile->obfd;
16340 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16341
16342 return read_addr_index (cu, addr_index);
16343}
16344
16345/* Data structure to pass results from dwarf2_read_addr_index_reader
16346 back to dwarf2_read_addr_index. */
16347
16348struct dwarf2_read_addr_index_data
16349{
16350 ULONGEST addr_base;
16351 int addr_size;
16352};
16353
16354/* die_reader_func for dwarf2_read_addr_index. */
16355
16356static void
16357dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16358 const gdb_byte *info_ptr,
16359 struct die_info *comp_unit_die,
16360 int has_children,
16361 void *data)
16362{
16363 struct dwarf2_cu *cu = reader->cu;
16364 struct dwarf2_read_addr_index_data *aidata =
16365 (struct dwarf2_read_addr_index_data *) data;
16366
16367 aidata->addr_base = cu->addr_base;
16368 aidata->addr_size = cu->header.addr_size;
16369}
16370
16371/* Given an index in .debug_addr, fetch the value.
16372 NOTE: This can be called during dwarf expression evaluation,
16373 long after the debug information has been read, and thus per_cu->cu
16374 may no longer exist. */
16375
16376CORE_ADDR
16377dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16378 unsigned int addr_index)
16379{
16380 struct objfile *objfile = per_cu->objfile;
16381 struct dwarf2_cu *cu = per_cu->cu;
16382 ULONGEST addr_base;
16383 int addr_size;
16384
16385 /* This is intended to be called from outside this file. */
16386 dw2_setup (objfile);
16387
16388 /* We need addr_base and addr_size.
16389 If we don't have PER_CU->cu, we have to get it.
16390 Nasty, but the alternative is storing the needed info in PER_CU,
16391 which at this point doesn't seem justified: it's not clear how frequently
16392 it would get used and it would increase the size of every PER_CU.
16393 Entry points like dwarf2_per_cu_addr_size do a similar thing
16394 so we're not in uncharted territory here.
16395 Alas we need to be a bit more complicated as addr_base is contained
16396 in the DIE.
16397
16398 We don't need to read the entire CU(/TU).
16399 We just need the header and top level die.
16400
16401 IWBN to use the aging mechanism to let us lazily later discard the CU.
16402 For now we skip this optimization. */
16403
16404 if (cu != NULL)
16405 {
16406 addr_base = cu->addr_base;
16407 addr_size = cu->header.addr_size;
16408 }
16409 else
16410 {
16411 struct dwarf2_read_addr_index_data aidata;
16412
16413 /* Note: We can't use init_cutu_and_read_dies_simple here,
16414 we need addr_base. */
16415 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16416 dwarf2_read_addr_index_reader, &aidata);
16417 addr_base = aidata.addr_base;
16418 addr_size = aidata.addr_size;
16419 }
16420
16421 return read_addr_index_1 (addr_index, addr_base, addr_size);
16422}
16423
16424/* Given a DW_FORM_GNU_str_index, fetch the string.
16425 This is only used by the Fission support. */
16426
16427static const char *
16428read_str_index (const struct die_reader_specs *reader,
16429 struct dwarf2_cu *cu, ULONGEST str_index)
16430{
16431 struct objfile *objfile = dwarf2_per_objfile->objfile;
16432 const char *dwo_name = objfile_name (objfile);
16433 bfd *abfd = objfile->obfd;
16434 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16435 struct dwarf2_section_info *str_offsets_section =
16436 &reader->dwo_file->sections.str_offsets;
16437 const gdb_byte *info_ptr;
16438 ULONGEST str_offset;
16439 static const char form_name[] = "DW_FORM_GNU_str_index";
16440
16441 dwarf2_read_section (objfile, str_section);
16442 dwarf2_read_section (objfile, str_offsets_section);
16443 if (str_section->buffer == NULL)
16444 error (_("%s used without .debug_str.dwo section"
16445 " in CU at offset 0x%lx [in module %s]"),
16446 form_name, (long) cu->header.offset.sect_off, dwo_name);
16447 if (str_offsets_section->buffer == NULL)
16448 error (_("%s used without .debug_str_offsets.dwo section"
16449 " in CU at offset 0x%lx [in module %s]"),
16450 form_name, (long) cu->header.offset.sect_off, dwo_name);
16451 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16452 error (_("%s pointing outside of .debug_str_offsets.dwo"
16453 " section in CU at offset 0x%lx [in module %s]"),
16454 form_name, (long) cu->header.offset.sect_off, dwo_name);
16455 info_ptr = (str_offsets_section->buffer
16456 + str_index * cu->header.offset_size);
16457 if (cu->header.offset_size == 4)
16458 str_offset = bfd_get_32 (abfd, info_ptr);
16459 else
16460 str_offset = bfd_get_64 (abfd, info_ptr);
16461 if (str_offset >= str_section->size)
16462 error (_("Offset from %s pointing outside of"
16463 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16464 form_name, (long) cu->header.offset.sect_off, dwo_name);
16465 return (const char *) (str_section->buffer + str_offset);
16466}
16467
16468/* Return the length of an LEB128 number in BUF. */
16469
16470static int
16471leb128_size (const gdb_byte *buf)
16472{
16473 const gdb_byte *begin = buf;
16474 gdb_byte byte;
16475
16476 while (1)
16477 {
16478 byte = *buf++;
16479 if ((byte & 128) == 0)
16480 return buf - begin;
16481 }
16482}
16483
16484static void
16485set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16486{
16487 switch (lang)
16488 {
16489 case DW_LANG_C89:
16490 case DW_LANG_C99:
16491 case DW_LANG_C:
16492 case DW_LANG_UPC:
16493 cu->language = language_c;
16494 break;
16495 case DW_LANG_C_plus_plus:
16496 cu->language = language_cplus;
16497 break;
16498 case DW_LANG_D:
16499 cu->language = language_d;
16500 break;
16501 case DW_LANG_Fortran77:
16502 case DW_LANG_Fortran90:
16503 case DW_LANG_Fortran95:
16504 cu->language = language_fortran;
16505 break;
16506 case DW_LANG_Go:
16507 cu->language = language_go;
16508 break;
16509 case DW_LANG_Mips_Assembler:
16510 cu->language = language_asm;
16511 break;
16512 case DW_LANG_Java:
16513 cu->language = language_java;
16514 break;
16515 case DW_LANG_Ada83:
16516 case DW_LANG_Ada95:
16517 cu->language = language_ada;
16518 break;
16519 case DW_LANG_Modula2:
16520 cu->language = language_m2;
16521 break;
16522 case DW_LANG_Pascal83:
16523 cu->language = language_pascal;
16524 break;
16525 case DW_LANG_ObjC:
16526 cu->language = language_objc;
16527 break;
16528 case DW_LANG_Cobol74:
16529 case DW_LANG_Cobol85:
16530 default:
16531 cu->language = language_minimal;
16532 break;
16533 }
16534 cu->language_defn = language_def (cu->language);
16535}
16536
16537/* Return the named attribute or NULL if not there. */
16538
16539static struct attribute *
16540dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16541{
16542 for (;;)
16543 {
16544 unsigned int i;
16545 struct attribute *spec = NULL;
16546
16547 for (i = 0; i < die->num_attrs; ++i)
16548 {
16549 if (die->attrs[i].name == name)
16550 return &die->attrs[i];
16551 if (die->attrs[i].name == DW_AT_specification
16552 || die->attrs[i].name == DW_AT_abstract_origin)
16553 spec = &die->attrs[i];
16554 }
16555
16556 if (!spec)
16557 break;
16558
16559 die = follow_die_ref (die, spec, &cu);
16560 }
16561
16562 return NULL;
16563}
16564
16565/* Return the named attribute or NULL if not there,
16566 but do not follow DW_AT_specification, etc.
16567 This is for use in contexts where we're reading .debug_types dies.
16568 Following DW_AT_specification, DW_AT_abstract_origin will take us
16569 back up the chain, and we want to go down. */
16570
16571static struct attribute *
16572dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16573{
16574 unsigned int i;
16575
16576 for (i = 0; i < die->num_attrs; ++i)
16577 if (die->attrs[i].name == name)
16578 return &die->attrs[i];
16579
16580 return NULL;
16581}
16582
16583/* Return non-zero iff the attribute NAME is defined for the given DIE,
16584 and holds a non-zero value. This function should only be used for
16585 DW_FORM_flag or DW_FORM_flag_present attributes. */
16586
16587static int
16588dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16589{
16590 struct attribute *attr = dwarf2_attr (die, name, cu);
16591
16592 return (attr && DW_UNSND (attr));
16593}
16594
16595static int
16596die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16597{
16598 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16599 which value is non-zero. However, we have to be careful with
16600 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16601 (via dwarf2_flag_true_p) follows this attribute. So we may
16602 end up accidently finding a declaration attribute that belongs
16603 to a different DIE referenced by the specification attribute,
16604 even though the given DIE does not have a declaration attribute. */
16605 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16606 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16607}
16608
16609/* Return the die giving the specification for DIE, if there is
16610 one. *SPEC_CU is the CU containing DIE on input, and the CU
16611 containing the return value on output. If there is no
16612 specification, but there is an abstract origin, that is
16613 returned. */
16614
16615static struct die_info *
16616die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16617{
16618 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16619 *spec_cu);
16620
16621 if (spec_attr == NULL)
16622 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16623
16624 if (spec_attr == NULL)
16625 return NULL;
16626 else
16627 return follow_die_ref (die, spec_attr, spec_cu);
16628}
16629
16630/* Free the line_header structure *LH, and any arrays and strings it
16631 refers to.
16632 NOTE: This is also used as a "cleanup" function. */
16633
16634static void
16635free_line_header (struct line_header *lh)
16636{
16637 if (lh->standard_opcode_lengths)
16638 xfree (lh->standard_opcode_lengths);
16639
16640 /* Remember that all the lh->file_names[i].name pointers are
16641 pointers into debug_line_buffer, and don't need to be freed. */
16642 if (lh->file_names)
16643 xfree (lh->file_names);
16644
16645 /* Similarly for the include directory names. */
16646 if (lh->include_dirs)
16647 xfree (lh->include_dirs);
16648
16649 xfree (lh);
16650}
16651
16652/* Add an entry to LH's include directory table. */
16653
16654static void
16655add_include_dir (struct line_header *lh, const char *include_dir)
16656{
16657 /* Grow the array if necessary. */
16658 if (lh->include_dirs_size == 0)
16659 {
16660 lh->include_dirs_size = 1; /* for testing */
16661 lh->include_dirs = xmalloc (lh->include_dirs_size
16662 * sizeof (*lh->include_dirs));
16663 }
16664 else if (lh->num_include_dirs >= lh->include_dirs_size)
16665 {
16666 lh->include_dirs_size *= 2;
16667 lh->include_dirs = xrealloc (lh->include_dirs,
16668 (lh->include_dirs_size
16669 * sizeof (*lh->include_dirs)));
16670 }
16671
16672 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16673}
16674
16675/* Add an entry to LH's file name table. */
16676
16677static void
16678add_file_name (struct line_header *lh,
16679 const char *name,
16680 unsigned int dir_index,
16681 unsigned int mod_time,
16682 unsigned int length)
16683{
16684 struct file_entry *fe;
16685
16686 /* Grow the array if necessary. */
16687 if (lh->file_names_size == 0)
16688 {
16689 lh->file_names_size = 1; /* for testing */
16690 lh->file_names = xmalloc (lh->file_names_size
16691 * sizeof (*lh->file_names));
16692 }
16693 else if (lh->num_file_names >= lh->file_names_size)
16694 {
16695 lh->file_names_size *= 2;
16696 lh->file_names = xrealloc (lh->file_names,
16697 (lh->file_names_size
16698 * sizeof (*lh->file_names)));
16699 }
16700
16701 fe = &lh->file_names[lh->num_file_names++];
16702 fe->name = name;
16703 fe->dir_index = dir_index;
16704 fe->mod_time = mod_time;
16705 fe->length = length;
16706 fe->included_p = 0;
16707 fe->symtab = NULL;
16708}
16709
16710/* A convenience function to find the proper .debug_line section for a
16711 CU. */
16712
16713static struct dwarf2_section_info *
16714get_debug_line_section (struct dwarf2_cu *cu)
16715{
16716 struct dwarf2_section_info *section;
16717
16718 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16719 DWO file. */
16720 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16721 section = &cu->dwo_unit->dwo_file->sections.line;
16722 else if (cu->per_cu->is_dwz)
16723 {
16724 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16725
16726 section = &dwz->line;
16727 }
16728 else
16729 section = &dwarf2_per_objfile->line;
16730
16731 return section;
16732}
16733
16734/* Read the statement program header starting at OFFSET in
16735 .debug_line, or .debug_line.dwo. Return a pointer
16736 to a struct line_header, allocated using xmalloc.
16737
16738 NOTE: the strings in the include directory and file name tables of
16739 the returned object point into the dwarf line section buffer,
16740 and must not be freed. */
16741
16742static struct line_header *
16743dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16744{
16745 struct cleanup *back_to;
16746 struct line_header *lh;
16747 const gdb_byte *line_ptr;
16748 unsigned int bytes_read, offset_size;
16749 int i;
16750 const char *cur_dir, *cur_file;
16751 struct dwarf2_section_info *section;
16752 bfd *abfd;
16753
16754 section = get_debug_line_section (cu);
16755 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16756 if (section->buffer == NULL)
16757 {
16758 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16759 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16760 else
16761 complaint (&symfile_complaints, _("missing .debug_line section"));
16762 return 0;
16763 }
16764
16765 /* We can't do this until we know the section is non-empty.
16766 Only then do we know we have such a section. */
16767 abfd = get_section_bfd_owner (section);
16768
16769 /* Make sure that at least there's room for the total_length field.
16770 That could be 12 bytes long, but we're just going to fudge that. */
16771 if (offset + 4 >= section->size)
16772 {
16773 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16774 return 0;
16775 }
16776
16777 lh = xmalloc (sizeof (*lh));
16778 memset (lh, 0, sizeof (*lh));
16779 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16780 (void *) lh);
16781
16782 line_ptr = section->buffer + offset;
16783
16784 /* Read in the header. */
16785 lh->total_length =
16786 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16787 &bytes_read, &offset_size);
16788 line_ptr += bytes_read;
16789 if (line_ptr + lh->total_length > (section->buffer + section->size))
16790 {
16791 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16792 do_cleanups (back_to);
16793 return 0;
16794 }
16795 lh->statement_program_end = line_ptr + lh->total_length;
16796 lh->version = read_2_bytes (abfd, line_ptr);
16797 line_ptr += 2;
16798 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16799 line_ptr += offset_size;
16800 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16801 line_ptr += 1;
16802 if (lh->version >= 4)
16803 {
16804 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16805 line_ptr += 1;
16806 }
16807 else
16808 lh->maximum_ops_per_instruction = 1;
16809
16810 if (lh->maximum_ops_per_instruction == 0)
16811 {
16812 lh->maximum_ops_per_instruction = 1;
16813 complaint (&symfile_complaints,
16814 _("invalid maximum_ops_per_instruction "
16815 "in `.debug_line' section"));
16816 }
16817
16818 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16819 line_ptr += 1;
16820 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16821 line_ptr += 1;
16822 lh->line_range = read_1_byte (abfd, line_ptr);
16823 line_ptr += 1;
16824 lh->opcode_base = read_1_byte (abfd, line_ptr);
16825 line_ptr += 1;
16826 lh->standard_opcode_lengths
16827 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16828
16829 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16830 for (i = 1; i < lh->opcode_base; ++i)
16831 {
16832 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16833 line_ptr += 1;
16834 }
16835
16836 /* Read directory table. */
16837 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16838 {
16839 line_ptr += bytes_read;
16840 add_include_dir (lh, cur_dir);
16841 }
16842 line_ptr += bytes_read;
16843
16844 /* Read file name table. */
16845 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16846 {
16847 unsigned int dir_index, mod_time, length;
16848
16849 line_ptr += bytes_read;
16850 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16851 line_ptr += bytes_read;
16852 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16853 line_ptr += bytes_read;
16854 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16855 line_ptr += bytes_read;
16856
16857 add_file_name (lh, cur_file, dir_index, mod_time, length);
16858 }
16859 line_ptr += bytes_read;
16860 lh->statement_program_start = line_ptr;
16861
16862 if (line_ptr > (section->buffer + section->size))
16863 complaint (&symfile_complaints,
16864 _("line number info header doesn't "
16865 "fit in `.debug_line' section"));
16866
16867 discard_cleanups (back_to);
16868 return lh;
16869}
16870
16871/* Subroutine of dwarf_decode_lines to simplify it.
16872 Return the file name of the psymtab for included file FILE_INDEX
16873 in line header LH of PST.
16874 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16875 If space for the result is malloc'd, it will be freed by a cleanup.
16876 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16877
16878 The function creates dangling cleanup registration. */
16879
16880static const char *
16881psymtab_include_file_name (const struct line_header *lh, int file_index,
16882 const struct partial_symtab *pst,
16883 const char *comp_dir)
16884{
16885 const struct file_entry fe = lh->file_names [file_index];
16886 const char *include_name = fe.name;
16887 const char *include_name_to_compare = include_name;
16888 const char *dir_name = NULL;
16889 const char *pst_filename;
16890 char *copied_name = NULL;
16891 int file_is_pst;
16892
16893 if (fe.dir_index)
16894 dir_name = lh->include_dirs[fe.dir_index - 1];
16895
16896 if (!IS_ABSOLUTE_PATH (include_name)
16897 && (dir_name != NULL || comp_dir != NULL))
16898 {
16899 /* Avoid creating a duplicate psymtab for PST.
16900 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16901 Before we do the comparison, however, we need to account
16902 for DIR_NAME and COMP_DIR.
16903 First prepend dir_name (if non-NULL). If we still don't
16904 have an absolute path prepend comp_dir (if non-NULL).
16905 However, the directory we record in the include-file's
16906 psymtab does not contain COMP_DIR (to match the
16907 corresponding symtab(s)).
16908
16909 Example:
16910
16911 bash$ cd /tmp
16912 bash$ gcc -g ./hello.c
16913 include_name = "hello.c"
16914 dir_name = "."
16915 DW_AT_comp_dir = comp_dir = "/tmp"
16916 DW_AT_name = "./hello.c" */
16917
16918 if (dir_name != NULL)
16919 {
16920 char *tem = concat (dir_name, SLASH_STRING,
16921 include_name, (char *)NULL);
16922
16923 make_cleanup (xfree, tem);
16924 include_name = tem;
16925 include_name_to_compare = include_name;
16926 }
16927 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16928 {
16929 char *tem = concat (comp_dir, SLASH_STRING,
16930 include_name, (char *)NULL);
16931
16932 make_cleanup (xfree, tem);
16933 include_name_to_compare = tem;
16934 }
16935 }
16936
16937 pst_filename = pst->filename;
16938 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16939 {
16940 copied_name = concat (pst->dirname, SLASH_STRING,
16941 pst_filename, (char *)NULL);
16942 pst_filename = copied_name;
16943 }
16944
16945 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16946
16947 if (copied_name != NULL)
16948 xfree (copied_name);
16949
16950 if (file_is_pst)
16951 return NULL;
16952 return include_name;
16953}
16954
16955/* Ignore this record_line request. */
16956
16957static void
16958noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16959{
16960 return;
16961}
16962
16963/* Subroutine of dwarf_decode_lines to simplify it.
16964 Process the line number information in LH. */
16965
16966static void
16967dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16968 struct dwarf2_cu *cu, struct partial_symtab *pst)
16969{
16970 const gdb_byte *line_ptr, *extended_end;
16971 const gdb_byte *line_end;
16972 unsigned int bytes_read, extended_len;
16973 unsigned char op_code, extended_op, adj_opcode;
16974 CORE_ADDR baseaddr;
16975 struct objfile *objfile = cu->objfile;
16976 bfd *abfd = objfile->obfd;
16977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16978 const int decode_for_pst_p = (pst != NULL);
16979 struct subfile *last_subfile = NULL;
16980 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16981 = record_line;
16982
16983 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16984
16985 line_ptr = lh->statement_program_start;
16986 line_end = lh->statement_program_end;
16987
16988 /* Read the statement sequences until there's nothing left. */
16989 while (line_ptr < line_end)
16990 {
16991 /* state machine registers */
16992 CORE_ADDR address = 0;
16993 unsigned int file = 1;
16994 unsigned int line = 1;
16995 unsigned int column = 0;
16996 int is_stmt = lh->default_is_stmt;
16997 int basic_block = 0;
16998 int end_sequence = 0;
16999 CORE_ADDR addr;
17000 unsigned char op_index = 0;
17001
17002 if (!decode_for_pst_p && lh->num_file_names >= file)
17003 {
17004 /* Start a subfile for the current file of the state machine. */
17005 /* lh->include_dirs and lh->file_names are 0-based, but the
17006 directory and file name numbers in the statement program
17007 are 1-based. */
17008 struct file_entry *fe = &lh->file_names[file - 1];
17009 const char *dir = NULL;
17010
17011 if (fe->dir_index)
17012 dir = lh->include_dirs[fe->dir_index - 1];
17013
17014 dwarf2_start_subfile (fe->name, dir, comp_dir);
17015 }
17016
17017 /* Decode the table. */
17018 while (!end_sequence)
17019 {
17020 op_code = read_1_byte (abfd, line_ptr);
17021 line_ptr += 1;
17022 if (line_ptr > line_end)
17023 {
17024 dwarf2_debug_line_missing_end_sequence_complaint ();
17025 break;
17026 }
17027
17028 if (op_code >= lh->opcode_base)
17029 {
17030 /* Special operand. */
17031 adj_opcode = op_code - lh->opcode_base;
17032 address += (((op_index + (adj_opcode / lh->line_range))
17033 / lh->maximum_ops_per_instruction)
17034 * lh->minimum_instruction_length);
17035 op_index = ((op_index + (adj_opcode / lh->line_range))
17036 % lh->maximum_ops_per_instruction);
17037 line += lh->line_base + (adj_opcode % lh->line_range);
17038 if (lh->num_file_names < file || file == 0)
17039 dwarf2_debug_line_missing_file_complaint ();
17040 /* For now we ignore lines not starting on an
17041 instruction boundary. */
17042 else if (op_index == 0)
17043 {
17044 lh->file_names[file - 1].included_p = 1;
17045 if (!decode_for_pst_p && is_stmt)
17046 {
17047 if (last_subfile != current_subfile)
17048 {
17049 addr = gdbarch_addr_bits_remove (gdbarch, address);
17050 if (last_subfile)
17051 (*p_record_line) (last_subfile, 0, addr);
17052 last_subfile = current_subfile;
17053 }
17054 /* Append row to matrix using current values. */
17055 addr = gdbarch_addr_bits_remove (gdbarch, address);
17056 (*p_record_line) (current_subfile, line, addr);
17057 }
17058 }
17059 basic_block = 0;
17060 }
17061 else switch (op_code)
17062 {
17063 case DW_LNS_extended_op:
17064 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17065 &bytes_read);
17066 line_ptr += bytes_read;
17067 extended_end = line_ptr + extended_len;
17068 extended_op = read_1_byte (abfd, line_ptr);
17069 line_ptr += 1;
17070 switch (extended_op)
17071 {
17072 case DW_LNE_end_sequence:
17073 p_record_line = record_line;
17074 end_sequence = 1;
17075 break;
17076 case DW_LNE_set_address:
17077 address = read_address (abfd, line_ptr, cu, &bytes_read);
17078
17079 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17080 {
17081 /* This line table is for a function which has been
17082 GCd by the linker. Ignore it. PR gdb/12528 */
17083
17084 long line_offset
17085 = line_ptr - get_debug_line_section (cu)->buffer;
17086
17087 complaint (&symfile_complaints,
17088 _(".debug_line address at offset 0x%lx is 0 "
17089 "[in module %s]"),
17090 line_offset, objfile_name (objfile));
17091 p_record_line = noop_record_line;
17092 }
17093
17094 op_index = 0;
17095 line_ptr += bytes_read;
17096 address += baseaddr;
17097 break;
17098 case DW_LNE_define_file:
17099 {
17100 const char *cur_file;
17101 unsigned int dir_index, mod_time, length;
17102
17103 cur_file = read_direct_string (abfd, line_ptr,
17104 &bytes_read);
17105 line_ptr += bytes_read;
17106 dir_index =
17107 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17108 line_ptr += bytes_read;
17109 mod_time =
17110 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17111 line_ptr += bytes_read;
17112 length =
17113 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17114 line_ptr += bytes_read;
17115 add_file_name (lh, cur_file, dir_index, mod_time, length);
17116 }
17117 break;
17118 case DW_LNE_set_discriminator:
17119 /* The discriminator is not interesting to the debugger;
17120 just ignore it. */
17121 line_ptr = extended_end;
17122 break;
17123 default:
17124 complaint (&symfile_complaints,
17125 _("mangled .debug_line section"));
17126 return;
17127 }
17128 /* Make sure that we parsed the extended op correctly. If e.g.
17129 we expected a different address size than the producer used,
17130 we may have read the wrong number of bytes. */
17131 if (line_ptr != extended_end)
17132 {
17133 complaint (&symfile_complaints,
17134 _("mangled .debug_line section"));
17135 return;
17136 }
17137 break;
17138 case DW_LNS_copy:
17139 if (lh->num_file_names < file || file == 0)
17140 dwarf2_debug_line_missing_file_complaint ();
17141 else
17142 {
17143 lh->file_names[file - 1].included_p = 1;
17144 if (!decode_for_pst_p && is_stmt)
17145 {
17146 if (last_subfile != current_subfile)
17147 {
17148 addr = gdbarch_addr_bits_remove (gdbarch, address);
17149 if (last_subfile)
17150 (*p_record_line) (last_subfile, 0, addr);
17151 last_subfile = current_subfile;
17152 }
17153 addr = gdbarch_addr_bits_remove (gdbarch, address);
17154 (*p_record_line) (current_subfile, line, addr);
17155 }
17156 }
17157 basic_block = 0;
17158 break;
17159 case DW_LNS_advance_pc:
17160 {
17161 CORE_ADDR adjust
17162 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17163
17164 address += (((op_index + adjust)
17165 / lh->maximum_ops_per_instruction)
17166 * lh->minimum_instruction_length);
17167 op_index = ((op_index + adjust)
17168 % lh->maximum_ops_per_instruction);
17169 line_ptr += bytes_read;
17170 }
17171 break;
17172 case DW_LNS_advance_line:
17173 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17174 line_ptr += bytes_read;
17175 break;
17176 case DW_LNS_set_file:
17177 {
17178 /* The arrays lh->include_dirs and lh->file_names are
17179 0-based, but the directory and file name numbers in
17180 the statement program are 1-based. */
17181 struct file_entry *fe;
17182 const char *dir = NULL;
17183
17184 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17185 line_ptr += bytes_read;
17186 if (lh->num_file_names < file || file == 0)
17187 dwarf2_debug_line_missing_file_complaint ();
17188 else
17189 {
17190 fe = &lh->file_names[file - 1];
17191 if (fe->dir_index)
17192 dir = lh->include_dirs[fe->dir_index - 1];
17193 if (!decode_for_pst_p)
17194 {
17195 last_subfile = current_subfile;
17196 dwarf2_start_subfile (fe->name, dir, comp_dir);
17197 }
17198 }
17199 }
17200 break;
17201 case DW_LNS_set_column:
17202 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17203 line_ptr += bytes_read;
17204 break;
17205 case DW_LNS_negate_stmt:
17206 is_stmt = (!is_stmt);
17207 break;
17208 case DW_LNS_set_basic_block:
17209 basic_block = 1;
17210 break;
17211 /* Add to the address register of the state machine the
17212 address increment value corresponding to special opcode
17213 255. I.e., this value is scaled by the minimum
17214 instruction length since special opcode 255 would have
17215 scaled the increment. */
17216 case DW_LNS_const_add_pc:
17217 {
17218 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17219
17220 address += (((op_index + adjust)
17221 / lh->maximum_ops_per_instruction)
17222 * lh->minimum_instruction_length);
17223 op_index = ((op_index + adjust)
17224 % lh->maximum_ops_per_instruction);
17225 }
17226 break;
17227 case DW_LNS_fixed_advance_pc:
17228 address += read_2_bytes (abfd, line_ptr);
17229 op_index = 0;
17230 line_ptr += 2;
17231 break;
17232 default:
17233 {
17234 /* Unknown standard opcode, ignore it. */
17235 int i;
17236
17237 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17238 {
17239 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17240 line_ptr += bytes_read;
17241 }
17242 }
17243 }
17244 }
17245 if (lh->num_file_names < file || file == 0)
17246 dwarf2_debug_line_missing_file_complaint ();
17247 else
17248 {
17249 lh->file_names[file - 1].included_p = 1;
17250 if (!decode_for_pst_p)
17251 {
17252 addr = gdbarch_addr_bits_remove (gdbarch, address);
17253 (*p_record_line) (current_subfile, 0, addr);
17254 }
17255 }
17256 }
17257}
17258
17259/* Decode the Line Number Program (LNP) for the given line_header
17260 structure and CU. The actual information extracted and the type
17261 of structures created from the LNP depends on the value of PST.
17262
17263 1. If PST is NULL, then this procedure uses the data from the program
17264 to create all necessary symbol tables, and their linetables.
17265
17266 2. If PST is not NULL, this procedure reads the program to determine
17267 the list of files included by the unit represented by PST, and
17268 builds all the associated partial symbol tables.
17269
17270 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17271 It is used for relative paths in the line table.
17272 NOTE: When processing partial symtabs (pst != NULL),
17273 comp_dir == pst->dirname.
17274
17275 NOTE: It is important that psymtabs have the same file name (via strcmp)
17276 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17277 symtab we don't use it in the name of the psymtabs we create.
17278 E.g. expand_line_sal requires this when finding psymtabs to expand.
17279 A good testcase for this is mb-inline.exp. */
17280
17281static void
17282dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17283 struct dwarf2_cu *cu, struct partial_symtab *pst,
17284 int want_line_info)
17285{
17286 struct objfile *objfile = cu->objfile;
17287 const int decode_for_pst_p = (pst != NULL);
17288 struct subfile *first_subfile = current_subfile;
17289
17290 if (want_line_info)
17291 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17292
17293 if (decode_for_pst_p)
17294 {
17295 int file_index;
17296
17297 /* Now that we're done scanning the Line Header Program, we can
17298 create the psymtab of each included file. */
17299 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17300 if (lh->file_names[file_index].included_p == 1)
17301 {
17302 const char *include_name =
17303 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17304 if (include_name != NULL)
17305 dwarf2_create_include_psymtab (include_name, pst, objfile);
17306 }
17307 }
17308 else
17309 {
17310 /* Make sure a symtab is created for every file, even files
17311 which contain only variables (i.e. no code with associated
17312 line numbers). */
17313 int i;
17314
17315 for (i = 0; i < lh->num_file_names; i++)
17316 {
17317 const char *dir = NULL;
17318 struct file_entry *fe;
17319
17320 fe = &lh->file_names[i];
17321 if (fe->dir_index)
17322 dir = lh->include_dirs[fe->dir_index - 1];
17323 dwarf2_start_subfile (fe->name, dir, comp_dir);
17324
17325 /* Skip the main file; we don't need it, and it must be
17326 allocated last, so that it will show up before the
17327 non-primary symtabs in the objfile's symtab list. */
17328 if (current_subfile == first_subfile)
17329 continue;
17330
17331 if (current_subfile->symtab == NULL)
17332 current_subfile->symtab = allocate_symtab (current_subfile->name,
17333 objfile);
17334 fe->symtab = current_subfile->symtab;
17335 }
17336 }
17337}
17338
17339/* Start a subfile for DWARF. FILENAME is the name of the file and
17340 DIRNAME the name of the source directory which contains FILENAME
17341 or NULL if not known. COMP_DIR is the compilation directory for the
17342 linetable's compilation unit or NULL if not known.
17343 This routine tries to keep line numbers from identical absolute and
17344 relative file names in a common subfile.
17345
17346 Using the `list' example from the GDB testsuite, which resides in
17347 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17348 of /srcdir/list0.c yields the following debugging information for list0.c:
17349
17350 DW_AT_name: /srcdir/list0.c
17351 DW_AT_comp_dir: /compdir
17352 files.files[0].name: list0.h
17353 files.files[0].dir: /srcdir
17354 files.files[1].name: list0.c
17355 files.files[1].dir: /srcdir
17356
17357 The line number information for list0.c has to end up in a single
17358 subfile, so that `break /srcdir/list0.c:1' works as expected.
17359 start_subfile will ensure that this happens provided that we pass the
17360 concatenation of files.files[1].dir and files.files[1].name as the
17361 subfile's name. */
17362
17363static void
17364dwarf2_start_subfile (const char *filename, const char *dirname,
17365 const char *comp_dir)
17366{
17367 char *copy = NULL;
17368
17369 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17370 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17371 second argument to start_subfile. To be consistent, we do the
17372 same here. In order not to lose the line information directory,
17373 we concatenate it to the filename when it makes sense.
17374 Note that the Dwarf3 standard says (speaking of filenames in line
17375 information): ``The directory index is ignored for file names
17376 that represent full path names''. Thus ignoring dirname in the
17377 `else' branch below isn't an issue. */
17378
17379 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17380 {
17381 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17382 filename = copy;
17383 }
17384
17385 start_subfile (filename, comp_dir);
17386
17387 if (copy != NULL)
17388 xfree (copy);
17389}
17390
17391/* Start a symtab for DWARF.
17392 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17393
17394static void
17395dwarf2_start_symtab (struct dwarf2_cu *cu,
17396 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17397{
17398 start_symtab (name, comp_dir, low_pc);
17399 record_debugformat ("DWARF 2");
17400 record_producer (cu->producer);
17401
17402 /* We assume that we're processing GCC output. */
17403 processing_gcc_compilation = 2;
17404
17405 cu->processing_has_namespace_info = 0;
17406}
17407
17408static void
17409var_decode_location (struct attribute *attr, struct symbol *sym,
17410 struct dwarf2_cu *cu)
17411{
17412 struct objfile *objfile = cu->objfile;
17413 struct comp_unit_head *cu_header = &cu->header;
17414
17415 /* NOTE drow/2003-01-30: There used to be a comment and some special
17416 code here to turn a symbol with DW_AT_external and a
17417 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17418 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17419 with some versions of binutils) where shared libraries could have
17420 relocations against symbols in their debug information - the
17421 minimal symbol would have the right address, but the debug info
17422 would not. It's no longer necessary, because we will explicitly
17423 apply relocations when we read in the debug information now. */
17424
17425 /* A DW_AT_location attribute with no contents indicates that a
17426 variable has been optimized away. */
17427 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17428 {
17429 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17430 return;
17431 }
17432
17433 /* Handle one degenerate form of location expression specially, to
17434 preserve GDB's previous behavior when section offsets are
17435 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17436 then mark this symbol as LOC_STATIC. */
17437
17438 if (attr_form_is_block (attr)
17439 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17440 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17441 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17442 && (DW_BLOCK (attr)->size
17443 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17444 {
17445 unsigned int dummy;
17446
17447 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17448 SYMBOL_VALUE_ADDRESS (sym) =
17449 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17450 else
17451 SYMBOL_VALUE_ADDRESS (sym) =
17452 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17453 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17454 fixup_symbol_section (sym, objfile);
17455 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17456 SYMBOL_SECTION (sym));
17457 return;
17458 }
17459
17460 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17461 expression evaluator, and use LOC_COMPUTED only when necessary
17462 (i.e. when the value of a register or memory location is
17463 referenced, or a thread-local block, etc.). Then again, it might
17464 not be worthwhile. I'm assuming that it isn't unless performance
17465 or memory numbers show me otherwise. */
17466
17467 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17468
17469 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17470 cu->has_loclist = 1;
17471}
17472
17473/* Given a pointer to a DWARF information entry, figure out if we need
17474 to make a symbol table entry for it, and if so, create a new entry
17475 and return a pointer to it.
17476 If TYPE is NULL, determine symbol type from the die, otherwise
17477 used the passed type.
17478 If SPACE is not NULL, use it to hold the new symbol. If it is
17479 NULL, allocate a new symbol on the objfile's obstack. */
17480
17481static struct symbol *
17482new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17483 struct symbol *space)
17484{
17485 struct objfile *objfile = cu->objfile;
17486 struct symbol *sym = NULL;
17487 const char *name;
17488 struct attribute *attr = NULL;
17489 struct attribute *attr2 = NULL;
17490 CORE_ADDR baseaddr;
17491 struct pending **list_to_add = NULL;
17492
17493 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17494
17495 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17496
17497 name = dwarf2_name (die, cu);
17498 if (name)
17499 {
17500 const char *linkagename;
17501 int suppress_add = 0;
17502
17503 if (space)
17504 sym = space;
17505 else
17506 sym = allocate_symbol (objfile);
17507 OBJSTAT (objfile, n_syms++);
17508
17509 /* Cache this symbol's name and the name's demangled form (if any). */
17510 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17511 linkagename = dwarf2_physname (name, die, cu);
17512 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17513
17514 /* Fortran does not have mangling standard and the mangling does differ
17515 between gfortran, iFort etc. */
17516 if (cu->language == language_fortran
17517 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17518 symbol_set_demangled_name (&(sym->ginfo),
17519 dwarf2_full_name (name, die, cu),
17520 NULL);
17521
17522 /* Default assumptions.
17523 Use the passed type or decode it from the die. */
17524 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17525 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17526 if (type != NULL)
17527 SYMBOL_TYPE (sym) = type;
17528 else
17529 SYMBOL_TYPE (sym) = die_type (die, cu);
17530 attr = dwarf2_attr (die,
17531 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17532 cu);
17533 if (attr)
17534 {
17535 SYMBOL_LINE (sym) = DW_UNSND (attr);
17536 }
17537
17538 attr = dwarf2_attr (die,
17539 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17540 cu);
17541 if (attr)
17542 {
17543 int file_index = DW_UNSND (attr);
17544
17545 if (cu->line_header == NULL
17546 || file_index > cu->line_header->num_file_names)
17547 complaint (&symfile_complaints,
17548 _("file index out of range"));
17549 else if (file_index > 0)
17550 {
17551 struct file_entry *fe;
17552
17553 fe = &cu->line_header->file_names[file_index - 1];
17554 SYMBOL_SYMTAB (sym) = fe->symtab;
17555 }
17556 }
17557
17558 switch (die->tag)
17559 {
17560 case DW_TAG_label:
17561 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17562 if (attr)
17563 {
17564 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
17565 }
17566 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17567 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17568 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17569 add_symbol_to_list (sym, cu->list_in_scope);
17570 break;
17571 case DW_TAG_subprogram:
17572 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17573 finish_block. */
17574 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17575 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17576 if ((attr2 && (DW_UNSND (attr2) != 0))
17577 || cu->language == language_ada)
17578 {
17579 /* Subprograms marked external are stored as a global symbol.
17580 Ada subprograms, whether marked external or not, are always
17581 stored as a global symbol, because we want to be able to
17582 access them globally. For instance, we want to be able
17583 to break on a nested subprogram without having to
17584 specify the context. */
17585 list_to_add = &global_symbols;
17586 }
17587 else
17588 {
17589 list_to_add = cu->list_in_scope;
17590 }
17591 break;
17592 case DW_TAG_inlined_subroutine:
17593 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17594 finish_block. */
17595 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17596 SYMBOL_INLINED (sym) = 1;
17597 list_to_add = cu->list_in_scope;
17598 break;
17599 case DW_TAG_template_value_param:
17600 suppress_add = 1;
17601 /* Fall through. */
17602 case DW_TAG_constant:
17603 case DW_TAG_variable:
17604 case DW_TAG_member:
17605 /* Compilation with minimal debug info may result in
17606 variables with missing type entries. Change the
17607 misleading `void' type to something sensible. */
17608 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17609 SYMBOL_TYPE (sym)
17610 = objfile_type (objfile)->nodebug_data_symbol;
17611
17612 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17613 /* In the case of DW_TAG_member, we should only be called for
17614 static const members. */
17615 if (die->tag == DW_TAG_member)
17616 {
17617 /* dwarf2_add_field uses die_is_declaration,
17618 so we do the same. */
17619 gdb_assert (die_is_declaration (die, cu));
17620 gdb_assert (attr);
17621 }
17622 if (attr)
17623 {
17624 dwarf2_const_value (attr, sym, cu);
17625 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17626 if (!suppress_add)
17627 {
17628 if (attr2 && (DW_UNSND (attr2) != 0))
17629 list_to_add = &global_symbols;
17630 else
17631 list_to_add = cu->list_in_scope;
17632 }
17633 break;
17634 }
17635 attr = dwarf2_attr (die, DW_AT_location, cu);
17636 if (attr)
17637 {
17638 var_decode_location (attr, sym, cu);
17639 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17640
17641 /* Fortran explicitly imports any global symbols to the local
17642 scope by DW_TAG_common_block. */
17643 if (cu->language == language_fortran && die->parent
17644 && die->parent->tag == DW_TAG_common_block)
17645 attr2 = NULL;
17646
17647 if (SYMBOL_CLASS (sym) == LOC_STATIC
17648 && SYMBOL_VALUE_ADDRESS (sym) == 0
17649 && !dwarf2_per_objfile->has_section_at_zero)
17650 {
17651 /* When a static variable is eliminated by the linker,
17652 the corresponding debug information is not stripped
17653 out, but the variable address is set to null;
17654 do not add such variables into symbol table. */
17655 }
17656 else if (attr2 && (DW_UNSND (attr2) != 0))
17657 {
17658 /* Workaround gfortran PR debug/40040 - it uses
17659 DW_AT_location for variables in -fPIC libraries which may
17660 get overriden by other libraries/executable and get
17661 a different address. Resolve it by the minimal symbol
17662 which may come from inferior's executable using copy
17663 relocation. Make this workaround only for gfortran as for
17664 other compilers GDB cannot guess the minimal symbol
17665 Fortran mangling kind. */
17666 if (cu->language == language_fortran && die->parent
17667 && die->parent->tag == DW_TAG_module
17668 && cu->producer
17669 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17670 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17671
17672 /* A variable with DW_AT_external is never static,
17673 but it may be block-scoped. */
17674 list_to_add = (cu->list_in_scope == &file_symbols
17675 ? &global_symbols : cu->list_in_scope);
17676 }
17677 else
17678 list_to_add = cu->list_in_scope;
17679 }
17680 else
17681 {
17682 /* We do not know the address of this symbol.
17683 If it is an external symbol and we have type information
17684 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17685 The address of the variable will then be determined from
17686 the minimal symbol table whenever the variable is
17687 referenced. */
17688 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17689
17690 /* Fortran explicitly imports any global symbols to the local
17691 scope by DW_TAG_common_block. */
17692 if (cu->language == language_fortran && die->parent
17693 && die->parent->tag == DW_TAG_common_block)
17694 {
17695 /* SYMBOL_CLASS doesn't matter here because
17696 read_common_block is going to reset it. */
17697 if (!suppress_add)
17698 list_to_add = cu->list_in_scope;
17699 }
17700 else if (attr2 && (DW_UNSND (attr2) != 0)
17701 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17702 {
17703 /* A variable with DW_AT_external is never static, but it
17704 may be block-scoped. */
17705 list_to_add = (cu->list_in_scope == &file_symbols
17706 ? &global_symbols : cu->list_in_scope);
17707
17708 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17709 }
17710 else if (!die_is_declaration (die, cu))
17711 {
17712 /* Use the default LOC_OPTIMIZED_OUT class. */
17713 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17714 if (!suppress_add)
17715 list_to_add = cu->list_in_scope;
17716 }
17717 }
17718 break;
17719 case DW_TAG_formal_parameter:
17720 /* If we are inside a function, mark this as an argument. If
17721 not, we might be looking at an argument to an inlined function
17722 when we do not have enough information to show inlined frames;
17723 pretend it's a local variable in that case so that the user can
17724 still see it. */
17725 if (context_stack_depth > 0
17726 && context_stack[context_stack_depth - 1].name != NULL)
17727 SYMBOL_IS_ARGUMENT (sym) = 1;
17728 attr = dwarf2_attr (die, DW_AT_location, cu);
17729 if (attr)
17730 {
17731 var_decode_location (attr, sym, cu);
17732 }
17733 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17734 if (attr)
17735 {
17736 dwarf2_const_value (attr, sym, cu);
17737 }
17738
17739 list_to_add = cu->list_in_scope;
17740 break;
17741 case DW_TAG_unspecified_parameters:
17742 /* From varargs functions; gdb doesn't seem to have any
17743 interest in this information, so just ignore it for now.
17744 (FIXME?) */
17745 break;
17746 case DW_TAG_template_type_param:
17747 suppress_add = 1;
17748 /* Fall through. */
17749 case DW_TAG_class_type:
17750 case DW_TAG_interface_type:
17751 case DW_TAG_structure_type:
17752 case DW_TAG_union_type:
17753 case DW_TAG_set_type:
17754 case DW_TAG_enumeration_type:
17755 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17756 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17757
17758 {
17759 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17760 really ever be static objects: otherwise, if you try
17761 to, say, break of a class's method and you're in a file
17762 which doesn't mention that class, it won't work unless
17763 the check for all static symbols in lookup_symbol_aux
17764 saves you. See the OtherFileClass tests in
17765 gdb.c++/namespace.exp. */
17766
17767 if (!suppress_add)
17768 {
17769 list_to_add = (cu->list_in_scope == &file_symbols
17770 && (cu->language == language_cplus
17771 || cu->language == language_java)
17772 ? &global_symbols : cu->list_in_scope);
17773
17774 /* The semantics of C++ state that "struct foo {
17775 ... }" also defines a typedef for "foo". A Java
17776 class declaration also defines a typedef for the
17777 class. */
17778 if (cu->language == language_cplus
17779 || cu->language == language_java
17780 || cu->language == language_ada)
17781 {
17782 /* The symbol's name is already allocated along
17783 with this objfile, so we don't need to
17784 duplicate it for the type. */
17785 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17786 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17787 }
17788 }
17789 }
17790 break;
17791 case DW_TAG_typedef:
17792 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17793 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17794 list_to_add = cu->list_in_scope;
17795 break;
17796 case DW_TAG_base_type:
17797 case DW_TAG_subrange_type:
17798 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17799 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17800 list_to_add = cu->list_in_scope;
17801 break;
17802 case DW_TAG_enumerator:
17803 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17804 if (attr)
17805 {
17806 dwarf2_const_value (attr, sym, cu);
17807 }
17808 {
17809 /* NOTE: carlton/2003-11-10: See comment above in the
17810 DW_TAG_class_type, etc. block. */
17811
17812 list_to_add = (cu->list_in_scope == &file_symbols
17813 && (cu->language == language_cplus
17814 || cu->language == language_java)
17815 ? &global_symbols : cu->list_in_scope);
17816 }
17817 break;
17818 case DW_TAG_imported_declaration:
17819 case DW_TAG_namespace:
17820 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17821 list_to_add = &global_symbols;
17822 break;
17823 case DW_TAG_module:
17824 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17825 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17826 list_to_add = &global_symbols;
17827 break;
17828 case DW_TAG_common_block:
17829 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17830 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17831 add_symbol_to_list (sym, cu->list_in_scope);
17832 break;
17833 default:
17834 /* Not a tag we recognize. Hopefully we aren't processing
17835 trash data, but since we must specifically ignore things
17836 we don't recognize, there is nothing else we should do at
17837 this point. */
17838 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17839 dwarf_tag_name (die->tag));
17840 break;
17841 }
17842
17843 if (suppress_add)
17844 {
17845 sym->hash_next = objfile->template_symbols;
17846 objfile->template_symbols = sym;
17847 list_to_add = NULL;
17848 }
17849
17850 if (list_to_add != NULL)
17851 add_symbol_to_list (sym, list_to_add);
17852
17853 /* For the benefit of old versions of GCC, check for anonymous
17854 namespaces based on the demangled name. */
17855 if (!cu->processing_has_namespace_info
17856 && cu->language == language_cplus)
17857 cp_scan_for_anonymous_namespaces (sym, objfile);
17858 }
17859 return (sym);
17860}
17861
17862/* A wrapper for new_symbol_full that always allocates a new symbol. */
17863
17864static struct symbol *
17865new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17866{
17867 return new_symbol_full (die, type, cu, NULL);
17868}
17869
17870/* Given an attr with a DW_FORM_dataN value in host byte order,
17871 zero-extend it as appropriate for the symbol's type. The DWARF
17872 standard (v4) is not entirely clear about the meaning of using
17873 DW_FORM_dataN for a constant with a signed type, where the type is
17874 wider than the data. The conclusion of a discussion on the DWARF
17875 list was that this is unspecified. We choose to always zero-extend
17876 because that is the interpretation long in use by GCC. */
17877
17878static gdb_byte *
17879dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17880 struct dwarf2_cu *cu, LONGEST *value, int bits)
17881{
17882 struct objfile *objfile = cu->objfile;
17883 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17884 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17885 LONGEST l = DW_UNSND (attr);
17886
17887 if (bits < sizeof (*value) * 8)
17888 {
17889 l &= ((LONGEST) 1 << bits) - 1;
17890 *value = l;
17891 }
17892 else if (bits == sizeof (*value) * 8)
17893 *value = l;
17894 else
17895 {
17896 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17897 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17898 return bytes;
17899 }
17900
17901 return NULL;
17902}
17903
17904/* Read a constant value from an attribute. Either set *VALUE, or if
17905 the value does not fit in *VALUE, set *BYTES - either already
17906 allocated on the objfile obstack, or newly allocated on OBSTACK,
17907 or, set *BATON, if we translated the constant to a location
17908 expression. */
17909
17910static void
17911dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17912 const char *name, struct obstack *obstack,
17913 struct dwarf2_cu *cu,
17914 LONGEST *value, const gdb_byte **bytes,
17915 struct dwarf2_locexpr_baton **baton)
17916{
17917 struct objfile *objfile = cu->objfile;
17918 struct comp_unit_head *cu_header = &cu->header;
17919 struct dwarf_block *blk;
17920 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17921 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17922
17923 *value = 0;
17924 *bytes = NULL;
17925 *baton = NULL;
17926
17927 switch (attr->form)
17928 {
17929 case DW_FORM_addr:
17930 case DW_FORM_GNU_addr_index:
17931 {
17932 gdb_byte *data;
17933
17934 if (TYPE_LENGTH (type) != cu_header->addr_size)
17935 dwarf2_const_value_length_mismatch_complaint (name,
17936 cu_header->addr_size,
17937 TYPE_LENGTH (type));
17938 /* Symbols of this form are reasonably rare, so we just
17939 piggyback on the existing location code rather than writing
17940 a new implementation of symbol_computed_ops. */
17941 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17942 (*baton)->per_cu = cu->per_cu;
17943 gdb_assert ((*baton)->per_cu);
17944
17945 (*baton)->size = 2 + cu_header->addr_size;
17946 data = obstack_alloc (obstack, (*baton)->size);
17947 (*baton)->data = data;
17948
17949 data[0] = DW_OP_addr;
17950 store_unsigned_integer (&data[1], cu_header->addr_size,
17951 byte_order, DW_ADDR (attr));
17952 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17953 }
17954 break;
17955 case DW_FORM_string:
17956 case DW_FORM_strp:
17957 case DW_FORM_GNU_str_index:
17958 case DW_FORM_GNU_strp_alt:
17959 /* DW_STRING is already allocated on the objfile obstack, point
17960 directly to it. */
17961 *bytes = (const gdb_byte *) DW_STRING (attr);
17962 break;
17963 case DW_FORM_block1:
17964 case DW_FORM_block2:
17965 case DW_FORM_block4:
17966 case DW_FORM_block:
17967 case DW_FORM_exprloc:
17968 blk = DW_BLOCK (attr);
17969 if (TYPE_LENGTH (type) != blk->size)
17970 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17971 TYPE_LENGTH (type));
17972 *bytes = blk->data;
17973 break;
17974
17975 /* The DW_AT_const_value attributes are supposed to carry the
17976 symbol's value "represented as it would be on the target
17977 architecture." By the time we get here, it's already been
17978 converted to host endianness, so we just need to sign- or
17979 zero-extend it as appropriate. */
17980 case DW_FORM_data1:
17981 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
17982 break;
17983 case DW_FORM_data2:
17984 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
17985 break;
17986 case DW_FORM_data4:
17987 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
17988 break;
17989 case DW_FORM_data8:
17990 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
17991 break;
17992
17993 case DW_FORM_sdata:
17994 *value = DW_SND (attr);
17995 break;
17996
17997 case DW_FORM_udata:
17998 *value = DW_UNSND (attr);
17999 break;
18000
18001 default:
18002 complaint (&symfile_complaints,
18003 _("unsupported const value attribute form: '%s'"),
18004 dwarf_form_name (attr->form));
18005 *value = 0;
18006 break;
18007 }
18008}
18009
18010
18011/* Copy constant value from an attribute to a symbol. */
18012
18013static void
18014dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18015 struct dwarf2_cu *cu)
18016{
18017 struct objfile *objfile = cu->objfile;
18018 struct comp_unit_head *cu_header = &cu->header;
18019 LONGEST value;
18020 const gdb_byte *bytes;
18021 struct dwarf2_locexpr_baton *baton;
18022
18023 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18024 SYMBOL_PRINT_NAME (sym),
18025 &objfile->objfile_obstack, cu,
18026 &value, &bytes, &baton);
18027
18028 if (baton != NULL)
18029 {
18030 SYMBOL_LOCATION_BATON (sym) = baton;
18031 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18032 }
18033 else if (bytes != NULL)
18034 {
18035 SYMBOL_VALUE_BYTES (sym) = bytes;
18036 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18037 }
18038 else
18039 {
18040 SYMBOL_VALUE (sym) = value;
18041 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18042 }
18043}
18044
18045/* Return the type of the die in question using its DW_AT_type attribute. */
18046
18047static struct type *
18048die_type (struct die_info *die, struct dwarf2_cu *cu)
18049{
18050 struct attribute *type_attr;
18051
18052 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18053 if (!type_attr)
18054 {
18055 /* A missing DW_AT_type represents a void type. */
18056 return objfile_type (cu->objfile)->builtin_void;
18057 }
18058
18059 return lookup_die_type (die, type_attr, cu);
18060}
18061
18062/* True iff CU's producer generates GNAT Ada auxiliary information
18063 that allows to find parallel types through that information instead
18064 of having to do expensive parallel lookups by type name. */
18065
18066static int
18067need_gnat_info (struct dwarf2_cu *cu)
18068{
18069 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18070 of GNAT produces this auxiliary information, without any indication
18071 that it is produced. Part of enhancing the FSF version of GNAT
18072 to produce that information will be to put in place an indicator
18073 that we can use in order to determine whether the descriptive type
18074 info is available or not. One suggestion that has been made is
18075 to use a new attribute, attached to the CU die. For now, assume
18076 that the descriptive type info is not available. */
18077 return 0;
18078}
18079
18080/* Return the auxiliary type of the die in question using its
18081 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18082 attribute is not present. */
18083
18084static struct type *
18085die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18086{
18087 struct attribute *type_attr;
18088
18089 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18090 if (!type_attr)
18091 return NULL;
18092
18093 return lookup_die_type (die, type_attr, cu);
18094}
18095
18096/* If DIE has a descriptive_type attribute, then set the TYPE's
18097 descriptive type accordingly. */
18098
18099static void
18100set_descriptive_type (struct type *type, struct die_info *die,
18101 struct dwarf2_cu *cu)
18102{
18103 struct type *descriptive_type = die_descriptive_type (die, cu);
18104
18105 if (descriptive_type)
18106 {
18107 ALLOCATE_GNAT_AUX_TYPE (type);
18108 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18109 }
18110}
18111
18112/* Return the containing type of the die in question using its
18113 DW_AT_containing_type attribute. */
18114
18115static struct type *
18116die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18117{
18118 struct attribute *type_attr;
18119
18120 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18121 if (!type_attr)
18122 error (_("Dwarf Error: Problem turning containing type into gdb type "
18123 "[in module %s]"), objfile_name (cu->objfile));
18124
18125 return lookup_die_type (die, type_attr, cu);
18126}
18127
18128/* Return an error marker type to use for the ill formed type in DIE/CU. */
18129
18130static struct type *
18131build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18132{
18133 struct objfile *objfile = dwarf2_per_objfile->objfile;
18134 char *message, *saved;
18135
18136 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18137 objfile_name (objfile),
18138 cu->header.offset.sect_off,
18139 die->offset.sect_off);
18140 saved = obstack_copy0 (&objfile->objfile_obstack,
18141 message, strlen (message));
18142 xfree (message);
18143
18144 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18145}
18146
18147/* Look up the type of DIE in CU using its type attribute ATTR.
18148 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18149 DW_AT_containing_type.
18150 If there is no type substitute an error marker. */
18151
18152static struct type *
18153lookup_die_type (struct die_info *die, const struct attribute *attr,
18154 struct dwarf2_cu *cu)
18155{
18156 struct objfile *objfile = cu->objfile;
18157 struct type *this_type;
18158
18159 gdb_assert (attr->name == DW_AT_type
18160 || attr->name == DW_AT_GNAT_descriptive_type
18161 || attr->name == DW_AT_containing_type);
18162
18163 /* First see if we have it cached. */
18164
18165 if (attr->form == DW_FORM_GNU_ref_alt)
18166 {
18167 struct dwarf2_per_cu_data *per_cu;
18168 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18169
18170 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18171 this_type = get_die_type_at_offset (offset, per_cu);
18172 }
18173 else if (attr_form_is_ref (attr))
18174 {
18175 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18176
18177 this_type = get_die_type_at_offset (offset, cu->per_cu);
18178 }
18179 else if (attr->form == DW_FORM_ref_sig8)
18180 {
18181 ULONGEST signature = DW_SIGNATURE (attr);
18182
18183 return get_signatured_type (die, signature, cu);
18184 }
18185 else
18186 {
18187 complaint (&symfile_complaints,
18188 _("Dwarf Error: Bad type attribute %s in DIE"
18189 " at 0x%x [in module %s]"),
18190 dwarf_attr_name (attr->name), die->offset.sect_off,
18191 objfile_name (objfile));
18192 return build_error_marker_type (cu, die);
18193 }
18194
18195 /* If not cached we need to read it in. */
18196
18197 if (this_type == NULL)
18198 {
18199 struct die_info *type_die = NULL;
18200 struct dwarf2_cu *type_cu = cu;
18201
18202 if (attr_form_is_ref (attr))
18203 type_die = follow_die_ref (die, attr, &type_cu);
18204 if (type_die == NULL)
18205 return build_error_marker_type (cu, die);
18206 /* If we find the type now, it's probably because the type came
18207 from an inter-CU reference and the type's CU got expanded before
18208 ours. */
18209 this_type = read_type_die (type_die, type_cu);
18210 }
18211
18212 /* If we still don't have a type use an error marker. */
18213
18214 if (this_type == NULL)
18215 return build_error_marker_type (cu, die);
18216
18217 return this_type;
18218}
18219
18220/* Return the type in DIE, CU.
18221 Returns NULL for invalid types.
18222
18223 This first does a lookup in die_type_hash,
18224 and only reads the die in if necessary.
18225
18226 NOTE: This can be called when reading in partial or full symbols. */
18227
18228static struct type *
18229read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18230{
18231 struct type *this_type;
18232
18233 this_type = get_die_type (die, cu);
18234 if (this_type)
18235 return this_type;
18236
18237 return read_type_die_1 (die, cu);
18238}
18239
18240/* Read the type in DIE, CU.
18241 Returns NULL for invalid types. */
18242
18243static struct type *
18244read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18245{
18246 struct type *this_type = NULL;
18247
18248 switch (die->tag)
18249 {
18250 case DW_TAG_class_type:
18251 case DW_TAG_interface_type:
18252 case DW_TAG_structure_type:
18253 case DW_TAG_union_type:
18254 this_type = read_structure_type (die, cu);
18255 break;
18256 case DW_TAG_enumeration_type:
18257 this_type = read_enumeration_type (die, cu);
18258 break;
18259 case DW_TAG_subprogram:
18260 case DW_TAG_subroutine_type:
18261 case DW_TAG_inlined_subroutine:
18262 this_type = read_subroutine_type (die, cu);
18263 break;
18264 case DW_TAG_array_type:
18265 this_type = read_array_type (die, cu);
18266 break;
18267 case DW_TAG_set_type:
18268 this_type = read_set_type (die, cu);
18269 break;
18270 case DW_TAG_pointer_type:
18271 this_type = read_tag_pointer_type (die, cu);
18272 break;
18273 case DW_TAG_ptr_to_member_type:
18274 this_type = read_tag_ptr_to_member_type (die, cu);
18275 break;
18276 case DW_TAG_reference_type:
18277 this_type = read_tag_reference_type (die, cu);
18278 break;
18279 case DW_TAG_const_type:
18280 this_type = read_tag_const_type (die, cu);
18281 break;
18282 case DW_TAG_volatile_type:
18283 this_type = read_tag_volatile_type (die, cu);
18284 break;
18285 case DW_TAG_restrict_type:
18286 this_type = read_tag_restrict_type (die, cu);
18287 break;
18288 case DW_TAG_string_type:
18289 this_type = read_tag_string_type (die, cu);
18290 break;
18291 case DW_TAG_typedef:
18292 this_type = read_typedef (die, cu);
18293 break;
18294 case DW_TAG_subrange_type:
18295 this_type = read_subrange_type (die, cu);
18296 break;
18297 case DW_TAG_base_type:
18298 this_type = read_base_type (die, cu);
18299 break;
18300 case DW_TAG_unspecified_type:
18301 this_type = read_unspecified_type (die, cu);
18302 break;
18303 case DW_TAG_namespace:
18304 this_type = read_namespace_type (die, cu);
18305 break;
18306 case DW_TAG_module:
18307 this_type = read_module_type (die, cu);
18308 break;
18309 default:
18310 complaint (&symfile_complaints,
18311 _("unexpected tag in read_type_die: '%s'"),
18312 dwarf_tag_name (die->tag));
18313 break;
18314 }
18315
18316 return this_type;
18317}
18318
18319/* See if we can figure out if the class lives in a namespace. We do
18320 this by looking for a member function; its demangled name will
18321 contain namespace info, if there is any.
18322 Return the computed name or NULL.
18323 Space for the result is allocated on the objfile's obstack.
18324 This is the full-die version of guess_partial_die_structure_name.
18325 In this case we know DIE has no useful parent. */
18326
18327static char *
18328guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18329{
18330 struct die_info *spec_die;
18331 struct dwarf2_cu *spec_cu;
18332 struct die_info *child;
18333
18334 spec_cu = cu;
18335 spec_die = die_specification (die, &spec_cu);
18336 if (spec_die != NULL)
18337 {
18338 die = spec_die;
18339 cu = spec_cu;
18340 }
18341
18342 for (child = die->child;
18343 child != NULL;
18344 child = child->sibling)
18345 {
18346 if (child->tag == DW_TAG_subprogram)
18347 {
18348 struct attribute *attr;
18349
18350 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18351 if (attr == NULL)
18352 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18353 if (attr != NULL)
18354 {
18355 char *actual_name
18356 = language_class_name_from_physname (cu->language_defn,
18357 DW_STRING (attr));
18358 char *name = NULL;
18359
18360 if (actual_name != NULL)
18361 {
18362 const char *die_name = dwarf2_name (die, cu);
18363
18364 if (die_name != NULL
18365 && strcmp (die_name, actual_name) != 0)
18366 {
18367 /* Strip off the class name from the full name.
18368 We want the prefix. */
18369 int die_name_len = strlen (die_name);
18370 int actual_name_len = strlen (actual_name);
18371
18372 /* Test for '::' as a sanity check. */
18373 if (actual_name_len > die_name_len + 2
18374 && actual_name[actual_name_len
18375 - die_name_len - 1] == ':')
18376 name =
18377 obstack_copy0 (&cu->objfile->objfile_obstack,
18378 actual_name,
18379 actual_name_len - die_name_len - 2);
18380 }
18381 }
18382 xfree (actual_name);
18383 return name;
18384 }
18385 }
18386 }
18387
18388 return NULL;
18389}
18390
18391/* GCC might emit a nameless typedef that has a linkage name. Determine the
18392 prefix part in such case. See
18393 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18394
18395static char *
18396anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18397{
18398 struct attribute *attr;
18399 char *base;
18400
18401 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18402 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18403 return NULL;
18404
18405 attr = dwarf2_attr (die, DW_AT_name, cu);
18406 if (attr != NULL && DW_STRING (attr) != NULL)
18407 return NULL;
18408
18409 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18410 if (attr == NULL)
18411 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18412 if (attr == NULL || DW_STRING (attr) == NULL)
18413 return NULL;
18414
18415 /* dwarf2_name had to be already called. */
18416 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18417
18418 /* Strip the base name, keep any leading namespaces/classes. */
18419 base = strrchr (DW_STRING (attr), ':');
18420 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18421 return "";
18422
18423 return obstack_copy0 (&cu->objfile->objfile_obstack,
18424 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18425}
18426
18427/* Return the name of the namespace/class that DIE is defined within,
18428 or "" if we can't tell. The caller should not xfree the result.
18429
18430 For example, if we're within the method foo() in the following
18431 code:
18432
18433 namespace N {
18434 class C {
18435 void foo () {
18436 }
18437 };
18438 }
18439
18440 then determine_prefix on foo's die will return "N::C". */
18441
18442static const char *
18443determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18444{
18445 struct die_info *parent, *spec_die;
18446 struct dwarf2_cu *spec_cu;
18447 struct type *parent_type;
18448 char *retval;
18449
18450 if (cu->language != language_cplus && cu->language != language_java
18451 && cu->language != language_fortran)
18452 return "";
18453
18454 retval = anonymous_struct_prefix (die, cu);
18455 if (retval)
18456 return retval;
18457
18458 /* We have to be careful in the presence of DW_AT_specification.
18459 For example, with GCC 3.4, given the code
18460
18461 namespace N {
18462 void foo() {
18463 // Definition of N::foo.
18464 }
18465 }
18466
18467 then we'll have a tree of DIEs like this:
18468
18469 1: DW_TAG_compile_unit
18470 2: DW_TAG_namespace // N
18471 3: DW_TAG_subprogram // declaration of N::foo
18472 4: DW_TAG_subprogram // definition of N::foo
18473 DW_AT_specification // refers to die #3
18474
18475 Thus, when processing die #4, we have to pretend that we're in
18476 the context of its DW_AT_specification, namely the contex of die
18477 #3. */
18478 spec_cu = cu;
18479 spec_die = die_specification (die, &spec_cu);
18480 if (spec_die == NULL)
18481 parent = die->parent;
18482 else
18483 {
18484 parent = spec_die->parent;
18485 cu = spec_cu;
18486 }
18487
18488 if (parent == NULL)
18489 return "";
18490 else if (parent->building_fullname)
18491 {
18492 const char *name;
18493 const char *parent_name;
18494
18495 /* It has been seen on RealView 2.2 built binaries,
18496 DW_TAG_template_type_param types actually _defined_ as
18497 children of the parent class:
18498
18499 enum E {};
18500 template class <class Enum> Class{};
18501 Class<enum E> class_e;
18502
18503 1: DW_TAG_class_type (Class)
18504 2: DW_TAG_enumeration_type (E)
18505 3: DW_TAG_enumerator (enum1:0)
18506 3: DW_TAG_enumerator (enum2:1)
18507 ...
18508 2: DW_TAG_template_type_param
18509 DW_AT_type DW_FORM_ref_udata (E)
18510
18511 Besides being broken debug info, it can put GDB into an
18512 infinite loop. Consider:
18513
18514 When we're building the full name for Class<E>, we'll start
18515 at Class, and go look over its template type parameters,
18516 finding E. We'll then try to build the full name of E, and
18517 reach here. We're now trying to build the full name of E,
18518 and look over the parent DIE for containing scope. In the
18519 broken case, if we followed the parent DIE of E, we'd again
18520 find Class, and once again go look at its template type
18521 arguments, etc., etc. Simply don't consider such parent die
18522 as source-level parent of this die (it can't be, the language
18523 doesn't allow it), and break the loop here. */
18524 name = dwarf2_name (die, cu);
18525 parent_name = dwarf2_name (parent, cu);
18526 complaint (&symfile_complaints,
18527 _("template param type '%s' defined within parent '%s'"),
18528 name ? name : "<unknown>",
18529 parent_name ? parent_name : "<unknown>");
18530 return "";
18531 }
18532 else
18533 switch (parent->tag)
18534 {
18535 case DW_TAG_namespace:
18536 parent_type = read_type_die (parent, cu);
18537 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18538 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18539 Work around this problem here. */
18540 if (cu->language == language_cplus
18541 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18542 return "";
18543 /* We give a name to even anonymous namespaces. */
18544 return TYPE_TAG_NAME (parent_type);
18545 case DW_TAG_class_type:
18546 case DW_TAG_interface_type:
18547 case DW_TAG_structure_type:
18548 case DW_TAG_union_type:
18549 case DW_TAG_module:
18550 parent_type = read_type_die (parent, cu);
18551 if (TYPE_TAG_NAME (parent_type) != NULL)
18552 return TYPE_TAG_NAME (parent_type);
18553 else
18554 /* An anonymous structure is only allowed non-static data
18555 members; no typedefs, no member functions, et cetera.
18556 So it does not need a prefix. */
18557 return "";
18558 case DW_TAG_compile_unit:
18559 case DW_TAG_partial_unit:
18560 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18561 if (cu->language == language_cplus
18562 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18563 && die->child != NULL
18564 && (die->tag == DW_TAG_class_type
18565 || die->tag == DW_TAG_structure_type
18566 || die->tag == DW_TAG_union_type))
18567 {
18568 char *name = guess_full_die_structure_name (die, cu);
18569 if (name != NULL)
18570 return name;
18571 }
18572 return "";
18573 default:
18574 return determine_prefix (parent, cu);
18575 }
18576}
18577
18578/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18579 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18580 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18581 an obconcat, otherwise allocate storage for the result. The CU argument is
18582 used to determine the language and hence, the appropriate separator. */
18583
18584#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18585
18586static char *
18587typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18588 int physname, struct dwarf2_cu *cu)
18589{
18590 const char *lead = "";
18591 const char *sep;
18592
18593 if (suffix == NULL || suffix[0] == '\0'
18594 || prefix == NULL || prefix[0] == '\0')
18595 sep = "";
18596 else if (cu->language == language_java)
18597 sep = ".";
18598 else if (cu->language == language_fortran && physname)
18599 {
18600 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18601 DW_AT_MIPS_linkage_name is preferred and used instead. */
18602
18603 lead = "__";
18604 sep = "_MOD_";
18605 }
18606 else
18607 sep = "::";
18608
18609 if (prefix == NULL)
18610 prefix = "";
18611 if (suffix == NULL)
18612 suffix = "";
18613
18614 if (obs == NULL)
18615 {
18616 char *retval
18617 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18618
18619 strcpy (retval, lead);
18620 strcat (retval, prefix);
18621 strcat (retval, sep);
18622 strcat (retval, suffix);
18623 return retval;
18624 }
18625 else
18626 {
18627 /* We have an obstack. */
18628 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18629 }
18630}
18631
18632/* Return sibling of die, NULL if no sibling. */
18633
18634static struct die_info *
18635sibling_die (struct die_info *die)
18636{
18637 return die->sibling;
18638}
18639
18640/* Get name of a die, return NULL if not found. */
18641
18642static const char *
18643dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18644 struct obstack *obstack)
18645{
18646 if (name && cu->language == language_cplus)
18647 {
18648 char *canon_name = cp_canonicalize_string (name);
18649
18650 if (canon_name != NULL)
18651 {
18652 if (strcmp (canon_name, name) != 0)
18653 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18654 xfree (canon_name);
18655 }
18656 }
18657
18658 return name;
18659}
18660
18661/* Get name of a die, return NULL if not found. */
18662
18663static const char *
18664dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18665{
18666 struct attribute *attr;
18667
18668 attr = dwarf2_attr (die, DW_AT_name, cu);
18669 if ((!attr || !DW_STRING (attr))
18670 && die->tag != DW_TAG_class_type
18671 && die->tag != DW_TAG_interface_type
18672 && die->tag != DW_TAG_structure_type
18673 && die->tag != DW_TAG_union_type)
18674 return NULL;
18675
18676 switch (die->tag)
18677 {
18678 case DW_TAG_compile_unit:
18679 case DW_TAG_partial_unit:
18680 /* Compilation units have a DW_AT_name that is a filename, not
18681 a source language identifier. */
18682 case DW_TAG_enumeration_type:
18683 case DW_TAG_enumerator:
18684 /* These tags always have simple identifiers already; no need
18685 to canonicalize them. */
18686 return DW_STRING (attr);
18687
18688 case DW_TAG_subprogram:
18689 /* Java constructors will all be named "<init>", so return
18690 the class name when we see this special case. */
18691 if (cu->language == language_java
18692 && DW_STRING (attr) != NULL
18693 && strcmp (DW_STRING (attr), "<init>") == 0)
18694 {
18695 struct dwarf2_cu *spec_cu = cu;
18696 struct die_info *spec_die;
18697
18698 /* GCJ will output '<init>' for Java constructor names.
18699 For this special case, return the name of the parent class. */
18700
18701 /* GCJ may output suprogram DIEs with AT_specification set.
18702 If so, use the name of the specified DIE. */
18703 spec_die = die_specification (die, &spec_cu);
18704 if (spec_die != NULL)
18705 return dwarf2_name (spec_die, spec_cu);
18706
18707 do
18708 {
18709 die = die->parent;
18710 if (die->tag == DW_TAG_class_type)
18711 return dwarf2_name (die, cu);
18712 }
18713 while (die->tag != DW_TAG_compile_unit
18714 && die->tag != DW_TAG_partial_unit);
18715 }
18716 break;
18717
18718 case DW_TAG_class_type:
18719 case DW_TAG_interface_type:
18720 case DW_TAG_structure_type:
18721 case DW_TAG_union_type:
18722 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18723 structures or unions. These were of the form "._%d" in GCC 4.1,
18724 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18725 and GCC 4.4. We work around this problem by ignoring these. */
18726 if (attr && DW_STRING (attr)
18727 && (strncmp (DW_STRING (attr), "._", 2) == 0
18728 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18729 return NULL;
18730
18731 /* GCC might emit a nameless typedef that has a linkage name. See
18732 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18733 if (!attr || DW_STRING (attr) == NULL)
18734 {
18735 char *demangled = NULL;
18736
18737 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18738 if (attr == NULL)
18739 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18740
18741 if (attr == NULL || DW_STRING (attr) == NULL)
18742 return NULL;
18743
18744 /* Avoid demangling DW_STRING (attr) the second time on a second
18745 call for the same DIE. */
18746 if (!DW_STRING_IS_CANONICAL (attr))
18747 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18748
18749 if (demangled)
18750 {
18751 char *base;
18752
18753 /* FIXME: we already did this for the partial symbol... */
18754 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18755 demangled, strlen (demangled));
18756 DW_STRING_IS_CANONICAL (attr) = 1;
18757 xfree (demangled);
18758
18759 /* Strip any leading namespaces/classes, keep only the base name.
18760 DW_AT_name for named DIEs does not contain the prefixes. */
18761 base = strrchr (DW_STRING (attr), ':');
18762 if (base && base > DW_STRING (attr) && base[-1] == ':')
18763 return &base[1];
18764 else
18765 return DW_STRING (attr);
18766 }
18767 }
18768 break;
18769
18770 default:
18771 break;
18772 }
18773
18774 if (!DW_STRING_IS_CANONICAL (attr))
18775 {
18776 DW_STRING (attr)
18777 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18778 &cu->objfile->objfile_obstack);
18779 DW_STRING_IS_CANONICAL (attr) = 1;
18780 }
18781 return DW_STRING (attr);
18782}
18783
18784/* Return the die that this die in an extension of, or NULL if there
18785 is none. *EXT_CU is the CU containing DIE on input, and the CU
18786 containing the return value on output. */
18787
18788static struct die_info *
18789dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18790{
18791 struct attribute *attr;
18792
18793 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18794 if (attr == NULL)
18795 return NULL;
18796
18797 return follow_die_ref (die, attr, ext_cu);
18798}
18799
18800/* Convert a DIE tag into its string name. */
18801
18802static const char *
18803dwarf_tag_name (unsigned tag)
18804{
18805 const char *name = get_DW_TAG_name (tag);
18806
18807 if (name == NULL)
18808 return "DW_TAG_<unknown>";
18809
18810 return name;
18811}
18812
18813/* Convert a DWARF attribute code into its string name. */
18814
18815static const char *
18816dwarf_attr_name (unsigned attr)
18817{
18818 const char *name;
18819
18820#ifdef MIPS /* collides with DW_AT_HP_block_index */
18821 if (attr == DW_AT_MIPS_fde)
18822 return "DW_AT_MIPS_fde";
18823#else
18824 if (attr == DW_AT_HP_block_index)
18825 return "DW_AT_HP_block_index";
18826#endif
18827
18828 name = get_DW_AT_name (attr);
18829
18830 if (name == NULL)
18831 return "DW_AT_<unknown>";
18832
18833 return name;
18834}
18835
18836/* Convert a DWARF value form code into its string name. */
18837
18838static const char *
18839dwarf_form_name (unsigned form)
18840{
18841 const char *name = get_DW_FORM_name (form);
18842
18843 if (name == NULL)
18844 return "DW_FORM_<unknown>";
18845
18846 return name;
18847}
18848
18849static char *
18850dwarf_bool_name (unsigned mybool)
18851{
18852 if (mybool)
18853 return "TRUE";
18854 else
18855 return "FALSE";
18856}
18857
18858/* Convert a DWARF type code into its string name. */
18859
18860static const char *
18861dwarf_type_encoding_name (unsigned enc)
18862{
18863 const char *name = get_DW_ATE_name (enc);
18864
18865 if (name == NULL)
18866 return "DW_ATE_<unknown>";
18867
18868 return name;
18869}
18870
18871static void
18872dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18873{
18874 unsigned int i;
18875
18876 print_spaces (indent, f);
18877 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18878 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18879
18880 if (die->parent != NULL)
18881 {
18882 print_spaces (indent, f);
18883 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18884 die->parent->offset.sect_off);
18885 }
18886
18887 print_spaces (indent, f);
18888 fprintf_unfiltered (f, " has children: %s\n",
18889 dwarf_bool_name (die->child != NULL));
18890
18891 print_spaces (indent, f);
18892 fprintf_unfiltered (f, " attributes:\n");
18893
18894 for (i = 0; i < die->num_attrs; ++i)
18895 {
18896 print_spaces (indent, f);
18897 fprintf_unfiltered (f, " %s (%s) ",
18898 dwarf_attr_name (die->attrs[i].name),
18899 dwarf_form_name (die->attrs[i].form));
18900
18901 switch (die->attrs[i].form)
18902 {
18903 case DW_FORM_addr:
18904 case DW_FORM_GNU_addr_index:
18905 fprintf_unfiltered (f, "address: ");
18906 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18907 break;
18908 case DW_FORM_block2:
18909 case DW_FORM_block4:
18910 case DW_FORM_block:
18911 case DW_FORM_block1:
18912 fprintf_unfiltered (f, "block: size %s",
18913 pulongest (DW_BLOCK (&die->attrs[i])->size));
18914 break;
18915 case DW_FORM_exprloc:
18916 fprintf_unfiltered (f, "expression: size %s",
18917 pulongest (DW_BLOCK (&die->attrs[i])->size));
18918 break;
18919 case DW_FORM_ref_addr:
18920 fprintf_unfiltered (f, "ref address: ");
18921 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18922 break;
18923 case DW_FORM_GNU_ref_alt:
18924 fprintf_unfiltered (f, "alt ref address: ");
18925 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18926 break;
18927 case DW_FORM_ref1:
18928 case DW_FORM_ref2:
18929 case DW_FORM_ref4:
18930 case DW_FORM_ref8:
18931 case DW_FORM_ref_udata:
18932 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18933 (long) (DW_UNSND (&die->attrs[i])));
18934 break;
18935 case DW_FORM_data1:
18936 case DW_FORM_data2:
18937 case DW_FORM_data4:
18938 case DW_FORM_data8:
18939 case DW_FORM_udata:
18940 case DW_FORM_sdata:
18941 fprintf_unfiltered (f, "constant: %s",
18942 pulongest (DW_UNSND (&die->attrs[i])));
18943 break;
18944 case DW_FORM_sec_offset:
18945 fprintf_unfiltered (f, "section offset: %s",
18946 pulongest (DW_UNSND (&die->attrs[i])));
18947 break;
18948 case DW_FORM_ref_sig8:
18949 fprintf_unfiltered (f, "signature: %s",
18950 hex_string (DW_SIGNATURE (&die->attrs[i])));
18951 break;
18952 case DW_FORM_string:
18953 case DW_FORM_strp:
18954 case DW_FORM_GNU_str_index:
18955 case DW_FORM_GNU_strp_alt:
18956 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18957 DW_STRING (&die->attrs[i])
18958 ? DW_STRING (&die->attrs[i]) : "",
18959 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18960 break;
18961 case DW_FORM_flag:
18962 if (DW_UNSND (&die->attrs[i]))
18963 fprintf_unfiltered (f, "flag: TRUE");
18964 else
18965 fprintf_unfiltered (f, "flag: FALSE");
18966 break;
18967 case DW_FORM_flag_present:
18968 fprintf_unfiltered (f, "flag: TRUE");
18969 break;
18970 case DW_FORM_indirect:
18971 /* The reader will have reduced the indirect form to
18972 the "base form" so this form should not occur. */
18973 fprintf_unfiltered (f,
18974 "unexpected attribute form: DW_FORM_indirect");
18975 break;
18976 default:
18977 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18978 die->attrs[i].form);
18979 break;
18980 }
18981 fprintf_unfiltered (f, "\n");
18982 }
18983}
18984
18985static void
18986dump_die_for_error (struct die_info *die)
18987{
18988 dump_die_shallow (gdb_stderr, 0, die);
18989}
18990
18991static void
18992dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
18993{
18994 int indent = level * 4;
18995
18996 gdb_assert (die != NULL);
18997
18998 if (level >= max_level)
18999 return;
19000
19001 dump_die_shallow (f, indent, die);
19002
19003 if (die->child != NULL)
19004 {
19005 print_spaces (indent, f);
19006 fprintf_unfiltered (f, " Children:");
19007 if (level + 1 < max_level)
19008 {
19009 fprintf_unfiltered (f, "\n");
19010 dump_die_1 (f, level + 1, max_level, die->child);
19011 }
19012 else
19013 {
19014 fprintf_unfiltered (f,
19015 " [not printed, max nesting level reached]\n");
19016 }
19017 }
19018
19019 if (die->sibling != NULL && level > 0)
19020 {
19021 dump_die_1 (f, level, max_level, die->sibling);
19022 }
19023}
19024
19025/* This is called from the pdie macro in gdbinit.in.
19026 It's not static so gcc will keep a copy callable from gdb. */
19027
19028void
19029dump_die (struct die_info *die, int max_level)
19030{
19031 dump_die_1 (gdb_stdlog, 0, max_level, die);
19032}
19033
19034static void
19035store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19036{
19037 void **slot;
19038
19039 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19040 INSERT);
19041
19042 *slot = die;
19043}
19044
19045/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19046 required kind. */
19047
19048static sect_offset
19049dwarf2_get_ref_die_offset (const struct attribute *attr)
19050{
19051 sect_offset retval = { DW_UNSND (attr) };
19052
19053 if (attr_form_is_ref (attr))
19054 return retval;
19055
19056 retval.sect_off = 0;
19057 complaint (&symfile_complaints,
19058 _("unsupported die ref attribute form: '%s'"),
19059 dwarf_form_name (attr->form));
19060 return retval;
19061}
19062
19063/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19064 * the value held by the attribute is not constant. */
19065
19066static LONGEST
19067dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19068{
19069 if (attr->form == DW_FORM_sdata)
19070 return DW_SND (attr);
19071 else if (attr->form == DW_FORM_udata
19072 || attr->form == DW_FORM_data1
19073 || attr->form == DW_FORM_data2
19074 || attr->form == DW_FORM_data4
19075 || attr->form == DW_FORM_data8)
19076 return DW_UNSND (attr);
19077 else
19078 {
19079 complaint (&symfile_complaints,
19080 _("Attribute value is not a constant (%s)"),
19081 dwarf_form_name (attr->form));
19082 return default_value;
19083 }
19084}
19085
19086/* Follow reference or signature attribute ATTR of SRC_DIE.
19087 On entry *REF_CU is the CU of SRC_DIE.
19088 On exit *REF_CU is the CU of the result. */
19089
19090static struct die_info *
19091follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19092 struct dwarf2_cu **ref_cu)
19093{
19094 struct die_info *die;
19095
19096 if (attr_form_is_ref (attr))
19097 die = follow_die_ref (src_die, attr, ref_cu);
19098 else if (attr->form == DW_FORM_ref_sig8)
19099 die = follow_die_sig (src_die, attr, ref_cu);
19100 else
19101 {
19102 dump_die_for_error (src_die);
19103 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19104 objfile_name ((*ref_cu)->objfile));
19105 }
19106
19107 return die;
19108}
19109
19110/* Follow reference OFFSET.
19111 On entry *REF_CU is the CU of the source die referencing OFFSET.
19112 On exit *REF_CU is the CU of the result.
19113 Returns NULL if OFFSET is invalid. */
19114
19115static struct die_info *
19116follow_die_offset (sect_offset offset, int offset_in_dwz,
19117 struct dwarf2_cu **ref_cu)
19118{
19119 struct die_info temp_die;
19120 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19121
19122 gdb_assert (cu->per_cu != NULL);
19123
19124 target_cu = cu;
19125
19126 if (cu->per_cu->is_debug_types)
19127 {
19128 /* .debug_types CUs cannot reference anything outside their CU.
19129 If they need to, they have to reference a signatured type via
19130 DW_FORM_ref_sig8. */
19131 if (! offset_in_cu_p (&cu->header, offset))
19132 return NULL;
19133 }
19134 else if (offset_in_dwz != cu->per_cu->is_dwz
19135 || ! offset_in_cu_p (&cu->header, offset))
19136 {
19137 struct dwarf2_per_cu_data *per_cu;
19138
19139 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19140 cu->objfile);
19141
19142 /* If necessary, add it to the queue and load its DIEs. */
19143 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19144 load_full_comp_unit (per_cu, cu->language);
19145
19146 target_cu = per_cu->cu;
19147 }
19148 else if (cu->dies == NULL)
19149 {
19150 /* We're loading full DIEs during partial symbol reading. */
19151 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19152 load_full_comp_unit (cu->per_cu, language_minimal);
19153 }
19154
19155 *ref_cu = target_cu;
19156 temp_die.offset = offset;
19157 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19158}
19159
19160/* Follow reference attribute ATTR of SRC_DIE.
19161 On entry *REF_CU is the CU of SRC_DIE.
19162 On exit *REF_CU is the CU of the result. */
19163
19164static struct die_info *
19165follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19166 struct dwarf2_cu **ref_cu)
19167{
19168 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19169 struct dwarf2_cu *cu = *ref_cu;
19170 struct die_info *die;
19171
19172 die = follow_die_offset (offset,
19173 (attr->form == DW_FORM_GNU_ref_alt
19174 || cu->per_cu->is_dwz),
19175 ref_cu);
19176 if (!die)
19177 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19178 "at 0x%x [in module %s]"),
19179 offset.sect_off, src_die->offset.sect_off,
19180 objfile_name (cu->objfile));
19181
19182 return die;
19183}
19184
19185/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19186 Returned value is intended for DW_OP_call*. Returned
19187 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19188
19189struct dwarf2_locexpr_baton
19190dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19191 struct dwarf2_per_cu_data *per_cu,
19192 CORE_ADDR (*get_frame_pc) (void *baton),
19193 void *baton)
19194{
19195 struct dwarf2_cu *cu;
19196 struct die_info *die;
19197 struct attribute *attr;
19198 struct dwarf2_locexpr_baton retval;
19199
19200 dw2_setup (per_cu->objfile);
19201
19202 if (per_cu->cu == NULL)
19203 load_cu (per_cu);
19204 cu = per_cu->cu;
19205
19206 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19207 if (!die)
19208 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19209 offset.sect_off, objfile_name (per_cu->objfile));
19210
19211 attr = dwarf2_attr (die, DW_AT_location, cu);
19212 if (!attr)
19213 {
19214 /* DWARF: "If there is no such attribute, then there is no effect.".
19215 DATA is ignored if SIZE is 0. */
19216
19217 retval.data = NULL;
19218 retval.size = 0;
19219 }
19220 else if (attr_form_is_section_offset (attr))
19221 {
19222 struct dwarf2_loclist_baton loclist_baton;
19223 CORE_ADDR pc = (*get_frame_pc) (baton);
19224 size_t size;
19225
19226 fill_in_loclist_baton (cu, &loclist_baton, attr);
19227
19228 retval.data = dwarf2_find_location_expression (&loclist_baton,
19229 &size, pc);
19230 retval.size = size;
19231 }
19232 else
19233 {
19234 if (!attr_form_is_block (attr))
19235 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19236 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19237 offset.sect_off, objfile_name (per_cu->objfile));
19238
19239 retval.data = DW_BLOCK (attr)->data;
19240 retval.size = DW_BLOCK (attr)->size;
19241 }
19242 retval.per_cu = cu->per_cu;
19243
19244 age_cached_comp_units ();
19245
19246 return retval;
19247}
19248
19249/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19250 offset. */
19251
19252struct dwarf2_locexpr_baton
19253dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19254 struct dwarf2_per_cu_data *per_cu,
19255 CORE_ADDR (*get_frame_pc) (void *baton),
19256 void *baton)
19257{
19258 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19259
19260 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19261}
19262
19263/* Write a constant of a given type as target-ordered bytes into
19264 OBSTACK. */
19265
19266static const gdb_byte *
19267write_constant_as_bytes (struct obstack *obstack,
19268 enum bfd_endian byte_order,
19269 struct type *type,
19270 ULONGEST value,
19271 LONGEST *len)
19272{
19273 gdb_byte *result;
19274
19275 *len = TYPE_LENGTH (type);
19276 result = obstack_alloc (obstack, *len);
19277 store_unsigned_integer (result, *len, byte_order, value);
19278
19279 return result;
19280}
19281
19282/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19283 pointer to the constant bytes and set LEN to the length of the
19284 data. If memory is needed, allocate it on OBSTACK. If the DIE
19285 does not have a DW_AT_const_value, return NULL. */
19286
19287const gdb_byte *
19288dwarf2_fetch_constant_bytes (sect_offset offset,
19289 struct dwarf2_per_cu_data *per_cu,
19290 struct obstack *obstack,
19291 LONGEST *len)
19292{
19293 struct dwarf2_cu *cu;
19294 struct die_info *die;
19295 struct attribute *attr;
19296 const gdb_byte *result = NULL;
19297 struct type *type;
19298 LONGEST value;
19299 enum bfd_endian byte_order;
19300
19301 dw2_setup (per_cu->objfile);
19302
19303 if (per_cu->cu == NULL)
19304 load_cu (per_cu);
19305 cu = per_cu->cu;
19306
19307 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19308 if (!die)
19309 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19310 offset.sect_off, objfile_name (per_cu->objfile));
19311
19312
19313 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19314 if (attr == NULL)
19315 return NULL;
19316
19317 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19318 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19319
19320 switch (attr->form)
19321 {
19322 case DW_FORM_addr:
19323 case DW_FORM_GNU_addr_index:
19324 {
19325 gdb_byte *tem;
19326
19327 *len = cu->header.addr_size;
19328 tem = obstack_alloc (obstack, *len);
19329 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19330 result = tem;
19331 }
19332 break;
19333 case DW_FORM_string:
19334 case DW_FORM_strp:
19335 case DW_FORM_GNU_str_index:
19336 case DW_FORM_GNU_strp_alt:
19337 /* DW_STRING is already allocated on the objfile obstack, point
19338 directly to it. */
19339 result = (const gdb_byte *) DW_STRING (attr);
19340 *len = strlen (DW_STRING (attr));
19341 break;
19342 case DW_FORM_block1:
19343 case DW_FORM_block2:
19344 case DW_FORM_block4:
19345 case DW_FORM_block:
19346 case DW_FORM_exprloc:
19347 result = DW_BLOCK (attr)->data;
19348 *len = DW_BLOCK (attr)->size;
19349 break;
19350
19351 /* The DW_AT_const_value attributes are supposed to carry the
19352 symbol's value "represented as it would be on the target
19353 architecture." By the time we get here, it's already been
19354 converted to host endianness, so we just need to sign- or
19355 zero-extend it as appropriate. */
19356 case DW_FORM_data1:
19357 type = die_type (die, cu);
19358 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19359 if (result == NULL)
19360 result = write_constant_as_bytes (obstack, byte_order,
19361 type, value, len);
19362 break;
19363 case DW_FORM_data2:
19364 type = die_type (die, cu);
19365 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19366 if (result == NULL)
19367 result = write_constant_as_bytes (obstack, byte_order,
19368 type, value, len);
19369 break;
19370 case DW_FORM_data4:
19371 type = die_type (die, cu);
19372 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19373 if (result == NULL)
19374 result = write_constant_as_bytes (obstack, byte_order,
19375 type, value, len);
19376 break;
19377 case DW_FORM_data8:
19378 type = die_type (die, cu);
19379 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19380 if (result == NULL)
19381 result = write_constant_as_bytes (obstack, byte_order,
19382 type, value, len);
19383 break;
19384
19385 case DW_FORM_sdata:
19386 type = die_type (die, cu);
19387 result = write_constant_as_bytes (obstack, byte_order,
19388 type, DW_SND (attr), len);
19389 break;
19390
19391 case DW_FORM_udata:
19392 type = die_type (die, cu);
19393 result = write_constant_as_bytes (obstack, byte_order,
19394 type, DW_UNSND (attr), len);
19395 break;
19396
19397 default:
19398 complaint (&symfile_complaints,
19399 _("unsupported const value attribute form: '%s'"),
19400 dwarf_form_name (attr->form));
19401 break;
19402 }
19403
19404 return result;
19405}
19406
19407/* Return the type of the DIE at DIE_OFFSET in the CU named by
19408 PER_CU. */
19409
19410struct type *
19411dwarf2_get_die_type (cu_offset die_offset,
19412 struct dwarf2_per_cu_data *per_cu)
19413{
19414 sect_offset die_offset_sect;
19415
19416 dw2_setup (per_cu->objfile);
19417
19418 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19419 return get_die_type_at_offset (die_offset_sect, per_cu);
19420}
19421
19422/* Follow type unit SIG_TYPE referenced by SRC_DIE.
19423 On entry *REF_CU is the CU of SRC_DIE.
19424 On exit *REF_CU is the CU of the result.
19425 Returns NULL if the referenced DIE isn't found. */
19426
19427static struct die_info *
19428follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19429 struct dwarf2_cu **ref_cu)
19430{
19431 struct objfile *objfile = (*ref_cu)->objfile;
19432 struct die_info temp_die;
19433 struct dwarf2_cu *sig_cu;
19434 struct die_info *die;
19435
19436 /* While it might be nice to assert sig_type->type == NULL here,
19437 we can get here for DW_AT_imported_declaration where we need
19438 the DIE not the type. */
19439
19440 /* If necessary, add it to the queue and load its DIEs. */
19441
19442 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19443 read_signatured_type (sig_type);
19444
19445 sig_cu = sig_type->per_cu.cu;
19446 gdb_assert (sig_cu != NULL);
19447 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19448 temp_die.offset = sig_type->type_offset_in_section;
19449 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19450 temp_die.offset.sect_off);
19451 if (die)
19452 {
19453 /* For .gdb_index version 7 keep track of included TUs.
19454 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19455 if (dwarf2_per_objfile->index_table != NULL
19456 && dwarf2_per_objfile->index_table->version <= 7)
19457 {
19458 VEC_safe_push (dwarf2_per_cu_ptr,
19459 (*ref_cu)->per_cu->imported_symtabs,
19460 sig_cu->per_cu);
19461 }
19462
19463 *ref_cu = sig_cu;
19464 return die;
19465 }
19466
19467 return NULL;
19468}
19469
19470/* Follow signatured type referenced by ATTR in SRC_DIE.
19471 On entry *REF_CU is the CU of SRC_DIE.
19472 On exit *REF_CU is the CU of the result.
19473 The result is the DIE of the type.
19474 If the referenced type cannot be found an error is thrown. */
19475
19476static struct die_info *
19477follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19478 struct dwarf2_cu **ref_cu)
19479{
19480 ULONGEST signature = DW_SIGNATURE (attr);
19481 struct signatured_type *sig_type;
19482 struct die_info *die;
19483
19484 gdb_assert (attr->form == DW_FORM_ref_sig8);
19485
19486 sig_type = lookup_signatured_type (*ref_cu, signature);
19487 /* sig_type will be NULL if the signatured type is missing from
19488 the debug info. */
19489 if (sig_type == NULL)
19490 {
19491 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19492 " from DIE at 0x%x [in module %s]"),
19493 hex_string (signature), src_die->offset.sect_off,
19494 objfile_name ((*ref_cu)->objfile));
19495 }
19496
19497 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19498 if (die == NULL)
19499 {
19500 dump_die_for_error (src_die);
19501 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19502 " from DIE at 0x%x [in module %s]"),
19503 hex_string (signature), src_die->offset.sect_off,
19504 objfile_name ((*ref_cu)->objfile));
19505 }
19506
19507 return die;
19508}
19509
19510/* Get the type specified by SIGNATURE referenced in DIE/CU,
19511 reading in and processing the type unit if necessary. */
19512
19513static struct type *
19514get_signatured_type (struct die_info *die, ULONGEST signature,
19515 struct dwarf2_cu *cu)
19516{
19517 struct signatured_type *sig_type;
19518 struct dwarf2_cu *type_cu;
19519 struct die_info *type_die;
19520 struct type *type;
19521
19522 sig_type = lookup_signatured_type (cu, signature);
19523 /* sig_type will be NULL if the signatured type is missing from
19524 the debug info. */
19525 if (sig_type == NULL)
19526 {
19527 complaint (&symfile_complaints,
19528 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19529 " from DIE at 0x%x [in module %s]"),
19530 hex_string (signature), die->offset.sect_off,
19531 objfile_name (dwarf2_per_objfile->objfile));
19532 return build_error_marker_type (cu, die);
19533 }
19534
19535 /* If we already know the type we're done. */
19536 if (sig_type->type != NULL)
19537 return sig_type->type;
19538
19539 type_cu = cu;
19540 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19541 if (type_die != NULL)
19542 {
19543 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19544 is created. This is important, for example, because for c++ classes
19545 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19546 type = read_type_die (type_die, type_cu);
19547 if (type == NULL)
19548 {
19549 complaint (&symfile_complaints,
19550 _("Dwarf Error: Cannot build signatured type %s"
19551 " referenced from DIE at 0x%x [in module %s]"),
19552 hex_string (signature), die->offset.sect_off,
19553 objfile_name (dwarf2_per_objfile->objfile));
19554 type = build_error_marker_type (cu, die);
19555 }
19556 }
19557 else
19558 {
19559 complaint (&symfile_complaints,
19560 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19561 " from DIE at 0x%x [in module %s]"),
19562 hex_string (signature), die->offset.sect_off,
19563 objfile_name (dwarf2_per_objfile->objfile));
19564 type = build_error_marker_type (cu, die);
19565 }
19566 sig_type->type = type;
19567
19568 return type;
19569}
19570
19571/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19572 reading in and processing the type unit if necessary. */
19573
19574static struct type *
19575get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19576 struct dwarf2_cu *cu) /* ARI: editCase function */
19577{
19578 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19579 if (attr_form_is_ref (attr))
19580 {
19581 struct dwarf2_cu *type_cu = cu;
19582 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19583
19584 return read_type_die (type_die, type_cu);
19585 }
19586 else if (attr->form == DW_FORM_ref_sig8)
19587 {
19588 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19589 }
19590 else
19591 {
19592 complaint (&symfile_complaints,
19593 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19594 " at 0x%x [in module %s]"),
19595 dwarf_form_name (attr->form), die->offset.sect_off,
19596 objfile_name (dwarf2_per_objfile->objfile));
19597 return build_error_marker_type (cu, die);
19598 }
19599}
19600
19601/* Load the DIEs associated with type unit PER_CU into memory. */
19602
19603static void
19604load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19605{
19606 struct signatured_type *sig_type;
19607
19608 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19609 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19610
19611 /* We have the per_cu, but we need the signatured_type.
19612 Fortunately this is an easy translation. */
19613 gdb_assert (per_cu->is_debug_types);
19614 sig_type = (struct signatured_type *) per_cu;
19615
19616 gdb_assert (per_cu->cu == NULL);
19617
19618 read_signatured_type (sig_type);
19619
19620 gdb_assert (per_cu->cu != NULL);
19621}
19622
19623/* die_reader_func for read_signatured_type.
19624 This is identical to load_full_comp_unit_reader,
19625 but is kept separate for now. */
19626
19627static void
19628read_signatured_type_reader (const struct die_reader_specs *reader,
19629 const gdb_byte *info_ptr,
19630 struct die_info *comp_unit_die,
19631 int has_children,
19632 void *data)
19633{
19634 struct dwarf2_cu *cu = reader->cu;
19635
19636 gdb_assert (cu->die_hash == NULL);
19637 cu->die_hash =
19638 htab_create_alloc_ex (cu->header.length / 12,
19639 die_hash,
19640 die_eq,
19641 NULL,
19642 &cu->comp_unit_obstack,
19643 hashtab_obstack_allocate,
19644 dummy_obstack_deallocate);
19645
19646 if (has_children)
19647 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19648 &info_ptr, comp_unit_die);
19649 cu->dies = comp_unit_die;
19650 /* comp_unit_die is not stored in die_hash, no need. */
19651
19652 /* We try not to read any attributes in this function, because not
19653 all CUs needed for references have been loaded yet, and symbol
19654 table processing isn't initialized. But we have to set the CU language,
19655 or we won't be able to build types correctly.
19656 Similarly, if we do not read the producer, we can not apply
19657 producer-specific interpretation. */
19658 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19659}
19660
19661/* Read in a signatured type and build its CU and DIEs.
19662 If the type is a stub for the real type in a DWO file,
19663 read in the real type from the DWO file as well. */
19664
19665static void
19666read_signatured_type (struct signatured_type *sig_type)
19667{
19668 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19669
19670 gdb_assert (per_cu->is_debug_types);
19671 gdb_assert (per_cu->cu == NULL);
19672
19673 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19674 read_signatured_type_reader, NULL);
19675 sig_type->per_cu.tu_read = 1;
19676}
19677
19678/* Decode simple location descriptions.
19679 Given a pointer to a dwarf block that defines a location, compute
19680 the location and return the value.
19681
19682 NOTE drow/2003-11-18: This function is called in two situations
19683 now: for the address of static or global variables (partial symbols
19684 only) and for offsets into structures which are expected to be
19685 (more or less) constant. The partial symbol case should go away,
19686 and only the constant case should remain. That will let this
19687 function complain more accurately. A few special modes are allowed
19688 without complaint for global variables (for instance, global
19689 register values and thread-local values).
19690
19691 A location description containing no operations indicates that the
19692 object is optimized out. The return value is 0 for that case.
19693 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19694 callers will only want a very basic result and this can become a
19695 complaint.
19696
19697 Note that stack[0] is unused except as a default error return. */
19698
19699static CORE_ADDR
19700decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19701{
19702 struct objfile *objfile = cu->objfile;
19703 size_t i;
19704 size_t size = blk->size;
19705 const gdb_byte *data = blk->data;
19706 CORE_ADDR stack[64];
19707 int stacki;
19708 unsigned int bytes_read, unsnd;
19709 gdb_byte op;
19710
19711 i = 0;
19712 stacki = 0;
19713 stack[stacki] = 0;
19714 stack[++stacki] = 0;
19715
19716 while (i < size)
19717 {
19718 op = data[i++];
19719 switch (op)
19720 {
19721 case DW_OP_lit0:
19722 case DW_OP_lit1:
19723 case DW_OP_lit2:
19724 case DW_OP_lit3:
19725 case DW_OP_lit4:
19726 case DW_OP_lit5:
19727 case DW_OP_lit6:
19728 case DW_OP_lit7:
19729 case DW_OP_lit8:
19730 case DW_OP_lit9:
19731 case DW_OP_lit10:
19732 case DW_OP_lit11:
19733 case DW_OP_lit12:
19734 case DW_OP_lit13:
19735 case DW_OP_lit14:
19736 case DW_OP_lit15:
19737 case DW_OP_lit16:
19738 case DW_OP_lit17:
19739 case DW_OP_lit18:
19740 case DW_OP_lit19:
19741 case DW_OP_lit20:
19742 case DW_OP_lit21:
19743 case DW_OP_lit22:
19744 case DW_OP_lit23:
19745 case DW_OP_lit24:
19746 case DW_OP_lit25:
19747 case DW_OP_lit26:
19748 case DW_OP_lit27:
19749 case DW_OP_lit28:
19750 case DW_OP_lit29:
19751 case DW_OP_lit30:
19752 case DW_OP_lit31:
19753 stack[++stacki] = op - DW_OP_lit0;
19754 break;
19755
19756 case DW_OP_reg0:
19757 case DW_OP_reg1:
19758 case DW_OP_reg2:
19759 case DW_OP_reg3:
19760 case DW_OP_reg4:
19761 case DW_OP_reg5:
19762 case DW_OP_reg6:
19763 case DW_OP_reg7:
19764 case DW_OP_reg8:
19765 case DW_OP_reg9:
19766 case DW_OP_reg10:
19767 case DW_OP_reg11:
19768 case DW_OP_reg12:
19769 case DW_OP_reg13:
19770 case DW_OP_reg14:
19771 case DW_OP_reg15:
19772 case DW_OP_reg16:
19773 case DW_OP_reg17:
19774 case DW_OP_reg18:
19775 case DW_OP_reg19:
19776 case DW_OP_reg20:
19777 case DW_OP_reg21:
19778 case DW_OP_reg22:
19779 case DW_OP_reg23:
19780 case DW_OP_reg24:
19781 case DW_OP_reg25:
19782 case DW_OP_reg26:
19783 case DW_OP_reg27:
19784 case DW_OP_reg28:
19785 case DW_OP_reg29:
19786 case DW_OP_reg30:
19787 case DW_OP_reg31:
19788 stack[++stacki] = op - DW_OP_reg0;
19789 if (i < size)
19790 dwarf2_complex_location_expr_complaint ();
19791 break;
19792
19793 case DW_OP_regx:
19794 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19795 i += bytes_read;
19796 stack[++stacki] = unsnd;
19797 if (i < size)
19798 dwarf2_complex_location_expr_complaint ();
19799 break;
19800
19801 case DW_OP_addr:
19802 stack[++stacki] = read_address (objfile->obfd, &data[i],
19803 cu, &bytes_read);
19804 i += bytes_read;
19805 break;
19806
19807 case DW_OP_const1u:
19808 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19809 i += 1;
19810 break;
19811
19812 case DW_OP_const1s:
19813 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19814 i += 1;
19815 break;
19816
19817 case DW_OP_const2u:
19818 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19819 i += 2;
19820 break;
19821
19822 case DW_OP_const2s:
19823 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19824 i += 2;
19825 break;
19826
19827 case DW_OP_const4u:
19828 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19829 i += 4;
19830 break;
19831
19832 case DW_OP_const4s:
19833 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19834 i += 4;
19835 break;
19836
19837 case DW_OP_const8u:
19838 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19839 i += 8;
19840 break;
19841
19842 case DW_OP_constu:
19843 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19844 &bytes_read);
19845 i += bytes_read;
19846 break;
19847
19848 case DW_OP_consts:
19849 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19850 i += bytes_read;
19851 break;
19852
19853 case DW_OP_dup:
19854 stack[stacki + 1] = stack[stacki];
19855 stacki++;
19856 break;
19857
19858 case DW_OP_plus:
19859 stack[stacki - 1] += stack[stacki];
19860 stacki--;
19861 break;
19862
19863 case DW_OP_plus_uconst:
19864 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19865 &bytes_read);
19866 i += bytes_read;
19867 break;
19868
19869 case DW_OP_minus:
19870 stack[stacki - 1] -= stack[stacki];
19871 stacki--;
19872 break;
19873
19874 case DW_OP_deref:
19875 /* If we're not the last op, then we definitely can't encode
19876 this using GDB's address_class enum. This is valid for partial
19877 global symbols, although the variable's address will be bogus
19878 in the psymtab. */
19879 if (i < size)
19880 dwarf2_complex_location_expr_complaint ();
19881 break;
19882
19883 case DW_OP_GNU_push_tls_address:
19884 /* The top of the stack has the offset from the beginning
19885 of the thread control block at which the variable is located. */
19886 /* Nothing should follow this operator, so the top of stack would
19887 be returned. */
19888 /* This is valid for partial global symbols, but the variable's
19889 address will be bogus in the psymtab. Make it always at least
19890 non-zero to not look as a variable garbage collected by linker
19891 which have DW_OP_addr 0. */
19892 if (i < size)
19893 dwarf2_complex_location_expr_complaint ();
19894 stack[stacki]++;
19895 break;
19896
19897 case DW_OP_GNU_uninit:
19898 break;
19899
19900 case DW_OP_GNU_addr_index:
19901 case DW_OP_GNU_const_index:
19902 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19903 &bytes_read);
19904 i += bytes_read;
19905 break;
19906
19907 default:
19908 {
19909 const char *name = get_DW_OP_name (op);
19910
19911 if (name)
19912 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19913 name);
19914 else
19915 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19916 op);
19917 }
19918
19919 return (stack[stacki]);
19920 }
19921
19922 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19923 outside of the allocated space. Also enforce minimum>0. */
19924 if (stacki >= ARRAY_SIZE (stack) - 1)
19925 {
19926 complaint (&symfile_complaints,
19927 _("location description stack overflow"));
19928 return 0;
19929 }
19930
19931 if (stacki <= 0)
19932 {
19933 complaint (&symfile_complaints,
19934 _("location description stack underflow"));
19935 return 0;
19936 }
19937 }
19938 return (stack[stacki]);
19939}
19940
19941/* memory allocation interface */
19942
19943static struct dwarf_block *
19944dwarf_alloc_block (struct dwarf2_cu *cu)
19945{
19946 struct dwarf_block *blk;
19947
19948 blk = (struct dwarf_block *)
19949 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19950 return (blk);
19951}
19952
19953static struct die_info *
19954dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19955{
19956 struct die_info *die;
19957 size_t size = sizeof (struct die_info);
19958
19959 if (num_attrs > 1)
19960 size += (num_attrs - 1) * sizeof (struct attribute);
19961
19962 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19963 memset (die, 0, sizeof (struct die_info));
19964 return (die);
19965}
19966
19967\f
19968/* Macro support. */
19969
19970/* Return file name relative to the compilation directory of file number I in
19971 *LH's file name table. The result is allocated using xmalloc; the caller is
19972 responsible for freeing it. */
19973
19974static char *
19975file_file_name (int file, struct line_header *lh)
19976{
19977 /* Is the file number a valid index into the line header's file name
19978 table? Remember that file numbers start with one, not zero. */
19979 if (1 <= file && file <= lh->num_file_names)
19980 {
19981 struct file_entry *fe = &lh->file_names[file - 1];
19982
19983 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
19984 return xstrdup (fe->name);
19985 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
19986 fe->name, NULL);
19987 }
19988 else
19989 {
19990 /* The compiler produced a bogus file number. We can at least
19991 record the macro definitions made in the file, even if we
19992 won't be able to find the file by name. */
19993 char fake_name[80];
19994
19995 xsnprintf (fake_name, sizeof (fake_name),
19996 "<bad macro file number %d>", file);
19997
19998 complaint (&symfile_complaints,
19999 _("bad file number in macro information (%d)"),
20000 file);
20001
20002 return xstrdup (fake_name);
20003 }
20004}
20005
20006/* Return the full name of file number I in *LH's file name table.
20007 Use COMP_DIR as the name of the current directory of the
20008 compilation. The result is allocated using xmalloc; the caller is
20009 responsible for freeing it. */
20010static char *
20011file_full_name (int file, struct line_header *lh, const char *comp_dir)
20012{
20013 /* Is the file number a valid index into the line header's file name
20014 table? Remember that file numbers start with one, not zero. */
20015 if (1 <= file && file <= lh->num_file_names)
20016 {
20017 char *relative = file_file_name (file, lh);
20018
20019 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20020 return relative;
20021 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20022 }
20023 else
20024 return file_file_name (file, lh);
20025}
20026
20027
20028static struct macro_source_file *
20029macro_start_file (int file, int line,
20030 struct macro_source_file *current_file,
20031 const char *comp_dir,
20032 struct line_header *lh, struct objfile *objfile)
20033{
20034 /* File name relative to the compilation directory of this source file. */
20035 char *file_name = file_file_name (file, lh);
20036
20037 if (! current_file)
20038 {
20039 /* Note: We don't create a macro table for this compilation unit
20040 at all until we actually get a filename. */
20041 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20042
20043 /* If we have no current file, then this must be the start_file
20044 directive for the compilation unit's main source file. */
20045 current_file = macro_set_main (macro_table, file_name);
20046 macro_define_special (macro_table);
20047 }
20048 else
20049 current_file = macro_include (current_file, line, file_name);
20050
20051 xfree (file_name);
20052
20053 return current_file;
20054}
20055
20056
20057/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20058 followed by a null byte. */
20059static char *
20060copy_string (const char *buf, int len)
20061{
20062 char *s = xmalloc (len + 1);
20063
20064 memcpy (s, buf, len);
20065 s[len] = '\0';
20066 return s;
20067}
20068
20069
20070static const char *
20071consume_improper_spaces (const char *p, const char *body)
20072{
20073 if (*p == ' ')
20074 {
20075 complaint (&symfile_complaints,
20076 _("macro definition contains spaces "
20077 "in formal argument list:\n`%s'"),
20078 body);
20079
20080 while (*p == ' ')
20081 p++;
20082 }
20083
20084 return p;
20085}
20086
20087
20088static void
20089parse_macro_definition (struct macro_source_file *file, int line,
20090 const char *body)
20091{
20092 const char *p;
20093
20094 /* The body string takes one of two forms. For object-like macro
20095 definitions, it should be:
20096
20097 <macro name> " " <definition>
20098
20099 For function-like macro definitions, it should be:
20100
20101 <macro name> "() " <definition>
20102 or
20103 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20104
20105 Spaces may appear only where explicitly indicated, and in the
20106 <definition>.
20107
20108 The Dwarf 2 spec says that an object-like macro's name is always
20109 followed by a space, but versions of GCC around March 2002 omit
20110 the space when the macro's definition is the empty string.
20111
20112 The Dwarf 2 spec says that there should be no spaces between the
20113 formal arguments in a function-like macro's formal argument list,
20114 but versions of GCC around March 2002 include spaces after the
20115 commas. */
20116
20117
20118 /* Find the extent of the macro name. The macro name is terminated
20119 by either a space or null character (for an object-like macro) or
20120 an opening paren (for a function-like macro). */
20121 for (p = body; *p; p++)
20122 if (*p == ' ' || *p == '(')
20123 break;
20124
20125 if (*p == ' ' || *p == '\0')
20126 {
20127 /* It's an object-like macro. */
20128 int name_len = p - body;
20129 char *name = copy_string (body, name_len);
20130 const char *replacement;
20131
20132 if (*p == ' ')
20133 replacement = body + name_len + 1;
20134 else
20135 {
20136 dwarf2_macro_malformed_definition_complaint (body);
20137 replacement = body + name_len;
20138 }
20139
20140 macro_define_object (file, line, name, replacement);
20141
20142 xfree (name);
20143 }
20144 else if (*p == '(')
20145 {
20146 /* It's a function-like macro. */
20147 char *name = copy_string (body, p - body);
20148 int argc = 0;
20149 int argv_size = 1;
20150 char **argv = xmalloc (argv_size * sizeof (*argv));
20151
20152 p++;
20153
20154 p = consume_improper_spaces (p, body);
20155
20156 /* Parse the formal argument list. */
20157 while (*p && *p != ')')
20158 {
20159 /* Find the extent of the current argument name. */
20160 const char *arg_start = p;
20161
20162 while (*p && *p != ',' && *p != ')' && *p != ' ')
20163 p++;
20164
20165 if (! *p || p == arg_start)
20166 dwarf2_macro_malformed_definition_complaint (body);
20167 else
20168 {
20169 /* Make sure argv has room for the new argument. */
20170 if (argc >= argv_size)
20171 {
20172 argv_size *= 2;
20173 argv = xrealloc (argv, argv_size * sizeof (*argv));
20174 }
20175
20176 argv[argc++] = copy_string (arg_start, p - arg_start);
20177 }
20178
20179 p = consume_improper_spaces (p, body);
20180
20181 /* Consume the comma, if present. */
20182 if (*p == ',')
20183 {
20184 p++;
20185
20186 p = consume_improper_spaces (p, body);
20187 }
20188 }
20189
20190 if (*p == ')')
20191 {
20192 p++;
20193
20194 if (*p == ' ')
20195 /* Perfectly formed definition, no complaints. */
20196 macro_define_function (file, line, name,
20197 argc, (const char **) argv,
20198 p + 1);
20199 else if (*p == '\0')
20200 {
20201 /* Complain, but do define it. */
20202 dwarf2_macro_malformed_definition_complaint (body);
20203 macro_define_function (file, line, name,
20204 argc, (const char **) argv,
20205 p);
20206 }
20207 else
20208 /* Just complain. */
20209 dwarf2_macro_malformed_definition_complaint (body);
20210 }
20211 else
20212 /* Just complain. */
20213 dwarf2_macro_malformed_definition_complaint (body);
20214
20215 xfree (name);
20216 {
20217 int i;
20218
20219 for (i = 0; i < argc; i++)
20220 xfree (argv[i]);
20221 }
20222 xfree (argv);
20223 }
20224 else
20225 dwarf2_macro_malformed_definition_complaint (body);
20226}
20227
20228/* Skip some bytes from BYTES according to the form given in FORM.
20229 Returns the new pointer. */
20230
20231static const gdb_byte *
20232skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20233 enum dwarf_form form,
20234 unsigned int offset_size,
20235 struct dwarf2_section_info *section)
20236{
20237 unsigned int bytes_read;
20238
20239 switch (form)
20240 {
20241 case DW_FORM_data1:
20242 case DW_FORM_flag:
20243 ++bytes;
20244 break;
20245
20246 case DW_FORM_data2:
20247 bytes += 2;
20248 break;
20249
20250 case DW_FORM_data4:
20251 bytes += 4;
20252 break;
20253
20254 case DW_FORM_data8:
20255 bytes += 8;
20256 break;
20257
20258 case DW_FORM_string:
20259 read_direct_string (abfd, bytes, &bytes_read);
20260 bytes += bytes_read;
20261 break;
20262
20263 case DW_FORM_sec_offset:
20264 case DW_FORM_strp:
20265 case DW_FORM_GNU_strp_alt:
20266 bytes += offset_size;
20267 break;
20268
20269 case DW_FORM_block:
20270 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20271 bytes += bytes_read;
20272 break;
20273
20274 case DW_FORM_block1:
20275 bytes += 1 + read_1_byte (abfd, bytes);
20276 break;
20277 case DW_FORM_block2:
20278 bytes += 2 + read_2_bytes (abfd, bytes);
20279 break;
20280 case DW_FORM_block4:
20281 bytes += 4 + read_4_bytes (abfd, bytes);
20282 break;
20283
20284 case DW_FORM_sdata:
20285 case DW_FORM_udata:
20286 case DW_FORM_GNU_addr_index:
20287 case DW_FORM_GNU_str_index:
20288 bytes = gdb_skip_leb128 (bytes, buffer_end);
20289 if (bytes == NULL)
20290 {
20291 dwarf2_section_buffer_overflow_complaint (section);
20292 return NULL;
20293 }
20294 break;
20295
20296 default:
20297 {
20298 complain:
20299 complaint (&symfile_complaints,
20300 _("invalid form 0x%x in `%s'"),
20301 form, get_section_name (section));
20302 return NULL;
20303 }
20304 }
20305
20306 return bytes;
20307}
20308
20309/* A helper for dwarf_decode_macros that handles skipping an unknown
20310 opcode. Returns an updated pointer to the macro data buffer; or,
20311 on error, issues a complaint and returns NULL. */
20312
20313static const gdb_byte *
20314skip_unknown_opcode (unsigned int opcode,
20315 const gdb_byte **opcode_definitions,
20316 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20317 bfd *abfd,
20318 unsigned int offset_size,
20319 struct dwarf2_section_info *section)
20320{
20321 unsigned int bytes_read, i;
20322 unsigned long arg;
20323 const gdb_byte *defn;
20324
20325 if (opcode_definitions[opcode] == NULL)
20326 {
20327 complaint (&symfile_complaints,
20328 _("unrecognized DW_MACFINO opcode 0x%x"),
20329 opcode);
20330 return NULL;
20331 }
20332
20333 defn = opcode_definitions[opcode];
20334 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20335 defn += bytes_read;
20336
20337 for (i = 0; i < arg; ++i)
20338 {
20339 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20340 section);
20341 if (mac_ptr == NULL)
20342 {
20343 /* skip_form_bytes already issued the complaint. */
20344 return NULL;
20345 }
20346 }
20347
20348 return mac_ptr;
20349}
20350
20351/* A helper function which parses the header of a macro section.
20352 If the macro section is the extended (for now called "GNU") type,
20353 then this updates *OFFSET_SIZE. Returns a pointer to just after
20354 the header, or issues a complaint and returns NULL on error. */
20355
20356static const gdb_byte *
20357dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20358 bfd *abfd,
20359 const gdb_byte *mac_ptr,
20360 unsigned int *offset_size,
20361 int section_is_gnu)
20362{
20363 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20364
20365 if (section_is_gnu)
20366 {
20367 unsigned int version, flags;
20368
20369 version = read_2_bytes (abfd, mac_ptr);
20370 if (version != 4)
20371 {
20372 complaint (&symfile_complaints,
20373 _("unrecognized version `%d' in .debug_macro section"),
20374 version);
20375 return NULL;
20376 }
20377 mac_ptr += 2;
20378
20379 flags = read_1_byte (abfd, mac_ptr);
20380 ++mac_ptr;
20381 *offset_size = (flags & 1) ? 8 : 4;
20382
20383 if ((flags & 2) != 0)
20384 /* We don't need the line table offset. */
20385 mac_ptr += *offset_size;
20386
20387 /* Vendor opcode descriptions. */
20388 if ((flags & 4) != 0)
20389 {
20390 unsigned int i, count;
20391
20392 count = read_1_byte (abfd, mac_ptr);
20393 ++mac_ptr;
20394 for (i = 0; i < count; ++i)
20395 {
20396 unsigned int opcode, bytes_read;
20397 unsigned long arg;
20398
20399 opcode = read_1_byte (abfd, mac_ptr);
20400 ++mac_ptr;
20401 opcode_definitions[opcode] = mac_ptr;
20402 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20403 mac_ptr += bytes_read;
20404 mac_ptr += arg;
20405 }
20406 }
20407 }
20408
20409 return mac_ptr;
20410}
20411
20412/* A helper for dwarf_decode_macros that handles the GNU extensions,
20413 including DW_MACRO_GNU_transparent_include. */
20414
20415static void
20416dwarf_decode_macro_bytes (bfd *abfd,
20417 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20418 struct macro_source_file *current_file,
20419 struct line_header *lh, const char *comp_dir,
20420 struct dwarf2_section_info *section,
20421 int section_is_gnu, int section_is_dwz,
20422 unsigned int offset_size,
20423 struct objfile *objfile,
20424 htab_t include_hash)
20425{
20426 enum dwarf_macro_record_type macinfo_type;
20427 int at_commandline;
20428 const gdb_byte *opcode_definitions[256];
20429
20430 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20431 &offset_size, section_is_gnu);
20432 if (mac_ptr == NULL)
20433 {
20434 /* We already issued a complaint. */
20435 return;
20436 }
20437
20438 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20439 GDB is still reading the definitions from command line. First
20440 DW_MACINFO_start_file will need to be ignored as it was already executed
20441 to create CURRENT_FILE for the main source holding also the command line
20442 definitions. On first met DW_MACINFO_start_file this flag is reset to
20443 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20444
20445 at_commandline = 1;
20446
20447 do
20448 {
20449 /* Do we at least have room for a macinfo type byte? */
20450 if (mac_ptr >= mac_end)
20451 {
20452 dwarf2_section_buffer_overflow_complaint (section);
20453 break;
20454 }
20455
20456 macinfo_type = read_1_byte (abfd, mac_ptr);
20457 mac_ptr++;
20458
20459 /* Note that we rely on the fact that the corresponding GNU and
20460 DWARF constants are the same. */
20461 switch (macinfo_type)
20462 {
20463 /* A zero macinfo type indicates the end of the macro
20464 information. */
20465 case 0:
20466 break;
20467
20468 case DW_MACRO_GNU_define:
20469 case DW_MACRO_GNU_undef:
20470 case DW_MACRO_GNU_define_indirect:
20471 case DW_MACRO_GNU_undef_indirect:
20472 case DW_MACRO_GNU_define_indirect_alt:
20473 case DW_MACRO_GNU_undef_indirect_alt:
20474 {
20475 unsigned int bytes_read;
20476 int line;
20477 const char *body;
20478 int is_define;
20479
20480 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20481 mac_ptr += bytes_read;
20482
20483 if (macinfo_type == DW_MACRO_GNU_define
20484 || macinfo_type == DW_MACRO_GNU_undef)
20485 {
20486 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20487 mac_ptr += bytes_read;
20488 }
20489 else
20490 {
20491 LONGEST str_offset;
20492
20493 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20494 mac_ptr += offset_size;
20495
20496 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20497 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20498 || section_is_dwz)
20499 {
20500 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20501
20502 body = read_indirect_string_from_dwz (dwz, str_offset);
20503 }
20504 else
20505 body = read_indirect_string_at_offset (abfd, str_offset);
20506 }
20507
20508 is_define = (macinfo_type == DW_MACRO_GNU_define
20509 || macinfo_type == DW_MACRO_GNU_define_indirect
20510 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20511 if (! current_file)
20512 {
20513 /* DWARF violation as no main source is present. */
20514 complaint (&symfile_complaints,
20515 _("debug info with no main source gives macro %s "
20516 "on line %d: %s"),
20517 is_define ? _("definition") : _("undefinition"),
20518 line, body);
20519 break;
20520 }
20521 if ((line == 0 && !at_commandline)
20522 || (line != 0 && at_commandline))
20523 complaint (&symfile_complaints,
20524 _("debug info gives %s macro %s with %s line %d: %s"),
20525 at_commandline ? _("command-line") : _("in-file"),
20526 is_define ? _("definition") : _("undefinition"),
20527 line == 0 ? _("zero") : _("non-zero"), line, body);
20528
20529 if (is_define)
20530 parse_macro_definition (current_file, line, body);
20531 else
20532 {
20533 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20534 || macinfo_type == DW_MACRO_GNU_undef_indirect
20535 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20536 macro_undef (current_file, line, body);
20537 }
20538 }
20539 break;
20540
20541 case DW_MACRO_GNU_start_file:
20542 {
20543 unsigned int bytes_read;
20544 int line, file;
20545
20546 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20547 mac_ptr += bytes_read;
20548 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20549 mac_ptr += bytes_read;
20550
20551 if ((line == 0 && !at_commandline)
20552 || (line != 0 && at_commandline))
20553 complaint (&symfile_complaints,
20554 _("debug info gives source %d included "
20555 "from %s at %s line %d"),
20556 file, at_commandline ? _("command-line") : _("file"),
20557 line == 0 ? _("zero") : _("non-zero"), line);
20558
20559 if (at_commandline)
20560 {
20561 /* This DW_MACRO_GNU_start_file was executed in the
20562 pass one. */
20563 at_commandline = 0;
20564 }
20565 else
20566 current_file = macro_start_file (file, line,
20567 current_file, comp_dir,
20568 lh, objfile);
20569 }
20570 break;
20571
20572 case DW_MACRO_GNU_end_file:
20573 if (! current_file)
20574 complaint (&symfile_complaints,
20575 _("macro debug info has an unmatched "
20576 "`close_file' directive"));
20577 else
20578 {
20579 current_file = current_file->included_by;
20580 if (! current_file)
20581 {
20582 enum dwarf_macro_record_type next_type;
20583
20584 /* GCC circa March 2002 doesn't produce the zero
20585 type byte marking the end of the compilation
20586 unit. Complain if it's not there, but exit no
20587 matter what. */
20588
20589 /* Do we at least have room for a macinfo type byte? */
20590 if (mac_ptr >= mac_end)
20591 {
20592 dwarf2_section_buffer_overflow_complaint (section);
20593 return;
20594 }
20595
20596 /* We don't increment mac_ptr here, so this is just
20597 a look-ahead. */
20598 next_type = read_1_byte (abfd, mac_ptr);
20599 if (next_type != 0)
20600 complaint (&symfile_complaints,
20601 _("no terminating 0-type entry for "
20602 "macros in `.debug_macinfo' section"));
20603
20604 return;
20605 }
20606 }
20607 break;
20608
20609 case DW_MACRO_GNU_transparent_include:
20610 case DW_MACRO_GNU_transparent_include_alt:
20611 {
20612 LONGEST offset;
20613 void **slot;
20614 bfd *include_bfd = abfd;
20615 struct dwarf2_section_info *include_section = section;
20616 struct dwarf2_section_info alt_section;
20617 const gdb_byte *include_mac_end = mac_end;
20618 int is_dwz = section_is_dwz;
20619 const gdb_byte *new_mac_ptr;
20620
20621 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20622 mac_ptr += offset_size;
20623
20624 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20625 {
20626 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20627
20628 dwarf2_read_section (dwarf2_per_objfile->objfile,
20629 &dwz->macro);
20630
20631 include_section = &dwz->macro;
20632 include_bfd = get_section_bfd_owner (include_section);
20633 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20634 is_dwz = 1;
20635 }
20636
20637 new_mac_ptr = include_section->buffer + offset;
20638 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20639
20640 if (*slot != NULL)
20641 {
20642 /* This has actually happened; see
20643 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20644 complaint (&symfile_complaints,
20645 _("recursive DW_MACRO_GNU_transparent_include in "
20646 ".debug_macro section"));
20647 }
20648 else
20649 {
20650 *slot = (void *) new_mac_ptr;
20651
20652 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20653 include_mac_end, current_file,
20654 lh, comp_dir,
20655 section, section_is_gnu, is_dwz,
20656 offset_size, objfile, include_hash);
20657
20658 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20659 }
20660 }
20661 break;
20662
20663 case DW_MACINFO_vendor_ext:
20664 if (!section_is_gnu)
20665 {
20666 unsigned int bytes_read;
20667 int constant;
20668
20669 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20670 mac_ptr += bytes_read;
20671 read_direct_string (abfd, mac_ptr, &bytes_read);
20672 mac_ptr += bytes_read;
20673
20674 /* We don't recognize any vendor extensions. */
20675 break;
20676 }
20677 /* FALLTHROUGH */
20678
20679 default:
20680 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20681 mac_ptr, mac_end, abfd, offset_size,
20682 section);
20683 if (mac_ptr == NULL)
20684 return;
20685 break;
20686 }
20687 } while (macinfo_type != 0);
20688}
20689
20690static void
20691dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20692 const char *comp_dir, int section_is_gnu)
20693{
20694 struct objfile *objfile = dwarf2_per_objfile->objfile;
20695 struct line_header *lh = cu->line_header;
20696 bfd *abfd;
20697 const gdb_byte *mac_ptr, *mac_end;
20698 struct macro_source_file *current_file = 0;
20699 enum dwarf_macro_record_type macinfo_type;
20700 unsigned int offset_size = cu->header.offset_size;
20701 const gdb_byte *opcode_definitions[256];
20702 struct cleanup *cleanup;
20703 htab_t include_hash;
20704 void **slot;
20705 struct dwarf2_section_info *section;
20706 const char *section_name;
20707
20708 if (cu->dwo_unit != NULL)
20709 {
20710 if (section_is_gnu)
20711 {
20712 section = &cu->dwo_unit->dwo_file->sections.macro;
20713 section_name = ".debug_macro.dwo";
20714 }
20715 else
20716 {
20717 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20718 section_name = ".debug_macinfo.dwo";
20719 }
20720 }
20721 else
20722 {
20723 if (section_is_gnu)
20724 {
20725 section = &dwarf2_per_objfile->macro;
20726 section_name = ".debug_macro";
20727 }
20728 else
20729 {
20730 section = &dwarf2_per_objfile->macinfo;
20731 section_name = ".debug_macinfo";
20732 }
20733 }
20734
20735 dwarf2_read_section (objfile, section);
20736 if (section->buffer == NULL)
20737 {
20738 complaint (&symfile_complaints, _("missing %s section"), section_name);
20739 return;
20740 }
20741 abfd = get_section_bfd_owner (section);
20742
20743 /* First pass: Find the name of the base filename.
20744 This filename is needed in order to process all macros whose definition
20745 (or undefinition) comes from the command line. These macros are defined
20746 before the first DW_MACINFO_start_file entry, and yet still need to be
20747 associated to the base file.
20748
20749 To determine the base file name, we scan the macro definitions until we
20750 reach the first DW_MACINFO_start_file entry. We then initialize
20751 CURRENT_FILE accordingly so that any macro definition found before the
20752 first DW_MACINFO_start_file can still be associated to the base file. */
20753
20754 mac_ptr = section->buffer + offset;
20755 mac_end = section->buffer + section->size;
20756
20757 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20758 &offset_size, section_is_gnu);
20759 if (mac_ptr == NULL)
20760 {
20761 /* We already issued a complaint. */
20762 return;
20763 }
20764
20765 do
20766 {
20767 /* Do we at least have room for a macinfo type byte? */
20768 if (mac_ptr >= mac_end)
20769 {
20770 /* Complaint is printed during the second pass as GDB will probably
20771 stop the first pass earlier upon finding
20772 DW_MACINFO_start_file. */
20773 break;
20774 }
20775
20776 macinfo_type = read_1_byte (abfd, mac_ptr);
20777 mac_ptr++;
20778
20779 /* Note that we rely on the fact that the corresponding GNU and
20780 DWARF constants are the same. */
20781 switch (macinfo_type)
20782 {
20783 /* A zero macinfo type indicates the end of the macro
20784 information. */
20785 case 0:
20786 break;
20787
20788 case DW_MACRO_GNU_define:
20789 case DW_MACRO_GNU_undef:
20790 /* Only skip the data by MAC_PTR. */
20791 {
20792 unsigned int bytes_read;
20793
20794 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20795 mac_ptr += bytes_read;
20796 read_direct_string (abfd, mac_ptr, &bytes_read);
20797 mac_ptr += bytes_read;
20798 }
20799 break;
20800
20801 case DW_MACRO_GNU_start_file:
20802 {
20803 unsigned int bytes_read;
20804 int line, file;
20805
20806 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20807 mac_ptr += bytes_read;
20808 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20809 mac_ptr += bytes_read;
20810
20811 current_file = macro_start_file (file, line, current_file,
20812 comp_dir, lh, objfile);
20813 }
20814 break;
20815
20816 case DW_MACRO_GNU_end_file:
20817 /* No data to skip by MAC_PTR. */
20818 break;
20819
20820 case DW_MACRO_GNU_define_indirect:
20821 case DW_MACRO_GNU_undef_indirect:
20822 case DW_MACRO_GNU_define_indirect_alt:
20823 case DW_MACRO_GNU_undef_indirect_alt:
20824 {
20825 unsigned int bytes_read;
20826
20827 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20828 mac_ptr += bytes_read;
20829 mac_ptr += offset_size;
20830 }
20831 break;
20832
20833 case DW_MACRO_GNU_transparent_include:
20834 case DW_MACRO_GNU_transparent_include_alt:
20835 /* Note that, according to the spec, a transparent include
20836 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20837 skip this opcode. */
20838 mac_ptr += offset_size;
20839 break;
20840
20841 case DW_MACINFO_vendor_ext:
20842 /* Only skip the data by MAC_PTR. */
20843 if (!section_is_gnu)
20844 {
20845 unsigned int bytes_read;
20846
20847 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20848 mac_ptr += bytes_read;
20849 read_direct_string (abfd, mac_ptr, &bytes_read);
20850 mac_ptr += bytes_read;
20851 }
20852 /* FALLTHROUGH */
20853
20854 default:
20855 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20856 mac_ptr, mac_end, abfd, offset_size,
20857 section);
20858 if (mac_ptr == NULL)
20859 return;
20860 break;
20861 }
20862 } while (macinfo_type != 0 && current_file == NULL);
20863
20864 /* Second pass: Process all entries.
20865
20866 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20867 command-line macro definitions/undefinitions. This flag is unset when we
20868 reach the first DW_MACINFO_start_file entry. */
20869
20870 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20871 NULL, xcalloc, xfree);
20872 cleanup = make_cleanup_htab_delete (include_hash);
20873 mac_ptr = section->buffer + offset;
20874 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20875 *slot = (void *) mac_ptr;
20876 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20877 current_file, lh, comp_dir, section,
20878 section_is_gnu, 0,
20879 offset_size, objfile, include_hash);
20880 do_cleanups (cleanup);
20881}
20882
20883/* Check if the attribute's form is a DW_FORM_block*
20884 if so return true else false. */
20885
20886static int
20887attr_form_is_block (const struct attribute *attr)
20888{
20889 return (attr == NULL ? 0 :
20890 attr->form == DW_FORM_block1
20891 || attr->form == DW_FORM_block2
20892 || attr->form == DW_FORM_block4
20893 || attr->form == DW_FORM_block
20894 || attr->form == DW_FORM_exprloc);
20895}
20896
20897/* Return non-zero if ATTR's value is a section offset --- classes
20898 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20899 You may use DW_UNSND (attr) to retrieve such offsets.
20900
20901 Section 7.5.4, "Attribute Encodings", explains that no attribute
20902 may have a value that belongs to more than one of these classes; it
20903 would be ambiguous if we did, because we use the same forms for all
20904 of them. */
20905
20906static int
20907attr_form_is_section_offset (const struct attribute *attr)
20908{
20909 return (attr->form == DW_FORM_data4
20910 || attr->form == DW_FORM_data8
20911 || attr->form == DW_FORM_sec_offset);
20912}
20913
20914/* Return non-zero if ATTR's value falls in the 'constant' class, or
20915 zero otherwise. When this function returns true, you can apply
20916 dwarf2_get_attr_constant_value to it.
20917
20918 However, note that for some attributes you must check
20919 attr_form_is_section_offset before using this test. DW_FORM_data4
20920 and DW_FORM_data8 are members of both the constant class, and of
20921 the classes that contain offsets into other debug sections
20922 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20923 that, if an attribute's can be either a constant or one of the
20924 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20925 taken as section offsets, not constants. */
20926
20927static int
20928attr_form_is_constant (const struct attribute *attr)
20929{
20930 switch (attr->form)
20931 {
20932 case DW_FORM_sdata:
20933 case DW_FORM_udata:
20934 case DW_FORM_data1:
20935 case DW_FORM_data2:
20936 case DW_FORM_data4:
20937 case DW_FORM_data8:
20938 return 1;
20939 default:
20940 return 0;
20941 }
20942}
20943
20944
20945/* DW_ADDR is always stored already as sect_offset; despite for the forms
20946 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20947
20948static int
20949attr_form_is_ref (const struct attribute *attr)
20950{
20951 switch (attr->form)
20952 {
20953 case DW_FORM_ref_addr:
20954 case DW_FORM_ref1:
20955 case DW_FORM_ref2:
20956 case DW_FORM_ref4:
20957 case DW_FORM_ref8:
20958 case DW_FORM_ref_udata:
20959 case DW_FORM_GNU_ref_alt:
20960 return 1;
20961 default:
20962 return 0;
20963 }
20964}
20965
20966/* Return the .debug_loc section to use for CU.
20967 For DWO files use .debug_loc.dwo. */
20968
20969static struct dwarf2_section_info *
20970cu_debug_loc_section (struct dwarf2_cu *cu)
20971{
20972 if (cu->dwo_unit)
20973 return &cu->dwo_unit->dwo_file->sections.loc;
20974 return &dwarf2_per_objfile->loc;
20975}
20976
20977/* A helper function that fills in a dwarf2_loclist_baton. */
20978
20979static void
20980fill_in_loclist_baton (struct dwarf2_cu *cu,
20981 struct dwarf2_loclist_baton *baton,
20982 const struct attribute *attr)
20983{
20984 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
20985
20986 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20987
20988 baton->per_cu = cu->per_cu;
20989 gdb_assert (baton->per_cu);
20990 /* We don't know how long the location list is, but make sure we
20991 don't run off the edge of the section. */
20992 baton->size = section->size - DW_UNSND (attr);
20993 baton->data = section->buffer + DW_UNSND (attr);
20994 baton->base_address = cu->base_address;
20995 baton->from_dwo = cu->dwo_unit != NULL;
20996}
20997
20998static void
20999dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21000 struct dwarf2_cu *cu, int is_block)
21001{
21002 struct objfile *objfile = dwarf2_per_objfile->objfile;
21003 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21004
21005 if (attr_form_is_section_offset (attr)
21006 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21007 the section. If so, fall through to the complaint in the
21008 other branch. */
21009 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21010 {
21011 struct dwarf2_loclist_baton *baton;
21012
21013 baton = obstack_alloc (&objfile->objfile_obstack,
21014 sizeof (struct dwarf2_loclist_baton));
21015
21016 fill_in_loclist_baton (cu, baton, attr);
21017
21018 if (cu->base_known == 0)
21019 complaint (&symfile_complaints,
21020 _("Location list used without "
21021 "specifying the CU base address."));
21022
21023 SYMBOL_ACLASS_INDEX (sym) = (is_block
21024 ? dwarf2_loclist_block_index
21025 : dwarf2_loclist_index);
21026 SYMBOL_LOCATION_BATON (sym) = baton;
21027 }
21028 else
21029 {
21030 struct dwarf2_locexpr_baton *baton;
21031
21032 baton = obstack_alloc (&objfile->objfile_obstack,
21033 sizeof (struct dwarf2_locexpr_baton));
21034 baton->per_cu = cu->per_cu;
21035 gdb_assert (baton->per_cu);
21036
21037 if (attr_form_is_block (attr))
21038 {
21039 /* Note that we're just copying the block's data pointer
21040 here, not the actual data. We're still pointing into the
21041 info_buffer for SYM's objfile; right now we never release
21042 that buffer, but when we do clean up properly this may
21043 need to change. */
21044 baton->size = DW_BLOCK (attr)->size;
21045 baton->data = DW_BLOCK (attr)->data;
21046 }
21047 else
21048 {
21049 dwarf2_invalid_attrib_class_complaint ("location description",
21050 SYMBOL_NATURAL_NAME (sym));
21051 baton->size = 0;
21052 }
21053
21054 SYMBOL_ACLASS_INDEX (sym) = (is_block
21055 ? dwarf2_locexpr_block_index
21056 : dwarf2_locexpr_index);
21057 SYMBOL_LOCATION_BATON (sym) = baton;
21058 }
21059}
21060
21061/* Return the OBJFILE associated with the compilation unit CU. If CU
21062 came from a separate debuginfo file, then the master objfile is
21063 returned. */
21064
21065struct objfile *
21066dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21067{
21068 struct objfile *objfile = per_cu->objfile;
21069
21070 /* Return the master objfile, so that we can report and look up the
21071 correct file containing this variable. */
21072 if (objfile->separate_debug_objfile_backlink)
21073 objfile = objfile->separate_debug_objfile_backlink;
21074
21075 return objfile;
21076}
21077
21078/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21079 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21080 CU_HEADERP first. */
21081
21082static const struct comp_unit_head *
21083per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21084 struct dwarf2_per_cu_data *per_cu)
21085{
21086 const gdb_byte *info_ptr;
21087
21088 if (per_cu->cu)
21089 return &per_cu->cu->header;
21090
21091 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21092
21093 memset (cu_headerp, 0, sizeof (*cu_headerp));
21094 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21095
21096 return cu_headerp;
21097}
21098
21099/* Return the address size given in the compilation unit header for CU. */
21100
21101int
21102dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21103{
21104 struct comp_unit_head cu_header_local;
21105 const struct comp_unit_head *cu_headerp;
21106
21107 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21108
21109 return cu_headerp->addr_size;
21110}
21111
21112/* Return the offset size given in the compilation unit header for CU. */
21113
21114int
21115dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21116{
21117 struct comp_unit_head cu_header_local;
21118 const struct comp_unit_head *cu_headerp;
21119
21120 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21121
21122 return cu_headerp->offset_size;
21123}
21124
21125/* See its dwarf2loc.h declaration. */
21126
21127int
21128dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21129{
21130 struct comp_unit_head cu_header_local;
21131 const struct comp_unit_head *cu_headerp;
21132
21133 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21134
21135 if (cu_headerp->version == 2)
21136 return cu_headerp->addr_size;
21137 else
21138 return cu_headerp->offset_size;
21139}
21140
21141/* Return the text offset of the CU. The returned offset comes from
21142 this CU's objfile. If this objfile came from a separate debuginfo
21143 file, then the offset may be different from the corresponding
21144 offset in the parent objfile. */
21145
21146CORE_ADDR
21147dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21148{
21149 struct objfile *objfile = per_cu->objfile;
21150
21151 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21152}
21153
21154/* Locate the .debug_info compilation unit from CU's objfile which contains
21155 the DIE at OFFSET. Raises an error on failure. */
21156
21157static struct dwarf2_per_cu_data *
21158dwarf2_find_containing_comp_unit (sect_offset offset,
21159 unsigned int offset_in_dwz,
21160 struct objfile *objfile)
21161{
21162 struct dwarf2_per_cu_data *this_cu;
21163 int low, high;
21164 const sect_offset *cu_off;
21165
21166 low = 0;
21167 high = dwarf2_per_objfile->n_comp_units - 1;
21168 while (high > low)
21169 {
21170 struct dwarf2_per_cu_data *mid_cu;
21171 int mid = low + (high - low) / 2;
21172
21173 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21174 cu_off = &mid_cu->offset;
21175 if (mid_cu->is_dwz > offset_in_dwz
21176 || (mid_cu->is_dwz == offset_in_dwz
21177 && cu_off->sect_off >= offset.sect_off))
21178 high = mid;
21179 else
21180 low = mid + 1;
21181 }
21182 gdb_assert (low == high);
21183 this_cu = dwarf2_per_objfile->all_comp_units[low];
21184 cu_off = &this_cu->offset;
21185 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21186 {
21187 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21188 error (_("Dwarf Error: could not find partial DIE containing "
21189 "offset 0x%lx [in module %s]"),
21190 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21191
21192 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21193 <= offset.sect_off);
21194 return dwarf2_per_objfile->all_comp_units[low-1];
21195 }
21196 else
21197 {
21198 this_cu = dwarf2_per_objfile->all_comp_units[low];
21199 if (low == dwarf2_per_objfile->n_comp_units - 1
21200 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21201 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21202 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21203 return this_cu;
21204 }
21205}
21206
21207/* Initialize dwarf2_cu CU, owned by PER_CU. */
21208
21209static void
21210init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21211{
21212 memset (cu, 0, sizeof (*cu));
21213 per_cu->cu = cu;
21214 cu->per_cu = per_cu;
21215 cu->objfile = per_cu->objfile;
21216 obstack_init (&cu->comp_unit_obstack);
21217}
21218
21219/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21220
21221static void
21222prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21223 enum language pretend_language)
21224{
21225 struct attribute *attr;
21226
21227 /* Set the language we're debugging. */
21228 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21229 if (attr)
21230 set_cu_language (DW_UNSND (attr), cu);
21231 else
21232 {
21233 cu->language = pretend_language;
21234 cu->language_defn = language_def (cu->language);
21235 }
21236
21237 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21238 if (attr)
21239 cu->producer = DW_STRING (attr);
21240}
21241
21242/* Release one cached compilation unit, CU. We unlink it from the tree
21243 of compilation units, but we don't remove it from the read_in_chain;
21244 the caller is responsible for that.
21245 NOTE: DATA is a void * because this function is also used as a
21246 cleanup routine. */
21247
21248static void
21249free_heap_comp_unit (void *data)
21250{
21251 struct dwarf2_cu *cu = data;
21252
21253 gdb_assert (cu->per_cu != NULL);
21254 cu->per_cu->cu = NULL;
21255 cu->per_cu = NULL;
21256
21257 obstack_free (&cu->comp_unit_obstack, NULL);
21258
21259 xfree (cu);
21260}
21261
21262/* This cleanup function is passed the address of a dwarf2_cu on the stack
21263 when we're finished with it. We can't free the pointer itself, but be
21264 sure to unlink it from the cache. Also release any associated storage. */
21265
21266static void
21267free_stack_comp_unit (void *data)
21268{
21269 struct dwarf2_cu *cu = data;
21270
21271 gdb_assert (cu->per_cu != NULL);
21272 cu->per_cu->cu = NULL;
21273 cu->per_cu = NULL;
21274
21275 obstack_free (&cu->comp_unit_obstack, NULL);
21276 cu->partial_dies = NULL;
21277}
21278
21279/* Free all cached compilation units. */
21280
21281static void
21282free_cached_comp_units (void *data)
21283{
21284 struct dwarf2_per_cu_data *per_cu, **last_chain;
21285
21286 per_cu = dwarf2_per_objfile->read_in_chain;
21287 last_chain = &dwarf2_per_objfile->read_in_chain;
21288 while (per_cu != NULL)
21289 {
21290 struct dwarf2_per_cu_data *next_cu;
21291
21292 next_cu = per_cu->cu->read_in_chain;
21293
21294 free_heap_comp_unit (per_cu->cu);
21295 *last_chain = next_cu;
21296
21297 per_cu = next_cu;
21298 }
21299}
21300
21301/* Increase the age counter on each cached compilation unit, and free
21302 any that are too old. */
21303
21304static void
21305age_cached_comp_units (void)
21306{
21307 struct dwarf2_per_cu_data *per_cu, **last_chain;
21308
21309 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21310 per_cu = dwarf2_per_objfile->read_in_chain;
21311 while (per_cu != NULL)
21312 {
21313 per_cu->cu->last_used ++;
21314 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21315 dwarf2_mark (per_cu->cu);
21316 per_cu = per_cu->cu->read_in_chain;
21317 }
21318
21319 per_cu = dwarf2_per_objfile->read_in_chain;
21320 last_chain = &dwarf2_per_objfile->read_in_chain;
21321 while (per_cu != NULL)
21322 {
21323 struct dwarf2_per_cu_data *next_cu;
21324
21325 next_cu = per_cu->cu->read_in_chain;
21326
21327 if (!per_cu->cu->mark)
21328 {
21329 free_heap_comp_unit (per_cu->cu);
21330 *last_chain = next_cu;
21331 }
21332 else
21333 last_chain = &per_cu->cu->read_in_chain;
21334
21335 per_cu = next_cu;
21336 }
21337}
21338
21339/* Remove a single compilation unit from the cache. */
21340
21341static void
21342free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21343{
21344 struct dwarf2_per_cu_data *per_cu, **last_chain;
21345
21346 per_cu = dwarf2_per_objfile->read_in_chain;
21347 last_chain = &dwarf2_per_objfile->read_in_chain;
21348 while (per_cu != NULL)
21349 {
21350 struct dwarf2_per_cu_data *next_cu;
21351
21352 next_cu = per_cu->cu->read_in_chain;
21353
21354 if (per_cu == target_per_cu)
21355 {
21356 free_heap_comp_unit (per_cu->cu);
21357 per_cu->cu = NULL;
21358 *last_chain = next_cu;
21359 break;
21360 }
21361 else
21362 last_chain = &per_cu->cu->read_in_chain;
21363
21364 per_cu = next_cu;
21365 }
21366}
21367
21368/* Release all extra memory associated with OBJFILE. */
21369
21370void
21371dwarf2_free_objfile (struct objfile *objfile)
21372{
21373 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21374
21375 if (dwarf2_per_objfile == NULL)
21376 return;
21377
21378 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21379 free_cached_comp_units (NULL);
21380
21381 if (dwarf2_per_objfile->quick_file_names_table)
21382 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21383
21384 /* Everything else should be on the objfile obstack. */
21385}
21386
21387/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21388 We store these in a hash table separate from the DIEs, and preserve them
21389 when the DIEs are flushed out of cache.
21390
21391 The CU "per_cu" pointer is needed because offset alone is not enough to
21392 uniquely identify the type. A file may have multiple .debug_types sections,
21393 or the type may come from a DWO file. Furthermore, while it's more logical
21394 to use per_cu->section+offset, with Fission the section with the data is in
21395 the DWO file but we don't know that section at the point we need it.
21396 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21397 because we can enter the lookup routine, get_die_type_at_offset, from
21398 outside this file, and thus won't necessarily have PER_CU->cu.
21399 Fortunately, PER_CU is stable for the life of the objfile. */
21400
21401struct dwarf2_per_cu_offset_and_type
21402{
21403 const struct dwarf2_per_cu_data *per_cu;
21404 sect_offset offset;
21405 struct type *type;
21406};
21407
21408/* Hash function for a dwarf2_per_cu_offset_and_type. */
21409
21410static hashval_t
21411per_cu_offset_and_type_hash (const void *item)
21412{
21413 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21414
21415 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21416}
21417
21418/* Equality function for a dwarf2_per_cu_offset_and_type. */
21419
21420static int
21421per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21422{
21423 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21424 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21425
21426 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21427 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21428}
21429
21430/* Set the type associated with DIE to TYPE. Save it in CU's hash
21431 table if necessary. For convenience, return TYPE.
21432
21433 The DIEs reading must have careful ordering to:
21434 * Not cause infite loops trying to read in DIEs as a prerequisite for
21435 reading current DIE.
21436 * Not trying to dereference contents of still incompletely read in types
21437 while reading in other DIEs.
21438 * Enable referencing still incompletely read in types just by a pointer to
21439 the type without accessing its fields.
21440
21441 Therefore caller should follow these rules:
21442 * Try to fetch any prerequisite types we may need to build this DIE type
21443 before building the type and calling set_die_type.
21444 * After building type call set_die_type for current DIE as soon as
21445 possible before fetching more types to complete the current type.
21446 * Make the type as complete as possible before fetching more types. */
21447
21448static struct type *
21449set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21450{
21451 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21452 struct objfile *objfile = cu->objfile;
21453
21454 /* For Ada types, make sure that the gnat-specific data is always
21455 initialized (if not already set). There are a few types where
21456 we should not be doing so, because the type-specific area is
21457 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21458 where the type-specific area is used to store the floatformat).
21459 But this is not a problem, because the gnat-specific information
21460 is actually not needed for these types. */
21461 if (need_gnat_info (cu)
21462 && TYPE_CODE (type) != TYPE_CODE_FUNC
21463 && TYPE_CODE (type) != TYPE_CODE_FLT
21464 && !HAVE_GNAT_AUX_INFO (type))
21465 INIT_GNAT_SPECIFIC (type);
21466
21467 if (dwarf2_per_objfile->die_type_hash == NULL)
21468 {
21469 dwarf2_per_objfile->die_type_hash =
21470 htab_create_alloc_ex (127,
21471 per_cu_offset_and_type_hash,
21472 per_cu_offset_and_type_eq,
21473 NULL,
21474 &objfile->objfile_obstack,
21475 hashtab_obstack_allocate,
21476 dummy_obstack_deallocate);
21477 }
21478
21479 ofs.per_cu = cu->per_cu;
21480 ofs.offset = die->offset;
21481 ofs.type = type;
21482 slot = (struct dwarf2_per_cu_offset_and_type **)
21483 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21484 if (*slot)
21485 complaint (&symfile_complaints,
21486 _("A problem internal to GDB: DIE 0x%x has type already set"),
21487 die->offset.sect_off);
21488 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21489 **slot = ofs;
21490 return type;
21491}
21492
21493/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21494 or return NULL if the die does not have a saved type. */
21495
21496static struct type *
21497get_die_type_at_offset (sect_offset offset,
21498 struct dwarf2_per_cu_data *per_cu)
21499{
21500 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21501
21502 if (dwarf2_per_objfile->die_type_hash == NULL)
21503 return NULL;
21504
21505 ofs.per_cu = per_cu;
21506 ofs.offset = offset;
21507 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21508 if (slot)
21509 return slot->type;
21510 else
21511 return NULL;
21512}
21513
21514/* Look up the type for DIE in CU in die_type_hash,
21515 or return NULL if DIE does not have a saved type. */
21516
21517static struct type *
21518get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21519{
21520 return get_die_type_at_offset (die->offset, cu->per_cu);
21521}
21522
21523/* Add a dependence relationship from CU to REF_PER_CU. */
21524
21525static void
21526dwarf2_add_dependence (struct dwarf2_cu *cu,
21527 struct dwarf2_per_cu_data *ref_per_cu)
21528{
21529 void **slot;
21530
21531 if (cu->dependencies == NULL)
21532 cu->dependencies
21533 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21534 NULL, &cu->comp_unit_obstack,
21535 hashtab_obstack_allocate,
21536 dummy_obstack_deallocate);
21537
21538 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21539 if (*slot == NULL)
21540 *slot = ref_per_cu;
21541}
21542
21543/* Subroutine of dwarf2_mark to pass to htab_traverse.
21544 Set the mark field in every compilation unit in the
21545 cache that we must keep because we are keeping CU. */
21546
21547static int
21548dwarf2_mark_helper (void **slot, void *data)
21549{
21550 struct dwarf2_per_cu_data *per_cu;
21551
21552 per_cu = (struct dwarf2_per_cu_data *) *slot;
21553
21554 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21555 reading of the chain. As such dependencies remain valid it is not much
21556 useful to track and undo them during QUIT cleanups. */
21557 if (per_cu->cu == NULL)
21558 return 1;
21559
21560 if (per_cu->cu->mark)
21561 return 1;
21562 per_cu->cu->mark = 1;
21563
21564 if (per_cu->cu->dependencies != NULL)
21565 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21566
21567 return 1;
21568}
21569
21570/* Set the mark field in CU and in every other compilation unit in the
21571 cache that we must keep because we are keeping CU. */
21572
21573static void
21574dwarf2_mark (struct dwarf2_cu *cu)
21575{
21576 if (cu->mark)
21577 return;
21578 cu->mark = 1;
21579 if (cu->dependencies != NULL)
21580 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21581}
21582
21583static void
21584dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21585{
21586 while (per_cu)
21587 {
21588 per_cu->cu->mark = 0;
21589 per_cu = per_cu->cu->read_in_chain;
21590 }
21591}
21592
21593/* Trivial hash function for partial_die_info: the hash value of a DIE
21594 is its offset in .debug_info for this objfile. */
21595
21596static hashval_t
21597partial_die_hash (const void *item)
21598{
21599 const struct partial_die_info *part_die = item;
21600
21601 return part_die->offset.sect_off;
21602}
21603
21604/* Trivial comparison function for partial_die_info structures: two DIEs
21605 are equal if they have the same offset. */
21606
21607static int
21608partial_die_eq (const void *item_lhs, const void *item_rhs)
21609{
21610 const struct partial_die_info *part_die_lhs = item_lhs;
21611 const struct partial_die_info *part_die_rhs = item_rhs;
21612
21613 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21614}
21615
21616static struct cmd_list_element *set_dwarf2_cmdlist;
21617static struct cmd_list_element *show_dwarf2_cmdlist;
21618
21619static void
21620set_dwarf2_cmd (char *args, int from_tty)
21621{
21622 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21623}
21624
21625static void
21626show_dwarf2_cmd (char *args, int from_tty)
21627{
21628 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21629}
21630
21631/* Free data associated with OBJFILE, if necessary. */
21632
21633static void
21634dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21635{
21636 struct dwarf2_per_objfile *data = d;
21637 int ix;
21638
21639 /* Make sure we don't accidentally use dwarf2_per_objfile while
21640 cleaning up. */
21641 dwarf2_per_objfile = NULL;
21642
21643 for (ix = 0; ix < data->n_comp_units; ++ix)
21644 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21645
21646 for (ix = 0; ix < data->n_type_units; ++ix)
21647 VEC_free (dwarf2_per_cu_ptr,
21648 data->all_type_units[ix]->per_cu.imported_symtabs);
21649 xfree (data->all_type_units);
21650
21651 VEC_free (dwarf2_section_info_def, data->types);
21652
21653 if (data->dwo_files)
21654 free_dwo_files (data->dwo_files, objfile);
21655 if (data->dwp_file)
21656 gdb_bfd_unref (data->dwp_file->dbfd);
21657
21658 if (data->dwz_file && data->dwz_file->dwz_bfd)
21659 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21660}
21661
21662\f
21663/* The "save gdb-index" command. */
21664
21665/* The contents of the hash table we create when building the string
21666 table. */
21667struct strtab_entry
21668{
21669 offset_type offset;
21670 const char *str;
21671};
21672
21673/* Hash function for a strtab_entry.
21674
21675 Function is used only during write_hash_table so no index format backward
21676 compatibility is needed. */
21677
21678static hashval_t
21679hash_strtab_entry (const void *e)
21680{
21681 const struct strtab_entry *entry = e;
21682 return mapped_index_string_hash (INT_MAX, entry->str);
21683}
21684
21685/* Equality function for a strtab_entry. */
21686
21687static int
21688eq_strtab_entry (const void *a, const void *b)
21689{
21690 const struct strtab_entry *ea = a;
21691 const struct strtab_entry *eb = b;
21692 return !strcmp (ea->str, eb->str);
21693}
21694
21695/* Create a strtab_entry hash table. */
21696
21697static htab_t
21698create_strtab (void)
21699{
21700 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21701 xfree, xcalloc, xfree);
21702}
21703
21704/* Add a string to the constant pool. Return the string's offset in
21705 host order. */
21706
21707static offset_type
21708add_string (htab_t table, struct obstack *cpool, const char *str)
21709{
21710 void **slot;
21711 struct strtab_entry entry;
21712 struct strtab_entry *result;
21713
21714 entry.str = str;
21715 slot = htab_find_slot (table, &entry, INSERT);
21716 if (*slot)
21717 result = *slot;
21718 else
21719 {
21720 result = XNEW (struct strtab_entry);
21721 result->offset = obstack_object_size (cpool);
21722 result->str = str;
21723 obstack_grow_str0 (cpool, str);
21724 *slot = result;
21725 }
21726 return result->offset;
21727}
21728
21729/* An entry in the symbol table. */
21730struct symtab_index_entry
21731{
21732 /* The name of the symbol. */
21733 const char *name;
21734 /* The offset of the name in the constant pool. */
21735 offset_type index_offset;
21736 /* A sorted vector of the indices of all the CUs that hold an object
21737 of this name. */
21738 VEC (offset_type) *cu_indices;
21739};
21740
21741/* The symbol table. This is a power-of-2-sized hash table. */
21742struct mapped_symtab
21743{
21744 offset_type n_elements;
21745 offset_type size;
21746 struct symtab_index_entry **data;
21747};
21748
21749/* Hash function for a symtab_index_entry. */
21750
21751static hashval_t
21752hash_symtab_entry (const void *e)
21753{
21754 const struct symtab_index_entry *entry = e;
21755 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21756 sizeof (offset_type) * VEC_length (offset_type,
21757 entry->cu_indices),
21758 0);
21759}
21760
21761/* Equality function for a symtab_index_entry. */
21762
21763static int
21764eq_symtab_entry (const void *a, const void *b)
21765{
21766 const struct symtab_index_entry *ea = a;
21767 const struct symtab_index_entry *eb = b;
21768 int len = VEC_length (offset_type, ea->cu_indices);
21769 if (len != VEC_length (offset_type, eb->cu_indices))
21770 return 0;
21771 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21772 VEC_address (offset_type, eb->cu_indices),
21773 sizeof (offset_type) * len);
21774}
21775
21776/* Destroy a symtab_index_entry. */
21777
21778static void
21779delete_symtab_entry (void *p)
21780{
21781 struct symtab_index_entry *entry = p;
21782 VEC_free (offset_type, entry->cu_indices);
21783 xfree (entry);
21784}
21785
21786/* Create a hash table holding symtab_index_entry objects. */
21787
21788static htab_t
21789create_symbol_hash_table (void)
21790{
21791 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21792 delete_symtab_entry, xcalloc, xfree);
21793}
21794
21795/* Create a new mapped symtab object. */
21796
21797static struct mapped_symtab *
21798create_mapped_symtab (void)
21799{
21800 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21801 symtab->n_elements = 0;
21802 symtab->size = 1024;
21803 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21804 return symtab;
21805}
21806
21807/* Destroy a mapped_symtab. */
21808
21809static void
21810cleanup_mapped_symtab (void *p)
21811{
21812 struct mapped_symtab *symtab = p;
21813 /* The contents of the array are freed when the other hash table is
21814 destroyed. */
21815 xfree (symtab->data);
21816 xfree (symtab);
21817}
21818
21819/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21820 the slot.
21821
21822 Function is used only during write_hash_table so no index format backward
21823 compatibility is needed. */
21824
21825static struct symtab_index_entry **
21826find_slot (struct mapped_symtab *symtab, const char *name)
21827{
21828 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21829
21830 index = hash & (symtab->size - 1);
21831 step = ((hash * 17) & (symtab->size - 1)) | 1;
21832
21833 for (;;)
21834 {
21835 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21836 return &symtab->data[index];
21837 index = (index + step) & (symtab->size - 1);
21838 }
21839}
21840
21841/* Expand SYMTAB's hash table. */
21842
21843static void
21844hash_expand (struct mapped_symtab *symtab)
21845{
21846 offset_type old_size = symtab->size;
21847 offset_type i;
21848 struct symtab_index_entry **old_entries = symtab->data;
21849
21850 symtab->size *= 2;
21851 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21852
21853 for (i = 0; i < old_size; ++i)
21854 {
21855 if (old_entries[i])
21856 {
21857 struct symtab_index_entry **slot = find_slot (symtab,
21858 old_entries[i]->name);
21859 *slot = old_entries[i];
21860 }
21861 }
21862
21863 xfree (old_entries);
21864}
21865
21866/* Add an entry to SYMTAB. NAME is the name of the symbol.
21867 CU_INDEX is the index of the CU in which the symbol appears.
21868 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21869
21870static void
21871add_index_entry (struct mapped_symtab *symtab, const char *name,
21872 int is_static, gdb_index_symbol_kind kind,
21873 offset_type cu_index)
21874{
21875 struct symtab_index_entry **slot;
21876 offset_type cu_index_and_attrs;
21877
21878 ++symtab->n_elements;
21879 if (4 * symtab->n_elements / 3 >= symtab->size)
21880 hash_expand (symtab);
21881
21882 slot = find_slot (symtab, name);
21883 if (!*slot)
21884 {
21885 *slot = XNEW (struct symtab_index_entry);
21886 (*slot)->name = name;
21887 /* index_offset is set later. */
21888 (*slot)->cu_indices = NULL;
21889 }
21890
21891 cu_index_and_attrs = 0;
21892 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21893 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21894 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21895
21896 /* We don't want to record an index value twice as we want to avoid the
21897 duplication.
21898 We process all global symbols and then all static symbols
21899 (which would allow us to avoid the duplication by only having to check
21900 the last entry pushed), but a symbol could have multiple kinds in one CU.
21901 To keep things simple we don't worry about the duplication here and
21902 sort and uniqufy the list after we've processed all symbols. */
21903 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21904}
21905
21906/* qsort helper routine for uniquify_cu_indices. */
21907
21908static int
21909offset_type_compare (const void *ap, const void *bp)
21910{
21911 offset_type a = *(offset_type *) ap;
21912 offset_type b = *(offset_type *) bp;
21913
21914 return (a > b) - (b > a);
21915}
21916
21917/* Sort and remove duplicates of all symbols' cu_indices lists. */
21918
21919static void
21920uniquify_cu_indices (struct mapped_symtab *symtab)
21921{
21922 int i;
21923
21924 for (i = 0; i < symtab->size; ++i)
21925 {
21926 struct symtab_index_entry *entry = symtab->data[i];
21927
21928 if (entry
21929 && entry->cu_indices != NULL)
21930 {
21931 unsigned int next_to_insert, next_to_check;
21932 offset_type last_value;
21933
21934 qsort (VEC_address (offset_type, entry->cu_indices),
21935 VEC_length (offset_type, entry->cu_indices),
21936 sizeof (offset_type), offset_type_compare);
21937
21938 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21939 next_to_insert = 1;
21940 for (next_to_check = 1;
21941 next_to_check < VEC_length (offset_type, entry->cu_indices);
21942 ++next_to_check)
21943 {
21944 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21945 != last_value)
21946 {
21947 last_value = VEC_index (offset_type, entry->cu_indices,
21948 next_to_check);
21949 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21950 last_value);
21951 ++next_to_insert;
21952 }
21953 }
21954 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21955 }
21956 }
21957}
21958
21959/* Add a vector of indices to the constant pool. */
21960
21961static offset_type
21962add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21963 struct symtab_index_entry *entry)
21964{
21965 void **slot;
21966
21967 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21968 if (!*slot)
21969 {
21970 offset_type len = VEC_length (offset_type, entry->cu_indices);
21971 offset_type val = MAYBE_SWAP (len);
21972 offset_type iter;
21973 int i;
21974
21975 *slot = entry;
21976 entry->index_offset = obstack_object_size (cpool);
21977
21978 obstack_grow (cpool, &val, sizeof (val));
21979 for (i = 0;
21980 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21981 ++i)
21982 {
21983 val = MAYBE_SWAP (iter);
21984 obstack_grow (cpool, &val, sizeof (val));
21985 }
21986 }
21987 else
21988 {
21989 struct symtab_index_entry *old_entry = *slot;
21990 entry->index_offset = old_entry->index_offset;
21991 entry = old_entry;
21992 }
21993 return entry->index_offset;
21994}
21995
21996/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
21997 constant pool entries going into the obstack CPOOL. */
21998
21999static void
22000write_hash_table (struct mapped_symtab *symtab,
22001 struct obstack *output, struct obstack *cpool)
22002{
22003 offset_type i;
22004 htab_t symbol_hash_table;
22005 htab_t str_table;
22006
22007 symbol_hash_table = create_symbol_hash_table ();
22008 str_table = create_strtab ();
22009
22010 /* We add all the index vectors to the constant pool first, to
22011 ensure alignment is ok. */
22012 for (i = 0; i < symtab->size; ++i)
22013 {
22014 if (symtab->data[i])
22015 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22016 }
22017
22018 /* Now write out the hash table. */
22019 for (i = 0; i < symtab->size; ++i)
22020 {
22021 offset_type str_off, vec_off;
22022
22023 if (symtab->data[i])
22024 {
22025 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22026 vec_off = symtab->data[i]->index_offset;
22027 }
22028 else
22029 {
22030 /* While 0 is a valid constant pool index, it is not valid
22031 to have 0 for both offsets. */
22032 str_off = 0;
22033 vec_off = 0;
22034 }
22035
22036 str_off = MAYBE_SWAP (str_off);
22037 vec_off = MAYBE_SWAP (vec_off);
22038
22039 obstack_grow (output, &str_off, sizeof (str_off));
22040 obstack_grow (output, &vec_off, sizeof (vec_off));
22041 }
22042
22043 htab_delete (str_table);
22044 htab_delete (symbol_hash_table);
22045}
22046
22047/* Struct to map psymtab to CU index in the index file. */
22048struct psymtab_cu_index_map
22049{
22050 struct partial_symtab *psymtab;
22051 unsigned int cu_index;
22052};
22053
22054static hashval_t
22055hash_psymtab_cu_index (const void *item)
22056{
22057 const struct psymtab_cu_index_map *map = item;
22058
22059 return htab_hash_pointer (map->psymtab);
22060}
22061
22062static int
22063eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22064{
22065 const struct psymtab_cu_index_map *lhs = item_lhs;
22066 const struct psymtab_cu_index_map *rhs = item_rhs;
22067
22068 return lhs->psymtab == rhs->psymtab;
22069}
22070
22071/* Helper struct for building the address table. */
22072struct addrmap_index_data
22073{
22074 struct objfile *objfile;
22075 struct obstack *addr_obstack;
22076 htab_t cu_index_htab;
22077
22078 /* Non-zero if the previous_* fields are valid.
22079 We can't write an entry until we see the next entry (since it is only then
22080 that we know the end of the entry). */
22081 int previous_valid;
22082 /* Index of the CU in the table of all CUs in the index file. */
22083 unsigned int previous_cu_index;
22084 /* Start address of the CU. */
22085 CORE_ADDR previous_cu_start;
22086};
22087
22088/* Write an address entry to OBSTACK. */
22089
22090static void
22091add_address_entry (struct objfile *objfile, struct obstack *obstack,
22092 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22093{
22094 offset_type cu_index_to_write;
22095 gdb_byte addr[8];
22096 CORE_ADDR baseaddr;
22097
22098 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22099
22100 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22101 obstack_grow (obstack, addr, 8);
22102 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22103 obstack_grow (obstack, addr, 8);
22104 cu_index_to_write = MAYBE_SWAP (cu_index);
22105 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22106}
22107
22108/* Worker function for traversing an addrmap to build the address table. */
22109
22110static int
22111add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22112{
22113 struct addrmap_index_data *data = datap;
22114 struct partial_symtab *pst = obj;
22115
22116 if (data->previous_valid)
22117 add_address_entry (data->objfile, data->addr_obstack,
22118 data->previous_cu_start, start_addr,
22119 data->previous_cu_index);
22120
22121 data->previous_cu_start = start_addr;
22122 if (pst != NULL)
22123 {
22124 struct psymtab_cu_index_map find_map, *map;
22125 find_map.psymtab = pst;
22126 map = htab_find (data->cu_index_htab, &find_map);
22127 gdb_assert (map != NULL);
22128 data->previous_cu_index = map->cu_index;
22129 data->previous_valid = 1;
22130 }
22131 else
22132 data->previous_valid = 0;
22133
22134 return 0;
22135}
22136
22137/* Write OBJFILE's address map to OBSTACK.
22138 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22139 in the index file. */
22140
22141static void
22142write_address_map (struct objfile *objfile, struct obstack *obstack,
22143 htab_t cu_index_htab)
22144{
22145 struct addrmap_index_data addrmap_index_data;
22146
22147 /* When writing the address table, we have to cope with the fact that
22148 the addrmap iterator only provides the start of a region; we have to
22149 wait until the next invocation to get the start of the next region. */
22150
22151 addrmap_index_data.objfile = objfile;
22152 addrmap_index_data.addr_obstack = obstack;
22153 addrmap_index_data.cu_index_htab = cu_index_htab;
22154 addrmap_index_data.previous_valid = 0;
22155
22156 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22157 &addrmap_index_data);
22158
22159 /* It's highly unlikely the last entry (end address = 0xff...ff)
22160 is valid, but we should still handle it.
22161 The end address is recorded as the start of the next region, but that
22162 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22163 anyway. */
22164 if (addrmap_index_data.previous_valid)
22165 add_address_entry (objfile, obstack,
22166 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22167 addrmap_index_data.previous_cu_index);
22168}
22169
22170/* Return the symbol kind of PSYM. */
22171
22172static gdb_index_symbol_kind
22173symbol_kind (struct partial_symbol *psym)
22174{
22175 domain_enum domain = PSYMBOL_DOMAIN (psym);
22176 enum address_class aclass = PSYMBOL_CLASS (psym);
22177
22178 switch (domain)
22179 {
22180 case VAR_DOMAIN:
22181 switch (aclass)
22182 {
22183 case LOC_BLOCK:
22184 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22185 case LOC_TYPEDEF:
22186 return GDB_INDEX_SYMBOL_KIND_TYPE;
22187 case LOC_COMPUTED:
22188 case LOC_CONST_BYTES:
22189 case LOC_OPTIMIZED_OUT:
22190 case LOC_STATIC:
22191 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22192 case LOC_CONST:
22193 /* Note: It's currently impossible to recognize psyms as enum values
22194 short of reading the type info. For now punt. */
22195 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22196 default:
22197 /* There are other LOC_FOO values that one might want to classify
22198 as variables, but dwarf2read.c doesn't currently use them. */
22199 return GDB_INDEX_SYMBOL_KIND_OTHER;
22200 }
22201 case STRUCT_DOMAIN:
22202 return GDB_INDEX_SYMBOL_KIND_TYPE;
22203 default:
22204 return GDB_INDEX_SYMBOL_KIND_OTHER;
22205 }
22206}
22207
22208/* Add a list of partial symbols to SYMTAB. */
22209
22210static void
22211write_psymbols (struct mapped_symtab *symtab,
22212 htab_t psyms_seen,
22213 struct partial_symbol **psymp,
22214 int count,
22215 offset_type cu_index,
22216 int is_static)
22217{
22218 for (; count-- > 0; ++psymp)
22219 {
22220 struct partial_symbol *psym = *psymp;
22221 void **slot;
22222
22223 if (SYMBOL_LANGUAGE (psym) == language_ada)
22224 error (_("Ada is not currently supported by the index"));
22225
22226 /* Only add a given psymbol once. */
22227 slot = htab_find_slot (psyms_seen, psym, INSERT);
22228 if (!*slot)
22229 {
22230 gdb_index_symbol_kind kind = symbol_kind (psym);
22231
22232 *slot = psym;
22233 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22234 is_static, kind, cu_index);
22235 }
22236 }
22237}
22238
22239/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22240 exception if there is an error. */
22241
22242static void
22243write_obstack (FILE *file, struct obstack *obstack)
22244{
22245 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22246 file)
22247 != obstack_object_size (obstack))
22248 error (_("couldn't data write to file"));
22249}
22250
22251/* Unlink a file if the argument is not NULL. */
22252
22253static void
22254unlink_if_set (void *p)
22255{
22256 char **filename = p;
22257 if (*filename)
22258 unlink (*filename);
22259}
22260
22261/* A helper struct used when iterating over debug_types. */
22262struct signatured_type_index_data
22263{
22264 struct objfile *objfile;
22265 struct mapped_symtab *symtab;
22266 struct obstack *types_list;
22267 htab_t psyms_seen;
22268 int cu_index;
22269};
22270
22271/* A helper function that writes a single signatured_type to an
22272 obstack. */
22273
22274static int
22275write_one_signatured_type (void **slot, void *d)
22276{
22277 struct signatured_type_index_data *info = d;
22278 struct signatured_type *entry = (struct signatured_type *) *slot;
22279 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22280 gdb_byte val[8];
22281
22282 write_psymbols (info->symtab,
22283 info->psyms_seen,
22284 info->objfile->global_psymbols.list
22285 + psymtab->globals_offset,
22286 psymtab->n_global_syms, info->cu_index,
22287 0);
22288 write_psymbols (info->symtab,
22289 info->psyms_seen,
22290 info->objfile->static_psymbols.list
22291 + psymtab->statics_offset,
22292 psymtab->n_static_syms, info->cu_index,
22293 1);
22294
22295 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22296 entry->per_cu.offset.sect_off);
22297 obstack_grow (info->types_list, val, 8);
22298 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22299 entry->type_offset_in_tu.cu_off);
22300 obstack_grow (info->types_list, val, 8);
22301 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22302 obstack_grow (info->types_list, val, 8);
22303
22304 ++info->cu_index;
22305
22306 return 1;
22307}
22308
22309/* Recurse into all "included" dependencies and write their symbols as
22310 if they appeared in this psymtab. */
22311
22312static void
22313recursively_write_psymbols (struct objfile *objfile,
22314 struct partial_symtab *psymtab,
22315 struct mapped_symtab *symtab,
22316 htab_t psyms_seen,
22317 offset_type cu_index)
22318{
22319 int i;
22320
22321 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22322 if (psymtab->dependencies[i]->user != NULL)
22323 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22324 symtab, psyms_seen, cu_index);
22325
22326 write_psymbols (symtab,
22327 psyms_seen,
22328 objfile->global_psymbols.list + psymtab->globals_offset,
22329 psymtab->n_global_syms, cu_index,
22330 0);
22331 write_psymbols (symtab,
22332 psyms_seen,
22333 objfile->static_psymbols.list + psymtab->statics_offset,
22334 psymtab->n_static_syms, cu_index,
22335 1);
22336}
22337
22338/* Create an index file for OBJFILE in the directory DIR. */
22339
22340static void
22341write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22342{
22343 struct cleanup *cleanup;
22344 char *filename, *cleanup_filename;
22345 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22346 struct obstack cu_list, types_cu_list;
22347 int i;
22348 FILE *out_file;
22349 struct mapped_symtab *symtab;
22350 offset_type val, size_of_contents, total_len;
22351 struct stat st;
22352 htab_t psyms_seen;
22353 htab_t cu_index_htab;
22354 struct psymtab_cu_index_map *psymtab_cu_index_map;
22355
22356 if (dwarf2_per_objfile->using_index)
22357 error (_("Cannot use an index to create the index"));
22358
22359 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22360 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22361
22362 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22363 return;
22364
22365 if (stat (objfile_name (objfile), &st) < 0)
22366 perror_with_name (objfile_name (objfile));
22367
22368 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22369 INDEX_SUFFIX, (char *) NULL);
22370 cleanup = make_cleanup (xfree, filename);
22371
22372 out_file = gdb_fopen_cloexec (filename, "wb");
22373 if (!out_file)
22374 error (_("Can't open `%s' for writing"), filename);
22375
22376 cleanup_filename = filename;
22377 make_cleanup (unlink_if_set, &cleanup_filename);
22378
22379 symtab = create_mapped_symtab ();
22380 make_cleanup (cleanup_mapped_symtab, symtab);
22381
22382 obstack_init (&addr_obstack);
22383 make_cleanup_obstack_free (&addr_obstack);
22384
22385 obstack_init (&cu_list);
22386 make_cleanup_obstack_free (&cu_list);
22387
22388 obstack_init (&types_cu_list);
22389 make_cleanup_obstack_free (&types_cu_list);
22390
22391 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22392 NULL, xcalloc, xfree);
22393 make_cleanup_htab_delete (psyms_seen);
22394
22395 /* While we're scanning CU's create a table that maps a psymtab pointer
22396 (which is what addrmap records) to its index (which is what is recorded
22397 in the index file). This will later be needed to write the address
22398 table. */
22399 cu_index_htab = htab_create_alloc (100,
22400 hash_psymtab_cu_index,
22401 eq_psymtab_cu_index,
22402 NULL, xcalloc, xfree);
22403 make_cleanup_htab_delete (cu_index_htab);
22404 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22405 xmalloc (sizeof (struct psymtab_cu_index_map)
22406 * dwarf2_per_objfile->n_comp_units);
22407 make_cleanup (xfree, psymtab_cu_index_map);
22408
22409 /* The CU list is already sorted, so we don't need to do additional
22410 work here. Also, the debug_types entries do not appear in
22411 all_comp_units, but only in their own hash table. */
22412 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22413 {
22414 struct dwarf2_per_cu_data *per_cu
22415 = dwarf2_per_objfile->all_comp_units[i];
22416 struct partial_symtab *psymtab = per_cu->v.psymtab;
22417 gdb_byte val[8];
22418 struct psymtab_cu_index_map *map;
22419 void **slot;
22420
22421 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22422 It may be referenced from a local scope but in such case it does not
22423 need to be present in .gdb_index. */
22424 if (psymtab == NULL)
22425 continue;
22426
22427 if (psymtab->user == NULL)
22428 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22429
22430 map = &psymtab_cu_index_map[i];
22431 map->psymtab = psymtab;
22432 map->cu_index = i;
22433 slot = htab_find_slot (cu_index_htab, map, INSERT);
22434 gdb_assert (slot != NULL);
22435 gdb_assert (*slot == NULL);
22436 *slot = map;
22437
22438 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22439 per_cu->offset.sect_off);
22440 obstack_grow (&cu_list, val, 8);
22441 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22442 obstack_grow (&cu_list, val, 8);
22443 }
22444
22445 /* Dump the address map. */
22446 write_address_map (objfile, &addr_obstack, cu_index_htab);
22447
22448 /* Write out the .debug_type entries, if any. */
22449 if (dwarf2_per_objfile->signatured_types)
22450 {
22451 struct signatured_type_index_data sig_data;
22452
22453 sig_data.objfile = objfile;
22454 sig_data.symtab = symtab;
22455 sig_data.types_list = &types_cu_list;
22456 sig_data.psyms_seen = psyms_seen;
22457 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22458 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22459 write_one_signatured_type, &sig_data);
22460 }
22461
22462 /* Now that we've processed all symbols we can shrink their cu_indices
22463 lists. */
22464 uniquify_cu_indices (symtab);
22465
22466 obstack_init (&constant_pool);
22467 make_cleanup_obstack_free (&constant_pool);
22468 obstack_init (&symtab_obstack);
22469 make_cleanup_obstack_free (&symtab_obstack);
22470 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22471
22472 obstack_init (&contents);
22473 make_cleanup_obstack_free (&contents);
22474 size_of_contents = 6 * sizeof (offset_type);
22475 total_len = size_of_contents;
22476
22477 /* The version number. */
22478 val = MAYBE_SWAP (8);
22479 obstack_grow (&contents, &val, sizeof (val));
22480
22481 /* The offset of the CU list from the start of the file. */
22482 val = MAYBE_SWAP (total_len);
22483 obstack_grow (&contents, &val, sizeof (val));
22484 total_len += obstack_object_size (&cu_list);
22485
22486 /* The offset of the types CU list from the start of the file. */
22487 val = MAYBE_SWAP (total_len);
22488 obstack_grow (&contents, &val, sizeof (val));
22489 total_len += obstack_object_size (&types_cu_list);
22490
22491 /* The offset of the address table from the start of the file. */
22492 val = MAYBE_SWAP (total_len);
22493 obstack_grow (&contents, &val, sizeof (val));
22494 total_len += obstack_object_size (&addr_obstack);
22495
22496 /* The offset of the symbol table from the start of the file. */
22497 val = MAYBE_SWAP (total_len);
22498 obstack_grow (&contents, &val, sizeof (val));
22499 total_len += obstack_object_size (&symtab_obstack);
22500
22501 /* The offset of the constant pool from the start of the file. */
22502 val = MAYBE_SWAP (total_len);
22503 obstack_grow (&contents, &val, sizeof (val));
22504 total_len += obstack_object_size (&constant_pool);
22505
22506 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22507
22508 write_obstack (out_file, &contents);
22509 write_obstack (out_file, &cu_list);
22510 write_obstack (out_file, &types_cu_list);
22511 write_obstack (out_file, &addr_obstack);
22512 write_obstack (out_file, &symtab_obstack);
22513 write_obstack (out_file, &constant_pool);
22514
22515 fclose (out_file);
22516
22517 /* We want to keep the file, so we set cleanup_filename to NULL
22518 here. See unlink_if_set. */
22519 cleanup_filename = NULL;
22520
22521 do_cleanups (cleanup);
22522}
22523
22524/* Implementation of the `save gdb-index' command.
22525
22526 Note that the file format used by this command is documented in the
22527 GDB manual. Any changes here must be documented there. */
22528
22529static void
22530save_gdb_index_command (char *arg, int from_tty)
22531{
22532 struct objfile *objfile;
22533
22534 if (!arg || !*arg)
22535 error (_("usage: save gdb-index DIRECTORY"));
22536
22537 ALL_OBJFILES (objfile)
22538 {
22539 struct stat st;
22540
22541 /* If the objfile does not correspond to an actual file, skip it. */
22542 if (stat (objfile_name (objfile), &st) < 0)
22543 continue;
22544
22545 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22546 if (dwarf2_per_objfile)
22547 {
22548 volatile struct gdb_exception except;
22549
22550 TRY_CATCH (except, RETURN_MASK_ERROR)
22551 {
22552 write_psymtabs_to_index (objfile, arg);
22553 }
22554 if (except.reason < 0)
22555 exception_fprintf (gdb_stderr, except,
22556 _("Error while writing index for `%s': "),
22557 objfile_name (objfile));
22558 }
22559 }
22560}
22561
22562\f
22563
22564int dwarf2_always_disassemble;
22565
22566static void
22567show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22568 struct cmd_list_element *c, const char *value)
22569{
22570 fprintf_filtered (file,
22571 _("Whether to always disassemble "
22572 "DWARF expressions is %s.\n"),
22573 value);
22574}
22575
22576static void
22577show_check_physname (struct ui_file *file, int from_tty,
22578 struct cmd_list_element *c, const char *value)
22579{
22580 fprintf_filtered (file,
22581 _("Whether to check \"physname\" is %s.\n"),
22582 value);
22583}
22584
22585void _initialize_dwarf2_read (void);
22586
22587void
22588_initialize_dwarf2_read (void)
22589{
22590 struct cmd_list_element *c;
22591
22592 dwarf2_objfile_data_key
22593 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22594
22595 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22596Set DWARF 2 specific variables.\n\
22597Configure DWARF 2 variables such as the cache size"),
22598 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22599 0/*allow-unknown*/, &maintenance_set_cmdlist);
22600
22601 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22602Show DWARF 2 specific variables\n\
22603Show DWARF 2 variables such as the cache size"),
22604 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22605 0/*allow-unknown*/, &maintenance_show_cmdlist);
22606
22607 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22608 &dwarf2_max_cache_age, _("\
22609Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22610Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22611A higher limit means that cached compilation units will be stored\n\
22612in memory longer, and more total memory will be used. Zero disables\n\
22613caching, which can slow down startup."),
22614 NULL,
22615 show_dwarf2_max_cache_age,
22616 &set_dwarf2_cmdlist,
22617 &show_dwarf2_cmdlist);
22618
22619 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22620 &dwarf2_always_disassemble, _("\
22621Set whether `info address' always disassembles DWARF expressions."), _("\
22622Show whether `info address' always disassembles DWARF expressions."), _("\
22623When enabled, DWARF expressions are always printed in an assembly-like\n\
22624syntax. When disabled, expressions will be printed in a more\n\
22625conversational style, when possible."),
22626 NULL,
22627 show_dwarf2_always_disassemble,
22628 &set_dwarf2_cmdlist,
22629 &show_dwarf2_cmdlist);
22630
22631 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22632Set debugging of the dwarf2 reader."), _("\
22633Show debugging of the dwarf2 reader."), _("\
22634When enabled (non-zero), debugging messages are printed during dwarf2\n\
22635reading and symtab expansion. A value of 1 (one) provides basic\n\
22636information. A value greater than 1 provides more verbose information."),
22637 NULL,
22638 NULL,
22639 &setdebuglist, &showdebuglist);
22640
22641 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22642Set debugging of the dwarf2 DIE reader."), _("\
22643Show debugging of the dwarf2 DIE reader."), _("\
22644When enabled (non-zero), DIEs are dumped after they are read in.\n\
22645The value is the maximum depth to print."),
22646 NULL,
22647 NULL,
22648 &setdebuglist, &showdebuglist);
22649
22650 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22651Set cross-checking of \"physname\" code against demangler."), _("\
22652Show cross-checking of \"physname\" code against demangler."), _("\
22653When enabled, GDB's internal \"physname\" code is checked against\n\
22654the demangler."),
22655 NULL, show_check_physname,
22656 &setdebuglist, &showdebuglist);
22657
22658 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22659 no_class, &use_deprecated_index_sections, _("\
22660Set whether to use deprecated gdb_index sections."), _("\
22661Show whether to use deprecated gdb_index sections."), _("\
22662When enabled, deprecated .gdb_index sections are used anyway.\n\
22663Normally they are ignored either because of a missing feature or\n\
22664performance issue.\n\
22665Warning: This option must be enabled before gdb reads the file."),
22666 NULL,
22667 NULL,
22668 &setlist, &showlist);
22669
22670 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22671 _("\
22672Save a gdb-index file.\n\
22673Usage: save gdb-index DIRECTORY"),
22674 &save_cmdlist);
22675 set_cmd_completer (c, filename_completer);
22676
22677 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22678 &dwarf2_locexpr_funcs);
22679 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22680 &dwarf2_loclist_funcs);
22681
22682 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22683 &dwarf2_block_frame_base_locexpr_funcs);
22684 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22685 &dwarf2_block_frame_base_loclist_funcs);
22686}
This page took 0.101422 seconds and 4 git commands to generate.