gdb
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
... / ...
CommitLineData
1/* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29#include "defs.h"
30#include "bfd.h"
31#include "symtab.h"
32#include "gdbtypes.h"
33#include "objfiles.h"
34#include "dwarf2.h"
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
38#include "filenames.h" /* for DOSish file names */
39#include "macrotab.h"
40#include "language.h"
41#include "complaints.h"
42#include "bcache.h"
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
45#include "cp-support.h"
46#include "hashtab.h"
47#include "command.h"
48#include "gdbcmd.h"
49#include "block.h"
50#include "addrmap.h"
51#include "typeprint.h"
52#include "jv-lang.h"
53#include "psympriv.h"
54
55#include <fcntl.h>
56#include "gdb_string.h"
57#include "gdb_assert.h"
58#include <sys/types.h>
59#ifdef HAVE_ZLIB_H
60#include <zlib.h>
61#endif
62#ifdef HAVE_MMAP
63#include <sys/mman.h>
64#ifndef MAP_FAILED
65#define MAP_FAILED ((void *) -1)
66#endif
67#endif
68
69#if 0
70/* .debug_info header for a compilation unit
71 Because of alignment constraints, this structure has padding and cannot
72 be mapped directly onto the beginning of the .debug_info section. */
73typedef struct comp_unit_header
74 {
75 unsigned int length; /* length of the .debug_info
76 contribution */
77 unsigned short version; /* version number -- 2 for DWARF
78 version 2 */
79 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
80 unsigned char addr_size; /* byte size of an address -- 4 */
81 }
82_COMP_UNIT_HEADER;
83#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
84#endif
85
86/* .debug_line statement program prologue
87 Because of alignment constraints, this structure has padding and cannot
88 be mapped directly onto the beginning of the .debug_info section. */
89typedef struct statement_prologue
90 {
91 unsigned int total_length; /* byte length of the statement
92 information */
93 unsigned short version; /* version number -- 2 for DWARF
94 version 2 */
95 unsigned int prologue_length; /* # bytes between prologue &
96 stmt program */
97 unsigned char minimum_instruction_length; /* byte size of
98 smallest instr */
99 unsigned char default_is_stmt; /* initial value of is_stmt
100 register */
101 char line_base;
102 unsigned char line_range;
103 unsigned char opcode_base; /* number assigned to first special
104 opcode */
105 unsigned char *standard_opcode_lengths;
106 }
107_STATEMENT_PROLOGUE;
108
109/* When non-zero, dump DIEs after they are read in. */
110static int dwarf2_die_debug = 0;
111
112static int pagesize;
113
114/* When set, the file that we're processing is known to have debugging
115 info for C++ namespaces. GCC 3.3.x did not produce this information,
116 but later versions do. */
117
118static int processing_has_namespace_info;
119
120static const struct objfile_data *dwarf2_objfile_data_key;
121
122struct dwarf2_section_info
123{
124 asection *asection;
125 gdb_byte *buffer;
126 bfd_size_type size;
127 int was_mmapped;
128 /* True if we have tried to read this section. */
129 int readin;
130};
131
132struct dwarf2_per_objfile
133{
134 struct dwarf2_section_info info;
135 struct dwarf2_section_info abbrev;
136 struct dwarf2_section_info line;
137 struct dwarf2_section_info loc;
138 struct dwarf2_section_info macinfo;
139 struct dwarf2_section_info str;
140 struct dwarf2_section_info ranges;
141 struct dwarf2_section_info types;
142 struct dwarf2_section_info frame;
143 struct dwarf2_section_info eh_frame;
144
145 /* Back link. */
146 struct objfile *objfile;
147
148 /* A list of all the compilation units. This is used to locate
149 the target compilation unit of a particular reference. */
150 struct dwarf2_per_cu_data **all_comp_units;
151
152 /* The number of compilation units in ALL_COMP_UNITS. */
153 int n_comp_units;
154
155 /* A chain of compilation units that are currently read in, so that
156 they can be freed later. */
157 struct dwarf2_per_cu_data *read_in_chain;
158
159 /* A table mapping .debug_types signatures to its signatured_type entry.
160 This is NULL if the .debug_types section hasn't been read in yet. */
161 htab_t signatured_types;
162
163 /* A flag indicating wether this objfile has a section loaded at a
164 VMA of 0. */
165 int has_section_at_zero;
166};
167
168static struct dwarf2_per_objfile *dwarf2_per_objfile;
169
170/* names of the debugging sections */
171
172/* Note that if the debugging section has been compressed, it might
173 have a name like .zdebug_info. */
174
175#define INFO_SECTION "debug_info"
176#define ABBREV_SECTION "debug_abbrev"
177#define LINE_SECTION "debug_line"
178#define LOC_SECTION "debug_loc"
179#define MACINFO_SECTION "debug_macinfo"
180#define STR_SECTION "debug_str"
181#define RANGES_SECTION "debug_ranges"
182#define TYPES_SECTION "debug_types"
183#define FRAME_SECTION "debug_frame"
184#define EH_FRAME_SECTION "eh_frame"
185
186/* local data types */
187
188/* We hold several abbreviation tables in memory at the same time. */
189#ifndef ABBREV_HASH_SIZE
190#define ABBREV_HASH_SIZE 121
191#endif
192
193/* The data in a compilation unit header, after target2host
194 translation, looks like this. */
195struct comp_unit_head
196{
197 unsigned int length;
198 short version;
199 unsigned char addr_size;
200 unsigned char signed_addr_p;
201 unsigned int abbrev_offset;
202
203 /* Size of file offsets; either 4 or 8. */
204 unsigned int offset_size;
205
206 /* Size of the length field; either 4 or 12. */
207 unsigned int initial_length_size;
208
209 /* Offset to the first byte of this compilation unit header in the
210 .debug_info section, for resolving relative reference dies. */
211 unsigned int offset;
212
213 /* Offset to first die in this cu from the start of the cu.
214 This will be the first byte following the compilation unit header. */
215 unsigned int first_die_offset;
216};
217
218/* Internal state when decoding a particular compilation unit. */
219struct dwarf2_cu
220{
221 /* The objfile containing this compilation unit. */
222 struct objfile *objfile;
223
224 /* The header of the compilation unit. */
225 struct comp_unit_head header;
226
227 /* Base address of this compilation unit. */
228 CORE_ADDR base_address;
229
230 /* Non-zero if base_address has been set. */
231 int base_known;
232
233 struct function_range *first_fn, *last_fn, *cached_fn;
234
235 /* The language we are debugging. */
236 enum language language;
237 const struct language_defn *language_defn;
238
239 const char *producer;
240
241 /* The generic symbol table building routines have separate lists for
242 file scope symbols and all all other scopes (local scopes). So
243 we need to select the right one to pass to add_symbol_to_list().
244 We do it by keeping a pointer to the correct list in list_in_scope.
245
246 FIXME: The original dwarf code just treated the file scope as the
247 first local scope, and all other local scopes as nested local
248 scopes, and worked fine. Check to see if we really need to
249 distinguish these in buildsym.c. */
250 struct pending **list_in_scope;
251
252 /* DWARF abbreviation table associated with this compilation unit. */
253 struct abbrev_info **dwarf2_abbrevs;
254
255 /* Storage for the abbrev table. */
256 struct obstack abbrev_obstack;
257
258 /* Hash table holding all the loaded partial DIEs. */
259 htab_t partial_dies;
260
261 /* Storage for things with the same lifetime as this read-in compilation
262 unit, including partial DIEs. */
263 struct obstack comp_unit_obstack;
264
265 /* When multiple dwarf2_cu structures are living in memory, this field
266 chains them all together, so that they can be released efficiently.
267 We will probably also want a generation counter so that most-recently-used
268 compilation units are cached... */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* Backchain to our per_cu entry if the tree has been built. */
272 struct dwarf2_per_cu_data *per_cu;
273
274 /* Pointer to the die -> type map. Although it is stored
275 permanently in per_cu, we copy it here to avoid double
276 indirection. */
277 htab_t type_hash;
278
279 /* How many compilation units ago was this CU last referenced? */
280 int last_used;
281
282 /* A hash table of die offsets for following references. */
283 htab_t die_hash;
284
285 /* Full DIEs if read in. */
286 struct die_info *dies;
287
288 /* A set of pointers to dwarf2_per_cu_data objects for compilation
289 units referenced by this one. Only set during full symbol processing;
290 partial symbol tables do not have dependencies. */
291 htab_t dependencies;
292
293 /* Header data from the line table, during full symbol processing. */
294 struct line_header *line_header;
295
296 /* Mark used when releasing cached dies. */
297 unsigned int mark : 1;
298
299 /* This flag will be set if this compilation unit might include
300 inter-compilation-unit references. */
301 unsigned int has_form_ref_addr : 1;
302
303 /* This flag will be set if this compilation unit includes any
304 DW_TAG_namespace DIEs. If we know that there are explicit
305 DIEs for namespaces, we don't need to try to infer them
306 from mangled names. */
307 unsigned int has_namespace_info : 1;
308};
309
310/* Persistent data held for a compilation unit, even when not
311 processing it. We put a pointer to this structure in the
312 read_symtab_private field of the psymtab. If we encounter
313 inter-compilation-unit references, we also maintain a sorted
314 list of all compilation units. */
315
316struct dwarf2_per_cu_data
317{
318 /* The start offset and length of this compilation unit. 2**29-1
319 bytes should suffice to store the length of any compilation unit
320 - if it doesn't, GDB will fall over anyway.
321 NOTE: Unlike comp_unit_head.length, this length includes
322 initial_length_size. */
323 unsigned int offset;
324 unsigned int length : 29;
325
326 /* Flag indicating this compilation unit will be read in before
327 any of the current compilation units are processed. */
328 unsigned int queued : 1;
329
330 /* This flag will be set if we need to load absolutely all DIEs
331 for this compilation unit, instead of just the ones we think
332 are interesting. It gets set if we look for a DIE in the
333 hash table and don't find it. */
334 unsigned int load_all_dies : 1;
335
336 /* Non-zero if this CU is from .debug_types.
337 Otherwise it's from .debug_info. */
338 unsigned int from_debug_types : 1;
339
340 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
341 of the CU cache it gets reset to NULL again. */
342 struct dwarf2_cu *cu;
343
344 /* If full symbols for this CU have been read in, then this field
345 holds a map of DIE offsets to types. It isn't always possible
346 to reconstruct this information later, so we have to preserve
347 it. */
348 htab_t type_hash;
349
350 /* The partial symbol table associated with this compilation unit,
351 or NULL for partial units (which do not have an associated
352 symtab). */
353 struct partial_symtab *psymtab;
354};
355
356/* Entry in the signatured_types hash table. */
357
358struct signatured_type
359{
360 ULONGEST signature;
361
362 /* Offset in .debug_types of the TU (type_unit) for this type. */
363 unsigned int offset;
364
365 /* Offset in .debug_types of the type defined by this TU. */
366 unsigned int type_offset;
367
368 /* The CU(/TU) of this type. */
369 struct dwarf2_per_cu_data per_cu;
370};
371
372/* Struct used to pass misc. parameters to read_die_and_children, et. al.
373 which are used for both .debug_info and .debug_types dies.
374 All parameters here are unchanging for the life of the call.
375 This struct exists to abstract away the constant parameters of
376 die reading. */
377
378struct die_reader_specs
379{
380 /* The bfd of this objfile. */
381 bfd* abfd;
382
383 /* The CU of the DIE we are parsing. */
384 struct dwarf2_cu *cu;
385
386 /* Pointer to start of section buffer.
387 This is either the start of .debug_info or .debug_types. */
388 const gdb_byte *buffer;
389};
390
391/* The line number information for a compilation unit (found in the
392 .debug_line section) begins with a "statement program header",
393 which contains the following information. */
394struct line_header
395{
396 unsigned int total_length;
397 unsigned short version;
398 unsigned int header_length;
399 unsigned char minimum_instruction_length;
400 unsigned char maximum_ops_per_instruction;
401 unsigned char default_is_stmt;
402 int line_base;
403 unsigned char line_range;
404 unsigned char opcode_base;
405
406 /* standard_opcode_lengths[i] is the number of operands for the
407 standard opcode whose value is i. This means that
408 standard_opcode_lengths[0] is unused, and the last meaningful
409 element is standard_opcode_lengths[opcode_base - 1]. */
410 unsigned char *standard_opcode_lengths;
411
412 /* The include_directories table. NOTE! These strings are not
413 allocated with xmalloc; instead, they are pointers into
414 debug_line_buffer. If you try to free them, `free' will get
415 indigestion. */
416 unsigned int num_include_dirs, include_dirs_size;
417 char **include_dirs;
418
419 /* The file_names table. NOTE! These strings are not allocated
420 with xmalloc; instead, they are pointers into debug_line_buffer.
421 Don't try to free them directly. */
422 unsigned int num_file_names, file_names_size;
423 struct file_entry
424 {
425 char *name;
426 unsigned int dir_index;
427 unsigned int mod_time;
428 unsigned int length;
429 int included_p; /* Non-zero if referenced by the Line Number Program. */
430 struct symtab *symtab; /* The associated symbol table, if any. */
431 } *file_names;
432
433 /* The start and end of the statement program following this
434 header. These point into dwarf2_per_objfile->line_buffer. */
435 gdb_byte *statement_program_start, *statement_program_end;
436};
437
438/* When we construct a partial symbol table entry we only
439 need this much information. */
440struct partial_die_info
441 {
442 /* Offset of this DIE. */
443 unsigned int offset;
444
445 /* DWARF-2 tag for this DIE. */
446 ENUM_BITFIELD(dwarf_tag) tag : 16;
447
448 /* Assorted flags describing the data found in this DIE. */
449 unsigned int has_children : 1;
450 unsigned int is_external : 1;
451 unsigned int is_declaration : 1;
452 unsigned int has_type : 1;
453 unsigned int has_specification : 1;
454 unsigned int has_pc_info : 1;
455
456 /* Flag set if the SCOPE field of this structure has been
457 computed. */
458 unsigned int scope_set : 1;
459
460 /* Flag set if the DIE has a byte_size attribute. */
461 unsigned int has_byte_size : 1;
462
463 /* The name of this DIE. Normally the value of DW_AT_name, but
464 sometimes a default name for unnamed DIEs. */
465 char *name;
466
467 /* The scope to prepend to our children. This is generally
468 allocated on the comp_unit_obstack, so will disappear
469 when this compilation unit leaves the cache. */
470 char *scope;
471
472 /* The location description associated with this DIE, if any. */
473 struct dwarf_block *locdesc;
474
475 /* If HAS_PC_INFO, the PC range associated with this DIE. */
476 CORE_ADDR lowpc;
477 CORE_ADDR highpc;
478
479 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
480 DW_AT_sibling, if any. */
481 gdb_byte *sibling;
482
483 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
484 DW_AT_specification (or DW_AT_abstract_origin or
485 DW_AT_extension). */
486 unsigned int spec_offset;
487
488 /* Pointers to this DIE's parent, first child, and next sibling,
489 if any. */
490 struct partial_die_info *die_parent, *die_child, *die_sibling;
491 };
492
493/* This data structure holds the information of an abbrev. */
494struct abbrev_info
495 {
496 unsigned int number; /* number identifying abbrev */
497 enum dwarf_tag tag; /* dwarf tag */
498 unsigned short has_children; /* boolean */
499 unsigned short num_attrs; /* number of attributes */
500 struct attr_abbrev *attrs; /* an array of attribute descriptions */
501 struct abbrev_info *next; /* next in chain */
502 };
503
504struct attr_abbrev
505 {
506 ENUM_BITFIELD(dwarf_attribute) name : 16;
507 ENUM_BITFIELD(dwarf_form) form : 16;
508 };
509
510/* Attributes have a name and a value */
511struct attribute
512 {
513 ENUM_BITFIELD(dwarf_attribute) name : 16;
514 ENUM_BITFIELD(dwarf_form) form : 15;
515
516 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
517 field should be in u.str (existing only for DW_STRING) but it is kept
518 here for better struct attribute alignment. */
519 unsigned int string_is_canonical : 1;
520
521 union
522 {
523 char *str;
524 struct dwarf_block *blk;
525 ULONGEST unsnd;
526 LONGEST snd;
527 CORE_ADDR addr;
528 struct signatured_type *signatured_type;
529 }
530 u;
531 };
532
533/* This data structure holds a complete die structure. */
534struct die_info
535 {
536 /* DWARF-2 tag for this DIE. */
537 ENUM_BITFIELD(dwarf_tag) tag : 16;
538
539 /* Number of attributes */
540 unsigned short num_attrs;
541
542 /* Abbrev number */
543 unsigned int abbrev;
544
545 /* Offset in .debug_info or .debug_types section. */
546 unsigned int offset;
547
548 /* The dies in a compilation unit form an n-ary tree. PARENT
549 points to this die's parent; CHILD points to the first child of
550 this node; and all the children of a given node are chained
551 together via their SIBLING fields, terminated by a die whose
552 tag is zero. */
553 struct die_info *child; /* Its first child, if any. */
554 struct die_info *sibling; /* Its next sibling, if any. */
555 struct die_info *parent; /* Its parent, if any. */
556
557 /* An array of attributes, with NUM_ATTRS elements. There may be
558 zero, but it's not common and zero-sized arrays are not
559 sufficiently portable C. */
560 struct attribute attrs[1];
561 };
562
563struct function_range
564{
565 const char *name;
566 CORE_ADDR lowpc, highpc;
567 int seen_line;
568 struct function_range *next;
569};
570
571/* Get at parts of an attribute structure */
572
573#define DW_STRING(attr) ((attr)->u.str)
574#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
575#define DW_UNSND(attr) ((attr)->u.unsnd)
576#define DW_BLOCK(attr) ((attr)->u.blk)
577#define DW_SND(attr) ((attr)->u.snd)
578#define DW_ADDR(attr) ((attr)->u.addr)
579#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
580
581/* Blocks are a bunch of untyped bytes. */
582struct dwarf_block
583 {
584 unsigned int size;
585 gdb_byte *data;
586 };
587
588#ifndef ATTR_ALLOC_CHUNK
589#define ATTR_ALLOC_CHUNK 4
590#endif
591
592/* Allocate fields for structs, unions and enums in this size. */
593#ifndef DW_FIELD_ALLOC_CHUNK
594#define DW_FIELD_ALLOC_CHUNK 4
595#endif
596
597/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
598 but this would require a corresponding change in unpack_field_as_long
599 and friends. */
600static int bits_per_byte = 8;
601
602/* The routines that read and process dies for a C struct or C++ class
603 pass lists of data member fields and lists of member function fields
604 in an instance of a field_info structure, as defined below. */
605struct field_info
606 {
607 /* List of data member and baseclasses fields. */
608 struct nextfield
609 {
610 struct nextfield *next;
611 int accessibility;
612 int virtuality;
613 struct field field;
614 }
615 *fields, *baseclasses;
616
617 /* Number of fields (including baseclasses). */
618 int nfields;
619
620 /* Number of baseclasses. */
621 int nbaseclasses;
622
623 /* Set if the accesibility of one of the fields is not public. */
624 int non_public_fields;
625
626 /* Member function fields array, entries are allocated in the order they
627 are encountered in the object file. */
628 struct nextfnfield
629 {
630 struct nextfnfield *next;
631 struct fn_field fnfield;
632 }
633 *fnfields;
634
635 /* Member function fieldlist array, contains name of possibly overloaded
636 member function, number of overloaded member functions and a pointer
637 to the head of the member function field chain. */
638 struct fnfieldlist
639 {
640 char *name;
641 int length;
642 struct nextfnfield *head;
643 }
644 *fnfieldlists;
645
646 /* Number of entries in the fnfieldlists array. */
647 int nfnfields;
648
649 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
650 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
651 struct typedef_field_list
652 {
653 struct typedef_field field;
654 struct typedef_field_list *next;
655 }
656 *typedef_field_list;
657 unsigned typedef_field_list_count;
658 };
659
660/* One item on the queue of compilation units to read in full symbols
661 for. */
662struct dwarf2_queue_item
663{
664 struct dwarf2_per_cu_data *per_cu;
665 struct dwarf2_queue_item *next;
666};
667
668/* The current queue. */
669static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
670
671/* Loaded secondary compilation units are kept in memory until they
672 have not been referenced for the processing of this many
673 compilation units. Set this to zero to disable caching. Cache
674 sizes of up to at least twenty will improve startup time for
675 typical inter-CU-reference binaries, at an obvious memory cost. */
676static int dwarf2_max_cache_age = 5;
677static void
678show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
679 struct cmd_list_element *c, const char *value)
680{
681 fprintf_filtered (file, _("\
682The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
683 value);
684}
685
686
687/* Various complaints about symbol reading that don't abort the process */
688
689static void
690dwarf2_statement_list_fits_in_line_number_section_complaint (void)
691{
692 complaint (&symfile_complaints,
693 _("statement list doesn't fit in .debug_line section"));
694}
695
696static void
697dwarf2_debug_line_missing_file_complaint (void)
698{
699 complaint (&symfile_complaints,
700 _(".debug_line section has line data without a file"));
701}
702
703static void
704dwarf2_debug_line_missing_end_sequence_complaint (void)
705{
706 complaint (&symfile_complaints,
707 _(".debug_line section has line program sequence without an end"));
708}
709
710static void
711dwarf2_complex_location_expr_complaint (void)
712{
713 complaint (&symfile_complaints, _("location expression too complex"));
714}
715
716static void
717dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
718 int arg3)
719{
720 complaint (&symfile_complaints,
721 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
722 arg2, arg3);
723}
724
725static void
726dwarf2_macros_too_long_complaint (void)
727{
728 complaint (&symfile_complaints,
729 _("macro info runs off end of `.debug_macinfo' section"));
730}
731
732static void
733dwarf2_macro_malformed_definition_complaint (const char *arg1)
734{
735 complaint (&symfile_complaints,
736 _("macro debug info contains a malformed macro definition:\n`%s'"),
737 arg1);
738}
739
740static void
741dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
742{
743 complaint (&symfile_complaints,
744 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
745}
746
747/* local function prototypes */
748
749static void dwarf2_locate_sections (bfd *, asection *, void *);
750
751static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
752 struct objfile *);
753
754static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
755 struct die_info *,
756 struct partial_symtab *);
757
758static void dwarf2_build_psymtabs_hard (struct objfile *);
759
760static void scan_partial_symbols (struct partial_die_info *,
761 CORE_ADDR *, CORE_ADDR *,
762 int, struct dwarf2_cu *);
763
764static void add_partial_symbol (struct partial_die_info *,
765 struct dwarf2_cu *);
766
767static void add_partial_namespace (struct partial_die_info *pdi,
768 CORE_ADDR *lowpc, CORE_ADDR *highpc,
769 int need_pc, struct dwarf2_cu *cu);
770
771static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
772 CORE_ADDR *highpc, int need_pc,
773 struct dwarf2_cu *cu);
774
775static void add_partial_enumeration (struct partial_die_info *enum_pdi,
776 struct dwarf2_cu *cu);
777
778static void add_partial_subprogram (struct partial_die_info *pdi,
779 CORE_ADDR *lowpc, CORE_ADDR *highpc,
780 int need_pc, struct dwarf2_cu *cu);
781
782static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
783 gdb_byte *buffer, gdb_byte *info_ptr,
784 bfd *abfd, struct dwarf2_cu *cu);
785
786static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
787
788static void psymtab_to_symtab_1 (struct partial_symtab *);
789
790static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
791
792static void dwarf2_free_abbrev_table (void *);
793
794static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
795 struct dwarf2_cu *);
796
797static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
798 struct dwarf2_cu *);
799
800static struct partial_die_info *load_partial_dies (bfd *,
801 gdb_byte *, gdb_byte *,
802 int, struct dwarf2_cu *);
803
804static gdb_byte *read_partial_die (struct partial_die_info *,
805 struct abbrev_info *abbrev,
806 unsigned int, bfd *,
807 gdb_byte *, gdb_byte *,
808 struct dwarf2_cu *);
809
810static struct partial_die_info *find_partial_die (unsigned int,
811 struct dwarf2_cu *);
812
813static void fixup_partial_die (struct partial_die_info *,
814 struct dwarf2_cu *);
815
816static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
817 bfd *, gdb_byte *, struct dwarf2_cu *);
818
819static gdb_byte *read_attribute_value (struct attribute *, unsigned,
820 bfd *, gdb_byte *, struct dwarf2_cu *);
821
822static unsigned int read_1_byte (bfd *, gdb_byte *);
823
824static int read_1_signed_byte (bfd *, gdb_byte *);
825
826static unsigned int read_2_bytes (bfd *, gdb_byte *);
827
828static unsigned int read_4_bytes (bfd *, gdb_byte *);
829
830static ULONGEST read_8_bytes (bfd *, gdb_byte *);
831
832static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
833 unsigned int *);
834
835static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
836
837static LONGEST read_checked_initial_length_and_offset
838 (bfd *, gdb_byte *, const struct comp_unit_head *,
839 unsigned int *, unsigned int *);
840
841static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
842 unsigned int *);
843
844static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
845
846static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
847
848static char *read_string (bfd *, gdb_byte *, unsigned int *);
849
850static char *read_indirect_string (bfd *, gdb_byte *,
851 const struct comp_unit_head *,
852 unsigned int *);
853
854static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
855
856static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
857
858static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
859
860static void set_cu_language (unsigned int, struct dwarf2_cu *);
861
862static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
863 struct dwarf2_cu *);
864
865static struct attribute *dwarf2_attr_no_follow (struct die_info *,
866 unsigned int,
867 struct dwarf2_cu *);
868
869static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
870 struct dwarf2_cu *cu);
871
872static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
873
874static struct die_info *die_specification (struct die_info *die,
875 struct dwarf2_cu **);
876
877static void free_line_header (struct line_header *lh);
878
879static void add_file_name (struct line_header *, char *, unsigned int,
880 unsigned int, unsigned int);
881
882static struct line_header *(dwarf_decode_line_header
883 (unsigned int offset,
884 bfd *abfd, struct dwarf2_cu *cu));
885
886static void dwarf_decode_lines (struct line_header *, char *, bfd *,
887 struct dwarf2_cu *, struct partial_symtab *);
888
889static void dwarf2_start_subfile (char *, char *, char *);
890
891static struct symbol *new_symbol (struct die_info *, struct type *,
892 struct dwarf2_cu *);
893
894static void dwarf2_const_value (struct attribute *, struct symbol *,
895 struct dwarf2_cu *);
896
897static void dwarf2_const_value_data (struct attribute *attr,
898 struct symbol *sym,
899 int bits);
900
901static struct type *die_type (struct die_info *, struct dwarf2_cu *);
902
903static int need_gnat_info (struct dwarf2_cu *);
904
905static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
906
907static void set_descriptive_type (struct type *, struct die_info *,
908 struct dwarf2_cu *);
909
910static struct type *die_containing_type (struct die_info *,
911 struct dwarf2_cu *);
912
913static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
914
915static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
916
917static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
918
919static char *typename_concat (struct obstack *obs, const char *prefix,
920 const char *suffix, int physname,
921 struct dwarf2_cu *cu);
922
923static void read_file_scope (struct die_info *, struct dwarf2_cu *);
924
925static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
926
927static void read_func_scope (struct die_info *, struct dwarf2_cu *);
928
929static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
930
931static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
932 struct dwarf2_cu *, struct partial_symtab *);
933
934static int dwarf2_get_pc_bounds (struct die_info *,
935 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
936 struct partial_symtab *);
937
938static void get_scope_pc_bounds (struct die_info *,
939 CORE_ADDR *, CORE_ADDR *,
940 struct dwarf2_cu *);
941
942static void dwarf2_record_block_ranges (struct die_info *, struct block *,
943 CORE_ADDR, struct dwarf2_cu *);
944
945static void dwarf2_add_field (struct field_info *, struct die_info *,
946 struct dwarf2_cu *);
947
948static void dwarf2_attach_fields_to_type (struct field_info *,
949 struct type *, struct dwarf2_cu *);
950
951static void dwarf2_add_member_fn (struct field_info *,
952 struct die_info *, struct type *,
953 struct dwarf2_cu *);
954
955static void dwarf2_attach_fn_fields_to_type (struct field_info *,
956 struct type *, struct dwarf2_cu *);
957
958static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
959
960static void read_common_block (struct die_info *, struct dwarf2_cu *);
961
962static void read_namespace (struct die_info *die, struct dwarf2_cu *);
963
964static void read_module (struct die_info *die, struct dwarf2_cu *cu);
965
966static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
967
968static struct type *read_module_type (struct die_info *die,
969 struct dwarf2_cu *cu);
970
971static const char *namespace_name (struct die_info *die,
972 int *is_anonymous, struct dwarf2_cu *);
973
974static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
975
976static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
977
978static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
979 struct dwarf2_cu *);
980
981static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
982
983static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
984 gdb_byte *info_ptr,
985 gdb_byte **new_info_ptr,
986 struct die_info *parent);
987
988static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
989 gdb_byte *info_ptr,
990 gdb_byte **new_info_ptr,
991 struct die_info *parent);
992
993static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
994 gdb_byte *info_ptr,
995 gdb_byte **new_info_ptr,
996 struct die_info *parent);
997
998static gdb_byte *read_full_die (const struct die_reader_specs *reader,
999 struct die_info **, gdb_byte *,
1000 int *);
1001
1002static void process_die (struct die_info *, struct dwarf2_cu *);
1003
1004static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1005 struct obstack *);
1006
1007static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1008
1009static struct die_info *dwarf2_extension (struct die_info *die,
1010 struct dwarf2_cu **);
1011
1012static char *dwarf_tag_name (unsigned int);
1013
1014static char *dwarf_attr_name (unsigned int);
1015
1016static char *dwarf_form_name (unsigned int);
1017
1018static char *dwarf_bool_name (unsigned int);
1019
1020static char *dwarf_type_encoding_name (unsigned int);
1021
1022#if 0
1023static char *dwarf_cfi_name (unsigned int);
1024#endif
1025
1026static struct die_info *sibling_die (struct die_info *);
1027
1028static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1029
1030static void dump_die_for_error (struct die_info *);
1031
1032static void dump_die_1 (struct ui_file *, int level, int max_level,
1033 struct die_info *);
1034
1035/*static*/ void dump_die (struct die_info *, int max_level);
1036
1037static void store_in_ref_table (struct die_info *,
1038 struct dwarf2_cu *);
1039
1040static int is_ref_attr (struct attribute *);
1041
1042static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1043
1044static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1045
1046static struct die_info *follow_die_ref_or_sig (struct die_info *,
1047 struct attribute *,
1048 struct dwarf2_cu **);
1049
1050static struct die_info *follow_die_ref (struct die_info *,
1051 struct attribute *,
1052 struct dwarf2_cu **);
1053
1054static struct die_info *follow_die_sig (struct die_info *,
1055 struct attribute *,
1056 struct dwarf2_cu **);
1057
1058static void read_signatured_type_at_offset (struct objfile *objfile,
1059 unsigned int offset);
1060
1061static void read_signatured_type (struct objfile *,
1062 struct signatured_type *type_sig);
1063
1064/* memory allocation interface */
1065
1066static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1067
1068static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1069
1070static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1071
1072static void initialize_cu_func_list (struct dwarf2_cu *);
1073
1074static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1075 struct dwarf2_cu *);
1076
1077static void dwarf_decode_macros (struct line_header *, unsigned int,
1078 char *, bfd *, struct dwarf2_cu *);
1079
1080static int attr_form_is_block (struct attribute *);
1081
1082static int attr_form_is_section_offset (struct attribute *);
1083
1084static int attr_form_is_constant (struct attribute *);
1085
1086static void dwarf2_symbol_mark_computed (struct attribute *attr,
1087 struct symbol *sym,
1088 struct dwarf2_cu *cu);
1089
1090static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1091 struct abbrev_info *abbrev,
1092 struct dwarf2_cu *cu);
1093
1094static void free_stack_comp_unit (void *);
1095
1096static hashval_t partial_die_hash (const void *item);
1097
1098static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1099
1100static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1101 (unsigned int offset, struct objfile *objfile);
1102
1103static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1104 (unsigned int offset, struct objfile *objfile);
1105
1106static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1107
1108static void free_one_comp_unit (void *);
1109
1110static void free_cached_comp_units (void *);
1111
1112static void age_cached_comp_units (void);
1113
1114static void free_one_cached_comp_unit (void *);
1115
1116static struct type *set_die_type (struct die_info *, struct type *,
1117 struct dwarf2_cu *);
1118
1119static void create_all_comp_units (struct objfile *);
1120
1121static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1122 struct objfile *);
1123
1124static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1125
1126static void dwarf2_add_dependence (struct dwarf2_cu *,
1127 struct dwarf2_per_cu_data *);
1128
1129static void dwarf2_mark (struct dwarf2_cu *);
1130
1131static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1132
1133static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1134
1135/* Try to locate the sections we need for DWARF 2 debugging
1136 information and return true if we have enough to do something. */
1137
1138int
1139dwarf2_has_info (struct objfile *objfile)
1140{
1141 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1142 if (!dwarf2_per_objfile)
1143 {
1144 /* Initialize per-objfile state. */
1145 struct dwarf2_per_objfile *data
1146 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1147
1148 memset (data, 0, sizeof (*data));
1149 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1150 dwarf2_per_objfile = data;
1151
1152 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1153 dwarf2_per_objfile->objfile = objfile;
1154 }
1155 return (dwarf2_per_objfile->info.asection != NULL
1156 && dwarf2_per_objfile->abbrev.asection != NULL);
1157}
1158
1159/* When loading sections, we can either look for ".<name>", or for
1160 * ".z<name>", which indicates a compressed section. */
1161
1162static int
1163section_is_p (const char *section_name, const char *name)
1164{
1165 return (section_name[0] == '.'
1166 && (strcmp (section_name + 1, name) == 0
1167 || (section_name[1] == 'z'
1168 && strcmp (section_name + 2, name) == 0)));
1169}
1170
1171/* This function is mapped across the sections and remembers the
1172 offset and size of each of the debugging sections we are interested
1173 in. */
1174
1175static void
1176dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1177{
1178 if (section_is_p (sectp->name, INFO_SECTION))
1179 {
1180 dwarf2_per_objfile->info.asection = sectp;
1181 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1182 }
1183 else if (section_is_p (sectp->name, ABBREV_SECTION))
1184 {
1185 dwarf2_per_objfile->abbrev.asection = sectp;
1186 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1187 }
1188 else if (section_is_p (sectp->name, LINE_SECTION))
1189 {
1190 dwarf2_per_objfile->line.asection = sectp;
1191 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1192 }
1193 else if (section_is_p (sectp->name, LOC_SECTION))
1194 {
1195 dwarf2_per_objfile->loc.asection = sectp;
1196 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1197 }
1198 else if (section_is_p (sectp->name, MACINFO_SECTION))
1199 {
1200 dwarf2_per_objfile->macinfo.asection = sectp;
1201 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1202 }
1203 else if (section_is_p (sectp->name, STR_SECTION))
1204 {
1205 dwarf2_per_objfile->str.asection = sectp;
1206 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1207 }
1208 else if (section_is_p (sectp->name, FRAME_SECTION))
1209 {
1210 dwarf2_per_objfile->frame.asection = sectp;
1211 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1212 }
1213 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1214 {
1215 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1216
1217 if (aflag & SEC_HAS_CONTENTS)
1218 {
1219 dwarf2_per_objfile->eh_frame.asection = sectp;
1220 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1221 }
1222 }
1223 else if (section_is_p (sectp->name, RANGES_SECTION))
1224 {
1225 dwarf2_per_objfile->ranges.asection = sectp;
1226 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1227 }
1228 else if (section_is_p (sectp->name, TYPES_SECTION))
1229 {
1230 dwarf2_per_objfile->types.asection = sectp;
1231 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1232 }
1233
1234 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1235 && bfd_section_vma (abfd, sectp) == 0)
1236 dwarf2_per_objfile->has_section_at_zero = 1;
1237}
1238
1239/* Decompress a section that was compressed using zlib. Store the
1240 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1241
1242static void
1243zlib_decompress_section (struct objfile *objfile, asection *sectp,
1244 gdb_byte **outbuf, bfd_size_type *outsize)
1245{
1246 bfd *abfd = objfile->obfd;
1247#ifndef HAVE_ZLIB_H
1248 error (_("Support for zlib-compressed DWARF data (from '%s') "
1249 "is disabled in this copy of GDB"),
1250 bfd_get_filename (abfd));
1251#else
1252 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1253 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1254 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1255 bfd_size_type uncompressed_size;
1256 gdb_byte *uncompressed_buffer;
1257 z_stream strm;
1258 int rc;
1259 int header_size = 12;
1260
1261 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1262 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1263 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1264 bfd_get_filename (abfd));
1265
1266 /* Read the zlib header. In this case, it should be "ZLIB" followed
1267 by the uncompressed section size, 8 bytes in big-endian order. */
1268 if (compressed_size < header_size
1269 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1270 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1271 bfd_get_filename (abfd));
1272 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1273 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1274 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1275 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1276 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1277 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1278 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1279 uncompressed_size += compressed_buffer[11];
1280
1281 /* It is possible the section consists of several compressed
1282 buffers concatenated together, so we uncompress in a loop. */
1283 strm.zalloc = NULL;
1284 strm.zfree = NULL;
1285 strm.opaque = NULL;
1286 strm.avail_in = compressed_size - header_size;
1287 strm.next_in = (Bytef*) compressed_buffer + header_size;
1288 strm.avail_out = uncompressed_size;
1289 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1290 uncompressed_size);
1291 rc = inflateInit (&strm);
1292 while (strm.avail_in > 0)
1293 {
1294 if (rc != Z_OK)
1295 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1296 bfd_get_filename (abfd), rc);
1297 strm.next_out = ((Bytef*) uncompressed_buffer
1298 + (uncompressed_size - strm.avail_out));
1299 rc = inflate (&strm, Z_FINISH);
1300 if (rc != Z_STREAM_END)
1301 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1302 bfd_get_filename (abfd), rc);
1303 rc = inflateReset (&strm);
1304 }
1305 rc = inflateEnd (&strm);
1306 if (rc != Z_OK
1307 || strm.avail_out != 0)
1308 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1309 bfd_get_filename (abfd), rc);
1310
1311 do_cleanups (cleanup);
1312 *outbuf = uncompressed_buffer;
1313 *outsize = uncompressed_size;
1314#endif
1315}
1316
1317/* Read the contents of the section SECTP from object file specified by
1318 OBJFILE, store info about the section into INFO.
1319 If the section is compressed, uncompress it before returning. */
1320
1321static void
1322dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1323{
1324 bfd *abfd = objfile->obfd;
1325 asection *sectp = info->asection;
1326 gdb_byte *buf, *retbuf;
1327 unsigned char header[4];
1328
1329 if (info->readin)
1330 return;
1331 info->buffer = NULL;
1332 info->was_mmapped = 0;
1333 info->readin = 1;
1334
1335 if (info->asection == NULL || info->size == 0)
1336 return;
1337
1338 /* Check if the file has a 4-byte header indicating compression. */
1339 if (info->size > sizeof (header)
1340 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1341 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1342 {
1343 /* Upon decompression, update the buffer and its size. */
1344 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1345 {
1346 zlib_decompress_section (objfile, sectp, &info->buffer,
1347 &info->size);
1348 return;
1349 }
1350 }
1351
1352#ifdef HAVE_MMAP
1353 if (pagesize == 0)
1354 pagesize = getpagesize ();
1355
1356 /* Only try to mmap sections which are large enough: we don't want to
1357 waste space due to fragmentation. Also, only try mmap for sections
1358 without relocations. */
1359
1360 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1361 {
1362 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1363 size_t map_length = info->size + sectp->filepos - pg_offset;
1364 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1365 MAP_PRIVATE, pg_offset);
1366
1367 if (retbuf != MAP_FAILED)
1368 {
1369 info->was_mmapped = 1;
1370 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1371#if HAVE_POSIX_MADVISE
1372 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1373#endif
1374 return;
1375 }
1376 }
1377#endif
1378
1379 /* If we get here, we are a normal, not-compressed section. */
1380 info->buffer = buf
1381 = obstack_alloc (&objfile->objfile_obstack, info->size);
1382
1383 /* When debugging .o files, we may need to apply relocations; see
1384 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1385 We never compress sections in .o files, so we only need to
1386 try this when the section is not compressed. */
1387 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1388 if (retbuf != NULL)
1389 {
1390 info->buffer = retbuf;
1391 return;
1392 }
1393
1394 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1395 || bfd_bread (buf, info->size, abfd) != info->size)
1396 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1397 bfd_get_filename (abfd));
1398}
1399
1400/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1401 SECTION_NAME. */
1402
1403void
1404dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1405 asection **sectp, gdb_byte **bufp,
1406 bfd_size_type *sizep)
1407{
1408 struct dwarf2_per_objfile *data
1409 = objfile_data (objfile, dwarf2_objfile_data_key);
1410 struct dwarf2_section_info *info;
1411
1412 /* We may see an objfile without any DWARF, in which case we just
1413 return nothing. */
1414 if (data == NULL)
1415 {
1416 *sectp = NULL;
1417 *bufp = NULL;
1418 *sizep = 0;
1419 return;
1420 }
1421 if (section_is_p (section_name, EH_FRAME_SECTION))
1422 info = &data->eh_frame;
1423 else if (section_is_p (section_name, FRAME_SECTION))
1424 info = &data->frame;
1425 else
1426 gdb_assert (0);
1427
1428 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1429 /* We haven't read this section in yet. Do it now. */
1430 dwarf2_read_section (objfile, info);
1431
1432 *sectp = info->asection;
1433 *bufp = info->buffer;
1434 *sizep = info->size;
1435}
1436
1437/* Build a partial symbol table. */
1438
1439void
1440dwarf2_build_psymtabs (struct objfile *objfile)
1441{
1442 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
1443 {
1444 init_psymbol_list (objfile, 1024);
1445 }
1446
1447 dwarf2_build_psymtabs_hard (objfile);
1448}
1449
1450/* Return TRUE if OFFSET is within CU_HEADER. */
1451
1452static inline int
1453offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
1454{
1455 unsigned int bottom = cu_header->offset;
1456 unsigned int top = (cu_header->offset
1457 + cu_header->length
1458 + cu_header->initial_length_size);
1459
1460 return (offset >= bottom && offset < top);
1461}
1462
1463/* Read in the comp unit header information from the debug_info at info_ptr.
1464 NOTE: This leaves members offset, first_die_offset to be filled in
1465 by the caller. */
1466
1467static gdb_byte *
1468read_comp_unit_head (struct comp_unit_head *cu_header,
1469 gdb_byte *info_ptr, bfd *abfd)
1470{
1471 int signed_addr;
1472 unsigned int bytes_read;
1473
1474 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
1475 cu_header->initial_length_size = bytes_read;
1476 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
1477 info_ptr += bytes_read;
1478 cu_header->version = read_2_bytes (abfd, info_ptr);
1479 info_ptr += 2;
1480 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1481 &bytes_read);
1482 info_ptr += bytes_read;
1483 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1484 info_ptr += 1;
1485 signed_addr = bfd_get_sign_extend_vma (abfd);
1486 if (signed_addr < 0)
1487 internal_error (__FILE__, __LINE__,
1488 _("read_comp_unit_head: dwarf from non elf file"));
1489 cu_header->signed_addr_p = signed_addr;
1490
1491 return info_ptr;
1492}
1493
1494static gdb_byte *
1495partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1496 gdb_byte *buffer, unsigned int buffer_size,
1497 bfd *abfd)
1498{
1499 gdb_byte *beg_of_comp_unit = info_ptr;
1500
1501 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1502
1503 if (header->version != 2 && header->version != 3 && header->version != 4)
1504 error (_("Dwarf Error: wrong version in compilation unit header "
1505 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
1506 bfd_get_filename (abfd));
1507
1508 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
1509 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1510 "(offset 0x%lx + 6) [in module %s]"),
1511 (long) header->abbrev_offset,
1512 (long) (beg_of_comp_unit - buffer),
1513 bfd_get_filename (abfd));
1514
1515 if (beg_of_comp_unit + header->length + header->initial_length_size
1516 > buffer + buffer_size)
1517 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1518 "(offset 0x%lx + 0) [in module %s]"),
1519 (long) header->length,
1520 (long) (beg_of_comp_unit - buffer),
1521 bfd_get_filename (abfd));
1522
1523 return info_ptr;
1524}
1525
1526/* Read in the types comp unit header information from .debug_types entry at
1527 types_ptr. The result is a pointer to one past the end of the header. */
1528
1529static gdb_byte *
1530read_type_comp_unit_head (struct comp_unit_head *cu_header,
1531 ULONGEST *signature,
1532 gdb_byte *types_ptr, bfd *abfd)
1533{
1534 gdb_byte *initial_types_ptr = types_ptr;
1535
1536 dwarf2_read_section (dwarf2_per_objfile->objfile,
1537 &dwarf2_per_objfile->types);
1538 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
1539
1540 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
1541
1542 *signature = read_8_bytes (abfd, types_ptr);
1543 types_ptr += 8;
1544 types_ptr += cu_header->offset_size;
1545 cu_header->first_die_offset = types_ptr - initial_types_ptr;
1546
1547 return types_ptr;
1548}
1549
1550/* Allocate a new partial symtab for file named NAME and mark this new
1551 partial symtab as being an include of PST. */
1552
1553static void
1554dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1555 struct objfile *objfile)
1556{
1557 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1558
1559 subpst->section_offsets = pst->section_offsets;
1560 subpst->textlow = 0;
1561 subpst->texthigh = 0;
1562
1563 subpst->dependencies = (struct partial_symtab **)
1564 obstack_alloc (&objfile->objfile_obstack,
1565 sizeof (struct partial_symtab *));
1566 subpst->dependencies[0] = pst;
1567 subpst->number_of_dependencies = 1;
1568
1569 subpst->globals_offset = 0;
1570 subpst->n_global_syms = 0;
1571 subpst->statics_offset = 0;
1572 subpst->n_static_syms = 0;
1573 subpst->symtab = NULL;
1574 subpst->read_symtab = pst->read_symtab;
1575 subpst->readin = 0;
1576
1577 /* No private part is necessary for include psymtabs. This property
1578 can be used to differentiate between such include psymtabs and
1579 the regular ones. */
1580 subpst->read_symtab_private = NULL;
1581}
1582
1583/* Read the Line Number Program data and extract the list of files
1584 included by the source file represented by PST. Build an include
1585 partial symtab for each of these included files. */
1586
1587static void
1588dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1589 struct die_info *die,
1590 struct partial_symtab *pst)
1591{
1592 struct objfile *objfile = cu->objfile;
1593 bfd *abfd = objfile->obfd;
1594 struct line_header *lh = NULL;
1595 struct attribute *attr;
1596
1597 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
1598 if (attr)
1599 {
1600 unsigned int line_offset = DW_UNSND (attr);
1601
1602 lh = dwarf_decode_line_header (line_offset, abfd, cu);
1603 }
1604 if (lh == NULL)
1605 return; /* No linetable, so no includes. */
1606
1607 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1608
1609 free_line_header (lh);
1610}
1611
1612static hashval_t
1613hash_type_signature (const void *item)
1614{
1615 const struct signatured_type *type_sig = item;
1616
1617 /* This drops the top 32 bits of the signature, but is ok for a hash. */
1618 return type_sig->signature;
1619}
1620
1621static int
1622eq_type_signature (const void *item_lhs, const void *item_rhs)
1623{
1624 const struct signatured_type *lhs = item_lhs;
1625 const struct signatured_type *rhs = item_rhs;
1626
1627 return lhs->signature == rhs->signature;
1628}
1629
1630/* Create the hash table of all entries in the .debug_types section.
1631 The result is zero if there is an error (e.g. missing .debug_types section),
1632 otherwise non-zero. */
1633
1634static int
1635create_debug_types_hash_table (struct objfile *objfile)
1636{
1637 gdb_byte *info_ptr;
1638 htab_t types_htab;
1639
1640 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
1641 info_ptr = dwarf2_per_objfile->types.buffer;
1642
1643 if (info_ptr == NULL)
1644 {
1645 dwarf2_per_objfile->signatured_types = NULL;
1646 return 0;
1647 }
1648
1649 types_htab = htab_create_alloc_ex (41,
1650 hash_type_signature,
1651 eq_type_signature,
1652 NULL,
1653 &objfile->objfile_obstack,
1654 hashtab_obstack_allocate,
1655 dummy_obstack_deallocate);
1656
1657 if (dwarf2_die_debug)
1658 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
1659
1660 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1661 {
1662 unsigned int offset;
1663 unsigned int offset_size;
1664 unsigned int type_offset;
1665 unsigned int length, initial_length_size;
1666 unsigned short version;
1667 ULONGEST signature;
1668 struct signatured_type *type_sig;
1669 void **slot;
1670 gdb_byte *ptr = info_ptr;
1671
1672 offset = ptr - dwarf2_per_objfile->types.buffer;
1673
1674 /* We need to read the type's signature in order to build the hash
1675 table, but we don't need to read anything else just yet. */
1676
1677 /* Sanity check to ensure entire cu is present. */
1678 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
1679 if (ptr + length + initial_length_size
1680 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1681 {
1682 complaint (&symfile_complaints,
1683 _("debug type entry runs off end of `.debug_types' section, ignored"));
1684 break;
1685 }
1686
1687 offset_size = initial_length_size == 4 ? 4 : 8;
1688 ptr += initial_length_size;
1689 version = bfd_get_16 (objfile->obfd, ptr);
1690 ptr += 2;
1691 ptr += offset_size; /* abbrev offset */
1692 ptr += 1; /* address size */
1693 signature = bfd_get_64 (objfile->obfd, ptr);
1694 ptr += 8;
1695 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
1696
1697 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
1698 memset (type_sig, 0, sizeof (*type_sig));
1699 type_sig->signature = signature;
1700 type_sig->offset = offset;
1701 type_sig->type_offset = type_offset;
1702
1703 slot = htab_find_slot (types_htab, type_sig, INSERT);
1704 gdb_assert (slot != NULL);
1705 *slot = type_sig;
1706
1707 if (dwarf2_die_debug)
1708 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
1709 offset, phex (signature, sizeof (signature)));
1710
1711 info_ptr = info_ptr + initial_length_size + length;
1712 }
1713
1714 dwarf2_per_objfile->signatured_types = types_htab;
1715
1716 return 1;
1717}
1718
1719/* Lookup a signature based type.
1720 Returns NULL if SIG is not present in the table. */
1721
1722static struct signatured_type *
1723lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
1724{
1725 struct signatured_type find_entry, *entry;
1726
1727 if (dwarf2_per_objfile->signatured_types == NULL)
1728 {
1729 complaint (&symfile_complaints,
1730 _("missing `.debug_types' section for DW_FORM_sig8 die"));
1731 return 0;
1732 }
1733
1734 find_entry.signature = sig;
1735 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
1736 return entry;
1737}
1738
1739/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
1740
1741static void
1742init_cu_die_reader (struct die_reader_specs *reader,
1743 struct dwarf2_cu *cu)
1744{
1745 reader->abfd = cu->objfile->obfd;
1746 reader->cu = cu;
1747 if (cu->per_cu->from_debug_types)
1748 {
1749 gdb_assert (dwarf2_per_objfile->types.readin);
1750 reader->buffer = dwarf2_per_objfile->types.buffer;
1751 }
1752 else
1753 {
1754 gdb_assert (dwarf2_per_objfile->info.readin);
1755 reader->buffer = dwarf2_per_objfile->info.buffer;
1756 }
1757}
1758
1759/* Find the base address of the compilation unit for range lists and
1760 location lists. It will normally be specified by DW_AT_low_pc.
1761 In DWARF-3 draft 4, the base address could be overridden by
1762 DW_AT_entry_pc. It's been removed, but GCC still uses this for
1763 compilation units with discontinuous ranges. */
1764
1765static void
1766dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
1767{
1768 struct attribute *attr;
1769
1770 cu->base_known = 0;
1771 cu->base_address = 0;
1772
1773 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
1774 if (attr)
1775 {
1776 cu->base_address = DW_ADDR (attr);
1777 cu->base_known = 1;
1778 }
1779 else
1780 {
1781 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
1782 if (attr)
1783 {
1784 cu->base_address = DW_ADDR (attr);
1785 cu->base_known = 1;
1786 }
1787 }
1788}
1789
1790/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
1791 to combine the common parts.
1792 Process a compilation unit for a psymtab.
1793 BUFFER is a pointer to the beginning of the dwarf section buffer,
1794 either .debug_info or debug_types.
1795 INFO_PTR is a pointer to the start of the CU.
1796 Returns a pointer to the next CU. */
1797
1798static gdb_byte *
1799process_psymtab_comp_unit (struct objfile *objfile,
1800 struct dwarf2_per_cu_data *this_cu,
1801 gdb_byte *buffer, gdb_byte *info_ptr,
1802 unsigned int buffer_size)
1803{
1804 bfd *abfd = objfile->obfd;
1805 gdb_byte *beg_of_comp_unit = info_ptr;
1806 struct die_info *comp_unit_die;
1807 struct partial_symtab *pst;
1808 CORE_ADDR baseaddr;
1809 struct cleanup *back_to_inner;
1810 struct dwarf2_cu cu;
1811 int has_children, has_pc_info;
1812 struct attribute *attr;
1813 CORE_ADDR best_lowpc = 0, best_highpc = 0;
1814 struct die_reader_specs reader_specs;
1815
1816 memset (&cu, 0, sizeof (cu));
1817 cu.objfile = objfile;
1818 obstack_init (&cu.comp_unit_obstack);
1819
1820 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1821
1822 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
1823 buffer, buffer_size,
1824 abfd);
1825
1826 /* Complete the cu_header. */
1827 cu.header.offset = beg_of_comp_unit - buffer;
1828 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
1829
1830 cu.list_in_scope = &file_symbols;
1831
1832 /* If this compilation unit was already read in, free the
1833 cached copy in order to read it in again. This is
1834 necessary because we skipped some symbols when we first
1835 read in the compilation unit (see load_partial_dies).
1836 This problem could be avoided, but the benefit is
1837 unclear. */
1838 if (this_cu->cu != NULL)
1839 free_one_cached_comp_unit (this_cu->cu);
1840
1841 /* Note that this is a pointer to our stack frame, being
1842 added to a global data structure. It will be cleaned up
1843 in free_stack_comp_unit when we finish with this
1844 compilation unit. */
1845 this_cu->cu = &cu;
1846 cu.per_cu = this_cu;
1847
1848 /* Read the abbrevs for this compilation unit into a table. */
1849 dwarf2_read_abbrevs (abfd, &cu);
1850 make_cleanup (dwarf2_free_abbrev_table, &cu);
1851
1852 /* Read the compilation unit die. */
1853 if (this_cu->from_debug_types)
1854 info_ptr += 8 /*signature*/ + cu.header.offset_size;
1855 init_cu_die_reader (&reader_specs, &cu);
1856 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
1857 &has_children);
1858
1859 if (this_cu->from_debug_types)
1860 {
1861 /* offset,length haven't been set yet for type units. */
1862 this_cu->offset = cu.header.offset;
1863 this_cu->length = cu.header.length + cu.header.initial_length_size;
1864 }
1865 else if (comp_unit_die->tag == DW_TAG_partial_unit)
1866 {
1867 info_ptr = (beg_of_comp_unit + cu.header.length
1868 + cu.header.initial_length_size);
1869 do_cleanups (back_to_inner);
1870 return info_ptr;
1871 }
1872
1873 /* Set the language we're debugging. */
1874 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
1875 if (attr)
1876 set_cu_language (DW_UNSND (attr), &cu);
1877 else
1878 set_cu_language (language_minimal, &cu);
1879
1880 /* Allocate a new partial symbol table structure. */
1881 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
1882 pst = start_psymtab_common (objfile, objfile->section_offsets,
1883 (attr != NULL) ? DW_STRING (attr) : "",
1884 /* TEXTLOW and TEXTHIGH are set below. */
1885 0,
1886 objfile->global_psymbols.next,
1887 objfile->static_psymbols.next);
1888
1889 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
1890 if (attr != NULL)
1891 pst->dirname = DW_STRING (attr);
1892
1893 pst->read_symtab_private = this_cu;
1894
1895 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1896
1897 /* Store the function that reads in the rest of the symbol table */
1898 pst->read_symtab = dwarf2_psymtab_to_symtab;
1899
1900 this_cu->psymtab = pst;
1901
1902 dwarf2_find_base_address (comp_unit_die, &cu);
1903
1904 /* Possibly set the default values of LOWPC and HIGHPC from
1905 `DW_AT_ranges'. */
1906 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
1907 &best_highpc, &cu, pst);
1908 if (has_pc_info == 1 && best_lowpc < best_highpc)
1909 /* Store the contiguous range if it is not empty; it can be empty for
1910 CUs with no code. */
1911 addrmap_set_empty (objfile->psymtabs_addrmap,
1912 best_lowpc + baseaddr,
1913 best_highpc + baseaddr - 1, pst);
1914
1915 /* Check if comp unit has_children.
1916 If so, read the rest of the partial symbols from this comp unit.
1917 If not, there's no more debug_info for this comp unit. */
1918 if (has_children)
1919 {
1920 struct partial_die_info *first_die;
1921 CORE_ADDR lowpc, highpc;
1922
1923 lowpc = ((CORE_ADDR) -1);
1924 highpc = ((CORE_ADDR) 0);
1925
1926 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
1927
1928 scan_partial_symbols (first_die, &lowpc, &highpc,
1929 ! has_pc_info, &cu);
1930
1931 /* If we didn't find a lowpc, set it to highpc to avoid
1932 complaints from `maint check'. */
1933 if (lowpc == ((CORE_ADDR) -1))
1934 lowpc = highpc;
1935
1936 /* If the compilation unit didn't have an explicit address range,
1937 then use the information extracted from its child dies. */
1938 if (! has_pc_info)
1939 {
1940 best_lowpc = lowpc;
1941 best_highpc = highpc;
1942 }
1943 }
1944 pst->textlow = best_lowpc + baseaddr;
1945 pst->texthigh = best_highpc + baseaddr;
1946
1947 pst->n_global_syms = objfile->global_psymbols.next -
1948 (objfile->global_psymbols.list + pst->globals_offset);
1949 pst->n_static_syms = objfile->static_psymbols.next -
1950 (objfile->static_psymbols.list + pst->statics_offset);
1951 sort_pst_symbols (pst);
1952
1953 info_ptr = (beg_of_comp_unit + cu.header.length
1954 + cu.header.initial_length_size);
1955
1956 if (this_cu->from_debug_types)
1957 {
1958 /* It's not clear we want to do anything with stmt lists here.
1959 Waiting to see what gcc ultimately does. */
1960 }
1961 else
1962 {
1963 /* Get the list of files included in the current compilation unit,
1964 and build a psymtab for each of them. */
1965 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
1966 }
1967
1968 do_cleanups (back_to_inner);
1969
1970 return info_ptr;
1971}
1972
1973/* Traversal function for htab_traverse_noresize.
1974 Process one .debug_types comp-unit. */
1975
1976static int
1977process_type_comp_unit (void **slot, void *info)
1978{
1979 struct signatured_type *entry = (struct signatured_type *) *slot;
1980 struct objfile *objfile = (struct objfile *) info;
1981 struct dwarf2_per_cu_data *this_cu;
1982
1983 this_cu = &entry->per_cu;
1984 this_cu->from_debug_types = 1;
1985
1986 gdb_assert (dwarf2_per_objfile->types.readin);
1987 process_psymtab_comp_unit (objfile, this_cu,
1988 dwarf2_per_objfile->types.buffer,
1989 dwarf2_per_objfile->types.buffer + entry->offset,
1990 dwarf2_per_objfile->types.size);
1991
1992 return 1;
1993}
1994
1995/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
1996 Build partial symbol tables for the .debug_types comp-units. */
1997
1998static void
1999build_type_psymtabs (struct objfile *objfile)
2000{
2001 if (! create_debug_types_hash_table (objfile))
2002 return;
2003
2004 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
2005 process_type_comp_unit, objfile);
2006}
2007
2008/* A cleanup function that clears objfile's psymtabs_addrmap field. */
2009
2010static void
2011psymtabs_addrmap_cleanup (void *o)
2012{
2013 struct objfile *objfile = o;
2014
2015 objfile->psymtabs_addrmap = NULL;
2016}
2017
2018/* Build the partial symbol table by doing a quick pass through the
2019 .debug_info and .debug_abbrev sections. */
2020
2021static void
2022dwarf2_build_psymtabs_hard (struct objfile *objfile)
2023{
2024 gdb_byte *info_ptr;
2025 struct cleanup *back_to, *addrmap_cleanup;
2026 struct obstack temp_obstack;
2027
2028 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
2029 info_ptr = dwarf2_per_objfile->info.buffer;
2030
2031 /* Any cached compilation units will be linked by the per-objfile
2032 read_in_chain. Make sure to free them when we're done. */
2033 back_to = make_cleanup (free_cached_comp_units, NULL);
2034
2035 build_type_psymtabs (objfile);
2036
2037 create_all_comp_units (objfile);
2038
2039 /* Create a temporary address map on a temporary obstack. We later
2040 copy this to the final obstack. */
2041 obstack_init (&temp_obstack);
2042 make_cleanup_obstack_free (&temp_obstack);
2043 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
2044 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
2045
2046 /* Since the objects we're extracting from .debug_info vary in
2047 length, only the individual functions to extract them (like
2048 read_comp_unit_head and load_partial_die) can really know whether
2049 the buffer is large enough to hold another complete object.
2050
2051 At the moment, they don't actually check that. If .debug_info
2052 holds just one extra byte after the last compilation unit's dies,
2053 then read_comp_unit_head will happily read off the end of the
2054 buffer. read_partial_die is similarly casual. Those functions
2055 should be fixed.
2056
2057 For this loop condition, simply checking whether there's any data
2058 left at all should be sufficient. */
2059
2060 while (info_ptr < (dwarf2_per_objfile->info.buffer
2061 + dwarf2_per_objfile->info.size))
2062 {
2063 struct dwarf2_per_cu_data *this_cu;
2064
2065 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
2066 objfile);
2067
2068 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
2069 dwarf2_per_objfile->info.buffer,
2070 info_ptr,
2071 dwarf2_per_objfile->info.size);
2072 }
2073
2074 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
2075 &objfile->objfile_obstack);
2076 discard_cleanups (addrmap_cleanup);
2077
2078 do_cleanups (back_to);
2079}
2080
2081/* Load the partial DIEs for a secondary CU into memory. */
2082
2083static void
2084load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
2085 struct objfile *objfile)
2086{
2087 bfd *abfd = objfile->obfd;
2088 gdb_byte *info_ptr, *beg_of_comp_unit;
2089 struct die_info *comp_unit_die;
2090 struct dwarf2_cu *cu;
2091 struct cleanup *back_to;
2092 struct attribute *attr;
2093 int has_children;
2094 struct die_reader_specs reader_specs;
2095
2096 gdb_assert (! this_cu->from_debug_types);
2097
2098 gdb_assert (dwarf2_per_objfile->info.readin);
2099 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
2100 beg_of_comp_unit = info_ptr;
2101
2102 cu = alloc_one_comp_unit (objfile);
2103
2104 /* ??? Missing cleanup for CU? */
2105
2106 /* Link this compilation unit into the compilation unit tree. */
2107 this_cu->cu = cu;
2108 cu->per_cu = this_cu;
2109 cu->type_hash = this_cu->type_hash;
2110
2111 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
2112 dwarf2_per_objfile->info.buffer,
2113 dwarf2_per_objfile->info.size,
2114 abfd);
2115
2116 /* Complete the cu_header. */
2117 cu->header.offset = this_cu->offset;
2118 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
2119
2120 /* Read the abbrevs for this compilation unit into a table. */
2121 dwarf2_read_abbrevs (abfd, cu);
2122 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2123
2124 /* Read the compilation unit die. */
2125 init_cu_die_reader (&reader_specs, cu);
2126 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2127 &has_children);
2128
2129 /* Set the language we're debugging. */
2130 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
2131 if (attr)
2132 set_cu_language (DW_UNSND (attr), cu);
2133 else
2134 set_cu_language (language_minimal, cu);
2135
2136 /* Check if comp unit has_children.
2137 If so, read the rest of the partial symbols from this comp unit.
2138 If not, there's no more debug_info for this comp unit. */
2139 if (has_children)
2140 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
2141
2142 do_cleanups (back_to);
2143}
2144
2145/* Create a list of all compilation units in OBJFILE. We do this only
2146 if an inter-comp-unit reference is found; presumably if there is one,
2147 there will be many, and one will occur early in the .debug_info section.
2148 So there's no point in building this list incrementally. */
2149
2150static void
2151create_all_comp_units (struct objfile *objfile)
2152{
2153 int n_allocated;
2154 int n_comp_units;
2155 struct dwarf2_per_cu_data **all_comp_units;
2156 gdb_byte *info_ptr;
2157
2158 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
2159 info_ptr = dwarf2_per_objfile->info.buffer;
2160
2161 n_comp_units = 0;
2162 n_allocated = 10;
2163 all_comp_units = xmalloc (n_allocated
2164 * sizeof (struct dwarf2_per_cu_data *));
2165
2166 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
2167 {
2168 unsigned int length, initial_length_size;
2169 struct dwarf2_per_cu_data *this_cu;
2170 unsigned int offset;
2171
2172 offset = info_ptr - dwarf2_per_objfile->info.buffer;
2173
2174 /* Read just enough information to find out where the next
2175 compilation unit is. */
2176 length = read_initial_length (objfile->obfd, info_ptr,
2177 &initial_length_size);
2178
2179 /* Save the compilation unit for later lookup. */
2180 this_cu = obstack_alloc (&objfile->objfile_obstack,
2181 sizeof (struct dwarf2_per_cu_data));
2182 memset (this_cu, 0, sizeof (*this_cu));
2183 this_cu->offset = offset;
2184 this_cu->length = length + initial_length_size;
2185
2186 if (n_comp_units == n_allocated)
2187 {
2188 n_allocated *= 2;
2189 all_comp_units = xrealloc (all_comp_units,
2190 n_allocated
2191 * sizeof (struct dwarf2_per_cu_data *));
2192 }
2193 all_comp_units[n_comp_units++] = this_cu;
2194
2195 info_ptr = info_ptr + this_cu->length;
2196 }
2197
2198 dwarf2_per_objfile->all_comp_units
2199 = obstack_alloc (&objfile->objfile_obstack,
2200 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2201 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
2202 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2203 xfree (all_comp_units);
2204 dwarf2_per_objfile->n_comp_units = n_comp_units;
2205}
2206
2207/* Process all loaded DIEs for compilation unit CU, starting at
2208 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
2209 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
2210 DW_AT_ranges). If NEED_PC is set, then this function will set
2211 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
2212 and record the covered ranges in the addrmap. */
2213
2214static void
2215scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
2216 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2217{
2218 struct partial_die_info *pdi;
2219
2220 /* Now, march along the PDI's, descending into ones which have
2221 interesting children but skipping the children of the other ones,
2222 until we reach the end of the compilation unit. */
2223
2224 pdi = first_die;
2225
2226 while (pdi != NULL)
2227 {
2228 fixup_partial_die (pdi, cu);
2229
2230 /* Anonymous namespaces or modules have no name but have interesting
2231 children, so we need to look at them. Ditto for anonymous
2232 enums. */
2233
2234 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
2235 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
2236 {
2237 switch (pdi->tag)
2238 {
2239 case DW_TAG_subprogram:
2240 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
2241 break;
2242 case DW_TAG_variable:
2243 case DW_TAG_typedef:
2244 case DW_TAG_union_type:
2245 if (!pdi->is_declaration)
2246 {
2247 add_partial_symbol (pdi, cu);
2248 }
2249 break;
2250 case DW_TAG_class_type:
2251 case DW_TAG_interface_type:
2252 case DW_TAG_structure_type:
2253 if (!pdi->is_declaration)
2254 {
2255 add_partial_symbol (pdi, cu);
2256 }
2257 break;
2258 case DW_TAG_enumeration_type:
2259 if (!pdi->is_declaration)
2260 add_partial_enumeration (pdi, cu);
2261 break;
2262 case DW_TAG_base_type:
2263 case DW_TAG_subrange_type:
2264 /* File scope base type definitions are added to the partial
2265 symbol table. */
2266 add_partial_symbol (pdi, cu);
2267 break;
2268 case DW_TAG_namespace:
2269 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
2270 break;
2271 case DW_TAG_module:
2272 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
2273 break;
2274 default:
2275 break;
2276 }
2277 }
2278
2279 /* If the die has a sibling, skip to the sibling. */
2280
2281 pdi = pdi->die_sibling;
2282 }
2283}
2284
2285/* Functions used to compute the fully scoped name of a partial DIE.
2286
2287 Normally, this is simple. For C++, the parent DIE's fully scoped
2288 name is concatenated with "::" and the partial DIE's name. For
2289 Java, the same thing occurs except that "." is used instead of "::".
2290 Enumerators are an exception; they use the scope of their parent
2291 enumeration type, i.e. the name of the enumeration type is not
2292 prepended to the enumerator.
2293
2294 There are two complexities. One is DW_AT_specification; in this
2295 case "parent" means the parent of the target of the specification,
2296 instead of the direct parent of the DIE. The other is compilers
2297 which do not emit DW_TAG_namespace; in this case we try to guess
2298 the fully qualified name of structure types from their members'
2299 linkage names. This must be done using the DIE's children rather
2300 than the children of any DW_AT_specification target. We only need
2301 to do this for structures at the top level, i.e. if the target of
2302 any DW_AT_specification (if any; otherwise the DIE itself) does not
2303 have a parent. */
2304
2305/* Compute the scope prefix associated with PDI's parent, in
2306 compilation unit CU. The result will be allocated on CU's
2307 comp_unit_obstack, or a copy of the already allocated PDI->NAME
2308 field. NULL is returned if no prefix is necessary. */
2309static char *
2310partial_die_parent_scope (struct partial_die_info *pdi,
2311 struct dwarf2_cu *cu)
2312{
2313 char *grandparent_scope;
2314 struct partial_die_info *parent, *real_pdi;
2315
2316 /* We need to look at our parent DIE; if we have a DW_AT_specification,
2317 then this means the parent of the specification DIE. */
2318
2319 real_pdi = pdi;
2320 while (real_pdi->has_specification)
2321 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2322
2323 parent = real_pdi->die_parent;
2324 if (parent == NULL)
2325 return NULL;
2326
2327 if (parent->scope_set)
2328 return parent->scope;
2329
2330 fixup_partial_die (parent, cu);
2331
2332 grandparent_scope = partial_die_parent_scope (parent, cu);
2333
2334 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
2335 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
2336 Work around this problem here. */
2337 if (cu->language == language_cplus
2338 && parent->tag == DW_TAG_namespace
2339 && strcmp (parent->name, "::") == 0
2340 && grandparent_scope == NULL)
2341 {
2342 parent->scope = NULL;
2343 parent->scope_set = 1;
2344 return NULL;
2345 }
2346
2347 if (parent->tag == DW_TAG_namespace
2348 || parent->tag == DW_TAG_module
2349 || parent->tag == DW_TAG_structure_type
2350 || parent->tag == DW_TAG_class_type
2351 || parent->tag == DW_TAG_interface_type
2352 || parent->tag == DW_TAG_union_type
2353 || parent->tag == DW_TAG_enumeration_type)
2354 {
2355 if (grandparent_scope == NULL)
2356 parent->scope = parent->name;
2357 else
2358 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
2359 parent->name, 0, cu);
2360 }
2361 else if (parent->tag == DW_TAG_enumerator)
2362 /* Enumerators should not get the name of the enumeration as a prefix. */
2363 parent->scope = grandparent_scope;
2364 else
2365 {
2366 /* FIXME drow/2004-04-01: What should we be doing with
2367 function-local names? For partial symbols, we should probably be
2368 ignoring them. */
2369 complaint (&symfile_complaints,
2370 _("unhandled containing DIE tag %d for DIE at %d"),
2371 parent->tag, pdi->offset);
2372 parent->scope = grandparent_scope;
2373 }
2374
2375 parent->scope_set = 1;
2376 return parent->scope;
2377}
2378
2379/* Return the fully scoped name associated with PDI, from compilation unit
2380 CU. The result will be allocated with malloc. */
2381static char *
2382partial_die_full_name (struct partial_die_info *pdi,
2383 struct dwarf2_cu *cu)
2384{
2385 char *parent_scope;
2386
2387 parent_scope = partial_die_parent_scope (pdi, cu);
2388 if (parent_scope == NULL)
2389 return NULL;
2390 else
2391 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
2392}
2393
2394static void
2395add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
2396{
2397 struct objfile *objfile = cu->objfile;
2398 CORE_ADDR addr = 0;
2399 char *actual_name = NULL;
2400 const struct partial_symbol *psym = NULL;
2401 CORE_ADDR baseaddr;
2402 int built_actual_name = 0;
2403
2404 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2405
2406 actual_name = partial_die_full_name (pdi, cu);
2407 if (actual_name)
2408 built_actual_name = 1;
2409
2410 if (actual_name == NULL)
2411 actual_name = pdi->name;
2412
2413 switch (pdi->tag)
2414 {
2415 case DW_TAG_subprogram:
2416 if (pdi->is_external || cu->language == language_ada)
2417 {
2418 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
2419 of the global scope. But in Ada, we want to be able to access
2420 nested procedures globally. So all Ada subprograms are stored
2421 in the global scope. */
2422 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
2423 mst_text, objfile); */
2424 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2425 built_actual_name,
2426 VAR_DOMAIN, LOC_BLOCK,
2427 &objfile->global_psymbols,
2428 0, pdi->lowpc + baseaddr,
2429 cu->language, objfile);
2430 }
2431 else
2432 {
2433 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
2434 mst_file_text, objfile); */
2435 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2436 built_actual_name,
2437 VAR_DOMAIN, LOC_BLOCK,
2438 &objfile->static_psymbols,
2439 0, pdi->lowpc + baseaddr,
2440 cu->language, objfile);
2441 }
2442 break;
2443 case DW_TAG_variable:
2444 if (pdi->is_external)
2445 {
2446 /* Global Variable.
2447 Don't enter into the minimal symbol tables as there is
2448 a minimal symbol table entry from the ELF symbols already.
2449 Enter into partial symbol table if it has a location
2450 descriptor or a type.
2451 If the location descriptor is missing, new_symbol will create
2452 a LOC_UNRESOLVED symbol, the address of the variable will then
2453 be determined from the minimal symbol table whenever the variable
2454 is referenced.
2455 The address for the partial symbol table entry is not
2456 used by GDB, but it comes in handy for debugging partial symbol
2457 table building. */
2458
2459 if (pdi->locdesc)
2460 addr = decode_locdesc (pdi->locdesc, cu);
2461 if (pdi->locdesc || pdi->has_type)
2462 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2463 built_actual_name,
2464 VAR_DOMAIN, LOC_STATIC,
2465 &objfile->global_psymbols,
2466 0, addr + baseaddr,
2467 cu->language, objfile);
2468 }
2469 else
2470 {
2471 /* Static Variable. Skip symbols without location descriptors. */
2472 if (pdi->locdesc == NULL)
2473 {
2474 if (built_actual_name)
2475 xfree (actual_name);
2476 return;
2477 }
2478 addr = decode_locdesc (pdi->locdesc, cu);
2479 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
2480 mst_file_data, objfile); */
2481 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2482 built_actual_name,
2483 VAR_DOMAIN, LOC_STATIC,
2484 &objfile->static_psymbols,
2485 0, addr + baseaddr,
2486 cu->language, objfile);
2487 }
2488 break;
2489 case DW_TAG_typedef:
2490 case DW_TAG_base_type:
2491 case DW_TAG_subrange_type:
2492 add_psymbol_to_list (actual_name, strlen (actual_name),
2493 built_actual_name,
2494 VAR_DOMAIN, LOC_TYPEDEF,
2495 &objfile->static_psymbols,
2496 0, (CORE_ADDR) 0, cu->language, objfile);
2497 break;
2498 case DW_TAG_namespace:
2499 add_psymbol_to_list (actual_name, strlen (actual_name),
2500 built_actual_name,
2501 VAR_DOMAIN, LOC_TYPEDEF,
2502 &objfile->global_psymbols,
2503 0, (CORE_ADDR) 0, cu->language, objfile);
2504 break;
2505 case DW_TAG_class_type:
2506 case DW_TAG_interface_type:
2507 case DW_TAG_structure_type:
2508 case DW_TAG_union_type:
2509 case DW_TAG_enumeration_type:
2510 /* Skip external references. The DWARF standard says in the section
2511 about "Structure, Union, and Class Type Entries": "An incomplete
2512 structure, union or class type is represented by a structure,
2513 union or class entry that does not have a byte size attribute
2514 and that has a DW_AT_declaration attribute." */
2515 if (!pdi->has_byte_size && pdi->is_declaration)
2516 {
2517 if (built_actual_name)
2518 xfree (actual_name);
2519 return;
2520 }
2521
2522 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2523 static vs. global. */
2524 add_psymbol_to_list (actual_name, strlen (actual_name),
2525 built_actual_name,
2526 STRUCT_DOMAIN, LOC_TYPEDEF,
2527 (cu->language == language_cplus
2528 || cu->language == language_java)
2529 ? &objfile->global_psymbols
2530 : &objfile->static_psymbols,
2531 0, (CORE_ADDR) 0, cu->language, objfile);
2532
2533 break;
2534 case DW_TAG_enumerator:
2535 add_psymbol_to_list (actual_name, strlen (actual_name),
2536 built_actual_name,
2537 VAR_DOMAIN, LOC_CONST,
2538 (cu->language == language_cplus
2539 || cu->language == language_java)
2540 ? &objfile->global_psymbols
2541 : &objfile->static_psymbols,
2542 0, (CORE_ADDR) 0, cu->language, objfile);
2543 break;
2544 default:
2545 break;
2546 }
2547
2548 if (built_actual_name)
2549 xfree (actual_name);
2550}
2551
2552/* Read a partial die corresponding to a namespace; also, add a symbol
2553 corresponding to that namespace to the symbol table. NAMESPACE is
2554 the name of the enclosing namespace. */
2555
2556static void
2557add_partial_namespace (struct partial_die_info *pdi,
2558 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2559 int need_pc, struct dwarf2_cu *cu)
2560{
2561 /* Add a symbol for the namespace. */
2562
2563 add_partial_symbol (pdi, cu);
2564
2565 /* Now scan partial symbols in that namespace. */
2566
2567 if (pdi->has_children)
2568 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2569}
2570
2571/* Read a partial die corresponding to a Fortran module. */
2572
2573static void
2574add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
2575 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2576{
2577 /* Now scan partial symbols in that module. */
2578
2579 if (pdi->has_children)
2580 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2581}
2582
2583/* Read a partial die corresponding to a subprogram and create a partial
2584 symbol for that subprogram. When the CU language allows it, this
2585 routine also defines a partial symbol for each nested subprogram
2586 that this subprogram contains.
2587
2588 DIE my also be a lexical block, in which case we simply search
2589 recursively for suprograms defined inside that lexical block.
2590 Again, this is only performed when the CU language allows this
2591 type of definitions. */
2592
2593static void
2594add_partial_subprogram (struct partial_die_info *pdi,
2595 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2596 int need_pc, struct dwarf2_cu *cu)
2597{
2598 if (pdi->tag == DW_TAG_subprogram)
2599 {
2600 if (pdi->has_pc_info)
2601 {
2602 if (pdi->lowpc < *lowpc)
2603 *lowpc = pdi->lowpc;
2604 if (pdi->highpc > *highpc)
2605 *highpc = pdi->highpc;
2606 if (need_pc)
2607 {
2608 CORE_ADDR baseaddr;
2609 struct objfile *objfile = cu->objfile;
2610
2611 baseaddr = ANOFFSET (objfile->section_offsets,
2612 SECT_OFF_TEXT (objfile));
2613 addrmap_set_empty (objfile->psymtabs_addrmap,
2614 pdi->lowpc + baseaddr,
2615 pdi->highpc - 1 + baseaddr,
2616 cu->per_cu->psymtab);
2617 }
2618 if (!pdi->is_declaration)
2619 /* Ignore subprogram DIEs that do not have a name, they are
2620 illegal. Do not emit a complaint at this point, we will
2621 do so when we convert this psymtab into a symtab. */
2622 if (pdi->name)
2623 add_partial_symbol (pdi, cu);
2624 }
2625 }
2626
2627 if (! pdi->has_children)
2628 return;
2629
2630 if (cu->language == language_ada)
2631 {
2632 pdi = pdi->die_child;
2633 while (pdi != NULL)
2634 {
2635 fixup_partial_die (pdi, cu);
2636 if (pdi->tag == DW_TAG_subprogram
2637 || pdi->tag == DW_TAG_lexical_block)
2638 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
2639 pdi = pdi->die_sibling;
2640 }
2641 }
2642}
2643
2644/* See if we can figure out if the class lives in a namespace. We do
2645 this by looking for a member function; its demangled name will
2646 contain namespace info, if there is any. */
2647
2648static void
2649guess_structure_name (struct partial_die_info *struct_pdi,
2650 struct dwarf2_cu *cu)
2651{
2652 if ((cu->language == language_cplus
2653 || cu->language == language_java)
2654 && cu->has_namespace_info == 0
2655 && struct_pdi->has_children)
2656 {
2657 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2658 what template types look like, because the demangler
2659 frequently doesn't give the same name as the debug info. We
2660 could fix this by only using the demangled name to get the
2661 prefix (but see comment in read_structure_type). */
2662
2663 struct partial_die_info *real_pdi;
2664
2665 /* If this DIE (this DIE's specification, if any) has a parent, then
2666 we should not do this. We'll prepend the parent's fully qualified
2667 name when we create the partial symbol. */
2668
2669 real_pdi = struct_pdi;
2670 while (real_pdi->has_specification)
2671 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2672
2673 if (real_pdi->die_parent != NULL)
2674 return;
2675 }
2676}
2677
2678/* Read a partial die corresponding to an enumeration type. */
2679
2680static void
2681add_partial_enumeration (struct partial_die_info *enum_pdi,
2682 struct dwarf2_cu *cu)
2683{
2684 struct partial_die_info *pdi;
2685
2686 if (enum_pdi->name != NULL)
2687 add_partial_symbol (enum_pdi, cu);
2688
2689 pdi = enum_pdi->die_child;
2690 while (pdi)
2691 {
2692 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2693 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2694 else
2695 add_partial_symbol (pdi, cu);
2696 pdi = pdi->die_sibling;
2697 }
2698}
2699
2700/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2701 Return the corresponding abbrev, or NULL if the number is zero (indicating
2702 an empty DIE). In either case *BYTES_READ will be set to the length of
2703 the initial number. */
2704
2705static struct abbrev_info *
2706peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2707 struct dwarf2_cu *cu)
2708{
2709 bfd *abfd = cu->objfile->obfd;
2710 unsigned int abbrev_number;
2711 struct abbrev_info *abbrev;
2712
2713 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2714
2715 if (abbrev_number == 0)
2716 return NULL;
2717
2718 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2719 if (!abbrev)
2720 {
2721 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2722 bfd_get_filename (abfd));
2723 }
2724
2725 return abbrev;
2726}
2727
2728/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2729 Returns a pointer to the end of a series of DIEs, terminated by an empty
2730 DIE. Any children of the skipped DIEs will also be skipped. */
2731
2732static gdb_byte *
2733skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
2734{
2735 struct abbrev_info *abbrev;
2736 unsigned int bytes_read;
2737
2738 while (1)
2739 {
2740 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2741 if (abbrev == NULL)
2742 return info_ptr + bytes_read;
2743 else
2744 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
2745 }
2746}
2747
2748/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2749 INFO_PTR should point just after the initial uleb128 of a DIE, and the
2750 abbrev corresponding to that skipped uleb128 should be passed in
2751 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2752 children. */
2753
2754static gdb_byte *
2755skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
2756 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
2757{
2758 unsigned int bytes_read;
2759 struct attribute attr;
2760 bfd *abfd = cu->objfile->obfd;
2761 unsigned int form, i;
2762
2763 for (i = 0; i < abbrev->num_attrs; i++)
2764 {
2765 /* The only abbrev we care about is DW_AT_sibling. */
2766 if (abbrev->attrs[i].name == DW_AT_sibling)
2767 {
2768 read_attribute (&attr, &abbrev->attrs[i],
2769 abfd, info_ptr, cu);
2770 if (attr.form == DW_FORM_ref_addr)
2771 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2772 else
2773 return buffer + dwarf2_get_ref_die_offset (&attr);
2774 }
2775
2776 /* If it isn't DW_AT_sibling, skip this attribute. */
2777 form = abbrev->attrs[i].form;
2778 skip_attribute:
2779 switch (form)
2780 {
2781 case DW_FORM_ref_addr:
2782 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
2783 and later it is offset sized. */
2784 if (cu->header.version == 2)
2785 info_ptr += cu->header.addr_size;
2786 else
2787 info_ptr += cu->header.offset_size;
2788 break;
2789 case DW_FORM_addr:
2790 info_ptr += cu->header.addr_size;
2791 break;
2792 case DW_FORM_data1:
2793 case DW_FORM_ref1:
2794 case DW_FORM_flag:
2795 info_ptr += 1;
2796 break;
2797 case DW_FORM_flag_present:
2798 break;
2799 case DW_FORM_data2:
2800 case DW_FORM_ref2:
2801 info_ptr += 2;
2802 break;
2803 case DW_FORM_data4:
2804 case DW_FORM_ref4:
2805 info_ptr += 4;
2806 break;
2807 case DW_FORM_data8:
2808 case DW_FORM_ref8:
2809 case DW_FORM_sig8:
2810 info_ptr += 8;
2811 break;
2812 case DW_FORM_string:
2813 read_string (abfd, info_ptr, &bytes_read);
2814 info_ptr += bytes_read;
2815 break;
2816 case DW_FORM_sec_offset:
2817 case DW_FORM_strp:
2818 info_ptr += cu->header.offset_size;
2819 break;
2820 case DW_FORM_exprloc:
2821 case DW_FORM_block:
2822 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2823 info_ptr += bytes_read;
2824 break;
2825 case DW_FORM_block1:
2826 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2827 break;
2828 case DW_FORM_block2:
2829 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2830 break;
2831 case DW_FORM_block4:
2832 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2833 break;
2834 case DW_FORM_sdata:
2835 case DW_FORM_udata:
2836 case DW_FORM_ref_udata:
2837 info_ptr = skip_leb128 (abfd, info_ptr);
2838 break;
2839 case DW_FORM_indirect:
2840 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2841 info_ptr += bytes_read;
2842 /* We need to continue parsing from here, so just go back to
2843 the top. */
2844 goto skip_attribute;
2845
2846 default:
2847 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2848 dwarf_form_name (form),
2849 bfd_get_filename (abfd));
2850 }
2851 }
2852
2853 if (abbrev->has_children)
2854 return skip_children (buffer, info_ptr, cu);
2855 else
2856 return info_ptr;
2857}
2858
2859/* Locate ORIG_PDI's sibling.
2860 INFO_PTR should point to the start of the next DIE after ORIG_PDI
2861 in BUFFER. */
2862
2863static gdb_byte *
2864locate_pdi_sibling (struct partial_die_info *orig_pdi,
2865 gdb_byte *buffer, gdb_byte *info_ptr,
2866 bfd *abfd, struct dwarf2_cu *cu)
2867{
2868 /* Do we know the sibling already? */
2869
2870 if (orig_pdi->sibling)
2871 return orig_pdi->sibling;
2872
2873 /* Are there any children to deal with? */
2874
2875 if (!orig_pdi->has_children)
2876 return info_ptr;
2877
2878 /* Skip the children the long way. */
2879
2880 return skip_children (buffer, info_ptr, cu);
2881}
2882
2883/* Expand this partial symbol table into a full symbol table. */
2884
2885static void
2886dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2887{
2888 /* FIXME: This is barely more than a stub. */
2889 if (pst != NULL)
2890 {
2891 if (pst->readin)
2892 {
2893 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2894 }
2895 else
2896 {
2897 if (info_verbose)
2898 {
2899 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2900 gdb_flush (gdb_stdout);
2901 }
2902
2903 /* Restore our global data. */
2904 dwarf2_per_objfile = objfile_data (pst->objfile,
2905 dwarf2_objfile_data_key);
2906
2907 /* If this psymtab is constructed from a debug-only objfile, the
2908 has_section_at_zero flag will not necessarily be correct. We
2909 can get the correct value for this flag by looking at the data
2910 associated with the (presumably stripped) associated objfile. */
2911 if (pst->objfile->separate_debug_objfile_backlink)
2912 {
2913 struct dwarf2_per_objfile *dpo_backlink
2914 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
2915 dwarf2_objfile_data_key);
2916
2917 dwarf2_per_objfile->has_section_at_zero
2918 = dpo_backlink->has_section_at_zero;
2919 }
2920
2921 psymtab_to_symtab_1 (pst);
2922
2923 /* Finish up the debug error message. */
2924 if (info_verbose)
2925 printf_filtered (_("done.\n"));
2926 }
2927 }
2928}
2929
2930/* Add PER_CU to the queue. */
2931
2932static void
2933queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2934{
2935 struct dwarf2_queue_item *item;
2936
2937 per_cu->queued = 1;
2938 item = xmalloc (sizeof (*item));
2939 item->per_cu = per_cu;
2940 item->next = NULL;
2941
2942 if (dwarf2_queue == NULL)
2943 dwarf2_queue = item;
2944 else
2945 dwarf2_queue_tail->next = item;
2946
2947 dwarf2_queue_tail = item;
2948}
2949
2950/* Process the queue. */
2951
2952static void
2953process_queue (struct objfile *objfile)
2954{
2955 struct dwarf2_queue_item *item, *next_item;
2956
2957 /* The queue starts out with one item, but following a DIE reference
2958 may load a new CU, adding it to the end of the queue. */
2959 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2960 {
2961 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2962 process_full_comp_unit (item->per_cu);
2963
2964 item->per_cu->queued = 0;
2965 next_item = item->next;
2966 xfree (item);
2967 }
2968
2969 dwarf2_queue_tail = NULL;
2970}
2971
2972/* Free all allocated queue entries. This function only releases anything if
2973 an error was thrown; if the queue was processed then it would have been
2974 freed as we went along. */
2975
2976static void
2977dwarf2_release_queue (void *dummy)
2978{
2979 struct dwarf2_queue_item *item, *last;
2980
2981 item = dwarf2_queue;
2982 while (item)
2983 {
2984 /* Anything still marked queued is likely to be in an
2985 inconsistent state, so discard it. */
2986 if (item->per_cu->queued)
2987 {
2988 if (item->per_cu->cu != NULL)
2989 free_one_cached_comp_unit (item->per_cu->cu);
2990 item->per_cu->queued = 0;
2991 }
2992
2993 last = item;
2994 item = item->next;
2995 xfree (last);
2996 }
2997
2998 dwarf2_queue = dwarf2_queue_tail = NULL;
2999}
3000
3001/* Read in full symbols for PST, and anything it depends on. */
3002
3003static void
3004psymtab_to_symtab_1 (struct partial_symtab *pst)
3005{
3006 struct dwarf2_per_cu_data *per_cu;
3007 struct cleanup *back_to;
3008 int i;
3009
3010 for (i = 0; i < pst->number_of_dependencies; i++)
3011 if (!pst->dependencies[i]->readin)
3012 {
3013 /* Inform about additional files that need to be read in. */
3014 if (info_verbose)
3015 {
3016 /* FIXME: i18n: Need to make this a single string. */
3017 fputs_filtered (" ", gdb_stdout);
3018 wrap_here ("");
3019 fputs_filtered ("and ", gdb_stdout);
3020 wrap_here ("");
3021 printf_filtered ("%s...", pst->dependencies[i]->filename);
3022 wrap_here (""); /* Flush output */
3023 gdb_flush (gdb_stdout);
3024 }
3025 psymtab_to_symtab_1 (pst->dependencies[i]);
3026 }
3027
3028 per_cu = pst->read_symtab_private;
3029
3030 if (per_cu == NULL)
3031 {
3032 /* It's an include file, no symbols to read for it.
3033 Everything is in the parent symtab. */
3034 pst->readin = 1;
3035 return;
3036 }
3037
3038 back_to = make_cleanup (dwarf2_release_queue, NULL);
3039
3040 queue_comp_unit (per_cu, pst->objfile);
3041
3042 if (per_cu->from_debug_types)
3043 read_signatured_type_at_offset (pst->objfile, per_cu->offset);
3044 else
3045 load_full_comp_unit (per_cu, pst->objfile);
3046
3047 process_queue (pst->objfile);
3048
3049 /* Age the cache, releasing compilation units that have not
3050 been used recently. */
3051 age_cached_comp_units ();
3052
3053 do_cleanups (back_to);
3054}
3055
3056/* Load the DIEs associated with PER_CU into memory. */
3057
3058static void
3059load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
3060{
3061 bfd *abfd = objfile->obfd;
3062 struct dwarf2_cu *cu;
3063 unsigned int offset;
3064 gdb_byte *info_ptr, *beg_of_comp_unit;
3065 struct cleanup *back_to, *free_cu_cleanup;
3066 struct attribute *attr;
3067
3068 gdb_assert (! per_cu->from_debug_types);
3069
3070 /* Set local variables from the partial symbol table info. */
3071 offset = per_cu->offset;
3072
3073 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3074 info_ptr = dwarf2_per_objfile->info.buffer + offset;
3075 beg_of_comp_unit = info_ptr;
3076
3077 cu = alloc_one_comp_unit (objfile);
3078
3079 /* If an error occurs while loading, release our storage. */
3080 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3081
3082 /* Read in the comp_unit header. */
3083 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
3084
3085 /* Complete the cu_header. */
3086 cu->header.offset = offset;
3087 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3088
3089 /* Read the abbrevs for this compilation unit. */
3090 dwarf2_read_abbrevs (abfd, cu);
3091 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
3092
3093 /* Link this compilation unit into the compilation unit tree. */
3094 per_cu->cu = cu;
3095 cu->per_cu = per_cu;
3096 cu->type_hash = per_cu->type_hash;
3097
3098 cu->dies = read_comp_unit (info_ptr, cu);
3099
3100 /* We try not to read any attributes in this function, because not
3101 all objfiles needed for references have been loaded yet, and symbol
3102 table processing isn't initialized. But we have to set the CU language,
3103 or we won't be able to build types correctly. */
3104 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
3105 if (attr)
3106 set_cu_language (DW_UNSND (attr), cu);
3107 else
3108 set_cu_language (language_minimal, cu);
3109
3110 /* Similarly, if we do not read the producer, we can not apply
3111 producer-specific interpretation. */
3112 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
3113 if (attr)
3114 cu->producer = DW_STRING (attr);
3115
3116 /* Link this CU into read_in_chain. */
3117 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3118 dwarf2_per_objfile->read_in_chain = per_cu;
3119
3120 do_cleanups (back_to);
3121
3122 /* We've successfully allocated this compilation unit. Let our caller
3123 clean it up when finished with it. */
3124 discard_cleanups (free_cu_cleanup);
3125}
3126
3127/* Generate full symbol information for PST and CU, whose DIEs have
3128 already been loaded into memory. */
3129
3130static void
3131process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
3132{
3133 struct partial_symtab *pst = per_cu->psymtab;
3134 struct dwarf2_cu *cu = per_cu->cu;
3135 struct objfile *objfile = pst->objfile;
3136 CORE_ADDR lowpc, highpc;
3137 struct symtab *symtab;
3138 struct cleanup *back_to;
3139 CORE_ADDR baseaddr;
3140
3141 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3142
3143 buildsym_init ();
3144 back_to = make_cleanup (really_free_pendings, NULL);
3145
3146 cu->list_in_scope = &file_symbols;
3147
3148 dwarf2_find_base_address (cu->dies, cu);
3149
3150 /* Do line number decoding in read_file_scope () */
3151 process_die (cu->dies, cu);
3152
3153 /* Some compilers don't define a DW_AT_high_pc attribute for the
3154 compilation unit. If the DW_AT_high_pc is missing, synthesize
3155 it, by scanning the DIE's below the compilation unit. */
3156 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
3157
3158 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
3159
3160 /* Set symtab language to language from DW_AT_language.
3161 If the compilation is from a C file generated by language preprocessors,
3162 do not set the language if it was already deduced by start_subfile. */
3163 if (symtab != NULL
3164 && !(cu->language == language_c && symtab->language != language_c))
3165 {
3166 symtab->language = cu->language;
3167 }
3168 pst->symtab = symtab;
3169 pst->readin = 1;
3170
3171 do_cleanups (back_to);
3172}
3173
3174/* Process a die and its children. */
3175
3176static void
3177process_die (struct die_info *die, struct dwarf2_cu *cu)
3178{
3179 switch (die->tag)
3180 {
3181 case DW_TAG_padding:
3182 break;
3183 case DW_TAG_compile_unit:
3184 read_file_scope (die, cu);
3185 break;
3186 case DW_TAG_type_unit:
3187 read_type_unit_scope (die, cu);
3188 break;
3189 case DW_TAG_subprogram:
3190 case DW_TAG_inlined_subroutine:
3191 read_func_scope (die, cu);
3192 break;
3193 case DW_TAG_lexical_block:
3194 case DW_TAG_try_block:
3195 case DW_TAG_catch_block:
3196 read_lexical_block_scope (die, cu);
3197 break;
3198 case DW_TAG_class_type:
3199 case DW_TAG_interface_type:
3200 case DW_TAG_structure_type:
3201 case DW_TAG_union_type:
3202 process_structure_scope (die, cu);
3203 break;
3204 case DW_TAG_enumeration_type:
3205 process_enumeration_scope (die, cu);
3206 break;
3207
3208 /* These dies have a type, but processing them does not create
3209 a symbol or recurse to process the children. Therefore we can
3210 read them on-demand through read_type_die. */
3211 case DW_TAG_subroutine_type:
3212 case DW_TAG_set_type:
3213 case DW_TAG_array_type:
3214 case DW_TAG_pointer_type:
3215 case DW_TAG_ptr_to_member_type:
3216 case DW_TAG_reference_type:
3217 case DW_TAG_string_type:
3218 break;
3219
3220 case DW_TAG_base_type:
3221 case DW_TAG_subrange_type:
3222 case DW_TAG_typedef:
3223 case DW_TAG_const_type:
3224 case DW_TAG_volatile_type:
3225 /* Add a typedef symbol for the type definition, if it has a
3226 DW_AT_name. */
3227 new_symbol (die, read_type_die (die, cu), cu);
3228 break;
3229 case DW_TAG_common_block:
3230 read_common_block (die, cu);
3231 break;
3232 case DW_TAG_common_inclusion:
3233 break;
3234 case DW_TAG_namespace:
3235 processing_has_namespace_info = 1;
3236 read_namespace (die, cu);
3237 break;
3238 case DW_TAG_module:
3239 processing_has_namespace_info = 1;
3240 read_module (die, cu);
3241 break;
3242 case DW_TAG_imported_declaration:
3243 case DW_TAG_imported_module:
3244 processing_has_namespace_info = 1;
3245 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
3246 || cu->language != language_fortran))
3247 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
3248 dwarf_tag_name (die->tag));
3249 read_import_statement (die, cu);
3250 break;
3251 default:
3252 new_symbol (die, NULL, cu);
3253 break;
3254 }
3255}
3256
3257/* A helper function for dwarf2_compute_name which determines whether DIE
3258 needs to have the name of the scope prepended to the name listed in the
3259 die. */
3260
3261static int
3262die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
3263{
3264 struct attribute *attr;
3265
3266 switch (die->tag)
3267 {
3268 case DW_TAG_namespace:
3269 case DW_TAG_typedef:
3270 case DW_TAG_class_type:
3271 case DW_TAG_interface_type:
3272 case DW_TAG_structure_type:
3273 case DW_TAG_union_type:
3274 case DW_TAG_enumeration_type:
3275 case DW_TAG_enumerator:
3276 case DW_TAG_subprogram:
3277 case DW_TAG_member:
3278 return 1;
3279
3280 case DW_TAG_variable:
3281 /* We only need to prefix "globally" visible variables. These include
3282 any variable marked with DW_AT_external or any variable that
3283 lives in a namespace. [Variables in anonymous namespaces
3284 require prefixing, but they are not DW_AT_external.] */
3285
3286 if (dwarf2_attr (die, DW_AT_specification, cu))
3287 {
3288 struct dwarf2_cu *spec_cu = cu;
3289
3290 return die_needs_namespace (die_specification (die, &spec_cu),
3291 spec_cu);
3292 }
3293
3294 attr = dwarf2_attr (die, DW_AT_external, cu);
3295 if (attr == NULL && die->parent->tag != DW_TAG_namespace
3296 && die->parent->tag != DW_TAG_module)
3297 return 0;
3298 /* A variable in a lexical block of some kind does not need a
3299 namespace, even though in C++ such variables may be external
3300 and have a mangled name. */
3301 if (die->parent->tag == DW_TAG_lexical_block
3302 || die->parent->tag == DW_TAG_try_block
3303 || die->parent->tag == DW_TAG_catch_block
3304 || die->parent->tag == DW_TAG_subprogram)
3305 return 0;
3306 return 1;
3307
3308 default:
3309 return 0;
3310 }
3311}
3312
3313/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
3314 compute the physname for the object, which include a method's
3315 formal parameters (C++/Java) and return type (Java).
3316
3317 For Ada, return the DIE's linkage name rather than the fully qualified
3318 name. PHYSNAME is ignored..
3319
3320 The result is allocated on the objfile_obstack and canonicalized. */
3321
3322static const char *
3323dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
3324 int physname)
3325{
3326 if (name == NULL)
3327 name = dwarf2_name (die, cu);
3328
3329 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
3330 compute it by typename_concat inside GDB. */
3331 if (cu->language == language_ada
3332 || (cu->language == language_fortran && physname))
3333 {
3334 /* For Ada unit, we prefer the linkage name over the name, as
3335 the former contains the exported name, which the user expects
3336 to be able to reference. Ideally, we want the user to be able
3337 to reference this entity using either natural or linkage name,
3338 but we haven't started looking at this enhancement yet. */
3339 struct attribute *attr;
3340
3341 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
3342 if (attr == NULL)
3343 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
3344 if (attr && DW_STRING (attr))
3345 return DW_STRING (attr);
3346 }
3347
3348 /* These are the only languages we know how to qualify names in. */
3349 if (name != NULL
3350 && (cu->language == language_cplus || cu->language == language_java
3351 || cu->language == language_fortran))
3352 {
3353 if (die_needs_namespace (die, cu))
3354 {
3355 long length;
3356 char *prefix;
3357 struct ui_file *buf;
3358
3359 prefix = determine_prefix (die, cu);
3360 buf = mem_fileopen ();
3361 if (*prefix != '\0')
3362 {
3363 char *prefixed_name = typename_concat (NULL, prefix, name,
3364 physname, cu);
3365
3366 fputs_unfiltered (prefixed_name, buf);
3367 xfree (prefixed_name);
3368 }
3369 else
3370 fputs_unfiltered (name ? name : "", buf);
3371
3372 /* For Java and C++ methods, append formal parameter type
3373 information, if PHYSNAME. */
3374
3375 if (physname && die->tag == DW_TAG_subprogram
3376 && (cu->language == language_cplus
3377 || cu->language == language_java))
3378 {
3379 struct type *type = read_type_die (die, cu);
3380
3381 c_type_print_args (type, buf, 0, cu->language);
3382
3383 if (cu->language == language_java)
3384 {
3385 /* For java, we must append the return type to method
3386 names. */
3387 if (die->tag == DW_TAG_subprogram)
3388 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
3389 0, 0);
3390 }
3391 else if (cu->language == language_cplus)
3392 {
3393 if (TYPE_NFIELDS (type) > 0
3394 && TYPE_FIELD_ARTIFICIAL (type, 0)
3395 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
3396 fputs_unfiltered (" const", buf);
3397 }
3398 }
3399
3400 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
3401 &length);
3402 ui_file_delete (buf);
3403
3404 if (cu->language == language_cplus)
3405 {
3406 char *cname
3407 = dwarf2_canonicalize_name (name, cu,
3408 &cu->objfile->objfile_obstack);
3409
3410 if (cname != NULL)
3411 name = cname;
3412 }
3413 }
3414 }
3415
3416 return name;
3417}
3418
3419/* Return the fully qualified name of DIE, based on its DW_AT_name.
3420 If scope qualifiers are appropriate they will be added. The result
3421 will be allocated on the objfile_obstack, or NULL if the DIE does
3422 not have a name. NAME may either be from a previous call to
3423 dwarf2_name or NULL.
3424
3425 The output string will be canonicalized (if C++/Java). */
3426
3427static const char *
3428dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
3429{
3430 return dwarf2_compute_name (name, die, cu, 0);
3431}
3432
3433/* Construct a physname for the given DIE in CU. NAME may either be
3434 from a previous call to dwarf2_name or NULL. The result will be
3435 allocated on the objfile_objstack or NULL if the DIE does not have a
3436 name.
3437
3438 The output string will be canonicalized (if C++/Java). */
3439
3440static const char *
3441dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
3442{
3443 return dwarf2_compute_name (name, die, cu, 1);
3444}
3445
3446/* Read the import statement specified by the given die and record it. */
3447
3448static void
3449read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
3450{
3451 struct attribute *import_attr;
3452 struct die_info *imported_die;
3453 struct dwarf2_cu *imported_cu;
3454 const char *imported_name;
3455 const char *imported_name_prefix;
3456 const char *canonical_name;
3457 const char *import_alias;
3458 const char *imported_declaration = NULL;
3459 const char *import_prefix;
3460
3461 char *temp;
3462
3463 import_attr = dwarf2_attr (die, DW_AT_import, cu);
3464 if (import_attr == NULL)
3465 {
3466 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
3467 dwarf_tag_name (die->tag));
3468 return;
3469 }
3470
3471 imported_cu = cu;
3472 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
3473 imported_name = dwarf2_name (imported_die, imported_cu);
3474 if (imported_name == NULL)
3475 {
3476 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
3477
3478 The import in the following code:
3479 namespace A
3480 {
3481 typedef int B;
3482 }
3483
3484 int main ()
3485 {
3486 using A::B;
3487 B b;
3488 return b;
3489 }
3490
3491 ...
3492 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
3493 <52> DW_AT_decl_file : 1
3494 <53> DW_AT_decl_line : 6
3495 <54> DW_AT_import : <0x75>
3496 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
3497 <59> DW_AT_name : B
3498 <5b> DW_AT_decl_file : 1
3499 <5c> DW_AT_decl_line : 2
3500 <5d> DW_AT_type : <0x6e>
3501 ...
3502 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
3503 <76> DW_AT_byte_size : 4
3504 <77> DW_AT_encoding : 5 (signed)
3505
3506 imports the wrong die ( 0x75 instead of 0x58 ).
3507 This case will be ignored until the gcc bug is fixed. */
3508 return;
3509 }
3510
3511 /* Figure out the local name after import. */
3512 import_alias = dwarf2_name (die, cu);
3513
3514 /* Figure out where the statement is being imported to. */
3515 import_prefix = determine_prefix (die, cu);
3516
3517 /* Figure out what the scope of the imported die is and prepend it
3518 to the name of the imported die. */
3519 imported_name_prefix = determine_prefix (imported_die, imported_cu);
3520
3521 if (imported_die->tag != DW_TAG_namespace
3522 && imported_die->tag != DW_TAG_module)
3523 {
3524 imported_declaration = imported_name;
3525 canonical_name = imported_name_prefix;
3526 }
3527 else if (strlen (imported_name_prefix) > 0)
3528 {
3529 temp = alloca (strlen (imported_name_prefix)
3530 + 2 + strlen (imported_name) + 1);
3531 strcpy (temp, imported_name_prefix);
3532 strcat (temp, "::");
3533 strcat (temp, imported_name);
3534 canonical_name = temp;
3535 }
3536 else
3537 canonical_name = imported_name;
3538
3539 cp_add_using_directive (import_prefix,
3540 canonical_name,
3541 import_alias,
3542 imported_declaration,
3543 &cu->objfile->objfile_obstack);
3544}
3545
3546static void
3547initialize_cu_func_list (struct dwarf2_cu *cu)
3548{
3549 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
3550}
3551
3552static void
3553free_cu_line_header (void *arg)
3554{
3555 struct dwarf2_cu *cu = arg;
3556
3557 free_line_header (cu->line_header);
3558 cu->line_header = NULL;
3559}
3560
3561static void
3562read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
3563{
3564 struct objfile *objfile = cu->objfile;
3565 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3566 CORE_ADDR lowpc = ((CORE_ADDR) -1);
3567 CORE_ADDR highpc = ((CORE_ADDR) 0);
3568 struct attribute *attr;
3569 char *name = NULL;
3570 char *comp_dir = NULL;
3571 struct die_info *child_die;
3572 bfd *abfd = objfile->obfd;
3573 struct line_header *line_header = 0;
3574 CORE_ADDR baseaddr;
3575
3576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3577
3578 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
3579
3580 /* If we didn't find a lowpc, set it to highpc to avoid complaints
3581 from finish_block. */
3582 if (lowpc == ((CORE_ADDR) -1))
3583 lowpc = highpc;
3584 lowpc += baseaddr;
3585 highpc += baseaddr;
3586
3587 /* Find the filename. Do not use dwarf2_name here, since the filename
3588 is not a source language identifier. */
3589 attr = dwarf2_attr (die, DW_AT_name, cu);
3590 if (attr)
3591 {
3592 name = DW_STRING (attr);
3593 }
3594
3595 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3596 if (attr)
3597 comp_dir = DW_STRING (attr);
3598 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3599 {
3600 comp_dir = ldirname (name);
3601 if (comp_dir != NULL)
3602 make_cleanup (xfree, comp_dir);
3603 }
3604 if (comp_dir != NULL)
3605 {
3606 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3607 directory, get rid of it. */
3608 char *cp = strchr (comp_dir, ':');
3609
3610 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3611 comp_dir = cp + 1;
3612 }
3613
3614 if (name == NULL)
3615 name = "<unknown>";
3616
3617 attr = dwarf2_attr (die, DW_AT_language, cu);
3618 if (attr)
3619 {
3620 set_cu_language (DW_UNSND (attr), cu);
3621 }
3622
3623 attr = dwarf2_attr (die, DW_AT_producer, cu);
3624 if (attr)
3625 cu->producer = DW_STRING (attr);
3626
3627 /* We assume that we're processing GCC output. */
3628 processing_gcc_compilation = 2;
3629
3630 processing_has_namespace_info = 0;
3631
3632 start_symtab (name, comp_dir, lowpc);
3633 record_debugformat ("DWARF 2");
3634 record_producer (cu->producer);
3635
3636 initialize_cu_func_list (cu);
3637
3638 /* Decode line number information if present. We do this before
3639 processing child DIEs, so that the line header table is available
3640 for DW_AT_decl_file. */
3641 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3642 if (attr)
3643 {
3644 unsigned int line_offset = DW_UNSND (attr);
3645 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
3646 if (line_header)
3647 {
3648 cu->line_header = line_header;
3649 make_cleanup (free_cu_line_header, cu);
3650 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
3651 }
3652 }
3653
3654 /* Process all dies in compilation unit. */
3655 if (die->child != NULL)
3656 {
3657 child_die = die->child;
3658 while (child_die && child_die->tag)
3659 {
3660 process_die (child_die, cu);
3661 child_die = sibling_die (child_die);
3662 }
3663 }
3664
3665 /* Decode macro information, if present. Dwarf 2 macro information
3666 refers to information in the line number info statement program
3667 header, so we can only read it if we've read the header
3668 successfully. */
3669 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
3670 if (attr && line_header)
3671 {
3672 unsigned int macro_offset = DW_UNSND (attr);
3673
3674 dwarf_decode_macros (line_header, macro_offset,
3675 comp_dir, abfd, cu);
3676 }
3677 do_cleanups (back_to);
3678}
3679
3680/* For TUs we want to skip the first top level sibling if it's not the
3681 actual type being defined by this TU. In this case the first top
3682 level sibling is there to provide context only. */
3683
3684static void
3685read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
3686{
3687 struct objfile *objfile = cu->objfile;
3688 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3689 CORE_ADDR lowpc;
3690 struct attribute *attr;
3691 char *name = NULL;
3692 char *comp_dir = NULL;
3693 struct die_info *child_die;
3694 bfd *abfd = objfile->obfd;
3695
3696 /* start_symtab needs a low pc, but we don't really have one.
3697 Do what read_file_scope would do in the absence of such info. */
3698 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3699
3700 /* Find the filename. Do not use dwarf2_name here, since the filename
3701 is not a source language identifier. */
3702 attr = dwarf2_attr (die, DW_AT_name, cu);
3703 if (attr)
3704 name = DW_STRING (attr);
3705
3706 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3707 if (attr)
3708 comp_dir = DW_STRING (attr);
3709 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3710 {
3711 comp_dir = ldirname (name);
3712 if (comp_dir != NULL)
3713 make_cleanup (xfree, comp_dir);
3714 }
3715
3716 if (name == NULL)
3717 name = "<unknown>";
3718
3719 attr = dwarf2_attr (die, DW_AT_language, cu);
3720 if (attr)
3721 set_cu_language (DW_UNSND (attr), cu);
3722
3723 /* This isn't technically needed today. It is done for symmetry
3724 with read_file_scope. */
3725 attr = dwarf2_attr (die, DW_AT_producer, cu);
3726 if (attr)
3727 cu->producer = DW_STRING (attr);
3728
3729 /* We assume that we're processing GCC output. */
3730 processing_gcc_compilation = 2;
3731
3732 processing_has_namespace_info = 0;
3733
3734 start_symtab (name, comp_dir, lowpc);
3735 record_debugformat ("DWARF 2");
3736 record_producer (cu->producer);
3737
3738 /* Process the dies in the type unit. */
3739 if (die->child == NULL)
3740 {
3741 dump_die_for_error (die);
3742 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
3743 bfd_get_filename (abfd));
3744 }
3745
3746 child_die = die->child;
3747
3748 while (child_die && child_die->tag)
3749 {
3750 process_die (child_die, cu);
3751
3752 child_die = sibling_die (child_die);
3753 }
3754
3755 do_cleanups (back_to);
3756}
3757
3758static void
3759add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
3760 struct dwarf2_cu *cu)
3761{
3762 struct function_range *thisfn;
3763
3764 thisfn = (struct function_range *)
3765 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
3766 thisfn->name = name;
3767 thisfn->lowpc = lowpc;
3768 thisfn->highpc = highpc;
3769 thisfn->seen_line = 0;
3770 thisfn->next = NULL;
3771
3772 if (cu->last_fn == NULL)
3773 cu->first_fn = thisfn;
3774 else
3775 cu->last_fn->next = thisfn;
3776
3777 cu->last_fn = thisfn;
3778}
3779
3780/* qsort helper for inherit_abstract_dies. */
3781
3782static int
3783unsigned_int_compar (const void *ap, const void *bp)
3784{
3785 unsigned int a = *(unsigned int *) ap;
3786 unsigned int b = *(unsigned int *) bp;
3787
3788 return (a > b) - (b > a);
3789}
3790
3791/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3792 Inherit only the children of the DW_AT_abstract_origin DIE not being already
3793 referenced by DW_AT_abstract_origin from the children of the current DIE. */
3794
3795static void
3796inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
3797{
3798 struct die_info *child_die;
3799 unsigned die_children_count;
3800 /* CU offsets which were referenced by children of the current DIE. */
3801 unsigned *offsets;
3802 unsigned *offsets_end, *offsetp;
3803 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
3804 struct die_info *origin_die;
3805 /* Iterator of the ORIGIN_DIE children. */
3806 struct die_info *origin_child_die;
3807 struct cleanup *cleanups;
3808 struct attribute *attr;
3809
3810 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
3811 if (!attr)
3812 return;
3813
3814 origin_die = follow_die_ref (die, attr, &cu);
3815 if (die->tag != origin_die->tag
3816 && !(die->tag == DW_TAG_inlined_subroutine
3817 && origin_die->tag == DW_TAG_subprogram))
3818 complaint (&symfile_complaints,
3819 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
3820 die->offset, origin_die->offset);
3821
3822 child_die = die->child;
3823 die_children_count = 0;
3824 while (child_die && child_die->tag)
3825 {
3826 child_die = sibling_die (child_die);
3827 die_children_count++;
3828 }
3829 offsets = xmalloc (sizeof (*offsets) * die_children_count);
3830 cleanups = make_cleanup (xfree, offsets);
3831
3832 offsets_end = offsets;
3833 child_die = die->child;
3834 while (child_die && child_die->tag)
3835 {
3836 /* For each CHILD_DIE, find the corresponding child of
3837 ORIGIN_DIE. If there is more than one layer of
3838 DW_AT_abstract_origin, follow them all; there shouldn't be,
3839 but GCC versions at least through 4.4 generate this (GCC PR
3840 40573). */
3841 struct die_info *child_origin_die = child_die;
3842
3843 while (1)
3844 {
3845 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu);
3846 if (attr == NULL)
3847 break;
3848 child_origin_die = follow_die_ref (child_origin_die, attr, &cu);
3849 }
3850
3851 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
3852 counterpart may exist. */
3853 if (child_origin_die != child_die)
3854 {
3855 if (child_die->tag != child_origin_die->tag
3856 && !(child_die->tag == DW_TAG_inlined_subroutine
3857 && child_origin_die->tag == DW_TAG_subprogram))
3858 complaint (&symfile_complaints,
3859 _("Child DIE 0x%x and its abstract origin 0x%x have "
3860 "different tags"), child_die->offset,
3861 child_origin_die->offset);
3862 if (child_origin_die->parent != origin_die)
3863 complaint (&symfile_complaints,
3864 _("Child DIE 0x%x and its abstract origin 0x%x have "
3865 "different parents"), child_die->offset,
3866 child_origin_die->offset);
3867 else
3868 *offsets_end++ = child_origin_die->offset;
3869 }
3870 child_die = sibling_die (child_die);
3871 }
3872 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
3873 unsigned_int_compar);
3874 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
3875 if (offsetp[-1] == *offsetp)
3876 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
3877 "to DIE 0x%x as their abstract origin"),
3878 die->offset, *offsetp);
3879
3880 offsetp = offsets;
3881 origin_child_die = origin_die->child;
3882 while (origin_child_die && origin_child_die->tag)
3883 {
3884 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
3885 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
3886 offsetp++;
3887 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
3888 {
3889 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
3890 process_die (origin_child_die, cu);
3891 }
3892 origin_child_die = sibling_die (origin_child_die);
3893 }
3894
3895 do_cleanups (cleanups);
3896}
3897
3898static void
3899read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
3900{
3901 struct objfile *objfile = cu->objfile;
3902 struct context_stack *new;
3903 CORE_ADDR lowpc;
3904 CORE_ADDR highpc;
3905 struct die_info *child_die;
3906 struct attribute *attr, *call_line, *call_file;
3907 char *name;
3908 CORE_ADDR baseaddr;
3909 struct block *block;
3910 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
3911
3912 if (inlined_func)
3913 {
3914 /* If we do not have call site information, we can't show the
3915 caller of this inlined function. That's too confusing, so
3916 only use the scope for local variables. */
3917 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
3918 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
3919 if (call_line == NULL || call_file == NULL)
3920 {
3921 read_lexical_block_scope (die, cu);
3922 return;
3923 }
3924 }
3925
3926 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3927
3928 name = dwarf2_name (die, cu);
3929
3930 /* Ignore functions with missing or empty names. These are actually
3931 illegal according to the DWARF standard. */
3932 if (name == NULL)
3933 {
3934 complaint (&symfile_complaints,
3935 _("missing name for subprogram DIE at %d"), die->offset);
3936 return;
3937 }
3938
3939 /* Ignore functions with missing or invalid low and high pc attributes. */
3940 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
3941 {
3942 attr = dwarf2_attr (die, DW_AT_external, cu);
3943 if (!attr || !DW_UNSND (attr))
3944 complaint (&symfile_complaints,
3945 _("cannot get low and high bounds for subprogram DIE at %d"),
3946 die->offset);
3947 return;
3948 }
3949
3950 lowpc += baseaddr;
3951 highpc += baseaddr;
3952
3953 /* Record the function range for dwarf_decode_lines. */
3954 add_to_cu_func_list (name, lowpc, highpc, cu);
3955
3956 new = push_context (0, lowpc);
3957 new->name = new_symbol (die, read_type_die (die, cu), cu);
3958
3959 /* If there is a location expression for DW_AT_frame_base, record
3960 it. */
3961 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
3962 if (attr)
3963 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
3964 expression is being recorded directly in the function's symbol
3965 and not in a separate frame-base object. I guess this hack is
3966 to avoid adding some sort of frame-base adjunct/annex to the
3967 function's symbol :-(. The problem with doing this is that it
3968 results in a function symbol with a location expression that
3969 has nothing to do with the location of the function, ouch! The
3970 relationship should be: a function's symbol has-a frame base; a
3971 frame-base has-a location expression. */
3972 dwarf2_symbol_mark_computed (attr, new->name, cu);
3973
3974 cu->list_in_scope = &local_symbols;
3975
3976 if (die->child != NULL)
3977 {
3978 child_die = die->child;
3979 while (child_die && child_die->tag)
3980 {
3981 process_die (child_die, cu);
3982 child_die = sibling_die (child_die);
3983 }
3984 }
3985
3986 inherit_abstract_dies (die, cu);
3987
3988 /* If we have a DW_AT_specification, we might need to import using
3989 directives from the context of the specification DIE. See the
3990 comment in determine_prefix. */
3991 if (cu->language == language_cplus
3992 && dwarf2_attr (die, DW_AT_specification, cu))
3993 {
3994 struct dwarf2_cu *spec_cu = cu;
3995 struct die_info *spec_die = die_specification (die, &spec_cu);
3996
3997 while (spec_die)
3998 {
3999 child_die = spec_die->child;
4000 while (child_die && child_die->tag)
4001 {
4002 if (child_die->tag == DW_TAG_imported_module)
4003 process_die (child_die, spec_cu);
4004 child_die = sibling_die (child_die);
4005 }
4006
4007 /* In some cases, GCC generates specification DIEs that
4008 themselves contain DW_AT_specification attributes. */
4009 spec_die = die_specification (spec_die, &spec_cu);
4010 }
4011 }
4012
4013 new = pop_context ();
4014 /* Make a block for the local symbols within. */
4015 block = finish_block (new->name, &local_symbols, new->old_blocks,
4016 lowpc, highpc, objfile);
4017
4018 /* For C++, set the block's scope. */
4019 if (cu->language == language_cplus || cu->language == language_fortran)
4020 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
4021 determine_prefix (die, cu),
4022 processing_has_namespace_info);
4023
4024 /* If we have address ranges, record them. */
4025 dwarf2_record_block_ranges (die, block, baseaddr, cu);
4026
4027 /* In C++, we can have functions nested inside functions (e.g., when
4028 a function declares a class that has methods). This means that
4029 when we finish processing a function scope, we may need to go
4030 back to building a containing block's symbol lists. */
4031 local_symbols = new->locals;
4032 param_symbols = new->params;
4033 using_directives = new->using_directives;
4034
4035 /* If we've finished processing a top-level function, subsequent
4036 symbols go in the file symbol list. */
4037 if (outermost_context_p ())
4038 cu->list_in_scope = &file_symbols;
4039}
4040
4041/* Process all the DIES contained within a lexical block scope. Start
4042 a new scope, process the dies, and then close the scope. */
4043
4044static void
4045read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
4046{
4047 struct objfile *objfile = cu->objfile;
4048 struct context_stack *new;
4049 CORE_ADDR lowpc, highpc;
4050 struct die_info *child_die;
4051 CORE_ADDR baseaddr;
4052
4053 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4054
4055 /* Ignore blocks with missing or invalid low and high pc attributes. */
4056 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
4057 as multiple lexical blocks? Handling children in a sane way would
4058 be nasty. Might be easier to properly extend generic blocks to
4059 describe ranges. */
4060 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
4061 return;
4062 lowpc += baseaddr;
4063 highpc += baseaddr;
4064
4065 push_context (0, lowpc);
4066 if (die->child != NULL)
4067 {
4068 child_die = die->child;
4069 while (child_die && child_die->tag)
4070 {
4071 process_die (child_die, cu);
4072 child_die = sibling_die (child_die);
4073 }
4074 }
4075 new = pop_context ();
4076
4077 if (local_symbols != NULL || using_directives != NULL)
4078 {
4079 struct block *block
4080 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
4081 highpc, objfile);
4082
4083 /* Note that recording ranges after traversing children, as we
4084 do here, means that recording a parent's ranges entails
4085 walking across all its children's ranges as they appear in
4086 the address map, which is quadratic behavior.
4087
4088 It would be nicer to record the parent's ranges before
4089 traversing its children, simply overriding whatever you find
4090 there. But since we don't even decide whether to create a
4091 block until after we've traversed its children, that's hard
4092 to do. */
4093 dwarf2_record_block_ranges (die, block, baseaddr, cu);
4094 }
4095 local_symbols = new->locals;
4096 using_directives = new->using_directives;
4097}
4098
4099/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
4100 Return 1 if the attributes are present and valid, otherwise, return 0.
4101 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
4102
4103static int
4104dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
4105 CORE_ADDR *high_return, struct dwarf2_cu *cu,
4106 struct partial_symtab *ranges_pst)
4107{
4108 struct objfile *objfile = cu->objfile;
4109 struct comp_unit_head *cu_header = &cu->header;
4110 bfd *obfd = objfile->obfd;
4111 unsigned int addr_size = cu_header->addr_size;
4112 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4113 /* Base address selection entry. */
4114 CORE_ADDR base;
4115 int found_base;
4116 unsigned int dummy;
4117 gdb_byte *buffer;
4118 CORE_ADDR marker;
4119 int low_set;
4120 CORE_ADDR low = 0;
4121 CORE_ADDR high = 0;
4122 CORE_ADDR baseaddr;
4123
4124 found_base = cu->base_known;
4125 base = cu->base_address;
4126
4127 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
4128 if (offset >= dwarf2_per_objfile->ranges.size)
4129 {
4130 complaint (&symfile_complaints,
4131 _("Offset %d out of bounds for DW_AT_ranges attribute"),
4132 offset);
4133 return 0;
4134 }
4135 buffer = dwarf2_per_objfile->ranges.buffer + offset;
4136
4137 /* Read in the largest possible address. */
4138 marker = read_address (obfd, buffer, cu, &dummy);
4139 if ((marker & mask) == mask)
4140 {
4141 /* If we found the largest possible address, then
4142 read the base address. */
4143 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4144 buffer += 2 * addr_size;
4145 offset += 2 * addr_size;
4146 found_base = 1;
4147 }
4148
4149 low_set = 0;
4150
4151 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4152
4153 while (1)
4154 {
4155 CORE_ADDR range_beginning, range_end;
4156
4157 range_beginning = read_address (obfd, buffer, cu, &dummy);
4158 buffer += addr_size;
4159 range_end = read_address (obfd, buffer, cu, &dummy);
4160 buffer += addr_size;
4161 offset += 2 * addr_size;
4162
4163 /* An end of list marker is a pair of zero addresses. */
4164 if (range_beginning == 0 && range_end == 0)
4165 /* Found the end of list entry. */
4166 break;
4167
4168 /* Each base address selection entry is a pair of 2 values.
4169 The first is the largest possible address, the second is
4170 the base address. Check for a base address here. */
4171 if ((range_beginning & mask) == mask)
4172 {
4173 /* If we found the largest possible address, then
4174 read the base address. */
4175 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4176 found_base = 1;
4177 continue;
4178 }
4179
4180 if (!found_base)
4181 {
4182 /* We have no valid base address for the ranges
4183 data. */
4184 complaint (&symfile_complaints,
4185 _("Invalid .debug_ranges data (no base address)"));
4186 return 0;
4187 }
4188
4189 range_beginning += base;
4190 range_end += base;
4191
4192 if (ranges_pst != NULL && range_beginning < range_end)
4193 addrmap_set_empty (objfile->psymtabs_addrmap,
4194 range_beginning + baseaddr, range_end - 1 + baseaddr,
4195 ranges_pst);
4196
4197 /* FIXME: This is recording everything as a low-high
4198 segment of consecutive addresses. We should have a
4199 data structure for discontiguous block ranges
4200 instead. */
4201 if (! low_set)
4202 {
4203 low = range_beginning;
4204 high = range_end;
4205 low_set = 1;
4206 }
4207 else
4208 {
4209 if (range_beginning < low)
4210 low = range_beginning;
4211 if (range_end > high)
4212 high = range_end;
4213 }
4214 }
4215
4216 if (! low_set)
4217 /* If the first entry is an end-of-list marker, the range
4218 describes an empty scope, i.e. no instructions. */
4219 return 0;
4220
4221 if (low_return)
4222 *low_return = low;
4223 if (high_return)
4224 *high_return = high;
4225 return 1;
4226}
4227
4228/* Get low and high pc attributes from a die. Return 1 if the attributes
4229 are present and valid, otherwise, return 0. Return -1 if the range is
4230 discontinuous, i.e. derived from DW_AT_ranges information. */
4231static int
4232dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
4233 CORE_ADDR *highpc, struct dwarf2_cu *cu,
4234 struct partial_symtab *pst)
4235{
4236 struct attribute *attr;
4237 CORE_ADDR low = 0;
4238 CORE_ADDR high = 0;
4239 int ret = 0;
4240
4241 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4242 if (attr)
4243 {
4244 high = DW_ADDR (attr);
4245 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4246 if (attr)
4247 low = DW_ADDR (attr);
4248 else
4249 /* Found high w/o low attribute. */
4250 return 0;
4251
4252 /* Found consecutive range of addresses. */
4253 ret = 1;
4254 }
4255 else
4256 {
4257 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4258 if (attr != NULL)
4259 {
4260 /* Value of the DW_AT_ranges attribute is the offset in the
4261 .debug_ranges section. */
4262 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
4263 return 0;
4264 /* Found discontinuous range of addresses. */
4265 ret = -1;
4266 }
4267 }
4268
4269 if (high < low)
4270 return 0;
4271
4272 /* When using the GNU linker, .gnu.linkonce. sections are used to
4273 eliminate duplicate copies of functions and vtables and such.
4274 The linker will arbitrarily choose one and discard the others.
4275 The AT_*_pc values for such functions refer to local labels in
4276 these sections. If the section from that file was discarded, the
4277 labels are not in the output, so the relocs get a value of 0.
4278 If this is a discarded function, mark the pc bounds as invalid,
4279 so that GDB will ignore it. */
4280 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
4281 return 0;
4282
4283 *lowpc = low;
4284 *highpc = high;
4285 return ret;
4286}
4287
4288/* Assuming that DIE represents a subprogram DIE or a lexical block, get
4289 its low and high PC addresses. Do nothing if these addresses could not
4290 be determined. Otherwise, set LOWPC to the low address if it is smaller,
4291 and HIGHPC to the high address if greater than HIGHPC. */
4292
4293static void
4294dwarf2_get_subprogram_pc_bounds (struct die_info *die,
4295 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4296 struct dwarf2_cu *cu)
4297{
4298 CORE_ADDR low, high;
4299 struct die_info *child = die->child;
4300
4301 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
4302 {
4303 *lowpc = min (*lowpc, low);
4304 *highpc = max (*highpc, high);
4305 }
4306
4307 /* If the language does not allow nested subprograms (either inside
4308 subprograms or lexical blocks), we're done. */
4309 if (cu->language != language_ada)
4310 return;
4311
4312 /* Check all the children of the given DIE. If it contains nested
4313 subprograms, then check their pc bounds. Likewise, we need to
4314 check lexical blocks as well, as they may also contain subprogram
4315 definitions. */
4316 while (child && child->tag)
4317 {
4318 if (child->tag == DW_TAG_subprogram
4319 || child->tag == DW_TAG_lexical_block)
4320 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
4321 child = sibling_die (child);
4322 }
4323}
4324
4325/* Get the low and high pc's represented by the scope DIE, and store
4326 them in *LOWPC and *HIGHPC. If the correct values can't be
4327 determined, set *LOWPC to -1 and *HIGHPC to 0. */
4328
4329static void
4330get_scope_pc_bounds (struct die_info *die,
4331 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4332 struct dwarf2_cu *cu)
4333{
4334 CORE_ADDR best_low = (CORE_ADDR) -1;
4335 CORE_ADDR best_high = (CORE_ADDR) 0;
4336 CORE_ADDR current_low, current_high;
4337
4338 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
4339 {
4340 best_low = current_low;
4341 best_high = current_high;
4342 }
4343 else
4344 {
4345 struct die_info *child = die->child;
4346
4347 while (child && child->tag)
4348 {
4349 switch (child->tag) {
4350 case DW_TAG_subprogram:
4351 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
4352 break;
4353 case DW_TAG_namespace:
4354 case DW_TAG_module:
4355 /* FIXME: carlton/2004-01-16: Should we do this for
4356 DW_TAG_class_type/DW_TAG_structure_type, too? I think
4357 that current GCC's always emit the DIEs corresponding
4358 to definitions of methods of classes as children of a
4359 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
4360 the DIEs giving the declarations, which could be
4361 anywhere). But I don't see any reason why the
4362 standards says that they have to be there. */
4363 get_scope_pc_bounds (child, &current_low, &current_high, cu);
4364
4365 if (current_low != ((CORE_ADDR) -1))
4366 {
4367 best_low = min (best_low, current_low);
4368 best_high = max (best_high, current_high);
4369 }
4370 break;
4371 default:
4372 /* Ignore. */
4373 break;
4374 }
4375
4376 child = sibling_die (child);
4377 }
4378 }
4379
4380 *lowpc = best_low;
4381 *highpc = best_high;
4382}
4383
4384/* Record the address ranges for BLOCK, offset by BASEADDR, as given
4385 in DIE. */
4386static void
4387dwarf2_record_block_ranges (struct die_info *die, struct block *block,
4388 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
4389{
4390 struct attribute *attr;
4391
4392 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4393 if (attr)
4394 {
4395 CORE_ADDR high = DW_ADDR (attr);
4396
4397 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4398 if (attr)
4399 {
4400 CORE_ADDR low = DW_ADDR (attr);
4401
4402 record_block_range (block, baseaddr + low, baseaddr + high - 1);
4403 }
4404 }
4405
4406 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4407 if (attr)
4408 {
4409 bfd *obfd = cu->objfile->obfd;
4410
4411 /* The value of the DW_AT_ranges attribute is the offset of the
4412 address range list in the .debug_ranges section. */
4413 unsigned long offset = DW_UNSND (attr);
4414 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
4415
4416 /* For some target architectures, but not others, the
4417 read_address function sign-extends the addresses it returns.
4418 To recognize base address selection entries, we need a
4419 mask. */
4420 unsigned int addr_size = cu->header.addr_size;
4421 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4422
4423 /* The base address, to which the next pair is relative. Note
4424 that this 'base' is a DWARF concept: most entries in a range
4425 list are relative, to reduce the number of relocs against the
4426 debugging information. This is separate from this function's
4427 'baseaddr' argument, which GDB uses to relocate debugging
4428 information from a shared library based on the address at
4429 which the library was loaded. */
4430 CORE_ADDR base = cu->base_address;
4431 int base_known = cu->base_known;
4432
4433 gdb_assert (dwarf2_per_objfile->ranges.readin);
4434 if (offset >= dwarf2_per_objfile->ranges.size)
4435 {
4436 complaint (&symfile_complaints,
4437 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
4438 offset);
4439 return;
4440 }
4441
4442 for (;;)
4443 {
4444 unsigned int bytes_read;
4445 CORE_ADDR start, end;
4446
4447 start = read_address (obfd, buffer, cu, &bytes_read);
4448 buffer += bytes_read;
4449 end = read_address (obfd, buffer, cu, &bytes_read);
4450 buffer += bytes_read;
4451
4452 /* Did we find the end of the range list? */
4453 if (start == 0 && end == 0)
4454 break;
4455
4456 /* Did we find a base address selection entry? */
4457 else if ((start & base_select_mask) == base_select_mask)
4458 {
4459 base = end;
4460 base_known = 1;
4461 }
4462
4463 /* We found an ordinary address range. */
4464 else
4465 {
4466 if (!base_known)
4467 {
4468 complaint (&symfile_complaints,
4469 _("Invalid .debug_ranges data (no base address)"));
4470 return;
4471 }
4472
4473 record_block_range (block,
4474 baseaddr + base + start,
4475 baseaddr + base + end - 1);
4476 }
4477 }
4478 }
4479}
4480
4481/* Add an aggregate field to the field list. */
4482
4483static void
4484dwarf2_add_field (struct field_info *fip, struct die_info *die,
4485 struct dwarf2_cu *cu)
4486{
4487 struct objfile *objfile = cu->objfile;
4488 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4489 struct nextfield *new_field;
4490 struct attribute *attr;
4491 struct field *fp;
4492 char *fieldname = "";
4493
4494 /* Allocate a new field list entry and link it in. */
4495 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
4496 make_cleanup (xfree, new_field);
4497 memset (new_field, 0, sizeof (struct nextfield));
4498
4499 if (die->tag == DW_TAG_inheritance)
4500 {
4501 new_field->next = fip->baseclasses;
4502 fip->baseclasses = new_field;
4503 }
4504 else
4505 {
4506 new_field->next = fip->fields;
4507 fip->fields = new_field;
4508 }
4509 fip->nfields++;
4510
4511 /* Handle accessibility and virtuality of field.
4512 The default accessibility for members is public, the default
4513 accessibility for inheritance is private. */
4514 if (die->tag != DW_TAG_inheritance)
4515 new_field->accessibility = DW_ACCESS_public;
4516 else
4517 new_field->accessibility = DW_ACCESS_private;
4518 new_field->virtuality = DW_VIRTUALITY_none;
4519
4520 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
4521 if (attr)
4522 new_field->accessibility = DW_UNSND (attr);
4523 if (new_field->accessibility != DW_ACCESS_public)
4524 fip->non_public_fields = 1;
4525 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4526 if (attr)
4527 new_field->virtuality = DW_UNSND (attr);
4528
4529 fp = &new_field->field;
4530
4531 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
4532 {
4533 /* Data member other than a C++ static data member. */
4534
4535 /* Get type of field. */
4536 fp->type = die_type (die, cu);
4537
4538 SET_FIELD_BITPOS (*fp, 0);
4539
4540 /* Get bit size of field (zero if none). */
4541 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
4542 if (attr)
4543 {
4544 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
4545 }
4546 else
4547 {
4548 FIELD_BITSIZE (*fp) = 0;
4549 }
4550
4551 /* Get bit offset of field. */
4552 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
4553 if (attr)
4554 {
4555 int byte_offset = 0;
4556
4557 if (attr_form_is_section_offset (attr))
4558 dwarf2_complex_location_expr_complaint ();
4559 else if (attr_form_is_constant (attr))
4560 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4561 else if (attr_form_is_block (attr))
4562 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4563 else
4564 dwarf2_complex_location_expr_complaint ();
4565
4566 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4567 }
4568 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
4569 if (attr)
4570 {
4571 if (gdbarch_bits_big_endian (gdbarch))
4572 {
4573 /* For big endian bits, the DW_AT_bit_offset gives the
4574 additional bit offset from the MSB of the containing
4575 anonymous object to the MSB of the field. We don't
4576 have to do anything special since we don't need to
4577 know the size of the anonymous object. */
4578 FIELD_BITPOS (*fp) += DW_UNSND (attr);
4579 }
4580 else
4581 {
4582 /* For little endian bits, compute the bit offset to the
4583 MSB of the anonymous object, subtract off the number of
4584 bits from the MSB of the field to the MSB of the
4585 object, and then subtract off the number of bits of
4586 the field itself. The result is the bit offset of
4587 the LSB of the field. */
4588 int anonymous_size;
4589 int bit_offset = DW_UNSND (attr);
4590
4591 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4592 if (attr)
4593 {
4594 /* The size of the anonymous object containing
4595 the bit field is explicit, so use the
4596 indicated size (in bytes). */
4597 anonymous_size = DW_UNSND (attr);
4598 }
4599 else
4600 {
4601 /* The size of the anonymous object containing
4602 the bit field must be inferred from the type
4603 attribute of the data member containing the
4604 bit field. */
4605 anonymous_size = TYPE_LENGTH (fp->type);
4606 }
4607 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
4608 - bit_offset - FIELD_BITSIZE (*fp);
4609 }
4610 }
4611
4612 /* Get name of field. */
4613 fieldname = dwarf2_name (die, cu);
4614 if (fieldname == NULL)
4615 fieldname = "";
4616
4617 /* The name is already allocated along with this objfile, so we don't
4618 need to duplicate it for the type. */
4619 fp->name = fieldname;
4620
4621 /* Change accessibility for artificial fields (e.g. virtual table
4622 pointer or virtual base class pointer) to private. */
4623 if (dwarf2_attr (die, DW_AT_artificial, cu))
4624 {
4625 FIELD_ARTIFICIAL (*fp) = 1;
4626 new_field->accessibility = DW_ACCESS_private;
4627 fip->non_public_fields = 1;
4628 }
4629 }
4630 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
4631 {
4632 /* C++ static member. */
4633
4634 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
4635 is a declaration, but all versions of G++ as of this writing
4636 (so through at least 3.2.1) incorrectly generate
4637 DW_TAG_variable tags. */
4638
4639 char *physname;
4640
4641 /* Get name of field. */
4642 fieldname = dwarf2_name (die, cu);
4643 if (fieldname == NULL)
4644 return;
4645
4646 attr = dwarf2_attr (die, DW_AT_const_value, cu);
4647 if (attr
4648 /* Only create a symbol if this is an external value.
4649 new_symbol checks this and puts the value in the global symbol
4650 table, which we want. If it is not external, new_symbol
4651 will try to put the value in cu->list_in_scope which is wrong. */
4652 && dwarf2_flag_true_p (die, DW_AT_external, cu))
4653 {
4654 /* A static const member, not much different than an enum as far as
4655 we're concerned, except that we can support more types. */
4656 new_symbol (die, NULL, cu);
4657 }
4658
4659 /* Get physical name. */
4660 physname = (char *) dwarf2_physname (fieldname, die, cu);
4661
4662 /* The name is already allocated along with this objfile, so we don't
4663 need to duplicate it for the type. */
4664 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
4665 FIELD_TYPE (*fp) = die_type (die, cu);
4666 FIELD_NAME (*fp) = fieldname;
4667 }
4668 else if (die->tag == DW_TAG_inheritance)
4669 {
4670 /* C++ base class field. */
4671 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
4672 if (attr)
4673 {
4674 int byte_offset = 0;
4675
4676 if (attr_form_is_section_offset (attr))
4677 dwarf2_complex_location_expr_complaint ();
4678 else if (attr_form_is_constant (attr))
4679 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4680 else if (attr_form_is_block (attr))
4681 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4682 else
4683 dwarf2_complex_location_expr_complaint ();
4684
4685 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4686 }
4687 FIELD_BITSIZE (*fp) = 0;
4688 FIELD_TYPE (*fp) = die_type (die, cu);
4689 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
4690 fip->nbaseclasses++;
4691 }
4692}
4693
4694/* Add a typedef defined in the scope of the FIP's class. */
4695
4696static void
4697dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
4698 struct dwarf2_cu *cu)
4699{
4700 struct objfile *objfile = cu->objfile;
4701 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4702 struct typedef_field_list *new_field;
4703 struct attribute *attr;
4704 struct typedef_field *fp;
4705 char *fieldname = "";
4706
4707 /* Allocate a new field list entry and link it in. */
4708 new_field = xzalloc (sizeof (*new_field));
4709 make_cleanup (xfree, new_field);
4710
4711 gdb_assert (die->tag == DW_TAG_typedef);
4712
4713 fp = &new_field->field;
4714
4715 /* Get name of field. */
4716 fp->name = dwarf2_name (die, cu);
4717 if (fp->name == NULL)
4718 return;
4719
4720 fp->type = read_type_die (die, cu);
4721
4722 new_field->next = fip->typedef_field_list;
4723 fip->typedef_field_list = new_field;
4724 fip->typedef_field_list_count++;
4725}
4726
4727/* Create the vector of fields, and attach it to the type. */
4728
4729static void
4730dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
4731 struct dwarf2_cu *cu)
4732{
4733 int nfields = fip->nfields;
4734
4735 /* Record the field count, allocate space for the array of fields,
4736 and create blank accessibility bitfields if necessary. */
4737 TYPE_NFIELDS (type) = nfields;
4738 TYPE_FIELDS (type) = (struct field *)
4739 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4740 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4741
4742 if (fip->non_public_fields && cu->language != language_ada)
4743 {
4744 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4745
4746 TYPE_FIELD_PRIVATE_BITS (type) =
4747 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4748 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4749
4750 TYPE_FIELD_PROTECTED_BITS (type) =
4751 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4752 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4753
4754 TYPE_FIELD_IGNORE_BITS (type) =
4755 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4756 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4757 }
4758
4759 /* If the type has baseclasses, allocate and clear a bit vector for
4760 TYPE_FIELD_VIRTUAL_BITS. */
4761 if (fip->nbaseclasses && cu->language != language_ada)
4762 {
4763 int num_bytes = B_BYTES (fip->nbaseclasses);
4764 unsigned char *pointer;
4765
4766 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4767 pointer = TYPE_ALLOC (type, num_bytes);
4768 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
4769 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
4770 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
4771 }
4772
4773 /* Copy the saved-up fields into the field vector. Start from the head
4774 of the list, adding to the tail of the field array, so that they end
4775 up in the same order in the array in which they were added to the list. */
4776 while (nfields-- > 0)
4777 {
4778 struct nextfield *fieldp;
4779
4780 if (fip->fields)
4781 {
4782 fieldp = fip->fields;
4783 fip->fields = fieldp->next;
4784 }
4785 else
4786 {
4787 fieldp = fip->baseclasses;
4788 fip->baseclasses = fieldp->next;
4789 }
4790
4791 TYPE_FIELD (type, nfields) = fieldp->field;
4792 switch (fieldp->accessibility)
4793 {
4794 case DW_ACCESS_private:
4795 if (cu->language != language_ada)
4796 SET_TYPE_FIELD_PRIVATE (type, nfields);
4797 break;
4798
4799 case DW_ACCESS_protected:
4800 if (cu->language != language_ada)
4801 SET_TYPE_FIELD_PROTECTED (type, nfields);
4802 break;
4803
4804 case DW_ACCESS_public:
4805 break;
4806
4807 default:
4808 /* Unknown accessibility. Complain and treat it as public. */
4809 {
4810 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4811 fieldp->accessibility);
4812 }
4813 break;
4814 }
4815 if (nfields < fip->nbaseclasses)
4816 {
4817 switch (fieldp->virtuality)
4818 {
4819 case DW_VIRTUALITY_virtual:
4820 case DW_VIRTUALITY_pure_virtual:
4821 if (cu->language == language_ada)
4822 error ("unexpected virtuality in component of Ada type");
4823 SET_TYPE_FIELD_VIRTUAL (type, nfields);
4824 break;
4825 }
4826 }
4827 }
4828}
4829
4830/* Add a member function to the proper fieldlist. */
4831
4832static void
4833dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
4834 struct type *type, struct dwarf2_cu *cu)
4835{
4836 struct objfile *objfile = cu->objfile;
4837 struct attribute *attr;
4838 struct fnfieldlist *flp;
4839 int i;
4840 struct fn_field *fnp;
4841 char *fieldname;
4842 char *physname;
4843 struct nextfnfield *new_fnfield;
4844 struct type *this_type;
4845
4846 if (cu->language == language_ada)
4847 error ("unexpected member function in Ada type");
4848
4849 /* Get name of member function. */
4850 fieldname = dwarf2_name (die, cu);
4851 if (fieldname == NULL)
4852 return;
4853
4854 /* Get the mangled name. */
4855 physname = (char *) dwarf2_physname (fieldname, die, cu);
4856
4857 /* Look up member function name in fieldlist. */
4858 for (i = 0; i < fip->nfnfields; i++)
4859 {
4860 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
4861 break;
4862 }
4863
4864 /* Create new list element if necessary. */
4865 if (i < fip->nfnfields)
4866 flp = &fip->fnfieldlists[i];
4867 else
4868 {
4869 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
4870 {
4871 fip->fnfieldlists = (struct fnfieldlist *)
4872 xrealloc (fip->fnfieldlists,
4873 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
4874 * sizeof (struct fnfieldlist));
4875 if (fip->nfnfields == 0)
4876 make_cleanup (free_current_contents, &fip->fnfieldlists);
4877 }
4878 flp = &fip->fnfieldlists[fip->nfnfields];
4879 flp->name = fieldname;
4880 flp->length = 0;
4881 flp->head = NULL;
4882 fip->nfnfields++;
4883 }
4884
4885 /* Create a new member function field and chain it to the field list
4886 entry. */
4887 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
4888 make_cleanup (xfree, new_fnfield);
4889 memset (new_fnfield, 0, sizeof (struct nextfnfield));
4890 new_fnfield->next = flp->head;
4891 flp->head = new_fnfield;
4892 flp->length++;
4893
4894 /* Fill in the member function field info. */
4895 fnp = &new_fnfield->fnfield;
4896 /* The name is already allocated along with this objfile, so we don't
4897 need to duplicate it for the type. */
4898 fnp->physname = physname ? physname : "";
4899 fnp->type = alloc_type (objfile);
4900 this_type = read_type_die (die, cu);
4901 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
4902 {
4903 int nparams = TYPE_NFIELDS (this_type);
4904
4905 /* TYPE is the domain of this method, and THIS_TYPE is the type
4906 of the method itself (TYPE_CODE_METHOD). */
4907 smash_to_method_type (fnp->type, type,
4908 TYPE_TARGET_TYPE (this_type),
4909 TYPE_FIELDS (this_type),
4910 TYPE_NFIELDS (this_type),
4911 TYPE_VARARGS (this_type));
4912
4913 /* Handle static member functions.
4914 Dwarf2 has no clean way to discern C++ static and non-static
4915 member functions. G++ helps GDB by marking the first
4916 parameter for non-static member functions (which is the
4917 this pointer) as artificial. We obtain this information
4918 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
4919 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
4920 fnp->voffset = VOFFSET_STATIC;
4921 }
4922 else
4923 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4924 physname);
4925
4926 /* Get fcontext from DW_AT_containing_type if present. */
4927 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
4928 fnp->fcontext = die_containing_type (die, cu);
4929
4930 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
4931 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
4932
4933 /* Get accessibility. */
4934 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
4935 if (attr)
4936 {
4937 switch (DW_UNSND (attr))
4938 {
4939 case DW_ACCESS_private:
4940 fnp->is_private = 1;
4941 break;
4942 case DW_ACCESS_protected:
4943 fnp->is_protected = 1;
4944 break;
4945 }
4946 }
4947
4948 /* Check for artificial methods. */
4949 attr = dwarf2_attr (die, DW_AT_artificial, cu);
4950 if (attr && DW_UNSND (attr) != 0)
4951 fnp->is_artificial = 1;
4952
4953 /* Get index in virtual function table if it is a virtual member
4954 function. For older versions of GCC, this is an offset in the
4955 appropriate virtual table, as specified by DW_AT_containing_type.
4956 For everyone else, it is an expression to be evaluated relative
4957 to the object address. */
4958
4959 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
4960 if (attr)
4961 {
4962 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
4963 {
4964 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
4965 {
4966 /* Old-style GCC. */
4967 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
4968 }
4969 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
4970 || (DW_BLOCK (attr)->size > 1
4971 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
4972 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
4973 {
4974 struct dwarf_block blk;
4975 int offset;
4976
4977 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
4978 ? 1 : 2);
4979 blk.size = DW_BLOCK (attr)->size - offset;
4980 blk.data = DW_BLOCK (attr)->data + offset;
4981 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
4982 if ((fnp->voffset % cu->header.addr_size) != 0)
4983 dwarf2_complex_location_expr_complaint ();
4984 else
4985 fnp->voffset /= cu->header.addr_size;
4986 fnp->voffset += 2;
4987 }
4988 else
4989 dwarf2_complex_location_expr_complaint ();
4990
4991 if (!fnp->fcontext)
4992 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
4993 }
4994 else if (attr_form_is_section_offset (attr))
4995 {
4996 dwarf2_complex_location_expr_complaint ();
4997 }
4998 else
4999 {
5000 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
5001 fieldname);
5002 }
5003 }
5004 else
5005 {
5006 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
5007 if (attr && DW_UNSND (attr))
5008 {
5009 /* GCC does this, as of 2008-08-25; PR debug/37237. */
5010 complaint (&symfile_complaints,
5011 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
5012 fieldname, die->offset);
5013 ALLOCATE_CPLUS_STRUCT_TYPE (type);
5014 TYPE_CPLUS_DYNAMIC (type) = 1;
5015 }
5016 }
5017}
5018
5019/* Create the vector of member function fields, and attach it to the type. */
5020
5021static void
5022dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
5023 struct dwarf2_cu *cu)
5024{
5025 struct fnfieldlist *flp;
5026 int total_length = 0;
5027 int i;
5028
5029 if (cu->language == language_ada)
5030 error ("unexpected member functions in Ada type");
5031
5032 ALLOCATE_CPLUS_STRUCT_TYPE (type);
5033 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
5034 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
5035
5036 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
5037 {
5038 struct nextfnfield *nfp = flp->head;
5039 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
5040 int k;
5041
5042 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
5043 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
5044 fn_flp->fn_fields = (struct fn_field *)
5045 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
5046 for (k = flp->length; (k--, nfp); nfp = nfp->next)
5047 fn_flp->fn_fields[k] = nfp->fnfield;
5048
5049 total_length += flp->length;
5050 }
5051
5052 TYPE_NFN_FIELDS (type) = fip->nfnfields;
5053 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
5054}
5055
5056/* Returns non-zero if NAME is the name of a vtable member in CU's
5057 language, zero otherwise. */
5058static int
5059is_vtable_name (const char *name, struct dwarf2_cu *cu)
5060{
5061 static const char vptr[] = "_vptr";
5062 static const char vtable[] = "vtable";
5063
5064 /* Look for the C++ and Java forms of the vtable. */
5065 if ((cu->language == language_java
5066 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
5067 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
5068 && is_cplus_marker (name[sizeof (vptr) - 1])))
5069 return 1;
5070
5071 return 0;
5072}
5073
5074/* GCC outputs unnamed structures that are really pointers to member
5075 functions, with the ABI-specified layout. If TYPE describes
5076 such a structure, smash it into a member function type.
5077
5078 GCC shouldn't do this; it should just output pointer to member DIEs.
5079 This is GCC PR debug/28767. */
5080
5081static void
5082quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
5083{
5084 struct type *pfn_type, *domain_type, *new_type;
5085
5086 /* Check for a structure with no name and two children. */
5087 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
5088 return;
5089
5090 /* Check for __pfn and __delta members. */
5091 if (TYPE_FIELD_NAME (type, 0) == NULL
5092 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
5093 || TYPE_FIELD_NAME (type, 1) == NULL
5094 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
5095 return;
5096
5097 /* Find the type of the method. */
5098 pfn_type = TYPE_FIELD_TYPE (type, 0);
5099 if (pfn_type == NULL
5100 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
5101 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
5102 return;
5103
5104 /* Look for the "this" argument. */
5105 pfn_type = TYPE_TARGET_TYPE (pfn_type);
5106 if (TYPE_NFIELDS (pfn_type) == 0
5107 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
5108 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
5109 return;
5110
5111 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
5112 new_type = alloc_type (objfile);
5113 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
5114 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
5115 TYPE_VARARGS (pfn_type));
5116 smash_to_methodptr_type (type, new_type);
5117}
5118
5119/* Called when we find the DIE that starts a structure or union scope
5120 (definition) to process all dies that define the members of the
5121 structure or union.
5122
5123 NOTE: we need to call struct_type regardless of whether or not the
5124 DIE has an at_name attribute, since it might be an anonymous
5125 structure or union. This gets the type entered into our set of
5126 user defined types.
5127
5128 However, if the structure is incomplete (an opaque struct/union)
5129 then suppress creating a symbol table entry for it since gdb only
5130 wants to find the one with the complete definition. Note that if
5131 it is complete, we just call new_symbol, which does it's own
5132 checking about whether the struct/union is anonymous or not (and
5133 suppresses creating a symbol table entry itself). */
5134
5135static struct type *
5136read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
5137{
5138 struct objfile *objfile = cu->objfile;
5139 struct type *type;
5140 struct attribute *attr;
5141 char *name;
5142 struct cleanup *back_to;
5143
5144 /* If the definition of this type lives in .debug_types, read that type.
5145 Don't follow DW_AT_specification though, that will take us back up
5146 the chain and we want to go down. */
5147 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5148 if (attr)
5149 {
5150 struct dwarf2_cu *type_cu = cu;
5151 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
5152
5153 /* We could just recurse on read_structure_type, but we need to call
5154 get_die_type to ensure only one type for this DIE is created.
5155 This is important, for example, because for c++ classes we need
5156 TYPE_NAME set which is only done by new_symbol. Blech. */
5157 type = read_type_die (type_die, type_cu);
5158 return set_die_type (die, type, cu);
5159 }
5160
5161 back_to = make_cleanup (null_cleanup, 0);
5162
5163 type = alloc_type (objfile);
5164 INIT_CPLUS_SPECIFIC (type);
5165
5166 name = dwarf2_name (die, cu);
5167 if (name != NULL)
5168 {
5169 if (cu->language == language_cplus
5170 || cu->language == language_java)
5171 {
5172 TYPE_TAG_NAME (type) = (char *) dwarf2_full_name (name, die, cu);
5173 if (die->tag == DW_TAG_structure_type
5174 || die->tag == DW_TAG_class_type)
5175 TYPE_NAME (type) = TYPE_TAG_NAME (type);
5176 }
5177 else
5178 {
5179 /* The name is already allocated along with this objfile, so
5180 we don't need to duplicate it for the type. */
5181 TYPE_TAG_NAME (type) = (char *) name;
5182 if (die->tag == DW_TAG_class_type)
5183 TYPE_NAME (type) = TYPE_TAG_NAME (type);
5184 }
5185 }
5186
5187 if (die->tag == DW_TAG_structure_type)
5188 {
5189 TYPE_CODE (type) = TYPE_CODE_STRUCT;
5190 }
5191 else if (die->tag == DW_TAG_union_type)
5192 {
5193 TYPE_CODE (type) = TYPE_CODE_UNION;
5194 }
5195 else
5196 {
5197 TYPE_CODE (type) = TYPE_CODE_CLASS;
5198 }
5199
5200 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
5201 TYPE_DECLARED_CLASS (type) = 1;
5202
5203 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5204 if (attr)
5205 {
5206 TYPE_LENGTH (type) = DW_UNSND (attr);
5207 }
5208 else
5209 {
5210 TYPE_LENGTH (type) = 0;
5211 }
5212
5213 TYPE_STUB_SUPPORTED (type) = 1;
5214 if (die_is_declaration (die, cu))
5215 TYPE_STUB (type) = 1;
5216 else if (attr == NULL && die->child == NULL
5217 && producer_is_realview (cu->producer))
5218 /* RealView does not output the required DW_AT_declaration
5219 on incomplete types. */
5220 TYPE_STUB (type) = 1;
5221
5222 /* We need to add the type field to the die immediately so we don't
5223 infinitely recurse when dealing with pointers to the structure
5224 type within the structure itself. */
5225 set_die_type (die, type, cu);
5226
5227 /* set_die_type should be already done. */
5228 set_descriptive_type (type, die, cu);
5229
5230 if (die->child != NULL && ! die_is_declaration (die, cu))
5231 {
5232 struct field_info fi;
5233 struct die_info *child_die;
5234
5235 memset (&fi, 0, sizeof (struct field_info));
5236
5237 child_die = die->child;
5238
5239 while (child_die && child_die->tag)
5240 {
5241 if (child_die->tag == DW_TAG_member
5242 || child_die->tag == DW_TAG_variable)
5243 {
5244 /* NOTE: carlton/2002-11-05: A C++ static data member
5245 should be a DW_TAG_member that is a declaration, but
5246 all versions of G++ as of this writing (so through at
5247 least 3.2.1) incorrectly generate DW_TAG_variable
5248 tags for them instead. */
5249 dwarf2_add_field (&fi, child_die, cu);
5250 }
5251 else if (child_die->tag == DW_TAG_subprogram)
5252 {
5253 /* C++ member function. */
5254 dwarf2_add_member_fn (&fi, child_die, type, cu);
5255 }
5256 else if (child_die->tag == DW_TAG_inheritance)
5257 {
5258 /* C++ base class field. */
5259 dwarf2_add_field (&fi, child_die, cu);
5260 }
5261 else if (child_die->tag == DW_TAG_typedef)
5262 dwarf2_add_typedef (&fi, child_die, cu);
5263 child_die = sibling_die (child_die);
5264 }
5265
5266 /* Attach fields and member functions to the type. */
5267 if (fi.nfields)
5268 dwarf2_attach_fields_to_type (&fi, type, cu);
5269 if (fi.nfnfields)
5270 {
5271 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
5272
5273 /* Get the type which refers to the base class (possibly this
5274 class itself) which contains the vtable pointer for the current
5275 class from the DW_AT_containing_type attribute. This use of
5276 DW_AT_containing_type is a GNU extension. */
5277
5278 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
5279 {
5280 struct type *t = die_containing_type (die, cu);
5281
5282 TYPE_VPTR_BASETYPE (type) = t;
5283 if (type == t)
5284 {
5285 int i;
5286
5287 /* Our own class provides vtbl ptr. */
5288 for (i = TYPE_NFIELDS (t) - 1;
5289 i >= TYPE_N_BASECLASSES (t);
5290 --i)
5291 {
5292 char *fieldname = TYPE_FIELD_NAME (t, i);
5293
5294 if (is_vtable_name (fieldname, cu))
5295 {
5296 TYPE_VPTR_FIELDNO (type) = i;
5297 break;
5298 }
5299 }
5300
5301 /* Complain if virtual function table field not found. */
5302 if (i < TYPE_N_BASECLASSES (t))
5303 complaint (&symfile_complaints,
5304 _("virtual function table pointer not found when defining class '%s'"),
5305 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
5306 "");
5307 }
5308 else
5309 {
5310 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
5311 }
5312 }
5313 else if (cu->producer
5314 && strncmp (cu->producer,
5315 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
5316 {
5317 /* The IBM XLC compiler does not provide direct indication
5318 of the containing type, but the vtable pointer is
5319 always named __vfp. */
5320
5321 int i;
5322
5323 for (i = TYPE_NFIELDS (type) - 1;
5324 i >= TYPE_N_BASECLASSES (type);
5325 --i)
5326 {
5327 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
5328 {
5329 TYPE_VPTR_FIELDNO (type) = i;
5330 TYPE_VPTR_BASETYPE (type) = type;
5331 break;
5332 }
5333 }
5334 }
5335 }
5336
5337 /* Copy fi.typedef_field_list linked list elements content into the
5338 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
5339 if (fi.typedef_field_list)
5340 {
5341 int i = fi.typedef_field_list_count;
5342
5343 ALLOCATE_CPLUS_STRUCT_TYPE (type);
5344 TYPE_TYPEDEF_FIELD_ARRAY (type)
5345 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
5346 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
5347
5348 /* Reverse the list order to keep the debug info elements order. */
5349 while (--i >= 0)
5350 {
5351 struct typedef_field *dest, *src;
5352
5353 dest = &TYPE_TYPEDEF_FIELD (type, i);
5354 src = &fi.typedef_field_list->field;
5355 fi.typedef_field_list = fi.typedef_field_list->next;
5356 *dest = *src;
5357 }
5358 }
5359 }
5360
5361 quirk_gcc_member_function_pointer (type, cu->objfile);
5362
5363 do_cleanups (back_to);
5364 return type;
5365}
5366
5367static void
5368process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
5369{
5370 struct die_info *child_die = die->child;
5371 struct type *this_type;
5372
5373 this_type = get_die_type (die, cu);
5374 if (this_type == NULL)
5375 this_type = read_structure_type (die, cu);
5376
5377 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
5378 snapshots) has been known to create a die giving a declaration
5379 for a class that has, as a child, a die giving a definition for a
5380 nested class. So we have to process our children even if the
5381 current die is a declaration. Normally, of course, a declaration
5382 won't have any children at all. */
5383
5384 while (child_die != NULL && child_die->tag)
5385 {
5386 if (child_die->tag == DW_TAG_member
5387 || child_die->tag == DW_TAG_variable
5388 || child_die->tag == DW_TAG_inheritance)
5389 {
5390 /* Do nothing. */
5391 }
5392 else
5393 process_die (child_die, cu);
5394
5395 child_die = sibling_die (child_die);
5396 }
5397
5398 /* Do not consider external references. According to the DWARF standard,
5399 these DIEs are identified by the fact that they have no byte_size
5400 attribute, and a declaration attribute. */
5401 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
5402 || !die_is_declaration (die, cu))
5403 new_symbol (die, this_type, cu);
5404}
5405
5406/* Given a DW_AT_enumeration_type die, set its type. We do not
5407 complete the type's fields yet, or create any symbols. */
5408
5409static struct type *
5410read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
5411{
5412 struct objfile *objfile = cu->objfile;
5413 struct type *type;
5414 struct attribute *attr;
5415 const char *name;
5416
5417 /* If the definition of this type lives in .debug_types, read that type.
5418 Don't follow DW_AT_specification though, that will take us back up
5419 the chain and we want to go down. */
5420 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5421 if (attr)
5422 {
5423 struct dwarf2_cu *type_cu = cu;
5424 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
5425
5426 type = read_type_die (type_die, type_cu);
5427 return set_die_type (die, type, cu);
5428 }
5429
5430 type = alloc_type (objfile);
5431
5432 TYPE_CODE (type) = TYPE_CODE_ENUM;
5433 name = dwarf2_full_name (NULL, die, cu);
5434 if (name != NULL)
5435 TYPE_TAG_NAME (type) = (char *) name;
5436
5437 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5438 if (attr)
5439 {
5440 TYPE_LENGTH (type) = DW_UNSND (attr);
5441 }
5442 else
5443 {
5444 TYPE_LENGTH (type) = 0;
5445 }
5446
5447 /* The enumeration DIE can be incomplete. In Ada, any type can be
5448 declared as private in the package spec, and then defined only
5449 inside the package body. Such types are known as Taft Amendment
5450 Types. When another package uses such a type, an incomplete DIE
5451 may be generated by the compiler. */
5452 if (die_is_declaration (die, cu))
5453 TYPE_STUB (type) = 1;
5454
5455 return set_die_type (die, type, cu);
5456}
5457
5458/* Given a pointer to a die which begins an enumeration, process all
5459 the dies that define the members of the enumeration, and create the
5460 symbol for the enumeration type.
5461
5462 NOTE: We reverse the order of the element list. */
5463
5464static void
5465process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
5466{
5467 struct die_info *child_die;
5468 struct field *fields;
5469 struct symbol *sym;
5470 int num_fields;
5471 int unsigned_enum = 1;
5472 char *name;
5473 struct type *this_type;
5474
5475 num_fields = 0;
5476 fields = NULL;
5477 this_type = get_die_type (die, cu);
5478 if (this_type == NULL)
5479 this_type = read_enumeration_type (die, cu);
5480 if (die->child != NULL)
5481 {
5482 child_die = die->child;
5483 while (child_die && child_die->tag)
5484 {
5485 if (child_die->tag != DW_TAG_enumerator)
5486 {
5487 process_die (child_die, cu);
5488 }
5489 else
5490 {
5491 name = dwarf2_name (child_die, cu);
5492 if (name)
5493 {
5494 sym = new_symbol (child_die, this_type, cu);
5495 if (SYMBOL_VALUE (sym) < 0)
5496 unsigned_enum = 0;
5497
5498 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
5499 {
5500 fields = (struct field *)
5501 xrealloc (fields,
5502 (num_fields + DW_FIELD_ALLOC_CHUNK)
5503 * sizeof (struct field));
5504 }
5505
5506 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
5507 FIELD_TYPE (fields[num_fields]) = NULL;
5508 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
5509 FIELD_BITSIZE (fields[num_fields]) = 0;
5510
5511 num_fields++;
5512 }
5513 }
5514
5515 child_die = sibling_die (child_die);
5516 }
5517
5518 if (num_fields)
5519 {
5520 TYPE_NFIELDS (this_type) = num_fields;
5521 TYPE_FIELDS (this_type) = (struct field *)
5522 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
5523 memcpy (TYPE_FIELDS (this_type), fields,
5524 sizeof (struct field) * num_fields);
5525 xfree (fields);
5526 }
5527 if (unsigned_enum)
5528 TYPE_UNSIGNED (this_type) = 1;
5529 }
5530
5531 new_symbol (die, this_type, cu);
5532}
5533
5534/* Extract all information from a DW_TAG_array_type DIE and put it in
5535 the DIE's type field. For now, this only handles one dimensional
5536 arrays. */
5537
5538static struct type *
5539read_array_type (struct die_info *die, struct dwarf2_cu *cu)
5540{
5541 struct objfile *objfile = cu->objfile;
5542 struct die_info *child_die;
5543 struct type *type;
5544 struct type *element_type, *range_type, *index_type;
5545 struct type **range_types = NULL;
5546 struct attribute *attr;
5547 int ndim = 0;
5548 struct cleanup *back_to;
5549 char *name;
5550
5551 element_type = die_type (die, cu);
5552
5553 /* The die_type call above may have already set the type for this DIE. */
5554 type = get_die_type (die, cu);
5555 if (type)
5556 return type;
5557
5558 /* Irix 6.2 native cc creates array types without children for
5559 arrays with unspecified length. */
5560 if (die->child == NULL)
5561 {
5562 index_type = objfile_type (objfile)->builtin_int;
5563 range_type = create_range_type (NULL, index_type, 0, -1);
5564 type = create_array_type (NULL, element_type, range_type);
5565 return set_die_type (die, type, cu);
5566 }
5567
5568 back_to = make_cleanup (null_cleanup, NULL);
5569 child_die = die->child;
5570 while (child_die && child_die->tag)
5571 {
5572 if (child_die->tag == DW_TAG_subrange_type)
5573 {
5574 struct type *child_type = read_type_die (child_die, cu);
5575
5576 if (child_type != NULL)
5577 {
5578 /* The range type was succesfully read. Save it for
5579 the array type creation. */
5580 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
5581 {
5582 range_types = (struct type **)
5583 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
5584 * sizeof (struct type *));
5585 if (ndim == 0)
5586 make_cleanup (free_current_contents, &range_types);
5587 }
5588 range_types[ndim++] = child_type;
5589 }
5590 }
5591 child_die = sibling_die (child_die);
5592 }
5593
5594 /* Dwarf2 dimensions are output from left to right, create the
5595 necessary array types in backwards order. */
5596
5597 type = element_type;
5598
5599 if (read_array_order (die, cu) == DW_ORD_col_major)
5600 {
5601 int i = 0;
5602
5603 while (i < ndim)
5604 type = create_array_type (NULL, type, range_types[i++]);
5605 }
5606 else
5607 {
5608 while (ndim-- > 0)
5609 type = create_array_type (NULL, type, range_types[ndim]);
5610 }
5611
5612 /* Understand Dwarf2 support for vector types (like they occur on
5613 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
5614 array type. This is not part of the Dwarf2/3 standard yet, but a
5615 custom vendor extension. The main difference between a regular
5616 array and the vector variant is that vectors are passed by value
5617 to functions. */
5618 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
5619 if (attr)
5620 make_vector_type (type);
5621
5622 name = dwarf2_name (die, cu);
5623 if (name)
5624 TYPE_NAME (type) = name;
5625
5626 /* Install the type in the die. */
5627 set_die_type (die, type, cu);
5628
5629 /* set_die_type should be already done. */
5630 set_descriptive_type (type, die, cu);
5631
5632 do_cleanups (back_to);
5633
5634 return type;
5635}
5636
5637static enum dwarf_array_dim_ordering
5638read_array_order (struct die_info *die, struct dwarf2_cu *cu)
5639{
5640 struct attribute *attr;
5641
5642 attr = dwarf2_attr (die, DW_AT_ordering, cu);
5643
5644 if (attr) return DW_SND (attr);
5645
5646 /*
5647 GNU F77 is a special case, as at 08/2004 array type info is the
5648 opposite order to the dwarf2 specification, but data is still
5649 laid out as per normal fortran.
5650
5651 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
5652 version checking.
5653 */
5654
5655 if (cu->language == language_fortran
5656 && cu->producer && strstr (cu->producer, "GNU F77"))
5657 {
5658 return DW_ORD_row_major;
5659 }
5660
5661 switch (cu->language_defn->la_array_ordering)
5662 {
5663 case array_column_major:
5664 return DW_ORD_col_major;
5665 case array_row_major:
5666 default:
5667 return DW_ORD_row_major;
5668 };
5669}
5670
5671/* Extract all information from a DW_TAG_set_type DIE and put it in
5672 the DIE's type field. */
5673
5674static struct type *
5675read_set_type (struct die_info *die, struct dwarf2_cu *cu)
5676{
5677 struct type *domain_type, *set_type;
5678 struct attribute *attr;
5679
5680 domain_type = die_type (die, cu);
5681
5682 /* The die_type call above may have already set the type for this DIE. */
5683 set_type = get_die_type (die, cu);
5684 if (set_type)
5685 return set_type;
5686
5687 set_type = create_set_type (NULL, domain_type);
5688
5689 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5690 if (attr)
5691 TYPE_LENGTH (set_type) = DW_UNSND (attr);
5692
5693 return set_die_type (die, set_type, cu);
5694}
5695
5696/* First cut: install each common block member as a global variable. */
5697
5698static void
5699read_common_block (struct die_info *die, struct dwarf2_cu *cu)
5700{
5701 struct die_info *child_die;
5702 struct attribute *attr;
5703 struct symbol *sym;
5704 CORE_ADDR base = (CORE_ADDR) 0;
5705
5706 attr = dwarf2_attr (die, DW_AT_location, cu);
5707 if (attr)
5708 {
5709 /* Support the .debug_loc offsets */
5710 if (attr_form_is_block (attr))
5711 {
5712 base = decode_locdesc (DW_BLOCK (attr), cu);
5713 }
5714 else if (attr_form_is_section_offset (attr))
5715 {
5716 dwarf2_complex_location_expr_complaint ();
5717 }
5718 else
5719 {
5720 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5721 "common block member");
5722 }
5723 }
5724 if (die->child != NULL)
5725 {
5726 child_die = die->child;
5727 while (child_die && child_die->tag)
5728 {
5729 sym = new_symbol (child_die, NULL, cu);
5730 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
5731 if (attr)
5732 {
5733 CORE_ADDR byte_offset = 0;
5734
5735 if (attr_form_is_section_offset (attr))
5736 dwarf2_complex_location_expr_complaint ();
5737 else if (attr_form_is_constant (attr))
5738 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5739 else if (attr_form_is_block (attr))
5740 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5741 else
5742 dwarf2_complex_location_expr_complaint ();
5743
5744 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
5745 add_symbol_to_list (sym, &global_symbols);
5746 }
5747 child_die = sibling_die (child_die);
5748 }
5749 }
5750}
5751
5752/* Create a type for a C++ namespace. */
5753
5754static struct type *
5755read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
5756{
5757 struct objfile *objfile = cu->objfile;
5758 const char *previous_prefix, *name;
5759 int is_anonymous;
5760 struct type *type;
5761
5762 /* For extensions, reuse the type of the original namespace. */
5763 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
5764 {
5765 struct die_info *ext_die;
5766 struct dwarf2_cu *ext_cu = cu;
5767
5768 ext_die = dwarf2_extension (die, &ext_cu);
5769 type = read_type_die (ext_die, ext_cu);
5770 return set_die_type (die, type, cu);
5771 }
5772
5773 name = namespace_name (die, &is_anonymous, cu);
5774
5775 /* Now build the name of the current namespace. */
5776
5777 previous_prefix = determine_prefix (die, cu);
5778 if (previous_prefix[0] != '\0')
5779 name = typename_concat (&objfile->objfile_obstack,
5780 previous_prefix, name, 0, cu);
5781
5782 /* Create the type. */
5783 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
5784 objfile);
5785 TYPE_NAME (type) = (char *) name;
5786 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5787
5788 return set_die_type (die, type, cu);
5789}
5790
5791/* Read a C++ namespace. */
5792
5793static void
5794read_namespace (struct die_info *die, struct dwarf2_cu *cu)
5795{
5796 struct objfile *objfile = cu->objfile;
5797 const char *name;
5798 int is_anonymous;
5799
5800 /* Add a symbol associated to this if we haven't seen the namespace
5801 before. Also, add a using directive if it's an anonymous
5802 namespace. */
5803
5804 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5805 {
5806 struct type *type;
5807
5808 type = read_type_die (die, cu);
5809 new_symbol (die, type, cu);
5810
5811 name = namespace_name (die, &is_anonymous, cu);
5812 if (is_anonymous)
5813 {
5814 const char *previous_prefix = determine_prefix (die, cu);
5815
5816 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
5817 NULL, &objfile->objfile_obstack);
5818 }
5819 }
5820
5821 if (die->child != NULL)
5822 {
5823 struct die_info *child_die = die->child;
5824
5825 while (child_die && child_die->tag)
5826 {
5827 process_die (child_die, cu);
5828 child_die = sibling_die (child_die);
5829 }
5830 }
5831}
5832
5833/* Read a Fortran module as type. This DIE can be only a declaration used for
5834 imported module. Still we need that type as local Fortran "use ... only"
5835 declaration imports depend on the created type in determine_prefix. */
5836
5837static struct type *
5838read_module_type (struct die_info *die, struct dwarf2_cu *cu)
5839{
5840 struct objfile *objfile = cu->objfile;
5841 char *module_name;
5842 struct type *type;
5843
5844 module_name = dwarf2_name (die, cu);
5845 if (!module_name)
5846 complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
5847 die->offset);
5848 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
5849
5850 /* determine_prefix uses TYPE_TAG_NAME. */
5851 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5852
5853 return set_die_type (die, type, cu);
5854}
5855
5856/* Read a Fortran module. */
5857
5858static void
5859read_module (struct die_info *die, struct dwarf2_cu *cu)
5860{
5861 struct die_info *child_die = die->child;
5862
5863 while (child_die && child_die->tag)
5864 {
5865 process_die (child_die, cu);
5866 child_die = sibling_die (child_die);
5867 }
5868}
5869
5870/* Return the name of the namespace represented by DIE. Set
5871 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
5872 namespace. */
5873
5874static const char *
5875namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
5876{
5877 struct die_info *current_die;
5878 const char *name = NULL;
5879
5880 /* Loop through the extensions until we find a name. */
5881
5882 for (current_die = die;
5883 current_die != NULL;
5884 current_die = dwarf2_extension (die, &cu))
5885 {
5886 name = dwarf2_name (current_die, cu);
5887 if (name != NULL)
5888 break;
5889 }
5890
5891 /* Is it an anonymous namespace? */
5892
5893 *is_anonymous = (name == NULL);
5894 if (*is_anonymous)
5895 name = "(anonymous namespace)";
5896
5897 return name;
5898}
5899
5900/* Extract all information from a DW_TAG_pointer_type DIE and add to
5901 the user defined type vector. */
5902
5903static struct type *
5904read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
5905{
5906 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
5907 struct comp_unit_head *cu_header = &cu->header;
5908 struct type *type;
5909 struct attribute *attr_byte_size;
5910 struct attribute *attr_address_class;
5911 int byte_size, addr_class;
5912 struct type *target_type;
5913
5914 target_type = die_type (die, cu);
5915
5916 /* The die_type call above may have already set the type for this DIE. */
5917 type = get_die_type (die, cu);
5918 if (type)
5919 return type;
5920
5921 type = lookup_pointer_type (target_type);
5922
5923 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
5924 if (attr_byte_size)
5925 byte_size = DW_UNSND (attr_byte_size);
5926 else
5927 byte_size = cu_header->addr_size;
5928
5929 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
5930 if (attr_address_class)
5931 addr_class = DW_UNSND (attr_address_class);
5932 else
5933 addr_class = DW_ADDR_none;
5934
5935 /* If the pointer size or address class is different than the
5936 default, create a type variant marked as such and set the
5937 length accordingly. */
5938 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
5939 {
5940 if (gdbarch_address_class_type_flags_p (gdbarch))
5941 {
5942 int type_flags;
5943
5944 type_flags = gdbarch_address_class_type_flags
5945 (gdbarch, byte_size, addr_class);
5946 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5947 == 0);
5948 type = make_type_with_address_space (type, type_flags);
5949 }
5950 else if (TYPE_LENGTH (type) != byte_size)
5951 {
5952 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
5953 }
5954 else
5955 {
5956 /* Should we also complain about unhandled address classes? */
5957 }
5958 }
5959
5960 TYPE_LENGTH (type) = byte_size;
5961 return set_die_type (die, type, cu);
5962}
5963
5964/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
5965 the user defined type vector. */
5966
5967static struct type *
5968read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
5969{
5970 struct type *type;
5971 struct type *to_type;
5972 struct type *domain;
5973
5974 to_type = die_type (die, cu);
5975 domain = die_containing_type (die, cu);
5976
5977 /* The calls above may have already set the type for this DIE. */
5978 type = get_die_type (die, cu);
5979 if (type)
5980 return type;
5981
5982 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
5983 type = lookup_methodptr_type (to_type);
5984 else
5985 type = lookup_memberptr_type (to_type, domain);
5986
5987 return set_die_type (die, type, cu);
5988}
5989
5990/* Extract all information from a DW_TAG_reference_type DIE and add to
5991 the user defined type vector. */
5992
5993static struct type *
5994read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
5995{
5996 struct comp_unit_head *cu_header = &cu->header;
5997 struct type *type, *target_type;
5998 struct attribute *attr;
5999
6000 target_type = die_type (die, cu);
6001
6002 /* The die_type call above may have already set the type for this DIE. */
6003 type = get_die_type (die, cu);
6004 if (type)
6005 return type;
6006
6007 type = lookup_reference_type (target_type);
6008 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6009 if (attr)
6010 {
6011 TYPE_LENGTH (type) = DW_UNSND (attr);
6012 }
6013 else
6014 {
6015 TYPE_LENGTH (type) = cu_header->addr_size;
6016 }
6017 return set_die_type (die, type, cu);
6018}
6019
6020static struct type *
6021read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
6022{
6023 struct type *base_type, *cv_type;
6024
6025 base_type = die_type (die, cu);
6026
6027 /* The die_type call above may have already set the type for this DIE. */
6028 cv_type = get_die_type (die, cu);
6029 if (cv_type)
6030 return cv_type;
6031
6032 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
6033 return set_die_type (die, cv_type, cu);
6034}
6035
6036static struct type *
6037read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
6038{
6039 struct type *base_type, *cv_type;
6040
6041 base_type = die_type (die, cu);
6042
6043 /* The die_type call above may have already set the type for this DIE. */
6044 cv_type = get_die_type (die, cu);
6045 if (cv_type)
6046 return cv_type;
6047
6048 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
6049 return set_die_type (die, cv_type, cu);
6050}
6051
6052/* Extract all information from a DW_TAG_string_type DIE and add to
6053 the user defined type vector. It isn't really a user defined type,
6054 but it behaves like one, with other DIE's using an AT_user_def_type
6055 attribute to reference it. */
6056
6057static struct type *
6058read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
6059{
6060 struct objfile *objfile = cu->objfile;
6061 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6062 struct type *type, *range_type, *index_type, *char_type;
6063 struct attribute *attr;
6064 unsigned int length;
6065
6066 attr = dwarf2_attr (die, DW_AT_string_length, cu);
6067 if (attr)
6068 {
6069 length = DW_UNSND (attr);
6070 }
6071 else
6072 {
6073 /* check for the DW_AT_byte_size attribute */
6074 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6075 if (attr)
6076 {
6077 length = DW_UNSND (attr);
6078 }
6079 else
6080 {
6081 length = 1;
6082 }
6083 }
6084
6085 index_type = objfile_type (objfile)->builtin_int;
6086 range_type = create_range_type (NULL, index_type, 1, length);
6087 char_type = language_string_char_type (cu->language_defn, gdbarch);
6088 type = create_string_type (NULL, char_type, range_type);
6089
6090 return set_die_type (die, type, cu);
6091}
6092
6093/* Handle DIES due to C code like:
6094
6095 struct foo
6096 {
6097 int (*funcp)(int a, long l);
6098 int b;
6099 };
6100
6101 ('funcp' generates a DW_TAG_subroutine_type DIE)
6102 */
6103
6104static struct type *
6105read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
6106{
6107 struct type *type; /* Type that this function returns */
6108 struct type *ftype; /* Function that returns above type */
6109 struct attribute *attr;
6110
6111 type = die_type (die, cu);
6112
6113 /* The die_type call above may have already set the type for this DIE. */
6114 ftype = get_die_type (die, cu);
6115 if (ftype)
6116 return ftype;
6117
6118 ftype = lookup_function_type (type);
6119
6120 /* All functions in C++, Pascal and Java have prototypes. */
6121 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
6122 if ((attr && (DW_UNSND (attr) != 0))
6123 || cu->language == language_cplus
6124 || cu->language == language_java
6125 || cu->language == language_pascal)
6126 TYPE_PROTOTYPED (ftype) = 1;
6127 else if (producer_is_realview (cu->producer))
6128 /* RealView does not emit DW_AT_prototyped. We can not
6129 distinguish prototyped and unprototyped functions; default to
6130 prototyped, since that is more common in modern code (and
6131 RealView warns about unprototyped functions). */
6132 TYPE_PROTOTYPED (ftype) = 1;
6133
6134 /* Store the calling convention in the type if it's available in
6135 the subroutine die. Otherwise set the calling convention to
6136 the default value DW_CC_normal. */
6137 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
6138 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
6139
6140 /* We need to add the subroutine type to the die immediately so
6141 we don't infinitely recurse when dealing with parameters
6142 declared as the same subroutine type. */
6143 set_die_type (die, ftype, cu);
6144
6145 if (die->child != NULL)
6146 {
6147 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
6148 struct die_info *child_die;
6149 int nparams, iparams;
6150
6151 /* Count the number of parameters.
6152 FIXME: GDB currently ignores vararg functions, but knows about
6153 vararg member functions. */
6154 nparams = 0;
6155 child_die = die->child;
6156 while (child_die && child_die->tag)
6157 {
6158 if (child_die->tag == DW_TAG_formal_parameter)
6159 nparams++;
6160 else if (child_die->tag == DW_TAG_unspecified_parameters)
6161 TYPE_VARARGS (ftype) = 1;
6162 child_die = sibling_die (child_die);
6163 }
6164
6165 /* Allocate storage for parameters and fill them in. */
6166 TYPE_NFIELDS (ftype) = nparams;
6167 TYPE_FIELDS (ftype) = (struct field *)
6168 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
6169
6170 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
6171 even if we error out during the parameters reading below. */
6172 for (iparams = 0; iparams < nparams; iparams++)
6173 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
6174
6175 iparams = 0;
6176 child_die = die->child;
6177 while (child_die && child_die->tag)
6178 {
6179 if (child_die->tag == DW_TAG_formal_parameter)
6180 {
6181 /* Dwarf2 has no clean way to discern C++ static and non-static
6182 member functions. G++ helps GDB by marking the first
6183 parameter for non-static member functions (which is the
6184 this pointer) as artificial. We pass this information
6185 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
6186 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
6187 if (attr)
6188 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
6189 else
6190 {
6191 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
6192
6193 /* GCC/43521: In java, the formal parameter
6194 "this" is sometimes not marked with DW_AT_artificial. */
6195 if (cu->language == language_java)
6196 {
6197 const char *name = dwarf2_name (child_die, cu);
6198
6199 if (name && !strcmp (name, "this"))
6200 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
6201 }
6202 }
6203 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
6204 iparams++;
6205 }
6206 child_die = sibling_die (child_die);
6207 }
6208 }
6209
6210 return ftype;
6211}
6212
6213static struct type *
6214read_typedef (struct die_info *die, struct dwarf2_cu *cu)
6215{
6216 struct objfile *objfile = cu->objfile;
6217 const char *name = NULL;
6218 struct type *this_type;
6219
6220 name = dwarf2_full_name (NULL, die, cu);
6221 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
6222 TYPE_FLAG_TARGET_STUB, NULL, objfile);
6223 TYPE_NAME (this_type) = (char *) name;
6224 set_die_type (die, this_type, cu);
6225 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
6226 return this_type;
6227}
6228
6229/* Find a representation of a given base type and install
6230 it in the TYPE field of the die. */
6231
6232static struct type *
6233read_base_type (struct die_info *die, struct dwarf2_cu *cu)
6234{
6235 struct objfile *objfile = cu->objfile;
6236 struct type *type;
6237 struct attribute *attr;
6238 int encoding = 0, size = 0;
6239 char *name;
6240 enum type_code code = TYPE_CODE_INT;
6241 int type_flags = 0;
6242 struct type *target_type = NULL;
6243
6244 attr = dwarf2_attr (die, DW_AT_encoding, cu);
6245 if (attr)
6246 {
6247 encoding = DW_UNSND (attr);
6248 }
6249 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6250 if (attr)
6251 {
6252 size = DW_UNSND (attr);
6253 }
6254 name = dwarf2_name (die, cu);
6255 if (!name)
6256 {
6257 complaint (&symfile_complaints,
6258 _("DW_AT_name missing from DW_TAG_base_type"));
6259 }
6260
6261 switch (encoding)
6262 {
6263 case DW_ATE_address:
6264 /* Turn DW_ATE_address into a void * pointer. */
6265 code = TYPE_CODE_PTR;
6266 type_flags |= TYPE_FLAG_UNSIGNED;
6267 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
6268 break;
6269 case DW_ATE_boolean:
6270 code = TYPE_CODE_BOOL;
6271 type_flags |= TYPE_FLAG_UNSIGNED;
6272 break;
6273 case DW_ATE_complex_float:
6274 code = TYPE_CODE_COMPLEX;
6275 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
6276 break;
6277 case DW_ATE_decimal_float:
6278 code = TYPE_CODE_DECFLOAT;
6279 break;
6280 case DW_ATE_float:
6281 code = TYPE_CODE_FLT;
6282 break;
6283 case DW_ATE_signed:
6284 break;
6285 case DW_ATE_unsigned:
6286 type_flags |= TYPE_FLAG_UNSIGNED;
6287 break;
6288 case DW_ATE_signed_char:
6289 if (cu->language == language_ada || cu->language == language_m2
6290 || cu->language == language_pascal)
6291 code = TYPE_CODE_CHAR;
6292 break;
6293 case DW_ATE_unsigned_char:
6294 if (cu->language == language_ada || cu->language == language_m2
6295 || cu->language == language_pascal)
6296 code = TYPE_CODE_CHAR;
6297 type_flags |= TYPE_FLAG_UNSIGNED;
6298 break;
6299 case DW_ATE_UTF:
6300 /* We just treat this as an integer and then recognize the
6301 type by name elsewhere. */
6302 break;
6303
6304 default:
6305 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
6306 dwarf_type_encoding_name (encoding));
6307 break;
6308 }
6309
6310 type = init_type (code, size, type_flags, NULL, objfile);
6311 TYPE_NAME (type) = name;
6312 TYPE_TARGET_TYPE (type) = target_type;
6313
6314 if (name && strcmp (name, "char") == 0)
6315 TYPE_NOSIGN (type) = 1;
6316
6317 return set_die_type (die, type, cu);
6318}
6319
6320/* Read the given DW_AT_subrange DIE. */
6321
6322static struct type *
6323read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
6324{
6325 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
6326 struct type *base_type;
6327 struct type *range_type;
6328 struct attribute *attr;
6329 LONGEST low = 0;
6330 LONGEST high = -1;
6331 char *name;
6332 LONGEST negative_mask;
6333
6334 base_type = die_type (die, cu);
6335 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
6336 check_typedef (base_type);
6337
6338 /* The die_type call above may have already set the type for this DIE. */
6339 range_type = get_die_type (die, cu);
6340 if (range_type)
6341 return range_type;
6342
6343 if (cu->language == language_fortran)
6344 {
6345 /* FORTRAN implies a lower bound of 1, if not given. */
6346 low = 1;
6347 }
6348
6349 /* FIXME: For variable sized arrays either of these could be
6350 a variable rather than a constant value. We'll allow it,
6351 but we don't know how to handle it. */
6352 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
6353 if (attr)
6354 low = dwarf2_get_attr_constant_value (attr, 0);
6355
6356 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
6357 if (attr)
6358 {
6359 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
6360 {
6361 /* GCC encodes arrays with unspecified or dynamic length
6362 with a DW_FORM_block1 attribute or a reference attribute.
6363 FIXME: GDB does not yet know how to handle dynamic
6364 arrays properly, treat them as arrays with unspecified
6365 length for now.
6366
6367 FIXME: jimb/2003-09-22: GDB does not really know
6368 how to handle arrays of unspecified length
6369 either; we just represent them as zero-length
6370 arrays. Choose an appropriate upper bound given
6371 the lower bound we've computed above. */
6372 high = low - 1;
6373 }
6374 else
6375 high = dwarf2_get_attr_constant_value (attr, 1);
6376 }
6377 else
6378 {
6379 attr = dwarf2_attr (die, DW_AT_count, cu);
6380 if (attr)
6381 {
6382 int count = dwarf2_get_attr_constant_value (attr, 1);
6383 high = low + count - 1;
6384 }
6385 }
6386
6387 /* Dwarf-2 specifications explicitly allows to create subrange types
6388 without specifying a base type.
6389 In that case, the base type must be set to the type of
6390 the lower bound, upper bound or count, in that order, if any of these
6391 three attributes references an object that has a type.
6392 If no base type is found, the Dwarf-2 specifications say that
6393 a signed integer type of size equal to the size of an address should
6394 be used.
6395 For the following C code: `extern char gdb_int [];'
6396 GCC produces an empty range DIE.
6397 FIXME: muller/2010-05-28: Possible references to object for low bound,
6398 high bound or count are not yet handled by this code.
6399 */
6400 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
6401 {
6402 struct objfile *objfile = cu->objfile;
6403 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6404 int addr_size = gdbarch_addr_bit (gdbarch) /8;
6405 struct type *int_type = objfile_type (objfile)->builtin_int;
6406
6407 /* Test "int", "long int", and "long long int" objfile types,
6408 and select the first one having a size above or equal to the
6409 architecture address size. */
6410 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
6411 base_type = int_type;
6412 else
6413 {
6414 int_type = objfile_type (objfile)->builtin_long;
6415 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
6416 base_type = int_type;
6417 else
6418 {
6419 int_type = objfile_type (objfile)->builtin_long_long;
6420 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
6421 base_type = int_type;
6422 }
6423 }
6424 }
6425
6426 negative_mask =
6427 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
6428 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
6429 low |= negative_mask;
6430 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
6431 high |= negative_mask;
6432
6433 range_type = create_range_type (NULL, base_type, low, high);
6434
6435 /* Mark arrays with dynamic length at least as an array of unspecified
6436 length. GDB could check the boundary but before it gets implemented at
6437 least allow accessing the array elements. */
6438 if (attr && attr->form == DW_FORM_block1)
6439 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
6440
6441 name = dwarf2_name (die, cu);
6442 if (name)
6443 TYPE_NAME (range_type) = name;
6444
6445 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6446 if (attr)
6447 TYPE_LENGTH (range_type) = DW_UNSND (attr);
6448
6449 set_die_type (die, range_type, cu);
6450
6451 /* set_die_type should be already done. */
6452 set_descriptive_type (range_type, die, cu);
6453
6454 return range_type;
6455}
6456
6457static struct type *
6458read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
6459{
6460 struct type *type;
6461
6462 /* For now, we only support the C meaning of an unspecified type: void. */
6463
6464 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
6465 TYPE_NAME (type) = dwarf2_name (die, cu);
6466
6467 return set_die_type (die, type, cu);
6468}
6469
6470/* Trivial hash function for die_info: the hash value of a DIE
6471 is its offset in .debug_info for this objfile. */
6472
6473static hashval_t
6474die_hash (const void *item)
6475{
6476 const struct die_info *die = item;
6477
6478 return die->offset;
6479}
6480
6481/* Trivial comparison function for die_info structures: two DIEs
6482 are equal if they have the same offset. */
6483
6484static int
6485die_eq (const void *item_lhs, const void *item_rhs)
6486{
6487 const struct die_info *die_lhs = item_lhs;
6488 const struct die_info *die_rhs = item_rhs;
6489
6490 return die_lhs->offset == die_rhs->offset;
6491}
6492
6493/* Read a whole compilation unit into a linked list of dies. */
6494
6495static struct die_info *
6496read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
6497{
6498 struct die_reader_specs reader_specs;
6499
6500 gdb_assert (cu->die_hash == NULL);
6501 cu->die_hash
6502 = htab_create_alloc_ex (cu->header.length / 12,
6503 die_hash,
6504 die_eq,
6505 NULL,
6506 &cu->comp_unit_obstack,
6507 hashtab_obstack_allocate,
6508 dummy_obstack_deallocate);
6509
6510 init_cu_die_reader (&reader_specs, cu);
6511
6512 return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
6513}
6514
6515/* Main entry point for reading a DIE and all children.
6516 Read the DIE and dump it if requested. */
6517
6518static struct die_info *
6519read_die_and_children (const struct die_reader_specs *reader,
6520 gdb_byte *info_ptr,
6521 gdb_byte **new_info_ptr,
6522 struct die_info *parent)
6523{
6524 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
6525 new_info_ptr, parent);
6526
6527 if (dwarf2_die_debug)
6528 {
6529 fprintf_unfiltered (gdb_stdlog,
6530 "\nRead die from %s of %s:\n",
6531 reader->buffer == dwarf2_per_objfile->info.buffer
6532 ? ".debug_info"
6533 : reader->buffer == dwarf2_per_objfile->types.buffer
6534 ? ".debug_types"
6535 : "unknown section",
6536 reader->abfd->filename);
6537 dump_die (result, dwarf2_die_debug);
6538 }
6539
6540 return result;
6541}
6542
6543/* Read a single die and all its descendents. Set the die's sibling
6544 field to NULL; set other fields in the die correctly, and set all
6545 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
6546 location of the info_ptr after reading all of those dies. PARENT
6547 is the parent of the die in question. */
6548
6549static struct die_info *
6550read_die_and_children_1 (const struct die_reader_specs *reader,
6551 gdb_byte *info_ptr,
6552 gdb_byte **new_info_ptr,
6553 struct die_info *parent)
6554{
6555 struct die_info *die;
6556 gdb_byte *cur_ptr;
6557 int has_children;
6558
6559 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
6560 if (die == NULL)
6561 {
6562 *new_info_ptr = cur_ptr;
6563 return NULL;
6564 }
6565 store_in_ref_table (die, reader->cu);
6566
6567 if (has_children)
6568 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
6569 else
6570 {
6571 die->child = NULL;
6572 *new_info_ptr = cur_ptr;
6573 }
6574
6575 die->sibling = NULL;
6576 die->parent = parent;
6577 return die;
6578}
6579
6580/* Read a die, all of its descendents, and all of its siblings; set
6581 all of the fields of all of the dies correctly. Arguments are as
6582 in read_die_and_children. */
6583
6584static struct die_info *
6585read_die_and_siblings (const struct die_reader_specs *reader,
6586 gdb_byte *info_ptr,
6587 gdb_byte **new_info_ptr,
6588 struct die_info *parent)
6589{
6590 struct die_info *first_die, *last_sibling;
6591 gdb_byte *cur_ptr;
6592
6593 cur_ptr = info_ptr;
6594 first_die = last_sibling = NULL;
6595
6596 while (1)
6597 {
6598 struct die_info *die
6599 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
6600
6601 if (die == NULL)
6602 {
6603 *new_info_ptr = cur_ptr;
6604 return first_die;
6605 }
6606
6607 if (!first_die)
6608 first_die = die;
6609 else
6610 last_sibling->sibling = die;
6611
6612 last_sibling = die;
6613 }
6614}
6615
6616/* Read the die from the .debug_info section buffer. Set DIEP to
6617 point to a newly allocated die with its information, except for its
6618 child, sibling, and parent fields. Set HAS_CHILDREN to tell
6619 whether the die has children or not. */
6620
6621static gdb_byte *
6622read_full_die (const struct die_reader_specs *reader,
6623 struct die_info **diep, gdb_byte *info_ptr,
6624 int *has_children)
6625{
6626 unsigned int abbrev_number, bytes_read, i, offset;
6627 struct abbrev_info *abbrev;
6628 struct die_info *die;
6629 struct dwarf2_cu *cu = reader->cu;
6630 bfd *abfd = reader->abfd;
6631
6632 offset = info_ptr - reader->buffer;
6633 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6634 info_ptr += bytes_read;
6635 if (!abbrev_number)
6636 {
6637 *diep = NULL;
6638 *has_children = 0;
6639 return info_ptr;
6640 }
6641
6642 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
6643 if (!abbrev)
6644 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
6645 abbrev_number,
6646 bfd_get_filename (abfd));
6647
6648 die = dwarf_alloc_die (cu, abbrev->num_attrs);
6649 die->offset = offset;
6650 die->tag = abbrev->tag;
6651 die->abbrev = abbrev_number;
6652
6653 die->num_attrs = abbrev->num_attrs;
6654
6655 for (i = 0; i < abbrev->num_attrs; ++i)
6656 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
6657 abfd, info_ptr, cu);
6658
6659 *diep = die;
6660 *has_children = abbrev->has_children;
6661 return info_ptr;
6662}
6663
6664/* In DWARF version 2, the description of the debugging information is
6665 stored in a separate .debug_abbrev section. Before we read any
6666 dies from a section we read in all abbreviations and install them
6667 in a hash table. This function also sets flags in CU describing
6668 the data found in the abbrev table. */
6669
6670static void
6671dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
6672{
6673 struct comp_unit_head *cu_header = &cu->header;
6674 gdb_byte *abbrev_ptr;
6675 struct abbrev_info *cur_abbrev;
6676 unsigned int abbrev_number, bytes_read, abbrev_name;
6677 unsigned int abbrev_form, hash_number;
6678 struct attr_abbrev *cur_attrs;
6679 unsigned int allocated_attrs;
6680
6681 /* Initialize dwarf2 abbrevs */
6682 obstack_init (&cu->abbrev_obstack);
6683 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
6684 (ABBREV_HASH_SIZE
6685 * sizeof (struct abbrev_info *)));
6686 memset (cu->dwarf2_abbrevs, 0,
6687 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
6688
6689 dwarf2_read_section (dwarf2_per_objfile->objfile,
6690 &dwarf2_per_objfile->abbrev);
6691 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
6692 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6693 abbrev_ptr += bytes_read;
6694
6695 allocated_attrs = ATTR_ALLOC_CHUNK;
6696 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6697
6698 /* loop until we reach an abbrev number of 0 */
6699 while (abbrev_number)
6700 {
6701 cur_abbrev = dwarf_alloc_abbrev (cu);
6702
6703 /* read in abbrev header */
6704 cur_abbrev->number = abbrev_number;
6705 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6706 abbrev_ptr += bytes_read;
6707 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
6708 abbrev_ptr += 1;
6709
6710 if (cur_abbrev->tag == DW_TAG_namespace)
6711 cu->has_namespace_info = 1;
6712
6713 /* now read in declarations */
6714 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6715 abbrev_ptr += bytes_read;
6716 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6717 abbrev_ptr += bytes_read;
6718 while (abbrev_name)
6719 {
6720 if (cur_abbrev->num_attrs == allocated_attrs)
6721 {
6722 allocated_attrs += ATTR_ALLOC_CHUNK;
6723 cur_attrs
6724 = xrealloc (cur_attrs, (allocated_attrs
6725 * sizeof (struct attr_abbrev)));
6726 }
6727
6728 /* Record whether this compilation unit might have
6729 inter-compilation-unit references. If we don't know what form
6730 this attribute will have, then it might potentially be a
6731 DW_FORM_ref_addr, so we conservatively expect inter-CU
6732 references. */
6733
6734 if (abbrev_form == DW_FORM_ref_addr
6735 || abbrev_form == DW_FORM_indirect)
6736 cu->has_form_ref_addr = 1;
6737
6738 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
6739 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
6740 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6741 abbrev_ptr += bytes_read;
6742 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6743 abbrev_ptr += bytes_read;
6744 }
6745
6746 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
6747 (cur_abbrev->num_attrs
6748 * sizeof (struct attr_abbrev)));
6749 memcpy (cur_abbrev->attrs, cur_attrs,
6750 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
6751
6752 hash_number = abbrev_number % ABBREV_HASH_SIZE;
6753 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
6754 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
6755
6756 /* Get next abbreviation.
6757 Under Irix6 the abbreviations for a compilation unit are not
6758 always properly terminated with an abbrev number of 0.
6759 Exit loop if we encounter an abbreviation which we have
6760 already read (which means we are about to read the abbreviations
6761 for the next compile unit) or if the end of the abbreviation
6762 table is reached. */
6763 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
6764 >= dwarf2_per_objfile->abbrev.size)
6765 break;
6766 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6767 abbrev_ptr += bytes_read;
6768 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
6769 break;
6770 }
6771
6772 xfree (cur_attrs);
6773}
6774
6775/* Release the memory used by the abbrev table for a compilation unit. */
6776
6777static void
6778dwarf2_free_abbrev_table (void *ptr_to_cu)
6779{
6780 struct dwarf2_cu *cu = ptr_to_cu;
6781
6782 obstack_free (&cu->abbrev_obstack, NULL);
6783 cu->dwarf2_abbrevs = NULL;
6784}
6785
6786/* Lookup an abbrev_info structure in the abbrev hash table. */
6787
6788static struct abbrev_info *
6789dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
6790{
6791 unsigned int hash_number;
6792 struct abbrev_info *abbrev;
6793
6794 hash_number = number % ABBREV_HASH_SIZE;
6795 abbrev = cu->dwarf2_abbrevs[hash_number];
6796
6797 while (abbrev)
6798 {
6799 if (abbrev->number == number)
6800 return abbrev;
6801 else
6802 abbrev = abbrev->next;
6803 }
6804 return NULL;
6805}
6806
6807/* Returns nonzero if TAG represents a type that we might generate a partial
6808 symbol for. */
6809
6810static int
6811is_type_tag_for_partial (int tag)
6812{
6813 switch (tag)
6814 {
6815#if 0
6816 /* Some types that would be reasonable to generate partial symbols for,
6817 that we don't at present. */
6818 case DW_TAG_array_type:
6819 case DW_TAG_file_type:
6820 case DW_TAG_ptr_to_member_type:
6821 case DW_TAG_set_type:
6822 case DW_TAG_string_type:
6823 case DW_TAG_subroutine_type:
6824#endif
6825 case DW_TAG_base_type:
6826 case DW_TAG_class_type:
6827 case DW_TAG_interface_type:
6828 case DW_TAG_enumeration_type:
6829 case DW_TAG_structure_type:
6830 case DW_TAG_subrange_type:
6831 case DW_TAG_typedef:
6832 case DW_TAG_union_type:
6833 return 1;
6834 default:
6835 return 0;
6836 }
6837}
6838
6839/* Load all DIEs that are interesting for partial symbols into memory. */
6840
6841static struct partial_die_info *
6842load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
6843 int building_psymtab, struct dwarf2_cu *cu)
6844{
6845 struct partial_die_info *part_die;
6846 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
6847 struct abbrev_info *abbrev;
6848 unsigned int bytes_read;
6849 unsigned int load_all = 0;
6850
6851 int nesting_level = 1;
6852
6853 parent_die = NULL;
6854 last_die = NULL;
6855
6856 if (cu->per_cu && cu->per_cu->load_all_dies)
6857 load_all = 1;
6858
6859 cu->partial_dies
6860 = htab_create_alloc_ex (cu->header.length / 12,
6861 partial_die_hash,
6862 partial_die_eq,
6863 NULL,
6864 &cu->comp_unit_obstack,
6865 hashtab_obstack_allocate,
6866 dummy_obstack_deallocate);
6867
6868 part_die = obstack_alloc (&cu->comp_unit_obstack,
6869 sizeof (struct partial_die_info));
6870
6871 while (1)
6872 {
6873 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6874
6875 /* A NULL abbrev means the end of a series of children. */
6876 if (abbrev == NULL)
6877 {
6878 if (--nesting_level == 0)
6879 {
6880 /* PART_DIE was probably the last thing allocated on the
6881 comp_unit_obstack, so we could call obstack_free
6882 here. We don't do that because the waste is small,
6883 and will be cleaned up when we're done with this
6884 compilation unit. This way, we're also more robust
6885 against other users of the comp_unit_obstack. */
6886 return first_die;
6887 }
6888 info_ptr += bytes_read;
6889 last_die = parent_die;
6890 parent_die = parent_die->die_parent;
6891 continue;
6892 }
6893
6894 /* Check whether this DIE is interesting enough to save. Normally
6895 we would not be interested in members here, but there may be
6896 later variables referencing them via DW_AT_specification (for
6897 static members). */
6898 if (!load_all
6899 && !is_type_tag_for_partial (abbrev->tag)
6900 && abbrev->tag != DW_TAG_enumerator
6901 && abbrev->tag != DW_TAG_subprogram
6902 && abbrev->tag != DW_TAG_lexical_block
6903 && abbrev->tag != DW_TAG_variable
6904 && abbrev->tag != DW_TAG_namespace
6905 && abbrev->tag != DW_TAG_module
6906 && abbrev->tag != DW_TAG_member)
6907 {
6908 /* Otherwise we skip to the next sibling, if any. */
6909 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
6910 continue;
6911 }
6912
6913 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
6914 buffer, info_ptr, cu);
6915
6916 /* This two-pass algorithm for processing partial symbols has a
6917 high cost in cache pressure. Thus, handle some simple cases
6918 here which cover the majority of C partial symbols. DIEs
6919 which neither have specification tags in them, nor could have
6920 specification tags elsewhere pointing at them, can simply be
6921 processed and discarded.
6922
6923 This segment is also optional; scan_partial_symbols and
6924 add_partial_symbol will handle these DIEs if we chain
6925 them in normally. When compilers which do not emit large
6926 quantities of duplicate debug information are more common,
6927 this code can probably be removed. */
6928
6929 /* Any complete simple types at the top level (pretty much all
6930 of them, for a language without namespaces), can be processed
6931 directly. */
6932 if (parent_die == NULL
6933 && part_die->has_specification == 0
6934 && part_die->is_declaration == 0
6935 && (part_die->tag == DW_TAG_typedef
6936 || part_die->tag == DW_TAG_base_type
6937 || part_die->tag == DW_TAG_subrange_type))
6938 {
6939 if (building_psymtab && part_die->name != NULL)
6940 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
6941 VAR_DOMAIN, LOC_TYPEDEF,
6942 &cu->objfile->static_psymbols,
6943 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6944 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
6945 continue;
6946 }
6947
6948 /* If we're at the second level, and we're an enumerator, and
6949 our parent has no specification (meaning possibly lives in a
6950 namespace elsewhere), then we can add the partial symbol now
6951 instead of queueing it. */
6952 if (part_die->tag == DW_TAG_enumerator
6953 && parent_die != NULL
6954 && parent_die->die_parent == NULL
6955 && parent_die->tag == DW_TAG_enumeration_type
6956 && parent_die->has_specification == 0)
6957 {
6958 if (part_die->name == NULL)
6959 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6960 else if (building_psymtab)
6961 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
6962 VAR_DOMAIN, LOC_CONST,
6963 (cu->language == language_cplus
6964 || cu->language == language_java)
6965 ? &cu->objfile->global_psymbols
6966 : &cu->objfile->static_psymbols,
6967 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6968
6969 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
6970 continue;
6971 }
6972
6973 /* We'll save this DIE so link it in. */
6974 part_die->die_parent = parent_die;
6975 part_die->die_sibling = NULL;
6976 part_die->die_child = NULL;
6977
6978 if (last_die && last_die == parent_die)
6979 last_die->die_child = part_die;
6980 else if (last_die)
6981 last_die->die_sibling = part_die;
6982
6983 last_die = part_die;
6984
6985 if (first_die == NULL)
6986 first_die = part_die;
6987
6988 /* Maybe add the DIE to the hash table. Not all DIEs that we
6989 find interesting need to be in the hash table, because we
6990 also have the parent/sibling/child chains; only those that we
6991 might refer to by offset later during partial symbol reading.
6992
6993 For now this means things that might have be the target of a
6994 DW_AT_specification, DW_AT_abstract_origin, or
6995 DW_AT_extension. DW_AT_extension will refer only to
6996 namespaces; DW_AT_abstract_origin refers to functions (and
6997 many things under the function DIE, but we do not recurse
6998 into function DIEs during partial symbol reading) and
6999 possibly variables as well; DW_AT_specification refers to
7000 declarations. Declarations ought to have the DW_AT_declaration
7001 flag. It happens that GCC forgets to put it in sometimes, but
7002 only for functions, not for types.
7003
7004 Adding more things than necessary to the hash table is harmless
7005 except for the performance cost. Adding too few will result in
7006 wasted time in find_partial_die, when we reread the compilation
7007 unit with load_all_dies set. */
7008
7009 if (load_all
7010 || abbrev->tag == DW_TAG_subprogram
7011 || abbrev->tag == DW_TAG_variable
7012 || abbrev->tag == DW_TAG_namespace
7013 || part_die->is_declaration)
7014 {
7015 void **slot;
7016
7017 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
7018 part_die->offset, INSERT);
7019 *slot = part_die;
7020 }
7021
7022 part_die = obstack_alloc (&cu->comp_unit_obstack,
7023 sizeof (struct partial_die_info));
7024
7025 /* For some DIEs we want to follow their children (if any). For C
7026 we have no reason to follow the children of structures; for other
7027 languages we have to, both so that we can get at method physnames
7028 to infer fully qualified class names, and for DW_AT_specification.
7029
7030 For Ada, we need to scan the children of subprograms and lexical
7031 blocks as well because Ada allows the definition of nested
7032 entities that could be interesting for the debugger, such as
7033 nested subprograms for instance. */
7034 if (last_die->has_children
7035 && (load_all
7036 || last_die->tag == DW_TAG_namespace
7037 || last_die->tag == DW_TAG_module
7038 || last_die->tag == DW_TAG_enumeration_type
7039 || (cu->language != language_c
7040 && (last_die->tag == DW_TAG_class_type
7041 || last_die->tag == DW_TAG_interface_type
7042 || last_die->tag == DW_TAG_structure_type
7043 || last_die->tag == DW_TAG_union_type))
7044 || (cu->language == language_ada
7045 && (last_die->tag == DW_TAG_subprogram
7046 || last_die->tag == DW_TAG_lexical_block))))
7047 {
7048 nesting_level++;
7049 parent_die = last_die;
7050 continue;
7051 }
7052
7053 /* Otherwise we skip to the next sibling, if any. */
7054 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
7055
7056 /* Back to the top, do it again. */
7057 }
7058}
7059
7060/* Read a minimal amount of information into the minimal die structure. */
7061
7062static gdb_byte *
7063read_partial_die (struct partial_die_info *part_die,
7064 struct abbrev_info *abbrev,
7065 unsigned int abbrev_len, bfd *abfd,
7066 gdb_byte *buffer, gdb_byte *info_ptr,
7067 struct dwarf2_cu *cu)
7068{
7069 unsigned int i;
7070 struct attribute attr;
7071 int has_low_pc_attr = 0;
7072 int has_high_pc_attr = 0;
7073
7074 memset (part_die, 0, sizeof (struct partial_die_info));
7075
7076 part_die->offset = info_ptr - buffer;
7077
7078 info_ptr += abbrev_len;
7079
7080 if (abbrev == NULL)
7081 return info_ptr;
7082
7083 part_die->tag = abbrev->tag;
7084 part_die->has_children = abbrev->has_children;
7085
7086 for (i = 0; i < abbrev->num_attrs; ++i)
7087 {
7088 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
7089
7090 /* Store the data if it is of an attribute we want to keep in a
7091 partial symbol table. */
7092 switch (attr.name)
7093 {
7094 case DW_AT_name:
7095 switch (part_die->tag)
7096 {
7097 case DW_TAG_compile_unit:
7098 case DW_TAG_type_unit:
7099 /* Compilation units have a DW_AT_name that is a filename, not
7100 a source language identifier. */
7101 case DW_TAG_enumeration_type:
7102 case DW_TAG_enumerator:
7103 /* These tags always have simple identifiers already; no need
7104 to canonicalize them. */
7105 part_die->name = DW_STRING (&attr);
7106 break;
7107 default:
7108 part_die->name
7109 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
7110 &cu->objfile->objfile_obstack);
7111 break;
7112 }
7113 break;
7114 case DW_AT_linkage_name:
7115 case DW_AT_MIPS_linkage_name:
7116 /* Note that both forms of linkage name might appear. We
7117 assume they will be the same, and we only store the last
7118 one we see. */
7119 if (cu->language == language_ada)
7120 part_die->name = DW_STRING (&attr);
7121 break;
7122 case DW_AT_low_pc:
7123 has_low_pc_attr = 1;
7124 part_die->lowpc = DW_ADDR (&attr);
7125 break;
7126 case DW_AT_high_pc:
7127 has_high_pc_attr = 1;
7128 part_die->highpc = DW_ADDR (&attr);
7129 break;
7130 case DW_AT_location:
7131 /* Support the .debug_loc offsets */
7132 if (attr_form_is_block (&attr))
7133 {
7134 part_die->locdesc = DW_BLOCK (&attr);
7135 }
7136 else if (attr_form_is_section_offset (&attr))
7137 {
7138 dwarf2_complex_location_expr_complaint ();
7139 }
7140 else
7141 {
7142 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7143 "partial symbol information");
7144 }
7145 break;
7146 case DW_AT_external:
7147 part_die->is_external = DW_UNSND (&attr);
7148 break;
7149 case DW_AT_declaration:
7150 part_die->is_declaration = DW_UNSND (&attr);
7151 break;
7152 case DW_AT_type:
7153 part_die->has_type = 1;
7154 break;
7155 case DW_AT_abstract_origin:
7156 case DW_AT_specification:
7157 case DW_AT_extension:
7158 part_die->has_specification = 1;
7159 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
7160 break;
7161 case DW_AT_sibling:
7162 /* Ignore absolute siblings, they might point outside of
7163 the current compile unit. */
7164 if (attr.form == DW_FORM_ref_addr)
7165 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
7166 else
7167 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
7168 break;
7169 case DW_AT_byte_size:
7170 part_die->has_byte_size = 1;
7171 break;
7172 case DW_AT_calling_convention:
7173 /* DWARF doesn't provide a way to identify a program's source-level
7174 entry point. DW_AT_calling_convention attributes are only meant
7175 to describe functions' calling conventions.
7176
7177 However, because it's a necessary piece of information in
7178 Fortran, and because DW_CC_program is the only piece of debugging
7179 information whose definition refers to a 'main program' at all,
7180 several compilers have begun marking Fortran main programs with
7181 DW_CC_program --- even when those functions use the standard
7182 calling conventions.
7183
7184 So until DWARF specifies a way to provide this information and
7185 compilers pick up the new representation, we'll support this
7186 practice. */
7187 if (DW_UNSND (&attr) == DW_CC_program
7188 && cu->language == language_fortran)
7189 set_main_name (part_die->name);
7190 break;
7191 default:
7192 break;
7193 }
7194 }
7195
7196 /* When using the GNU linker, .gnu.linkonce. sections are used to
7197 eliminate duplicate copies of functions and vtables and such.
7198 The linker will arbitrarily choose one and discard the others.
7199 The AT_*_pc values for such functions refer to local labels in
7200 these sections. If the section from that file was discarded, the
7201 labels are not in the output, so the relocs get a value of 0.
7202 If this is a discarded function, mark the pc bounds as invalid,
7203 so that GDB will ignore it. */
7204 if (has_low_pc_attr && has_high_pc_attr
7205 && part_die->lowpc < part_die->highpc
7206 && (part_die->lowpc != 0
7207 || dwarf2_per_objfile->has_section_at_zero))
7208 part_die->has_pc_info = 1;
7209
7210 return info_ptr;
7211}
7212
7213/* Find a cached partial DIE at OFFSET in CU. */
7214
7215static struct partial_die_info *
7216find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
7217{
7218 struct partial_die_info *lookup_die = NULL;
7219 struct partial_die_info part_die;
7220
7221 part_die.offset = offset;
7222 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
7223
7224 return lookup_die;
7225}
7226
7227/* Find a partial DIE at OFFSET, which may or may not be in CU,
7228 except in the case of .debug_types DIEs which do not reference
7229 outside their CU (they do however referencing other types via
7230 DW_FORM_sig8). */
7231
7232static struct partial_die_info *
7233find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
7234{
7235 struct dwarf2_per_cu_data *per_cu = NULL;
7236 struct partial_die_info *pd = NULL;
7237
7238 if (cu->per_cu->from_debug_types)
7239 {
7240 pd = find_partial_die_in_comp_unit (offset, cu);
7241 if (pd != NULL)
7242 return pd;
7243 goto not_found;
7244 }
7245
7246 if (offset_in_cu_p (&cu->header, offset))
7247 {
7248 pd = find_partial_die_in_comp_unit (offset, cu);
7249 if (pd != NULL)
7250 return pd;
7251 }
7252
7253 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
7254
7255 if (per_cu->cu == NULL)
7256 {
7257 load_partial_comp_unit (per_cu, cu->objfile);
7258 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7259 dwarf2_per_objfile->read_in_chain = per_cu;
7260 }
7261
7262 per_cu->cu->last_used = 0;
7263 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
7264
7265 if (pd == NULL && per_cu->load_all_dies == 0)
7266 {
7267 struct cleanup *back_to;
7268 struct partial_die_info comp_unit_die;
7269 struct abbrev_info *abbrev;
7270 unsigned int bytes_read;
7271 char *info_ptr;
7272
7273 per_cu->load_all_dies = 1;
7274
7275 /* Re-read the DIEs. */
7276 back_to = make_cleanup (null_cleanup, 0);
7277 if (per_cu->cu->dwarf2_abbrevs == NULL)
7278 {
7279 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
7280 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
7281 }
7282 info_ptr = (dwarf2_per_objfile->info.buffer
7283 + per_cu->cu->header.offset
7284 + per_cu->cu->header.first_die_offset);
7285 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
7286 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
7287 per_cu->cu->objfile->obfd,
7288 dwarf2_per_objfile->info.buffer, info_ptr,
7289 per_cu->cu);
7290 if (comp_unit_die.has_children)
7291 load_partial_dies (per_cu->cu->objfile->obfd,
7292 dwarf2_per_objfile->info.buffer, info_ptr,
7293 0, per_cu->cu);
7294 do_cleanups (back_to);
7295
7296 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
7297 }
7298
7299 not_found:
7300
7301 if (pd == NULL)
7302 internal_error (__FILE__, __LINE__,
7303 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
7304 offset, bfd_get_filename (cu->objfile->obfd));
7305 return pd;
7306}
7307
7308/* Adjust PART_DIE before generating a symbol for it. This function
7309 may set the is_external flag or change the DIE's name. */
7310
7311static void
7312fixup_partial_die (struct partial_die_info *part_die,
7313 struct dwarf2_cu *cu)
7314{
7315 /* If we found a reference attribute and the DIE has no name, try
7316 to find a name in the referred to DIE. */
7317
7318 if (part_die->name == NULL && part_die->has_specification)
7319 {
7320 struct partial_die_info *spec_die;
7321
7322 spec_die = find_partial_die (part_die->spec_offset, cu);
7323
7324 fixup_partial_die (spec_die, cu);
7325
7326 if (spec_die->name)
7327 {
7328 part_die->name = spec_die->name;
7329
7330 /* Copy DW_AT_external attribute if it is set. */
7331 if (spec_die->is_external)
7332 part_die->is_external = spec_die->is_external;
7333 }
7334 }
7335
7336 /* Set default names for some unnamed DIEs. */
7337 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
7338 || part_die->tag == DW_TAG_class_type))
7339 part_die->name = "(anonymous class)";
7340
7341 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
7342 part_die->name = "(anonymous namespace)";
7343
7344 if (part_die->tag == DW_TAG_structure_type
7345 || part_die->tag == DW_TAG_class_type
7346 || part_die->tag == DW_TAG_union_type)
7347 guess_structure_name (part_die, cu);
7348}
7349
7350/* Read an attribute value described by an attribute form. */
7351
7352static gdb_byte *
7353read_attribute_value (struct attribute *attr, unsigned form,
7354 bfd *abfd, gdb_byte *info_ptr,
7355 struct dwarf2_cu *cu)
7356{
7357 struct comp_unit_head *cu_header = &cu->header;
7358 unsigned int bytes_read;
7359 struct dwarf_block *blk;
7360
7361 attr->form = form;
7362 switch (form)
7363 {
7364 case DW_FORM_ref_addr:
7365 if (cu->header.version == 2)
7366 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
7367 else
7368 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
7369 info_ptr += bytes_read;
7370 break;
7371 case DW_FORM_addr:
7372 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
7373 info_ptr += bytes_read;
7374 break;
7375 case DW_FORM_block2:
7376 blk = dwarf_alloc_block (cu);
7377 blk->size = read_2_bytes (abfd, info_ptr);
7378 info_ptr += 2;
7379 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7380 info_ptr += blk->size;
7381 DW_BLOCK (attr) = blk;
7382 break;
7383 case DW_FORM_block4:
7384 blk = dwarf_alloc_block (cu);
7385 blk->size = read_4_bytes (abfd, info_ptr);
7386 info_ptr += 4;
7387 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7388 info_ptr += blk->size;
7389 DW_BLOCK (attr) = blk;
7390 break;
7391 case DW_FORM_data2:
7392 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
7393 info_ptr += 2;
7394 break;
7395 case DW_FORM_data4:
7396 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
7397 info_ptr += 4;
7398 break;
7399 case DW_FORM_data8:
7400 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
7401 info_ptr += 8;
7402 break;
7403 case DW_FORM_sec_offset:
7404 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
7405 info_ptr += bytes_read;
7406 break;
7407 case DW_FORM_string:
7408 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
7409 DW_STRING_IS_CANONICAL (attr) = 0;
7410 info_ptr += bytes_read;
7411 break;
7412 case DW_FORM_strp:
7413 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
7414 &bytes_read);
7415 DW_STRING_IS_CANONICAL (attr) = 0;
7416 info_ptr += bytes_read;
7417 break;
7418 case DW_FORM_exprloc:
7419 case DW_FORM_block:
7420 blk = dwarf_alloc_block (cu);
7421 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7422 info_ptr += bytes_read;
7423 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7424 info_ptr += blk->size;
7425 DW_BLOCK (attr) = blk;
7426 break;
7427 case DW_FORM_block1:
7428 blk = dwarf_alloc_block (cu);
7429 blk->size = read_1_byte (abfd, info_ptr);
7430 info_ptr += 1;
7431 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7432 info_ptr += blk->size;
7433 DW_BLOCK (attr) = blk;
7434 break;
7435 case DW_FORM_data1:
7436 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7437 info_ptr += 1;
7438 break;
7439 case DW_FORM_flag:
7440 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7441 info_ptr += 1;
7442 break;
7443 case DW_FORM_flag_present:
7444 DW_UNSND (attr) = 1;
7445 break;
7446 case DW_FORM_sdata:
7447 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
7448 info_ptr += bytes_read;
7449 break;
7450 case DW_FORM_udata:
7451 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7452 info_ptr += bytes_read;
7453 break;
7454 case DW_FORM_ref1:
7455 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
7456 info_ptr += 1;
7457 break;
7458 case DW_FORM_ref2:
7459 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
7460 info_ptr += 2;
7461 break;
7462 case DW_FORM_ref4:
7463 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
7464 info_ptr += 4;
7465 break;
7466 case DW_FORM_ref8:
7467 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
7468 info_ptr += 8;
7469 break;
7470 case DW_FORM_sig8:
7471 /* Convert the signature to something we can record in DW_UNSND
7472 for later lookup.
7473 NOTE: This is NULL if the type wasn't found. */
7474 DW_SIGNATURED_TYPE (attr) =
7475 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
7476 info_ptr += 8;
7477 break;
7478 case DW_FORM_ref_udata:
7479 DW_ADDR (attr) = (cu->header.offset
7480 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
7481 info_ptr += bytes_read;
7482 break;
7483 case DW_FORM_indirect:
7484 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7485 info_ptr += bytes_read;
7486 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
7487 break;
7488 default:
7489 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
7490 dwarf_form_name (form),
7491 bfd_get_filename (abfd));
7492 }
7493
7494 /* We have seen instances where the compiler tried to emit a byte
7495 size attribute of -1 which ended up being encoded as an unsigned
7496 0xffffffff. Although 0xffffffff is technically a valid size value,
7497 an object of this size seems pretty unlikely so we can relatively
7498 safely treat these cases as if the size attribute was invalid and
7499 treat them as zero by default. */
7500 if (attr->name == DW_AT_byte_size
7501 && form == DW_FORM_data4
7502 && DW_UNSND (attr) >= 0xffffffff)
7503 {
7504 complaint
7505 (&symfile_complaints,
7506 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
7507 hex_string (DW_UNSND (attr)));
7508 DW_UNSND (attr) = 0;
7509 }
7510
7511 return info_ptr;
7512}
7513
7514/* Read an attribute described by an abbreviated attribute. */
7515
7516static gdb_byte *
7517read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
7518 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
7519{
7520 attr->name = abbrev->name;
7521 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
7522}
7523
7524/* read dwarf information from a buffer */
7525
7526static unsigned int
7527read_1_byte (bfd *abfd, gdb_byte *buf)
7528{
7529 return bfd_get_8 (abfd, buf);
7530}
7531
7532static int
7533read_1_signed_byte (bfd *abfd, gdb_byte *buf)
7534{
7535 return bfd_get_signed_8 (abfd, buf);
7536}
7537
7538static unsigned int
7539read_2_bytes (bfd *abfd, gdb_byte *buf)
7540{
7541 return bfd_get_16 (abfd, buf);
7542}
7543
7544static int
7545read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
7546{
7547 return bfd_get_signed_16 (abfd, buf);
7548}
7549
7550static unsigned int
7551read_4_bytes (bfd *abfd, gdb_byte *buf)
7552{
7553 return bfd_get_32 (abfd, buf);
7554}
7555
7556static int
7557read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
7558{
7559 return bfd_get_signed_32 (abfd, buf);
7560}
7561
7562static ULONGEST
7563read_8_bytes (bfd *abfd, gdb_byte *buf)
7564{
7565 return bfd_get_64 (abfd, buf);
7566}
7567
7568static CORE_ADDR
7569read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
7570 unsigned int *bytes_read)
7571{
7572 struct comp_unit_head *cu_header = &cu->header;
7573 CORE_ADDR retval = 0;
7574
7575 if (cu_header->signed_addr_p)
7576 {
7577 switch (cu_header->addr_size)
7578 {
7579 case 2:
7580 retval = bfd_get_signed_16 (abfd, buf);
7581 break;
7582 case 4:
7583 retval = bfd_get_signed_32 (abfd, buf);
7584 break;
7585 case 8:
7586 retval = bfd_get_signed_64 (abfd, buf);
7587 break;
7588 default:
7589 internal_error (__FILE__, __LINE__,
7590 _("read_address: bad switch, signed [in module %s]"),
7591 bfd_get_filename (abfd));
7592 }
7593 }
7594 else
7595 {
7596 switch (cu_header->addr_size)
7597 {
7598 case 2:
7599 retval = bfd_get_16 (abfd, buf);
7600 break;
7601 case 4:
7602 retval = bfd_get_32 (abfd, buf);
7603 break;
7604 case 8:
7605 retval = bfd_get_64 (abfd, buf);
7606 break;
7607 default:
7608 internal_error (__FILE__, __LINE__,
7609 _("read_address: bad switch, unsigned [in module %s]"),
7610 bfd_get_filename (abfd));
7611 }
7612 }
7613
7614 *bytes_read = cu_header->addr_size;
7615 return retval;
7616}
7617
7618/* Read the initial length from a section. The (draft) DWARF 3
7619 specification allows the initial length to take up either 4 bytes
7620 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
7621 bytes describe the length and all offsets will be 8 bytes in length
7622 instead of 4.
7623
7624 An older, non-standard 64-bit format is also handled by this
7625 function. The older format in question stores the initial length
7626 as an 8-byte quantity without an escape value. Lengths greater
7627 than 2^32 aren't very common which means that the initial 4 bytes
7628 is almost always zero. Since a length value of zero doesn't make
7629 sense for the 32-bit format, this initial zero can be considered to
7630 be an escape value which indicates the presence of the older 64-bit
7631 format. As written, the code can't detect (old format) lengths
7632 greater than 4GB. If it becomes necessary to handle lengths
7633 somewhat larger than 4GB, we could allow other small values (such
7634 as the non-sensical values of 1, 2, and 3) to also be used as
7635 escape values indicating the presence of the old format.
7636
7637 The value returned via bytes_read should be used to increment the
7638 relevant pointer after calling read_initial_length().
7639
7640 [ Note: read_initial_length() and read_offset() are based on the
7641 document entitled "DWARF Debugging Information Format", revision
7642 3, draft 8, dated November 19, 2001. This document was obtained
7643 from:
7644
7645 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
7646
7647 This document is only a draft and is subject to change. (So beware.)
7648
7649 Details regarding the older, non-standard 64-bit format were
7650 determined empirically by examining 64-bit ELF files produced by
7651 the SGI toolchain on an IRIX 6.5 machine.
7652
7653 - Kevin, July 16, 2002
7654 ] */
7655
7656static LONGEST
7657read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
7658{
7659 LONGEST length = bfd_get_32 (abfd, buf);
7660
7661 if (length == 0xffffffff)
7662 {
7663 length = bfd_get_64 (abfd, buf + 4);
7664 *bytes_read = 12;
7665 }
7666 else if (length == 0)
7667 {
7668 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
7669 length = bfd_get_64 (abfd, buf);
7670 *bytes_read = 8;
7671 }
7672 else
7673 {
7674 *bytes_read = 4;
7675 }
7676
7677 return length;
7678}
7679
7680/* Cover function for read_initial_length.
7681 Returns the length of the object at BUF, and stores the size of the
7682 initial length in *BYTES_READ and stores the size that offsets will be in
7683 *OFFSET_SIZE.
7684 If the initial length size is not equivalent to that specified in
7685 CU_HEADER then issue a complaint.
7686 This is useful when reading non-comp-unit headers. */
7687
7688static LONGEST
7689read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
7690 const struct comp_unit_head *cu_header,
7691 unsigned int *bytes_read,
7692 unsigned int *offset_size)
7693{
7694 LONGEST length = read_initial_length (abfd, buf, bytes_read);
7695
7696 gdb_assert (cu_header->initial_length_size == 4
7697 || cu_header->initial_length_size == 8
7698 || cu_header->initial_length_size == 12);
7699
7700 if (cu_header->initial_length_size != *bytes_read)
7701 complaint (&symfile_complaints,
7702 _("intermixed 32-bit and 64-bit DWARF sections"));
7703
7704 *offset_size = (*bytes_read == 4) ? 4 : 8;
7705 return length;
7706}
7707
7708/* Read an offset from the data stream. The size of the offset is
7709 given by cu_header->offset_size. */
7710
7711static LONGEST
7712read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
7713 unsigned int *bytes_read)
7714{
7715 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
7716
7717 *bytes_read = cu_header->offset_size;
7718 return offset;
7719}
7720
7721/* Read an offset from the data stream. */
7722
7723static LONGEST
7724read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
7725{
7726 LONGEST retval = 0;
7727
7728 switch (offset_size)
7729 {
7730 case 4:
7731 retval = bfd_get_32 (abfd, buf);
7732 break;
7733 case 8:
7734 retval = bfd_get_64 (abfd, buf);
7735 break;
7736 default:
7737 internal_error (__FILE__, __LINE__,
7738 _("read_offset_1: bad switch [in module %s]"),
7739 bfd_get_filename (abfd));
7740 }
7741
7742 return retval;
7743}
7744
7745static gdb_byte *
7746read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
7747{
7748 /* If the size of a host char is 8 bits, we can return a pointer
7749 to the buffer, otherwise we have to copy the data to a buffer
7750 allocated on the temporary obstack. */
7751 gdb_assert (HOST_CHAR_BIT == 8);
7752 return buf;
7753}
7754
7755static char *
7756read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7757{
7758 /* If the size of a host char is 8 bits, we can return a pointer
7759 to the string, otherwise we have to copy the string to a buffer
7760 allocated on the temporary obstack. */
7761 gdb_assert (HOST_CHAR_BIT == 8);
7762 if (*buf == '\0')
7763 {
7764 *bytes_read_ptr = 1;
7765 return NULL;
7766 }
7767 *bytes_read_ptr = strlen ((char *) buf) + 1;
7768 return (char *) buf;
7769}
7770
7771static char *
7772read_indirect_string (bfd *abfd, gdb_byte *buf,
7773 const struct comp_unit_head *cu_header,
7774 unsigned int *bytes_read_ptr)
7775{
7776 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
7777
7778 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
7779 if (dwarf2_per_objfile->str.buffer == NULL)
7780 {
7781 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
7782 bfd_get_filename (abfd));
7783 return NULL;
7784 }
7785 if (str_offset >= dwarf2_per_objfile->str.size)
7786 {
7787 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
7788 bfd_get_filename (abfd));
7789 return NULL;
7790 }
7791 gdb_assert (HOST_CHAR_BIT == 8);
7792 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
7793 return NULL;
7794 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
7795}
7796
7797static unsigned long
7798read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7799{
7800 unsigned long result;
7801 unsigned int num_read;
7802 int i, shift;
7803 unsigned char byte;
7804
7805 result = 0;
7806 shift = 0;
7807 num_read = 0;
7808 i = 0;
7809 while (1)
7810 {
7811 byte = bfd_get_8 (abfd, buf);
7812 buf++;
7813 num_read++;
7814 result |= ((unsigned long)(byte & 127) << shift);
7815 if ((byte & 128) == 0)
7816 {
7817 break;
7818 }
7819 shift += 7;
7820 }
7821 *bytes_read_ptr = num_read;
7822 return result;
7823}
7824
7825static long
7826read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7827{
7828 long result;
7829 int i, shift, num_read;
7830 unsigned char byte;
7831
7832 result = 0;
7833 shift = 0;
7834 num_read = 0;
7835 i = 0;
7836 while (1)
7837 {
7838 byte = bfd_get_8 (abfd, buf);
7839 buf++;
7840 num_read++;
7841 result |= ((long)(byte & 127) << shift);
7842 shift += 7;
7843 if ((byte & 128) == 0)
7844 {
7845 break;
7846 }
7847 }
7848 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
7849 result |= -(((long)1) << shift);
7850 *bytes_read_ptr = num_read;
7851 return result;
7852}
7853
7854/* Return a pointer to just past the end of an LEB128 number in BUF. */
7855
7856static gdb_byte *
7857skip_leb128 (bfd *abfd, gdb_byte *buf)
7858{
7859 int byte;
7860
7861 while (1)
7862 {
7863 byte = bfd_get_8 (abfd, buf);
7864 buf++;
7865 if ((byte & 128) == 0)
7866 return buf;
7867 }
7868}
7869
7870static void
7871set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
7872{
7873 switch (lang)
7874 {
7875 case DW_LANG_C89:
7876 case DW_LANG_C99:
7877 case DW_LANG_C:
7878 cu->language = language_c;
7879 break;
7880 case DW_LANG_C_plus_plus:
7881 cu->language = language_cplus;
7882 break;
7883 case DW_LANG_D:
7884 cu->language = language_d;
7885 break;
7886 case DW_LANG_Fortran77:
7887 case DW_LANG_Fortran90:
7888 case DW_LANG_Fortran95:
7889 cu->language = language_fortran;
7890 break;
7891 case DW_LANG_Mips_Assembler:
7892 cu->language = language_asm;
7893 break;
7894 case DW_LANG_Java:
7895 cu->language = language_java;
7896 break;
7897 case DW_LANG_Ada83:
7898 case DW_LANG_Ada95:
7899 cu->language = language_ada;
7900 break;
7901 case DW_LANG_Modula2:
7902 cu->language = language_m2;
7903 break;
7904 case DW_LANG_Pascal83:
7905 cu->language = language_pascal;
7906 break;
7907 case DW_LANG_ObjC:
7908 cu->language = language_objc;
7909 break;
7910 case DW_LANG_Cobol74:
7911 case DW_LANG_Cobol85:
7912 default:
7913 cu->language = language_minimal;
7914 break;
7915 }
7916 cu->language_defn = language_def (cu->language);
7917}
7918
7919/* Return the named attribute or NULL if not there. */
7920
7921static struct attribute *
7922dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
7923{
7924 unsigned int i;
7925 struct attribute *spec = NULL;
7926
7927 for (i = 0; i < die->num_attrs; ++i)
7928 {
7929 if (die->attrs[i].name == name)
7930 return &die->attrs[i];
7931 if (die->attrs[i].name == DW_AT_specification
7932 || die->attrs[i].name == DW_AT_abstract_origin)
7933 spec = &die->attrs[i];
7934 }
7935
7936 if (spec)
7937 {
7938 die = follow_die_ref (die, spec, &cu);
7939 return dwarf2_attr (die, name, cu);
7940 }
7941
7942 return NULL;
7943}
7944
7945/* Return the named attribute or NULL if not there,
7946 but do not follow DW_AT_specification, etc.
7947 This is for use in contexts where we're reading .debug_types dies.
7948 Following DW_AT_specification, DW_AT_abstract_origin will take us
7949 back up the chain, and we want to go down. */
7950
7951static struct attribute *
7952dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
7953 struct dwarf2_cu *cu)
7954{
7955 unsigned int i;
7956
7957 for (i = 0; i < die->num_attrs; ++i)
7958 if (die->attrs[i].name == name)
7959 return &die->attrs[i];
7960
7961 return NULL;
7962}
7963
7964/* Return non-zero iff the attribute NAME is defined for the given DIE,
7965 and holds a non-zero value. This function should only be used for
7966 DW_FORM_flag or DW_FORM_flag_present attributes. */
7967
7968static int
7969dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
7970{
7971 struct attribute *attr = dwarf2_attr (die, name, cu);
7972
7973 return (attr && DW_UNSND (attr));
7974}
7975
7976static int
7977die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
7978{
7979 /* A DIE is a declaration if it has a DW_AT_declaration attribute
7980 which value is non-zero. However, we have to be careful with
7981 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
7982 (via dwarf2_flag_true_p) follows this attribute. So we may
7983 end up accidently finding a declaration attribute that belongs
7984 to a different DIE referenced by the specification attribute,
7985 even though the given DIE does not have a declaration attribute. */
7986 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
7987 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
7988}
7989
7990/* Return the die giving the specification for DIE, if there is
7991 one. *SPEC_CU is the CU containing DIE on input, and the CU
7992 containing the return value on output. If there is no
7993 specification, but there is an abstract origin, that is
7994 returned. */
7995
7996static struct die_info *
7997die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
7998{
7999 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
8000 *spec_cu);
8001
8002 if (spec_attr == NULL)
8003 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
8004
8005 if (spec_attr == NULL)
8006 return NULL;
8007 else
8008 return follow_die_ref (die, spec_attr, spec_cu);
8009}
8010
8011/* Free the line_header structure *LH, and any arrays and strings it
8012 refers to. */
8013static void
8014free_line_header (struct line_header *lh)
8015{
8016 if (lh->standard_opcode_lengths)
8017 xfree (lh->standard_opcode_lengths);
8018
8019 /* Remember that all the lh->file_names[i].name pointers are
8020 pointers into debug_line_buffer, and don't need to be freed. */
8021 if (lh->file_names)
8022 xfree (lh->file_names);
8023
8024 /* Similarly for the include directory names. */
8025 if (lh->include_dirs)
8026 xfree (lh->include_dirs);
8027
8028 xfree (lh);
8029}
8030
8031
8032/* Add an entry to LH's include directory table. */
8033static void
8034add_include_dir (struct line_header *lh, char *include_dir)
8035{
8036 /* Grow the array if necessary. */
8037 if (lh->include_dirs_size == 0)
8038 {
8039 lh->include_dirs_size = 1; /* for testing */
8040 lh->include_dirs = xmalloc (lh->include_dirs_size
8041 * sizeof (*lh->include_dirs));
8042 }
8043 else if (lh->num_include_dirs >= lh->include_dirs_size)
8044 {
8045 lh->include_dirs_size *= 2;
8046 lh->include_dirs = xrealloc (lh->include_dirs,
8047 (lh->include_dirs_size
8048 * sizeof (*lh->include_dirs)));
8049 }
8050
8051 lh->include_dirs[lh->num_include_dirs++] = include_dir;
8052}
8053
8054
8055/* Add an entry to LH's file name table. */
8056static void
8057add_file_name (struct line_header *lh,
8058 char *name,
8059 unsigned int dir_index,
8060 unsigned int mod_time,
8061 unsigned int length)
8062{
8063 struct file_entry *fe;
8064
8065 /* Grow the array if necessary. */
8066 if (lh->file_names_size == 0)
8067 {
8068 lh->file_names_size = 1; /* for testing */
8069 lh->file_names = xmalloc (lh->file_names_size
8070 * sizeof (*lh->file_names));
8071 }
8072 else if (lh->num_file_names >= lh->file_names_size)
8073 {
8074 lh->file_names_size *= 2;
8075 lh->file_names = xrealloc (lh->file_names,
8076 (lh->file_names_size
8077 * sizeof (*lh->file_names)));
8078 }
8079
8080 fe = &lh->file_names[lh->num_file_names++];
8081 fe->name = name;
8082 fe->dir_index = dir_index;
8083 fe->mod_time = mod_time;
8084 fe->length = length;
8085 fe->included_p = 0;
8086 fe->symtab = NULL;
8087}
8088
8089
8090/* Read the statement program header starting at OFFSET in
8091 .debug_line, according to the endianness of ABFD. Return a pointer
8092 to a struct line_header, allocated using xmalloc.
8093
8094 NOTE: the strings in the include directory and file name tables of
8095 the returned object point into debug_line_buffer, and must not be
8096 freed. */
8097static struct line_header *
8098dwarf_decode_line_header (unsigned int offset, bfd *abfd,
8099 struct dwarf2_cu *cu)
8100{
8101 struct cleanup *back_to;
8102 struct line_header *lh;
8103 gdb_byte *line_ptr;
8104 unsigned int bytes_read, offset_size;
8105 int i;
8106 char *cur_dir, *cur_file;
8107
8108 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
8109 if (dwarf2_per_objfile->line.buffer == NULL)
8110 {
8111 complaint (&symfile_complaints, _("missing .debug_line section"));
8112 return 0;
8113 }
8114
8115 /* Make sure that at least there's room for the total_length field.
8116 That could be 12 bytes long, but we're just going to fudge that. */
8117 if (offset + 4 >= dwarf2_per_objfile->line.size)
8118 {
8119 dwarf2_statement_list_fits_in_line_number_section_complaint ();
8120 return 0;
8121 }
8122
8123 lh = xmalloc (sizeof (*lh));
8124 memset (lh, 0, sizeof (*lh));
8125 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
8126 (void *) lh);
8127
8128 line_ptr = dwarf2_per_objfile->line.buffer + offset;
8129
8130 /* Read in the header. */
8131 lh->total_length =
8132 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
8133 &bytes_read, &offset_size);
8134 line_ptr += bytes_read;
8135 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
8136 + dwarf2_per_objfile->line.size))
8137 {
8138 dwarf2_statement_list_fits_in_line_number_section_complaint ();
8139 return 0;
8140 }
8141 lh->statement_program_end = line_ptr + lh->total_length;
8142 lh->version = read_2_bytes (abfd, line_ptr);
8143 line_ptr += 2;
8144 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
8145 line_ptr += offset_size;
8146 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
8147 line_ptr += 1;
8148 if (lh->version >= 4)
8149 {
8150 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
8151 line_ptr += 1;
8152 }
8153 else
8154 lh->maximum_ops_per_instruction = 1;
8155
8156 if (lh->maximum_ops_per_instruction == 0)
8157 {
8158 lh->maximum_ops_per_instruction = 1;
8159 complaint (&symfile_complaints,
8160 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
8161 }
8162
8163 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
8164 line_ptr += 1;
8165 lh->line_base = read_1_signed_byte (abfd, line_ptr);
8166 line_ptr += 1;
8167 lh->line_range = read_1_byte (abfd, line_ptr);
8168 line_ptr += 1;
8169 lh->opcode_base = read_1_byte (abfd, line_ptr);
8170 line_ptr += 1;
8171 lh->standard_opcode_lengths
8172 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
8173
8174 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
8175 for (i = 1; i < lh->opcode_base; ++i)
8176 {
8177 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
8178 line_ptr += 1;
8179 }
8180
8181 /* Read directory table. */
8182 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
8183 {
8184 line_ptr += bytes_read;
8185 add_include_dir (lh, cur_dir);
8186 }
8187 line_ptr += bytes_read;
8188
8189 /* Read file name table. */
8190 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
8191 {
8192 unsigned int dir_index, mod_time, length;
8193
8194 line_ptr += bytes_read;
8195 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8196 line_ptr += bytes_read;
8197 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8198 line_ptr += bytes_read;
8199 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8200 line_ptr += bytes_read;
8201
8202 add_file_name (lh, cur_file, dir_index, mod_time, length);
8203 }
8204 line_ptr += bytes_read;
8205 lh->statement_program_start = line_ptr;
8206
8207 if (line_ptr > (dwarf2_per_objfile->line.buffer
8208 + dwarf2_per_objfile->line.size))
8209 complaint (&symfile_complaints,
8210 _("line number info header doesn't fit in `.debug_line' section"));
8211
8212 discard_cleanups (back_to);
8213 return lh;
8214}
8215
8216/* This function exists to work around a bug in certain compilers
8217 (particularly GCC 2.95), in which the first line number marker of a
8218 function does not show up until after the prologue, right before
8219 the second line number marker. This function shifts ADDRESS down
8220 to the beginning of the function if necessary, and is called on
8221 addresses passed to record_line. */
8222
8223static CORE_ADDR
8224check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
8225{
8226 struct function_range *fn;
8227
8228 /* Find the function_range containing address. */
8229 if (!cu->first_fn)
8230 return address;
8231
8232 if (!cu->cached_fn)
8233 cu->cached_fn = cu->first_fn;
8234
8235 fn = cu->cached_fn;
8236 while (fn)
8237 if (fn->lowpc <= address && fn->highpc > address)
8238 goto found;
8239 else
8240 fn = fn->next;
8241
8242 fn = cu->first_fn;
8243 while (fn && fn != cu->cached_fn)
8244 if (fn->lowpc <= address && fn->highpc > address)
8245 goto found;
8246 else
8247 fn = fn->next;
8248
8249 return address;
8250
8251 found:
8252 if (fn->seen_line)
8253 return address;
8254 if (address != fn->lowpc)
8255 complaint (&symfile_complaints,
8256 _("misplaced first line number at 0x%lx for '%s'"),
8257 (unsigned long) address, fn->name);
8258 fn->seen_line = 1;
8259 return fn->lowpc;
8260}
8261
8262/* Decode the Line Number Program (LNP) for the given line_header
8263 structure and CU. The actual information extracted and the type
8264 of structures created from the LNP depends on the value of PST.
8265
8266 1. If PST is NULL, then this procedure uses the data from the program
8267 to create all necessary symbol tables, and their linetables.
8268 The compilation directory of the file is passed in COMP_DIR,
8269 and must not be NULL.
8270
8271 2. If PST is not NULL, this procedure reads the program to determine
8272 the list of files included by the unit represented by PST, and
8273 builds all the associated partial symbol tables. In this case,
8274 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
8275 is not used to compute the full name of the symtab, and therefore
8276 omitting it when building the partial symtab does not introduce
8277 the potential for inconsistency - a partial symtab and its associated
8278 symbtab having a different fullname -). */
8279
8280static void
8281dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
8282 struct dwarf2_cu *cu, struct partial_symtab *pst)
8283{
8284 gdb_byte *line_ptr, *extended_end;
8285 gdb_byte *line_end;
8286 unsigned int bytes_read, extended_len;
8287 unsigned char op_code, extended_op, adj_opcode;
8288 CORE_ADDR baseaddr;
8289 struct objfile *objfile = cu->objfile;
8290 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8291 const int decode_for_pst_p = (pst != NULL);
8292 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
8293
8294 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8295
8296 line_ptr = lh->statement_program_start;
8297 line_end = lh->statement_program_end;
8298
8299 /* Read the statement sequences until there's nothing left. */
8300 while (line_ptr < line_end)
8301 {
8302 /* state machine registers */
8303 CORE_ADDR address = 0;
8304 unsigned int file = 1;
8305 unsigned int line = 1;
8306 unsigned int column = 0;
8307 int is_stmt = lh->default_is_stmt;
8308 int basic_block = 0;
8309 int end_sequence = 0;
8310 CORE_ADDR addr;
8311 unsigned char op_index = 0;
8312
8313 if (!decode_for_pst_p && lh->num_file_names >= file)
8314 {
8315 /* Start a subfile for the current file of the state machine. */
8316 /* lh->include_dirs and lh->file_names are 0-based, but the
8317 directory and file name numbers in the statement program
8318 are 1-based. */
8319 struct file_entry *fe = &lh->file_names[file - 1];
8320 char *dir = NULL;
8321
8322 if (fe->dir_index)
8323 dir = lh->include_dirs[fe->dir_index - 1];
8324
8325 dwarf2_start_subfile (fe->name, dir, comp_dir);
8326 }
8327
8328 /* Decode the table. */
8329 while (!end_sequence)
8330 {
8331 op_code = read_1_byte (abfd, line_ptr);
8332 line_ptr += 1;
8333 if (line_ptr > line_end)
8334 {
8335 dwarf2_debug_line_missing_end_sequence_complaint ();
8336 break;
8337 }
8338
8339 if (op_code >= lh->opcode_base)
8340 {
8341 /* Special operand. */
8342 adj_opcode = op_code - lh->opcode_base;
8343 address += (((op_index + (adj_opcode / lh->line_range))
8344 / lh->maximum_ops_per_instruction)
8345 * lh->minimum_instruction_length);
8346 op_index = ((op_index + (adj_opcode / lh->line_range))
8347 % lh->maximum_ops_per_instruction);
8348 line += lh->line_base + (adj_opcode % lh->line_range);
8349 if (lh->num_file_names < file || file == 0)
8350 dwarf2_debug_line_missing_file_complaint ();
8351 /* For now we ignore lines not starting on an
8352 instruction boundary. */
8353 else if (op_index == 0)
8354 {
8355 lh->file_names[file - 1].included_p = 1;
8356 if (!decode_for_pst_p && is_stmt)
8357 {
8358 if (last_subfile != current_subfile)
8359 {
8360 addr = gdbarch_addr_bits_remove (gdbarch, address);
8361 if (last_subfile)
8362 record_line (last_subfile, 0, addr);
8363 last_subfile = current_subfile;
8364 }
8365 /* Append row to matrix using current values. */
8366 addr = check_cu_functions (address, cu);
8367 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8368 record_line (current_subfile, line, addr);
8369 }
8370 }
8371 basic_block = 0;
8372 }
8373 else switch (op_code)
8374 {
8375 case DW_LNS_extended_op:
8376 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8377 line_ptr += bytes_read;
8378 extended_end = line_ptr + extended_len;
8379 extended_op = read_1_byte (abfd, line_ptr);
8380 line_ptr += 1;
8381 switch (extended_op)
8382 {
8383 case DW_LNE_end_sequence:
8384 end_sequence = 1;
8385 break;
8386 case DW_LNE_set_address:
8387 address = read_address (abfd, line_ptr, cu, &bytes_read);
8388 op_index = 0;
8389 line_ptr += bytes_read;
8390 address += baseaddr;
8391 break;
8392 case DW_LNE_define_file:
8393 {
8394 char *cur_file;
8395 unsigned int dir_index, mod_time, length;
8396
8397 cur_file = read_string (abfd, line_ptr, &bytes_read);
8398 line_ptr += bytes_read;
8399 dir_index =
8400 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8401 line_ptr += bytes_read;
8402 mod_time =
8403 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8404 line_ptr += bytes_read;
8405 length =
8406 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8407 line_ptr += bytes_read;
8408 add_file_name (lh, cur_file, dir_index, mod_time, length);
8409 }
8410 break;
8411 case DW_LNE_set_discriminator:
8412 /* The discriminator is not interesting to the debugger;
8413 just ignore it. */
8414 line_ptr = extended_end;
8415 break;
8416 default:
8417 complaint (&symfile_complaints,
8418 _("mangled .debug_line section"));
8419 return;
8420 }
8421 /* Make sure that we parsed the extended op correctly. If e.g.
8422 we expected a different address size than the producer used,
8423 we may have read the wrong number of bytes. */
8424 if (line_ptr != extended_end)
8425 {
8426 complaint (&symfile_complaints,
8427 _("mangled .debug_line section"));
8428 return;
8429 }
8430 break;
8431 case DW_LNS_copy:
8432 if (lh->num_file_names < file || file == 0)
8433 dwarf2_debug_line_missing_file_complaint ();
8434 else
8435 {
8436 lh->file_names[file - 1].included_p = 1;
8437 if (!decode_for_pst_p && is_stmt)
8438 {
8439 if (last_subfile != current_subfile)
8440 {
8441 addr = gdbarch_addr_bits_remove (gdbarch, address);
8442 if (last_subfile)
8443 record_line (last_subfile, 0, addr);
8444 last_subfile = current_subfile;
8445 }
8446 addr = check_cu_functions (address, cu);
8447 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8448 record_line (current_subfile, line, addr);
8449 }
8450 }
8451 basic_block = 0;
8452 break;
8453 case DW_LNS_advance_pc:
8454 {
8455 CORE_ADDR adjust
8456 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8457
8458 address += (((op_index + adjust)
8459 / lh->maximum_ops_per_instruction)
8460 * lh->minimum_instruction_length);
8461 op_index = ((op_index + adjust)
8462 % lh->maximum_ops_per_instruction);
8463 line_ptr += bytes_read;
8464 }
8465 break;
8466 case DW_LNS_advance_line:
8467 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
8468 line_ptr += bytes_read;
8469 break;
8470 case DW_LNS_set_file:
8471 {
8472 /* The arrays lh->include_dirs and lh->file_names are
8473 0-based, but the directory and file name numbers in
8474 the statement program are 1-based. */
8475 struct file_entry *fe;
8476 char *dir = NULL;
8477
8478 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8479 line_ptr += bytes_read;
8480 if (lh->num_file_names < file || file == 0)
8481 dwarf2_debug_line_missing_file_complaint ();
8482 else
8483 {
8484 fe = &lh->file_names[file - 1];
8485 if (fe->dir_index)
8486 dir = lh->include_dirs[fe->dir_index - 1];
8487 if (!decode_for_pst_p)
8488 {
8489 last_subfile = current_subfile;
8490 dwarf2_start_subfile (fe->name, dir, comp_dir);
8491 }
8492 }
8493 }
8494 break;
8495 case DW_LNS_set_column:
8496 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8497 line_ptr += bytes_read;
8498 break;
8499 case DW_LNS_negate_stmt:
8500 is_stmt = (!is_stmt);
8501 break;
8502 case DW_LNS_set_basic_block:
8503 basic_block = 1;
8504 break;
8505 /* Add to the address register of the state machine the
8506 address increment value corresponding to special opcode
8507 255. I.e., this value is scaled by the minimum
8508 instruction length since special opcode 255 would have
8509 scaled the the increment. */
8510 case DW_LNS_const_add_pc:
8511 {
8512 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
8513
8514 address += (((op_index + adjust)
8515 / lh->maximum_ops_per_instruction)
8516 * lh->minimum_instruction_length);
8517 op_index = ((op_index + adjust)
8518 % lh->maximum_ops_per_instruction);
8519 }
8520 break;
8521 case DW_LNS_fixed_advance_pc:
8522 address += read_2_bytes (abfd, line_ptr);
8523 op_index = 0;
8524 line_ptr += 2;
8525 break;
8526 default:
8527 {
8528 /* Unknown standard opcode, ignore it. */
8529 int i;
8530
8531 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
8532 {
8533 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8534 line_ptr += bytes_read;
8535 }
8536 }
8537 }
8538 }
8539 if (lh->num_file_names < file || file == 0)
8540 dwarf2_debug_line_missing_file_complaint ();
8541 else
8542 {
8543 lh->file_names[file - 1].included_p = 1;
8544 if (!decode_for_pst_p)
8545 {
8546 addr = gdbarch_addr_bits_remove (gdbarch, address);
8547 record_line (current_subfile, 0, addr);
8548 }
8549 }
8550 }
8551
8552 if (decode_for_pst_p)
8553 {
8554 int file_index;
8555
8556 /* Now that we're done scanning the Line Header Program, we can
8557 create the psymtab of each included file. */
8558 for (file_index = 0; file_index < lh->num_file_names; file_index++)
8559 if (lh->file_names[file_index].included_p == 1)
8560 {
8561 const struct file_entry fe = lh->file_names [file_index];
8562 char *include_name = fe.name;
8563 char *dir_name = NULL;
8564 char *pst_filename = pst->filename;
8565
8566 if (fe.dir_index)
8567 dir_name = lh->include_dirs[fe.dir_index - 1];
8568
8569 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
8570 {
8571 include_name = concat (dir_name, SLASH_STRING,
8572 include_name, (char *)NULL);
8573 make_cleanup (xfree, include_name);
8574 }
8575
8576 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
8577 {
8578 pst_filename = concat (pst->dirname, SLASH_STRING,
8579 pst_filename, (char *)NULL);
8580 make_cleanup (xfree, pst_filename);
8581 }
8582
8583 if (strcmp (include_name, pst_filename) != 0)
8584 dwarf2_create_include_psymtab (include_name, pst, objfile);
8585 }
8586 }
8587 else
8588 {
8589 /* Make sure a symtab is created for every file, even files
8590 which contain only variables (i.e. no code with associated
8591 line numbers). */
8592
8593 int i;
8594 struct file_entry *fe;
8595
8596 for (i = 0; i < lh->num_file_names; i++)
8597 {
8598 char *dir = NULL;
8599
8600 fe = &lh->file_names[i];
8601 if (fe->dir_index)
8602 dir = lh->include_dirs[fe->dir_index - 1];
8603 dwarf2_start_subfile (fe->name, dir, comp_dir);
8604
8605 /* Skip the main file; we don't need it, and it must be
8606 allocated last, so that it will show up before the
8607 non-primary symtabs in the objfile's symtab list. */
8608 if (current_subfile == first_subfile)
8609 continue;
8610
8611 if (current_subfile->symtab == NULL)
8612 current_subfile->symtab = allocate_symtab (current_subfile->name,
8613 cu->objfile);
8614 fe->symtab = current_subfile->symtab;
8615 }
8616 }
8617}
8618
8619/* Start a subfile for DWARF. FILENAME is the name of the file and
8620 DIRNAME the name of the source directory which contains FILENAME
8621 or NULL if not known. COMP_DIR is the compilation directory for the
8622 linetable's compilation unit or NULL if not known.
8623 This routine tries to keep line numbers from identical absolute and
8624 relative file names in a common subfile.
8625
8626 Using the `list' example from the GDB testsuite, which resides in
8627 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
8628 of /srcdir/list0.c yields the following debugging information for list0.c:
8629
8630 DW_AT_name: /srcdir/list0.c
8631 DW_AT_comp_dir: /compdir
8632 files.files[0].name: list0.h
8633 files.files[0].dir: /srcdir
8634 files.files[1].name: list0.c
8635 files.files[1].dir: /srcdir
8636
8637 The line number information for list0.c has to end up in a single
8638 subfile, so that `break /srcdir/list0.c:1' works as expected.
8639 start_subfile will ensure that this happens provided that we pass the
8640 concatenation of files.files[1].dir and files.files[1].name as the
8641 subfile's name. */
8642
8643static void
8644dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
8645{
8646 char *fullname;
8647
8648 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
8649 `start_symtab' will always pass the contents of DW_AT_comp_dir as
8650 second argument to start_subfile. To be consistent, we do the
8651 same here. In order not to lose the line information directory,
8652 we concatenate it to the filename when it makes sense.
8653 Note that the Dwarf3 standard says (speaking of filenames in line
8654 information): ``The directory index is ignored for file names
8655 that represent full path names''. Thus ignoring dirname in the
8656 `else' branch below isn't an issue. */
8657
8658 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
8659 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
8660 else
8661 fullname = filename;
8662
8663 start_subfile (fullname, comp_dir);
8664
8665 if (fullname != filename)
8666 xfree (fullname);
8667}
8668
8669static void
8670var_decode_location (struct attribute *attr, struct symbol *sym,
8671 struct dwarf2_cu *cu)
8672{
8673 struct objfile *objfile = cu->objfile;
8674 struct comp_unit_head *cu_header = &cu->header;
8675
8676 /* NOTE drow/2003-01-30: There used to be a comment and some special
8677 code here to turn a symbol with DW_AT_external and a
8678 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
8679 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
8680 with some versions of binutils) where shared libraries could have
8681 relocations against symbols in their debug information - the
8682 minimal symbol would have the right address, but the debug info
8683 would not. It's no longer necessary, because we will explicitly
8684 apply relocations when we read in the debug information now. */
8685
8686 /* A DW_AT_location attribute with no contents indicates that a
8687 variable has been optimized away. */
8688 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
8689 {
8690 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8691 return;
8692 }
8693
8694 /* Handle one degenerate form of location expression specially, to
8695 preserve GDB's previous behavior when section offsets are
8696 specified. If this is just a DW_OP_addr then mark this symbol
8697 as LOC_STATIC. */
8698
8699 if (attr_form_is_block (attr)
8700 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
8701 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
8702 {
8703 unsigned int dummy;
8704
8705 SYMBOL_VALUE_ADDRESS (sym) =
8706 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
8707 SYMBOL_CLASS (sym) = LOC_STATIC;
8708 fixup_symbol_section (sym, objfile);
8709 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
8710 SYMBOL_SECTION (sym));
8711 return;
8712 }
8713
8714 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
8715 expression evaluator, and use LOC_COMPUTED only when necessary
8716 (i.e. when the value of a register or memory location is
8717 referenced, or a thread-local block, etc.). Then again, it might
8718 not be worthwhile. I'm assuming that it isn't unless performance
8719 or memory numbers show me otherwise. */
8720
8721 dwarf2_symbol_mark_computed (attr, sym, cu);
8722 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8723}
8724
8725/* Given a pointer to a DWARF information entry, figure out if we need
8726 to make a symbol table entry for it, and if so, create a new entry
8727 and return a pointer to it.
8728 If TYPE is NULL, determine symbol type from the die, otherwise
8729 used the passed type. */
8730
8731static struct symbol *
8732new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
8733{
8734 struct objfile *objfile = cu->objfile;
8735 struct symbol *sym = NULL;
8736 char *name;
8737 struct attribute *attr = NULL;
8738 struct attribute *attr2 = NULL;
8739 CORE_ADDR baseaddr;
8740 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
8741
8742 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8743
8744 name = dwarf2_name (die, cu);
8745 if (name)
8746 {
8747 const char *linkagename;
8748
8749 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
8750 sizeof (struct symbol));
8751 OBJSTAT (objfile, n_syms++);
8752 memset (sym, 0, sizeof (struct symbol));
8753
8754 /* Cache this symbol's name and the name's demangled form (if any). */
8755 SYMBOL_LANGUAGE (sym) = cu->language;
8756 linkagename = dwarf2_physname (name, die, cu);
8757 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
8758
8759 /* Fortran does not have mangling standard and the mangling does differ
8760 between gfortran, iFort etc. */
8761 if (cu->language == language_fortran
8762 && sym->ginfo.language_specific.cplus_specific.demangled_name == NULL)
8763 sym->ginfo.language_specific.cplus_specific.demangled_name
8764 = (char *) dwarf2_full_name (name, die, cu);
8765
8766 /* Default assumptions.
8767 Use the passed type or decode it from the die. */
8768 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8769 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8770 if (type != NULL)
8771 SYMBOL_TYPE (sym) = type;
8772 else
8773 SYMBOL_TYPE (sym) = die_type (die, cu);
8774 attr = dwarf2_attr (die,
8775 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
8776 cu);
8777 if (attr)
8778 {
8779 SYMBOL_LINE (sym) = DW_UNSND (attr);
8780 }
8781
8782 attr = dwarf2_attr (die,
8783 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
8784 cu);
8785 if (attr)
8786 {
8787 int file_index = DW_UNSND (attr);
8788
8789 if (cu->line_header == NULL
8790 || file_index > cu->line_header->num_file_names)
8791 complaint (&symfile_complaints,
8792 _("file index out of range"));
8793 else if (file_index > 0)
8794 {
8795 struct file_entry *fe;
8796
8797 fe = &cu->line_header->file_names[file_index - 1];
8798 SYMBOL_SYMTAB (sym) = fe->symtab;
8799 }
8800 }
8801
8802 switch (die->tag)
8803 {
8804 case DW_TAG_label:
8805 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
8806 if (attr)
8807 {
8808 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
8809 }
8810 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
8811 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
8812 SYMBOL_CLASS (sym) = LOC_LABEL;
8813 add_symbol_to_list (sym, cu->list_in_scope);
8814 break;
8815 case DW_TAG_subprogram:
8816 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8817 finish_block. */
8818 SYMBOL_CLASS (sym) = LOC_BLOCK;
8819 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8820 if ((attr2 && (DW_UNSND (attr2) != 0))
8821 || cu->language == language_ada)
8822 {
8823 /* Subprograms marked external are stored as a global symbol.
8824 Ada subprograms, whether marked external or not, are always
8825 stored as a global symbol, because we want to be able to
8826 access them globally. For instance, we want to be able
8827 to break on a nested subprogram without having to
8828 specify the context. */
8829 add_symbol_to_list (sym, &global_symbols);
8830 }
8831 else
8832 {
8833 add_symbol_to_list (sym, cu->list_in_scope);
8834 }
8835 break;
8836 case DW_TAG_inlined_subroutine:
8837 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8838 finish_block. */
8839 SYMBOL_CLASS (sym) = LOC_BLOCK;
8840 SYMBOL_INLINED (sym) = 1;
8841 /* Do not add the symbol to any lists. It will be found via
8842 BLOCK_FUNCTION from the blockvector. */
8843 break;
8844 case DW_TAG_variable:
8845 case DW_TAG_member:
8846 /* Compilation with minimal debug info may result in variables
8847 with missing type entries. Change the misleading `void' type
8848 to something sensible. */
8849 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
8850 SYMBOL_TYPE (sym)
8851 = objfile_type (objfile)->nodebug_data_symbol;
8852
8853 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8854 /* In the case of DW_TAG_member, we should only be called for
8855 static const members. */
8856 if (die->tag == DW_TAG_member)
8857 {
8858 /* dwarf2_add_field uses die_is_declaration,
8859 so we do the same. */
8860 gdb_assert (die_is_declaration (die, cu));
8861 gdb_assert (attr);
8862 }
8863 if (attr)
8864 {
8865 dwarf2_const_value (attr, sym, cu);
8866 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8867 if (attr2 && (DW_UNSND (attr2) != 0))
8868 add_symbol_to_list (sym, &global_symbols);
8869 else
8870 add_symbol_to_list (sym, cu->list_in_scope);
8871 break;
8872 }
8873 attr = dwarf2_attr (die, DW_AT_location, cu);
8874 if (attr)
8875 {
8876 var_decode_location (attr, sym, cu);
8877 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8878 if (attr2 && (DW_UNSND (attr2) != 0))
8879 {
8880 struct pending **list_to_add;
8881
8882 /* Workaround gfortran PR debug/40040 - it uses
8883 DW_AT_location for variables in -fPIC libraries which may
8884 get overriden by other libraries/executable and get
8885 a different address. Resolve it by the minimal symbol
8886 which may come from inferior's executable using copy
8887 relocation. Make this workaround only for gfortran as for
8888 other compilers GDB cannot guess the minimal symbol
8889 Fortran mangling kind. */
8890 if (cu->language == language_fortran && die->parent
8891 && die->parent->tag == DW_TAG_module
8892 && cu->producer
8893 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
8894 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
8895
8896 /* A variable with DW_AT_external is never static,
8897 but it may be block-scoped. */
8898 list_to_add = (cu->list_in_scope == &file_symbols
8899 ? &global_symbols : cu->list_in_scope);
8900 add_symbol_to_list (sym, list_to_add);
8901 }
8902 else
8903 add_symbol_to_list (sym, cu->list_in_scope);
8904 }
8905 else
8906 {
8907 /* We do not know the address of this symbol.
8908 If it is an external symbol and we have type information
8909 for it, enter the symbol as a LOC_UNRESOLVED symbol.
8910 The address of the variable will then be determined from
8911 the minimal symbol table whenever the variable is
8912 referenced. */
8913 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8914 if (attr2 && (DW_UNSND (attr2) != 0)
8915 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
8916 {
8917 struct pending **list_to_add;
8918
8919 /* A variable with DW_AT_external is never static, but it
8920 may be block-scoped. */
8921 list_to_add = (cu->list_in_scope == &file_symbols
8922 ? &global_symbols : cu->list_in_scope);
8923
8924 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
8925 add_symbol_to_list (sym, list_to_add);
8926 }
8927 else if (!die_is_declaration (die, cu))
8928 {
8929 /* Use the default LOC_OPTIMIZED_OUT class. */
8930 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
8931 add_symbol_to_list (sym, cu->list_in_scope);
8932 }
8933 }
8934 break;
8935 case DW_TAG_formal_parameter:
8936 /* If we are inside a function, mark this as an argument. If
8937 not, we might be looking at an argument to an inlined function
8938 when we do not have enough information to show inlined frames;
8939 pretend it's a local variable in that case so that the user can
8940 still see it. */
8941 if (context_stack_depth > 0
8942 && context_stack[context_stack_depth - 1].name != NULL)
8943 SYMBOL_IS_ARGUMENT (sym) = 1;
8944 attr = dwarf2_attr (die, DW_AT_location, cu);
8945 if (attr)
8946 {
8947 var_decode_location (attr, sym, cu);
8948 }
8949 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8950 if (attr)
8951 {
8952 dwarf2_const_value (attr, sym, cu);
8953 }
8954 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
8955 if (attr && DW_UNSND (attr))
8956 {
8957 struct type *ref_type;
8958
8959 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
8960 SYMBOL_TYPE (sym) = ref_type;
8961 }
8962
8963 add_symbol_to_list (sym, cu->list_in_scope);
8964 break;
8965 case DW_TAG_unspecified_parameters:
8966 /* From varargs functions; gdb doesn't seem to have any
8967 interest in this information, so just ignore it for now.
8968 (FIXME?) */
8969 break;
8970 case DW_TAG_class_type:
8971 case DW_TAG_interface_type:
8972 case DW_TAG_structure_type:
8973 case DW_TAG_union_type:
8974 case DW_TAG_set_type:
8975 case DW_TAG_enumeration_type:
8976 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8977 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8978
8979 {
8980 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
8981 really ever be static objects: otherwise, if you try
8982 to, say, break of a class's method and you're in a file
8983 which doesn't mention that class, it won't work unless
8984 the check for all static symbols in lookup_symbol_aux
8985 saves you. See the OtherFileClass tests in
8986 gdb.c++/namespace.exp. */
8987
8988 struct pending **list_to_add;
8989
8990 list_to_add = (cu->list_in_scope == &file_symbols
8991 && (cu->language == language_cplus
8992 || cu->language == language_java)
8993 ? &global_symbols : cu->list_in_scope);
8994
8995 add_symbol_to_list (sym, list_to_add);
8996
8997 /* The semantics of C++ state that "struct foo { ... }" also
8998 defines a typedef for "foo". A Java class declaration also
8999 defines a typedef for the class. */
9000 if (cu->language == language_cplus
9001 || cu->language == language_java
9002 || cu->language == language_ada)
9003 {
9004 /* The symbol's name is already allocated along with
9005 this objfile, so we don't need to duplicate it for
9006 the type. */
9007 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
9008 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
9009 }
9010 }
9011 break;
9012 case DW_TAG_typedef:
9013 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
9014 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
9015 add_symbol_to_list (sym, cu->list_in_scope);
9016 break;
9017 case DW_TAG_base_type:
9018 case DW_TAG_subrange_type:
9019 case DW_TAG_const_type:
9020 case DW_TAG_volatile_type:
9021 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
9022 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
9023 add_symbol_to_list (sym, cu->list_in_scope);
9024 break;
9025 case DW_TAG_enumerator:
9026 attr = dwarf2_attr (die, DW_AT_const_value, cu);
9027 if (attr)
9028 {
9029 dwarf2_const_value (attr, sym, cu);
9030 }
9031 {
9032 /* NOTE: carlton/2003-11-10: See comment above in the
9033 DW_TAG_class_type, etc. block. */
9034
9035 struct pending **list_to_add;
9036
9037 list_to_add = (cu->list_in_scope == &file_symbols
9038 && (cu->language == language_cplus
9039 || cu->language == language_java)
9040 ? &global_symbols : cu->list_in_scope);
9041
9042 add_symbol_to_list (sym, list_to_add);
9043 }
9044 break;
9045 case DW_TAG_namespace:
9046 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
9047 add_symbol_to_list (sym, &global_symbols);
9048 break;
9049 default:
9050 /* Not a tag we recognize. Hopefully we aren't processing
9051 trash data, but since we must specifically ignore things
9052 we don't recognize, there is nothing else we should do at
9053 this point. */
9054 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
9055 dwarf_tag_name (die->tag));
9056 break;
9057 }
9058
9059 /* For the benefit of old versions of GCC, check for anonymous
9060 namespaces based on the demangled name. */
9061 if (!processing_has_namespace_info
9062 && cu->language == language_cplus)
9063 cp_scan_for_anonymous_namespaces (sym);
9064 }
9065 return (sym);
9066}
9067
9068/* Copy constant value from an attribute to a symbol. */
9069
9070static void
9071dwarf2_const_value (struct attribute *attr, struct symbol *sym,
9072 struct dwarf2_cu *cu)
9073{
9074 struct objfile *objfile = cu->objfile;
9075 struct comp_unit_head *cu_header = &cu->header;
9076 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
9077 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
9078 struct dwarf_block *blk;
9079
9080 switch (attr->form)
9081 {
9082 case DW_FORM_addr:
9083 {
9084 struct dwarf2_locexpr_baton *baton;
9085 gdb_byte *data;
9086
9087 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
9088 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
9089 cu_header->addr_size,
9090 TYPE_LENGTH (SYMBOL_TYPE
9091 (sym)));
9092 /* Symbols of this form are reasonably rare, so we just
9093 piggyback on the existing location code rather than writing
9094 a new implementation of symbol_computed_ops. */
9095 baton = obstack_alloc (&objfile->objfile_obstack,
9096 sizeof (struct dwarf2_locexpr_baton));
9097 baton->per_cu = cu->per_cu;
9098 gdb_assert (baton->per_cu);
9099
9100 baton->size = 2 + cu_header->addr_size;
9101 data = obstack_alloc (&objfile->objfile_obstack, baton->size);
9102 baton->data = data;
9103
9104 data[0] = DW_OP_addr;
9105 store_unsigned_integer (&data[1], cu_header->addr_size,
9106 byte_order, DW_ADDR (attr));
9107 data[cu_header->addr_size + 1] = DW_OP_stack_value;
9108
9109 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
9110 SYMBOL_LOCATION_BATON (sym) = baton;
9111 SYMBOL_CLASS (sym) = LOC_COMPUTED;
9112 }
9113 break;
9114 case DW_FORM_string:
9115 case DW_FORM_strp:
9116 /* DW_STRING is already allocated on the obstack, point directly
9117 to it. */
9118 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
9119 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
9120 break;
9121 case DW_FORM_block1:
9122 case DW_FORM_block2:
9123 case DW_FORM_block4:
9124 case DW_FORM_block:
9125 case DW_FORM_exprloc:
9126 blk = DW_BLOCK (attr);
9127 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
9128 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
9129 blk->size,
9130 TYPE_LENGTH (SYMBOL_TYPE
9131 (sym)));
9132 SYMBOL_VALUE_BYTES (sym) =
9133 obstack_alloc (&objfile->objfile_obstack, blk->size);
9134 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
9135 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
9136 break;
9137
9138 /* The DW_AT_const_value attributes are supposed to carry the
9139 symbol's value "represented as it would be on the target
9140 architecture." By the time we get here, it's already been
9141 converted to host endianness, so we just need to sign- or
9142 zero-extend it as appropriate. */
9143 case DW_FORM_data1:
9144 dwarf2_const_value_data (attr, sym, 8);
9145 break;
9146 case DW_FORM_data2:
9147 dwarf2_const_value_data (attr, sym, 16);
9148 break;
9149 case DW_FORM_data4:
9150 dwarf2_const_value_data (attr, sym, 32);
9151 break;
9152 case DW_FORM_data8:
9153 dwarf2_const_value_data (attr, sym, 64);
9154 break;
9155
9156 case DW_FORM_sdata:
9157 SYMBOL_VALUE (sym) = DW_SND (attr);
9158 SYMBOL_CLASS (sym) = LOC_CONST;
9159 break;
9160
9161 case DW_FORM_udata:
9162 SYMBOL_VALUE (sym) = DW_UNSND (attr);
9163 SYMBOL_CLASS (sym) = LOC_CONST;
9164 break;
9165
9166 default:
9167 complaint (&symfile_complaints,
9168 _("unsupported const value attribute form: '%s'"),
9169 dwarf_form_name (attr->form));
9170 SYMBOL_VALUE (sym) = 0;
9171 SYMBOL_CLASS (sym) = LOC_CONST;
9172 break;
9173 }
9174}
9175
9176
9177/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
9178 or zero-extend it as appropriate for the symbol's type. */
9179static void
9180dwarf2_const_value_data (struct attribute *attr,
9181 struct symbol *sym,
9182 int bits)
9183{
9184 LONGEST l = DW_UNSND (attr);
9185
9186 if (bits < sizeof (l) * 8)
9187 {
9188 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
9189 l &= ((LONGEST) 1 << bits) - 1;
9190 else
9191 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
9192 }
9193
9194 SYMBOL_VALUE (sym) = l;
9195 SYMBOL_CLASS (sym) = LOC_CONST;
9196}
9197
9198
9199/* Return the type of the die in question using its DW_AT_type attribute. */
9200
9201static struct type *
9202die_type (struct die_info *die, struct dwarf2_cu *cu)
9203{
9204 struct attribute *type_attr;
9205 struct die_info *type_die;
9206
9207 type_attr = dwarf2_attr (die, DW_AT_type, cu);
9208 if (!type_attr)
9209 {
9210 /* A missing DW_AT_type represents a void type. */
9211 return objfile_type (cu->objfile)->builtin_void;
9212 }
9213
9214 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
9215
9216 return tag_type_to_type (type_die, cu);
9217}
9218
9219/* True iff CU's producer generates GNAT Ada auxiliary information
9220 that allows to find parallel types through that information instead
9221 of having to do expensive parallel lookups by type name. */
9222
9223static int
9224need_gnat_info (struct dwarf2_cu *cu)
9225{
9226 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
9227 of GNAT produces this auxiliary information, without any indication
9228 that it is produced. Part of enhancing the FSF version of GNAT
9229 to produce that information will be to put in place an indicator
9230 that we can use in order to determine whether the descriptive type
9231 info is available or not. One suggestion that has been made is
9232 to use a new attribute, attached to the CU die. For now, assume
9233 that the descriptive type info is not available. */
9234 return 0;
9235}
9236
9237
9238/* Return the auxiliary type of the die in question using its
9239 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
9240 attribute is not present. */
9241
9242static struct type *
9243die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
9244{
9245 struct attribute *type_attr;
9246 struct die_info *type_die;
9247
9248 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
9249 if (!type_attr)
9250 return NULL;
9251
9252 type_die = follow_die_ref (die, type_attr, &cu);
9253 return tag_type_to_type (type_die, cu);
9254}
9255
9256/* If DIE has a descriptive_type attribute, then set the TYPE's
9257 descriptive type accordingly. */
9258
9259static void
9260set_descriptive_type (struct type *type, struct die_info *die,
9261 struct dwarf2_cu *cu)
9262{
9263 struct type *descriptive_type = die_descriptive_type (die, cu);
9264
9265 if (descriptive_type)
9266 {
9267 ALLOCATE_GNAT_AUX_TYPE (type);
9268 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
9269 }
9270}
9271
9272/* Return the containing type of the die in question using its
9273 DW_AT_containing_type attribute. */
9274
9275static struct type *
9276die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
9277{
9278 struct attribute *type_attr;
9279 struct die_info *type_die;
9280
9281 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
9282 if (!type_attr)
9283 error (_("Dwarf Error: Problem turning containing type into gdb type "
9284 "[in module %s]"), cu->objfile->name);
9285
9286 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
9287 return tag_type_to_type (type_die, cu);
9288}
9289
9290static struct type *
9291tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
9292{
9293 struct type *this_type;
9294
9295 this_type = read_type_die (die, cu);
9296 if (!this_type)
9297 {
9298 char *message, *saved;
9299
9300 /* read_type_die already issued a complaint. */
9301 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
9302 cu->objfile->name,
9303 cu->header.offset,
9304 die->offset);
9305 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
9306 message, strlen (message));
9307 xfree (message);
9308
9309 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
9310 }
9311 return this_type;
9312}
9313
9314static struct type *
9315read_type_die (struct die_info *die, struct dwarf2_cu *cu)
9316{
9317 struct type *this_type;
9318
9319 this_type = get_die_type (die, cu);
9320 if (this_type)
9321 return this_type;
9322
9323 switch (die->tag)
9324 {
9325 case DW_TAG_class_type:
9326 case DW_TAG_interface_type:
9327 case DW_TAG_structure_type:
9328 case DW_TAG_union_type:
9329 this_type = read_structure_type (die, cu);
9330 break;
9331 case DW_TAG_enumeration_type:
9332 this_type = read_enumeration_type (die, cu);
9333 break;
9334 case DW_TAG_subprogram:
9335 case DW_TAG_subroutine_type:
9336 case DW_TAG_inlined_subroutine:
9337 this_type = read_subroutine_type (die, cu);
9338 break;
9339 case DW_TAG_array_type:
9340 this_type = read_array_type (die, cu);
9341 break;
9342 case DW_TAG_set_type:
9343 this_type = read_set_type (die, cu);
9344 break;
9345 case DW_TAG_pointer_type:
9346 this_type = read_tag_pointer_type (die, cu);
9347 break;
9348 case DW_TAG_ptr_to_member_type:
9349 this_type = read_tag_ptr_to_member_type (die, cu);
9350 break;
9351 case DW_TAG_reference_type:
9352 this_type = read_tag_reference_type (die, cu);
9353 break;
9354 case DW_TAG_const_type:
9355 this_type = read_tag_const_type (die, cu);
9356 break;
9357 case DW_TAG_volatile_type:
9358 this_type = read_tag_volatile_type (die, cu);
9359 break;
9360 case DW_TAG_string_type:
9361 this_type = read_tag_string_type (die, cu);
9362 break;
9363 case DW_TAG_typedef:
9364 this_type = read_typedef (die, cu);
9365 break;
9366 case DW_TAG_subrange_type:
9367 this_type = read_subrange_type (die, cu);
9368 break;
9369 case DW_TAG_base_type:
9370 this_type = read_base_type (die, cu);
9371 break;
9372 case DW_TAG_unspecified_type:
9373 this_type = read_unspecified_type (die, cu);
9374 break;
9375 case DW_TAG_namespace:
9376 this_type = read_namespace_type (die, cu);
9377 break;
9378 case DW_TAG_module:
9379 this_type = read_module_type (die, cu);
9380 break;
9381 default:
9382 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
9383 dwarf_tag_name (die->tag));
9384 break;
9385 }
9386
9387 return this_type;
9388}
9389
9390/* Return the name of the namespace/class that DIE is defined within,
9391 or "" if we can't tell. The caller should not xfree the result.
9392
9393 For example, if we're within the method foo() in the following
9394 code:
9395
9396 namespace N {
9397 class C {
9398 void foo () {
9399 }
9400 };
9401 }
9402
9403 then determine_prefix on foo's die will return "N::C". */
9404
9405static char *
9406determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
9407{
9408 struct die_info *parent, *spec_die;
9409 struct dwarf2_cu *spec_cu;
9410 struct type *parent_type;
9411
9412 if (cu->language != language_cplus && cu->language != language_java
9413 && cu->language != language_fortran)
9414 return "";
9415
9416 /* We have to be careful in the presence of DW_AT_specification.
9417 For example, with GCC 3.4, given the code
9418
9419 namespace N {
9420 void foo() {
9421 // Definition of N::foo.
9422 }
9423 }
9424
9425 then we'll have a tree of DIEs like this:
9426
9427 1: DW_TAG_compile_unit
9428 2: DW_TAG_namespace // N
9429 3: DW_TAG_subprogram // declaration of N::foo
9430 4: DW_TAG_subprogram // definition of N::foo
9431 DW_AT_specification // refers to die #3
9432
9433 Thus, when processing die #4, we have to pretend that we're in
9434 the context of its DW_AT_specification, namely the contex of die
9435 #3. */
9436 spec_cu = cu;
9437 spec_die = die_specification (die, &spec_cu);
9438 if (spec_die == NULL)
9439 parent = die->parent;
9440 else
9441 {
9442 parent = spec_die->parent;
9443 cu = spec_cu;
9444 }
9445
9446 if (parent == NULL)
9447 return "";
9448 else
9449 switch (parent->tag)
9450 {
9451 case DW_TAG_namespace:
9452 parent_type = read_type_die (parent, cu);
9453 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9454 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9455 Work around this problem here. */
9456 if (cu->language == language_cplus
9457 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
9458 return "";
9459 /* We give a name to even anonymous namespaces. */
9460 return TYPE_TAG_NAME (parent_type);
9461 case DW_TAG_class_type:
9462 case DW_TAG_interface_type:
9463 case DW_TAG_structure_type:
9464 case DW_TAG_union_type:
9465 case DW_TAG_module:
9466 parent_type = read_type_die (parent, cu);
9467 if (TYPE_TAG_NAME (parent_type) != NULL)
9468 return TYPE_TAG_NAME (parent_type);
9469 else
9470 /* An anonymous structure is only allowed non-static data
9471 members; no typedefs, no member functions, et cetera.
9472 So it does not need a prefix. */
9473 return "";
9474 default:
9475 return determine_prefix (parent, cu);
9476 }
9477}
9478
9479/* Return a newly-allocated string formed by concatenating PREFIX and
9480 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
9481 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
9482 perform an obconcat, otherwise allocate storage for the result. The CU argument
9483 is used to determine the language and hence, the appropriate separator. */
9484
9485#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
9486
9487static char *
9488typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
9489 int physname, struct dwarf2_cu *cu)
9490{
9491 const char *lead = "";
9492 const char *sep;
9493
9494 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
9495 sep = "";
9496 else if (cu->language == language_java)
9497 sep = ".";
9498 else if (cu->language == language_fortran && physname)
9499 {
9500 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
9501 DW_AT_MIPS_linkage_name is preferred and used instead. */
9502
9503 lead = "__";
9504 sep = "_MOD_";
9505 }
9506 else
9507 sep = "::";
9508
9509 if (prefix == NULL)
9510 prefix = "";
9511 if (suffix == NULL)
9512 suffix = "";
9513
9514 if (obs == NULL)
9515 {
9516 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9517
9518 strcpy (retval, lead);
9519 strcat (retval, prefix);
9520 strcat (retval, sep);
9521 strcat (retval, suffix);
9522 return retval;
9523 }
9524 else
9525 {
9526 /* We have an obstack. */
9527 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
9528 }
9529}
9530
9531/* Return sibling of die, NULL if no sibling. */
9532
9533static struct die_info *
9534sibling_die (struct die_info *die)
9535{
9536 return die->sibling;
9537}
9538
9539/* Get name of a die, return NULL if not found. */
9540
9541static char *
9542dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
9543 struct obstack *obstack)
9544{
9545 if (name && cu->language == language_cplus)
9546 {
9547 char *canon_name = cp_canonicalize_string (name);
9548
9549 if (canon_name != NULL)
9550 {
9551 if (strcmp (canon_name, name) != 0)
9552 name = obsavestring (canon_name, strlen (canon_name),
9553 obstack);
9554 xfree (canon_name);
9555 }
9556 }
9557
9558 return name;
9559}
9560
9561/* Get name of a die, return NULL if not found. */
9562
9563static char *
9564dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9565{
9566 struct attribute *attr;
9567
9568 attr = dwarf2_attr (die, DW_AT_name, cu);
9569 if (!attr || !DW_STRING (attr))
9570 return NULL;
9571
9572 switch (die->tag)
9573 {
9574 case DW_TAG_compile_unit:
9575 /* Compilation units have a DW_AT_name that is a filename, not
9576 a source language identifier. */
9577 case DW_TAG_enumeration_type:
9578 case DW_TAG_enumerator:
9579 /* These tags always have simple identifiers already; no need
9580 to canonicalize them. */
9581 return DW_STRING (attr);
9582
9583 case DW_TAG_subprogram:
9584 /* Java constructors will all be named "<init>", so return
9585 the class name when we see this special case. */
9586 if (cu->language == language_java
9587 && DW_STRING (attr) != NULL
9588 && strcmp (DW_STRING (attr), "<init>") == 0)
9589 {
9590 struct dwarf2_cu *spec_cu = cu;
9591 struct die_info *spec_die;
9592
9593 /* GCJ will output '<init>' for Java constructor names.
9594 For this special case, return the name of the parent class. */
9595
9596 /* GCJ may output suprogram DIEs with AT_specification set.
9597 If so, use the name of the specified DIE. */
9598 spec_die = die_specification (die, &spec_cu);
9599 if (spec_die != NULL)
9600 return dwarf2_name (spec_die, spec_cu);
9601
9602 do
9603 {
9604 die = die->parent;
9605 if (die->tag == DW_TAG_class_type)
9606 return dwarf2_name (die, cu);
9607 }
9608 while (die->tag != DW_TAG_compile_unit);
9609 }
9610 break;
9611
9612 case DW_TAG_class_type:
9613 case DW_TAG_interface_type:
9614 case DW_TAG_structure_type:
9615 case DW_TAG_union_type:
9616 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
9617 structures or unions. These were of the form "._%d" in GCC 4.1,
9618 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
9619 and GCC 4.4. We work around this problem by ignoring these. */
9620 if (strncmp (DW_STRING (attr), "._", 2) == 0
9621 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
9622 return NULL;
9623 break;
9624
9625 default:
9626 break;
9627 }
9628
9629 if (!DW_STRING_IS_CANONICAL (attr))
9630 {
9631 DW_STRING (attr)
9632 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
9633 &cu->objfile->objfile_obstack);
9634 DW_STRING_IS_CANONICAL (attr) = 1;
9635 }
9636 return DW_STRING (attr);
9637}
9638
9639/* Return the die that this die in an extension of, or NULL if there
9640 is none. *EXT_CU is the CU containing DIE on input, and the CU
9641 containing the return value on output. */
9642
9643static struct die_info *
9644dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9645{
9646 struct attribute *attr;
9647
9648 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9649 if (attr == NULL)
9650 return NULL;
9651
9652 return follow_die_ref (die, attr, ext_cu);
9653}
9654
9655/* Convert a DIE tag into its string name. */
9656
9657static char *
9658dwarf_tag_name (unsigned tag)
9659{
9660 switch (tag)
9661 {
9662 case DW_TAG_padding:
9663 return "DW_TAG_padding";
9664 case DW_TAG_array_type:
9665 return "DW_TAG_array_type";
9666 case DW_TAG_class_type:
9667 return "DW_TAG_class_type";
9668 case DW_TAG_entry_point:
9669 return "DW_TAG_entry_point";
9670 case DW_TAG_enumeration_type:
9671 return "DW_TAG_enumeration_type";
9672 case DW_TAG_formal_parameter:
9673 return "DW_TAG_formal_parameter";
9674 case DW_TAG_imported_declaration:
9675 return "DW_TAG_imported_declaration";
9676 case DW_TAG_label:
9677 return "DW_TAG_label";
9678 case DW_TAG_lexical_block:
9679 return "DW_TAG_lexical_block";
9680 case DW_TAG_member:
9681 return "DW_TAG_member";
9682 case DW_TAG_pointer_type:
9683 return "DW_TAG_pointer_type";
9684 case DW_TAG_reference_type:
9685 return "DW_TAG_reference_type";
9686 case DW_TAG_compile_unit:
9687 return "DW_TAG_compile_unit";
9688 case DW_TAG_string_type:
9689 return "DW_TAG_string_type";
9690 case DW_TAG_structure_type:
9691 return "DW_TAG_structure_type";
9692 case DW_TAG_subroutine_type:
9693 return "DW_TAG_subroutine_type";
9694 case DW_TAG_typedef:
9695 return "DW_TAG_typedef";
9696 case DW_TAG_union_type:
9697 return "DW_TAG_union_type";
9698 case DW_TAG_unspecified_parameters:
9699 return "DW_TAG_unspecified_parameters";
9700 case DW_TAG_variant:
9701 return "DW_TAG_variant";
9702 case DW_TAG_common_block:
9703 return "DW_TAG_common_block";
9704 case DW_TAG_common_inclusion:
9705 return "DW_TAG_common_inclusion";
9706 case DW_TAG_inheritance:
9707 return "DW_TAG_inheritance";
9708 case DW_TAG_inlined_subroutine:
9709 return "DW_TAG_inlined_subroutine";
9710 case DW_TAG_module:
9711 return "DW_TAG_module";
9712 case DW_TAG_ptr_to_member_type:
9713 return "DW_TAG_ptr_to_member_type";
9714 case DW_TAG_set_type:
9715 return "DW_TAG_set_type";
9716 case DW_TAG_subrange_type:
9717 return "DW_TAG_subrange_type";
9718 case DW_TAG_with_stmt:
9719 return "DW_TAG_with_stmt";
9720 case DW_TAG_access_declaration:
9721 return "DW_TAG_access_declaration";
9722 case DW_TAG_base_type:
9723 return "DW_TAG_base_type";
9724 case DW_TAG_catch_block:
9725 return "DW_TAG_catch_block";
9726 case DW_TAG_const_type:
9727 return "DW_TAG_const_type";
9728 case DW_TAG_constant:
9729 return "DW_TAG_constant";
9730 case DW_TAG_enumerator:
9731 return "DW_TAG_enumerator";
9732 case DW_TAG_file_type:
9733 return "DW_TAG_file_type";
9734 case DW_TAG_friend:
9735 return "DW_TAG_friend";
9736 case DW_TAG_namelist:
9737 return "DW_TAG_namelist";
9738 case DW_TAG_namelist_item:
9739 return "DW_TAG_namelist_item";
9740 case DW_TAG_packed_type:
9741 return "DW_TAG_packed_type";
9742 case DW_TAG_subprogram:
9743 return "DW_TAG_subprogram";
9744 case DW_TAG_template_type_param:
9745 return "DW_TAG_template_type_param";
9746 case DW_TAG_template_value_param:
9747 return "DW_TAG_template_value_param";
9748 case DW_TAG_thrown_type:
9749 return "DW_TAG_thrown_type";
9750 case DW_TAG_try_block:
9751 return "DW_TAG_try_block";
9752 case DW_TAG_variant_part:
9753 return "DW_TAG_variant_part";
9754 case DW_TAG_variable:
9755 return "DW_TAG_variable";
9756 case DW_TAG_volatile_type:
9757 return "DW_TAG_volatile_type";
9758 case DW_TAG_dwarf_procedure:
9759 return "DW_TAG_dwarf_procedure";
9760 case DW_TAG_restrict_type:
9761 return "DW_TAG_restrict_type";
9762 case DW_TAG_interface_type:
9763 return "DW_TAG_interface_type";
9764 case DW_TAG_namespace:
9765 return "DW_TAG_namespace";
9766 case DW_TAG_imported_module:
9767 return "DW_TAG_imported_module";
9768 case DW_TAG_unspecified_type:
9769 return "DW_TAG_unspecified_type";
9770 case DW_TAG_partial_unit:
9771 return "DW_TAG_partial_unit";
9772 case DW_TAG_imported_unit:
9773 return "DW_TAG_imported_unit";
9774 case DW_TAG_condition:
9775 return "DW_TAG_condition";
9776 case DW_TAG_shared_type:
9777 return "DW_TAG_shared_type";
9778 case DW_TAG_type_unit:
9779 return "DW_TAG_type_unit";
9780 case DW_TAG_MIPS_loop:
9781 return "DW_TAG_MIPS_loop";
9782 case DW_TAG_HP_array_descriptor:
9783 return "DW_TAG_HP_array_descriptor";
9784 case DW_TAG_format_label:
9785 return "DW_TAG_format_label";
9786 case DW_TAG_function_template:
9787 return "DW_TAG_function_template";
9788 case DW_TAG_class_template:
9789 return "DW_TAG_class_template";
9790 case DW_TAG_GNU_BINCL:
9791 return "DW_TAG_GNU_BINCL";
9792 case DW_TAG_GNU_EINCL:
9793 return "DW_TAG_GNU_EINCL";
9794 case DW_TAG_upc_shared_type:
9795 return "DW_TAG_upc_shared_type";
9796 case DW_TAG_upc_strict_type:
9797 return "DW_TAG_upc_strict_type";
9798 case DW_TAG_upc_relaxed_type:
9799 return "DW_TAG_upc_relaxed_type";
9800 case DW_TAG_PGI_kanji_type:
9801 return "DW_TAG_PGI_kanji_type";
9802 case DW_TAG_PGI_interface_block:
9803 return "DW_TAG_PGI_interface_block";
9804 default:
9805 return "DW_TAG_<unknown>";
9806 }
9807}
9808
9809/* Convert a DWARF attribute code into its string name. */
9810
9811static char *
9812dwarf_attr_name (unsigned attr)
9813{
9814 switch (attr)
9815 {
9816 case DW_AT_sibling:
9817 return "DW_AT_sibling";
9818 case DW_AT_location:
9819 return "DW_AT_location";
9820 case DW_AT_name:
9821 return "DW_AT_name";
9822 case DW_AT_ordering:
9823 return "DW_AT_ordering";
9824 case DW_AT_subscr_data:
9825 return "DW_AT_subscr_data";
9826 case DW_AT_byte_size:
9827 return "DW_AT_byte_size";
9828 case DW_AT_bit_offset:
9829 return "DW_AT_bit_offset";
9830 case DW_AT_bit_size:
9831 return "DW_AT_bit_size";
9832 case DW_AT_element_list:
9833 return "DW_AT_element_list";
9834 case DW_AT_stmt_list:
9835 return "DW_AT_stmt_list";
9836 case DW_AT_low_pc:
9837 return "DW_AT_low_pc";
9838 case DW_AT_high_pc:
9839 return "DW_AT_high_pc";
9840 case DW_AT_language:
9841 return "DW_AT_language";
9842 case DW_AT_member:
9843 return "DW_AT_member";
9844 case DW_AT_discr:
9845 return "DW_AT_discr";
9846 case DW_AT_discr_value:
9847 return "DW_AT_discr_value";
9848 case DW_AT_visibility:
9849 return "DW_AT_visibility";
9850 case DW_AT_import:
9851 return "DW_AT_import";
9852 case DW_AT_string_length:
9853 return "DW_AT_string_length";
9854 case DW_AT_common_reference:
9855 return "DW_AT_common_reference";
9856 case DW_AT_comp_dir:
9857 return "DW_AT_comp_dir";
9858 case DW_AT_const_value:
9859 return "DW_AT_const_value";
9860 case DW_AT_containing_type:
9861 return "DW_AT_containing_type";
9862 case DW_AT_default_value:
9863 return "DW_AT_default_value";
9864 case DW_AT_inline:
9865 return "DW_AT_inline";
9866 case DW_AT_is_optional:
9867 return "DW_AT_is_optional";
9868 case DW_AT_lower_bound:
9869 return "DW_AT_lower_bound";
9870 case DW_AT_producer:
9871 return "DW_AT_producer";
9872 case DW_AT_prototyped:
9873 return "DW_AT_prototyped";
9874 case DW_AT_return_addr:
9875 return "DW_AT_return_addr";
9876 case DW_AT_start_scope:
9877 return "DW_AT_start_scope";
9878 case DW_AT_bit_stride:
9879 return "DW_AT_bit_stride";
9880 case DW_AT_upper_bound:
9881 return "DW_AT_upper_bound";
9882 case DW_AT_abstract_origin:
9883 return "DW_AT_abstract_origin";
9884 case DW_AT_accessibility:
9885 return "DW_AT_accessibility";
9886 case DW_AT_address_class:
9887 return "DW_AT_address_class";
9888 case DW_AT_artificial:
9889 return "DW_AT_artificial";
9890 case DW_AT_base_types:
9891 return "DW_AT_base_types";
9892 case DW_AT_calling_convention:
9893 return "DW_AT_calling_convention";
9894 case DW_AT_count:
9895 return "DW_AT_count";
9896 case DW_AT_data_member_location:
9897 return "DW_AT_data_member_location";
9898 case DW_AT_decl_column:
9899 return "DW_AT_decl_column";
9900 case DW_AT_decl_file:
9901 return "DW_AT_decl_file";
9902 case DW_AT_decl_line:
9903 return "DW_AT_decl_line";
9904 case DW_AT_declaration:
9905 return "DW_AT_declaration";
9906 case DW_AT_discr_list:
9907 return "DW_AT_discr_list";
9908 case DW_AT_encoding:
9909 return "DW_AT_encoding";
9910 case DW_AT_external:
9911 return "DW_AT_external";
9912 case DW_AT_frame_base:
9913 return "DW_AT_frame_base";
9914 case DW_AT_friend:
9915 return "DW_AT_friend";
9916 case DW_AT_identifier_case:
9917 return "DW_AT_identifier_case";
9918 case DW_AT_macro_info:
9919 return "DW_AT_macro_info";
9920 case DW_AT_namelist_items:
9921 return "DW_AT_namelist_items";
9922 case DW_AT_priority:
9923 return "DW_AT_priority";
9924 case DW_AT_segment:
9925 return "DW_AT_segment";
9926 case DW_AT_specification:
9927 return "DW_AT_specification";
9928 case DW_AT_static_link:
9929 return "DW_AT_static_link";
9930 case DW_AT_type:
9931 return "DW_AT_type";
9932 case DW_AT_use_location:
9933 return "DW_AT_use_location";
9934 case DW_AT_variable_parameter:
9935 return "DW_AT_variable_parameter";
9936 case DW_AT_virtuality:
9937 return "DW_AT_virtuality";
9938 case DW_AT_vtable_elem_location:
9939 return "DW_AT_vtable_elem_location";
9940 /* DWARF 3 values. */
9941 case DW_AT_allocated:
9942 return "DW_AT_allocated";
9943 case DW_AT_associated:
9944 return "DW_AT_associated";
9945 case DW_AT_data_location:
9946 return "DW_AT_data_location";
9947 case DW_AT_byte_stride:
9948 return "DW_AT_byte_stride";
9949 case DW_AT_entry_pc:
9950 return "DW_AT_entry_pc";
9951 case DW_AT_use_UTF8:
9952 return "DW_AT_use_UTF8";
9953 case DW_AT_extension:
9954 return "DW_AT_extension";
9955 case DW_AT_ranges:
9956 return "DW_AT_ranges";
9957 case DW_AT_trampoline:
9958 return "DW_AT_trampoline";
9959 case DW_AT_call_column:
9960 return "DW_AT_call_column";
9961 case DW_AT_call_file:
9962 return "DW_AT_call_file";
9963 case DW_AT_call_line:
9964 return "DW_AT_call_line";
9965 case DW_AT_description:
9966 return "DW_AT_description";
9967 case DW_AT_binary_scale:
9968 return "DW_AT_binary_scale";
9969 case DW_AT_decimal_scale:
9970 return "DW_AT_decimal_scale";
9971 case DW_AT_small:
9972 return "DW_AT_small";
9973 case DW_AT_decimal_sign:
9974 return "DW_AT_decimal_sign";
9975 case DW_AT_digit_count:
9976 return "DW_AT_digit_count";
9977 case DW_AT_picture_string:
9978 return "DW_AT_picture_string";
9979 case DW_AT_mutable:
9980 return "DW_AT_mutable";
9981 case DW_AT_threads_scaled:
9982 return "DW_AT_threads_scaled";
9983 case DW_AT_explicit:
9984 return "DW_AT_explicit";
9985 case DW_AT_object_pointer:
9986 return "DW_AT_object_pointer";
9987 case DW_AT_endianity:
9988 return "DW_AT_endianity";
9989 case DW_AT_elemental:
9990 return "DW_AT_elemental";
9991 case DW_AT_pure:
9992 return "DW_AT_pure";
9993 case DW_AT_recursive:
9994 return "DW_AT_recursive";
9995 /* DWARF 4 values. */
9996 case DW_AT_signature:
9997 return "DW_AT_signature";
9998 case DW_AT_linkage_name:
9999 return "DW_AT_linkage_name";
10000 /* SGI/MIPS extensions. */
10001#ifdef MIPS /* collides with DW_AT_HP_block_index */
10002 case DW_AT_MIPS_fde:
10003 return "DW_AT_MIPS_fde";
10004#endif
10005 case DW_AT_MIPS_loop_begin:
10006 return "DW_AT_MIPS_loop_begin";
10007 case DW_AT_MIPS_tail_loop_begin:
10008 return "DW_AT_MIPS_tail_loop_begin";
10009 case DW_AT_MIPS_epilog_begin:
10010 return "DW_AT_MIPS_epilog_begin";
10011 case DW_AT_MIPS_loop_unroll_factor:
10012 return "DW_AT_MIPS_loop_unroll_factor";
10013 case DW_AT_MIPS_software_pipeline_depth:
10014 return "DW_AT_MIPS_software_pipeline_depth";
10015 case DW_AT_MIPS_linkage_name:
10016 return "DW_AT_MIPS_linkage_name";
10017 case DW_AT_MIPS_stride:
10018 return "DW_AT_MIPS_stride";
10019 case DW_AT_MIPS_abstract_name:
10020 return "DW_AT_MIPS_abstract_name";
10021 case DW_AT_MIPS_clone_origin:
10022 return "DW_AT_MIPS_clone_origin";
10023 case DW_AT_MIPS_has_inlines:
10024 return "DW_AT_MIPS_has_inlines";
10025 /* HP extensions. */
10026#ifndef MIPS /* collides with DW_AT_MIPS_fde */
10027 case DW_AT_HP_block_index:
10028 return "DW_AT_HP_block_index";
10029#endif
10030 case DW_AT_HP_unmodifiable:
10031 return "DW_AT_HP_unmodifiable";
10032 case DW_AT_HP_actuals_stmt_list:
10033 return "DW_AT_HP_actuals_stmt_list";
10034 case DW_AT_HP_proc_per_section:
10035 return "DW_AT_HP_proc_per_section";
10036 case DW_AT_HP_raw_data_ptr:
10037 return "DW_AT_HP_raw_data_ptr";
10038 case DW_AT_HP_pass_by_reference:
10039 return "DW_AT_HP_pass_by_reference";
10040 case DW_AT_HP_opt_level:
10041 return "DW_AT_HP_opt_level";
10042 case DW_AT_HP_prof_version_id:
10043 return "DW_AT_HP_prof_version_id";
10044 case DW_AT_HP_opt_flags:
10045 return "DW_AT_HP_opt_flags";
10046 case DW_AT_HP_cold_region_low_pc:
10047 return "DW_AT_HP_cold_region_low_pc";
10048 case DW_AT_HP_cold_region_high_pc:
10049 return "DW_AT_HP_cold_region_high_pc";
10050 case DW_AT_HP_all_variables_modifiable:
10051 return "DW_AT_HP_all_variables_modifiable";
10052 case DW_AT_HP_linkage_name:
10053 return "DW_AT_HP_linkage_name";
10054 case DW_AT_HP_prof_flags:
10055 return "DW_AT_HP_prof_flags";
10056 /* GNU extensions. */
10057 case DW_AT_sf_names:
10058 return "DW_AT_sf_names";
10059 case DW_AT_src_info:
10060 return "DW_AT_src_info";
10061 case DW_AT_mac_info:
10062 return "DW_AT_mac_info";
10063 case DW_AT_src_coords:
10064 return "DW_AT_src_coords";
10065 case DW_AT_body_begin:
10066 return "DW_AT_body_begin";
10067 case DW_AT_body_end:
10068 return "DW_AT_body_end";
10069 case DW_AT_GNU_vector:
10070 return "DW_AT_GNU_vector";
10071 /* VMS extensions. */
10072 case DW_AT_VMS_rtnbeg_pd_address:
10073 return "DW_AT_VMS_rtnbeg_pd_address";
10074 /* UPC extension. */
10075 case DW_AT_upc_threads_scaled:
10076 return "DW_AT_upc_threads_scaled";
10077 /* PGI (STMicroelectronics) extensions. */
10078 case DW_AT_PGI_lbase:
10079 return "DW_AT_PGI_lbase";
10080 case DW_AT_PGI_soffset:
10081 return "DW_AT_PGI_soffset";
10082 case DW_AT_PGI_lstride:
10083 return "DW_AT_PGI_lstride";
10084 default:
10085 return "DW_AT_<unknown>";
10086 }
10087}
10088
10089/* Convert a DWARF value form code into its string name. */
10090
10091static char *
10092dwarf_form_name (unsigned form)
10093{
10094 switch (form)
10095 {
10096 case DW_FORM_addr:
10097 return "DW_FORM_addr";
10098 case DW_FORM_block2:
10099 return "DW_FORM_block2";
10100 case DW_FORM_block4:
10101 return "DW_FORM_block4";
10102 case DW_FORM_data2:
10103 return "DW_FORM_data2";
10104 case DW_FORM_data4:
10105 return "DW_FORM_data4";
10106 case DW_FORM_data8:
10107 return "DW_FORM_data8";
10108 case DW_FORM_string:
10109 return "DW_FORM_string";
10110 case DW_FORM_block:
10111 return "DW_FORM_block";
10112 case DW_FORM_block1:
10113 return "DW_FORM_block1";
10114 case DW_FORM_data1:
10115 return "DW_FORM_data1";
10116 case DW_FORM_flag:
10117 return "DW_FORM_flag";
10118 case DW_FORM_sdata:
10119 return "DW_FORM_sdata";
10120 case DW_FORM_strp:
10121 return "DW_FORM_strp";
10122 case DW_FORM_udata:
10123 return "DW_FORM_udata";
10124 case DW_FORM_ref_addr:
10125 return "DW_FORM_ref_addr";
10126 case DW_FORM_ref1:
10127 return "DW_FORM_ref1";
10128 case DW_FORM_ref2:
10129 return "DW_FORM_ref2";
10130 case DW_FORM_ref4:
10131 return "DW_FORM_ref4";
10132 case DW_FORM_ref8:
10133 return "DW_FORM_ref8";
10134 case DW_FORM_ref_udata:
10135 return "DW_FORM_ref_udata";
10136 case DW_FORM_indirect:
10137 return "DW_FORM_indirect";
10138 case DW_FORM_sec_offset:
10139 return "DW_FORM_sec_offset";
10140 case DW_FORM_exprloc:
10141 return "DW_FORM_exprloc";
10142 case DW_FORM_flag_present:
10143 return "DW_FORM_flag_present";
10144 case DW_FORM_sig8:
10145 return "DW_FORM_sig8";
10146 default:
10147 return "DW_FORM_<unknown>";
10148 }
10149}
10150
10151/* Convert a DWARF stack opcode into its string name. */
10152
10153const char *
10154dwarf_stack_op_name (unsigned op, int def)
10155{
10156 switch (op)
10157 {
10158 case DW_OP_addr:
10159 return "DW_OP_addr";
10160 case DW_OP_deref:
10161 return "DW_OP_deref";
10162 case DW_OP_const1u:
10163 return "DW_OP_const1u";
10164 case DW_OP_const1s:
10165 return "DW_OP_const1s";
10166 case DW_OP_const2u:
10167 return "DW_OP_const2u";
10168 case DW_OP_const2s:
10169 return "DW_OP_const2s";
10170 case DW_OP_const4u:
10171 return "DW_OP_const4u";
10172 case DW_OP_const4s:
10173 return "DW_OP_const4s";
10174 case DW_OP_const8u:
10175 return "DW_OP_const8u";
10176 case DW_OP_const8s:
10177 return "DW_OP_const8s";
10178 case DW_OP_constu:
10179 return "DW_OP_constu";
10180 case DW_OP_consts:
10181 return "DW_OP_consts";
10182 case DW_OP_dup:
10183 return "DW_OP_dup";
10184 case DW_OP_drop:
10185 return "DW_OP_drop";
10186 case DW_OP_over:
10187 return "DW_OP_over";
10188 case DW_OP_pick:
10189 return "DW_OP_pick";
10190 case DW_OP_swap:
10191 return "DW_OP_swap";
10192 case DW_OP_rot:
10193 return "DW_OP_rot";
10194 case DW_OP_xderef:
10195 return "DW_OP_xderef";
10196 case DW_OP_abs:
10197 return "DW_OP_abs";
10198 case DW_OP_and:
10199 return "DW_OP_and";
10200 case DW_OP_div:
10201 return "DW_OP_div";
10202 case DW_OP_minus:
10203 return "DW_OP_minus";
10204 case DW_OP_mod:
10205 return "DW_OP_mod";
10206 case DW_OP_mul:
10207 return "DW_OP_mul";
10208 case DW_OP_neg:
10209 return "DW_OP_neg";
10210 case DW_OP_not:
10211 return "DW_OP_not";
10212 case DW_OP_or:
10213 return "DW_OP_or";
10214 case DW_OP_plus:
10215 return "DW_OP_plus";
10216 case DW_OP_plus_uconst:
10217 return "DW_OP_plus_uconst";
10218 case DW_OP_shl:
10219 return "DW_OP_shl";
10220 case DW_OP_shr:
10221 return "DW_OP_shr";
10222 case DW_OP_shra:
10223 return "DW_OP_shra";
10224 case DW_OP_xor:
10225 return "DW_OP_xor";
10226 case DW_OP_bra:
10227 return "DW_OP_bra";
10228 case DW_OP_eq:
10229 return "DW_OP_eq";
10230 case DW_OP_ge:
10231 return "DW_OP_ge";
10232 case DW_OP_gt:
10233 return "DW_OP_gt";
10234 case DW_OP_le:
10235 return "DW_OP_le";
10236 case DW_OP_lt:
10237 return "DW_OP_lt";
10238 case DW_OP_ne:
10239 return "DW_OP_ne";
10240 case DW_OP_skip:
10241 return "DW_OP_skip";
10242 case DW_OP_lit0:
10243 return "DW_OP_lit0";
10244 case DW_OP_lit1:
10245 return "DW_OP_lit1";
10246 case DW_OP_lit2:
10247 return "DW_OP_lit2";
10248 case DW_OP_lit3:
10249 return "DW_OP_lit3";
10250 case DW_OP_lit4:
10251 return "DW_OP_lit4";
10252 case DW_OP_lit5:
10253 return "DW_OP_lit5";
10254 case DW_OP_lit6:
10255 return "DW_OP_lit6";
10256 case DW_OP_lit7:
10257 return "DW_OP_lit7";
10258 case DW_OP_lit8:
10259 return "DW_OP_lit8";
10260 case DW_OP_lit9:
10261 return "DW_OP_lit9";
10262 case DW_OP_lit10:
10263 return "DW_OP_lit10";
10264 case DW_OP_lit11:
10265 return "DW_OP_lit11";
10266 case DW_OP_lit12:
10267 return "DW_OP_lit12";
10268 case DW_OP_lit13:
10269 return "DW_OP_lit13";
10270 case DW_OP_lit14:
10271 return "DW_OP_lit14";
10272 case DW_OP_lit15:
10273 return "DW_OP_lit15";
10274 case DW_OP_lit16:
10275 return "DW_OP_lit16";
10276 case DW_OP_lit17:
10277 return "DW_OP_lit17";
10278 case DW_OP_lit18:
10279 return "DW_OP_lit18";
10280 case DW_OP_lit19:
10281 return "DW_OP_lit19";
10282 case DW_OP_lit20:
10283 return "DW_OP_lit20";
10284 case DW_OP_lit21:
10285 return "DW_OP_lit21";
10286 case DW_OP_lit22:
10287 return "DW_OP_lit22";
10288 case DW_OP_lit23:
10289 return "DW_OP_lit23";
10290 case DW_OP_lit24:
10291 return "DW_OP_lit24";
10292 case DW_OP_lit25:
10293 return "DW_OP_lit25";
10294 case DW_OP_lit26:
10295 return "DW_OP_lit26";
10296 case DW_OP_lit27:
10297 return "DW_OP_lit27";
10298 case DW_OP_lit28:
10299 return "DW_OP_lit28";
10300 case DW_OP_lit29:
10301 return "DW_OP_lit29";
10302 case DW_OP_lit30:
10303 return "DW_OP_lit30";
10304 case DW_OP_lit31:
10305 return "DW_OP_lit31";
10306 case DW_OP_reg0:
10307 return "DW_OP_reg0";
10308 case DW_OP_reg1:
10309 return "DW_OP_reg1";
10310 case DW_OP_reg2:
10311 return "DW_OP_reg2";
10312 case DW_OP_reg3:
10313 return "DW_OP_reg3";
10314 case DW_OP_reg4:
10315 return "DW_OP_reg4";
10316 case DW_OP_reg5:
10317 return "DW_OP_reg5";
10318 case DW_OP_reg6:
10319 return "DW_OP_reg6";
10320 case DW_OP_reg7:
10321 return "DW_OP_reg7";
10322 case DW_OP_reg8:
10323 return "DW_OP_reg8";
10324 case DW_OP_reg9:
10325 return "DW_OP_reg9";
10326 case DW_OP_reg10:
10327 return "DW_OP_reg10";
10328 case DW_OP_reg11:
10329 return "DW_OP_reg11";
10330 case DW_OP_reg12:
10331 return "DW_OP_reg12";
10332 case DW_OP_reg13:
10333 return "DW_OP_reg13";
10334 case DW_OP_reg14:
10335 return "DW_OP_reg14";
10336 case DW_OP_reg15:
10337 return "DW_OP_reg15";
10338 case DW_OP_reg16:
10339 return "DW_OP_reg16";
10340 case DW_OP_reg17:
10341 return "DW_OP_reg17";
10342 case DW_OP_reg18:
10343 return "DW_OP_reg18";
10344 case DW_OP_reg19:
10345 return "DW_OP_reg19";
10346 case DW_OP_reg20:
10347 return "DW_OP_reg20";
10348 case DW_OP_reg21:
10349 return "DW_OP_reg21";
10350 case DW_OP_reg22:
10351 return "DW_OP_reg22";
10352 case DW_OP_reg23:
10353 return "DW_OP_reg23";
10354 case DW_OP_reg24:
10355 return "DW_OP_reg24";
10356 case DW_OP_reg25:
10357 return "DW_OP_reg25";
10358 case DW_OP_reg26:
10359 return "DW_OP_reg26";
10360 case DW_OP_reg27:
10361 return "DW_OP_reg27";
10362 case DW_OP_reg28:
10363 return "DW_OP_reg28";
10364 case DW_OP_reg29:
10365 return "DW_OP_reg29";
10366 case DW_OP_reg30:
10367 return "DW_OP_reg30";
10368 case DW_OP_reg31:
10369 return "DW_OP_reg31";
10370 case DW_OP_breg0:
10371 return "DW_OP_breg0";
10372 case DW_OP_breg1:
10373 return "DW_OP_breg1";
10374 case DW_OP_breg2:
10375 return "DW_OP_breg2";
10376 case DW_OP_breg3:
10377 return "DW_OP_breg3";
10378 case DW_OP_breg4:
10379 return "DW_OP_breg4";
10380 case DW_OP_breg5:
10381 return "DW_OP_breg5";
10382 case DW_OP_breg6:
10383 return "DW_OP_breg6";
10384 case DW_OP_breg7:
10385 return "DW_OP_breg7";
10386 case DW_OP_breg8:
10387 return "DW_OP_breg8";
10388 case DW_OP_breg9:
10389 return "DW_OP_breg9";
10390 case DW_OP_breg10:
10391 return "DW_OP_breg10";
10392 case DW_OP_breg11:
10393 return "DW_OP_breg11";
10394 case DW_OP_breg12:
10395 return "DW_OP_breg12";
10396 case DW_OP_breg13:
10397 return "DW_OP_breg13";
10398 case DW_OP_breg14:
10399 return "DW_OP_breg14";
10400 case DW_OP_breg15:
10401 return "DW_OP_breg15";
10402 case DW_OP_breg16:
10403 return "DW_OP_breg16";
10404 case DW_OP_breg17:
10405 return "DW_OP_breg17";
10406 case DW_OP_breg18:
10407 return "DW_OP_breg18";
10408 case DW_OP_breg19:
10409 return "DW_OP_breg19";
10410 case DW_OP_breg20:
10411 return "DW_OP_breg20";
10412 case DW_OP_breg21:
10413 return "DW_OP_breg21";
10414 case DW_OP_breg22:
10415 return "DW_OP_breg22";
10416 case DW_OP_breg23:
10417 return "DW_OP_breg23";
10418 case DW_OP_breg24:
10419 return "DW_OP_breg24";
10420 case DW_OP_breg25:
10421 return "DW_OP_breg25";
10422 case DW_OP_breg26:
10423 return "DW_OP_breg26";
10424 case DW_OP_breg27:
10425 return "DW_OP_breg27";
10426 case DW_OP_breg28:
10427 return "DW_OP_breg28";
10428 case DW_OP_breg29:
10429 return "DW_OP_breg29";
10430 case DW_OP_breg30:
10431 return "DW_OP_breg30";
10432 case DW_OP_breg31:
10433 return "DW_OP_breg31";
10434 case DW_OP_regx:
10435 return "DW_OP_regx";
10436 case DW_OP_fbreg:
10437 return "DW_OP_fbreg";
10438 case DW_OP_bregx:
10439 return "DW_OP_bregx";
10440 case DW_OP_piece:
10441 return "DW_OP_piece";
10442 case DW_OP_deref_size:
10443 return "DW_OP_deref_size";
10444 case DW_OP_xderef_size:
10445 return "DW_OP_xderef_size";
10446 case DW_OP_nop:
10447 return "DW_OP_nop";
10448 /* DWARF 3 extensions. */
10449 case DW_OP_push_object_address:
10450 return "DW_OP_push_object_address";
10451 case DW_OP_call2:
10452 return "DW_OP_call2";
10453 case DW_OP_call4:
10454 return "DW_OP_call4";
10455 case DW_OP_call_ref:
10456 return "DW_OP_call_ref";
10457 case DW_OP_form_tls_address:
10458 return "DW_OP_form_tls_address";
10459 case DW_OP_call_frame_cfa:
10460 return "DW_OP_call_frame_cfa";
10461 case DW_OP_bit_piece:
10462 return "DW_OP_bit_piece";
10463 /* DWARF 4 extensions. */
10464 case DW_OP_implicit_value:
10465 return "DW_OP_implicit_value";
10466 case DW_OP_stack_value:
10467 return "DW_OP_stack_value";
10468 /* GNU extensions. */
10469 case DW_OP_GNU_push_tls_address:
10470 return "DW_OP_GNU_push_tls_address";
10471 case DW_OP_GNU_uninit:
10472 return "DW_OP_GNU_uninit";
10473 default:
10474 return def ? "OP_<unknown>" : NULL;
10475 }
10476}
10477
10478static char *
10479dwarf_bool_name (unsigned mybool)
10480{
10481 if (mybool)
10482 return "TRUE";
10483 else
10484 return "FALSE";
10485}
10486
10487/* Convert a DWARF type code into its string name. */
10488
10489static char *
10490dwarf_type_encoding_name (unsigned enc)
10491{
10492 switch (enc)
10493 {
10494 case DW_ATE_void:
10495 return "DW_ATE_void";
10496 case DW_ATE_address:
10497 return "DW_ATE_address";
10498 case DW_ATE_boolean:
10499 return "DW_ATE_boolean";
10500 case DW_ATE_complex_float:
10501 return "DW_ATE_complex_float";
10502 case DW_ATE_float:
10503 return "DW_ATE_float";
10504 case DW_ATE_signed:
10505 return "DW_ATE_signed";
10506 case DW_ATE_signed_char:
10507 return "DW_ATE_signed_char";
10508 case DW_ATE_unsigned:
10509 return "DW_ATE_unsigned";
10510 case DW_ATE_unsigned_char:
10511 return "DW_ATE_unsigned_char";
10512 /* DWARF 3. */
10513 case DW_ATE_imaginary_float:
10514 return "DW_ATE_imaginary_float";
10515 case DW_ATE_packed_decimal:
10516 return "DW_ATE_packed_decimal";
10517 case DW_ATE_numeric_string:
10518 return "DW_ATE_numeric_string";
10519 case DW_ATE_edited:
10520 return "DW_ATE_edited";
10521 case DW_ATE_signed_fixed:
10522 return "DW_ATE_signed_fixed";
10523 case DW_ATE_unsigned_fixed:
10524 return "DW_ATE_unsigned_fixed";
10525 case DW_ATE_decimal_float:
10526 return "DW_ATE_decimal_float";
10527 /* DWARF 4. */
10528 case DW_ATE_UTF:
10529 return "DW_ATE_UTF";
10530 /* HP extensions. */
10531 case DW_ATE_HP_float80:
10532 return "DW_ATE_HP_float80";
10533 case DW_ATE_HP_complex_float80:
10534 return "DW_ATE_HP_complex_float80";
10535 case DW_ATE_HP_float128:
10536 return "DW_ATE_HP_float128";
10537 case DW_ATE_HP_complex_float128:
10538 return "DW_ATE_HP_complex_float128";
10539 case DW_ATE_HP_floathpintel:
10540 return "DW_ATE_HP_floathpintel";
10541 case DW_ATE_HP_imaginary_float80:
10542 return "DW_ATE_HP_imaginary_float80";
10543 case DW_ATE_HP_imaginary_float128:
10544 return "DW_ATE_HP_imaginary_float128";
10545 default:
10546 return "DW_ATE_<unknown>";
10547 }
10548}
10549
10550/* Convert a DWARF call frame info operation to its string name. */
10551
10552#if 0
10553static char *
10554dwarf_cfi_name (unsigned cfi_opc)
10555{
10556 switch (cfi_opc)
10557 {
10558 case DW_CFA_advance_loc:
10559 return "DW_CFA_advance_loc";
10560 case DW_CFA_offset:
10561 return "DW_CFA_offset";
10562 case DW_CFA_restore:
10563 return "DW_CFA_restore";
10564 case DW_CFA_nop:
10565 return "DW_CFA_nop";
10566 case DW_CFA_set_loc:
10567 return "DW_CFA_set_loc";
10568 case DW_CFA_advance_loc1:
10569 return "DW_CFA_advance_loc1";
10570 case DW_CFA_advance_loc2:
10571 return "DW_CFA_advance_loc2";
10572 case DW_CFA_advance_loc4:
10573 return "DW_CFA_advance_loc4";
10574 case DW_CFA_offset_extended:
10575 return "DW_CFA_offset_extended";
10576 case DW_CFA_restore_extended:
10577 return "DW_CFA_restore_extended";
10578 case DW_CFA_undefined:
10579 return "DW_CFA_undefined";
10580 case DW_CFA_same_value:
10581 return "DW_CFA_same_value";
10582 case DW_CFA_register:
10583 return "DW_CFA_register";
10584 case DW_CFA_remember_state:
10585 return "DW_CFA_remember_state";
10586 case DW_CFA_restore_state:
10587 return "DW_CFA_restore_state";
10588 case DW_CFA_def_cfa:
10589 return "DW_CFA_def_cfa";
10590 case DW_CFA_def_cfa_register:
10591 return "DW_CFA_def_cfa_register";
10592 case DW_CFA_def_cfa_offset:
10593 return "DW_CFA_def_cfa_offset";
10594 /* DWARF 3. */
10595 case DW_CFA_def_cfa_expression:
10596 return "DW_CFA_def_cfa_expression";
10597 case DW_CFA_expression:
10598 return "DW_CFA_expression";
10599 case DW_CFA_offset_extended_sf:
10600 return "DW_CFA_offset_extended_sf";
10601 case DW_CFA_def_cfa_sf:
10602 return "DW_CFA_def_cfa_sf";
10603 case DW_CFA_def_cfa_offset_sf:
10604 return "DW_CFA_def_cfa_offset_sf";
10605 case DW_CFA_val_offset:
10606 return "DW_CFA_val_offset";
10607 case DW_CFA_val_offset_sf:
10608 return "DW_CFA_val_offset_sf";
10609 case DW_CFA_val_expression:
10610 return "DW_CFA_val_expression";
10611 /* SGI/MIPS specific. */
10612 case DW_CFA_MIPS_advance_loc8:
10613 return "DW_CFA_MIPS_advance_loc8";
10614 /* GNU extensions. */
10615 case DW_CFA_GNU_window_save:
10616 return "DW_CFA_GNU_window_save";
10617 case DW_CFA_GNU_args_size:
10618 return "DW_CFA_GNU_args_size";
10619 case DW_CFA_GNU_negative_offset_extended:
10620 return "DW_CFA_GNU_negative_offset_extended";
10621 default:
10622 return "DW_CFA_<unknown>";
10623 }
10624}
10625#endif
10626
10627static void
10628dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
10629{
10630 unsigned int i;
10631
10632 print_spaces (indent, f);
10633 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
10634 dwarf_tag_name (die->tag), die->abbrev, die->offset);
10635
10636 if (die->parent != NULL)
10637 {
10638 print_spaces (indent, f);
10639 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
10640 die->parent->offset);
10641 }
10642
10643 print_spaces (indent, f);
10644 fprintf_unfiltered (f, " has children: %s\n",
10645 dwarf_bool_name (die->child != NULL));
10646
10647 print_spaces (indent, f);
10648 fprintf_unfiltered (f, " attributes:\n");
10649
10650 for (i = 0; i < die->num_attrs; ++i)
10651 {
10652 print_spaces (indent, f);
10653 fprintf_unfiltered (f, " %s (%s) ",
10654 dwarf_attr_name (die->attrs[i].name),
10655 dwarf_form_name (die->attrs[i].form));
10656
10657 switch (die->attrs[i].form)
10658 {
10659 case DW_FORM_ref_addr:
10660 case DW_FORM_addr:
10661 fprintf_unfiltered (f, "address: ");
10662 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
10663 break;
10664 case DW_FORM_block2:
10665 case DW_FORM_block4:
10666 case DW_FORM_block:
10667 case DW_FORM_block1:
10668 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
10669 break;
10670 case DW_FORM_exprloc:
10671 fprintf_unfiltered (f, "expression: size %u",
10672 DW_BLOCK (&die->attrs[i])->size);
10673 break;
10674 case DW_FORM_ref1:
10675 case DW_FORM_ref2:
10676 case DW_FORM_ref4:
10677 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10678 (long) (DW_ADDR (&die->attrs[i])));
10679 break;
10680 case DW_FORM_data1:
10681 case DW_FORM_data2:
10682 case DW_FORM_data4:
10683 case DW_FORM_data8:
10684 case DW_FORM_udata:
10685 case DW_FORM_sdata:
10686 fprintf_unfiltered (f, "constant: %s",
10687 pulongest (DW_UNSND (&die->attrs[i])));
10688 break;
10689 case DW_FORM_sec_offset:
10690 fprintf_unfiltered (f, "section offset: %s",
10691 pulongest (DW_UNSND (&die->attrs[i])));
10692 break;
10693 case DW_FORM_sig8:
10694 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
10695 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
10696 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
10697 else
10698 fprintf_unfiltered (f, "signatured type, offset: unknown");
10699 break;
10700 case DW_FORM_string:
10701 case DW_FORM_strp:
10702 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
10703 DW_STRING (&die->attrs[i])
10704 ? DW_STRING (&die->attrs[i]) : "",
10705 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
10706 break;
10707 case DW_FORM_flag:
10708 if (DW_UNSND (&die->attrs[i]))
10709 fprintf_unfiltered (f, "flag: TRUE");
10710 else
10711 fprintf_unfiltered (f, "flag: FALSE");
10712 break;
10713 case DW_FORM_flag_present:
10714 fprintf_unfiltered (f, "flag: TRUE");
10715 break;
10716 case DW_FORM_indirect:
10717 /* the reader will have reduced the indirect form to
10718 the "base form" so this form should not occur */
10719 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
10720 break;
10721 default:
10722 fprintf_unfiltered (f, "unsupported attribute form: %d.",
10723 die->attrs[i].form);
10724 break;
10725 }
10726 fprintf_unfiltered (f, "\n");
10727 }
10728}
10729
10730static void
10731dump_die_for_error (struct die_info *die)
10732{
10733 dump_die_shallow (gdb_stderr, 0, die);
10734}
10735
10736static void
10737dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
10738{
10739 int indent = level * 4;
10740
10741 gdb_assert (die != NULL);
10742
10743 if (level >= max_level)
10744 return;
10745
10746 dump_die_shallow (f, indent, die);
10747
10748 if (die->child != NULL)
10749 {
10750 print_spaces (indent, f);
10751 fprintf_unfiltered (f, " Children:");
10752 if (level + 1 < max_level)
10753 {
10754 fprintf_unfiltered (f, "\n");
10755 dump_die_1 (f, level + 1, max_level, die->child);
10756 }
10757 else
10758 {
10759 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
10760 }
10761 }
10762
10763 if (die->sibling != NULL && level > 0)
10764 {
10765 dump_die_1 (f, level, max_level, die->sibling);
10766 }
10767}
10768
10769/* This is called from the pdie macro in gdbinit.in.
10770 It's not static so gcc will keep a copy callable from gdb. */
10771
10772void
10773dump_die (struct die_info *die, int max_level)
10774{
10775 dump_die_1 (gdb_stdlog, 0, max_level, die);
10776}
10777
10778static void
10779store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
10780{
10781 void **slot;
10782
10783 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
10784
10785 *slot = die;
10786}
10787
10788static int
10789is_ref_attr (struct attribute *attr)
10790{
10791 switch (attr->form)
10792 {
10793 case DW_FORM_ref_addr:
10794 case DW_FORM_ref1:
10795 case DW_FORM_ref2:
10796 case DW_FORM_ref4:
10797 case DW_FORM_ref8:
10798 case DW_FORM_ref_udata:
10799 return 1;
10800 default:
10801 return 0;
10802 }
10803}
10804
10805static unsigned int
10806dwarf2_get_ref_die_offset (struct attribute *attr)
10807{
10808 if (is_ref_attr (attr))
10809 return DW_ADDR (attr);
10810
10811 complaint (&symfile_complaints,
10812 _("unsupported die ref attribute form: '%s'"),
10813 dwarf_form_name (attr->form));
10814 return 0;
10815}
10816
10817/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
10818 * the value held by the attribute is not constant. */
10819
10820static LONGEST
10821dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
10822{
10823 if (attr->form == DW_FORM_sdata)
10824 return DW_SND (attr);
10825 else if (attr->form == DW_FORM_udata
10826 || attr->form == DW_FORM_data1
10827 || attr->form == DW_FORM_data2
10828 || attr->form == DW_FORM_data4
10829 || attr->form == DW_FORM_data8)
10830 return DW_UNSND (attr);
10831 else
10832 {
10833 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
10834 dwarf_form_name (attr->form));
10835 return default_value;
10836 }
10837}
10838
10839/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
10840 unit and add it to our queue.
10841 The result is non-zero if PER_CU was queued, otherwise the result is zero
10842 meaning either PER_CU is already queued or it is already loaded. */
10843
10844static int
10845maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
10846 struct dwarf2_per_cu_data *per_cu)
10847{
10848 /* Mark the dependence relation so that we don't flush PER_CU
10849 too early. */
10850 dwarf2_add_dependence (this_cu, per_cu);
10851
10852 /* If it's already on the queue, we have nothing to do. */
10853 if (per_cu->queued)
10854 return 0;
10855
10856 /* If the compilation unit is already loaded, just mark it as
10857 used. */
10858 if (per_cu->cu != NULL)
10859 {
10860 per_cu->cu->last_used = 0;
10861 return 0;
10862 }
10863
10864 /* Add it to the queue. */
10865 queue_comp_unit (per_cu, this_cu->objfile);
10866
10867 return 1;
10868}
10869
10870/* Follow reference or signature attribute ATTR of SRC_DIE.
10871 On entry *REF_CU is the CU of SRC_DIE.
10872 On exit *REF_CU is the CU of the result. */
10873
10874static struct die_info *
10875follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
10876 struct dwarf2_cu **ref_cu)
10877{
10878 struct die_info *die;
10879
10880 if (is_ref_attr (attr))
10881 die = follow_die_ref (src_die, attr, ref_cu);
10882 else if (attr->form == DW_FORM_sig8)
10883 die = follow_die_sig (src_die, attr, ref_cu);
10884 else
10885 {
10886 dump_die_for_error (src_die);
10887 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
10888 (*ref_cu)->objfile->name);
10889 }
10890
10891 return die;
10892}
10893
10894/* Follow reference OFFSET.
10895 On entry *REF_CU is the CU of source DIE referencing OFFSET.
10896 On exit *REF_CU is the CU of the result. */
10897
10898static struct die_info *
10899follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
10900{
10901 struct die_info temp_die;
10902 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10903
10904 gdb_assert (cu->per_cu != NULL);
10905
10906 if (cu->per_cu->from_debug_types)
10907 {
10908 /* .debug_types CUs cannot reference anything outside their CU.
10909 If they need to, they have to reference a signatured type via
10910 DW_FORM_sig8. */
10911 if (! offset_in_cu_p (&cu->header, offset))
10912 return NULL;
10913 target_cu = cu;
10914 }
10915 else if (! offset_in_cu_p (&cu->header, offset))
10916 {
10917 struct dwarf2_per_cu_data *per_cu;
10918
10919 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
10920
10921 /* If necessary, add it to the queue and load its DIEs. */
10922 if (maybe_queue_comp_unit (cu, per_cu))
10923 load_full_comp_unit (per_cu, cu->objfile);
10924
10925 target_cu = per_cu->cu;
10926 }
10927 else
10928 target_cu = cu;
10929
10930 *ref_cu = target_cu;
10931 temp_die.offset = offset;
10932 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
10933}
10934
10935/* Follow reference attribute ATTR of SRC_DIE.
10936 On entry *REF_CU is the CU of SRC_DIE.
10937 On exit *REF_CU is the CU of the result. */
10938
10939static struct die_info *
10940follow_die_ref (struct die_info *src_die, struct attribute *attr,
10941 struct dwarf2_cu **ref_cu)
10942{
10943 unsigned int offset = dwarf2_get_ref_die_offset (attr);
10944 struct dwarf2_cu *cu = *ref_cu;
10945 struct die_info *die;
10946
10947 die = follow_die_offset (offset, ref_cu);
10948 if (!die)
10949 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
10950 "at 0x%x [in module %s]"),
10951 offset, src_die->offset, cu->objfile->name);
10952
10953 return die;
10954}
10955
10956/* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
10957 value is intended for DW_OP_call*. */
10958
10959struct dwarf2_locexpr_baton
10960dwarf2_fetch_die_location_block (unsigned int offset,
10961 struct dwarf2_per_cu_data *per_cu)
10962{
10963 struct dwarf2_cu *cu = per_cu->cu;
10964 struct die_info *die;
10965 struct attribute *attr;
10966 struct dwarf2_locexpr_baton retval;
10967
10968 die = follow_die_offset (offset, &cu);
10969 if (!die)
10970 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
10971 offset, per_cu->cu->objfile->name);
10972
10973 attr = dwarf2_attr (die, DW_AT_location, cu);
10974 if (!attr)
10975 {
10976 /* DWARF: "If there is no such attribute, then there is no effect.". */
10977
10978 retval.data = NULL;
10979 retval.size = 0;
10980 }
10981 else
10982 {
10983 if (!attr_form_is_block (attr))
10984 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
10985 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
10986 offset, per_cu->cu->objfile->name);
10987
10988 retval.data = DW_BLOCK (attr)->data;
10989 retval.size = DW_BLOCK (attr)->size;
10990 }
10991 retval.per_cu = cu->per_cu;
10992 return retval;
10993}
10994
10995/* Follow the signature attribute ATTR in SRC_DIE.
10996 On entry *REF_CU is the CU of SRC_DIE.
10997 On exit *REF_CU is the CU of the result. */
10998
10999static struct die_info *
11000follow_die_sig (struct die_info *src_die, struct attribute *attr,
11001 struct dwarf2_cu **ref_cu)
11002{
11003 struct objfile *objfile = (*ref_cu)->objfile;
11004 struct die_info temp_die;
11005 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11006 struct dwarf2_cu *sig_cu;
11007 struct die_info *die;
11008
11009 /* sig_type will be NULL if the signatured type is missing from
11010 the debug info. */
11011 if (sig_type == NULL)
11012 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11013 "at 0x%x [in module %s]"),
11014 src_die->offset, objfile->name);
11015
11016 /* If necessary, add it to the queue and load its DIEs. */
11017
11018 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
11019 read_signatured_type (objfile, sig_type);
11020
11021 gdb_assert (sig_type->per_cu.cu != NULL);
11022
11023 sig_cu = sig_type->per_cu.cu;
11024 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
11025 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
11026 if (die)
11027 {
11028 *ref_cu = sig_cu;
11029 return die;
11030 }
11031
11032 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
11033 "at 0x%x [in module %s]"),
11034 sig_type->type_offset, src_die->offset, objfile->name);
11035}
11036
11037/* Given an offset of a signatured type, return its signatured_type. */
11038
11039static struct signatured_type *
11040lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
11041{
11042 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
11043 unsigned int length, initial_length_size;
11044 unsigned int sig_offset;
11045 struct signatured_type find_entry, *type_sig;
11046
11047 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
11048 sig_offset = (initial_length_size
11049 + 2 /*version*/
11050 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
11051 + 1 /*address_size*/);
11052 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
11053 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
11054
11055 /* This is only used to lookup previously recorded types.
11056 If we didn't find it, it's our bug. */
11057 gdb_assert (type_sig != NULL);
11058 gdb_assert (offset == type_sig->offset);
11059
11060 return type_sig;
11061}
11062
11063/* Read in signatured type at OFFSET and build its CU and die(s). */
11064
11065static void
11066read_signatured_type_at_offset (struct objfile *objfile,
11067 unsigned int offset)
11068{
11069 struct signatured_type *type_sig;
11070
11071 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
11072
11073 /* We have the section offset, but we need the signature to do the
11074 hash table lookup. */
11075 type_sig = lookup_signatured_type_at_offset (objfile, offset);
11076
11077 gdb_assert (type_sig->per_cu.cu == NULL);
11078
11079 read_signatured_type (objfile, type_sig);
11080
11081 gdb_assert (type_sig->per_cu.cu != NULL);
11082}
11083
11084/* Read in a signatured type and build its CU and DIEs. */
11085
11086static void
11087read_signatured_type (struct objfile *objfile,
11088 struct signatured_type *type_sig)
11089{
11090 gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
11091 struct die_reader_specs reader_specs;
11092 struct dwarf2_cu *cu;
11093 ULONGEST signature;
11094 struct cleanup *back_to, *free_cu_cleanup;
11095 struct attribute *attr;
11096
11097 gdb_assert (type_sig->per_cu.cu == NULL);
11098
11099 cu = xmalloc (sizeof (struct dwarf2_cu));
11100 memset (cu, 0, sizeof (struct dwarf2_cu));
11101 obstack_init (&cu->comp_unit_obstack);
11102 cu->objfile = objfile;
11103 type_sig->per_cu.cu = cu;
11104 cu->per_cu = &type_sig->per_cu;
11105
11106 /* If an error occurs while loading, release our storage. */
11107 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
11108
11109 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
11110 types_ptr, objfile->obfd);
11111 gdb_assert (signature == type_sig->signature);
11112
11113 cu->die_hash
11114 = htab_create_alloc_ex (cu->header.length / 12,
11115 die_hash,
11116 die_eq,
11117 NULL,
11118 &cu->comp_unit_obstack,
11119 hashtab_obstack_allocate,
11120 dummy_obstack_deallocate);
11121
11122 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
11123 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
11124
11125 init_cu_die_reader (&reader_specs, cu);
11126
11127 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
11128 NULL /*parent*/);
11129
11130 /* We try not to read any attributes in this function, because not
11131 all objfiles needed for references have been loaded yet, and symbol
11132 table processing isn't initialized. But we have to set the CU language,
11133 or we won't be able to build types correctly. */
11134 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
11135 if (attr)
11136 set_cu_language (DW_UNSND (attr), cu);
11137 else
11138 set_cu_language (language_minimal, cu);
11139
11140 do_cleanups (back_to);
11141
11142 /* We've successfully allocated this compilation unit. Let our caller
11143 clean it up when finished with it. */
11144 discard_cleanups (free_cu_cleanup);
11145
11146 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
11147 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
11148}
11149
11150/* Decode simple location descriptions.
11151 Given a pointer to a dwarf block that defines a location, compute
11152 the location and return the value.
11153
11154 NOTE drow/2003-11-18: This function is called in two situations
11155 now: for the address of static or global variables (partial symbols
11156 only) and for offsets into structures which are expected to be
11157 (more or less) constant. The partial symbol case should go away,
11158 and only the constant case should remain. That will let this
11159 function complain more accurately. A few special modes are allowed
11160 without complaint for global variables (for instance, global
11161 register values and thread-local values).
11162
11163 A location description containing no operations indicates that the
11164 object is optimized out. The return value is 0 for that case.
11165 FIXME drow/2003-11-16: No callers check for this case any more; soon all
11166 callers will only want a very basic result and this can become a
11167 complaint.
11168
11169 Note that stack[0] is unused except as a default error return.
11170 Note that stack overflow is not yet handled. */
11171
11172static CORE_ADDR
11173decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
11174{
11175 struct objfile *objfile = cu->objfile;
11176 int i;
11177 int size = blk->size;
11178 gdb_byte *data = blk->data;
11179 CORE_ADDR stack[64];
11180 int stacki;
11181 unsigned int bytes_read, unsnd;
11182 gdb_byte op;
11183
11184 i = 0;
11185 stacki = 0;
11186 stack[stacki] = 0;
11187
11188 while (i < size)
11189 {
11190 op = data[i++];
11191 switch (op)
11192 {
11193 case DW_OP_lit0:
11194 case DW_OP_lit1:
11195 case DW_OP_lit2:
11196 case DW_OP_lit3:
11197 case DW_OP_lit4:
11198 case DW_OP_lit5:
11199 case DW_OP_lit6:
11200 case DW_OP_lit7:
11201 case DW_OP_lit8:
11202 case DW_OP_lit9:
11203 case DW_OP_lit10:
11204 case DW_OP_lit11:
11205 case DW_OP_lit12:
11206 case DW_OP_lit13:
11207 case DW_OP_lit14:
11208 case DW_OP_lit15:
11209 case DW_OP_lit16:
11210 case DW_OP_lit17:
11211 case DW_OP_lit18:
11212 case DW_OP_lit19:
11213 case DW_OP_lit20:
11214 case DW_OP_lit21:
11215 case DW_OP_lit22:
11216 case DW_OP_lit23:
11217 case DW_OP_lit24:
11218 case DW_OP_lit25:
11219 case DW_OP_lit26:
11220 case DW_OP_lit27:
11221 case DW_OP_lit28:
11222 case DW_OP_lit29:
11223 case DW_OP_lit30:
11224 case DW_OP_lit31:
11225 stack[++stacki] = op - DW_OP_lit0;
11226 break;
11227
11228 case DW_OP_reg0:
11229 case DW_OP_reg1:
11230 case DW_OP_reg2:
11231 case DW_OP_reg3:
11232 case DW_OP_reg4:
11233 case DW_OP_reg5:
11234 case DW_OP_reg6:
11235 case DW_OP_reg7:
11236 case DW_OP_reg8:
11237 case DW_OP_reg9:
11238 case DW_OP_reg10:
11239 case DW_OP_reg11:
11240 case DW_OP_reg12:
11241 case DW_OP_reg13:
11242 case DW_OP_reg14:
11243 case DW_OP_reg15:
11244 case DW_OP_reg16:
11245 case DW_OP_reg17:
11246 case DW_OP_reg18:
11247 case DW_OP_reg19:
11248 case DW_OP_reg20:
11249 case DW_OP_reg21:
11250 case DW_OP_reg22:
11251 case DW_OP_reg23:
11252 case DW_OP_reg24:
11253 case DW_OP_reg25:
11254 case DW_OP_reg26:
11255 case DW_OP_reg27:
11256 case DW_OP_reg28:
11257 case DW_OP_reg29:
11258 case DW_OP_reg30:
11259 case DW_OP_reg31:
11260 stack[++stacki] = op - DW_OP_reg0;
11261 if (i < size)
11262 dwarf2_complex_location_expr_complaint ();
11263 break;
11264
11265 case DW_OP_regx:
11266 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
11267 i += bytes_read;
11268 stack[++stacki] = unsnd;
11269 if (i < size)
11270 dwarf2_complex_location_expr_complaint ();
11271 break;
11272
11273 case DW_OP_addr:
11274 stack[++stacki] = read_address (objfile->obfd, &data[i],
11275 cu, &bytes_read);
11276 i += bytes_read;
11277 break;
11278
11279 case DW_OP_const1u:
11280 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
11281 i += 1;
11282 break;
11283
11284 case DW_OP_const1s:
11285 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
11286 i += 1;
11287 break;
11288
11289 case DW_OP_const2u:
11290 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
11291 i += 2;
11292 break;
11293
11294 case DW_OP_const2s:
11295 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
11296 i += 2;
11297 break;
11298
11299 case DW_OP_const4u:
11300 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
11301 i += 4;
11302 break;
11303
11304 case DW_OP_const4s:
11305 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
11306 i += 4;
11307 break;
11308
11309 case DW_OP_constu:
11310 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
11311 &bytes_read);
11312 i += bytes_read;
11313 break;
11314
11315 case DW_OP_consts:
11316 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
11317 i += bytes_read;
11318 break;
11319
11320 case DW_OP_dup:
11321 stack[stacki + 1] = stack[stacki];
11322 stacki++;
11323 break;
11324
11325 case DW_OP_plus:
11326 stack[stacki - 1] += stack[stacki];
11327 stacki--;
11328 break;
11329
11330 case DW_OP_plus_uconst:
11331 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
11332 i += bytes_read;
11333 break;
11334
11335 case DW_OP_minus:
11336 stack[stacki - 1] -= stack[stacki];
11337 stacki--;
11338 break;
11339
11340 case DW_OP_deref:
11341 /* If we're not the last op, then we definitely can't encode
11342 this using GDB's address_class enum. This is valid for partial
11343 global symbols, although the variable's address will be bogus
11344 in the psymtab. */
11345 if (i < size)
11346 dwarf2_complex_location_expr_complaint ();
11347 break;
11348
11349 case DW_OP_GNU_push_tls_address:
11350 /* The top of the stack has the offset from the beginning
11351 of the thread control block at which the variable is located. */
11352 /* Nothing should follow this operator, so the top of stack would
11353 be returned. */
11354 /* This is valid for partial global symbols, but the variable's
11355 address will be bogus in the psymtab. */
11356 if (i < size)
11357 dwarf2_complex_location_expr_complaint ();
11358 break;
11359
11360 case DW_OP_GNU_uninit:
11361 break;
11362
11363 default:
11364 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
11365 dwarf_stack_op_name (op, 1));
11366 return (stack[stacki]);
11367 }
11368 }
11369 return (stack[stacki]);
11370}
11371
11372/* memory allocation interface */
11373
11374static struct dwarf_block *
11375dwarf_alloc_block (struct dwarf2_cu *cu)
11376{
11377 struct dwarf_block *blk;
11378
11379 blk = (struct dwarf_block *)
11380 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
11381 return (blk);
11382}
11383
11384static struct abbrev_info *
11385dwarf_alloc_abbrev (struct dwarf2_cu *cu)
11386{
11387 struct abbrev_info *abbrev;
11388
11389 abbrev = (struct abbrev_info *)
11390 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
11391 memset (abbrev, 0, sizeof (struct abbrev_info));
11392 return (abbrev);
11393}
11394
11395static struct die_info *
11396dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
11397{
11398 struct die_info *die;
11399 size_t size = sizeof (struct die_info);
11400
11401 if (num_attrs > 1)
11402 size += (num_attrs - 1) * sizeof (struct attribute);
11403
11404 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
11405 memset (die, 0, sizeof (struct die_info));
11406 return (die);
11407}
11408
11409\f
11410/* Macro support. */
11411
11412
11413/* Return the full name of file number I in *LH's file name table.
11414 Use COMP_DIR as the name of the current directory of the
11415 compilation. The result is allocated using xmalloc; the caller is
11416 responsible for freeing it. */
11417static char *
11418file_full_name (int file, struct line_header *lh, const char *comp_dir)
11419{
11420 /* Is the file number a valid index into the line header's file name
11421 table? Remember that file numbers start with one, not zero. */
11422 if (1 <= file && file <= lh->num_file_names)
11423 {
11424 struct file_entry *fe = &lh->file_names[file - 1];
11425
11426 if (IS_ABSOLUTE_PATH (fe->name))
11427 return xstrdup (fe->name);
11428 else
11429 {
11430 const char *dir;
11431 int dir_len;
11432 char *full_name;
11433
11434 if (fe->dir_index)
11435 dir = lh->include_dirs[fe->dir_index - 1];
11436 else
11437 dir = comp_dir;
11438
11439 if (dir)
11440 {
11441 dir_len = strlen (dir);
11442 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
11443 strcpy (full_name, dir);
11444 full_name[dir_len] = '/';
11445 strcpy (full_name + dir_len + 1, fe->name);
11446 return full_name;
11447 }
11448 else
11449 return xstrdup (fe->name);
11450 }
11451 }
11452 else
11453 {
11454 /* The compiler produced a bogus file number. We can at least
11455 record the macro definitions made in the file, even if we
11456 won't be able to find the file by name. */
11457 char fake_name[80];
11458
11459 sprintf (fake_name, "<bad macro file number %d>", file);
11460
11461 complaint (&symfile_complaints,
11462 _("bad file number in macro information (%d)"),
11463 file);
11464
11465 return xstrdup (fake_name);
11466 }
11467}
11468
11469
11470static struct macro_source_file *
11471macro_start_file (int file, int line,
11472 struct macro_source_file *current_file,
11473 const char *comp_dir,
11474 struct line_header *lh, struct objfile *objfile)
11475{
11476 /* The full name of this source file. */
11477 char *full_name = file_full_name (file, lh, comp_dir);
11478
11479 /* We don't create a macro table for this compilation unit
11480 at all until we actually get a filename. */
11481 if (! pending_macros)
11482 pending_macros = new_macro_table (&objfile->objfile_obstack,
11483 objfile->macro_cache);
11484
11485 if (! current_file)
11486 /* If we have no current file, then this must be the start_file
11487 directive for the compilation unit's main source file. */
11488 current_file = macro_set_main (pending_macros, full_name);
11489 else
11490 current_file = macro_include (current_file, line, full_name);
11491
11492 xfree (full_name);
11493
11494 return current_file;
11495}
11496
11497
11498/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
11499 followed by a null byte. */
11500static char *
11501copy_string (const char *buf, int len)
11502{
11503 char *s = xmalloc (len + 1);
11504
11505 memcpy (s, buf, len);
11506 s[len] = '\0';
11507 return s;
11508}
11509
11510
11511static const char *
11512consume_improper_spaces (const char *p, const char *body)
11513{
11514 if (*p == ' ')
11515 {
11516 complaint (&symfile_complaints,
11517 _("macro definition contains spaces in formal argument list:\n`%s'"),
11518 body);
11519
11520 while (*p == ' ')
11521 p++;
11522 }
11523
11524 return p;
11525}
11526
11527
11528static void
11529parse_macro_definition (struct macro_source_file *file, int line,
11530 const char *body)
11531{
11532 const char *p;
11533
11534 /* The body string takes one of two forms. For object-like macro
11535 definitions, it should be:
11536
11537 <macro name> " " <definition>
11538
11539 For function-like macro definitions, it should be:
11540
11541 <macro name> "() " <definition>
11542 or
11543 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
11544
11545 Spaces may appear only where explicitly indicated, and in the
11546 <definition>.
11547
11548 The Dwarf 2 spec says that an object-like macro's name is always
11549 followed by a space, but versions of GCC around March 2002 omit
11550 the space when the macro's definition is the empty string.
11551
11552 The Dwarf 2 spec says that there should be no spaces between the
11553 formal arguments in a function-like macro's formal argument list,
11554 but versions of GCC around March 2002 include spaces after the
11555 commas. */
11556
11557
11558 /* Find the extent of the macro name. The macro name is terminated
11559 by either a space or null character (for an object-like macro) or
11560 an opening paren (for a function-like macro). */
11561 for (p = body; *p; p++)
11562 if (*p == ' ' || *p == '(')
11563 break;
11564
11565 if (*p == ' ' || *p == '\0')
11566 {
11567 /* It's an object-like macro. */
11568 int name_len = p - body;
11569 char *name = copy_string (body, name_len);
11570 const char *replacement;
11571
11572 if (*p == ' ')
11573 replacement = body + name_len + 1;
11574 else
11575 {
11576 dwarf2_macro_malformed_definition_complaint (body);
11577 replacement = body + name_len;
11578 }
11579
11580 macro_define_object (file, line, name, replacement);
11581
11582 xfree (name);
11583 }
11584 else if (*p == '(')
11585 {
11586 /* It's a function-like macro. */
11587 char *name = copy_string (body, p - body);
11588 int argc = 0;
11589 int argv_size = 1;
11590 char **argv = xmalloc (argv_size * sizeof (*argv));
11591
11592 p++;
11593
11594 p = consume_improper_spaces (p, body);
11595
11596 /* Parse the formal argument list. */
11597 while (*p && *p != ')')
11598 {
11599 /* Find the extent of the current argument name. */
11600 const char *arg_start = p;
11601
11602 while (*p && *p != ',' && *p != ')' && *p != ' ')
11603 p++;
11604
11605 if (! *p || p == arg_start)
11606 dwarf2_macro_malformed_definition_complaint (body);
11607 else
11608 {
11609 /* Make sure argv has room for the new argument. */
11610 if (argc >= argv_size)
11611 {
11612 argv_size *= 2;
11613 argv = xrealloc (argv, argv_size * sizeof (*argv));
11614 }
11615
11616 argv[argc++] = copy_string (arg_start, p - arg_start);
11617 }
11618
11619 p = consume_improper_spaces (p, body);
11620
11621 /* Consume the comma, if present. */
11622 if (*p == ',')
11623 {
11624 p++;
11625
11626 p = consume_improper_spaces (p, body);
11627 }
11628 }
11629
11630 if (*p == ')')
11631 {
11632 p++;
11633
11634 if (*p == ' ')
11635 /* Perfectly formed definition, no complaints. */
11636 macro_define_function (file, line, name,
11637 argc, (const char **) argv,
11638 p + 1);
11639 else if (*p == '\0')
11640 {
11641 /* Complain, but do define it. */
11642 dwarf2_macro_malformed_definition_complaint (body);
11643 macro_define_function (file, line, name,
11644 argc, (const char **) argv,
11645 p);
11646 }
11647 else
11648 /* Just complain. */
11649 dwarf2_macro_malformed_definition_complaint (body);
11650 }
11651 else
11652 /* Just complain. */
11653 dwarf2_macro_malformed_definition_complaint (body);
11654
11655 xfree (name);
11656 {
11657 int i;
11658
11659 for (i = 0; i < argc; i++)
11660 xfree (argv[i]);
11661 }
11662 xfree (argv);
11663 }
11664 else
11665 dwarf2_macro_malformed_definition_complaint (body);
11666}
11667
11668
11669static void
11670dwarf_decode_macros (struct line_header *lh, unsigned int offset,
11671 char *comp_dir, bfd *abfd,
11672 struct dwarf2_cu *cu)
11673{
11674 gdb_byte *mac_ptr, *mac_end;
11675 struct macro_source_file *current_file = 0;
11676 enum dwarf_macinfo_record_type macinfo_type;
11677 int at_commandline;
11678
11679 dwarf2_read_section (dwarf2_per_objfile->objfile,
11680 &dwarf2_per_objfile->macinfo);
11681 if (dwarf2_per_objfile->macinfo.buffer == NULL)
11682 {
11683 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
11684 return;
11685 }
11686
11687 /* First pass: Find the name of the base filename.
11688 This filename is needed in order to process all macros whose definition
11689 (or undefinition) comes from the command line. These macros are defined
11690 before the first DW_MACINFO_start_file entry, and yet still need to be
11691 associated to the base file.
11692
11693 To determine the base file name, we scan the macro definitions until we
11694 reach the first DW_MACINFO_start_file entry. We then initialize
11695 CURRENT_FILE accordingly so that any macro definition found before the
11696 first DW_MACINFO_start_file can still be associated to the base file. */
11697
11698 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11699 mac_end = dwarf2_per_objfile->macinfo.buffer
11700 + dwarf2_per_objfile->macinfo.size;
11701
11702 do
11703 {
11704 /* Do we at least have room for a macinfo type byte? */
11705 if (mac_ptr >= mac_end)
11706 {
11707 /* Complaint is printed during the second pass as GDB will probably
11708 stop the first pass earlier upon finding DW_MACINFO_start_file. */
11709 break;
11710 }
11711
11712 macinfo_type = read_1_byte (abfd, mac_ptr);
11713 mac_ptr++;
11714
11715 switch (macinfo_type)
11716 {
11717 /* A zero macinfo type indicates the end of the macro
11718 information. */
11719 case 0:
11720 break;
11721
11722 case DW_MACINFO_define:
11723 case DW_MACINFO_undef:
11724 /* Only skip the data by MAC_PTR. */
11725 {
11726 unsigned int bytes_read;
11727
11728 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11729 mac_ptr += bytes_read;
11730 read_string (abfd, mac_ptr, &bytes_read);
11731 mac_ptr += bytes_read;
11732 }
11733 break;
11734
11735 case DW_MACINFO_start_file:
11736 {
11737 unsigned int bytes_read;
11738 int line, file;
11739
11740 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11741 mac_ptr += bytes_read;
11742 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11743 mac_ptr += bytes_read;
11744
11745 current_file = macro_start_file (file, line, current_file, comp_dir,
11746 lh, cu->objfile);
11747 }
11748 break;
11749
11750 case DW_MACINFO_end_file:
11751 /* No data to skip by MAC_PTR. */
11752 break;
11753
11754 case DW_MACINFO_vendor_ext:
11755 /* Only skip the data by MAC_PTR. */
11756 {
11757 unsigned int bytes_read;
11758
11759 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11760 mac_ptr += bytes_read;
11761 read_string (abfd, mac_ptr, &bytes_read);
11762 mac_ptr += bytes_read;
11763 }
11764 break;
11765
11766 default:
11767 break;
11768 }
11769 } while (macinfo_type != 0 && current_file == NULL);
11770
11771 /* Second pass: Process all entries.
11772
11773 Use the AT_COMMAND_LINE flag to determine whether we are still processing
11774 command-line macro definitions/undefinitions. This flag is unset when we
11775 reach the first DW_MACINFO_start_file entry. */
11776
11777 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11778
11779 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
11780 GDB is still reading the definitions from command line. First
11781 DW_MACINFO_start_file will need to be ignored as it was already executed
11782 to create CURRENT_FILE for the main source holding also the command line
11783 definitions. On first met DW_MACINFO_start_file this flag is reset to
11784 normally execute all the remaining DW_MACINFO_start_file macinfos. */
11785
11786 at_commandline = 1;
11787
11788 do
11789 {
11790 /* Do we at least have room for a macinfo type byte? */
11791 if (mac_ptr >= mac_end)
11792 {
11793 dwarf2_macros_too_long_complaint ();
11794 break;
11795 }
11796
11797 macinfo_type = read_1_byte (abfd, mac_ptr);
11798 mac_ptr++;
11799
11800 switch (macinfo_type)
11801 {
11802 /* A zero macinfo type indicates the end of the macro
11803 information. */
11804 case 0:
11805 break;
11806
11807 case DW_MACINFO_define:
11808 case DW_MACINFO_undef:
11809 {
11810 unsigned int bytes_read;
11811 int line;
11812 char *body;
11813
11814 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11815 mac_ptr += bytes_read;
11816 body = read_string (abfd, mac_ptr, &bytes_read);
11817 mac_ptr += bytes_read;
11818
11819 if (! current_file)
11820 {
11821 /* DWARF violation as no main source is present. */
11822 complaint (&symfile_complaints,
11823 _("debug info with no main source gives macro %s "
11824 "on line %d: %s"),
11825 macinfo_type == DW_MACINFO_define ?
11826 _("definition") :
11827 macinfo_type == DW_MACINFO_undef ?
11828 _("undefinition") :
11829 _("something-or-other"), line, body);
11830 break;
11831 }
11832 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11833 complaint (&symfile_complaints,
11834 _("debug info gives %s macro %s with %s line %d: %s"),
11835 at_commandline ? _("command-line") : _("in-file"),
11836 macinfo_type == DW_MACINFO_define ?
11837 _("definition") :
11838 macinfo_type == DW_MACINFO_undef ?
11839 _("undefinition") :
11840 _("something-or-other"),
11841 line == 0 ? _("zero") : _("non-zero"), line, body);
11842
11843 if (macinfo_type == DW_MACINFO_define)
11844 parse_macro_definition (current_file, line, body);
11845 else if (macinfo_type == DW_MACINFO_undef)
11846 macro_undef (current_file, line, body);
11847 }
11848 break;
11849
11850 case DW_MACINFO_start_file:
11851 {
11852 unsigned int bytes_read;
11853 int line, file;
11854
11855 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11856 mac_ptr += bytes_read;
11857 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11858 mac_ptr += bytes_read;
11859
11860 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11861 complaint (&symfile_complaints,
11862 _("debug info gives source %d included "
11863 "from %s at %s line %d"),
11864 file, at_commandline ? _("command-line") : _("file"),
11865 line == 0 ? _("zero") : _("non-zero"), line);
11866
11867 if (at_commandline)
11868 {
11869 /* This DW_MACINFO_start_file was executed in the pass one. */
11870 at_commandline = 0;
11871 }
11872 else
11873 current_file = macro_start_file (file, line,
11874 current_file, comp_dir,
11875 lh, cu->objfile);
11876 }
11877 break;
11878
11879 case DW_MACINFO_end_file:
11880 if (! current_file)
11881 complaint (&symfile_complaints,
11882 _("macro debug info has an unmatched `close_file' directive"));
11883 else
11884 {
11885 current_file = current_file->included_by;
11886 if (! current_file)
11887 {
11888 enum dwarf_macinfo_record_type next_type;
11889
11890 /* GCC circa March 2002 doesn't produce the zero
11891 type byte marking the end of the compilation
11892 unit. Complain if it's not there, but exit no
11893 matter what. */
11894
11895 /* Do we at least have room for a macinfo type byte? */
11896 if (mac_ptr >= mac_end)
11897 {
11898 dwarf2_macros_too_long_complaint ();
11899 return;
11900 }
11901
11902 /* We don't increment mac_ptr here, so this is just
11903 a look-ahead. */
11904 next_type = read_1_byte (abfd, mac_ptr);
11905 if (next_type != 0)
11906 complaint (&symfile_complaints,
11907 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
11908
11909 return;
11910 }
11911 }
11912 break;
11913
11914 case DW_MACINFO_vendor_ext:
11915 {
11916 unsigned int bytes_read;
11917 int constant;
11918 char *string;
11919
11920 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11921 mac_ptr += bytes_read;
11922 string = read_string (abfd, mac_ptr, &bytes_read);
11923 mac_ptr += bytes_read;
11924
11925 /* We don't recognize any vendor extensions. */
11926 }
11927 break;
11928 }
11929 } while (macinfo_type != 0);
11930}
11931
11932/* Check if the attribute's form is a DW_FORM_block*
11933 if so return true else false. */
11934static int
11935attr_form_is_block (struct attribute *attr)
11936{
11937 return (attr == NULL ? 0 :
11938 attr->form == DW_FORM_block1
11939 || attr->form == DW_FORM_block2
11940 || attr->form == DW_FORM_block4
11941 || attr->form == DW_FORM_block
11942 || attr->form == DW_FORM_exprloc);
11943}
11944
11945/* Return non-zero if ATTR's value is a section offset --- classes
11946 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
11947 You may use DW_UNSND (attr) to retrieve such offsets.
11948
11949 Section 7.5.4, "Attribute Encodings", explains that no attribute
11950 may have a value that belongs to more than one of these classes; it
11951 would be ambiguous if we did, because we use the same forms for all
11952 of them. */
11953static int
11954attr_form_is_section_offset (struct attribute *attr)
11955{
11956 return (attr->form == DW_FORM_data4
11957 || attr->form == DW_FORM_data8
11958 || attr->form == DW_FORM_sec_offset);
11959}
11960
11961
11962/* Return non-zero if ATTR's value falls in the 'constant' class, or
11963 zero otherwise. When this function returns true, you can apply
11964 dwarf2_get_attr_constant_value to it.
11965
11966 However, note that for some attributes you must check
11967 attr_form_is_section_offset before using this test. DW_FORM_data4
11968 and DW_FORM_data8 are members of both the constant class, and of
11969 the classes that contain offsets into other debug sections
11970 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
11971 that, if an attribute's can be either a constant or one of the
11972 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
11973 taken as section offsets, not constants. */
11974static int
11975attr_form_is_constant (struct attribute *attr)
11976{
11977 switch (attr->form)
11978 {
11979 case DW_FORM_sdata:
11980 case DW_FORM_udata:
11981 case DW_FORM_data1:
11982 case DW_FORM_data2:
11983 case DW_FORM_data4:
11984 case DW_FORM_data8:
11985 return 1;
11986 default:
11987 return 0;
11988 }
11989}
11990
11991static void
11992dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
11993 struct dwarf2_cu *cu)
11994{
11995 if (attr_form_is_section_offset (attr)
11996 /* ".debug_loc" may not exist at all, or the offset may be outside
11997 the section. If so, fall through to the complaint in the
11998 other branch. */
11999 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
12000 {
12001 struct dwarf2_loclist_baton *baton;
12002
12003 baton = obstack_alloc (&cu->objfile->objfile_obstack,
12004 sizeof (struct dwarf2_loclist_baton));
12005 baton->per_cu = cu->per_cu;
12006 gdb_assert (baton->per_cu);
12007
12008 dwarf2_read_section (dwarf2_per_objfile->objfile,
12009 &dwarf2_per_objfile->loc);
12010
12011 /* We don't know how long the location list is, but make sure we
12012 don't run off the edge of the section. */
12013 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
12014 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
12015 baton->base_address = cu->base_address;
12016 if (cu->base_known == 0)
12017 complaint (&symfile_complaints,
12018 _("Location list used without specifying the CU base address."));
12019
12020 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
12021 SYMBOL_LOCATION_BATON (sym) = baton;
12022 }
12023 else
12024 {
12025 struct dwarf2_locexpr_baton *baton;
12026
12027 baton = obstack_alloc (&cu->objfile->objfile_obstack,
12028 sizeof (struct dwarf2_locexpr_baton));
12029 baton->per_cu = cu->per_cu;
12030 gdb_assert (baton->per_cu);
12031
12032 if (attr_form_is_block (attr))
12033 {
12034 /* Note that we're just copying the block's data pointer
12035 here, not the actual data. We're still pointing into the
12036 info_buffer for SYM's objfile; right now we never release
12037 that buffer, but when we do clean up properly this may
12038 need to change. */
12039 baton->size = DW_BLOCK (attr)->size;
12040 baton->data = DW_BLOCK (attr)->data;
12041 }
12042 else
12043 {
12044 dwarf2_invalid_attrib_class_complaint ("location description",
12045 SYMBOL_NATURAL_NAME (sym));
12046 baton->size = 0;
12047 baton->data = NULL;
12048 }
12049
12050 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12051 SYMBOL_LOCATION_BATON (sym) = baton;
12052 }
12053}
12054
12055/* Return the OBJFILE associated with the compilation unit CU. If CU
12056 came from a separate debuginfo file, then the master objfile is
12057 returned. */
12058
12059struct objfile *
12060dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
12061{
12062 struct objfile *objfile = per_cu->psymtab->objfile;
12063
12064 /* Return the master objfile, so that we can report and look up the
12065 correct file containing this variable. */
12066 if (objfile->separate_debug_objfile_backlink)
12067 objfile = objfile->separate_debug_objfile_backlink;
12068
12069 return objfile;
12070}
12071
12072/* Return the address size given in the compilation unit header for CU. */
12073
12074CORE_ADDR
12075dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
12076{
12077 if (per_cu->cu)
12078 return per_cu->cu->header.addr_size;
12079 else
12080 {
12081 /* If the CU is not currently read in, we re-read its header. */
12082 struct objfile *objfile = per_cu->psymtab->objfile;
12083 struct dwarf2_per_objfile *per_objfile
12084 = objfile_data (objfile, dwarf2_objfile_data_key);
12085 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
12086 struct comp_unit_head cu_header;
12087
12088 memset (&cu_header, 0, sizeof cu_header);
12089 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
12090 return cu_header.addr_size;
12091 }
12092}
12093
12094/* Return the offset size given in the compilation unit header for CU. */
12095
12096int
12097dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
12098{
12099 if (per_cu->cu)
12100 return per_cu->cu->header.offset_size;
12101 else
12102 {
12103 /* If the CU is not currently read in, we re-read its header. */
12104 struct objfile *objfile = per_cu->psymtab->objfile;
12105 struct dwarf2_per_objfile *per_objfile
12106 = objfile_data (objfile, dwarf2_objfile_data_key);
12107 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
12108 struct comp_unit_head cu_header;
12109
12110 memset (&cu_header, 0, sizeof cu_header);
12111 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
12112 return cu_header.offset_size;
12113 }
12114}
12115
12116/* Return the text offset of the CU. The returned offset comes from
12117 this CU's objfile. If this objfile came from a separate debuginfo
12118 file, then the offset may be different from the corresponding
12119 offset in the parent objfile. */
12120
12121CORE_ADDR
12122dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
12123{
12124 struct objfile *objfile = per_cu->psymtab->objfile;
12125
12126 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12127}
12128
12129/* Locate the .debug_info compilation unit from CU's objfile which contains
12130 the DIE at OFFSET. Raises an error on failure. */
12131
12132static struct dwarf2_per_cu_data *
12133dwarf2_find_containing_comp_unit (unsigned int offset,
12134 struct objfile *objfile)
12135{
12136 struct dwarf2_per_cu_data *this_cu;
12137 int low, high;
12138
12139 low = 0;
12140 high = dwarf2_per_objfile->n_comp_units - 1;
12141 while (high > low)
12142 {
12143 int mid = low + (high - low) / 2;
12144
12145 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
12146 high = mid;
12147 else
12148 low = mid + 1;
12149 }
12150 gdb_assert (low == high);
12151 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
12152 {
12153 if (low == 0)
12154 error (_("Dwarf Error: could not find partial DIE containing "
12155 "offset 0x%lx [in module %s]"),
12156 (long) offset, bfd_get_filename (objfile->obfd));
12157
12158 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
12159 return dwarf2_per_objfile->all_comp_units[low-1];
12160 }
12161 else
12162 {
12163 this_cu = dwarf2_per_objfile->all_comp_units[low];
12164 if (low == dwarf2_per_objfile->n_comp_units - 1
12165 && offset >= this_cu->offset + this_cu->length)
12166 error (_("invalid dwarf2 offset %u"), offset);
12167 gdb_assert (offset < this_cu->offset + this_cu->length);
12168 return this_cu;
12169 }
12170}
12171
12172/* Locate the compilation unit from OBJFILE which is located at exactly
12173 OFFSET. Raises an error on failure. */
12174
12175static struct dwarf2_per_cu_data *
12176dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
12177{
12178 struct dwarf2_per_cu_data *this_cu;
12179
12180 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
12181 if (this_cu->offset != offset)
12182 error (_("no compilation unit with offset %u."), offset);
12183 return this_cu;
12184}
12185
12186/* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
12187
12188static struct dwarf2_cu *
12189alloc_one_comp_unit (struct objfile *objfile)
12190{
12191 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
12192 cu->objfile = objfile;
12193 obstack_init (&cu->comp_unit_obstack);
12194 return cu;
12195}
12196
12197/* Release one cached compilation unit, CU. We unlink it from the tree
12198 of compilation units, but we don't remove it from the read_in_chain;
12199 the caller is responsible for that.
12200 NOTE: DATA is a void * because this function is also used as a
12201 cleanup routine. */
12202
12203static void
12204free_one_comp_unit (void *data)
12205{
12206 struct dwarf2_cu *cu = data;
12207
12208 if (cu->per_cu != NULL)
12209 cu->per_cu->cu = NULL;
12210 cu->per_cu = NULL;
12211
12212 obstack_free (&cu->comp_unit_obstack, NULL);
12213
12214 xfree (cu);
12215}
12216
12217/* This cleanup function is passed the address of a dwarf2_cu on the stack
12218 when we're finished with it. We can't free the pointer itself, but be
12219 sure to unlink it from the cache. Also release any associated storage
12220 and perform cache maintenance.
12221
12222 Only used during partial symbol parsing. */
12223
12224static void
12225free_stack_comp_unit (void *data)
12226{
12227 struct dwarf2_cu *cu = data;
12228
12229 obstack_free (&cu->comp_unit_obstack, NULL);
12230 cu->partial_dies = NULL;
12231
12232 if (cu->per_cu != NULL)
12233 {
12234 /* This compilation unit is on the stack in our caller, so we
12235 should not xfree it. Just unlink it. */
12236 cu->per_cu->cu = NULL;
12237 cu->per_cu = NULL;
12238
12239 /* If we had a per-cu pointer, then we may have other compilation
12240 units loaded, so age them now. */
12241 age_cached_comp_units ();
12242 }
12243}
12244
12245/* Free all cached compilation units. */
12246
12247static void
12248free_cached_comp_units (void *data)
12249{
12250 struct dwarf2_per_cu_data *per_cu, **last_chain;
12251
12252 per_cu = dwarf2_per_objfile->read_in_chain;
12253 last_chain = &dwarf2_per_objfile->read_in_chain;
12254 while (per_cu != NULL)
12255 {
12256 struct dwarf2_per_cu_data *next_cu;
12257
12258 next_cu = per_cu->cu->read_in_chain;
12259
12260 free_one_comp_unit (per_cu->cu);
12261 *last_chain = next_cu;
12262
12263 per_cu = next_cu;
12264 }
12265}
12266
12267/* Increase the age counter on each cached compilation unit, and free
12268 any that are too old. */
12269
12270static void
12271age_cached_comp_units (void)
12272{
12273 struct dwarf2_per_cu_data *per_cu, **last_chain;
12274
12275 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
12276 per_cu = dwarf2_per_objfile->read_in_chain;
12277 while (per_cu != NULL)
12278 {
12279 per_cu->cu->last_used ++;
12280 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
12281 dwarf2_mark (per_cu->cu);
12282 per_cu = per_cu->cu->read_in_chain;
12283 }
12284
12285 per_cu = dwarf2_per_objfile->read_in_chain;
12286 last_chain = &dwarf2_per_objfile->read_in_chain;
12287 while (per_cu != NULL)
12288 {
12289 struct dwarf2_per_cu_data *next_cu;
12290
12291 next_cu = per_cu->cu->read_in_chain;
12292
12293 if (!per_cu->cu->mark)
12294 {
12295 free_one_comp_unit (per_cu->cu);
12296 *last_chain = next_cu;
12297 }
12298 else
12299 last_chain = &per_cu->cu->read_in_chain;
12300
12301 per_cu = next_cu;
12302 }
12303}
12304
12305/* Remove a single compilation unit from the cache. */
12306
12307static void
12308free_one_cached_comp_unit (void *target_cu)
12309{
12310 struct dwarf2_per_cu_data *per_cu, **last_chain;
12311
12312 per_cu = dwarf2_per_objfile->read_in_chain;
12313 last_chain = &dwarf2_per_objfile->read_in_chain;
12314 while (per_cu != NULL)
12315 {
12316 struct dwarf2_per_cu_data *next_cu;
12317
12318 next_cu = per_cu->cu->read_in_chain;
12319
12320 if (per_cu->cu == target_cu)
12321 {
12322 free_one_comp_unit (per_cu->cu);
12323 *last_chain = next_cu;
12324 break;
12325 }
12326 else
12327 last_chain = &per_cu->cu->read_in_chain;
12328
12329 per_cu = next_cu;
12330 }
12331}
12332
12333/* Release all extra memory associated with OBJFILE. */
12334
12335void
12336dwarf2_free_objfile (struct objfile *objfile)
12337{
12338 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
12339
12340 if (dwarf2_per_objfile == NULL)
12341 return;
12342
12343 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
12344 free_cached_comp_units (NULL);
12345
12346 /* Everything else should be on the objfile obstack. */
12347}
12348
12349/* A pair of DIE offset and GDB type pointer. We store these
12350 in a hash table separate from the DIEs, and preserve them
12351 when the DIEs are flushed out of cache. */
12352
12353struct dwarf2_offset_and_type
12354{
12355 unsigned int offset;
12356 struct type *type;
12357};
12358
12359/* Hash function for a dwarf2_offset_and_type. */
12360
12361static hashval_t
12362offset_and_type_hash (const void *item)
12363{
12364 const struct dwarf2_offset_and_type *ofs = item;
12365
12366 return ofs->offset;
12367}
12368
12369/* Equality function for a dwarf2_offset_and_type. */
12370
12371static int
12372offset_and_type_eq (const void *item_lhs, const void *item_rhs)
12373{
12374 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
12375 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
12376
12377 return ofs_lhs->offset == ofs_rhs->offset;
12378}
12379
12380/* Set the type associated with DIE to TYPE. Save it in CU's hash
12381 table if necessary. For convenience, return TYPE.
12382
12383 The DIEs reading must have careful ordering to:
12384 * Not cause infite loops trying to read in DIEs as a prerequisite for
12385 reading current DIE.
12386 * Not trying to dereference contents of still incompletely read in types
12387 while reading in other DIEs.
12388 * Enable referencing still incompletely read in types just by a pointer to
12389 the type without accessing its fields.
12390
12391 Therefore caller should follow these rules:
12392 * Try to fetch any prerequisite types we may need to build this DIE type
12393 before building the type and calling set_die_type.
12394 * After building typer call set_die_type for current DIE as soon as
12395 possible before fetching more types to complete the current type.
12396 * Make the type as complete as possible before fetching more types. */
12397
12398static struct type *
12399set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
12400{
12401 struct dwarf2_offset_and_type **slot, ofs;
12402
12403 /* For Ada types, make sure that the gnat-specific data is always
12404 initialized (if not already set). There are a few types where
12405 we should not be doing so, because the type-specific area is
12406 already used to hold some other piece of info (eg: TYPE_CODE_FLT
12407 where the type-specific area is used to store the floatformat).
12408 But this is not a problem, because the gnat-specific information
12409 is actually not needed for these types. */
12410 if (need_gnat_info (cu)
12411 && TYPE_CODE (type) != TYPE_CODE_FUNC
12412 && TYPE_CODE (type) != TYPE_CODE_FLT
12413 && !HAVE_GNAT_AUX_INFO (type))
12414 INIT_GNAT_SPECIFIC (type);
12415
12416 if (cu->type_hash == NULL)
12417 {
12418 gdb_assert (cu->per_cu != NULL);
12419 cu->per_cu->type_hash
12420 = htab_create_alloc_ex (cu->header.length / 24,
12421 offset_and_type_hash,
12422 offset_and_type_eq,
12423 NULL,
12424 &cu->objfile->objfile_obstack,
12425 hashtab_obstack_allocate,
12426 dummy_obstack_deallocate);
12427 cu->type_hash = cu->per_cu->type_hash;
12428 }
12429
12430 ofs.offset = die->offset;
12431 ofs.type = type;
12432 slot = (struct dwarf2_offset_and_type **)
12433 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
12434 if (*slot)
12435 complaint (&symfile_complaints,
12436 _("A problem internal to GDB: DIE 0x%x has type already set"),
12437 die->offset);
12438 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
12439 **slot = ofs;
12440 return type;
12441}
12442
12443/* Find the type for DIE in CU's type_hash, or return NULL if DIE does
12444 not have a saved type. */
12445
12446static struct type *
12447get_die_type (struct die_info *die, struct dwarf2_cu *cu)
12448{
12449 struct dwarf2_offset_and_type *slot, ofs;
12450 htab_t type_hash = cu->type_hash;
12451
12452 if (type_hash == NULL)
12453 return NULL;
12454
12455 ofs.offset = die->offset;
12456 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
12457 if (slot)
12458 return slot->type;
12459 else
12460 return NULL;
12461}
12462
12463/* Add a dependence relationship from CU to REF_PER_CU. */
12464
12465static void
12466dwarf2_add_dependence (struct dwarf2_cu *cu,
12467 struct dwarf2_per_cu_data *ref_per_cu)
12468{
12469 void **slot;
12470
12471 if (cu->dependencies == NULL)
12472 cu->dependencies
12473 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
12474 NULL, &cu->comp_unit_obstack,
12475 hashtab_obstack_allocate,
12476 dummy_obstack_deallocate);
12477
12478 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
12479 if (*slot == NULL)
12480 *slot = ref_per_cu;
12481}
12482
12483/* Subroutine of dwarf2_mark to pass to htab_traverse.
12484 Set the mark field in every compilation unit in the
12485 cache that we must keep because we are keeping CU. */
12486
12487static int
12488dwarf2_mark_helper (void **slot, void *data)
12489{
12490 struct dwarf2_per_cu_data *per_cu;
12491
12492 per_cu = (struct dwarf2_per_cu_data *) *slot;
12493 if (per_cu->cu->mark)
12494 return 1;
12495 per_cu->cu->mark = 1;
12496
12497 if (per_cu->cu->dependencies != NULL)
12498 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
12499
12500 return 1;
12501}
12502
12503/* Set the mark field in CU and in every other compilation unit in the
12504 cache that we must keep because we are keeping CU. */
12505
12506static void
12507dwarf2_mark (struct dwarf2_cu *cu)
12508{
12509 if (cu->mark)
12510 return;
12511 cu->mark = 1;
12512 if (cu->dependencies != NULL)
12513 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
12514}
12515
12516static void
12517dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
12518{
12519 while (per_cu)
12520 {
12521 per_cu->cu->mark = 0;
12522 per_cu = per_cu->cu->read_in_chain;
12523 }
12524}
12525
12526/* Trivial hash function for partial_die_info: the hash value of a DIE
12527 is its offset in .debug_info for this objfile. */
12528
12529static hashval_t
12530partial_die_hash (const void *item)
12531{
12532 const struct partial_die_info *part_die = item;
12533
12534 return part_die->offset;
12535}
12536
12537/* Trivial comparison function for partial_die_info structures: two DIEs
12538 are equal if they have the same offset. */
12539
12540static int
12541partial_die_eq (const void *item_lhs, const void *item_rhs)
12542{
12543 const struct partial_die_info *part_die_lhs = item_lhs;
12544 const struct partial_die_info *part_die_rhs = item_rhs;
12545
12546 return part_die_lhs->offset == part_die_rhs->offset;
12547}
12548
12549static struct cmd_list_element *set_dwarf2_cmdlist;
12550static struct cmd_list_element *show_dwarf2_cmdlist;
12551
12552static void
12553set_dwarf2_cmd (char *args, int from_tty)
12554{
12555 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
12556}
12557
12558static void
12559show_dwarf2_cmd (char *args, int from_tty)
12560{
12561 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
12562}
12563
12564/* If section described by INFO was mmapped, munmap it now. */
12565
12566static void
12567munmap_section_buffer (struct dwarf2_section_info *info)
12568{
12569 if (info->was_mmapped)
12570 {
12571#ifdef HAVE_MMAP
12572 intptr_t begin = (intptr_t) info->buffer;
12573 intptr_t map_begin = begin & ~(pagesize - 1);
12574 size_t map_length = info->size + begin - map_begin;
12575
12576 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
12577#else
12578 /* Without HAVE_MMAP, we should never be here to begin with. */
12579 gdb_assert (0);
12580#endif
12581 }
12582}
12583
12584/* munmap debug sections for OBJFILE, if necessary. */
12585
12586static void
12587dwarf2_per_objfile_free (struct objfile *objfile, void *d)
12588{
12589 struct dwarf2_per_objfile *data = d;
12590
12591 munmap_section_buffer (&data->info);
12592 munmap_section_buffer (&data->abbrev);
12593 munmap_section_buffer (&data->line);
12594 munmap_section_buffer (&data->str);
12595 munmap_section_buffer (&data->macinfo);
12596 munmap_section_buffer (&data->ranges);
12597 munmap_section_buffer (&data->loc);
12598 munmap_section_buffer (&data->frame);
12599 munmap_section_buffer (&data->eh_frame);
12600}
12601
12602int dwarf2_always_disassemble;
12603
12604static void
12605show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
12606 struct cmd_list_element *c, const char *value)
12607{
12608 fprintf_filtered (file, _("\
12609Whether to always disassemble DWARF expressions is %s.\n"),
12610 value);
12611}
12612
12613void _initialize_dwarf2_read (void);
12614
12615void
12616_initialize_dwarf2_read (void)
12617{
12618 dwarf2_objfile_data_key
12619 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
12620
12621 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
12622Set DWARF 2 specific variables.\n\
12623Configure DWARF 2 variables such as the cache size"),
12624 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
12625 0/*allow-unknown*/, &maintenance_set_cmdlist);
12626
12627 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
12628Show DWARF 2 specific variables\n\
12629Show DWARF 2 variables such as the cache size"),
12630 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
12631 0/*allow-unknown*/, &maintenance_show_cmdlist);
12632
12633 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
12634 &dwarf2_max_cache_age, _("\
12635Set the upper bound on the age of cached dwarf2 compilation units."), _("\
12636Show the upper bound on the age of cached dwarf2 compilation units."), _("\
12637A higher limit means that cached compilation units will be stored\n\
12638in memory longer, and more total memory will be used. Zero disables\n\
12639caching, which can slow down startup."),
12640 NULL,
12641 show_dwarf2_max_cache_age,
12642 &set_dwarf2_cmdlist,
12643 &show_dwarf2_cmdlist);
12644
12645 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
12646 &dwarf2_always_disassemble, _("\
12647Set whether `info address' always disassembles DWARF expressions."), _("\
12648Show whether `info address' always disassembles DWARF expressions."), _("\
12649When enabled, DWARF expressions are always printed in an assembly-like\n\
12650syntax. When disabled, expressions will be printed in a more\n\
12651conversational style, when possible."),
12652 NULL,
12653 show_dwarf2_always_disassemble,
12654 &set_dwarf2_cmdlist,
12655 &show_dwarf2_cmdlist);
12656
12657 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
12658Set debugging of the dwarf2 DIE reader."), _("\
12659Show debugging of the dwarf2 DIE reader."), _("\
12660When enabled (non-zero), DIEs are dumped after they are read in.\n\
12661The value is the maximum depth to print."),
12662 NULL,
12663 NULL,
12664 &setdebuglist, &showdebuglist);
12665}
This page took 0.067447 seconds and 4 git commands to generate.