Remove ALL_MSYMBOLS and ALL_OBJFILE_MSYMBOLS
[deliverable/binutils-gdb.git] / gdb / elfread.c
... / ...
CommitLineData
1/* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2019 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "bfd.h"
24#include "elf-bfd.h"
25#include "elf/common.h"
26#include "elf/internal.h"
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
32#include "gdb-stabs.h"
33#include "complaints.h"
34#include "demangle.h"
35#include "psympriv.h"
36#include "filenames.h"
37#include "probe.h"
38#include "arch-utils.h"
39#include "gdbtypes.h"
40#include "value.h"
41#include "infcall.h"
42#include "gdbthread.h"
43#include "inferior.h"
44#include "regcache.h"
45#include "bcache.h"
46#include "gdb_bfd.h"
47#include "build-id.h"
48#include "location.h"
49#include "auxv.h"
50
51/* Forward declarations. */
52extern const struct sym_fns elf_sym_fns_gdb_index;
53extern const struct sym_fns elf_sym_fns_debug_names;
54extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56/* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66/* Per-BFD data for probe info. */
67
68static const struct bfd_data *probe_key = NULL;
69
70/* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
77/* Locate the segments in ABFD. */
78
79static struct symfile_segment_data *
80elf_symfile_segments (bfd *abfd)
81{
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
106 data = XCNEW (struct symfile_segment_data);
107 data->num_segments = num_segments;
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
118 data->segment_info = XCNEWVEC (int, num_sections);
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123
124 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
125 continue;
126
127 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
128
129 for (j = 0; j < num_segments; j++)
130 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
131 {
132 data->segment_info[i] = j + 1;
133 break;
134 }
135
136 /* We should have found a segment for every non-empty section.
137 If we haven't, we will not relocate this section by any
138 offsets we apply to the segments. As an exception, do not
139 warn about SHT_NOBITS sections; in normal ELF execution
140 environments, SHT_NOBITS means zero-initialized and belongs
141 in a segment, but in no-OS environments some tools (e.g. ARM
142 RealView) use SHT_NOBITS for uninitialized data. Since it is
143 uninitialized, it doesn't need a program header. Such
144 binaries are not relocatable. */
145 if (bfd_get_section_size (sect) > 0 && j == num_segments
146 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
147 warning (_("Loadable section \"%s\" outside of ELF segments"),
148 bfd_section_name (abfd, sect));
149 }
150
151 return data;
152}
153
154/* We are called once per section from elf_symfile_read. We
155 need to examine each section we are passed, check to see
156 if it is something we are interested in processing, and
157 if so, stash away some access information for the section.
158
159 For now we recognize the dwarf debug information sections and
160 line number sections from matching their section names. The
161 ELF definition is no real help here since it has no direct
162 knowledge of DWARF (by design, so any debugging format can be
163 used).
164
165 We also recognize the ".stab" sections used by the Sun compilers
166 released with Solaris 2.
167
168 FIXME: The section names should not be hardwired strings (what
169 should they be? I don't think most object file formats have enough
170 section flags to specify what kind of debug section it is.
171 -kingdon). */
172
173static void
174elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
175{
176 struct elfinfo *ei;
177
178 ei = (struct elfinfo *) eip;
179 if (strcmp (sectp->name, ".stab") == 0)
180 {
181 ei->stabsect = sectp;
182 }
183 else if (strcmp (sectp->name, ".mdebug") == 0)
184 {
185 ei->mdebugsect = sectp;
186 }
187}
188
189static struct minimal_symbol *
190record_minimal_symbol (minimal_symbol_reader &reader,
191 const char *name, int name_len, bool copy_name,
192 CORE_ADDR address,
193 enum minimal_symbol_type ms_type,
194 asection *bfd_section, struct objfile *objfile)
195{
196 struct gdbarch *gdbarch = get_objfile_arch (objfile);
197
198 if (ms_type == mst_text || ms_type == mst_file_text
199 || ms_type == mst_text_gnu_ifunc)
200 address = gdbarch_addr_bits_remove (gdbarch, address);
201
202 return reader.record_full (name, name_len, copy_name, address,
203 ms_type,
204 gdb_bfd_section_index (objfile->obfd,
205 bfd_section));
206}
207
208/* Read the symbol table of an ELF file.
209
210 Given an objfile, a symbol table, and a flag indicating whether the
211 symbol table contains regular, dynamic, or synthetic symbols, add all
212 the global function and data symbols to the minimal symbol table.
213
214 In stabs-in-ELF, as implemented by Sun, there are some local symbols
215 defined in the ELF symbol table, which can be used to locate
216 the beginnings of sections from each ".o" file that was linked to
217 form the executable objfile. We gather any such info and record it
218 in data structures hung off the objfile's private data. */
219
220#define ST_REGULAR 0
221#define ST_DYNAMIC 1
222#define ST_SYNTHETIC 2
223
224static void
225elf_symtab_read (minimal_symbol_reader &reader,
226 struct objfile *objfile, int type,
227 long number_of_symbols, asymbol **symbol_table,
228 bool copy_names)
229{
230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
231 asymbol *sym;
232 long i;
233 CORE_ADDR symaddr;
234 enum minimal_symbol_type ms_type;
235 /* Name of the last file symbol. This is either a constant string or is
236 saved on the objfile's filename cache. */
237 const char *filesymname = "";
238 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
239 int elf_make_msymbol_special_p
240 = gdbarch_elf_make_msymbol_special_p (gdbarch);
241
242 for (i = 0; i < number_of_symbols; i++)
243 {
244 sym = symbol_table[i];
245 if (sym->name == NULL || *sym->name == '\0')
246 {
247 /* Skip names that don't exist (shouldn't happen), or names
248 that are null strings (may happen). */
249 continue;
250 }
251
252 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
253 symbols which do not correspond to objects in the symbol table,
254 but have some other target-specific meaning. */
255 if (bfd_is_target_special_symbol (objfile->obfd, sym))
256 {
257 if (gdbarch_record_special_symbol_p (gdbarch))
258 gdbarch_record_special_symbol (gdbarch, objfile, sym);
259 continue;
260 }
261
262 if (type == ST_DYNAMIC
263 && sym->section == bfd_und_section_ptr
264 && (sym->flags & BSF_FUNCTION))
265 {
266 struct minimal_symbol *msym;
267 bfd *abfd = objfile->obfd;
268 asection *sect;
269
270 /* Symbol is a reference to a function defined in
271 a shared library.
272 If its value is non zero then it is usually the address
273 of the corresponding entry in the procedure linkage table,
274 plus the desired section offset.
275 If its value is zero then the dynamic linker has to resolve
276 the symbol. We are unable to find any meaningful address
277 for this symbol in the executable file, so we skip it. */
278 symaddr = sym->value;
279 if (symaddr == 0)
280 continue;
281
282 /* sym->section is the undefined section. However, we want to
283 record the section where the PLT stub resides with the
284 minimal symbol. Search the section table for the one that
285 covers the stub's address. */
286 for (sect = abfd->sections; sect != NULL; sect = sect->next)
287 {
288 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
289 continue;
290
291 if (symaddr >= bfd_get_section_vma (abfd, sect)
292 && symaddr < bfd_get_section_vma (abfd, sect)
293 + bfd_get_section_size (sect))
294 break;
295 }
296 if (!sect)
297 continue;
298
299 /* On ia64-hpux, we have discovered that the system linker
300 adds undefined symbols with nonzero addresses that cannot
301 be right (their address points inside the code of another
302 function in the .text section). This creates problems
303 when trying to determine which symbol corresponds to
304 a given address.
305
306 We try to detect those buggy symbols by checking which
307 section we think they correspond to. Normally, PLT symbols
308 are stored inside their own section, and the typical name
309 for that section is ".plt". So, if there is a ".plt"
310 section, and yet the section name of our symbol does not
311 start with ".plt", we ignore that symbol. */
312 if (!startswith (sect->name, ".plt")
313 && bfd_get_section_by_name (abfd, ".plt") != NULL)
314 continue;
315
316 msym = record_minimal_symbol
317 (reader, sym->name, strlen (sym->name), copy_names,
318 symaddr, mst_solib_trampoline, sect, objfile);
319 if (msym != NULL)
320 {
321 msym->filename = filesymname;
322 if (elf_make_msymbol_special_p)
323 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
324 }
325 continue;
326 }
327
328 /* If it is a nonstripped executable, do not enter dynamic
329 symbols, as the dynamic symbol table is usually a subset
330 of the main symbol table. */
331 if (type == ST_DYNAMIC && !stripped)
332 continue;
333 if (sym->flags & BSF_FILE)
334 {
335 filesymname
336 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
337 objfile->per_bfd->filename_cache);
338 }
339 else if (sym->flags & BSF_SECTION_SYM)
340 continue;
341 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
342 | BSF_GNU_UNIQUE))
343 {
344 struct minimal_symbol *msym;
345
346 /* Select global/local/weak symbols. Note that bfd puts abs
347 symbols in their own section, so all symbols we are
348 interested in will have a section. */
349 /* Bfd symbols are section relative. */
350 symaddr = sym->value + sym->section->vma;
351 /* For non-absolute symbols, use the type of the section
352 they are relative to, to intuit text/data. Bfd provides
353 no way of figuring this out for absolute symbols. */
354 if (sym->section == bfd_abs_section_ptr)
355 {
356 /* This is a hack to get the minimal symbol type
357 right for Irix 5, which has absolute addresses
358 with special section indices for dynamic symbols.
359
360 NOTE: uweigand-20071112: Synthetic symbols do not
361 have an ELF-private part, so do not touch those. */
362 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
363 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
364
365 switch (shndx)
366 {
367 case SHN_MIPS_TEXT:
368 ms_type = mst_text;
369 break;
370 case SHN_MIPS_DATA:
371 ms_type = mst_data;
372 break;
373 case SHN_MIPS_ACOMMON:
374 ms_type = mst_bss;
375 break;
376 default:
377 ms_type = mst_abs;
378 }
379
380 /* If it is an Irix dynamic symbol, skip section name
381 symbols, relocate all others by section offset. */
382 if (ms_type != mst_abs)
383 {
384 if (sym->name[0] == '.')
385 continue;
386 }
387 }
388 else if (sym->section->flags & SEC_CODE)
389 {
390 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
391 {
392 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
393 ms_type = mst_text_gnu_ifunc;
394 else
395 ms_type = mst_text;
396 }
397 /* The BSF_SYNTHETIC check is there to omit ppc64 function
398 descriptors mistaken for static functions starting with 'L'.
399 */
400 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
401 && (sym->flags & BSF_SYNTHETIC) == 0)
402 || ((sym->flags & BSF_LOCAL)
403 && sym->name[0] == '$'
404 && sym->name[1] == 'L'))
405 /* Looks like a compiler-generated label. Skip
406 it. The assembler should be skipping these (to
407 keep executables small), but apparently with
408 gcc on the (deleted) delta m88k SVR4, it loses.
409 So to have us check too should be harmless (but
410 I encourage people to fix this in the assembler
411 instead of adding checks here). */
412 continue;
413 else
414 {
415 ms_type = mst_file_text;
416 }
417 }
418 else if (sym->section->flags & SEC_ALLOC)
419 {
420 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
421 {
422 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
423 {
424 ms_type = mst_data_gnu_ifunc;
425 }
426 else if (sym->section->flags & SEC_LOAD)
427 {
428 ms_type = mst_data;
429 }
430 else
431 {
432 ms_type = mst_bss;
433 }
434 }
435 else if (sym->flags & BSF_LOCAL)
436 {
437 if (sym->section->flags & SEC_LOAD)
438 {
439 ms_type = mst_file_data;
440 }
441 else
442 {
443 ms_type = mst_file_bss;
444 }
445 }
446 else
447 {
448 ms_type = mst_unknown;
449 }
450 }
451 else
452 {
453 /* FIXME: Solaris2 shared libraries include lots of
454 odd "absolute" and "undefined" symbols, that play
455 hob with actions like finding what function the PC
456 is in. Ignore them if they aren't text, data, or bss. */
457 /* ms_type = mst_unknown; */
458 continue; /* Skip this symbol. */
459 }
460 msym = record_minimal_symbol
461 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
462 ms_type, sym->section, objfile);
463
464 if (msym)
465 {
466 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
467 ELF-private part. */
468 if (type != ST_SYNTHETIC)
469 {
470 /* Pass symbol size field in via BFD. FIXME!!! */
471 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
472 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
473 }
474
475 msym->filename = filesymname;
476 if (elf_make_msymbol_special_p)
477 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
478 }
479
480 /* If we see a default versioned symbol, install it under
481 its version-less name. */
482 if (msym != NULL)
483 {
484 const char *atsign = strchr (sym->name, '@');
485
486 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
487 {
488 int len = atsign - sym->name;
489
490 record_minimal_symbol (reader, sym->name, len, true, symaddr,
491 ms_type, sym->section, objfile);
492 }
493 }
494
495 /* For @plt symbols, also record a trampoline to the
496 destination symbol. The @plt symbol will be used in
497 disassembly, and the trampoline will be used when we are
498 trying to find the target. */
499 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
500 {
501 int len = strlen (sym->name);
502
503 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
504 {
505 struct minimal_symbol *mtramp;
506
507 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
508 true, symaddr,
509 mst_solib_trampoline,
510 sym->section, objfile);
511 if (mtramp)
512 {
513 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
514 mtramp->created_by_gdb = 1;
515 mtramp->filename = filesymname;
516 if (elf_make_msymbol_special_p)
517 gdbarch_elf_make_msymbol_special (gdbarch,
518 sym, mtramp);
519 }
520 }
521 }
522 }
523 }
524}
525
526/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
527 for later look ups of which function to call when user requests
528 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
529 library defining `function' we cannot yet know while reading OBJFILE which
530 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
531 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
532
533static void
534elf_rel_plt_read (minimal_symbol_reader &reader,
535 struct objfile *objfile, asymbol **dyn_symbol_table)
536{
537 bfd *obfd = objfile->obfd;
538 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
539 asection *relplt, *got_plt;
540 bfd_size_type reloc_count, reloc;
541 struct gdbarch *gdbarch = get_objfile_arch (objfile);
542 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
543 size_t ptr_size = TYPE_LENGTH (ptr_type);
544
545 if (objfile->separate_debug_objfile_backlink)
546 return;
547
548 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
549 if (got_plt == NULL)
550 {
551 /* For platforms where there is no separate .got.plt. */
552 got_plt = bfd_get_section_by_name (obfd, ".got");
553 if (got_plt == NULL)
554 return;
555 }
556
557 /* Depending on system, we may find jump slots in a relocation
558 section for either .got.plt or .plt. */
559 asection *plt = bfd_get_section_by_name (obfd, ".plt");
560 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
561
562 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
563
564 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
565 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
566 {
567 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
568
569 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
570 {
571 if (this_hdr.sh_info == plt_elf_idx
572 || this_hdr.sh_info == got_plt_elf_idx)
573 break;
574 }
575 }
576 if (relplt == NULL)
577 return;
578
579 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
580 return;
581
582 std::string string_buffer;
583
584 /* Does ADDRESS reside in SECTION of OBFD? */
585 auto within_section = [obfd] (asection *section, CORE_ADDR address)
586 {
587 if (section == NULL)
588 return false;
589
590 return (bfd_get_section_vma (obfd, section) <= address
591 && (address < bfd_get_section_vma (obfd, section)
592 + bfd_get_section_size (section)));
593 };
594
595 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
596 for (reloc = 0; reloc < reloc_count; reloc++)
597 {
598 const char *name;
599 struct minimal_symbol *msym;
600 CORE_ADDR address;
601 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
602 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
603
604 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
605 address = relplt->relocation[reloc].address;
606
607 asection *msym_section;
608
609 /* Does the pointer reside in either the .got.plt or .plt
610 sections? */
611 if (within_section (got_plt, address))
612 msym_section = got_plt;
613 else if (within_section (plt, address))
614 msym_section = plt;
615 else
616 continue;
617
618 /* We cannot check if NAME is a reference to
619 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
620 symbol is undefined and the objfile having NAME defined may
621 not yet have been loaded. */
622
623 string_buffer.assign (name);
624 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
625
626 msym = record_minimal_symbol (reader, string_buffer.c_str (),
627 string_buffer.size (),
628 true, address, mst_slot_got_plt,
629 msym_section, objfile);
630 if (msym)
631 SET_MSYMBOL_SIZE (msym, ptr_size);
632 }
633}
634
635/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
636
637static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
638
639/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
640
641struct elf_gnu_ifunc_cache
642{
643 /* This is always a function entry address, not a function descriptor. */
644 CORE_ADDR addr;
645
646 char name[1];
647};
648
649/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
650
651static hashval_t
652elf_gnu_ifunc_cache_hash (const void *a_voidp)
653{
654 const struct elf_gnu_ifunc_cache *a
655 = (const struct elf_gnu_ifunc_cache *) a_voidp;
656
657 return htab_hash_string (a->name);
658}
659
660/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
661
662static int
663elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
664{
665 const struct elf_gnu_ifunc_cache *a
666 = (const struct elf_gnu_ifunc_cache *) a_voidp;
667 const struct elf_gnu_ifunc_cache *b
668 = (const struct elf_gnu_ifunc_cache *) b_voidp;
669
670 return strcmp (a->name, b->name) == 0;
671}
672
673/* Record the target function address of a STT_GNU_IFUNC function NAME is the
674 function entry address ADDR. Return 1 if NAME and ADDR are considered as
675 valid and therefore they were successfully recorded, return 0 otherwise.
676
677 Function does not expect a duplicate entry. Use
678 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
679 exists. */
680
681static int
682elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
683{
684 struct bound_minimal_symbol msym;
685 struct objfile *objfile;
686 htab_t htab;
687 struct elf_gnu_ifunc_cache entry_local, *entry_p;
688 void **slot;
689
690 msym = lookup_minimal_symbol_by_pc (addr);
691 if (msym.minsym == NULL)
692 return 0;
693 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
694 return 0;
695 objfile = msym.objfile;
696
697 /* If .plt jumps back to .plt the symbol is still deferred for later
698 resolution and it has no use for GDB. */
699 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
700 size_t len = strlen (target_name);
701
702 /* Note we check the symbol's name instead of checking whether the
703 symbol is in the .plt section because some systems have @plt
704 symbols in the .text section. */
705 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
706 return 0;
707
708 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
709 if (htab == NULL)
710 {
711 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
712 elf_gnu_ifunc_cache_eq,
713 NULL, &objfile->objfile_obstack,
714 hashtab_obstack_allocate,
715 dummy_obstack_deallocate);
716 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
717 }
718
719 entry_local.addr = addr;
720 obstack_grow (&objfile->objfile_obstack, &entry_local,
721 offsetof (struct elf_gnu_ifunc_cache, name));
722 obstack_grow_str0 (&objfile->objfile_obstack, name);
723 entry_p
724 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
725
726 slot = htab_find_slot (htab, entry_p, INSERT);
727 if (*slot != NULL)
728 {
729 struct elf_gnu_ifunc_cache *entry_found_p
730 = (struct elf_gnu_ifunc_cache *) *slot;
731 struct gdbarch *gdbarch = get_objfile_arch (objfile);
732
733 if (entry_found_p->addr != addr)
734 {
735 /* This case indicates buggy inferior program, the resolved address
736 should never change. */
737
738 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
739 "function_address from %s to %s"),
740 name, paddress (gdbarch, entry_found_p->addr),
741 paddress (gdbarch, addr));
742 }
743
744 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
745 }
746 *slot = entry_p;
747
748 return 1;
749}
750
751/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
752 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
753 is not NULL) and the function returns 1. It returns 0 otherwise.
754
755 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
756 function. */
757
758static int
759elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
760{
761 for (objfile *objfile : all_objfiles (current_program_space))
762 {
763 htab_t htab;
764 struct elf_gnu_ifunc_cache *entry_p;
765 void **slot;
766
767 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
768 if (htab == NULL)
769 continue;
770
771 entry_p = ((struct elf_gnu_ifunc_cache *)
772 alloca (sizeof (*entry_p) + strlen (name)));
773 strcpy (entry_p->name, name);
774
775 slot = htab_find_slot (htab, entry_p, NO_INSERT);
776 if (slot == NULL)
777 continue;
778 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
779 gdb_assert (entry_p != NULL);
780
781 if (addr_p)
782 *addr_p = entry_p->addr;
783 return 1;
784 }
785
786 return 0;
787}
788
789/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
790 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
791 is not NULL) and the function returns 1. It returns 0 otherwise.
792
793 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
794 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
795 prevent cache entries duplicates. */
796
797static int
798elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
799{
800 char *name_got_plt;
801 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
802
803 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
804 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
805
806 for (objfile *objfile : all_objfiles (current_program_space))
807 {
808 bfd *obfd = objfile->obfd;
809 struct gdbarch *gdbarch = get_objfile_arch (objfile);
810 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
811 size_t ptr_size = TYPE_LENGTH (ptr_type);
812 CORE_ADDR pointer_address, addr;
813 asection *plt;
814 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
815 struct bound_minimal_symbol msym;
816
817 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
818 if (msym.minsym == NULL)
819 continue;
820 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
821 continue;
822 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
823
824 plt = bfd_get_section_by_name (obfd, ".plt");
825 if (plt == NULL)
826 continue;
827
828 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
829 continue;
830 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
831 continue;
832 addr = extract_typed_address (buf, ptr_type);
833 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
834 current_top_target ());
835 addr = gdbarch_addr_bits_remove (gdbarch, addr);
836
837 if (elf_gnu_ifunc_record_cache (name, addr))
838 {
839 if (addr_p != NULL)
840 *addr_p = addr;
841 return 1;
842 }
843 }
844
845 return 0;
846}
847
848/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
849 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
850 is not NULL) and the function returns 1. It returns 0 otherwise.
851
852 Both the elf_objfile_gnu_ifunc_cache_data hash table and
853 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
854
855static int
856elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
857{
858 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
859 return 1;
860
861 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
862 return 1;
863
864 return 0;
865}
866
867/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
868 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
869 is the entry point of the resolved STT_GNU_IFUNC target function to call.
870 */
871
872static CORE_ADDR
873elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
874{
875 const char *name_at_pc;
876 CORE_ADDR start_at_pc, address;
877 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
878 struct value *function, *address_val;
879 CORE_ADDR hwcap = 0;
880 struct value *hwcap_val;
881
882 /* Try first any non-intrusive methods without an inferior call. */
883
884 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
885 && start_at_pc == pc)
886 {
887 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
888 return address;
889 }
890 else
891 name_at_pc = NULL;
892
893 function = allocate_value (func_func_type);
894 VALUE_LVAL (function) = lval_memory;
895 set_value_address (function, pc);
896
897 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
898 parameter. FUNCTION is the function entry address. ADDRESS may be a
899 function descriptor. */
900
901 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
902 hwcap_val = value_from_longest (builtin_type (gdbarch)
903 ->builtin_unsigned_long, hwcap);
904 address_val = call_function_by_hand (function, NULL, hwcap_val);
905 address = value_as_address (address_val);
906 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
907 address = gdbarch_addr_bits_remove (gdbarch, address);
908
909 if (name_at_pc)
910 elf_gnu_ifunc_record_cache (name_at_pc, address);
911
912 return address;
913}
914
915/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
916
917static void
918elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
919{
920 struct breakpoint *b_return;
921 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
922 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
923 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
924 int thread_id = inferior_thread ()->global_num;
925
926 gdb_assert (b->type == bp_gnu_ifunc_resolver);
927
928 for (b_return = b->related_breakpoint; b_return != b;
929 b_return = b_return->related_breakpoint)
930 {
931 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
932 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
933 gdb_assert (frame_id_p (b_return->frame_id));
934
935 if (b_return->thread == thread_id
936 && b_return->loc->requested_address == prev_pc
937 && frame_id_eq (b_return->frame_id, prev_frame_id))
938 break;
939 }
940
941 if (b_return == b)
942 {
943 /* No need to call find_pc_line for symbols resolving as this is only
944 a helper breakpointer never shown to the user. */
945
946 symtab_and_line sal;
947 sal.pspace = current_inferior ()->pspace;
948 sal.pc = prev_pc;
949 sal.section = find_pc_overlay (sal.pc);
950 sal.explicit_pc = 1;
951 b_return
952 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
953 prev_frame_id,
954 bp_gnu_ifunc_resolver_return).release ();
955
956 /* set_momentary_breakpoint invalidates PREV_FRAME. */
957 prev_frame = NULL;
958
959 /* Add new b_return to the ring list b->related_breakpoint. */
960 gdb_assert (b_return->related_breakpoint == b_return);
961 b_return->related_breakpoint = b->related_breakpoint;
962 b->related_breakpoint = b_return;
963 }
964}
965
966/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
967
968static void
969elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
970{
971 thread_info *thread = inferior_thread ();
972 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
973 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
974 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
975 struct regcache *regcache = get_thread_regcache (thread);
976 struct value *func_func;
977 struct value *value;
978 CORE_ADDR resolved_address, resolved_pc;
979
980 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
981
982 while (b->related_breakpoint != b)
983 {
984 struct breakpoint *b_next = b->related_breakpoint;
985
986 switch (b->type)
987 {
988 case bp_gnu_ifunc_resolver:
989 break;
990 case bp_gnu_ifunc_resolver_return:
991 delete_breakpoint (b);
992 break;
993 default:
994 internal_error (__FILE__, __LINE__,
995 _("handle_inferior_event: Invalid "
996 "gnu-indirect-function breakpoint type %d"),
997 (int) b->type);
998 }
999 b = b_next;
1000 }
1001 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1002 gdb_assert (b->loc->next == NULL);
1003
1004 func_func = allocate_value (func_func_type);
1005 VALUE_LVAL (func_func) = lval_memory;
1006 set_value_address (func_func, b->loc->related_address);
1007
1008 value = allocate_value (value_type);
1009 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1010 value_contents_raw (value), NULL);
1011 resolved_address = value_as_address (value);
1012 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1013 resolved_address,
1014 current_top_target ());
1015 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1016
1017 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1018 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1019 resolved_pc);
1020
1021 b->type = bp_breakpoint;
1022 update_breakpoint_locations (b, current_program_space,
1023 find_function_start_sal (resolved_pc, NULL, true),
1024 {});
1025}
1026
1027/* A helper function for elf_symfile_read that reads the minimal
1028 symbols. */
1029
1030static void
1031elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1032 const struct elfinfo *ei)
1033{
1034 bfd *synth_abfd, *abfd = objfile->obfd;
1035 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1036 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1037 asymbol *synthsyms;
1038 struct dbx_symfile_info *dbx;
1039
1040 if (symtab_create_debug)
1041 {
1042 fprintf_unfiltered (gdb_stdlog,
1043 "Reading minimal symbols of objfile %s ...\n",
1044 objfile_name (objfile));
1045 }
1046
1047 /* If we already have minsyms, then we can skip some work here.
1048 However, if there were stabs or mdebug sections, we go ahead and
1049 redo all the work anyway, because the psym readers for those
1050 kinds of debuginfo need extra information found here. This can
1051 go away once all types of symbols are in the per-BFD object. */
1052 if (objfile->per_bfd->minsyms_read
1053 && ei->stabsect == NULL
1054 && ei->mdebugsect == NULL)
1055 {
1056 if (symtab_create_debug)
1057 fprintf_unfiltered (gdb_stdlog,
1058 "... minimal symbols previously read\n");
1059 return;
1060 }
1061
1062 minimal_symbol_reader reader (objfile);
1063
1064 /* Allocate struct to keep track of the symfile. */
1065 dbx = XCNEW (struct dbx_symfile_info);
1066 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1067
1068 /* Process the normal ELF symbol table first. */
1069
1070 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1071 if (storage_needed < 0)
1072 error (_("Can't read symbols from %s: %s"),
1073 bfd_get_filename (objfile->obfd),
1074 bfd_errmsg (bfd_get_error ()));
1075
1076 if (storage_needed > 0)
1077 {
1078 /* Memory gets permanently referenced from ABFD after
1079 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1080
1081 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1082 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1083
1084 if (symcount < 0)
1085 error (_("Can't read symbols from %s: %s"),
1086 bfd_get_filename (objfile->obfd),
1087 bfd_errmsg (bfd_get_error ()));
1088
1089 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1090 false);
1091 }
1092
1093 /* Add the dynamic symbols. */
1094
1095 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1096
1097 if (storage_needed > 0)
1098 {
1099 /* Memory gets permanently referenced from ABFD after
1100 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1101 It happens only in the case when elf_slurp_reloc_table sees
1102 asection->relocation NULL. Determining which section is asection is
1103 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1104 implementation detail, though. */
1105
1106 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1107 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1108 dyn_symbol_table);
1109
1110 if (dynsymcount < 0)
1111 error (_("Can't read symbols from %s: %s"),
1112 bfd_get_filename (objfile->obfd),
1113 bfd_errmsg (bfd_get_error ()));
1114
1115 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1116 dyn_symbol_table, false);
1117
1118 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1119 }
1120
1121 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1122 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1123
1124 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1125 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1126 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1127 read the code address from .opd while it reads the .symtab section from
1128 a separate debug info file as the .opd section is SHT_NOBITS there.
1129
1130 With SYNTH_ABFD the .opd section will be read from the original
1131 backlinked binary where it is valid. */
1132
1133 if (objfile->separate_debug_objfile_backlink)
1134 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1135 else
1136 synth_abfd = abfd;
1137
1138 /* Add synthetic symbols - for instance, names for any PLT entries. */
1139
1140 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1141 dynsymcount, dyn_symbol_table,
1142 &synthsyms);
1143 if (synthcount > 0)
1144 {
1145 long i;
1146
1147 std::unique_ptr<asymbol *[]>
1148 synth_symbol_table (new asymbol *[synthcount]);
1149 for (i = 0; i < synthcount; i++)
1150 synth_symbol_table[i] = synthsyms + i;
1151 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1152 synth_symbol_table.get (), true);
1153
1154 xfree (synthsyms);
1155 synthsyms = NULL;
1156 }
1157
1158 /* Install any minimal symbols that have been collected as the current
1159 minimal symbols for this objfile. The debug readers below this point
1160 should not generate new minimal symbols; if they do it's their
1161 responsibility to install them. "mdebug" appears to be the only one
1162 which will do this. */
1163
1164 reader.install ();
1165
1166 if (symtab_create_debug)
1167 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1168}
1169
1170/* Scan and build partial symbols for a symbol file.
1171 We have been initialized by a call to elf_symfile_init, which
1172 currently does nothing.
1173
1174 This function only does the minimum work necessary for letting the
1175 user "name" things symbolically; it does not read the entire symtab.
1176 Instead, it reads the external and static symbols and puts them in partial
1177 symbol tables. When more extensive information is requested of a
1178 file, the corresponding partial symbol table is mutated into a full
1179 fledged symbol table by going back and reading the symbols
1180 for real.
1181
1182 We look for sections with specific names, to tell us what debug
1183 format to look for: FIXME!!!
1184
1185 elfstab_build_psymtabs() handles STABS symbols;
1186 mdebug_build_psymtabs() handles ECOFF debugging information.
1187
1188 Note that ELF files have a "minimal" symbol table, which looks a lot
1189 like a COFF symbol table, but has only the minimal information necessary
1190 for linking. We process this also, and use the information to
1191 build gdb's minimal symbol table. This gives us some minimal debugging
1192 capability even for files compiled without -g. */
1193
1194static void
1195elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1196{
1197 bfd *abfd = objfile->obfd;
1198 struct elfinfo ei;
1199
1200 memset ((char *) &ei, 0, sizeof (ei));
1201 if (!(objfile->flags & OBJF_READNEVER))
1202 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1203
1204 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1205
1206 /* ELF debugging information is inserted into the psymtab in the
1207 order of least informative first - most informative last. Since
1208 the psymtab table is searched `most recent insertion first' this
1209 increases the probability that more detailed debug information
1210 for a section is found.
1211
1212 For instance, an object file might contain both .mdebug (XCOFF)
1213 and .debug_info (DWARF2) sections then .mdebug is inserted first
1214 (searched last) and DWARF2 is inserted last (searched first). If
1215 we don't do this then the XCOFF info is found first - for code in
1216 an included file XCOFF info is useless. */
1217
1218 if (ei.mdebugsect)
1219 {
1220 const struct ecoff_debug_swap *swap;
1221
1222 /* .mdebug section, presumably holding ECOFF debugging
1223 information. */
1224 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1225 if (swap)
1226 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1227 }
1228 if (ei.stabsect)
1229 {
1230 asection *str_sect;
1231
1232 /* Stab sections have an associated string table that looks like
1233 a separate section. */
1234 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1235
1236 /* FIXME should probably warn about a stab section without a stabstr. */
1237 if (str_sect)
1238 elfstab_build_psymtabs (objfile,
1239 ei.stabsect,
1240 str_sect->filepos,
1241 bfd_section_size (abfd, str_sect));
1242 }
1243
1244 if (dwarf2_has_info (objfile, NULL))
1245 {
1246 dw_index_kind index_kind;
1247
1248 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1249 debug information present in OBJFILE. If there is such debug
1250 info present never use an index. */
1251 if (!objfile_has_partial_symbols (objfile)
1252 && dwarf2_initialize_objfile (objfile, &index_kind))
1253 {
1254 switch (index_kind)
1255 {
1256 case dw_index_kind::GDB_INDEX:
1257 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1258 break;
1259 case dw_index_kind::DEBUG_NAMES:
1260 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1261 break;
1262 }
1263 }
1264 else
1265 {
1266 /* It is ok to do this even if the stabs reader made some
1267 partial symbols, because OBJF_PSYMTABS_READ has not been
1268 set, and so our lazy reader function will still be called
1269 when needed. */
1270 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1271 }
1272 }
1273 /* If the file has its own symbol tables it has no separate debug
1274 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1275 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1276 `.note.gnu.build-id'.
1277
1278 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1279 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1280 an objfile via find_separate_debug_file_in_section there was no separate
1281 debug info available. Therefore do not attempt to search for another one,
1282 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1283 be NULL and we would possibly violate it. */
1284
1285 else if (!objfile_has_partial_symbols (objfile)
1286 && objfile->separate_debug_objfile == NULL
1287 && objfile->separate_debug_objfile_backlink == NULL)
1288 {
1289 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1290
1291 if (debugfile.empty ())
1292 debugfile = find_separate_debug_file_by_debuglink (objfile);
1293
1294 if (!debugfile.empty ())
1295 {
1296 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1297
1298 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1299 symfile_flags, objfile);
1300 }
1301 }
1302}
1303
1304/* Callback to lazily read psymtabs. */
1305
1306static void
1307read_psyms (struct objfile *objfile)
1308{
1309 if (dwarf2_has_info (objfile, NULL))
1310 dwarf2_build_psymtabs (objfile);
1311}
1312
1313/* Initialize anything that needs initializing when a completely new symbol
1314 file is specified (not just adding some symbols from another file, e.g. a
1315 shared library).
1316
1317 We reinitialize buildsym, since we may be reading stabs from an ELF
1318 file. */
1319
1320static void
1321elf_new_init (struct objfile *ignore)
1322{
1323 stabsread_new_init ();
1324}
1325
1326/* Perform any local cleanups required when we are done with a particular
1327 objfile. I.E, we are in the process of discarding all symbol information
1328 for an objfile, freeing up all memory held for it, and unlinking the
1329 objfile struct from the global list of known objfiles. */
1330
1331static void
1332elf_symfile_finish (struct objfile *objfile)
1333{
1334}
1335
1336/* ELF specific initialization routine for reading symbols. */
1337
1338static void
1339elf_symfile_init (struct objfile *objfile)
1340{
1341 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1342 find this causes a significant slowdown in gdb then we could
1343 set it in the debug symbol readers only when necessary. */
1344 objfile->flags |= OBJF_REORDERED;
1345}
1346
1347/* Implementation of `sym_get_probes', as documented in symfile.h. */
1348
1349static const std::vector<probe *> &
1350elf_get_probes (struct objfile *objfile)
1351{
1352 std::vector<probe *> *probes_per_bfd;
1353
1354 /* Have we parsed this objfile's probes already? */
1355 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1356
1357 if (probes_per_bfd == NULL)
1358 {
1359 probes_per_bfd = new std::vector<probe *>;
1360
1361 /* Here we try to gather information about all types of probes from the
1362 objfile. */
1363 for (const static_probe_ops *ops : all_static_probe_ops)
1364 ops->get_probes (probes_per_bfd, objfile);
1365
1366 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1367 }
1368
1369 return *probes_per_bfd;
1370}
1371
1372/* Helper function used to free the space allocated for storing SystemTap
1373 probe information. */
1374
1375static void
1376probe_key_free (bfd *abfd, void *d)
1377{
1378 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1379
1380 for (probe *p : *probes)
1381 delete p;
1382
1383 delete probes;
1384}
1385
1386\f
1387
1388/* Implementation `sym_probe_fns', as documented in symfile.h. */
1389
1390static const struct sym_probe_fns elf_probe_fns =
1391{
1392 elf_get_probes, /* sym_get_probes */
1393};
1394
1395/* Register that we are able to handle ELF object file formats. */
1396
1397static const struct sym_fns elf_sym_fns =
1398{
1399 elf_new_init, /* init anything gbl to entire symtab */
1400 elf_symfile_init, /* read initial info, setup for sym_read() */
1401 elf_symfile_read, /* read a symbol file into symtab */
1402 NULL, /* sym_read_psymbols */
1403 elf_symfile_finish, /* finished with file, cleanup */
1404 default_symfile_offsets, /* Translate ext. to int. relocation */
1405 elf_symfile_segments, /* Get segment information from a file. */
1406 NULL,
1407 default_symfile_relocate, /* Relocate a debug section. */
1408 &elf_probe_fns, /* sym_probe_fns */
1409 &psym_functions
1410};
1411
1412/* The same as elf_sym_fns, but not registered and lazily reads
1413 psymbols. */
1414
1415const struct sym_fns elf_sym_fns_lazy_psyms =
1416{
1417 elf_new_init, /* init anything gbl to entire symtab */
1418 elf_symfile_init, /* read initial info, setup for sym_read() */
1419 elf_symfile_read, /* read a symbol file into symtab */
1420 read_psyms, /* sym_read_psymbols */
1421 elf_symfile_finish, /* finished with file, cleanup */
1422 default_symfile_offsets, /* Translate ext. to int. relocation */
1423 elf_symfile_segments, /* Get segment information from a file. */
1424 NULL,
1425 default_symfile_relocate, /* Relocate a debug section. */
1426 &elf_probe_fns, /* sym_probe_fns */
1427 &psym_functions
1428};
1429
1430/* The same as elf_sym_fns, but not registered and uses the
1431 DWARF-specific GNU index rather than psymtab. */
1432const struct sym_fns elf_sym_fns_gdb_index =
1433{
1434 elf_new_init, /* init anything gbl to entire symab */
1435 elf_symfile_init, /* read initial info, setup for sym_red() */
1436 elf_symfile_read, /* read a symbol file into symtab */
1437 NULL, /* sym_read_psymbols */
1438 elf_symfile_finish, /* finished with file, cleanup */
1439 default_symfile_offsets, /* Translate ext. to int. relocatin */
1440 elf_symfile_segments, /* Get segment information from a file. */
1441 NULL,
1442 default_symfile_relocate, /* Relocate a debug section. */
1443 &elf_probe_fns, /* sym_probe_fns */
1444 &dwarf2_gdb_index_functions
1445};
1446
1447/* The same as elf_sym_fns, but not registered and uses the
1448 DWARF-specific .debug_names index rather than psymtab. */
1449const struct sym_fns elf_sym_fns_debug_names =
1450{
1451 elf_new_init, /* init anything gbl to entire symab */
1452 elf_symfile_init, /* read initial info, setup for sym_red() */
1453 elf_symfile_read, /* read a symbol file into symtab */
1454 NULL, /* sym_read_psymbols */
1455 elf_symfile_finish, /* finished with file, cleanup */
1456 default_symfile_offsets, /* Translate ext. to int. relocatin */
1457 elf_symfile_segments, /* Get segment information from a file. */
1458 NULL,
1459 default_symfile_relocate, /* Relocate a debug section. */
1460 &elf_probe_fns, /* sym_probe_fns */
1461 &dwarf2_debug_names_functions
1462};
1463
1464/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1465
1466static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1467{
1468 elf_gnu_ifunc_resolve_addr,
1469 elf_gnu_ifunc_resolve_name,
1470 elf_gnu_ifunc_resolver_stop,
1471 elf_gnu_ifunc_resolver_return_stop
1472};
1473
1474void
1475_initialize_elfread (void)
1476{
1477 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1478 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1479
1480 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1481 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1482}
This page took 0.026188 seconds and 4 git commands to generate.