2007-06-18 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
... / ...
CommitLineData
1#!/bin/sh -u
2
3# Architecture commands for GDB, the GNU debugger.
4#
5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6# Free Software Foundation, Inc.
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
12# the Free Software Foundation; either version 2 of the License, or
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
21# along with this program; if not, write to the Free Software
22# Foundation, Inc., 51 Franklin Street, Fifth Floor,
23# Boston, MA 02110-1301, USA.
24
25# Make certain that the script is not running in an internationalized
26# environment.
27LANG=c ; export LANG
28LC_ALL=c ; export LC_ALL
29
30
31compare_new ()
32{
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43}
44
45
46# Format of the input table
47read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49do_read ()
50{
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177}
178
179
180fallback_default_p ()
181{
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184}
185
186class_is_variable_p ()
187{
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192}
193
194class_is_function_p ()
195{
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200}
201
202class_is_multiarch_p ()
203{
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208}
209
210class_is_predicate_p ()
211{
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216}
217
218class_is_info_p ()
219{
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224}
225
226
227# dump out/verify the doco
228for field in ${read}
229do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363done
364
365
366function_list ()
367{
368 # See below (DOCO) for description of each field
369 cat <<EOF
370i::const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
371#
372i::int:byte_order:::BFD_ENDIAN_BIG
373#
374i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375#
376i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377# Number of bits in a char or unsigned char for the target machine.
378# Just like CHAR_BIT in <limits.h> but describes the target machine.
379# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
380#
381# Number of bits in a short or unsigned short for the target machine.
382v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383# Number of bits in an int or unsigned int for the target machine.
384v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385# Number of bits in a long or unsigned long for the target machine.
386v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387# Number of bits in a long long or unsigned long long for the target
388# machine.
389v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
390
391# The ABI default bit-size and format for "float", "double", and "long
392# double". These bit/format pairs should eventually be combined into
393# a single object. For the moment, just initialize them as a pair.
394# Each format describes both the big and little endian layouts (if
395# useful).
396
397v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
399v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
401v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
403
404# For most targets, a pointer on the target and its representation as an
405# address in GDB have the same size and "look the same". For such a
406# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
407# / addr_bit will be set from it.
408#
409# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
410# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
411# as well.
412#
413# ptr_bit is the size of a pointer on the target
414v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
415# addr_bit is the size of a target address as represented in gdb
416v::int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
417#
418# One if \`char' acts like \`signed char', zero if \`unsigned char'.
419v::int:char_signed:::1:-1:1
420#
421F::CORE_ADDR:read_pc:struct regcache *regcache:regcache
422F::void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
423# Function for getting target's idea of a frame pointer. FIXME: GDB's
424# whole scheme for dealing with "frames" and "frame pointers" needs a
425# serious shakedown.
426f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
427#
428M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
429M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
430#
431v::int:num_regs:::0:-1
432# This macro gives the number of pseudo-registers that live in the
433# register namespace but do not get fetched or stored on the target.
434# These pseudo-registers may be aliases for other registers,
435# combinations of other registers, or they may be computed by GDB.
436v::int:num_pseudo_regs:::0:0::0
437
438# GDB's standard (or well known) register numbers. These can map onto
439# a real register or a pseudo (computed) register or not be defined at
440# all (-1).
441# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
442v::int:sp_regnum:::-1:-1::0
443v::int:pc_regnum:::-1:-1::0
444v::int:ps_regnum:::-1:-1::0
445v::int:fp0_regnum:::0:-1::0
446# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
447f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
448# Provide a default mapping from a ecoff register number to a gdb REGNUM.
449f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
450# Provide a default mapping from a DWARF register number to a gdb REGNUM.
451f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
452# Convert from an sdb register number to an internal gdb register number.
453f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
454f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
455f::const char *:register_name:int regnr:regnr
456
457# Return the type of a register specified by the architecture. Only
458# the register cache should call this function directly; others should
459# use "register_type".
460M::struct type *:register_type:int reg_nr:reg_nr
461
462# See gdbint.texinfo, and PUSH_DUMMY_CALL.
463M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
464# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
465# deprecated_fp_regnum.
466v::int:deprecated_fp_regnum:::-1:-1::0
467
468# See gdbint.texinfo. See infcall.c.
469M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
470# DEPRECATED_REGISTER_SIZE can be deleted.
471v:=:int:deprecated_register_size
472v::int:call_dummy_location::::AT_ENTRY_POINT::0
473M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr, regcache
474
475m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
476M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
477M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
478# MAP a GDB RAW register number onto a simulator register number. See
479# also include/...-sim.h.
480f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
481f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
482f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
483# setjmp/longjmp support.
484F::int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
485#
486v:=:int:believe_pcc_promotion:::::::
487#
488f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
489f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
490f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
491# Construct a value representing the contents of register REGNUM in
492# frame FRAME, interpreted as type TYPE. The routine needs to
493# allocate and return a struct value with all value attributes
494# (but not the value contents) filled in.
495f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
496#
497f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
498f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
499M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
500
501# It has been suggested that this, well actually its predecessor,
502# should take the type/value of the function to be called and not the
503# return type. This is left as an exercise for the reader.
504
505# NOTE: cagney/2004-06-13: The function stack.c:return_command uses
506# the predicate with default hack to avoid calling store_return_value
507# (via legacy_return_value), when a small struct is involved.
508
509M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
510
511# The deprecated methods extract_return_value, store_return_value,
512# DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
513# deprecated_use_struct_convention have all been folded into
514# RETURN_VALUE.
515
516f::void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
517f::void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
518f::int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
519
520f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
521f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
522f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
523M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
524f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
525f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
526v::CORE_ADDR:decr_pc_after_break:::0:::0
527
528# A function can be addressed by either it's "pointer" (possibly a
529# descriptor address) or "entry point" (first executable instruction).
530# The method "convert_from_func_ptr_addr" converting the former to the
531# latter. gdbarch_deprecated_function_start_offset is being used to implement
532# a simplified subset of that functionality - the function's address
533# corresponds to the "function pointer" and the function's start
534# corresponds to the "function entry point" - and hence is redundant.
535
536v::CORE_ADDR:deprecated_function_start_offset:::0:::0
537
538# Return the remote protocol register number associated with this
539# register. Normally the identity mapping.
540m::int:remote_register_number:int regno:regno::default_remote_register_number::0
541
542# Fetch the target specific address used to represent a load module.
543F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
544#
545v::CORE_ADDR:frame_args_skip:::0:::0
546M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
547M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
548# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
549# frame-base. Enable frame-base before frame-unwind.
550F::int:frame_num_args:struct frame_info *frame:frame
551#
552M::CORE_ADDR:frame_align:CORE_ADDR address:address
553# deprecated_reg_struct_has_addr has been replaced by
554# stabs_argument_has_addr.
555F::int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
556m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557v::int:frame_red_zone_size
558#
559m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
560# On some machines there are bits in addresses which are not really
561# part of the address, but are used by the kernel, the hardware, etc.
562# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
563# we get a "real" address such as one would find in a symbol table.
564# This is used only for addresses of instructions, and even then I'm
565# not sure it's used in all contexts. It exists to deal with there
566# being a few stray bits in the PC which would mislead us, not as some
567# sort of generic thing to handle alignment or segmentation (it's
568# possible it should be in TARGET_READ_PC instead).
569f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
570# It is not at all clear why gdbarch_smash_text_address is not folded into
571# gdbarch_addr_bits_remove.
572f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
573
574# FIXME/cagney/2001-01-18: This should be split in two. A target method that
575# indicates if the target needs software single step. An ISA method to
576# implement it.
577#
578# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579# breakpoints using the breakpoint system instead of blatting memory directly
580# (as with rs6000).
581#
582# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583# target can single step. If not, then implement single step using breakpoints.
584#
585# A return value of 1 means that the software_single_step breakpoints
586# were inserted; 0 means they were not.
587F:=:int:software_single_step:struct frame_info *frame:frame
588
589# Return non-zero if the processor is executing a delay slot and a
590# further single-step is needed before the instruction finishes.
591M::int:single_step_through_delay:struct frame_info *frame:frame
592# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
593# disassembler. Perhaps objdump can handle it?
594f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595f::CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
596
597
598# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
599# evaluates non-zero, this is the address where the debugger will place
600# a step-resume breakpoint to get us past the dynamic linker.
601m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
602# Some systems also have trampoline code for returning from shared libs.
603f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
604
605# A target might have problems with watchpoints as soon as the stack
606# frame of the current function has been destroyed. This mostly happens
607# as the first action in a funtion's epilogue. in_function_epilogue_p()
608# is defined to return a non-zero value if either the given addr is one
609# instruction after the stack destroying instruction up to the trailing
610# return instruction or if we can figure out that the stack frame has
611# already been invalidated regardless of the value of addr. Targets
612# which don't suffer from that problem could just let this functionality
613# untouched.
614m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
615# Given a vector of command-line arguments, return a newly allocated
616# string which, when passed to the create_inferior function, will be
617# parsed (on Unix systems, by the shell) to yield the same vector.
618# This function should call error() if the argument vector is not
619# representable for this target or if this target does not support
620# command-line arguments.
621# ARGC is the number of elements in the vector.
622# ARGV is an array of strings, one per argument.
623m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
624f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
625f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
626v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
627v::int:cannot_step_breakpoint:::0:0::0
628v::int:have_nonsteppable_watchpoint:::0:0::0
629F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
630M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
631M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
632# Is a register in a group
633m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
634# Fetch the pointer to the ith function argument.
635F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
636
637# Return the appropriate register set for a core file section with
638# name SECT_NAME and size SECT_SIZE.
639M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
640
641# If the elements of C++ vtables are in-place function descriptors rather
642# than normal function pointers (which may point to code or a descriptor),
643# set this to one.
644v::int:vtable_function_descriptors:::0:0::0
645
646# Set if the least significant bit of the delta is used instead of the least
647# significant bit of the pfn for pointers to virtual member functions.
648v::int:vbit_in_delta:::0:0::0
649
650# Advance PC to next instruction in order to skip a permanent breakpoint.
651F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
652
653# Refresh overlay mapped state for section OSECT.
654F::void:overlay_update:struct obj_section *osect:osect
655EOF
656}
657
658#
659# The .log file
660#
661exec > new-gdbarch.log
662function_list | while do_read
663do
664 cat <<EOF
665${class} ${returntype} ${function} ($formal)
666EOF
667 for r in ${read}
668 do
669 eval echo \"\ \ \ \ ${r}=\${${r}}\"
670 done
671 if class_is_predicate_p && fallback_default_p
672 then
673 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
674 kill $$
675 exit 1
676 fi
677 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
678 then
679 echo "Error: postdefault is useless when invalid_p=0" 1>&2
680 kill $$
681 exit 1
682 fi
683 if class_is_multiarch_p
684 then
685 if class_is_predicate_p ; then :
686 elif test "x${predefault}" = "x"
687 then
688 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
689 kill $$
690 exit 1
691 fi
692 fi
693 echo ""
694done
695
696exec 1>&2
697compare_new gdbarch.log
698
699
700copyright ()
701{
702cat <<EOF
703/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
704
705/* Dynamic architecture support for GDB, the GNU debugger.
706
707 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
708 Free Software Foundation, Inc.
709
710 This file is part of GDB.
711
712 This program is free software; you can redistribute it and/or modify
713 it under the terms of the GNU General Public License as published by
714 the Free Software Foundation; either version 2 of the License, or
715 (at your option) any later version.
716
717 This program is distributed in the hope that it will be useful,
718 but WITHOUT ANY WARRANTY; without even the implied warranty of
719 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
720 GNU General Public License for more details.
721
722 You should have received a copy of the GNU General Public License
723 along with this program; if not, write to the Free Software
724 Foundation, Inc., 51 Franklin Street, Fifth Floor,
725 Boston, MA 02110-1301, USA. */
726
727/* This file was created with the aid of \`\`gdbarch.sh''.
728
729 The Bourne shell script \`\`gdbarch.sh'' creates the files
730 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
731 against the existing \`\`gdbarch.[hc]''. Any differences found
732 being reported.
733
734 If editing this file, please also run gdbarch.sh and merge any
735 changes into that script. Conversely, when making sweeping changes
736 to this file, modifying gdbarch.sh and using its output may prove
737 easier. */
738
739EOF
740}
741
742#
743# The .h file
744#
745
746exec > new-gdbarch.h
747copyright
748cat <<EOF
749#ifndef GDBARCH_H
750#define GDBARCH_H
751
752struct floatformat;
753struct ui_file;
754struct frame_info;
755struct value;
756struct objfile;
757struct obj_section;
758struct minimal_symbol;
759struct regcache;
760struct reggroup;
761struct regset;
762struct disassemble_info;
763struct target_ops;
764struct obstack;
765struct bp_target_info;
766struct target_desc;
767
768extern struct gdbarch *current_gdbarch;
769EOF
770
771# function typedef's
772printf "\n"
773printf "\n"
774printf "/* The following are pre-initialized by GDBARCH. */\n"
775function_list | while do_read
776do
777 if class_is_info_p
778 then
779 printf "\n"
780 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
781 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
782 if test -n "${macro}"
783 then
784 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
785 printf "#error \"Non multi-arch definition of ${macro}\"\n"
786 printf "#endif\n"
787 printf "#if !defined (${macro})\n"
788 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
789 printf "#endif\n"
790 fi
791 fi
792done
793
794# function typedef's
795printf "\n"
796printf "\n"
797printf "/* The following are initialized by the target dependent code. */\n"
798function_list | while do_read
799do
800 if [ -n "${comment}" ]
801 then
802 echo "${comment}" | sed \
803 -e '2 s,#,/*,' \
804 -e '3,$ s,#, ,' \
805 -e '$ s,$, */,'
806 fi
807
808 if class_is_predicate_p
809 then
810 if test -n "${macro}"
811 then
812 printf "\n"
813 printf "#if defined (${macro})\n"
814 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
815 printf "#if !defined (${macro}_P)\n"
816 printf "#define ${macro}_P() (1)\n"
817 printf "#endif\n"
818 printf "#endif\n"
819 fi
820 printf "\n"
821 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
822 if test -n "${macro}"
823 then
824 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
825 printf "#error \"Non multi-arch definition of ${macro}\"\n"
826 printf "#endif\n"
827 printf "#if !defined (${macro}_P)\n"
828 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
829 printf "#endif\n"
830 fi
831 fi
832 if class_is_variable_p
833 then
834 printf "\n"
835 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
836 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
837 if test -n "${macro}"
838 then
839 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
840 printf "#error \"Non multi-arch definition of ${macro}\"\n"
841 printf "#endif\n"
842 printf "#if !defined (${macro})\n"
843 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
844 printf "#endif\n"
845 fi
846 fi
847 if class_is_function_p
848 then
849 printf "\n"
850 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
851 then
852 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
853 elif class_is_multiarch_p
854 then
855 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
856 else
857 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
858 fi
859 if [ "x${formal}" = "xvoid" ]
860 then
861 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
862 else
863 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
864 fi
865 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
866 if test -n "${macro}"
867 then
868 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
869 printf "#error \"Non multi-arch definition of ${macro}\"\n"
870 printf "#endif\n"
871 if [ "x${actual}" = "x" ]
872 then
873 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
874 elif [ "x${actual}" = "x-" ]
875 then
876 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
877 else
878 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
879 fi
880 printf "#if !defined (${macro})\n"
881 if [ "x${actual}" = "x" ]
882 then
883 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
884 elif [ "x${actual}" = "x-" ]
885 then
886 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
887 else
888 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
889 fi
890 printf "#endif\n"
891 fi
892 fi
893done
894
895# close it off
896cat <<EOF
897
898extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
899
900
901/* Mechanism for co-ordinating the selection of a specific
902 architecture.
903
904 GDB targets (*-tdep.c) can register an interest in a specific
905 architecture. Other GDB components can register a need to maintain
906 per-architecture data.
907
908 The mechanisms below ensures that there is only a loose connection
909 between the set-architecture command and the various GDB
910 components. Each component can independently register their need
911 to maintain architecture specific data with gdbarch.
912
913 Pragmatics:
914
915 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
916 didn't scale.
917
918 The more traditional mega-struct containing architecture specific
919 data for all the various GDB components was also considered. Since
920 GDB is built from a variable number of (fairly independent)
921 components it was determined that the global aproach was not
922 applicable. */
923
924
925/* Register a new architectural family with GDB.
926
927 Register support for the specified ARCHITECTURE with GDB. When
928 gdbarch determines that the specified architecture has been
929 selected, the corresponding INIT function is called.
930
931 --
932
933 The INIT function takes two parameters: INFO which contains the
934 information available to gdbarch about the (possibly new)
935 architecture; ARCHES which is a list of the previously created
936 \`\`struct gdbarch'' for this architecture.
937
938 The INFO parameter is, as far as possible, be pre-initialized with
939 information obtained from INFO.ABFD or the global defaults.
940
941 The ARCHES parameter is a linked list (sorted most recently used)
942 of all the previously created architures for this architecture
943 family. The (possibly NULL) ARCHES->gdbarch can used to access
944 values from the previously selected architecture for this
945 architecture family. The global \`\`current_gdbarch'' shall not be
946 used.
947
948 The INIT function shall return any of: NULL - indicating that it
949 doesn't recognize the selected architecture; an existing \`\`struct
950 gdbarch'' from the ARCHES list - indicating that the new
951 architecture is just a synonym for an earlier architecture (see
952 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
953 - that describes the selected architecture (see gdbarch_alloc()).
954
955 The DUMP_TDEP function shall print out all target specific values.
956 Care should be taken to ensure that the function works in both the
957 multi-arch and non- multi-arch cases. */
958
959struct gdbarch_list
960{
961 struct gdbarch *gdbarch;
962 struct gdbarch_list *next;
963};
964
965struct gdbarch_info
966{
967 /* Use default: NULL (ZERO). */
968 const struct bfd_arch_info *bfd_arch_info;
969
970 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
971 int byte_order;
972
973 /* Use default: NULL (ZERO). */
974 bfd *abfd;
975
976 /* Use default: NULL (ZERO). */
977 struct gdbarch_tdep_info *tdep_info;
978
979 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
980 enum gdb_osabi osabi;
981
982 /* Use default: NULL (ZERO). */
983 const struct target_desc *target_desc;
984};
985
986typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
987typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
988
989/* DEPRECATED - use gdbarch_register() */
990extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
991
992extern void gdbarch_register (enum bfd_architecture architecture,
993 gdbarch_init_ftype *,
994 gdbarch_dump_tdep_ftype *);
995
996
997/* Return a freshly allocated, NULL terminated, array of the valid
998 architecture names. Since architectures are registered during the
999 _initialize phase this function only returns useful information
1000 once initialization has been completed. */
1001
1002extern const char **gdbarch_printable_names (void);
1003
1004
1005/* Helper function. Search the list of ARCHES for a GDBARCH that
1006 matches the information provided by INFO. */
1007
1008extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1009
1010
1011/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1012 basic initialization using values obtained from the INFO and TDEP
1013 parameters. set_gdbarch_*() functions are called to complete the
1014 initialization of the object. */
1015
1016extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1017
1018
1019/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1020 It is assumed that the caller freeds the \`\`struct
1021 gdbarch_tdep''. */
1022
1023extern void gdbarch_free (struct gdbarch *);
1024
1025
1026/* Helper function. Allocate memory from the \`\`struct gdbarch''
1027 obstack. The memory is freed when the corresponding architecture
1028 is also freed. */
1029
1030extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1031#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1032#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1033
1034
1035/* Helper function. Force an update of the current architecture.
1036
1037 The actual architecture selected is determined by INFO, \`\`(gdb) set
1038 architecture'' et.al., the existing architecture and BFD's default
1039 architecture. INFO should be initialized to zero and then selected
1040 fields should be updated.
1041
1042 Returns non-zero if the update succeeds */
1043
1044extern int gdbarch_update_p (struct gdbarch_info info);
1045
1046
1047/* Helper function. Find an architecture matching info.
1048
1049 INFO should be initialized using gdbarch_info_init, relevant fields
1050 set, and then finished using gdbarch_info_fill.
1051
1052 Returns the corresponding architecture, or NULL if no matching
1053 architecture was found. "current_gdbarch" is not updated. */
1054
1055extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1056
1057
1058/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1059
1060 FIXME: kettenis/20031124: Of the functions that follow, only
1061 gdbarch_from_bfd is supposed to survive. The others will
1062 dissappear since in the future GDB will (hopefully) be truly
1063 multi-arch. However, for now we're still stuck with the concept of
1064 a single active architecture. */
1065
1066extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1067
1068
1069/* Register per-architecture data-pointer.
1070
1071 Reserve space for a per-architecture data-pointer. An identifier
1072 for the reserved data-pointer is returned. That identifer should
1073 be saved in a local static variable.
1074
1075 Memory for the per-architecture data shall be allocated using
1076 gdbarch_obstack_zalloc. That memory will be deleted when the
1077 corresponding architecture object is deleted.
1078
1079 When a previously created architecture is re-selected, the
1080 per-architecture data-pointer for that previous architecture is
1081 restored. INIT() is not re-called.
1082
1083 Multiple registrarants for any architecture are allowed (and
1084 strongly encouraged). */
1085
1086struct gdbarch_data;
1087
1088typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1089extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1090typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1091extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1092extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1093 struct gdbarch_data *data,
1094 void *pointer);
1095
1096extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1097
1098
1099
1100/* Register per-architecture memory region.
1101
1102 Provide a memory-region swap mechanism. Per-architecture memory
1103 region are created. These memory regions are swapped whenever the
1104 architecture is changed. For a new architecture, the memory region
1105 is initialized with zero (0) and the INIT function is called.
1106
1107 Memory regions are swapped / initialized in the order that they are
1108 registered. NULL DATA and/or INIT values can be specified.
1109
1110 New code should use gdbarch_data_register_*(). */
1111
1112typedef void (gdbarch_swap_ftype) (void);
1113extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1114#define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1115
1116
1117
1118/* Set the dynamic target-system-dependent parameters (architecture,
1119 byte-order, ...) using information found in the BFD */
1120
1121extern void set_gdbarch_from_file (bfd *);
1122
1123
1124/* Initialize the current architecture to the "first" one we find on
1125 our list. */
1126
1127extern void initialize_current_architecture (void);
1128
1129/* gdbarch trace variable */
1130extern int gdbarch_debug;
1131
1132extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1133
1134#endif
1135EOF
1136exec 1>&2
1137#../move-if-change new-gdbarch.h gdbarch.h
1138compare_new gdbarch.h
1139
1140
1141#
1142# C file
1143#
1144
1145exec > new-gdbarch.c
1146copyright
1147cat <<EOF
1148
1149#include "defs.h"
1150#include "arch-utils.h"
1151
1152#include "gdbcmd.h"
1153#include "inferior.h"
1154#include "symcat.h"
1155
1156#include "floatformat.h"
1157
1158#include "gdb_assert.h"
1159#include "gdb_string.h"
1160#include "gdb-events.h"
1161#include "reggroups.h"
1162#include "osabi.h"
1163#include "gdb_obstack.h"
1164
1165/* Static function declarations */
1166
1167static void alloc_gdbarch_data (struct gdbarch *);
1168
1169/* Non-zero if we want to trace architecture code. */
1170
1171#ifndef GDBARCH_DEBUG
1172#define GDBARCH_DEBUG 0
1173#endif
1174int gdbarch_debug = GDBARCH_DEBUG;
1175static void
1176show_gdbarch_debug (struct ui_file *file, int from_tty,
1177 struct cmd_list_element *c, const char *value)
1178{
1179 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1180}
1181
1182static const char *
1183pformat (const struct floatformat **format)
1184{
1185 if (format == NULL)
1186 return "(null)";
1187 else
1188 /* Just print out one of them - this is only for diagnostics. */
1189 return format[0]->name;
1190}
1191
1192EOF
1193
1194# gdbarch open the gdbarch object
1195printf "\n"
1196printf "/* Maintain the struct gdbarch object */\n"
1197printf "\n"
1198printf "struct gdbarch\n"
1199printf "{\n"
1200printf " /* Has this architecture been fully initialized? */\n"
1201printf " int initialized_p;\n"
1202printf "\n"
1203printf " /* An obstack bound to the lifetime of the architecture. */\n"
1204printf " struct obstack *obstack;\n"
1205printf "\n"
1206printf " /* basic architectural information */\n"
1207function_list | while do_read
1208do
1209 if class_is_info_p
1210 then
1211 printf " ${returntype} ${function};\n"
1212 fi
1213done
1214printf "\n"
1215printf " /* target specific vector. */\n"
1216printf " struct gdbarch_tdep *tdep;\n"
1217printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1218printf "\n"
1219printf " /* per-architecture data-pointers */\n"
1220printf " unsigned nr_data;\n"
1221printf " void **data;\n"
1222printf "\n"
1223printf " /* per-architecture swap-regions */\n"
1224printf " struct gdbarch_swap *swap;\n"
1225printf "\n"
1226cat <<EOF
1227 /* Multi-arch values.
1228
1229 When extending this structure you must:
1230
1231 Add the field below.
1232
1233 Declare set/get functions and define the corresponding
1234 macro in gdbarch.h.
1235
1236 gdbarch_alloc(): If zero/NULL is not a suitable default,
1237 initialize the new field.
1238
1239 verify_gdbarch(): Confirm that the target updated the field
1240 correctly.
1241
1242 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1243 field is dumped out
1244
1245 \`\`startup_gdbarch()'': Append an initial value to the static
1246 variable (base values on the host's c-type system).
1247
1248 get_gdbarch(): Implement the set/get functions (probably using
1249 the macro's as shortcuts).
1250
1251 */
1252
1253EOF
1254function_list | while do_read
1255do
1256 if class_is_variable_p
1257 then
1258 printf " ${returntype} ${function};\n"
1259 elif class_is_function_p
1260 then
1261 printf " gdbarch_${function}_ftype *${function};\n"
1262 fi
1263done
1264printf "};\n"
1265
1266# A pre-initialized vector
1267printf "\n"
1268printf "\n"
1269cat <<EOF
1270/* The default architecture uses host values (for want of a better
1271 choice). */
1272EOF
1273printf "\n"
1274printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1275printf "\n"
1276printf "struct gdbarch startup_gdbarch =\n"
1277printf "{\n"
1278printf " 1, /* Always initialized. */\n"
1279printf " NULL, /* The obstack. */\n"
1280printf " /* basic architecture information */\n"
1281function_list | while do_read
1282do
1283 if class_is_info_p
1284 then
1285 printf " ${staticdefault}, /* ${function} */\n"
1286 fi
1287done
1288cat <<EOF
1289 /* target specific vector and its dump routine */
1290 NULL, NULL,
1291 /*per-architecture data-pointers and swap regions */
1292 0, NULL, NULL,
1293 /* Multi-arch values */
1294EOF
1295function_list | while do_read
1296do
1297 if class_is_function_p || class_is_variable_p
1298 then
1299 printf " ${staticdefault}, /* ${function} */\n"
1300 fi
1301done
1302cat <<EOF
1303 /* startup_gdbarch() */
1304};
1305
1306struct gdbarch *current_gdbarch = &startup_gdbarch;
1307EOF
1308
1309# Create a new gdbarch struct
1310cat <<EOF
1311
1312/* Create a new \`\`struct gdbarch'' based on information provided by
1313 \`\`struct gdbarch_info''. */
1314EOF
1315printf "\n"
1316cat <<EOF
1317struct gdbarch *
1318gdbarch_alloc (const struct gdbarch_info *info,
1319 struct gdbarch_tdep *tdep)
1320{
1321 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1322 so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
1323 the current local architecture and not the previous global
1324 architecture. This ensures that the new architectures initial
1325 values are not influenced by the previous architecture. Once
1326 everything is parameterised with gdbarch, this will go away. */
1327 struct gdbarch *current_gdbarch;
1328
1329 /* Create an obstack for allocating all the per-architecture memory,
1330 then use that to allocate the architecture vector. */
1331 struct obstack *obstack = XMALLOC (struct obstack);
1332 obstack_init (obstack);
1333 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1334 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1335 current_gdbarch->obstack = obstack;
1336
1337 alloc_gdbarch_data (current_gdbarch);
1338
1339 current_gdbarch->tdep = tdep;
1340EOF
1341printf "\n"
1342function_list | while do_read
1343do
1344 if class_is_info_p
1345 then
1346 printf " current_gdbarch->${function} = info->${function};\n"
1347 fi
1348done
1349printf "\n"
1350printf " /* Force the explicit initialization of these. */\n"
1351function_list | while do_read
1352do
1353 if class_is_function_p || class_is_variable_p
1354 then
1355 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1356 then
1357 printf " current_gdbarch->${function} = ${predefault};\n"
1358 fi
1359 fi
1360done
1361cat <<EOF
1362 /* gdbarch_alloc() */
1363
1364 return current_gdbarch;
1365}
1366EOF
1367
1368# Free a gdbarch struct.
1369printf "\n"
1370printf "\n"
1371cat <<EOF
1372/* Allocate extra space using the per-architecture obstack. */
1373
1374void *
1375gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1376{
1377 void *data = obstack_alloc (arch->obstack, size);
1378 memset (data, 0, size);
1379 return data;
1380}
1381
1382
1383/* Free a gdbarch struct. This should never happen in normal
1384 operation --- once you've created a gdbarch, you keep it around.
1385 However, if an architecture's init function encounters an error
1386 building the structure, it may need to clean up a partially
1387 constructed gdbarch. */
1388
1389void
1390gdbarch_free (struct gdbarch *arch)
1391{
1392 struct obstack *obstack;
1393 gdb_assert (arch != NULL);
1394 gdb_assert (!arch->initialized_p);
1395 obstack = arch->obstack;
1396 obstack_free (obstack, 0); /* Includes the ARCH. */
1397 xfree (obstack);
1398}
1399EOF
1400
1401# verify a new architecture
1402cat <<EOF
1403
1404
1405/* Ensure that all values in a GDBARCH are reasonable. */
1406
1407/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1408 just happens to match the global variable \`\`current_gdbarch''. That
1409 way macros refering to that variable get the local and not the global
1410 version - ulgh. Once everything is parameterised with gdbarch, this
1411 will go away. */
1412
1413static void
1414verify_gdbarch (struct gdbarch *current_gdbarch)
1415{
1416 struct ui_file *log;
1417 struct cleanup *cleanups;
1418 long dummy;
1419 char *buf;
1420 log = mem_fileopen ();
1421 cleanups = make_cleanup_ui_file_delete (log);
1422 /* fundamental */
1423 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1424 fprintf_unfiltered (log, "\n\tbyte-order");
1425 if (current_gdbarch->bfd_arch_info == NULL)
1426 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1427 /* Check those that need to be defined for the given multi-arch level. */
1428EOF
1429function_list | while do_read
1430do
1431 if class_is_function_p || class_is_variable_p
1432 then
1433 if [ "x${invalid_p}" = "x0" ]
1434 then
1435 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1436 elif class_is_predicate_p
1437 then
1438 printf " /* Skip verify of ${function}, has predicate */\n"
1439 # FIXME: See do_read for potential simplification
1440 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1441 then
1442 printf " if (${invalid_p})\n"
1443 printf " current_gdbarch->${function} = ${postdefault};\n"
1444 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1445 then
1446 printf " if (current_gdbarch->${function} == ${predefault})\n"
1447 printf " current_gdbarch->${function} = ${postdefault};\n"
1448 elif [ -n "${postdefault}" ]
1449 then
1450 printf " if (current_gdbarch->${function} == 0)\n"
1451 printf " current_gdbarch->${function} = ${postdefault};\n"
1452 elif [ -n "${invalid_p}" ]
1453 then
1454 printf " if (${invalid_p})\n"
1455 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1456 elif [ -n "${predefault}" ]
1457 then
1458 printf " if (current_gdbarch->${function} == ${predefault})\n"
1459 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1460 fi
1461 fi
1462done
1463cat <<EOF
1464 buf = ui_file_xstrdup (log, &dummy);
1465 make_cleanup (xfree, buf);
1466 if (strlen (buf) > 0)
1467 internal_error (__FILE__, __LINE__,
1468 _("verify_gdbarch: the following are invalid ...%s"),
1469 buf);
1470 do_cleanups (cleanups);
1471}
1472EOF
1473
1474# dump the structure
1475printf "\n"
1476printf "\n"
1477cat <<EOF
1478/* Print out the details of the current architecture. */
1479
1480/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1481 just happens to match the global variable \`\`current_gdbarch''. That
1482 way macros refering to that variable get the local and not the global
1483 version - ulgh. Once everything is parameterised with gdbarch, this
1484 will go away. */
1485
1486void
1487gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1488{
1489 const char *gdb_xm_file = "<not-defined>";
1490 const char *gdb_nm_file = "<not-defined>";
1491 const char *gdb_tm_file = "<not-defined>";
1492#if defined (GDB_XM_FILE)
1493 gdb_xm_file = GDB_XM_FILE;
1494#endif
1495 fprintf_unfiltered (file,
1496 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1497 gdb_xm_file);
1498#if defined (GDB_NM_FILE)
1499 gdb_nm_file = GDB_NM_FILE;
1500#endif
1501 fprintf_unfiltered (file,
1502 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1503 gdb_nm_file);
1504#if defined (GDB_TM_FILE)
1505 gdb_tm_file = GDB_TM_FILE;
1506#endif
1507 fprintf_unfiltered (file,
1508 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1509 gdb_tm_file);
1510EOF
1511function_list | sort -t: -k 4 | while do_read
1512do
1513 # First the predicate
1514 if class_is_predicate_p
1515 then
1516 if test -n "${macro}"
1517 then
1518 printf "#ifdef ${macro}_P\n"
1519 printf " fprintf_unfiltered (file,\n"
1520 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1521 printf " \"${macro}_P()\",\n"
1522 printf " XSTRING (${macro}_P ()));\n"
1523 printf "#endif\n"
1524 fi
1525 printf " fprintf_unfiltered (file,\n"
1526 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1527 printf " gdbarch_${function}_p (current_gdbarch));\n"
1528 fi
1529 # Print the macro definition.
1530 if test -n "${macro}"
1531 then
1532 printf "#ifdef ${macro}\n"
1533 if class_is_function_p
1534 then
1535 printf " fprintf_unfiltered (file,\n"
1536 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1537 printf " \"${macro}(${actual})\",\n"
1538 printf " XSTRING (${macro} (${actual})));\n"
1539 else
1540 printf " fprintf_unfiltered (file,\n"
1541 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1542 printf " XSTRING (${macro}));\n"
1543 fi
1544 printf "#endif\n"
1545 fi
1546 # Print the corresponding value.
1547 if class_is_function_p
1548 then
1549 printf " fprintf_unfiltered (file,\n"
1550 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1551 printf " (long) current_gdbarch->${function});\n"
1552 else
1553 # It is a variable
1554 case "${print}:${returntype}" in
1555 :CORE_ADDR )
1556 fmt="0x%s"
1557 print="paddr_nz (current_gdbarch->${function})"
1558 ;;
1559 :* )
1560 fmt="%s"
1561 print="paddr_d (current_gdbarch->${function})"
1562 ;;
1563 * )
1564 fmt="%s"
1565 ;;
1566 esac
1567 printf " fprintf_unfiltered (file,\n"
1568 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1569 printf " ${print});\n"
1570 fi
1571done
1572cat <<EOF
1573 if (current_gdbarch->dump_tdep != NULL)
1574 current_gdbarch->dump_tdep (current_gdbarch, file);
1575}
1576EOF
1577
1578
1579# GET/SET
1580printf "\n"
1581cat <<EOF
1582struct gdbarch_tdep *
1583gdbarch_tdep (struct gdbarch *gdbarch)
1584{
1585 if (gdbarch_debug >= 2)
1586 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1587 return gdbarch->tdep;
1588}
1589EOF
1590printf "\n"
1591function_list | while do_read
1592do
1593 if class_is_predicate_p
1594 then
1595 printf "\n"
1596 printf "int\n"
1597 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1598 printf "{\n"
1599 printf " gdb_assert (gdbarch != NULL);\n"
1600 printf " return ${predicate};\n"
1601 printf "}\n"
1602 fi
1603 if class_is_function_p
1604 then
1605 printf "\n"
1606 printf "${returntype}\n"
1607 if [ "x${formal}" = "xvoid" ]
1608 then
1609 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1610 else
1611 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1612 fi
1613 printf "{\n"
1614 printf " gdb_assert (gdbarch != NULL);\n"
1615 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1616 if class_is_predicate_p && test -n "${predefault}"
1617 then
1618 # Allow a call to a function with a predicate.
1619 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1620 fi
1621 printf " if (gdbarch_debug >= 2)\n"
1622 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1623 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1624 then
1625 if class_is_multiarch_p
1626 then
1627 params="gdbarch"
1628 else
1629 params=""
1630 fi
1631 else
1632 if class_is_multiarch_p
1633 then
1634 params="gdbarch, ${actual}"
1635 else
1636 params="${actual}"
1637 fi
1638 fi
1639 if [ "x${returntype}" = "xvoid" ]
1640 then
1641 printf " gdbarch->${function} (${params});\n"
1642 else
1643 printf " return gdbarch->${function} (${params});\n"
1644 fi
1645 printf "}\n"
1646 printf "\n"
1647 printf "void\n"
1648 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1649 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1650 printf "{\n"
1651 printf " gdbarch->${function} = ${function};\n"
1652 printf "}\n"
1653 elif class_is_variable_p
1654 then
1655 printf "\n"
1656 printf "${returntype}\n"
1657 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1658 printf "{\n"
1659 printf " gdb_assert (gdbarch != NULL);\n"
1660 if [ "x${invalid_p}" = "x0" ]
1661 then
1662 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1663 elif [ -n "${invalid_p}" ]
1664 then
1665 printf " /* Check variable is valid. */\n"
1666 printf " gdb_assert (!(${invalid_p}));\n"
1667 elif [ -n "${predefault}" ]
1668 then
1669 printf " /* Check variable changed from pre-default. */\n"
1670 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1671 fi
1672 printf " if (gdbarch_debug >= 2)\n"
1673 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1674 printf " return gdbarch->${function};\n"
1675 printf "}\n"
1676 printf "\n"
1677 printf "void\n"
1678 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1679 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1680 printf "{\n"
1681 printf " gdbarch->${function} = ${function};\n"
1682 printf "}\n"
1683 elif class_is_info_p
1684 then
1685 printf "\n"
1686 printf "${returntype}\n"
1687 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1688 printf "{\n"
1689 printf " gdb_assert (gdbarch != NULL);\n"
1690 printf " if (gdbarch_debug >= 2)\n"
1691 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1692 printf " return gdbarch->${function};\n"
1693 printf "}\n"
1694 fi
1695done
1696
1697# All the trailing guff
1698cat <<EOF
1699
1700
1701/* Keep a registry of per-architecture data-pointers required by GDB
1702 modules. */
1703
1704struct gdbarch_data
1705{
1706 unsigned index;
1707 int init_p;
1708 gdbarch_data_pre_init_ftype *pre_init;
1709 gdbarch_data_post_init_ftype *post_init;
1710};
1711
1712struct gdbarch_data_registration
1713{
1714 struct gdbarch_data *data;
1715 struct gdbarch_data_registration *next;
1716};
1717
1718struct gdbarch_data_registry
1719{
1720 unsigned nr;
1721 struct gdbarch_data_registration *registrations;
1722};
1723
1724struct gdbarch_data_registry gdbarch_data_registry =
1725{
1726 0, NULL,
1727};
1728
1729static struct gdbarch_data *
1730gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1731 gdbarch_data_post_init_ftype *post_init)
1732{
1733 struct gdbarch_data_registration **curr;
1734 /* Append the new registraration. */
1735 for (curr = &gdbarch_data_registry.registrations;
1736 (*curr) != NULL;
1737 curr = &(*curr)->next);
1738 (*curr) = XMALLOC (struct gdbarch_data_registration);
1739 (*curr)->next = NULL;
1740 (*curr)->data = XMALLOC (struct gdbarch_data);
1741 (*curr)->data->index = gdbarch_data_registry.nr++;
1742 (*curr)->data->pre_init = pre_init;
1743 (*curr)->data->post_init = post_init;
1744 (*curr)->data->init_p = 1;
1745 return (*curr)->data;
1746}
1747
1748struct gdbarch_data *
1749gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1750{
1751 return gdbarch_data_register (pre_init, NULL);
1752}
1753
1754struct gdbarch_data *
1755gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1756{
1757 return gdbarch_data_register (NULL, post_init);
1758}
1759
1760/* Create/delete the gdbarch data vector. */
1761
1762static void
1763alloc_gdbarch_data (struct gdbarch *gdbarch)
1764{
1765 gdb_assert (gdbarch->data == NULL);
1766 gdbarch->nr_data = gdbarch_data_registry.nr;
1767 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1768}
1769
1770/* Initialize the current value of the specified per-architecture
1771 data-pointer. */
1772
1773void
1774deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1775 struct gdbarch_data *data,
1776 void *pointer)
1777{
1778 gdb_assert (data->index < gdbarch->nr_data);
1779 gdb_assert (gdbarch->data[data->index] == NULL);
1780 gdb_assert (data->pre_init == NULL);
1781 gdbarch->data[data->index] = pointer;
1782}
1783
1784/* Return the current value of the specified per-architecture
1785 data-pointer. */
1786
1787void *
1788gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1789{
1790 gdb_assert (data->index < gdbarch->nr_data);
1791 if (gdbarch->data[data->index] == NULL)
1792 {
1793 /* The data-pointer isn't initialized, call init() to get a
1794 value. */
1795 if (data->pre_init != NULL)
1796 /* Mid architecture creation: pass just the obstack, and not
1797 the entire architecture, as that way it isn't possible for
1798 pre-init code to refer to undefined architecture
1799 fields. */
1800 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1801 else if (gdbarch->initialized_p
1802 && data->post_init != NULL)
1803 /* Post architecture creation: pass the entire architecture
1804 (as all fields are valid), but be careful to also detect
1805 recursive references. */
1806 {
1807 gdb_assert (data->init_p);
1808 data->init_p = 0;
1809 gdbarch->data[data->index] = data->post_init (gdbarch);
1810 data->init_p = 1;
1811 }
1812 else
1813 /* The architecture initialization hasn't completed - punt -
1814 hope that the caller knows what they are doing. Once
1815 deprecated_set_gdbarch_data has been initialized, this can be
1816 changed to an internal error. */
1817 return NULL;
1818 gdb_assert (gdbarch->data[data->index] != NULL);
1819 }
1820 return gdbarch->data[data->index];
1821}
1822
1823
1824
1825/* Keep a registry of swapped data required by GDB modules. */
1826
1827struct gdbarch_swap
1828{
1829 void *swap;
1830 struct gdbarch_swap_registration *source;
1831 struct gdbarch_swap *next;
1832};
1833
1834struct gdbarch_swap_registration
1835{
1836 void *data;
1837 unsigned long sizeof_data;
1838 gdbarch_swap_ftype *init;
1839 struct gdbarch_swap_registration *next;
1840};
1841
1842struct gdbarch_swap_registry
1843{
1844 int nr;
1845 struct gdbarch_swap_registration *registrations;
1846};
1847
1848struct gdbarch_swap_registry gdbarch_swap_registry =
1849{
1850 0, NULL,
1851};
1852
1853void
1854deprecated_register_gdbarch_swap (void *data,
1855 unsigned long sizeof_data,
1856 gdbarch_swap_ftype *init)
1857{
1858 struct gdbarch_swap_registration **rego;
1859 for (rego = &gdbarch_swap_registry.registrations;
1860 (*rego) != NULL;
1861 rego = &(*rego)->next);
1862 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1863 (*rego)->next = NULL;
1864 (*rego)->init = init;
1865 (*rego)->data = data;
1866 (*rego)->sizeof_data = sizeof_data;
1867}
1868
1869static void
1870current_gdbarch_swap_init_hack (void)
1871{
1872 struct gdbarch_swap_registration *rego;
1873 struct gdbarch_swap **curr = &current_gdbarch->swap;
1874 for (rego = gdbarch_swap_registry.registrations;
1875 rego != NULL;
1876 rego = rego->next)
1877 {
1878 if (rego->data != NULL)
1879 {
1880 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1881 struct gdbarch_swap);
1882 (*curr)->source = rego;
1883 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1884 rego->sizeof_data);
1885 (*curr)->next = NULL;
1886 curr = &(*curr)->next;
1887 }
1888 if (rego->init != NULL)
1889 rego->init ();
1890 }
1891}
1892
1893static struct gdbarch *
1894current_gdbarch_swap_out_hack (void)
1895{
1896 struct gdbarch *old_gdbarch = current_gdbarch;
1897 struct gdbarch_swap *curr;
1898
1899 gdb_assert (old_gdbarch != NULL);
1900 for (curr = old_gdbarch->swap;
1901 curr != NULL;
1902 curr = curr->next)
1903 {
1904 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1905 memset (curr->source->data, 0, curr->source->sizeof_data);
1906 }
1907 current_gdbarch = NULL;
1908 return old_gdbarch;
1909}
1910
1911static void
1912current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1913{
1914 struct gdbarch_swap *curr;
1915
1916 gdb_assert (current_gdbarch == NULL);
1917 for (curr = new_gdbarch->swap;
1918 curr != NULL;
1919 curr = curr->next)
1920 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1921 current_gdbarch = new_gdbarch;
1922}
1923
1924
1925/* Keep a registry of the architectures known by GDB. */
1926
1927struct gdbarch_registration
1928{
1929 enum bfd_architecture bfd_architecture;
1930 gdbarch_init_ftype *init;
1931 gdbarch_dump_tdep_ftype *dump_tdep;
1932 struct gdbarch_list *arches;
1933 struct gdbarch_registration *next;
1934};
1935
1936static struct gdbarch_registration *gdbarch_registry = NULL;
1937
1938static void
1939append_name (const char ***buf, int *nr, const char *name)
1940{
1941 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1942 (*buf)[*nr] = name;
1943 *nr += 1;
1944}
1945
1946const char **
1947gdbarch_printable_names (void)
1948{
1949 /* Accumulate a list of names based on the registed list of
1950 architectures. */
1951 enum bfd_architecture a;
1952 int nr_arches = 0;
1953 const char **arches = NULL;
1954 struct gdbarch_registration *rego;
1955 for (rego = gdbarch_registry;
1956 rego != NULL;
1957 rego = rego->next)
1958 {
1959 const struct bfd_arch_info *ap;
1960 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1961 if (ap == NULL)
1962 internal_error (__FILE__, __LINE__,
1963 _("gdbarch_architecture_names: multi-arch unknown"));
1964 do
1965 {
1966 append_name (&arches, &nr_arches, ap->printable_name);
1967 ap = ap->next;
1968 }
1969 while (ap != NULL);
1970 }
1971 append_name (&arches, &nr_arches, NULL);
1972 return arches;
1973}
1974
1975
1976void
1977gdbarch_register (enum bfd_architecture bfd_architecture,
1978 gdbarch_init_ftype *init,
1979 gdbarch_dump_tdep_ftype *dump_tdep)
1980{
1981 struct gdbarch_registration **curr;
1982 const struct bfd_arch_info *bfd_arch_info;
1983 /* Check that BFD recognizes this architecture */
1984 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1985 if (bfd_arch_info == NULL)
1986 {
1987 internal_error (__FILE__, __LINE__,
1988 _("gdbarch: Attempt to register unknown architecture (%d)"),
1989 bfd_architecture);
1990 }
1991 /* Check that we haven't seen this architecture before */
1992 for (curr = &gdbarch_registry;
1993 (*curr) != NULL;
1994 curr = &(*curr)->next)
1995 {
1996 if (bfd_architecture == (*curr)->bfd_architecture)
1997 internal_error (__FILE__, __LINE__,
1998 _("gdbarch: Duplicate registraration of architecture (%s)"),
1999 bfd_arch_info->printable_name);
2000 }
2001 /* log it */
2002 if (gdbarch_debug)
2003 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2004 bfd_arch_info->printable_name,
2005 (long) init);
2006 /* Append it */
2007 (*curr) = XMALLOC (struct gdbarch_registration);
2008 (*curr)->bfd_architecture = bfd_architecture;
2009 (*curr)->init = init;
2010 (*curr)->dump_tdep = dump_tdep;
2011 (*curr)->arches = NULL;
2012 (*curr)->next = NULL;
2013}
2014
2015void
2016register_gdbarch_init (enum bfd_architecture bfd_architecture,
2017 gdbarch_init_ftype *init)
2018{
2019 gdbarch_register (bfd_architecture, init, NULL);
2020}
2021
2022
2023/* Look for an architecture using gdbarch_info. */
2024
2025struct gdbarch_list *
2026gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2027 const struct gdbarch_info *info)
2028{
2029 for (; arches != NULL; arches = arches->next)
2030 {
2031 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2032 continue;
2033 if (info->byte_order != arches->gdbarch->byte_order)
2034 continue;
2035 if (info->osabi != arches->gdbarch->osabi)
2036 continue;
2037 if (info->target_desc != arches->gdbarch->target_desc)
2038 continue;
2039 return arches;
2040 }
2041 return NULL;
2042}
2043
2044
2045/* Find an architecture that matches the specified INFO. Create a new
2046 architecture if needed. Return that new architecture. Assumes
2047 that there is no current architecture. */
2048
2049static struct gdbarch *
2050find_arch_by_info (struct gdbarch_info info)
2051{
2052 struct gdbarch *new_gdbarch;
2053 struct gdbarch_registration *rego;
2054
2055 /* The existing architecture has been swapped out - all this code
2056 works from a clean slate. */
2057 gdb_assert (current_gdbarch == NULL);
2058
2059 /* Fill in missing parts of the INFO struct using a number of
2060 sources: "set ..."; INFOabfd supplied; and the global
2061 defaults. */
2062 gdbarch_info_fill (&info);
2063
2064 /* Must have found some sort of architecture. */
2065 gdb_assert (info.bfd_arch_info != NULL);
2066
2067 if (gdbarch_debug)
2068 {
2069 fprintf_unfiltered (gdb_stdlog,
2070 "find_arch_by_info: info.bfd_arch_info %s\n",
2071 (info.bfd_arch_info != NULL
2072 ? info.bfd_arch_info->printable_name
2073 : "(null)"));
2074 fprintf_unfiltered (gdb_stdlog,
2075 "find_arch_by_info: info.byte_order %d (%s)\n",
2076 info.byte_order,
2077 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2078 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2079 : "default"));
2080 fprintf_unfiltered (gdb_stdlog,
2081 "find_arch_by_info: info.osabi %d (%s)\n",
2082 info.osabi, gdbarch_osabi_name (info.osabi));
2083 fprintf_unfiltered (gdb_stdlog,
2084 "find_arch_by_info: info.abfd 0x%lx\n",
2085 (long) info.abfd);
2086 fprintf_unfiltered (gdb_stdlog,
2087 "find_arch_by_info: info.tdep_info 0x%lx\n",
2088 (long) info.tdep_info);
2089 }
2090
2091 /* Find the tdep code that knows about this architecture. */
2092 for (rego = gdbarch_registry;
2093 rego != NULL;
2094 rego = rego->next)
2095 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2096 break;
2097 if (rego == NULL)
2098 {
2099 if (gdbarch_debug)
2100 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2101 "No matching architecture\n");
2102 return 0;
2103 }
2104
2105 /* Ask the tdep code for an architecture that matches "info". */
2106 new_gdbarch = rego->init (info, rego->arches);
2107
2108 /* Did the tdep code like it? No. Reject the change and revert to
2109 the old architecture. */
2110 if (new_gdbarch == NULL)
2111 {
2112 if (gdbarch_debug)
2113 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2114 "Target rejected architecture\n");
2115 return NULL;
2116 }
2117
2118 /* Is this a pre-existing architecture (as determined by already
2119 being initialized)? Move it to the front of the architecture
2120 list (keeping the list sorted Most Recently Used). */
2121 if (new_gdbarch->initialized_p)
2122 {
2123 struct gdbarch_list **list;
2124 struct gdbarch_list *this;
2125 if (gdbarch_debug)
2126 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2127 "Previous architecture 0x%08lx (%s) selected\n",
2128 (long) new_gdbarch,
2129 new_gdbarch->bfd_arch_info->printable_name);
2130 /* Find the existing arch in the list. */
2131 for (list = &rego->arches;
2132 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2133 list = &(*list)->next);
2134 /* It had better be in the list of architectures. */
2135 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2136 /* Unlink THIS. */
2137 this = (*list);
2138 (*list) = this->next;
2139 /* Insert THIS at the front. */
2140 this->next = rego->arches;
2141 rego->arches = this;
2142 /* Return it. */
2143 return new_gdbarch;
2144 }
2145
2146 /* It's a new architecture. */
2147 if (gdbarch_debug)
2148 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2149 "New architecture 0x%08lx (%s) selected\n",
2150 (long) new_gdbarch,
2151 new_gdbarch->bfd_arch_info->printable_name);
2152
2153 /* Insert the new architecture into the front of the architecture
2154 list (keep the list sorted Most Recently Used). */
2155 {
2156 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2157 this->next = rego->arches;
2158 this->gdbarch = new_gdbarch;
2159 rego->arches = this;
2160 }
2161
2162 /* Check that the newly installed architecture is valid. Plug in
2163 any post init values. */
2164 new_gdbarch->dump_tdep = rego->dump_tdep;
2165 verify_gdbarch (new_gdbarch);
2166 new_gdbarch->initialized_p = 1;
2167
2168 /* Initialize any per-architecture swap areas. This phase requires
2169 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2170 swap the entire architecture out. */
2171 current_gdbarch = new_gdbarch;
2172 current_gdbarch_swap_init_hack ();
2173 current_gdbarch_swap_out_hack ();
2174
2175 if (gdbarch_debug)
2176 gdbarch_dump (new_gdbarch, gdb_stdlog);
2177
2178 return new_gdbarch;
2179}
2180
2181struct gdbarch *
2182gdbarch_find_by_info (struct gdbarch_info info)
2183{
2184 /* Save the previously selected architecture, setting the global to
2185 NULL. This stops things like gdbarch->init() trying to use the
2186 previous architecture's configuration. The previous architecture
2187 may not even be of the same architecture family. The most recent
2188 architecture of the same family is found at the head of the
2189 rego->arches list. */
2190 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2191
2192 /* Find the specified architecture. */
2193 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2194
2195 /* Restore the existing architecture. */
2196 gdb_assert (current_gdbarch == NULL);
2197 current_gdbarch_swap_in_hack (old_gdbarch);
2198
2199 return new_gdbarch;
2200}
2201
2202/* Make the specified architecture current, swapping the existing one
2203 out. */
2204
2205void
2206deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2207{
2208 gdb_assert (new_gdbarch != NULL);
2209 gdb_assert (current_gdbarch != NULL);
2210 gdb_assert (new_gdbarch->initialized_p);
2211 current_gdbarch_swap_out_hack ();
2212 current_gdbarch_swap_in_hack (new_gdbarch);
2213 architecture_changed_event ();
2214 reinit_frame_cache ();
2215}
2216
2217extern void _initialize_gdbarch (void);
2218
2219void
2220_initialize_gdbarch (void)
2221{
2222 struct cmd_list_element *c;
2223
2224 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2225Set architecture debugging."), _("\\
2226Show architecture debugging."), _("\\
2227When non-zero, architecture debugging is enabled."),
2228 NULL,
2229 show_gdbarch_debug,
2230 &setdebuglist, &showdebuglist);
2231}
2232EOF
2233
2234# close things off
2235exec 1>&2
2236#../move-if-change new-gdbarch.c gdbarch.c
2237compare_new gdbarch.c
This page took 0.029329 seconds and 4 git commands to generate.