Assume TARGET_BYTE_ORDER_SELECTABLE{,_P} is always true.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
... / ...
CommitLineData
1#!/bin/sh -u
2
3# Architecture commands for GDB, the GNU debugger.
4# Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22compare_new ()
23{
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34}
35
36
37# Format of the input table
38read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40do_read ()
41{
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65${line}
66EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 case "${class}" in
80 m ) staticdefault="${predefault}" ;;
81 M ) staticdefault="0" ;;
82 * ) test "${staticdefault}" || staticdefault=0 ;;
83 esac
84 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
85 # multi-arch defaults.
86 # test "${predefault}" || predefault=0
87
88 # come up with a format, use a few guesses for variables
89 case ":${class}:${fmt}:${print}:" in
90 :[vV]::: )
91 if [ "${returntype}" = int ]
92 then
93 fmt="%d"
94 print="${macro}"
95 elif [ "${returntype}" = long ]
96 then
97 fmt="%ld"
98 print="${macro}"
99 fi
100 ;;
101 esac
102 test "${fmt}" || fmt="%ld"
103 test "${print}" || print="(long) ${macro}"
104
105 case "${invalid_p}" in
106 0 ) valid_p=1 ;;
107 "" )
108 if [ -n "${predefault}" ]
109 then
110 #invalid_p="gdbarch->${function} == ${predefault}"
111 valid_p="gdbarch->${function} != ${predefault}"
112 else
113 #invalid_p="gdbarch->${function} == 0"
114 valid_p="gdbarch->${function} != 0"
115 fi
116 ;;
117 * ) valid_p="!(${invalid_p})"
118 esac
119
120 # PREDEFAULT is a valid fallback definition of MEMBER when
121 # multi-arch is not enabled. This ensures that the
122 # default value, when multi-arch is the same as the
123 # default value when not multi-arch. POSTDEFAULT is
124 # always a valid definition of MEMBER as this again
125 # ensures consistency.
126
127 if [ -n "${postdefault}" ]
128 then
129 fallbackdefault="${postdefault}"
130 elif [ -n "${predefault}" ]
131 then
132 fallbackdefault="${predefault}"
133 else
134 fallbackdefault="0"
135 fi
136
137 #NOT YET: See gdbarch.log for basic verification of
138 # database
139
140 break
141 fi
142 done
143 if [ -n "${class}" ]
144 then
145 true
146 else
147 false
148 fi
149}
150
151
152fallback_default_p ()
153{
154 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
155 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
156}
157
158class_is_variable_p ()
159{
160 case "${class}" in
161 *v* | *V* ) true ;;
162 * ) false ;;
163 esac
164}
165
166class_is_function_p ()
167{
168 case "${class}" in
169 *f* | *F* | *m* | *M* ) true ;;
170 * ) false ;;
171 esac
172}
173
174class_is_multiarch_p ()
175{
176 case "${class}" in
177 *m* | *M* ) true ;;
178 * ) false ;;
179 esac
180}
181
182class_is_predicate_p ()
183{
184 case "${class}" in
185 *F* | *V* | *M* ) true ;;
186 * ) false ;;
187 esac
188}
189
190class_is_info_p ()
191{
192 case "${class}" in
193 *i* ) true ;;
194 * ) false ;;
195 esac
196}
197
198
199# dump out/verify the doco
200for field in ${read}
201do
202 case ${field} in
203
204 class ) : ;;
205
206 # # -> line disable
207 # f -> function
208 # hiding a function
209 # F -> function + predicate
210 # hiding a function + predicate to test function validity
211 # v -> variable
212 # hiding a variable
213 # V -> variable + predicate
214 # hiding a variable + predicate to test variables validity
215 # i -> set from info
216 # hiding something from the ``struct info'' object
217 # m -> multi-arch function
218 # hiding a multi-arch function (parameterised with the architecture)
219 # M -> multi-arch function + predicate
220 # hiding a multi-arch function + predicate to test function validity
221
222 level ) : ;;
223
224 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
225 # LEVEL is a predicate on checking that a given method is
226 # initialized (using INVALID_P).
227
228 macro ) : ;;
229
230 # The name of the MACRO that this method is to be accessed by.
231
232 returntype ) : ;;
233
234 # For functions, the return type; for variables, the data type
235
236 function ) : ;;
237
238 # For functions, the member function name; for variables, the
239 # variable name. Member function names are always prefixed with
240 # ``gdbarch_'' for name-space purity.
241
242 formal ) : ;;
243
244 # The formal argument list. It is assumed that the formal
245 # argument list includes the actual name of each list element.
246 # A function with no arguments shall have ``void'' as the
247 # formal argument list.
248
249 actual ) : ;;
250
251 # The list of actual arguments. The arguments specified shall
252 # match the FORMAL list given above. Functions with out
253 # arguments leave this blank.
254
255 attrib ) : ;;
256
257 # Any GCC attributes that should be attached to the function
258 # declaration. At present this field is unused.
259
260 staticdefault ) : ;;
261
262 # To help with the GDB startup a static gdbarch object is
263 # created. STATICDEFAULT is the value to insert into that
264 # static gdbarch object. Since this a static object only
265 # simple expressions can be used.
266
267 # If STATICDEFAULT is empty, zero is used.
268
269 predefault ) : ;;
270
271 # An initial value to assign to MEMBER of the freshly
272 # malloc()ed gdbarch object. After initialization, the
273 # freshly malloc()ed object is passed to the target
274 # architecture code for further updates.
275
276 # If PREDEFAULT is empty, zero is used.
277
278 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
279 # INVALID_P are specified, PREDEFAULT will be used as the
280 # default for the non- multi-arch target.
281
282 # A zero PREDEFAULT function will force the fallback to call
283 # internal_error().
284
285 # Variable declarations can refer to ``gdbarch'' which will
286 # contain the current architecture. Care should be taken.
287
288 postdefault ) : ;;
289
290 # A value to assign to MEMBER of the new gdbarch object should
291 # the target architecture code fail to change the PREDEFAULT
292 # value.
293
294 # If POSTDEFAULT is empty, no post update is performed.
295
296 # If both INVALID_P and POSTDEFAULT are non-empty then
297 # INVALID_P will be used to determine if MEMBER should be
298 # changed to POSTDEFAULT.
299
300 # If a non-empty POSTDEFAULT and a zero INVALID_P are
301 # specified, POSTDEFAULT will be used as the default for the
302 # non- multi-arch target (regardless of the value of
303 # PREDEFAULT).
304
305 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 invalid_p ) : ;;
311
312 # A predicate equation that validates MEMBER. Non-zero is
313 # returned if the code creating the new architecture failed to
314 # initialize MEMBER or the initialized the member is invalid.
315 # If POSTDEFAULT is non-empty then MEMBER will be updated to
316 # that value. If POSTDEFAULT is empty then internal_error()
317 # is called.
318
319 # If INVALID_P is empty, a check that MEMBER is no longer
320 # equal to PREDEFAULT is used.
321
322 # The expression ``0'' disables the INVALID_P check making
323 # PREDEFAULT a legitimate value.
324
325 # See also PREDEFAULT and POSTDEFAULT.
326
327 fmt ) : ;;
328
329 # printf style format string that can be used to print out the
330 # MEMBER. Sometimes "%s" is useful. For functions, this is
331 # ignored and the function address is printed.
332
333 # If FMT is empty, ``%ld'' is used.
334
335 print ) : ;;
336
337 # An optional equation that casts MEMBER to a value suitable
338 # for formatting by FMT.
339
340 # If PRINT is empty, ``(long)'' is used.
341
342 print_p ) : ;;
343
344 # An optional indicator for any predicte to wrap around the
345 # print member code.
346
347 # () -> Call a custom function to do the dump.
348 # exp -> Wrap print up in ``if (${print_p}) ...
349 # ``'' -> No predicate
350
351 # If PRINT_P is empty, ``1'' is always used.
352
353 description ) : ;;
354
355 # Currently unused.
356
357 *) exit 1;;
358 esac
359done
360
361
362function_list ()
363{
364 # See below (DOCO) for description of each field
365 cat <<EOF
366i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
367#
368i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
369# Number of bits in a char or unsigned char for the target machine.
370# Just like CHAR_BIT in <limits.h> but describes the target machine.
371# v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
372#
373# Number of bits in a short or unsigned short for the target machine.
374v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
375# Number of bits in an int or unsigned int for the target machine.
376v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
377# Number of bits in a long or unsigned long for the target machine.
378v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
379# Number of bits in a long long or unsigned long long for the target
380# machine.
381v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
382# Number of bits in a float for the target machine.
383v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
384# Number of bits in a double for the target machine.
385v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
386# Number of bits in a long double for the target machine.
387v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
388# For most targets, a pointer on the target and its representation as an
389# address in GDB have the same size and "look the same". For such a
390# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
391# / addr_bit will be set from it.
392#
393# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
394# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
395#
396# ptr_bit is the size of a pointer on the target
397v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
398# addr_bit is the size of a target address as represented in gdb
399v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
400# Number of bits in a BFD_VMA for the target object file format.
401v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
402#
403# One if \`char' acts like \`signed char', zero if \`unsigned char'.
404v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
405#
406f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
407f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
408f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
409f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
410f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
411f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
412# Function for getting target's idea of a frame pointer. FIXME: GDB's
413# whole scheme for dealing with "frames" and "frame pointers" needs a
414# serious shakedown.
415f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
416#
417M:::void:register_read:int regnum, char *buf:regnum, buf:
418M:::void:register_write:int regnum, char *buf:regnum, buf:
419#
420v:2:NUM_REGS:int:num_regs::::0:-1
421# This macro gives the number of pseudo-registers that live in the
422# register namespace but do not get fetched or stored on the target.
423# These pseudo-registers may be aliases for other registers,
424# combinations of other registers, or they may be computed by GDB.
425v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
426v:2:SP_REGNUM:int:sp_regnum::::0:-1
427v:2:FP_REGNUM:int:fp_regnum::::0:-1
428v:2:PC_REGNUM:int:pc_regnum::::0:-1
429v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
430v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
431v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
432# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
433f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
434# Provide a default mapping from a ecoff register number to a gdb REGNUM.
435f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
436# Provide a default mapping from a DWARF register number to a gdb REGNUM.
437f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
438# Convert from an sdb register number to an internal gdb register number.
439# This should be defined in tm.h, if REGISTER_NAMES is not set up
440# to map one to one onto the sdb register numbers.
441f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
442f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
443f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
444v:2:REGISTER_SIZE:int:register_size::::0:-1
445v:2:REGISTER_BYTES:int:register_bytes::::0:-1
446f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
447f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
448v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
449f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
450v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
451f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
452f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
453# MAP a GDB RAW register number onto a simulator register number. See
454# also include/...-sim.h.
455f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
456F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
457f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
458f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
459#
460v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
461v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
462f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
463v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
464v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
465v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
466v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
467f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
468v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
469v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
470v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
471v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
472v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
473f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
474f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
475f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
476#
477v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
478v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
479f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
480f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
481#
482f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
483f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
484f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
485# This function is called when the value of a pseudo-register needs to
486# be updated. Typically it will be defined on a per-architecture
487# basis.
488F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
489# This function is called when the value of a pseudo-register needs to
490# be set or stored. Typically it will be defined on a
491# per-architecture basis.
492F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
493#
494f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
495f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
496F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
497#
498f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
499f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
500f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
501f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
502F:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
503f:2:POP_FRAME:void:pop_frame:void:-:::0
504#
505f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
506f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
507F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
508f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
509#
510f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
511F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
512#
513f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
514f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
515f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
516f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
517f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
518f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
519v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
520f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
521v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
522#
523f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
524#
525v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
526f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
527f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
528f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
529f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
530f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
531f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
532f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
533f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
534#
535F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
536v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
537F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
538F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
539v:2:PARM_BOUNDARY:int:parm_boundary
540#
541v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
542v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
543v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
544f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
545# On some machines there are bits in addresses which are not really
546# part of the address, but are used by the kernel, the hardware, etc.
547# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
548# we get a "real" address such as one would find in a symbol table.
549# This is used only for addresses of instructions, and even then I'm
550# not sure it's used in all contexts. It exists to deal with there
551# being a few stray bits in the PC which would mislead us, not as some
552# sort of generic thing to handle alignment or segmentation (it's
553# possible it should be in TARGET_READ_PC instead).
554f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
555# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
556# the target needs software single step. An ISA method to implement it.
557#
558# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
559# using the breakpoint system instead of blatting memory directly (as with rs6000).
560#
561# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
562# single step. If not, then implement single step using breakpoints.
563F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
564f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
565f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
566# For SVR4 shared libraries, each call goes through a small piece of
567# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
568# to nonzero if we are current stopped in one of these.
569f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
570# A target might have problems with watchpoints as soon as the stack
571# frame of the current function has been destroyed. This mostly happens
572# as the first action in a funtion's epilogue. in_function_epilogue_p()
573# is defined to return a non-zero value if either the given addr is one
574# instruction after the stack destroying instruction up to the trailing
575# return instruction or if we can figure out that the stack frame has
576# already been invalidated regardless of the value of addr. Targets
577# which don't suffer from that problem could just let this functionality
578# untouched.
579m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
580# Given a vector of command-line arguments, return a newly allocated
581# string which, when passed to the create_inferior function, will be
582# parsed (on Unix systems, by the shell) to yield the same vector.
583# This function should call error() if the argument vector is not
584# representable for this target or if this target does not support
585# command-line arguments.
586# ARGC is the number of elements in the vector.
587# ARGV is an array of strings, one per argument.
588m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
589F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
590EOF
591}
592
593#
594# The .log file
595#
596exec > new-gdbarch.log
597function_list | while do_read
598do
599 cat <<EOF
600${class} ${macro}(${actual})
601 ${returntype} ${function} ($formal)${attrib}
602EOF
603 for r in ${read}
604 do
605 eval echo \"\ \ \ \ ${r}=\${${r}}\"
606 done
607# #fallbackdefault=${fallbackdefault}
608# #valid_p=${valid_p}
609#EOF
610 if class_is_predicate_p && fallback_default_p
611 then
612 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
613 kill $$
614 exit 1
615 fi
616 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
617 then
618 echo "Error: postdefault is useless when invalid_p=0" 1>&2
619 kill $$
620 exit 1
621 fi
622 if class_is_multiarch_p
623 then
624 if class_is_predicate_p ; then :
625 elif test "x${predefault}" = "x"
626 then
627 echo "Error: pure multi-arch function must have a predefault" 1>&2
628 kill $$
629 exit 1
630 fi
631 fi
632 echo ""
633done
634
635exec 1>&2
636compare_new gdbarch.log
637
638
639copyright ()
640{
641cat <<EOF
642/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
643
644/* Dynamic architecture support for GDB, the GNU debugger.
645 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
646
647 This file is part of GDB.
648
649 This program is free software; you can redistribute it and/or modify
650 it under the terms of the GNU General Public License as published by
651 the Free Software Foundation; either version 2 of the License, or
652 (at your option) any later version.
653
654 This program is distributed in the hope that it will be useful,
655 but WITHOUT ANY WARRANTY; without even the implied warranty of
656 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
657 GNU General Public License for more details.
658
659 You should have received a copy of the GNU General Public License
660 along with this program; if not, write to the Free Software
661 Foundation, Inc., 59 Temple Place - Suite 330,
662 Boston, MA 02111-1307, USA. */
663
664/* This file was created with the aid of \`\`gdbarch.sh''.
665
666 The Bourne shell script \`\`gdbarch.sh'' creates the files
667 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
668 against the existing \`\`gdbarch.[hc]''. Any differences found
669 being reported.
670
671 If editing this file, please also run gdbarch.sh and merge any
672 changes into that script. Conversely, when making sweeping changes
673 to this file, modifying gdbarch.sh and using its output may prove
674 easier. */
675
676EOF
677}
678
679#
680# The .h file
681#
682
683exec > new-gdbarch.h
684copyright
685cat <<EOF
686#ifndef GDBARCH_H
687#define GDBARCH_H
688
689#include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
690#if !GDB_MULTI_ARCH
691#include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
692#endif
693
694struct frame_info;
695struct value;
696struct objfile;
697
698extern struct gdbarch *current_gdbarch;
699
700
701/* If any of the following are defined, the target wasn't correctly
702 converted. */
703
704#if GDB_MULTI_ARCH
705#if defined (EXTRA_FRAME_INFO)
706#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
707#endif
708#endif
709
710#if GDB_MULTI_ARCH
711#if defined (FRAME_FIND_SAVED_REGS)
712#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
713#endif
714#endif
715
716#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
717#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
718#endif
719EOF
720
721# function typedef's
722printf "\n"
723printf "\n"
724printf "/* The following are pre-initialized by GDBARCH. */\n"
725function_list | while do_read
726do
727 if class_is_info_p
728 then
729 printf "\n"
730 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
731 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
732 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
733 printf "#error \"Non multi-arch definition of ${macro}\"\n"
734 printf "#endif\n"
735 printf "#if GDB_MULTI_ARCH\n"
736 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
737 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
738 printf "#endif\n"
739 printf "#endif\n"
740 fi
741done
742
743# function typedef's
744printf "\n"
745printf "\n"
746printf "/* The following are initialized by the target dependent code. */\n"
747function_list | while do_read
748do
749 if [ -n "${comment}" ]
750 then
751 echo "${comment}" | sed \
752 -e '2 s,#,/*,' \
753 -e '3,$ s,#, ,' \
754 -e '$ s,$, */,'
755 fi
756 if class_is_multiarch_p
757 then
758 if class_is_predicate_p
759 then
760 printf "\n"
761 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
762 fi
763 else
764 if class_is_predicate_p
765 then
766 printf "\n"
767 printf "#if defined (${macro})\n"
768 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
769 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
770 printf "#if !defined (${macro}_P)\n"
771 printf "#define ${macro}_P() (1)\n"
772 printf "#endif\n"
773 printf "#endif\n"
774 printf "\n"
775 printf "/* Default predicate for non- multi-arch targets. */\n"
776 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
777 printf "#define ${macro}_P() (0)\n"
778 printf "#endif\n"
779 printf "\n"
780 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
781 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
782 printf "#error \"Non multi-arch definition of ${macro}\"\n"
783 printf "#endif\n"
784 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
785 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
786 printf "#endif\n"
787 fi
788 fi
789 if class_is_variable_p
790 then
791 if fallback_default_p || class_is_predicate_p
792 then
793 printf "\n"
794 printf "/* Default (value) for non- multi-arch platforms. */\n"
795 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
796 echo "#define ${macro} (${fallbackdefault})" \
797 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
798 printf "#endif\n"
799 fi
800 printf "\n"
801 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
802 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
803 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
804 printf "#error \"Non multi-arch definition of ${macro}\"\n"
805 printf "#endif\n"
806 printf "#if GDB_MULTI_ARCH\n"
807 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
808 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
809 printf "#endif\n"
810 printf "#endif\n"
811 fi
812 if class_is_function_p
813 then
814 if class_is_multiarch_p ; then :
815 elif fallback_default_p || class_is_predicate_p
816 then
817 printf "\n"
818 printf "/* Default (function) for non- multi-arch platforms. */\n"
819 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
820 if [ "x${fallbackdefault}" = "x0" ]
821 then
822 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
823 else
824 # FIXME: Should be passing current_gdbarch through!
825 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
826 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
827 fi
828 printf "#endif\n"
829 fi
830 printf "\n"
831 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
832 then
833 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
834 elif class_is_multiarch_p
835 then
836 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
837 else
838 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
839 fi
840 if [ "x${formal}" = "xvoid" ]
841 then
842 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
843 else
844 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
845 fi
846 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
847 if class_is_multiarch_p ; then :
848 else
849 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
850 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#endif\n"
852 printf "#if GDB_MULTI_ARCH\n"
853 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
854 if [ "x${actual}" = "x" ]
855 then
856 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
857 elif [ "x${actual}" = "x-" ]
858 then
859 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
860 else
861 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
862 fi
863 printf "#endif\n"
864 printf "#endif\n"
865 fi
866 fi
867done
868
869# close it off
870cat <<EOF
871
872extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
873
874
875/* Mechanism for co-ordinating the selection of a specific
876 architecture.
877
878 GDB targets (*-tdep.c) can register an interest in a specific
879 architecture. Other GDB components can register a need to maintain
880 per-architecture data.
881
882 The mechanisms below ensures that there is only a loose connection
883 between the set-architecture command and the various GDB
884 components. Each component can independently register their need
885 to maintain architecture specific data with gdbarch.
886
887 Pragmatics:
888
889 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
890 didn't scale.
891
892 The more traditional mega-struct containing architecture specific
893 data for all the various GDB components was also considered. Since
894 GDB is built from a variable number of (fairly independent)
895 components it was determined that the global aproach was not
896 applicable. */
897
898
899/* Register a new architectural family with GDB.
900
901 Register support for the specified ARCHITECTURE with GDB. When
902 gdbarch determines that the specified architecture has been
903 selected, the corresponding INIT function is called.
904
905 --
906
907 The INIT function takes two parameters: INFO which contains the
908 information available to gdbarch about the (possibly new)
909 architecture; ARCHES which is a list of the previously created
910 \`\`struct gdbarch'' for this architecture.
911
912 The INIT function parameter INFO shall, as far as possible, be
913 pre-initialized with information obtained from INFO.ABFD or
914 previously selected architecture (if similar).
915
916 The INIT function shall return any of: NULL - indicating that it
917 doesn't recognize the selected architecture; an existing \`\`struct
918 gdbarch'' from the ARCHES list - indicating that the new
919 architecture is just a synonym for an earlier architecture (see
920 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
921 - that describes the selected architecture (see gdbarch_alloc()).
922
923 The DUMP_TDEP function shall print out all target specific values.
924 Care should be taken to ensure that the function works in both the
925 multi-arch and non- multi-arch cases. */
926
927struct gdbarch_list
928{
929 struct gdbarch *gdbarch;
930 struct gdbarch_list *next;
931};
932
933struct gdbarch_info
934{
935 /* Use default: NULL (ZERO). */
936 const struct bfd_arch_info *bfd_arch_info;
937
938 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
939 int byte_order;
940
941 /* Use default: NULL (ZERO). */
942 bfd *abfd;
943
944 /* Use default: NULL (ZERO). */
945 struct gdbarch_tdep_info *tdep_info;
946};
947
948typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
949typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
950
951/* DEPRECATED - use gdbarch_register() */
952extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
953
954extern void gdbarch_register (enum bfd_architecture architecture,
955 gdbarch_init_ftype *,
956 gdbarch_dump_tdep_ftype *);
957
958
959/* Return a freshly allocated, NULL terminated, array of the valid
960 architecture names. Since architectures are registered during the
961 _initialize phase this function only returns useful information
962 once initialization has been completed. */
963
964extern const char **gdbarch_printable_names (void);
965
966
967/* Helper function. Search the list of ARCHES for a GDBARCH that
968 matches the information provided by INFO. */
969
970extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
971
972
973/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
974 basic initialization using values obtained from the INFO andTDEP
975 parameters. set_gdbarch_*() functions are called to complete the
976 initialization of the object. */
977
978extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
979
980
981/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
982 It is assumed that the caller freeds the \`\`struct
983 gdbarch_tdep''. */
984
985extern void gdbarch_free (struct gdbarch *);
986
987
988/* Helper function. Force an update of the current architecture.
989
990 The actual architecture selected is determined by INFO, \`\`(gdb) set
991 architecture'' et.al., the existing architecture and BFD's default
992 architecture. INFO should be initialized to zero and then selected
993 fields should be updated.
994
995 Returns non-zero if the update succeeds */
996
997extern int gdbarch_update_p (struct gdbarch_info info);
998
999
1000
1001/* Register per-architecture data-pointer.
1002
1003 Reserve space for a per-architecture data-pointer. An identifier
1004 for the reserved data-pointer is returned. That identifer should
1005 be saved in a local static variable.
1006
1007 The per-architecture data-pointer can be initialized in one of two
1008 ways: The value can be set explicitly using a call to
1009 set_gdbarch_data(); the value can be set implicitly using the value
1010 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1011 called after the basic architecture vector has been created.
1012
1013 When a previously created architecture is re-selected, the
1014 per-architecture data-pointer for that previous architecture is
1015 restored. INIT() is not called.
1016
1017 During initialization, multiple assignments of the data-pointer are
1018 allowed, non-NULL values are deleted by calling FREE(). If the
1019 architecture is deleted using gdbarch_free() all non-NULL data
1020 pointers are also deleted using FREE().
1021
1022 Multiple registrarants for any architecture are allowed (and
1023 strongly encouraged). */
1024
1025struct gdbarch_data;
1026
1027typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1028typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1029 void *pointer);
1030extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1031 gdbarch_data_free_ftype *free);
1032extern void set_gdbarch_data (struct gdbarch *gdbarch,
1033 struct gdbarch_data *data,
1034 void *pointer);
1035
1036extern void *gdbarch_data (struct gdbarch_data*);
1037
1038
1039/* Register per-architecture memory region.
1040
1041 Provide a memory-region swap mechanism. Per-architecture memory
1042 region are created. These memory regions are swapped whenever the
1043 architecture is changed. For a new architecture, the memory region
1044 is initialized with zero (0) and the INIT function is called.
1045
1046 Memory regions are swapped / initialized in the order that they are
1047 registered. NULL DATA and/or INIT values can be specified.
1048
1049 New code should use register_gdbarch_data(). */
1050
1051typedef void (gdbarch_swap_ftype) (void);
1052extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1053#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1054
1055
1056
1057/* The target-system-dependent byte order is dynamic */
1058
1059extern int target_byte_order;
1060#ifndef TARGET_BYTE_ORDER
1061#define TARGET_BYTE_ORDER (target_byte_order + 0)
1062#endif
1063
1064extern int target_byte_order_auto;
1065#ifndef TARGET_BYTE_ORDER_AUTO
1066#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1067#endif
1068
1069
1070
1071/* The target-system-dependent BFD architecture is dynamic */
1072
1073extern int target_architecture_auto;
1074#ifndef TARGET_ARCHITECTURE_AUTO
1075#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1076#endif
1077
1078extern const struct bfd_arch_info *target_architecture;
1079#ifndef TARGET_ARCHITECTURE
1080#define TARGET_ARCHITECTURE (target_architecture + 0)
1081#endif
1082
1083
1084/* The target-system-dependent disassembler is semi-dynamic */
1085
1086extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1087 unsigned int len, disassemble_info *info);
1088
1089extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1090 disassemble_info *info);
1091
1092extern void dis_asm_print_address (bfd_vma addr,
1093 disassemble_info *info);
1094
1095extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1096extern disassemble_info tm_print_insn_info;
1097#ifndef TARGET_PRINT_INSN_INFO
1098#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1099#endif
1100
1101
1102
1103/* Set the dynamic target-system-dependent parameters (architecture,
1104 byte-order, ...) using information found in the BFD */
1105
1106extern void set_gdbarch_from_file (bfd *);
1107
1108
1109/* Initialize the current architecture to the "first" one we find on
1110 our list. */
1111
1112extern void initialize_current_architecture (void);
1113
1114/* For non-multiarched targets, do any initialization of the default
1115 gdbarch object necessary after the _initialize_MODULE functions
1116 have run. */
1117extern void initialize_non_multiarch ();
1118
1119/* gdbarch trace variable */
1120extern int gdbarch_debug;
1121
1122extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1123
1124#endif
1125EOF
1126exec 1>&2
1127#../move-if-change new-gdbarch.h gdbarch.h
1128compare_new gdbarch.h
1129
1130
1131#
1132# C file
1133#
1134
1135exec > new-gdbarch.c
1136copyright
1137cat <<EOF
1138
1139#include "defs.h"
1140#include "arch-utils.h"
1141
1142#if GDB_MULTI_ARCH
1143#include "gdbcmd.h"
1144#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1145#else
1146/* Just include everything in sight so that the every old definition
1147 of macro is visible. */
1148#include "gdb_string.h"
1149#include <ctype.h>
1150#include "symtab.h"
1151#include "frame.h"
1152#include "inferior.h"
1153#include "breakpoint.h"
1154#include "gdb_wait.h"
1155#include "gdbcore.h"
1156#include "gdbcmd.h"
1157#include "target.h"
1158#include "gdbthread.h"
1159#include "annotate.h"
1160#include "symfile.h" /* for overlay functions */
1161#include "value.h" /* For old tm.h/nm.h macros. */
1162#endif
1163#include "symcat.h"
1164
1165#include "floatformat.h"
1166
1167#include "gdb_assert.h"
1168#include "gdb-events.h"
1169
1170/* Static function declarations */
1171
1172static void verify_gdbarch (struct gdbarch *gdbarch);
1173static void alloc_gdbarch_data (struct gdbarch *);
1174static void init_gdbarch_data (struct gdbarch *);
1175static void free_gdbarch_data (struct gdbarch *);
1176static void init_gdbarch_swap (struct gdbarch *);
1177static void swapout_gdbarch_swap (struct gdbarch *);
1178static void swapin_gdbarch_swap (struct gdbarch *);
1179
1180/* Convenience macro for allocting typesafe memory. */
1181
1182#ifndef XMALLOC
1183#define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1184#endif
1185
1186
1187/* Non-zero if we want to trace architecture code. */
1188
1189#ifndef GDBARCH_DEBUG
1190#define GDBARCH_DEBUG 0
1191#endif
1192int gdbarch_debug = GDBARCH_DEBUG;
1193
1194EOF
1195
1196# gdbarch open the gdbarch object
1197printf "\n"
1198printf "/* Maintain the struct gdbarch object */\n"
1199printf "\n"
1200printf "struct gdbarch\n"
1201printf "{\n"
1202printf " /* basic architectural information */\n"
1203function_list | while do_read
1204do
1205 if class_is_info_p
1206 then
1207 printf " ${returntype} ${function};\n"
1208 fi
1209done
1210printf "\n"
1211printf " /* target specific vector. */\n"
1212printf " struct gdbarch_tdep *tdep;\n"
1213printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1214printf "\n"
1215printf " /* per-architecture data-pointers */\n"
1216printf " unsigned nr_data;\n"
1217printf " void **data;\n"
1218printf "\n"
1219printf " /* per-architecture swap-regions */\n"
1220printf " struct gdbarch_swap *swap;\n"
1221printf "\n"
1222cat <<EOF
1223 /* Multi-arch values.
1224
1225 When extending this structure you must:
1226
1227 Add the field below.
1228
1229 Declare set/get functions and define the corresponding
1230 macro in gdbarch.h.
1231
1232 gdbarch_alloc(): If zero/NULL is not a suitable default,
1233 initialize the new field.
1234
1235 verify_gdbarch(): Confirm that the target updated the field
1236 correctly.
1237
1238 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1239 field is dumped out
1240
1241 \`\`startup_gdbarch()'': Append an initial value to the static
1242 variable (base values on the host's c-type system).
1243
1244 get_gdbarch(): Implement the set/get functions (probably using
1245 the macro's as shortcuts).
1246
1247 */
1248
1249EOF
1250function_list | while do_read
1251do
1252 if class_is_variable_p
1253 then
1254 printf " ${returntype} ${function};\n"
1255 elif class_is_function_p
1256 then
1257 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1258 fi
1259done
1260printf "};\n"
1261
1262# A pre-initialized vector
1263printf "\n"
1264printf "\n"
1265cat <<EOF
1266/* The default architecture uses host values (for want of a better
1267 choice). */
1268EOF
1269printf "\n"
1270printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1271printf "\n"
1272printf "struct gdbarch startup_gdbarch =\n"
1273printf "{\n"
1274printf " /* basic architecture information */\n"
1275function_list | while do_read
1276do
1277 if class_is_info_p
1278 then
1279 printf " ${staticdefault},\n"
1280 fi
1281done
1282cat <<EOF
1283 /* target specific vector and its dump routine */
1284 NULL, NULL,
1285 /*per-architecture data-pointers and swap regions */
1286 0, NULL, NULL,
1287 /* Multi-arch values */
1288EOF
1289function_list | while do_read
1290do
1291 if class_is_function_p || class_is_variable_p
1292 then
1293 printf " ${staticdefault},\n"
1294 fi
1295done
1296cat <<EOF
1297 /* startup_gdbarch() */
1298};
1299
1300struct gdbarch *current_gdbarch = &startup_gdbarch;
1301
1302/* Do any initialization needed for a non-multiarch configuration
1303 after the _initialize_MODULE functions have been run. */
1304void
1305initialize_non_multiarch ()
1306{
1307 alloc_gdbarch_data (&startup_gdbarch);
1308 init_gdbarch_data (&startup_gdbarch);
1309}
1310EOF
1311
1312# Create a new gdbarch struct
1313printf "\n"
1314printf "\n"
1315cat <<EOF
1316/* Create a new \`\`struct gdbarch'' based on information provided by
1317 \`\`struct gdbarch_info''. */
1318EOF
1319printf "\n"
1320cat <<EOF
1321struct gdbarch *
1322gdbarch_alloc (const struct gdbarch_info *info,
1323 struct gdbarch_tdep *tdep)
1324{
1325 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1326 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1327 the current local architecture and not the previous global
1328 architecture. This ensures that the new architectures initial
1329 values are not influenced by the previous architecture. Once
1330 everything is parameterised with gdbarch, this will go away. */
1331 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1332 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1333
1334 alloc_gdbarch_data (current_gdbarch);
1335
1336 current_gdbarch->tdep = tdep;
1337EOF
1338printf "\n"
1339function_list | while do_read
1340do
1341 if class_is_info_p
1342 then
1343 printf " current_gdbarch->${function} = info->${function};\n"
1344 fi
1345done
1346printf "\n"
1347printf " /* Force the explicit initialization of these. */\n"
1348function_list | while do_read
1349do
1350 if class_is_function_p || class_is_variable_p
1351 then
1352 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1353 then
1354 printf " current_gdbarch->${function} = ${predefault};\n"
1355 fi
1356 fi
1357done
1358cat <<EOF
1359 /* gdbarch_alloc() */
1360
1361 return current_gdbarch;
1362}
1363EOF
1364
1365# Free a gdbarch struct.
1366printf "\n"
1367printf "\n"
1368cat <<EOF
1369/* Free a gdbarch struct. This should never happen in normal
1370 operation --- once you've created a gdbarch, you keep it around.
1371 However, if an architecture's init function encounters an error
1372 building the structure, it may need to clean up a partially
1373 constructed gdbarch. */
1374
1375void
1376gdbarch_free (struct gdbarch *arch)
1377{
1378 gdb_assert (arch != NULL);
1379 free_gdbarch_data (arch);
1380 xfree (arch);
1381}
1382EOF
1383
1384# verify a new architecture
1385printf "\n"
1386printf "\n"
1387printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1388printf "\n"
1389cat <<EOF
1390static void
1391verify_gdbarch (struct gdbarch *gdbarch)
1392{
1393 struct ui_file *log;
1394 struct cleanup *cleanups;
1395 long dummy;
1396 char *buf;
1397 /* Only perform sanity checks on a multi-arch target. */
1398 if (!GDB_MULTI_ARCH)
1399 return;
1400 log = mem_fileopen ();
1401 cleanups = make_cleanup_ui_file_delete (log);
1402 /* fundamental */
1403 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1404 fprintf_unfiltered (log, "\n\tbyte-order");
1405 if (gdbarch->bfd_arch_info == NULL)
1406 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1407 /* Check those that need to be defined for the given multi-arch level. */
1408EOF
1409function_list | while do_read
1410do
1411 if class_is_function_p || class_is_variable_p
1412 then
1413 if [ "x${invalid_p}" = "x0" ]
1414 then
1415 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1416 elif class_is_predicate_p
1417 then
1418 printf " /* Skip verify of ${function}, has predicate */\n"
1419 # FIXME: See do_read for potential simplification
1420 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1421 then
1422 printf " if (${invalid_p})\n"
1423 printf " gdbarch->${function} = ${postdefault};\n"
1424 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1425 then
1426 printf " if (gdbarch->${function} == ${predefault})\n"
1427 printf " gdbarch->${function} = ${postdefault};\n"
1428 elif [ -n "${postdefault}" ]
1429 then
1430 printf " if (gdbarch->${function} == 0)\n"
1431 printf " gdbarch->${function} = ${postdefault};\n"
1432 elif [ -n "${invalid_p}" ]
1433 then
1434 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1435 printf " && (${invalid_p}))\n"
1436 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1437 elif [ -n "${predefault}" ]
1438 then
1439 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1440 printf " && (gdbarch->${function} == ${predefault}))\n"
1441 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1442 fi
1443 fi
1444done
1445cat <<EOF
1446 buf = ui_file_xstrdup (log, &dummy);
1447 make_cleanup (xfree, buf);
1448 if (strlen (buf) > 0)
1449 internal_error (__FILE__, __LINE__,
1450 "verify_gdbarch: the following are invalid ...%s",
1451 buf);
1452 do_cleanups (cleanups);
1453}
1454EOF
1455
1456# dump the structure
1457printf "\n"
1458printf "\n"
1459cat <<EOF
1460/* Print out the details of the current architecture. */
1461
1462/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1463 just happens to match the global variable \`\`current_gdbarch''. That
1464 way macros refering to that variable get the local and not the global
1465 version - ulgh. Once everything is parameterised with gdbarch, this
1466 will go away. */
1467
1468void
1469gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1470{
1471 fprintf_unfiltered (file,
1472 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1473 GDB_MULTI_ARCH);
1474EOF
1475function_list | sort -t: +2 | while do_read
1476do
1477 # multiarch functions don't have macros.
1478 if class_is_multiarch_p
1479 then
1480 printf " if (GDB_MULTI_ARCH)\n"
1481 printf " fprintf_unfiltered (file,\n"
1482 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1483 printf " (long) current_gdbarch->${function});\n"
1484 continue
1485 fi
1486 # Print the macro definition.
1487 printf "#ifdef ${macro}\n"
1488 if [ "x${returntype}" = "xvoid" ]
1489 then
1490 printf "#if GDB_MULTI_ARCH\n"
1491 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1492 fi
1493 if class_is_function_p
1494 then
1495 printf " fprintf_unfiltered (file,\n"
1496 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1497 printf " \"${macro}(${actual})\",\n"
1498 printf " XSTRING (${macro} (${actual})));\n"
1499 else
1500 printf " fprintf_unfiltered (file,\n"
1501 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1502 printf " XSTRING (${macro}));\n"
1503 fi
1504 # Print the architecture vector value
1505 if [ "x${returntype}" = "xvoid" ]
1506 then
1507 printf "#endif\n"
1508 fi
1509 if [ "x${print_p}" = "x()" ]
1510 then
1511 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1512 elif [ "x${print_p}" = "x0" ]
1513 then
1514 printf " /* skip print of ${macro}, print_p == 0. */\n"
1515 elif [ -n "${print_p}" ]
1516 then
1517 printf " if (${print_p})\n"
1518 printf " fprintf_unfiltered (file,\n"
1519 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1520 printf " ${print});\n"
1521 elif class_is_function_p
1522 then
1523 printf " if (GDB_MULTI_ARCH)\n"
1524 printf " fprintf_unfiltered (file,\n"
1525 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1526 printf " (long) current_gdbarch->${function}\n"
1527 printf " /*${macro} ()*/);\n"
1528 else
1529 printf " fprintf_unfiltered (file,\n"
1530 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1531 printf " ${print});\n"
1532 fi
1533 printf "#endif\n"
1534done
1535cat <<EOF
1536 if (current_gdbarch->dump_tdep != NULL)
1537 current_gdbarch->dump_tdep (current_gdbarch, file);
1538}
1539EOF
1540
1541
1542# GET/SET
1543printf "\n"
1544cat <<EOF
1545struct gdbarch_tdep *
1546gdbarch_tdep (struct gdbarch *gdbarch)
1547{
1548 if (gdbarch_debug >= 2)
1549 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1550 return gdbarch->tdep;
1551}
1552EOF
1553printf "\n"
1554function_list | while do_read
1555do
1556 if class_is_predicate_p
1557 then
1558 printf "\n"
1559 printf "int\n"
1560 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1561 printf "{\n"
1562 if [ -n "${valid_p}" ]
1563 then
1564 printf " return ${valid_p};\n"
1565 else
1566 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1567 fi
1568 printf "}\n"
1569 fi
1570 if class_is_function_p
1571 then
1572 printf "\n"
1573 printf "${returntype}\n"
1574 if [ "x${formal}" = "xvoid" ]
1575 then
1576 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1577 else
1578 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1579 fi
1580 printf "{\n"
1581 printf " if (gdbarch->${function} == 0)\n"
1582 printf " internal_error (__FILE__, __LINE__,\n"
1583 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1584 printf " if (gdbarch_debug >= 2)\n"
1585 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1586 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1587 then
1588 if class_is_multiarch_p
1589 then
1590 params="gdbarch"
1591 else
1592 params=""
1593 fi
1594 else
1595 if class_is_multiarch_p
1596 then
1597 params="gdbarch, ${actual}"
1598 else
1599 params="${actual}"
1600 fi
1601 fi
1602 if [ "x${returntype}" = "xvoid" ]
1603 then
1604 printf " gdbarch->${function} (${params});\n"
1605 else
1606 printf " return gdbarch->${function} (${params});\n"
1607 fi
1608 printf "}\n"
1609 printf "\n"
1610 printf "void\n"
1611 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1612 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1613 printf "{\n"
1614 printf " gdbarch->${function} = ${function};\n"
1615 printf "}\n"
1616 elif class_is_variable_p
1617 then
1618 printf "\n"
1619 printf "${returntype}\n"
1620 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1621 printf "{\n"
1622 if [ "x${invalid_p}" = "x0" ]
1623 then
1624 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1625 elif [ -n "${invalid_p}" ]
1626 then
1627 printf " if (${invalid_p})\n"
1628 printf " internal_error (__FILE__, __LINE__,\n"
1629 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1630 elif [ -n "${predefault}" ]
1631 then
1632 printf " if (gdbarch->${function} == ${predefault})\n"
1633 printf " internal_error (__FILE__, __LINE__,\n"
1634 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1635 fi
1636 printf " if (gdbarch_debug >= 2)\n"
1637 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1638 printf " return gdbarch->${function};\n"
1639 printf "}\n"
1640 printf "\n"
1641 printf "void\n"
1642 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1643 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1644 printf "{\n"
1645 printf " gdbarch->${function} = ${function};\n"
1646 printf "}\n"
1647 elif class_is_info_p
1648 then
1649 printf "\n"
1650 printf "${returntype}\n"
1651 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1652 printf "{\n"
1653 printf " if (gdbarch_debug >= 2)\n"
1654 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1655 printf " return gdbarch->${function};\n"
1656 printf "}\n"
1657 fi
1658done
1659
1660# All the trailing guff
1661cat <<EOF
1662
1663
1664/* Keep a registry of per-architecture data-pointers required by GDB
1665 modules. */
1666
1667struct gdbarch_data
1668{
1669 unsigned index;
1670 gdbarch_data_init_ftype *init;
1671 gdbarch_data_free_ftype *free;
1672};
1673
1674struct gdbarch_data_registration
1675{
1676 struct gdbarch_data *data;
1677 struct gdbarch_data_registration *next;
1678};
1679
1680struct gdbarch_data_registry
1681{
1682 unsigned nr;
1683 struct gdbarch_data_registration *registrations;
1684};
1685
1686struct gdbarch_data_registry gdbarch_data_registry =
1687{
1688 0, NULL,
1689};
1690
1691struct gdbarch_data *
1692register_gdbarch_data (gdbarch_data_init_ftype *init,
1693 gdbarch_data_free_ftype *free)
1694{
1695 struct gdbarch_data_registration **curr;
1696 for (curr = &gdbarch_data_registry.registrations;
1697 (*curr) != NULL;
1698 curr = &(*curr)->next);
1699 (*curr) = XMALLOC (struct gdbarch_data_registration);
1700 (*curr)->next = NULL;
1701 (*curr)->data = XMALLOC (struct gdbarch_data);
1702 (*curr)->data->index = gdbarch_data_registry.nr++;
1703 (*curr)->data->init = init;
1704 (*curr)->data->free = free;
1705 return (*curr)->data;
1706}
1707
1708
1709/* Walk through all the registered users initializing each in turn. */
1710
1711static void
1712init_gdbarch_data (struct gdbarch *gdbarch)
1713{
1714 struct gdbarch_data_registration *rego;
1715 for (rego = gdbarch_data_registry.registrations;
1716 rego != NULL;
1717 rego = rego->next)
1718 {
1719 struct gdbarch_data *data = rego->data;
1720 gdb_assert (data->index < gdbarch->nr_data);
1721 if (data->init != NULL)
1722 {
1723 void *pointer = data->init (gdbarch);
1724 set_gdbarch_data (gdbarch, data, pointer);
1725 }
1726 }
1727}
1728
1729/* Create/delete the gdbarch data vector. */
1730
1731static void
1732alloc_gdbarch_data (struct gdbarch *gdbarch)
1733{
1734 gdb_assert (gdbarch->data == NULL);
1735 gdbarch->nr_data = gdbarch_data_registry.nr;
1736 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1737}
1738
1739static void
1740free_gdbarch_data (struct gdbarch *gdbarch)
1741{
1742 struct gdbarch_data_registration *rego;
1743 gdb_assert (gdbarch->data != NULL);
1744 for (rego = gdbarch_data_registry.registrations;
1745 rego != NULL;
1746 rego = rego->next)
1747 {
1748 struct gdbarch_data *data = rego->data;
1749 gdb_assert (data->index < gdbarch->nr_data);
1750 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1751 {
1752 data->free (gdbarch, gdbarch->data[data->index]);
1753 gdbarch->data[data->index] = NULL;
1754 }
1755 }
1756 xfree (gdbarch->data);
1757 gdbarch->data = NULL;
1758}
1759
1760
1761/* Initialize the current value of thee specified per-architecture
1762 data-pointer. */
1763
1764void
1765set_gdbarch_data (struct gdbarch *gdbarch,
1766 struct gdbarch_data *data,
1767 void *pointer)
1768{
1769 gdb_assert (data->index < gdbarch->nr_data);
1770 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1771 data->free (gdbarch, gdbarch->data[data->index]);
1772 gdbarch->data[data->index] = pointer;
1773}
1774
1775/* Return the current value of the specified per-architecture
1776 data-pointer. */
1777
1778void *
1779gdbarch_data (struct gdbarch_data *data)
1780{
1781 gdb_assert (data->index < current_gdbarch->nr_data);
1782 return current_gdbarch->data[data->index];
1783}
1784
1785
1786
1787/* Keep a registry of swapped data required by GDB modules. */
1788
1789struct gdbarch_swap
1790{
1791 void *swap;
1792 struct gdbarch_swap_registration *source;
1793 struct gdbarch_swap *next;
1794};
1795
1796struct gdbarch_swap_registration
1797{
1798 void *data;
1799 unsigned long sizeof_data;
1800 gdbarch_swap_ftype *init;
1801 struct gdbarch_swap_registration *next;
1802};
1803
1804struct gdbarch_swap_registry
1805{
1806 int nr;
1807 struct gdbarch_swap_registration *registrations;
1808};
1809
1810struct gdbarch_swap_registry gdbarch_swap_registry =
1811{
1812 0, NULL,
1813};
1814
1815void
1816register_gdbarch_swap (void *data,
1817 unsigned long sizeof_data,
1818 gdbarch_swap_ftype *init)
1819{
1820 struct gdbarch_swap_registration **rego;
1821 for (rego = &gdbarch_swap_registry.registrations;
1822 (*rego) != NULL;
1823 rego = &(*rego)->next);
1824 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1825 (*rego)->next = NULL;
1826 (*rego)->init = init;
1827 (*rego)->data = data;
1828 (*rego)->sizeof_data = sizeof_data;
1829}
1830
1831
1832static void
1833init_gdbarch_swap (struct gdbarch *gdbarch)
1834{
1835 struct gdbarch_swap_registration *rego;
1836 struct gdbarch_swap **curr = &gdbarch->swap;
1837 for (rego = gdbarch_swap_registry.registrations;
1838 rego != NULL;
1839 rego = rego->next)
1840 {
1841 if (rego->data != NULL)
1842 {
1843 (*curr) = XMALLOC (struct gdbarch_swap);
1844 (*curr)->source = rego;
1845 (*curr)->swap = xmalloc (rego->sizeof_data);
1846 (*curr)->next = NULL;
1847 memset (rego->data, 0, rego->sizeof_data);
1848 curr = &(*curr)->next;
1849 }
1850 if (rego->init != NULL)
1851 rego->init ();
1852 }
1853}
1854
1855static void
1856swapout_gdbarch_swap (struct gdbarch *gdbarch)
1857{
1858 struct gdbarch_swap *curr;
1859 for (curr = gdbarch->swap;
1860 curr != NULL;
1861 curr = curr->next)
1862 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1863}
1864
1865static void
1866swapin_gdbarch_swap (struct gdbarch *gdbarch)
1867{
1868 struct gdbarch_swap *curr;
1869 for (curr = gdbarch->swap;
1870 curr != NULL;
1871 curr = curr->next)
1872 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1873}
1874
1875
1876/* Keep a registry of the architectures known by GDB. */
1877
1878struct gdbarch_registration
1879{
1880 enum bfd_architecture bfd_architecture;
1881 gdbarch_init_ftype *init;
1882 gdbarch_dump_tdep_ftype *dump_tdep;
1883 struct gdbarch_list *arches;
1884 struct gdbarch_registration *next;
1885};
1886
1887static struct gdbarch_registration *gdbarch_registry = NULL;
1888
1889static void
1890append_name (const char ***buf, int *nr, const char *name)
1891{
1892 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1893 (*buf)[*nr] = name;
1894 *nr += 1;
1895}
1896
1897const char **
1898gdbarch_printable_names (void)
1899{
1900 if (GDB_MULTI_ARCH)
1901 {
1902 /* Accumulate a list of names based on the registed list of
1903 architectures. */
1904 enum bfd_architecture a;
1905 int nr_arches = 0;
1906 const char **arches = NULL;
1907 struct gdbarch_registration *rego;
1908 for (rego = gdbarch_registry;
1909 rego != NULL;
1910 rego = rego->next)
1911 {
1912 const struct bfd_arch_info *ap;
1913 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1914 if (ap == NULL)
1915 internal_error (__FILE__, __LINE__,
1916 "gdbarch_architecture_names: multi-arch unknown");
1917 do
1918 {
1919 append_name (&arches, &nr_arches, ap->printable_name);
1920 ap = ap->next;
1921 }
1922 while (ap != NULL);
1923 }
1924 append_name (&arches, &nr_arches, NULL);
1925 return arches;
1926 }
1927 else
1928 /* Just return all the architectures that BFD knows. Assume that
1929 the legacy architecture framework supports them. */
1930 return bfd_arch_list ();
1931}
1932
1933
1934void
1935gdbarch_register (enum bfd_architecture bfd_architecture,
1936 gdbarch_init_ftype *init,
1937 gdbarch_dump_tdep_ftype *dump_tdep)
1938{
1939 struct gdbarch_registration **curr;
1940 const struct bfd_arch_info *bfd_arch_info;
1941 /* Check that BFD recognizes this architecture */
1942 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1943 if (bfd_arch_info == NULL)
1944 {
1945 internal_error (__FILE__, __LINE__,
1946 "gdbarch: Attempt to register unknown architecture (%d)",
1947 bfd_architecture);
1948 }
1949 /* Check that we haven't seen this architecture before */
1950 for (curr = &gdbarch_registry;
1951 (*curr) != NULL;
1952 curr = &(*curr)->next)
1953 {
1954 if (bfd_architecture == (*curr)->bfd_architecture)
1955 internal_error (__FILE__, __LINE__,
1956 "gdbarch: Duplicate registraration of architecture (%s)",
1957 bfd_arch_info->printable_name);
1958 }
1959 /* log it */
1960 if (gdbarch_debug)
1961 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1962 bfd_arch_info->printable_name,
1963 (long) init);
1964 /* Append it */
1965 (*curr) = XMALLOC (struct gdbarch_registration);
1966 (*curr)->bfd_architecture = bfd_architecture;
1967 (*curr)->init = init;
1968 (*curr)->dump_tdep = dump_tdep;
1969 (*curr)->arches = NULL;
1970 (*curr)->next = NULL;
1971 /* When non- multi-arch, install whatever target dump routine we've
1972 been provided - hopefully that routine has been written correctly
1973 and works regardless of multi-arch. */
1974 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1975 && startup_gdbarch.dump_tdep == NULL)
1976 startup_gdbarch.dump_tdep = dump_tdep;
1977}
1978
1979void
1980register_gdbarch_init (enum bfd_architecture bfd_architecture,
1981 gdbarch_init_ftype *init)
1982{
1983 gdbarch_register (bfd_architecture, init, NULL);
1984}
1985
1986
1987/* Look for an architecture using gdbarch_info. Base search on only
1988 BFD_ARCH_INFO and BYTE_ORDER. */
1989
1990struct gdbarch_list *
1991gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1992 const struct gdbarch_info *info)
1993{
1994 for (; arches != NULL; arches = arches->next)
1995 {
1996 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1997 continue;
1998 if (info->byte_order != arches->gdbarch->byte_order)
1999 continue;
2000 return arches;
2001 }
2002 return NULL;
2003}
2004
2005
2006/* Update the current architecture. Return ZERO if the update request
2007 failed. */
2008
2009int
2010gdbarch_update_p (struct gdbarch_info info)
2011{
2012 struct gdbarch *new_gdbarch;
2013 struct gdbarch_list **list;
2014 struct gdbarch_registration *rego;
2015
2016 /* Fill in missing parts of the INFO struct using a number of
2017 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2018
2019 /* \`\`(gdb) set architecture ...'' */
2020 if (info.bfd_arch_info == NULL
2021 && !TARGET_ARCHITECTURE_AUTO)
2022 info.bfd_arch_info = TARGET_ARCHITECTURE;
2023 if (info.bfd_arch_info == NULL
2024 && info.abfd != NULL
2025 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2026 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2027 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2028 if (info.bfd_arch_info == NULL)
2029 info.bfd_arch_info = TARGET_ARCHITECTURE;
2030
2031 /* \`\`(gdb) set byte-order ...'' */
2032 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2033 && !TARGET_BYTE_ORDER_AUTO)
2034 info.byte_order = TARGET_BYTE_ORDER;
2035 /* From the INFO struct. */
2036 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2037 && info.abfd != NULL)
2038 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2039 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2040 : BFD_ENDIAN_UNKNOWN);
2041 /* From the current target. */
2042 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2043 info.byte_order = TARGET_BYTE_ORDER;
2044
2045 /* Must have found some sort of architecture. */
2046 gdb_assert (info.bfd_arch_info != NULL);
2047
2048 if (gdbarch_debug)
2049 {
2050 fprintf_unfiltered (gdb_stdlog,
2051 "gdbarch_update: info.bfd_arch_info %s\n",
2052 (info.bfd_arch_info != NULL
2053 ? info.bfd_arch_info->printable_name
2054 : "(null)"));
2055 fprintf_unfiltered (gdb_stdlog,
2056 "gdbarch_update: info.byte_order %d (%s)\n",
2057 info.byte_order,
2058 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2059 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2060 : "default"));
2061 fprintf_unfiltered (gdb_stdlog,
2062 "gdbarch_update: info.abfd 0x%lx\n",
2063 (long) info.abfd);
2064 fprintf_unfiltered (gdb_stdlog,
2065 "gdbarch_update: info.tdep_info 0x%lx\n",
2066 (long) info.tdep_info);
2067 }
2068
2069 /* Find the target that knows about this architecture. */
2070 for (rego = gdbarch_registry;
2071 rego != NULL;
2072 rego = rego->next)
2073 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2074 break;
2075 if (rego == NULL)
2076 {
2077 if (gdbarch_debug)
2078 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2079 return 0;
2080 }
2081
2082 /* Ask the target for a replacement architecture. */
2083 new_gdbarch = rego->init (info, rego->arches);
2084
2085 /* Did the target like it? No. Reject the change. */
2086 if (new_gdbarch == NULL)
2087 {
2088 if (gdbarch_debug)
2089 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2090 return 0;
2091 }
2092
2093 /* Did the architecture change? No. Do nothing. */
2094 if (current_gdbarch == new_gdbarch)
2095 {
2096 if (gdbarch_debug)
2097 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2098 (long) new_gdbarch,
2099 new_gdbarch->bfd_arch_info->printable_name);
2100 return 1;
2101 }
2102
2103 /* Swap all data belonging to the old target out */
2104 swapout_gdbarch_swap (current_gdbarch);
2105
2106 /* Is this a pre-existing architecture? Yes. Swap it in. */
2107 for (list = &rego->arches;
2108 (*list) != NULL;
2109 list = &(*list)->next)
2110 {
2111 if ((*list)->gdbarch == new_gdbarch)
2112 {
2113 if (gdbarch_debug)
2114 fprintf_unfiltered (gdb_stdlog,
2115 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2116 (long) new_gdbarch,
2117 new_gdbarch->bfd_arch_info->printable_name);
2118 current_gdbarch = new_gdbarch;
2119 swapin_gdbarch_swap (new_gdbarch);
2120 architecture_changed_event ();
2121 return 1;
2122 }
2123 }
2124
2125 /* Append this new architecture to this targets list. */
2126 (*list) = XMALLOC (struct gdbarch_list);
2127 (*list)->next = NULL;
2128 (*list)->gdbarch = new_gdbarch;
2129
2130 /* Switch to this new architecture. Dump it out. */
2131 current_gdbarch = new_gdbarch;
2132 if (gdbarch_debug)
2133 {
2134 fprintf_unfiltered (gdb_stdlog,
2135 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2136 (long) new_gdbarch,
2137 new_gdbarch->bfd_arch_info->printable_name);
2138 }
2139
2140 /* Check that the newly installed architecture is valid. Plug in
2141 any post init values. */
2142 new_gdbarch->dump_tdep = rego->dump_tdep;
2143 verify_gdbarch (new_gdbarch);
2144
2145 /* Initialize the per-architecture memory (swap) areas.
2146 CURRENT_GDBARCH must be update before these modules are
2147 called. */
2148 init_gdbarch_swap (new_gdbarch);
2149
2150 /* Initialize the per-architecture data-pointer of all parties that
2151 registered an interest in this architecture. CURRENT_GDBARCH
2152 must be updated before these modules are called. */
2153 init_gdbarch_data (new_gdbarch);
2154 architecture_changed_event ();
2155
2156 if (gdbarch_debug)
2157 gdbarch_dump (current_gdbarch, gdb_stdlog);
2158
2159 return 1;
2160}
2161
2162
2163/* Disassembler */
2164
2165/* Pointer to the target-dependent disassembly function. */
2166int (*tm_print_insn) (bfd_vma, disassemble_info *);
2167disassemble_info tm_print_insn_info;
2168
2169
2170extern void _initialize_gdbarch (void);
2171
2172void
2173_initialize_gdbarch (void)
2174{
2175 struct cmd_list_element *c;
2176
2177 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2178 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2179 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2180 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2181 tm_print_insn_info.print_address_func = dis_asm_print_address;
2182
2183 add_show_from_set (add_set_cmd ("arch",
2184 class_maintenance,
2185 var_zinteger,
2186 (char *)&gdbarch_debug,
2187 "Set architecture debugging.\\n\\
2188When non-zero, architecture debugging is enabled.", &setdebuglist),
2189 &showdebuglist);
2190 c = add_set_cmd ("archdebug",
2191 class_maintenance,
2192 var_zinteger,
2193 (char *)&gdbarch_debug,
2194 "Set architecture debugging.\\n\\
2195When non-zero, architecture debugging is enabled.", &setlist);
2196
2197 deprecate_cmd (c, "set debug arch");
2198 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2199}
2200EOF
2201
2202# close things off
2203exec 1>&2
2204#../move-if-change new-gdbarch.c gdbarch.c
2205compare_new gdbarch.c
This page took 0.119076 seconds and 4 git commands to generate.