* gdb.base/gdb1555.exp: New file.
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
... / ...
CommitLineData
1/* Low level interface to ptrace, for the remote server for GDB.
2 Copyright 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22#include "server.h"
23#include "linux-low.h"
24
25#include <sys/wait.h>
26#include <stdio.h>
27#include <sys/param.h>
28#include <sys/dir.h>
29#include <sys/ptrace.h>
30#include <sys/user.h>
31#include <signal.h>
32#include <sys/ioctl.h>
33#include <fcntl.h>
34#include <string.h>
35#include <stdlib.h>
36#include <unistd.h>
37
38/* ``all_threads'' is keyed by the LWP ID - it should be the thread ID instead,
39 however. This requires changing the ID in place when we go from !using_threads
40 to using_threads, immediately.
41
42 ``all_processes'' is keyed by the process ID - which on Linux is (presently)
43 the same as the LWP ID. */
44
45struct inferior_list all_processes;
46
47/* FIXME this is a bit of a hack, and could be removed. */
48int stopping_threads;
49
50/* FIXME make into a target method? */
51int using_threads;
52
53static void linux_resume_one_process (struct inferior_list_entry *entry,
54 int step, int signal);
55static void linux_resume (struct thread_resume *resume_info);
56static void stop_all_processes (void);
57static int linux_wait_for_event (struct thread_info *child);
58
59struct pending_signals
60{
61 int signal;
62 struct pending_signals *prev;
63};
64
65#define PTRACE_ARG3_TYPE long
66#define PTRACE_XFER_TYPE long
67
68#ifdef HAVE_LINUX_REGSETS
69static int use_regsets_p = 1;
70#endif
71
72extern int errno;
73
74int debug_threads = 0;
75
76#define pid_of(proc) ((proc)->head.id)
77
78/* FIXME: Delete eventually. */
79#define inferior_pid (pid_of (get_thread_process (current_inferior)))
80
81/* This function should only be called if the process got a SIGTRAP.
82 The SIGTRAP could mean several things.
83
84 On i386, where decr_pc_after_break is non-zero:
85 If we were single-stepping this process using PTRACE_SINGLESTEP,
86 we will get only the one SIGTRAP (even if the instruction we
87 stepped over was a breakpoint). The value of $eip will be the
88 next instruction.
89 If we continue the process using PTRACE_CONT, we will get a
90 SIGTRAP when we hit a breakpoint. The value of $eip will be
91 the instruction after the breakpoint (i.e. needs to be
92 decremented). If we report the SIGTRAP to GDB, we must also
93 report the undecremented PC. If we cancel the SIGTRAP, we
94 must resume at the decremented PC.
95
96 (Presumably, not yet tested) On a non-decr_pc_after_break machine
97 with hardware or kernel single-step:
98 If we single-step over a breakpoint instruction, our PC will
99 point at the following instruction. If we continue and hit a
100 breakpoint instruction, our PC will point at the breakpoint
101 instruction. */
102
103static CORE_ADDR
104get_stop_pc (void)
105{
106 CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
107
108 if (get_thread_process (current_inferior)->stepping)
109 return stop_pc;
110 else
111 return stop_pc - the_low_target.decr_pc_after_break;
112}
113
114static void *
115add_process (int pid)
116{
117 struct process_info *process;
118
119 process = (struct process_info *) malloc (sizeof (*process));
120 memset (process, 0, sizeof (*process));
121
122 process->head.id = pid;
123
124 /* Default to tid == lwpid == pid. */
125 process->tid = pid;
126 process->lwpid = pid;
127
128 add_inferior_to_list (&all_processes, &process->head);
129
130 return process;
131}
132
133/* Start an inferior process and returns its pid.
134 ALLARGS is a vector of program-name and args. */
135
136static int
137linux_create_inferior (char *program, char **allargs)
138{
139 void *new_process;
140 int pid;
141
142 pid = fork ();
143 if (pid < 0)
144 perror_with_name ("fork");
145
146 if (pid == 0)
147 {
148 ptrace (PTRACE_TRACEME, 0, 0, 0);
149
150 signal (__SIGRTMIN + 1, SIG_DFL);
151
152 setpgid (0, 0);
153
154 execv (program, allargs);
155
156 fprintf (stderr, "Cannot exec %s: %s.\n", program,
157 strerror (errno));
158 fflush (stderr);
159 _exit (0177);
160 }
161
162 new_process = add_process (pid);
163 add_thread (pid, new_process);
164
165 return pid;
166}
167
168/* Attach to an inferior process. */
169
170void
171linux_attach_lwp (int pid, int tid)
172{
173 struct process_info *new_process;
174
175 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
176 {
177 fprintf (stderr, "Cannot attach to process %d: %s (%d)\n", pid,
178 strerror (errno), errno);
179 fflush (stderr);
180
181 /* If we fail to attach to an LWP, just return. */
182 if (!using_threads)
183 _exit (0177);
184 return;
185 }
186
187 new_process = (struct process_info *) add_process (pid);
188 add_thread (tid, new_process);
189
190 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
191 brings it to a halt. We should ignore that SIGSTOP and resume the process
192 (unless this is the first process, in which case the flag will be cleared
193 in linux_attach).
194
195 On the other hand, if we are currently trying to stop all threads, we
196 should treat the new thread as if we had sent it a SIGSTOP. This works
197 because we are guaranteed that add_process added us to the end of the
198 list, and so the new thread has not yet reached wait_for_sigstop (but
199 will). */
200 if (! stopping_threads)
201 new_process->stop_expected = 1;
202}
203
204int
205linux_attach (int pid)
206{
207 struct process_info *process;
208
209 linux_attach_lwp (pid, pid);
210
211 /* Don't ignore the initial SIGSTOP if we just attached to this process. */
212 process = (struct process_info *) find_inferior_id (&all_processes, pid);
213 process->stop_expected = 0;
214
215 return 0;
216}
217
218/* Kill the inferior process. Make us have no inferior. */
219
220static void
221linux_kill_one_process (struct inferior_list_entry *entry)
222{
223 struct thread_info *thread = (struct thread_info *) entry;
224 struct process_info *process = get_thread_process (thread);
225 int wstat;
226
227 do
228 {
229 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
230
231 /* Make sure it died. The loop is most likely unnecessary. */
232 wstat = linux_wait_for_event (thread);
233 } while (WIFSTOPPED (wstat));
234}
235
236static void
237linux_kill (void)
238{
239 for_each_inferior (&all_threads, linux_kill_one_process);
240}
241
242static void
243linux_detach_one_process (struct inferior_list_entry *entry)
244{
245 struct thread_info *thread = (struct thread_info *) entry;
246 struct process_info *process = get_thread_process (thread);
247
248 ptrace (PTRACE_DETACH, pid_of (process), 0, 0);
249}
250
251static void
252linux_detach (void)
253{
254 for_each_inferior (&all_threads, linux_detach_one_process);
255}
256
257/* Return nonzero if the given thread is still alive. */
258static int
259linux_thread_alive (int tid)
260{
261 if (find_inferior_id (&all_threads, tid) != NULL)
262 return 1;
263 else
264 return 0;
265}
266
267/* Return nonzero if this process stopped at a breakpoint which
268 no longer appears to be inserted. Also adjust the PC
269 appropriately to resume where the breakpoint used to be. */
270static int
271check_removed_breakpoint (struct process_info *event_child)
272{
273 CORE_ADDR stop_pc;
274 struct thread_info *saved_inferior;
275
276 if (event_child->pending_is_breakpoint == 0)
277 return 0;
278
279 if (debug_threads)
280 fprintf (stderr, "Checking for breakpoint.\n");
281
282 saved_inferior = current_inferior;
283 current_inferior = get_process_thread (event_child);
284
285 stop_pc = get_stop_pc ();
286
287 /* If the PC has changed since we stopped, then we shouldn't do
288 anything. This happens if, for instance, GDB handled the
289 decr_pc_after_break subtraction itself. */
290 if (stop_pc != event_child->pending_stop_pc)
291 {
292 if (debug_threads)
293 fprintf (stderr, "Ignoring, PC was changed.\n");
294
295 event_child->pending_is_breakpoint = 0;
296 current_inferior = saved_inferior;
297 return 0;
298 }
299
300 /* If the breakpoint is still there, we will report hitting it. */
301 if ((*the_low_target.breakpoint_at) (stop_pc))
302 {
303 if (debug_threads)
304 fprintf (stderr, "Ignoring, breakpoint is still present.\n");
305 current_inferior = saved_inferior;
306 return 0;
307 }
308
309 if (debug_threads)
310 fprintf (stderr, "Removed breakpoint.\n");
311
312 /* For decr_pc_after_break targets, here is where we perform the
313 decrement. We go immediately from this function to resuming,
314 and can not safely call get_stop_pc () again. */
315 if (the_low_target.set_pc != NULL)
316 (*the_low_target.set_pc) (stop_pc);
317
318 /* We consumed the pending SIGTRAP. */
319 event_child->pending_is_breakpoint = 0;
320 event_child->status_pending_p = 0;
321 event_child->status_pending = 0;
322
323 current_inferior = saved_inferior;
324 return 1;
325}
326
327/* Return 1 if this process has an interesting status pending. This function
328 may silently resume an inferior process. */
329static int
330status_pending_p (struct inferior_list_entry *entry, void *dummy)
331{
332 struct process_info *process = (struct process_info *) entry;
333
334 if (process->status_pending_p)
335 if (check_removed_breakpoint (process))
336 {
337 /* This thread was stopped at a breakpoint, and the breakpoint
338 is now gone. We were told to continue (or step...) all threads,
339 so GDB isn't trying to single-step past this breakpoint.
340 So instead of reporting the old SIGTRAP, pretend we got to
341 the breakpoint just after it was removed instead of just
342 before; resume the process. */
343 linux_resume_one_process (&process->head, 0, 0);
344 return 0;
345 }
346
347 return process->status_pending_p;
348}
349
350static void
351linux_wait_for_process (struct process_info **childp, int *wstatp)
352{
353 int ret;
354 int to_wait_for = -1;
355
356 if (*childp != NULL)
357 to_wait_for = (*childp)->lwpid;
358
359 while (1)
360 {
361 ret = waitpid (to_wait_for, wstatp, WNOHANG);
362
363 if (ret == -1)
364 {
365 if (errno != ECHILD)
366 perror_with_name ("waitpid");
367 }
368 else if (ret > 0)
369 break;
370
371 ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
372
373 if (ret == -1)
374 {
375 if (errno != ECHILD)
376 perror_with_name ("waitpid (WCLONE)");
377 }
378 else if (ret > 0)
379 break;
380
381 usleep (1000);
382 }
383
384 if (debug_threads
385 && (!WIFSTOPPED (*wstatp)
386 || (WSTOPSIG (*wstatp) != 32
387 && WSTOPSIG (*wstatp) != 33)))
388 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
389
390 if (to_wait_for == -1)
391 *childp = (struct process_info *) find_inferior_id (&all_processes, ret);
392
393 (*childp)->stopped = 1;
394 (*childp)->pending_is_breakpoint = 0;
395
396 if (debug_threads
397 && WIFSTOPPED (*wstatp))
398 {
399 current_inferior = (struct thread_info *)
400 find_inferior_id (&all_threads, (*childp)->tid);
401 /* For testing only; i386_stop_pc prints out a diagnostic. */
402 if (the_low_target.get_pc != NULL)
403 get_stop_pc ();
404 }
405}
406
407static int
408linux_wait_for_event (struct thread_info *child)
409{
410 CORE_ADDR stop_pc;
411 struct process_info *event_child;
412 int wstat;
413
414 /* Check for a process with a pending status. */
415 /* It is possible that the user changed the pending task's registers since
416 it stopped. We correctly handle the change of PC if we hit a breakpoint
417 (in check_removed_breakpoint); signals should be reported anyway. */
418 if (child == NULL)
419 {
420 event_child = (struct process_info *)
421 find_inferior (&all_processes, status_pending_p, NULL);
422 if (debug_threads && event_child)
423 fprintf (stderr, "Got a pending child %d\n", event_child->lwpid);
424 }
425 else
426 {
427 event_child = get_thread_process (child);
428 if (event_child->status_pending_p
429 && check_removed_breakpoint (event_child))
430 event_child = NULL;
431 }
432
433 if (event_child != NULL)
434 {
435 if (event_child->status_pending_p)
436 {
437 if (debug_threads)
438 fprintf (stderr, "Got an event from pending child %d (%04x)\n",
439 event_child->lwpid, event_child->status_pending);
440 wstat = event_child->status_pending;
441 event_child->status_pending_p = 0;
442 event_child->status_pending = 0;
443 current_inferior = get_process_thread (event_child);
444 return wstat;
445 }
446 }
447
448 /* We only enter this loop if no process has a pending wait status. Thus
449 any action taken in response to a wait status inside this loop is
450 responding as soon as we detect the status, not after any pending
451 events. */
452 while (1)
453 {
454 if (child == NULL)
455 event_child = NULL;
456 else
457 event_child = get_thread_process (child);
458
459 linux_wait_for_process (&event_child, &wstat);
460
461 if (event_child == NULL)
462 error ("event from unknown child");
463
464 current_inferior = (struct thread_info *)
465 find_inferior_id (&all_threads, event_child->tid);
466
467 if (using_threads)
468 {
469 /* Check for thread exit. */
470 if (! WIFSTOPPED (wstat))
471 {
472 if (debug_threads)
473 fprintf (stderr, "Thread %d (LWP %d) exiting\n",
474 event_child->tid, event_child->head.id);
475
476 /* If the last thread is exiting, just return. */
477 if (all_threads.head == all_threads.tail)
478 return wstat;
479
480 dead_thread_notify (event_child->tid);
481
482 remove_inferior (&all_processes, &event_child->head);
483 free (event_child);
484 remove_thread (current_inferior);
485 current_inferior = (struct thread_info *) all_threads.head;
486
487 /* If we were waiting for this particular child to do something...
488 well, it did something. */
489 if (child != NULL)
490 return wstat;
491
492 /* Wait for a more interesting event. */
493 continue;
494 }
495
496 if (WIFSTOPPED (wstat)
497 && WSTOPSIG (wstat) == SIGSTOP
498 && event_child->stop_expected)
499 {
500 if (debug_threads)
501 fprintf (stderr, "Expected stop.\n");
502 event_child->stop_expected = 0;
503 linux_resume_one_process (&event_child->head,
504 event_child->stepping, 0);
505 continue;
506 }
507
508 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
509 thread library? */
510 if (WIFSTOPPED (wstat)
511 && (WSTOPSIG (wstat) == __SIGRTMIN
512 || WSTOPSIG (wstat) == __SIGRTMIN + 1))
513 {
514 if (debug_threads)
515 fprintf (stderr, "Ignored signal %d for %d (LWP %d).\n",
516 WSTOPSIG (wstat), event_child->tid,
517 event_child->head.id);
518 linux_resume_one_process (&event_child->head,
519 event_child->stepping,
520 WSTOPSIG (wstat));
521 continue;
522 }
523 }
524
525 /* If this event was not handled above, and is not a SIGTRAP, report
526 it. */
527 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
528 return wstat;
529
530 /* If this target does not support breakpoints, we simply report the
531 SIGTRAP; it's of no concern to us. */
532 if (the_low_target.get_pc == NULL)
533 return wstat;
534
535 stop_pc = get_stop_pc ();
536
537 /* bp_reinsert will only be set if we were single-stepping.
538 Notice that we will resume the process after hitting
539 a gdbserver breakpoint; single-stepping to/over one
540 is not supported (yet). */
541 if (event_child->bp_reinsert != 0)
542 {
543 if (debug_threads)
544 fprintf (stderr, "Reinserted breakpoint.\n");
545 reinsert_breakpoint (event_child->bp_reinsert);
546 event_child->bp_reinsert = 0;
547
548 /* Clear the single-stepping flag and SIGTRAP as we resume. */
549 linux_resume_one_process (&event_child->head, 0, 0);
550 continue;
551 }
552
553 if (debug_threads)
554 fprintf (stderr, "Hit a (non-reinsert) breakpoint.\n");
555
556 if (check_breakpoints (stop_pc) != 0)
557 {
558 /* We hit one of our own breakpoints. We mark it as a pending
559 breakpoint, so that check_removed_breakpoint () will do the PC
560 adjustment for us at the appropriate time. */
561 event_child->pending_is_breakpoint = 1;
562 event_child->pending_stop_pc = stop_pc;
563
564 /* Now we need to put the breakpoint back. We continue in the event
565 loop instead of simply replacing the breakpoint right away,
566 in order to not lose signals sent to the thread that hit the
567 breakpoint. Unfortunately this increases the window where another
568 thread could sneak past the removed breakpoint. For the current
569 use of server-side breakpoints (thread creation) this is
570 acceptable; but it needs to be considered before this breakpoint
571 mechanism can be used in more general ways. For some breakpoints
572 it may be necessary to stop all other threads, but that should
573 be avoided where possible.
574
575 If breakpoint_reinsert_addr is NULL, that means that we can
576 use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint,
577 mark it for reinsertion, and single-step.
578
579 Otherwise, call the target function to figure out where we need
580 our temporary breakpoint, create it, and continue executing this
581 process. */
582 if (the_low_target.breakpoint_reinsert_addr == NULL)
583 {
584 event_child->bp_reinsert = stop_pc;
585 uninsert_breakpoint (stop_pc);
586 linux_resume_one_process (&event_child->head, 1, 0);
587 }
588 else
589 {
590 reinsert_breakpoint_by_bp
591 (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
592 linux_resume_one_process (&event_child->head, 0, 0);
593 }
594
595 continue;
596 }
597
598 /* If we were single-stepping, we definitely want to report the
599 SIGTRAP. The single-step operation has completed, so also
600 clear the stepping flag; in general this does not matter,
601 because the SIGTRAP will be reported to the client, which
602 will give us a new action for this thread, but clear it for
603 consistency anyway. It's safe to clear the stepping flag
604 because the only consumer of get_stop_pc () after this point
605 is check_removed_breakpoint, and pending_is_breakpoint is not
606 set. It might be wiser to use a step_completed flag instead. */
607 if (event_child->stepping)
608 {
609 event_child->stepping = 0;
610 return wstat;
611 }
612
613 /* A SIGTRAP that we can't explain. It may have been a breakpoint.
614 Check if it is a breakpoint, and if so mark the process information
615 accordingly. This will handle both the necessary fiddling with the
616 PC on decr_pc_after_break targets and suppressing extra threads
617 hitting a breakpoint if two hit it at once and then GDB removes it
618 after the first is reported. Arguably it would be better to report
619 multiple threads hitting breakpoints simultaneously, but the current
620 remote protocol does not allow this. */
621 if ((*the_low_target.breakpoint_at) (stop_pc))
622 {
623 event_child->pending_is_breakpoint = 1;
624 event_child->pending_stop_pc = stop_pc;
625 }
626
627 return wstat;
628 }
629
630 /* NOTREACHED */
631 return 0;
632}
633
634/* Wait for process, returns status. */
635
636static unsigned char
637linux_wait (char *status)
638{
639 int w;
640 struct thread_info *child = NULL;
641
642retry:
643 /* If we were only supposed to resume one thread, only wait for
644 that thread - if it's still alive. If it died, however - which
645 can happen if we're coming from the thread death case below -
646 then we need to make sure we restart the other threads. We could
647 pick a thread at random or restart all; restarting all is less
648 arbitrary. */
649 if (cont_thread > 0)
650 {
651 child = (struct thread_info *) find_inferior_id (&all_threads,
652 cont_thread);
653
654 /* No stepping, no signal - unless one is pending already, of course. */
655 if (child == NULL)
656 {
657 struct thread_resume resume_info;
658 resume_info.thread = -1;
659 resume_info.step = resume_info.sig = resume_info.leave_stopped = 0;
660 linux_resume (&resume_info);
661 }
662 }
663
664 enable_async_io ();
665 w = linux_wait_for_event (child);
666 stop_all_processes ();
667 disable_async_io ();
668
669 /* If we are waiting for a particular child, and it exited,
670 linux_wait_for_event will return its exit status. Similarly if
671 the last child exited. If this is not the last child, however,
672 do not report it as exited until there is a 'thread exited' response
673 available in the remote protocol. Instead, just wait for another event.
674 This should be safe, because if the thread crashed we will already
675 have reported the termination signal to GDB; that should stop any
676 in-progress stepping operations, etc.
677
678 Report the exit status of the last thread to exit. This matches
679 LinuxThreads' behavior. */
680
681 if (all_threads.head == all_threads.tail)
682 {
683 if (WIFEXITED (w))
684 {
685 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
686 *status = 'W';
687 clear_inferiors ();
688 return ((unsigned char) WEXITSTATUS (w));
689 }
690 else if (!WIFSTOPPED (w))
691 {
692 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
693 clear_inferiors ();
694 *status = 'X';
695 return ((unsigned char) WTERMSIG (w));
696 }
697 }
698 else
699 {
700 if (!WIFSTOPPED (w))
701 goto retry;
702 }
703
704 *status = 'T';
705 return ((unsigned char) WSTOPSIG (w));
706}
707
708static void
709send_sigstop (struct inferior_list_entry *entry)
710{
711 struct process_info *process = (struct process_info *) entry;
712
713 if (process->stopped)
714 return;
715
716 /* If we already have a pending stop signal for this process, don't
717 send another. */
718 if (process->stop_expected)
719 {
720 process->stop_expected = 0;
721 return;
722 }
723
724 if (debug_threads)
725 fprintf (stderr, "Sending sigstop to process %d\n", process->head.id);
726
727 kill (process->head.id, SIGSTOP);
728 process->sigstop_sent = 1;
729}
730
731static void
732wait_for_sigstop (struct inferior_list_entry *entry)
733{
734 struct process_info *process = (struct process_info *) entry;
735 struct thread_info *saved_inferior, *thread;
736 int wstat, saved_tid;
737
738 if (process->stopped)
739 return;
740
741 saved_inferior = current_inferior;
742 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
743 thread = (struct thread_info *) find_inferior_id (&all_threads,
744 process->tid);
745 wstat = linux_wait_for_event (thread);
746
747 /* If we stopped with a non-SIGSTOP signal, save it for later
748 and record the pending SIGSTOP. If the process exited, just
749 return. */
750 if (WIFSTOPPED (wstat)
751 && WSTOPSIG (wstat) != SIGSTOP)
752 {
753 if (debug_threads)
754 fprintf (stderr, "Stopped with non-sigstop signal\n");
755 process->status_pending_p = 1;
756 process->status_pending = wstat;
757 process->stop_expected = 1;
758 }
759
760 if (linux_thread_alive (saved_tid))
761 current_inferior = saved_inferior;
762 else
763 {
764 if (debug_threads)
765 fprintf (stderr, "Previously current thread died.\n");
766
767 /* Set a valid thread as current. */
768 set_desired_inferior (0);
769 }
770}
771
772static void
773stop_all_processes (void)
774{
775 stopping_threads = 1;
776 for_each_inferior (&all_processes, send_sigstop);
777 for_each_inferior (&all_processes, wait_for_sigstop);
778 stopping_threads = 0;
779}
780
781/* Resume execution of the inferior process.
782 If STEP is nonzero, single-step it.
783 If SIGNAL is nonzero, give it that signal. */
784
785static void
786linux_resume_one_process (struct inferior_list_entry *entry,
787 int step, int signal)
788{
789 struct process_info *process = (struct process_info *) entry;
790 struct thread_info *saved_inferior;
791
792 if (process->stopped == 0)
793 return;
794
795 /* If we have pending signals or status, and a new signal, enqueue the
796 signal. Also enqueue the signal if we are waiting to reinsert a
797 breakpoint; it will be picked up again below. */
798 if (signal != 0
799 && (process->status_pending_p || process->pending_signals != NULL
800 || process->bp_reinsert != 0))
801 {
802 struct pending_signals *p_sig;
803 p_sig = malloc (sizeof (*p_sig));
804 p_sig->prev = process->pending_signals;
805 p_sig->signal = signal;
806 process->pending_signals = p_sig;
807 }
808
809 if (process->status_pending_p && !check_removed_breakpoint (process))
810 return;
811
812 saved_inferior = current_inferior;
813 current_inferior = get_process_thread (process);
814
815 if (debug_threads)
816 fprintf (stderr, "Resuming process %d (%s, signal %d, stop %s)\n", inferior_pid,
817 step ? "step" : "continue", signal,
818 process->stop_expected ? "expected" : "not expected");
819
820 /* This bit needs some thinking about. If we get a signal that
821 we must report while a single-step reinsert is still pending,
822 we often end up resuming the thread. It might be better to
823 (ew) allow a stack of pending events; then we could be sure that
824 the reinsert happened right away and not lose any signals.
825
826 Making this stack would also shrink the window in which breakpoints are
827 uninserted (see comment in linux_wait_for_process) but not enough for
828 complete correctness, so it won't solve that problem. It may be
829 worthwhile just to solve this one, however. */
830 if (process->bp_reinsert != 0)
831 {
832 if (debug_threads)
833 fprintf (stderr, " pending reinsert at %08lx", (long)process->bp_reinsert);
834 if (step == 0)
835 fprintf (stderr, "BAD - reinserting but not stepping.\n");
836 step = 1;
837
838 /* Postpone any pending signal. It was enqueued above. */
839 signal = 0;
840 }
841
842 check_removed_breakpoint (process);
843
844 if (debug_threads && the_low_target.get_pc != NULL)
845 {
846 fprintf (stderr, " ");
847 (long) (*the_low_target.get_pc) ();
848 }
849
850 /* If we have pending signals, consume one unless we are trying to reinsert
851 a breakpoint. */
852 if (process->pending_signals != NULL && process->bp_reinsert == 0)
853 {
854 struct pending_signals **p_sig;
855
856 p_sig = &process->pending_signals;
857 while ((*p_sig)->prev != NULL)
858 p_sig = &(*p_sig)->prev;
859
860 signal = (*p_sig)->signal;
861 free (*p_sig);
862 *p_sig = NULL;
863 }
864
865 regcache_invalidate_one ((struct inferior_list_entry *)
866 get_process_thread (process));
867 errno = 0;
868 process->stopped = 0;
869 process->stepping = step;
870 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);
871
872 current_inferior = saved_inferior;
873 if (errno)
874 perror_with_name ("ptrace");
875}
876
877static struct thread_resume *resume_ptr;
878
879/* This function is called once per thread. We look up the thread
880 in RESUME_PTR, and mark the thread with a pointer to the appropriate
881 resume request.
882
883 This algorithm is O(threads * resume elements), but resume elements
884 is small (and will remain small at least until GDB supports thread
885 suspension). */
886static void
887linux_set_resume_request (struct inferior_list_entry *entry)
888{
889 struct process_info *process;
890 struct thread_info *thread;
891 int ndx;
892
893 thread = (struct thread_info *) entry;
894 process = get_thread_process (thread);
895
896 ndx = 0;
897 while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id)
898 ndx++;
899
900 process->resume = &resume_ptr[ndx];
901}
902
903/* This function is called once per thread. We check the thread's resume
904 request, which will tell us whether to resume, step, or leave the thread
905 stopped; and what signal, if any, it should be sent. For threads which
906 we aren't explicitly told otherwise, we preserve the stepping flag; this
907 is used for stepping over gdbserver-placed breakpoints. */
908
909static void
910linux_continue_one_thread (struct inferior_list_entry *entry)
911{
912 struct process_info *process;
913 struct thread_info *thread;
914 int step;
915
916 thread = (struct thread_info *) entry;
917 process = get_thread_process (thread);
918
919 if (process->resume->leave_stopped)
920 return;
921
922 if (process->resume->thread == -1)
923 step = process->stepping || process->resume->step;
924 else
925 step = process->resume->step;
926
927 linux_resume_one_process (&process->head, step, process->resume->sig);
928
929 process->resume = NULL;
930}
931
932/* This function is called once per thread. We check the thread's resume
933 request, which will tell us whether to resume, step, or leave the thread
934 stopped; and what signal, if any, it should be sent. We queue any needed
935 signals, since we won't actually resume. We already have a pending event
936 to report, so we don't need to preserve any step requests; they should
937 be re-issued if necessary. */
938
939static void
940linux_queue_one_thread (struct inferior_list_entry *entry)
941{
942 struct process_info *process;
943 struct thread_info *thread;
944
945 thread = (struct thread_info *) entry;
946 process = get_thread_process (thread);
947
948 if (process->resume->leave_stopped)
949 return;
950
951 /* If we have a new signal, enqueue the signal. */
952 if (process->resume->sig != 0)
953 {
954 struct pending_signals *p_sig;
955 p_sig = malloc (sizeof (*p_sig));
956 p_sig->prev = process->pending_signals;
957 p_sig->signal = process->resume->sig;
958 process->pending_signals = p_sig;
959 }
960
961 process->resume = NULL;
962}
963
964/* Set DUMMY if this process has an interesting status pending. */
965static int
966resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
967{
968 struct process_info *process = (struct process_info *) entry;
969
970 /* Processes which will not be resumed are not interesting, because
971 we might not wait for them next time through linux_wait. */
972 if (process->resume->leave_stopped)
973 return 0;
974
975 /* If this thread has a removed breakpoint, we won't have any
976 events to report later, so check now. check_removed_breakpoint
977 may clear status_pending_p. We avoid calling check_removed_breakpoint
978 for any thread that we are not otherwise going to resume - this
979 lets us preserve stopped status when two threads hit a breakpoint.
980 GDB removes the breakpoint to single-step a particular thread
981 past it, then re-inserts it and resumes all threads. We want
982 to report the second thread without resuming it in the interim. */
983 if (process->status_pending_p)
984 check_removed_breakpoint (process);
985
986 if (process->status_pending_p)
987 * (int *) flag_p = 1;
988
989 return 0;
990}
991
992static void
993linux_resume (struct thread_resume *resume_info)
994{
995 int pending_flag;
996
997 /* Yes, the use of a global here is rather ugly. */
998 resume_ptr = resume_info;
999
1000 for_each_inferior (&all_threads, linux_set_resume_request);
1001
1002 /* If there is a thread which would otherwise be resumed, which
1003 has a pending status, then don't resume any threads - we can just
1004 report the pending status. Make sure to queue any signals
1005 that would otherwise be sent. */
1006 pending_flag = 0;
1007 find_inferior (&all_processes, resume_status_pending_p, &pending_flag);
1008
1009 if (debug_threads)
1010 {
1011 if (pending_flag)
1012 fprintf (stderr, "Not resuming, pending status\n");
1013 else
1014 fprintf (stderr, "Resuming, no pending status\n");
1015 }
1016
1017 if (pending_flag)
1018 for_each_inferior (&all_threads, linux_queue_one_thread);
1019 else
1020 for_each_inferior (&all_threads, linux_continue_one_thread);
1021}
1022
1023#ifdef HAVE_LINUX_USRREGS
1024
1025int
1026register_addr (int regnum)
1027{
1028 int addr;
1029
1030 if (regnum < 0 || regnum >= the_low_target.num_regs)
1031 error ("Invalid register number %d.", regnum);
1032
1033 addr = the_low_target.regmap[regnum];
1034
1035 return addr;
1036}
1037
1038/* Fetch one register. */
1039static void
1040fetch_register (int regno)
1041{
1042 CORE_ADDR regaddr;
1043 register int i;
1044 char *buf;
1045
1046 if (regno >= the_low_target.num_regs)
1047 return;
1048 if ((*the_low_target.cannot_fetch_register) (regno))
1049 return;
1050
1051 regaddr = register_addr (regno);
1052 if (regaddr == -1)
1053 return;
1054 buf = alloca (register_size (regno));
1055 for (i = 0; i < register_size (regno); i += sizeof (PTRACE_XFER_TYPE))
1056 {
1057 errno = 0;
1058 *(PTRACE_XFER_TYPE *) (buf + i) =
1059 ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
1060 regaddr += sizeof (PTRACE_XFER_TYPE);
1061 if (errno != 0)
1062 {
1063 /* Warning, not error, in case we are attached; sometimes the
1064 kernel doesn't let us at the registers. */
1065 char *err = strerror (errno);
1066 char *msg = alloca (strlen (err) + 128);
1067 sprintf (msg, "reading register %d: %s", regno, err);
1068 error (msg);
1069 goto error_exit;
1070 }
1071 }
1072 supply_register (regno, buf);
1073
1074error_exit:;
1075}
1076
1077/* Fetch all registers, or just one, from the child process. */
1078static void
1079usr_fetch_inferior_registers (int regno)
1080{
1081 if (regno == -1 || regno == 0)
1082 for (regno = 0; regno < the_low_target.num_regs; regno++)
1083 fetch_register (regno);
1084 else
1085 fetch_register (regno);
1086}
1087
1088/* Store our register values back into the inferior.
1089 If REGNO is -1, do this for all registers.
1090 Otherwise, REGNO specifies which register (so we can save time). */
1091static void
1092usr_store_inferior_registers (int regno)
1093{
1094 CORE_ADDR regaddr;
1095 int i;
1096 char *buf;
1097
1098 if (regno >= 0)
1099 {
1100 if (regno >= the_low_target.num_regs)
1101 return;
1102
1103 if ((*the_low_target.cannot_store_register) (regno) == 1)
1104 return;
1105
1106 regaddr = register_addr (regno);
1107 if (regaddr == -1)
1108 return;
1109 errno = 0;
1110 buf = alloca (register_size (regno));
1111 collect_register (regno, buf);
1112 for (i = 0; i < register_size (regno); i += sizeof (PTRACE_XFER_TYPE))
1113 {
1114 errno = 0;
1115 ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
1116 *(PTRACE_XFER_TYPE *) (buf + i));
1117 if (errno != 0)
1118 {
1119 if ((*the_low_target.cannot_store_register) (regno) == 0)
1120 {
1121 char *err = strerror (errno);
1122 char *msg = alloca (strlen (err) + 128);
1123 sprintf (msg, "writing register %d: %s",
1124 regno, err);
1125 error (msg);
1126 return;
1127 }
1128 }
1129 regaddr += sizeof (PTRACE_XFER_TYPE);
1130 }
1131 }
1132 else
1133 for (regno = 0; regno < the_low_target.num_regs; regno++)
1134 usr_store_inferior_registers (regno);
1135}
1136#endif /* HAVE_LINUX_USRREGS */
1137
1138
1139
1140#ifdef HAVE_LINUX_REGSETS
1141
1142static int
1143regsets_fetch_inferior_registers ()
1144{
1145 struct regset_info *regset;
1146
1147 regset = target_regsets;
1148
1149 while (regset->size >= 0)
1150 {
1151 void *buf;
1152 int res;
1153
1154 if (regset->size == 0)
1155 {
1156 regset ++;
1157 continue;
1158 }
1159
1160 buf = malloc (regset->size);
1161 res = ptrace (regset->get_request, inferior_pid, 0, buf);
1162 if (res < 0)
1163 {
1164 if (errno == EIO)
1165 {
1166 /* If we get EIO on the first regset, do not try regsets again.
1167 If we get EIO on a later regset, disable that regset. */
1168 if (regset == target_regsets)
1169 {
1170 use_regsets_p = 0;
1171 return -1;
1172 }
1173 else
1174 {
1175 regset->size = 0;
1176 continue;
1177 }
1178 }
1179 else
1180 {
1181 char s[256];
1182 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
1183 inferior_pid);
1184 perror (s);
1185 }
1186 }
1187 regset->store_function (buf);
1188 regset ++;
1189 }
1190 return 0;
1191}
1192
1193static int
1194regsets_store_inferior_registers ()
1195{
1196 struct regset_info *regset;
1197
1198 regset = target_regsets;
1199
1200 while (regset->size >= 0)
1201 {
1202 void *buf;
1203 int res;
1204
1205 if (regset->size == 0)
1206 {
1207 regset ++;
1208 continue;
1209 }
1210
1211 buf = malloc (regset->size);
1212 regset->fill_function (buf);
1213 res = ptrace (regset->set_request, inferior_pid, 0, buf);
1214 if (res < 0)
1215 {
1216 if (errno == EIO)
1217 {
1218 /* If we get EIO on the first regset, do not try regsets again.
1219 If we get EIO on a later regset, disable that regset. */
1220 if (regset == target_regsets)
1221 {
1222 use_regsets_p = 0;
1223 return -1;
1224 }
1225 else
1226 {
1227 regset->size = 0;
1228 continue;
1229 }
1230 }
1231 else
1232 {
1233 perror ("Warning: ptrace(regsets_store_inferior_registers)");
1234 }
1235 }
1236 regset ++;
1237 free (buf);
1238 }
1239 return 0;
1240}
1241
1242#endif /* HAVE_LINUX_REGSETS */
1243
1244
1245void
1246linux_fetch_registers (int regno)
1247{
1248#ifdef HAVE_LINUX_REGSETS
1249 if (use_regsets_p)
1250 {
1251 if (regsets_fetch_inferior_registers () == 0)
1252 return;
1253 }
1254#endif
1255#ifdef HAVE_LINUX_USRREGS
1256 usr_fetch_inferior_registers (regno);
1257#endif
1258}
1259
1260void
1261linux_store_registers (int regno)
1262{
1263#ifdef HAVE_LINUX_REGSETS
1264 if (use_regsets_p)
1265 {
1266 if (regsets_store_inferior_registers () == 0)
1267 return;
1268 }
1269#endif
1270#ifdef HAVE_LINUX_USRREGS
1271 usr_store_inferior_registers (regno);
1272#endif
1273}
1274
1275
1276/* Copy LEN bytes from inferior's memory starting at MEMADDR
1277 to debugger memory starting at MYADDR. */
1278
1279static void
1280linux_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1281{
1282 register int i;
1283 /* Round starting address down to longword boundary. */
1284 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1285 /* Round ending address up; get number of longwords that makes. */
1286 register int count
1287 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
1288 / sizeof (PTRACE_XFER_TYPE);
1289 /* Allocate buffer of that many longwords. */
1290 register PTRACE_XFER_TYPE *buffer
1291 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1292
1293 /* Read all the longwords */
1294 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1295 {
1296 buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
1297 }
1298
1299 /* Copy appropriate bytes out of the buffer. */
1300 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
1301}
1302
1303/* Copy LEN bytes of data from debugger memory at MYADDR
1304 to inferior's memory at MEMADDR.
1305 On failure (cannot write the inferior)
1306 returns the value of errno. */
1307
1308static int
1309linux_write_memory (CORE_ADDR memaddr, const char *myaddr, int len)
1310{
1311 register int i;
1312 /* Round starting address down to longword boundary. */
1313 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1314 /* Round ending address up; get number of longwords that makes. */
1315 register int count
1316 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
1317 /* Allocate buffer of that many longwords. */
1318 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1319 extern int errno;
1320
1321 if (debug_threads)
1322 {
1323 fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
1324 }
1325
1326 /* Fill start and end extra bytes of buffer with existing memory data. */
1327
1328 buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1329 (PTRACE_ARG3_TYPE) addr, 0);
1330
1331 if (count > 1)
1332 {
1333 buffer[count - 1]
1334 = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1335 (PTRACE_ARG3_TYPE) (addr + (count - 1)
1336 * sizeof (PTRACE_XFER_TYPE)),
1337 0);
1338 }
1339
1340 /* Copy data to be written over corresponding part of buffer */
1341
1342 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
1343
1344 /* Write the entire buffer. */
1345
1346 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1347 {
1348 errno = 0;
1349 ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
1350 if (errno)
1351 return errno;
1352 }
1353
1354 return 0;
1355}
1356
1357static void
1358linux_look_up_symbols (void)
1359{
1360#ifdef USE_THREAD_DB
1361 if (using_threads)
1362 return;
1363
1364 using_threads = thread_db_init ();
1365#endif
1366}
1367
1368static void
1369linux_send_signal (int signum)
1370{
1371 extern int signal_pid;
1372
1373 if (cont_thread > 0)
1374 {
1375 struct process_info *process;
1376
1377 process = get_thread_process (current_inferior);
1378 kill (process->lwpid, signum);
1379 }
1380 else
1381 kill (signal_pid, signum);
1382}
1383
1384\f
1385static struct target_ops linux_target_ops = {
1386 linux_create_inferior,
1387 linux_attach,
1388 linux_kill,
1389 linux_detach,
1390 linux_thread_alive,
1391 linux_resume,
1392 linux_wait,
1393 linux_fetch_registers,
1394 linux_store_registers,
1395 linux_read_memory,
1396 linux_write_memory,
1397 linux_look_up_symbols,
1398 linux_send_signal,
1399};
1400
1401static void
1402linux_init_signals ()
1403{
1404 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
1405 to find what the cancel signal actually is. */
1406 signal (__SIGRTMIN+1, SIG_IGN);
1407}
1408
1409void
1410initialize_low (void)
1411{
1412 using_threads = 0;
1413 set_target_ops (&linux_target_ops);
1414 set_breakpoint_data (the_low_target.breakpoint,
1415 the_low_target.breakpoint_len);
1416 init_registers ();
1417 linux_init_signals ();
1418}
This page took 0.026527 seconds and 4 git commands to generate.