2011-02-28 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
... / ...
CommitLineData
1/* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "bfd.h"
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "language.h"
33#include "target.h"
34#include "value.h"
35#include "demangle.h"
36#include "complaints.h"
37#include "gdbcmd.h"
38#include "wrapper.h"
39#include "cp-abi.h"
40#include "gdb_assert.h"
41#include "hashtab.h"
42
43
44/* Initialize BADNESS constants. */
45
46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63
64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65
66/* Floatformat pairs. */
67const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70};
71const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74};
75const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78};
79const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82};
83const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86};
87const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90};
91const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94};
95const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98};
99const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102};
103const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106};
107const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110};
111const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double,
113 &floatformat_ibm_long_double
114};
115
116
117int opaque_type_resolution = 1;
118static void
119show_opaque_type_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122{
123 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
124 "(if set before loading symbols) is %s.\n"),
125 value);
126}
127
128int overload_debug = 0;
129static void
130show_overload_debug (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132{
133 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
134 value);
135}
136
137struct extra
138 {
139 char str[128];
140 int len;
141 }; /* Maximum extension is 128! FIXME */
142
143static void print_bit_vector (B_TYPE *, int);
144static void print_arg_types (struct field *, int, int);
145static void dump_fn_fieldlists (struct type *, int);
146static void print_cplus_stuff (struct type *, int);
147
148
149/* Allocate a new OBJFILE-associated type structure and fill it
150 with some defaults. Space for the type structure is allocated
151 on the objfile's objfile_obstack. */
152
153struct type *
154alloc_type (struct objfile *objfile)
155{
156 struct type *type;
157
158 gdb_assert (objfile != NULL);
159
160 /* Alloc the structure and start off with all fields zeroed. */
161 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
163 struct main_type);
164 OBJSTAT (objfile, n_types++);
165
166 TYPE_OBJFILE_OWNED (type) = 1;
167 TYPE_OWNER (type).objfile = objfile;
168
169 /* Initialize the fields that might not be zero. */
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
172 TYPE_VPTR_FIELDNO (type) = -1;
173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
174
175 return type;
176}
177
178/* Allocate a new GDBARCH-associated type structure and fill it
179 with some defaults. Space for the type structure is allocated
180 on the heap. */
181
182struct type *
183alloc_type_arch (struct gdbarch *gdbarch)
184{
185 struct type *type;
186
187 gdb_assert (gdbarch != NULL);
188
189 /* Alloc the structure and start off with all fields zeroed. */
190
191 type = XZALLOC (struct type);
192 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
193
194 TYPE_OBJFILE_OWNED (type) = 0;
195 TYPE_OWNER (type).gdbarch = gdbarch;
196
197 /* Initialize the fields that might not be zero. */
198
199 TYPE_CODE (type) = TYPE_CODE_UNDEF;
200 TYPE_VPTR_FIELDNO (type) = -1;
201 TYPE_CHAIN (type) = type; /* Chain back to itself. */
202
203 return type;
204}
205
206/* If TYPE is objfile-associated, allocate a new type structure
207 associated with the same objfile. If TYPE is gdbarch-associated,
208 allocate a new type structure associated with the same gdbarch. */
209
210struct type *
211alloc_type_copy (const struct type *type)
212{
213 if (TYPE_OBJFILE_OWNED (type))
214 return alloc_type (TYPE_OWNER (type).objfile);
215 else
216 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
217}
218
219/* If TYPE is gdbarch-associated, return that architecture.
220 If TYPE is objfile-associated, return that objfile's architecture. */
221
222struct gdbarch *
223get_type_arch (const struct type *type)
224{
225 if (TYPE_OBJFILE_OWNED (type))
226 return get_objfile_arch (TYPE_OWNER (type).objfile);
227 else
228 return TYPE_OWNER (type).gdbarch;
229}
230
231
232/* Alloc a new type instance structure, fill it with some defaults,
233 and point it at OLDTYPE. Allocate the new type instance from the
234 same place as OLDTYPE. */
235
236static struct type *
237alloc_type_instance (struct type *oldtype)
238{
239 struct type *type;
240
241 /* Allocate the structure. */
242
243 if (! TYPE_OBJFILE_OWNED (oldtype))
244 type = XZALLOC (struct type);
245 else
246 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
247 struct type);
248
249 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
250
251 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
252
253 return type;
254}
255
256/* Clear all remnants of the previous type at TYPE, in preparation for
257 replacing it with something else. Preserve owner information. */
258static void
259smash_type (struct type *type)
260{
261 int objfile_owned = TYPE_OBJFILE_OWNED (type);
262 union type_owner owner = TYPE_OWNER (type);
263
264 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
265
266 /* Restore owner information. */
267 TYPE_OBJFILE_OWNED (type) = objfile_owned;
268 TYPE_OWNER (type) = owner;
269
270 /* For now, delete the rings. */
271 TYPE_CHAIN (type) = type;
272
273 /* For now, leave the pointer/reference types alone. */
274}
275
276/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
277 to a pointer to memory where the pointer type should be stored.
278 If *TYPEPTR is zero, update it to point to the pointer type we return.
279 We allocate new memory if needed. */
280
281struct type *
282make_pointer_type (struct type *type, struct type **typeptr)
283{
284 struct type *ntype; /* New type */
285 struct type *chain;
286
287 ntype = TYPE_POINTER_TYPE (type);
288
289 if (ntype)
290 {
291 if (typeptr == 0)
292 return ntype; /* Don't care about alloc,
293 and have new type. */
294 else if (*typeptr == 0)
295 {
296 *typeptr = ntype; /* Tracking alloc, and have new type. */
297 return ntype;
298 }
299 }
300
301 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
302 {
303 ntype = alloc_type_copy (type);
304 if (typeptr)
305 *typeptr = ntype;
306 }
307 else /* We have storage, but need to reset it. */
308 {
309 ntype = *typeptr;
310 chain = TYPE_CHAIN (ntype);
311 smash_type (ntype);
312 TYPE_CHAIN (ntype) = chain;
313 }
314
315 TYPE_TARGET_TYPE (ntype) = type;
316 TYPE_POINTER_TYPE (type) = ntype;
317
318 /* FIXME! Assume the machine has only one representation for
319 pointers! */
320
321 TYPE_LENGTH (ntype)
322 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
323 TYPE_CODE (ntype) = TYPE_CODE_PTR;
324
325 /* Mark pointers as unsigned. The target converts between pointers
326 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
327 gdbarch_address_to_pointer. */
328 TYPE_UNSIGNED (ntype) = 1;
329
330 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
331 TYPE_POINTER_TYPE (type) = ntype;
332
333 /* Update the length of all the other variants of this type. */
334 chain = TYPE_CHAIN (ntype);
335 while (chain != ntype)
336 {
337 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338 chain = TYPE_CHAIN (chain);
339 }
340
341 return ntype;
342}
343
344/* Given a type TYPE, return a type of pointers to that type.
345 May need to construct such a type if this is the first use. */
346
347struct type *
348lookup_pointer_type (struct type *type)
349{
350 return make_pointer_type (type, (struct type **) 0);
351}
352
353/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
354 points to a pointer to memory where the reference type should be
355 stored. If *TYPEPTR is zero, update it to point to the reference
356 type we return. We allocate new memory if needed. */
357
358struct type *
359make_reference_type (struct type *type, struct type **typeptr)
360{
361 struct type *ntype; /* New type */
362 struct type *chain;
363
364 ntype = TYPE_REFERENCE_TYPE (type);
365
366 if (ntype)
367 {
368 if (typeptr == 0)
369 return ntype; /* Don't care about alloc,
370 and have new type. */
371 else if (*typeptr == 0)
372 {
373 *typeptr = ntype; /* Tracking alloc, and have new type. */
374 return ntype;
375 }
376 }
377
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
379 {
380 ntype = alloc_type_copy (type);
381 if (typeptr)
382 *typeptr = ntype;
383 }
384 else /* We have storage, but need to reset it. */
385 {
386 ntype = *typeptr;
387 chain = TYPE_CHAIN (ntype);
388 smash_type (ntype);
389 TYPE_CHAIN (ntype) = chain;
390 }
391
392 TYPE_TARGET_TYPE (ntype) = type;
393 TYPE_REFERENCE_TYPE (type) = ntype;
394
395 /* FIXME! Assume the machine has only one representation for
396 references, and that it matches the (only) representation for
397 pointers! */
398
399 TYPE_LENGTH (ntype) =
400 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
401 TYPE_CODE (ntype) = TYPE_CODE_REF;
402
403 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
404 TYPE_REFERENCE_TYPE (type) = ntype;
405
406 /* Update the length of all the other variants of this type. */
407 chain = TYPE_CHAIN (ntype);
408 while (chain != ntype)
409 {
410 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411 chain = TYPE_CHAIN (chain);
412 }
413
414 return ntype;
415}
416
417/* Same as above, but caller doesn't care about memory allocation
418 details. */
419
420struct type *
421lookup_reference_type (struct type *type)
422{
423 return make_reference_type (type, (struct type **) 0);
424}
425
426/* Lookup a function type that returns type TYPE. TYPEPTR, if
427 nonzero, points to a pointer to memory where the function type
428 should be stored. If *TYPEPTR is zero, update it to point to the
429 function type we return. We allocate new memory if needed. */
430
431struct type *
432make_function_type (struct type *type, struct type **typeptr)
433{
434 struct type *ntype; /* New type */
435
436 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
437 {
438 ntype = alloc_type_copy (type);
439 if (typeptr)
440 *typeptr = ntype;
441 }
442 else /* We have storage, but need to reset it. */
443 {
444 ntype = *typeptr;
445 smash_type (ntype);
446 }
447
448 TYPE_TARGET_TYPE (ntype) = type;
449
450 TYPE_LENGTH (ntype) = 1;
451 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
452
453 return ntype;
454}
455
456
457/* Given a type TYPE, return a type of functions that return that type.
458 May need to construct such a type if this is the first use. */
459
460struct type *
461lookup_function_type (struct type *type)
462{
463 return make_function_type (type, (struct type **) 0);
464}
465
466/* Identify address space identifier by name --
467 return the integer flag defined in gdbtypes.h. */
468extern int
469address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
470{
471 int type_flags;
472
473 /* Check for known address space delimiters. */
474 if (!strcmp (space_identifier, "code"))
475 return TYPE_INSTANCE_FLAG_CODE_SPACE;
476 else if (!strcmp (space_identifier, "data"))
477 return TYPE_INSTANCE_FLAG_DATA_SPACE;
478 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
479 && gdbarch_address_class_name_to_type_flags (gdbarch,
480 space_identifier,
481 &type_flags))
482 return type_flags;
483 else
484 error (_("Unknown address space specifier: \"%s\""), space_identifier);
485}
486
487/* Identify address space identifier by integer flag as defined in
488 gdbtypes.h -- return the string version of the adress space name. */
489
490const char *
491address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
492{
493 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
494 return "code";
495 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
496 return "data";
497 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
498 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
499 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
500 else
501 return NULL;
502}
503
504/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
505
506 If STORAGE is non-NULL, create the new type instance there.
507 STORAGE must be in the same obstack as TYPE. */
508
509static struct type *
510make_qualified_type (struct type *type, int new_flags,
511 struct type *storage)
512{
513 struct type *ntype;
514
515 ntype = type;
516 do
517 {
518 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
519 return ntype;
520 ntype = TYPE_CHAIN (ntype);
521 }
522 while (ntype != type);
523
524 /* Create a new type instance. */
525 if (storage == NULL)
526 ntype = alloc_type_instance (type);
527 else
528 {
529 /* If STORAGE was provided, it had better be in the same objfile
530 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
531 if one objfile is freed and the other kept, we'd have
532 dangling pointers. */
533 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
534
535 ntype = storage;
536 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
537 TYPE_CHAIN (ntype) = ntype;
538 }
539
540 /* Pointers or references to the original type are not relevant to
541 the new type. */
542 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
543 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
544
545 /* Chain the new qualified type to the old type. */
546 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
547 TYPE_CHAIN (type) = ntype;
548
549 /* Now set the instance flags and return the new type. */
550 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
551
552 /* Set length of new type to that of the original type. */
553 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
554
555 return ntype;
556}
557
558/* Make an address-space-delimited variant of a type -- a type that
559 is identical to the one supplied except that it has an address
560 space attribute attached to it (such as "code" or "data").
561
562 The space attributes "code" and "data" are for Harvard
563 architectures. The address space attributes are for architectures
564 which have alternately sized pointers or pointers with alternate
565 representations. */
566
567struct type *
568make_type_with_address_space (struct type *type, int space_flag)
569{
570 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
571 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
572 | TYPE_INSTANCE_FLAG_DATA_SPACE
573 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
574 | space_flag);
575
576 return make_qualified_type (type, new_flags, NULL);
577}
578
579/* Make a "c-v" variant of a type -- a type that is identical to the
580 one supplied except that it may have const or volatile attributes
581 CNST is a flag for setting the const attribute
582 VOLTL is a flag for setting the volatile attribute
583 TYPE is the base type whose variant we are creating.
584
585 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
586 storage to hold the new qualified type; *TYPEPTR and TYPE must be
587 in the same objfile. Otherwise, allocate fresh memory for the new
588 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
589 new type we construct. */
590struct type *
591make_cv_type (int cnst, int voltl,
592 struct type *type,
593 struct type **typeptr)
594{
595 struct type *ntype; /* New type */
596
597 int new_flags = (TYPE_INSTANCE_FLAGS (type)
598 & ~(TYPE_INSTANCE_FLAG_CONST
599 | TYPE_INSTANCE_FLAG_VOLATILE));
600
601 if (cnst)
602 new_flags |= TYPE_INSTANCE_FLAG_CONST;
603
604 if (voltl)
605 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
606
607 if (typeptr && *typeptr != NULL)
608 {
609 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
610 a C-V variant chain that threads across objfiles: if one
611 objfile gets freed, then the other has a broken C-V chain.
612
613 This code used to try to copy over the main type from TYPE to
614 *TYPEPTR if they were in different objfiles, but that's
615 wrong, too: TYPE may have a field list or member function
616 lists, which refer to types of their own, etc. etc. The
617 whole shebang would need to be copied over recursively; you
618 can't have inter-objfile pointers. The only thing to do is
619 to leave stub types as stub types, and look them up afresh by
620 name each time you encounter them. */
621 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
622 }
623
624 ntype = make_qualified_type (type, new_flags,
625 typeptr ? *typeptr : NULL);
626
627 if (typeptr != NULL)
628 *typeptr = ntype;
629
630 return ntype;
631}
632
633/* Replace the contents of ntype with the type *type. This changes the
634 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
635 the changes are propogated to all types in the TYPE_CHAIN.
636
637 In order to build recursive types, it's inevitable that we'll need
638 to update types in place --- but this sort of indiscriminate
639 smashing is ugly, and needs to be replaced with something more
640 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
641 clear if more steps are needed. */
642void
643replace_type (struct type *ntype, struct type *type)
644{
645 struct type *chain;
646
647 /* These two types had better be in the same objfile. Otherwise,
648 the assignment of one type's main type structure to the other
649 will produce a type with references to objects (names; field
650 lists; etc.) allocated on an objfile other than its own. */
651 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
652
653 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
654
655 /* The type length is not a part of the main type. Update it for
656 each type on the variant chain. */
657 chain = ntype;
658 do
659 {
660 /* Assert that this element of the chain has no address-class bits
661 set in its flags. Such type variants might have type lengths
662 which are supposed to be different from the non-address-class
663 variants. This assertion shouldn't ever be triggered because
664 symbol readers which do construct address-class variants don't
665 call replace_type(). */
666 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
667
668 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
669 chain = TYPE_CHAIN (chain);
670 }
671 while (ntype != chain);
672
673 /* Assert that the two types have equivalent instance qualifiers.
674 This should be true for at least all of our debug readers. */
675 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
676}
677
678/* Implement direct support for MEMBER_TYPE in GNU C++.
679 May need to construct such a type if this is the first use.
680 The TYPE is the type of the member. The DOMAIN is the type
681 of the aggregate that the member belongs to. */
682
683struct type *
684lookup_memberptr_type (struct type *type, struct type *domain)
685{
686 struct type *mtype;
687
688 mtype = alloc_type_copy (type);
689 smash_to_memberptr_type (mtype, domain, type);
690 return mtype;
691}
692
693/* Return a pointer-to-method type, for a method of type TO_TYPE. */
694
695struct type *
696lookup_methodptr_type (struct type *to_type)
697{
698 struct type *mtype;
699
700 mtype = alloc_type_copy (to_type);
701 smash_to_methodptr_type (mtype, to_type);
702 return mtype;
703}
704
705/* Allocate a stub method whose return type is TYPE. This apparently
706 happens for speed of symbol reading, since parsing out the
707 arguments to the method is cpu-intensive, the way we are doing it.
708 So, we will fill in arguments later. This always returns a fresh
709 type. */
710
711struct type *
712allocate_stub_method (struct type *type)
713{
714 struct type *mtype;
715
716 mtype = alloc_type_copy (type);
717 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
718 TYPE_LENGTH (mtype) = 1;
719 TYPE_STUB (mtype) = 1;
720 TYPE_TARGET_TYPE (mtype) = type;
721 /* _DOMAIN_TYPE (mtype) = unknown yet */
722 return mtype;
723}
724
725/* Create a range type using either a blank type supplied in
726 RESULT_TYPE, or creating a new type, inheriting the objfile from
727 INDEX_TYPE.
728
729 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
730 to HIGH_BOUND, inclusive.
731
732 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
733 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
734
735struct type *
736create_range_type (struct type *result_type, struct type *index_type,
737 LONGEST low_bound, LONGEST high_bound)
738{
739 if (result_type == NULL)
740 result_type = alloc_type_copy (index_type);
741 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
742 TYPE_TARGET_TYPE (result_type) = index_type;
743 if (TYPE_STUB (index_type))
744 TYPE_TARGET_STUB (result_type) = 1;
745 else
746 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
747 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
748 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
749 TYPE_LOW_BOUND (result_type) = low_bound;
750 TYPE_HIGH_BOUND (result_type) = high_bound;
751
752 if (low_bound >= 0)
753 TYPE_UNSIGNED (result_type) = 1;
754
755 return result_type;
756}
757
758/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
759 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
760 bounds will fit in LONGEST), or -1 otherwise. */
761
762int
763get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
764{
765 CHECK_TYPEDEF (type);
766 switch (TYPE_CODE (type))
767 {
768 case TYPE_CODE_RANGE:
769 *lowp = TYPE_LOW_BOUND (type);
770 *highp = TYPE_HIGH_BOUND (type);
771 return 1;
772 case TYPE_CODE_ENUM:
773 if (TYPE_NFIELDS (type) > 0)
774 {
775 /* The enums may not be sorted by value, so search all
776 entries. */
777 int i;
778
779 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
780 for (i = 0; i < TYPE_NFIELDS (type); i++)
781 {
782 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
783 *lowp = TYPE_FIELD_BITPOS (type, i);
784 if (TYPE_FIELD_BITPOS (type, i) > *highp)
785 *highp = TYPE_FIELD_BITPOS (type, i);
786 }
787
788 /* Set unsigned indicator if warranted. */
789 if (*lowp >= 0)
790 {
791 TYPE_UNSIGNED (type) = 1;
792 }
793 }
794 else
795 {
796 *lowp = 0;
797 *highp = -1;
798 }
799 return 0;
800 case TYPE_CODE_BOOL:
801 *lowp = 0;
802 *highp = 1;
803 return 0;
804 case TYPE_CODE_INT:
805 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
806 return -1;
807 if (!TYPE_UNSIGNED (type))
808 {
809 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
810 *highp = -*lowp - 1;
811 return 0;
812 }
813 /* ... fall through for unsigned ints ... */
814 case TYPE_CODE_CHAR:
815 *lowp = 0;
816 /* This round-about calculation is to avoid shifting by
817 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
818 if TYPE_LENGTH (type) == sizeof (LONGEST). */
819 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
820 *highp = (*highp - 1) | *highp;
821 return 0;
822 default:
823 return -1;
824 }
825}
826
827/* Assuming TYPE is a simple, non-empty array type, compute its upper
828 and lower bound. Save the low bound into LOW_BOUND if not NULL.
829 Save the high bound into HIGH_BOUND if not NULL.
830
831 Return 1 if the operation was successful. Return zero otherwise,
832 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
833
834 We now simply use get_discrete_bounds call to get the values
835 of the low and high bounds.
836 get_discrete_bounds can return three values:
837 1, meaning that index is a range,
838 0, meaning that index is a discrete type,
839 or -1 for failure. */
840
841int
842get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
843{
844 struct type *index = TYPE_INDEX_TYPE (type);
845 LONGEST low = 0;
846 LONGEST high = 0;
847 int res;
848
849 if (index == NULL)
850 return 0;
851
852 res = get_discrete_bounds (index, &low, &high);
853 if (res == -1)
854 return 0;
855
856 /* Check if the array bounds are undefined. */
857 if (res == 1
858 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
859 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
860 return 0;
861
862 if (low_bound)
863 *low_bound = low;
864
865 if (high_bound)
866 *high_bound = high;
867
868 return 1;
869}
870
871/* Create an array type using either a blank type supplied in
872 RESULT_TYPE, or creating a new type, inheriting the objfile from
873 RANGE_TYPE.
874
875 Elements will be of type ELEMENT_TYPE, the indices will be of type
876 RANGE_TYPE.
877
878 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
879 sure it is TYPE_CODE_UNDEF before we bash it into an array
880 type? */
881
882struct type *
883create_array_type (struct type *result_type,
884 struct type *element_type,
885 struct type *range_type)
886{
887 LONGEST low_bound, high_bound;
888
889 if (result_type == NULL)
890 result_type = alloc_type_copy (range_type);
891
892 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
893 TYPE_TARGET_TYPE (result_type) = element_type;
894 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
895 low_bound = high_bound = 0;
896 CHECK_TYPEDEF (element_type);
897 /* Be careful when setting the array length. Ada arrays can be
898 empty arrays with the high_bound being smaller than the low_bound.
899 In such cases, the array length should be zero. */
900 if (high_bound < low_bound)
901 TYPE_LENGTH (result_type) = 0;
902 else
903 TYPE_LENGTH (result_type) =
904 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
905 TYPE_NFIELDS (result_type) = 1;
906 TYPE_FIELDS (result_type) =
907 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
908 TYPE_INDEX_TYPE (result_type) = range_type;
909 TYPE_VPTR_FIELDNO (result_type) = -1;
910
911 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
912 if (TYPE_LENGTH (result_type) == 0)
913 TYPE_TARGET_STUB (result_type) = 1;
914
915 return result_type;
916}
917
918struct type *
919lookup_array_range_type (struct type *element_type,
920 int low_bound, int high_bound)
921{
922 struct gdbarch *gdbarch = get_type_arch (element_type);
923 struct type *index_type = builtin_type (gdbarch)->builtin_int;
924 struct type *range_type
925 = create_range_type (NULL, index_type, low_bound, high_bound);
926
927 return create_array_type (NULL, element_type, range_type);
928}
929
930/* Create a string type using either a blank type supplied in
931 RESULT_TYPE, or creating a new type. String types are similar
932 enough to array of char types that we can use create_array_type to
933 build the basic type and then bash it into a string type.
934
935 For fixed length strings, the range type contains 0 as the lower
936 bound and the length of the string minus one as the upper bound.
937
938 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
939 sure it is TYPE_CODE_UNDEF before we bash it into a string
940 type? */
941
942struct type *
943create_string_type (struct type *result_type,
944 struct type *string_char_type,
945 struct type *range_type)
946{
947 result_type = create_array_type (result_type,
948 string_char_type,
949 range_type);
950 TYPE_CODE (result_type) = TYPE_CODE_STRING;
951 return result_type;
952}
953
954struct type *
955lookup_string_range_type (struct type *string_char_type,
956 int low_bound, int high_bound)
957{
958 struct type *result_type;
959
960 result_type = lookup_array_range_type (string_char_type,
961 low_bound, high_bound);
962 TYPE_CODE (result_type) = TYPE_CODE_STRING;
963 return result_type;
964}
965
966struct type *
967create_set_type (struct type *result_type, struct type *domain_type)
968{
969 if (result_type == NULL)
970 result_type = alloc_type_copy (domain_type);
971
972 TYPE_CODE (result_type) = TYPE_CODE_SET;
973 TYPE_NFIELDS (result_type) = 1;
974 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
975
976 if (!TYPE_STUB (domain_type))
977 {
978 LONGEST low_bound, high_bound, bit_length;
979
980 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
981 low_bound = high_bound = 0;
982 bit_length = high_bound - low_bound + 1;
983 TYPE_LENGTH (result_type)
984 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
985 if (low_bound >= 0)
986 TYPE_UNSIGNED (result_type) = 1;
987 }
988 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
989
990 return result_type;
991}
992
993/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
994 and any array types nested inside it. */
995
996void
997make_vector_type (struct type *array_type)
998{
999 struct type *inner_array, *elt_type;
1000 int flags;
1001
1002 /* Find the innermost array type, in case the array is
1003 multi-dimensional. */
1004 inner_array = array_type;
1005 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1006 inner_array = TYPE_TARGET_TYPE (inner_array);
1007
1008 elt_type = TYPE_TARGET_TYPE (inner_array);
1009 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1010 {
1011 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1012 elt_type = make_qualified_type (elt_type, flags, NULL);
1013 TYPE_TARGET_TYPE (inner_array) = elt_type;
1014 }
1015
1016 TYPE_VECTOR (array_type) = 1;
1017}
1018
1019struct type *
1020init_vector_type (struct type *elt_type, int n)
1021{
1022 struct type *array_type;
1023
1024 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1025 make_vector_type (array_type);
1026 return array_type;
1027}
1028
1029/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1030 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1031 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1032 TYPE doesn't include the offset (that's the value of the MEMBER
1033 itself), but does include the structure type into which it points
1034 (for some reason).
1035
1036 When "smashing" the type, we preserve the objfile that the old type
1037 pointed to, since we aren't changing where the type is actually
1038 allocated. */
1039
1040void
1041smash_to_memberptr_type (struct type *type, struct type *domain,
1042 struct type *to_type)
1043{
1044 smash_type (type);
1045 TYPE_TARGET_TYPE (type) = to_type;
1046 TYPE_DOMAIN_TYPE (type) = domain;
1047 /* Assume that a data member pointer is the same size as a normal
1048 pointer. */
1049 TYPE_LENGTH (type)
1050 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1051 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1052}
1053
1054/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1055
1056 When "smashing" the type, we preserve the objfile that the old type
1057 pointed to, since we aren't changing where the type is actually
1058 allocated. */
1059
1060void
1061smash_to_methodptr_type (struct type *type, struct type *to_type)
1062{
1063 smash_type (type);
1064 TYPE_TARGET_TYPE (type) = to_type;
1065 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1066 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1067 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1068}
1069
1070/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1071 METHOD just means `function that gets an extra "this" argument'.
1072
1073 When "smashing" the type, we preserve the objfile that the old type
1074 pointed to, since we aren't changing where the type is actually
1075 allocated. */
1076
1077void
1078smash_to_method_type (struct type *type, struct type *domain,
1079 struct type *to_type, struct field *args,
1080 int nargs, int varargs)
1081{
1082 smash_type (type);
1083 TYPE_TARGET_TYPE (type) = to_type;
1084 TYPE_DOMAIN_TYPE (type) = domain;
1085 TYPE_FIELDS (type) = args;
1086 TYPE_NFIELDS (type) = nargs;
1087 if (varargs)
1088 TYPE_VARARGS (type) = 1;
1089 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1090 TYPE_CODE (type) = TYPE_CODE_METHOD;
1091}
1092
1093/* Return a typename for a struct/union/enum type without "struct ",
1094 "union ", or "enum ". If the type has a NULL name, return NULL. */
1095
1096char *
1097type_name_no_tag (const struct type *type)
1098{
1099 if (TYPE_TAG_NAME (type) != NULL)
1100 return TYPE_TAG_NAME (type);
1101
1102 /* Is there code which expects this to return the name if there is
1103 no tag name? My guess is that this is mainly used for C++ in
1104 cases where the two will always be the same. */
1105 return TYPE_NAME (type);
1106}
1107
1108/* Lookup a typedef or primitive type named NAME, visible in lexical
1109 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1110 suitably defined. */
1111
1112struct type *
1113lookup_typename (const struct language_defn *language,
1114 struct gdbarch *gdbarch, char *name,
1115 const struct block *block, int noerr)
1116{
1117 struct symbol *sym;
1118 struct type *tmp;
1119
1120 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1121 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1122 {
1123 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1124 if (tmp)
1125 {
1126 return tmp;
1127 }
1128 else if (!tmp && noerr)
1129 {
1130 return NULL;
1131 }
1132 else
1133 {
1134 error (_("No type named %s."), name);
1135 }
1136 }
1137 return (SYMBOL_TYPE (sym));
1138}
1139
1140struct type *
1141lookup_unsigned_typename (const struct language_defn *language,
1142 struct gdbarch *gdbarch, char *name)
1143{
1144 char *uns = alloca (strlen (name) + 10);
1145
1146 strcpy (uns, "unsigned ");
1147 strcpy (uns + 9, name);
1148 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1149}
1150
1151struct type *
1152lookup_signed_typename (const struct language_defn *language,
1153 struct gdbarch *gdbarch, char *name)
1154{
1155 struct type *t;
1156 char *uns = alloca (strlen (name) + 8);
1157
1158 strcpy (uns, "signed ");
1159 strcpy (uns + 7, name);
1160 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1161 /* If we don't find "signed FOO" just try again with plain "FOO". */
1162 if (t != NULL)
1163 return t;
1164 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1165}
1166
1167/* Lookup a structure type named "struct NAME",
1168 visible in lexical block BLOCK. */
1169
1170struct type *
1171lookup_struct (char *name, struct block *block)
1172{
1173 struct symbol *sym;
1174
1175 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1176
1177 if (sym == NULL)
1178 {
1179 error (_("No struct type named %s."), name);
1180 }
1181 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1182 {
1183 error (_("This context has class, union or enum %s, not a struct."),
1184 name);
1185 }
1186 return (SYMBOL_TYPE (sym));
1187}
1188
1189/* Lookup a union type named "union NAME",
1190 visible in lexical block BLOCK. */
1191
1192struct type *
1193lookup_union (char *name, struct block *block)
1194{
1195 struct symbol *sym;
1196 struct type *t;
1197
1198 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1199
1200 if (sym == NULL)
1201 error (_("No union type named %s."), name);
1202
1203 t = SYMBOL_TYPE (sym);
1204
1205 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1206 return t;
1207
1208 /* If we get here, it's not a union. */
1209 error (_("This context has class, struct or enum %s, not a union."),
1210 name);
1211}
1212
1213
1214/* Lookup an enum type named "enum NAME",
1215 visible in lexical block BLOCK. */
1216
1217struct type *
1218lookup_enum (char *name, struct block *block)
1219{
1220 struct symbol *sym;
1221
1222 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1223 if (sym == NULL)
1224 {
1225 error (_("No enum type named %s."), name);
1226 }
1227 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1228 {
1229 error (_("This context has class, struct or union %s, not an enum."),
1230 name);
1231 }
1232 return (SYMBOL_TYPE (sym));
1233}
1234
1235/* Lookup a template type named "template NAME<TYPE>",
1236 visible in lexical block BLOCK. */
1237
1238struct type *
1239lookup_template_type (char *name, struct type *type,
1240 struct block *block)
1241{
1242 struct symbol *sym;
1243 char *nam = (char *)
1244 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1245
1246 strcpy (nam, name);
1247 strcat (nam, "<");
1248 strcat (nam, TYPE_NAME (type));
1249 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1250
1251 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1252
1253 if (sym == NULL)
1254 {
1255 error (_("No template type named %s."), name);
1256 }
1257 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1258 {
1259 error (_("This context has class, union or enum %s, not a struct."),
1260 name);
1261 }
1262 return (SYMBOL_TYPE (sym));
1263}
1264
1265/* Given a type TYPE, lookup the type of the component of type named
1266 NAME.
1267
1268 TYPE can be either a struct or union, or a pointer or reference to
1269 a struct or union. If it is a pointer or reference, its target
1270 type is automatically used. Thus '.' and '->' are interchangable,
1271 as specified for the definitions of the expression element types
1272 STRUCTOP_STRUCT and STRUCTOP_PTR.
1273
1274 If NOERR is nonzero, return zero if NAME is not suitably defined.
1275 If NAME is the name of a baseclass type, return that type. */
1276
1277struct type *
1278lookup_struct_elt_type (struct type *type, char *name, int noerr)
1279{
1280 int i;
1281 char *typename;
1282
1283 for (;;)
1284 {
1285 CHECK_TYPEDEF (type);
1286 if (TYPE_CODE (type) != TYPE_CODE_PTR
1287 && TYPE_CODE (type) != TYPE_CODE_REF)
1288 break;
1289 type = TYPE_TARGET_TYPE (type);
1290 }
1291
1292 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1293 && TYPE_CODE (type) != TYPE_CODE_UNION)
1294 {
1295 typename = type_to_string (type);
1296 make_cleanup (xfree, typename);
1297 error (_("Type %s is not a structure or union type."), typename);
1298 }
1299
1300#if 0
1301 /* FIXME: This change put in by Michael seems incorrect for the case
1302 where the structure tag name is the same as the member name.
1303 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1304 foo; } bell;" Disabled by fnf. */
1305 {
1306 char *typename;
1307
1308 typename = type_name_no_tag (type);
1309 if (typename != NULL && strcmp (typename, name) == 0)
1310 return type;
1311 }
1312#endif
1313
1314 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1315 {
1316 char *t_field_name = TYPE_FIELD_NAME (type, i);
1317
1318 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1319 {
1320 return TYPE_FIELD_TYPE (type, i);
1321 }
1322 else if (!t_field_name || *t_field_name == '\0')
1323 {
1324 struct type *subtype
1325 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1326
1327 if (subtype != NULL)
1328 return subtype;
1329 }
1330 }
1331
1332 /* OK, it's not in this class. Recursively check the baseclasses. */
1333 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1334 {
1335 struct type *t;
1336
1337 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1338 if (t != NULL)
1339 {
1340 return t;
1341 }
1342 }
1343
1344 if (noerr)
1345 {
1346 return NULL;
1347 }
1348
1349 typename = type_to_string (type);
1350 make_cleanup (xfree, typename);
1351 error (_("Type %s has no component named %s."), typename, name);
1352}
1353
1354/* Lookup the vptr basetype/fieldno values for TYPE.
1355 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1356 vptr_fieldno. Also, if found and basetype is from the same objfile,
1357 cache the results.
1358 If not found, return -1 and ignore BASETYPEP.
1359 Callers should be aware that in some cases (for example,
1360 the type or one of its baseclasses is a stub type and we are
1361 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1362 this function will not be able to find the
1363 virtual function table pointer, and vptr_fieldno will remain -1 and
1364 vptr_basetype will remain NULL or incomplete. */
1365
1366int
1367get_vptr_fieldno (struct type *type, struct type **basetypep)
1368{
1369 CHECK_TYPEDEF (type);
1370
1371 if (TYPE_VPTR_FIELDNO (type) < 0)
1372 {
1373 int i;
1374
1375 /* We must start at zero in case the first (and only) baseclass
1376 is virtual (and hence we cannot share the table pointer). */
1377 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1378 {
1379 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1380 int fieldno;
1381 struct type *basetype;
1382
1383 fieldno = get_vptr_fieldno (baseclass, &basetype);
1384 if (fieldno >= 0)
1385 {
1386 /* If the type comes from a different objfile we can't cache
1387 it, it may have a different lifetime. PR 2384 */
1388 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1389 {
1390 TYPE_VPTR_FIELDNO (type) = fieldno;
1391 TYPE_VPTR_BASETYPE (type) = basetype;
1392 }
1393 if (basetypep)
1394 *basetypep = basetype;
1395 return fieldno;
1396 }
1397 }
1398
1399 /* Not found. */
1400 return -1;
1401 }
1402 else
1403 {
1404 if (basetypep)
1405 *basetypep = TYPE_VPTR_BASETYPE (type);
1406 return TYPE_VPTR_FIELDNO (type);
1407 }
1408}
1409
1410static void
1411stub_noname_complaint (void)
1412{
1413 complaint (&symfile_complaints, _("stub type has NULL name"));
1414}
1415
1416/* Find the real type of TYPE. This function returns the real type,
1417 after removing all layers of typedefs, and completing opaque or stub
1418 types. Completion changes the TYPE argument, but stripping of
1419 typedefs does not.
1420
1421 Instance flags (e.g. const/volatile) are preserved as typedefs are
1422 stripped. If necessary a new qualified form of the underlying type
1423 is created.
1424
1425 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1426 not been computed and we're either in the middle of reading symbols, or
1427 there was no name for the typedef in the debug info.
1428
1429 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1430 the target type.
1431
1432 If this is a stubbed struct (i.e. declared as struct foo *), see if
1433 we can find a full definition in some other file. If so, copy this
1434 definition, so we can use it in future. There used to be a comment
1435 (but not any code) that if we don't find a full definition, we'd
1436 set a flag so we don't spend time in the future checking the same
1437 type. That would be a mistake, though--we might load in more
1438 symbols which contain a full definition for the type. */
1439
1440struct type *
1441check_typedef (struct type *type)
1442{
1443 struct type *orig_type = type;
1444 /* While we're removing typedefs, we don't want to lose qualifiers.
1445 E.g., const/volatile. */
1446 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1447
1448 gdb_assert (type);
1449
1450 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1451 {
1452 if (!TYPE_TARGET_TYPE (type))
1453 {
1454 char *name;
1455 struct symbol *sym;
1456
1457 /* It is dangerous to call lookup_symbol if we are currently
1458 reading a symtab. Infinite recursion is one danger. */
1459 if (currently_reading_symtab)
1460 return make_qualified_type (type, instance_flags, NULL);
1461
1462 name = type_name_no_tag (type);
1463 /* FIXME: shouldn't we separately check the TYPE_NAME and
1464 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1465 VAR_DOMAIN as appropriate? (this code was written before
1466 TYPE_NAME and TYPE_TAG_NAME were separate). */
1467 if (name == NULL)
1468 {
1469 stub_noname_complaint ();
1470 return make_qualified_type (type, instance_flags, NULL);
1471 }
1472 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1473 if (sym)
1474 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1475 else /* TYPE_CODE_UNDEF */
1476 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1477 }
1478 type = TYPE_TARGET_TYPE (type);
1479
1480 /* Preserve the instance flags as we traverse down the typedef chain.
1481
1482 Handling address spaces/classes is nasty, what do we do if there's a
1483 conflict?
1484 E.g., what if an outer typedef marks the type as class_1 and an inner
1485 typedef marks the type as class_2?
1486 This is the wrong place to do such error checking. We leave it to
1487 the code that created the typedef in the first place to flag the
1488 error. We just pick the outer address space (akin to letting the
1489 outer cast in a chain of casting win), instead of assuming
1490 "it can't happen". */
1491 {
1492 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1493 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1494 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1495 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1496
1497 /* Treat code vs data spaces and address classes separately. */
1498 if ((instance_flags & ALL_SPACES) != 0)
1499 new_instance_flags &= ~ALL_SPACES;
1500 if ((instance_flags & ALL_CLASSES) != 0)
1501 new_instance_flags &= ~ALL_CLASSES;
1502
1503 instance_flags |= new_instance_flags;
1504 }
1505 }
1506
1507 /* If this is a struct/class/union with no fields, then check
1508 whether a full definition exists somewhere else. This is for
1509 systems where a type definition with no fields is issued for such
1510 types, instead of identifying them as stub types in the first
1511 place. */
1512
1513 if (TYPE_IS_OPAQUE (type)
1514 && opaque_type_resolution
1515 && !currently_reading_symtab)
1516 {
1517 char *name = type_name_no_tag (type);
1518 struct type *newtype;
1519
1520 if (name == NULL)
1521 {
1522 stub_noname_complaint ();
1523 return make_qualified_type (type, instance_flags, NULL);
1524 }
1525 newtype = lookup_transparent_type (name);
1526
1527 if (newtype)
1528 {
1529 /* If the resolved type and the stub are in the same
1530 objfile, then replace the stub type with the real deal.
1531 But if they're in separate objfiles, leave the stub
1532 alone; we'll just look up the transparent type every time
1533 we call check_typedef. We can't create pointers between
1534 types allocated to different objfiles, since they may
1535 have different lifetimes. Trying to copy NEWTYPE over to
1536 TYPE's objfile is pointless, too, since you'll have to
1537 move over any other types NEWTYPE refers to, which could
1538 be an unbounded amount of stuff. */
1539 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1540 type = make_qualified_type (newtype,
1541 TYPE_INSTANCE_FLAGS (type),
1542 type);
1543 else
1544 type = newtype;
1545 }
1546 }
1547 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1548 types. */
1549 else if (TYPE_STUB (type) && !currently_reading_symtab)
1550 {
1551 char *name = type_name_no_tag (type);
1552 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1553 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1554 as appropriate? (this code was written before TYPE_NAME and
1555 TYPE_TAG_NAME were separate). */
1556 struct symbol *sym;
1557
1558 if (name == NULL)
1559 {
1560 stub_noname_complaint ();
1561 return make_qualified_type (type, instance_flags, NULL);
1562 }
1563 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1564 if (sym)
1565 {
1566 /* Same as above for opaque types, we can replace the stub
1567 with the complete type only if they are in the same
1568 objfile. */
1569 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1570 type = make_qualified_type (SYMBOL_TYPE (sym),
1571 TYPE_INSTANCE_FLAGS (type),
1572 type);
1573 else
1574 type = SYMBOL_TYPE (sym);
1575 }
1576 }
1577
1578 if (TYPE_TARGET_STUB (type))
1579 {
1580 struct type *range_type;
1581 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1582
1583 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1584 {
1585 /* Nothing we can do. */
1586 }
1587 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1588 && TYPE_NFIELDS (type) == 1
1589 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1590 == TYPE_CODE_RANGE))
1591 {
1592 /* Now recompute the length of the array type, based on its
1593 number of elements and the target type's length.
1594 Watch out for Ada null Ada arrays where the high bound
1595 is smaller than the low bound. */
1596 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1597 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1598 ULONGEST len;
1599
1600 if (high_bound < low_bound)
1601 len = 0;
1602 else
1603 {
1604 /* For now, we conservatively take the array length to be 0
1605 if its length exceeds UINT_MAX. The code below assumes
1606 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1607 which is technically not guaranteed by C, but is usually true
1608 (because it would be true if x were unsigned with its
1609 high-order bit on). It uses the fact that
1610 high_bound-low_bound is always representable in
1611 ULONGEST and that if high_bound-low_bound+1 overflows,
1612 it overflows to 0. We must change these tests if we
1613 decide to increase the representation of TYPE_LENGTH
1614 from unsigned int to ULONGEST. */
1615 ULONGEST ulow = low_bound, uhigh = high_bound;
1616 ULONGEST tlen = TYPE_LENGTH (target_type);
1617
1618 len = tlen * (uhigh - ulow + 1);
1619 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1620 || len > UINT_MAX)
1621 len = 0;
1622 }
1623 TYPE_LENGTH (type) = len;
1624 TYPE_TARGET_STUB (type) = 0;
1625 }
1626 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1627 {
1628 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1629 TYPE_TARGET_STUB (type) = 0;
1630 }
1631 }
1632
1633 type = make_qualified_type (type, instance_flags, NULL);
1634
1635 /* Cache TYPE_LENGTH for future use. */
1636 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1637
1638 return type;
1639}
1640
1641/* Parse a type expression in the string [P..P+LENGTH). If an error
1642 occurs, silently return a void type. */
1643
1644static struct type *
1645safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1646{
1647 struct ui_file *saved_gdb_stderr;
1648 struct type *type;
1649
1650 /* Suppress error messages. */
1651 saved_gdb_stderr = gdb_stderr;
1652 gdb_stderr = ui_file_new ();
1653
1654 /* Call parse_and_eval_type() without fear of longjmp()s. */
1655 if (!gdb_parse_and_eval_type (p, length, &type))
1656 type = builtin_type (gdbarch)->builtin_void;
1657
1658 /* Stop suppressing error messages. */
1659 ui_file_delete (gdb_stderr);
1660 gdb_stderr = saved_gdb_stderr;
1661
1662 return type;
1663}
1664
1665/* Ugly hack to convert method stubs into method types.
1666
1667 He ain't kiddin'. This demangles the name of the method into a
1668 string including argument types, parses out each argument type,
1669 generates a string casting a zero to that type, evaluates the
1670 string, and stuffs the resulting type into an argtype vector!!!
1671 Then it knows the type of the whole function (including argument
1672 types for overloading), which info used to be in the stab's but was
1673 removed to hack back the space required for them. */
1674
1675static void
1676check_stub_method (struct type *type, int method_id, int signature_id)
1677{
1678 struct gdbarch *gdbarch = get_type_arch (type);
1679 struct fn_field *f;
1680 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1681 char *demangled_name = cplus_demangle (mangled_name,
1682 DMGL_PARAMS | DMGL_ANSI);
1683 char *argtypetext, *p;
1684 int depth = 0, argcount = 1;
1685 struct field *argtypes;
1686 struct type *mtype;
1687
1688 /* Make sure we got back a function string that we can use. */
1689 if (demangled_name)
1690 p = strchr (demangled_name, '(');
1691 else
1692 p = NULL;
1693
1694 if (demangled_name == NULL || p == NULL)
1695 error (_("Internal: Cannot demangle mangled name `%s'."),
1696 mangled_name);
1697
1698 /* Now, read in the parameters that define this type. */
1699 p += 1;
1700 argtypetext = p;
1701 while (*p)
1702 {
1703 if (*p == '(' || *p == '<')
1704 {
1705 depth += 1;
1706 }
1707 else if (*p == ')' || *p == '>')
1708 {
1709 depth -= 1;
1710 }
1711 else if (*p == ',' && depth == 0)
1712 {
1713 argcount += 1;
1714 }
1715
1716 p += 1;
1717 }
1718
1719 /* If we read one argument and it was ``void'', don't count it. */
1720 if (strncmp (argtypetext, "(void)", 6) == 0)
1721 argcount -= 1;
1722
1723 /* We need one extra slot, for the THIS pointer. */
1724
1725 argtypes = (struct field *)
1726 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1727 p = argtypetext;
1728
1729 /* Add THIS pointer for non-static methods. */
1730 f = TYPE_FN_FIELDLIST1 (type, method_id);
1731 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1732 argcount = 0;
1733 else
1734 {
1735 argtypes[0].type = lookup_pointer_type (type);
1736 argcount = 1;
1737 }
1738
1739 if (*p != ')') /* () means no args, skip while. */
1740 {
1741 depth = 0;
1742 while (*p)
1743 {
1744 if (depth <= 0 && (*p == ',' || *p == ')'))
1745 {
1746 /* Avoid parsing of ellipsis, they will be handled below.
1747 Also avoid ``void'' as above. */
1748 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1749 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1750 {
1751 argtypes[argcount].type =
1752 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1753 argcount += 1;
1754 }
1755 argtypetext = p + 1;
1756 }
1757
1758 if (*p == '(' || *p == '<')
1759 {
1760 depth += 1;
1761 }
1762 else if (*p == ')' || *p == '>')
1763 {
1764 depth -= 1;
1765 }
1766
1767 p += 1;
1768 }
1769 }
1770
1771 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1772
1773 /* Now update the old "stub" type into a real type. */
1774 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1775 TYPE_DOMAIN_TYPE (mtype) = type;
1776 TYPE_FIELDS (mtype) = argtypes;
1777 TYPE_NFIELDS (mtype) = argcount;
1778 TYPE_STUB (mtype) = 0;
1779 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1780 if (p[-2] == '.')
1781 TYPE_VARARGS (mtype) = 1;
1782
1783 xfree (demangled_name);
1784}
1785
1786/* This is the external interface to check_stub_method, above. This
1787 function unstubs all of the signatures for TYPE's METHOD_ID method
1788 name. After calling this function TYPE_FN_FIELD_STUB will be
1789 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1790 correct.
1791
1792 This function unfortunately can not die until stabs do. */
1793
1794void
1795check_stub_method_group (struct type *type, int method_id)
1796{
1797 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1798 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1799 int j, found_stub = 0;
1800
1801 for (j = 0; j < len; j++)
1802 if (TYPE_FN_FIELD_STUB (f, j))
1803 {
1804 found_stub = 1;
1805 check_stub_method (type, method_id, j);
1806 }
1807
1808 /* GNU v3 methods with incorrect names were corrected when we read
1809 in type information, because it was cheaper to do it then. The
1810 only GNU v2 methods with incorrect method names are operators and
1811 destructors; destructors were also corrected when we read in type
1812 information.
1813
1814 Therefore the only thing we need to handle here are v2 operator
1815 names. */
1816 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1817 {
1818 int ret;
1819 char dem_opname[256];
1820
1821 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1822 method_id),
1823 dem_opname, DMGL_ANSI);
1824 if (!ret)
1825 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1826 method_id),
1827 dem_opname, 0);
1828 if (ret)
1829 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1830 }
1831}
1832
1833/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1834const struct cplus_struct_type cplus_struct_default = { };
1835
1836void
1837allocate_cplus_struct_type (struct type *type)
1838{
1839 if (HAVE_CPLUS_STRUCT (type))
1840 /* Structure was already allocated. Nothing more to do. */
1841 return;
1842
1843 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1844 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1845 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1846 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1847}
1848
1849const struct gnat_aux_type gnat_aux_default =
1850 { NULL };
1851
1852/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1853 and allocate the associated gnat-specific data. The gnat-specific
1854 data is also initialized to gnat_aux_default. */
1855void
1856allocate_gnat_aux_type (struct type *type)
1857{
1858 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1859 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1860 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1861 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1862}
1863
1864
1865/* Helper function to initialize the standard scalar types.
1866
1867 If NAME is non-NULL, then we make a copy of the string pointed
1868 to by name in the objfile_obstack for that objfile, and initialize
1869 the type name to that copy. There are places (mipsread.c in particular),
1870 where init_type is called with a NULL value for NAME). */
1871
1872struct type *
1873init_type (enum type_code code, int length, int flags,
1874 char *name, struct objfile *objfile)
1875{
1876 struct type *type;
1877
1878 type = alloc_type (objfile);
1879 TYPE_CODE (type) = code;
1880 TYPE_LENGTH (type) = length;
1881
1882 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1883 if (flags & TYPE_FLAG_UNSIGNED)
1884 TYPE_UNSIGNED (type) = 1;
1885 if (flags & TYPE_FLAG_NOSIGN)
1886 TYPE_NOSIGN (type) = 1;
1887 if (flags & TYPE_FLAG_STUB)
1888 TYPE_STUB (type) = 1;
1889 if (flags & TYPE_FLAG_TARGET_STUB)
1890 TYPE_TARGET_STUB (type) = 1;
1891 if (flags & TYPE_FLAG_STATIC)
1892 TYPE_STATIC (type) = 1;
1893 if (flags & TYPE_FLAG_PROTOTYPED)
1894 TYPE_PROTOTYPED (type) = 1;
1895 if (flags & TYPE_FLAG_INCOMPLETE)
1896 TYPE_INCOMPLETE (type) = 1;
1897 if (flags & TYPE_FLAG_VARARGS)
1898 TYPE_VARARGS (type) = 1;
1899 if (flags & TYPE_FLAG_VECTOR)
1900 TYPE_VECTOR (type) = 1;
1901 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1902 TYPE_STUB_SUPPORTED (type) = 1;
1903 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1904 TYPE_FIXED_INSTANCE (type) = 1;
1905
1906 if (name)
1907 TYPE_NAME (type) = obsavestring (name, strlen (name),
1908 &objfile->objfile_obstack);
1909
1910 /* C++ fancies. */
1911
1912 if (name && strcmp (name, "char") == 0)
1913 TYPE_NOSIGN (type) = 1;
1914
1915 switch (code)
1916 {
1917 case TYPE_CODE_STRUCT:
1918 case TYPE_CODE_UNION:
1919 case TYPE_CODE_NAMESPACE:
1920 INIT_CPLUS_SPECIFIC (type);
1921 break;
1922 case TYPE_CODE_FLT:
1923 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1924 break;
1925 case TYPE_CODE_FUNC:
1926 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1927 break;
1928 }
1929 return type;
1930}
1931
1932int
1933can_dereference (struct type *t)
1934{
1935 /* FIXME: Should we return true for references as well as
1936 pointers? */
1937 CHECK_TYPEDEF (t);
1938 return
1939 (t != NULL
1940 && TYPE_CODE (t) == TYPE_CODE_PTR
1941 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1942}
1943
1944int
1945is_integral_type (struct type *t)
1946{
1947 CHECK_TYPEDEF (t);
1948 return
1949 ((t != NULL)
1950 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1951 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1952 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1953 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1954 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1955 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1956}
1957
1958/* Return true if TYPE is scalar. */
1959
1960static int
1961is_scalar_type (struct type *type)
1962{
1963 CHECK_TYPEDEF (type);
1964
1965 switch (TYPE_CODE (type))
1966 {
1967 case TYPE_CODE_ARRAY:
1968 case TYPE_CODE_STRUCT:
1969 case TYPE_CODE_UNION:
1970 case TYPE_CODE_SET:
1971 case TYPE_CODE_STRING:
1972 case TYPE_CODE_BITSTRING:
1973 return 0;
1974 default:
1975 return 1;
1976 }
1977}
1978
1979/* Return true if T is scalar, or a composite type which in practice has
1980 the memory layout of a scalar type. E.g., an array or struct with only
1981 one scalar element inside it, or a union with only scalar elements. */
1982
1983int
1984is_scalar_type_recursive (struct type *t)
1985{
1986 CHECK_TYPEDEF (t);
1987
1988 if (is_scalar_type (t))
1989 return 1;
1990 /* Are we dealing with an array or string of known dimensions? */
1991 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
1992 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
1993 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
1994 {
1995 LONGEST low_bound, high_bound;
1996 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
1997
1998 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
1999
2000 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2001 }
2002 /* Are we dealing with a struct with one element? */
2003 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2004 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2005 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2006 {
2007 int i, n = TYPE_NFIELDS (t);
2008
2009 /* If all elements of the union are scalar, then the union is scalar. */
2010 for (i = 0; i < n; i++)
2011 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2012 return 0;
2013
2014 return 1;
2015 }
2016
2017 return 0;
2018}
2019
2020/* A helper function which returns true if types A and B represent the
2021 "same" class type. This is true if the types have the same main
2022 type, or the same name. */
2023
2024int
2025class_types_same_p (const struct type *a, const struct type *b)
2026{
2027 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2028 || (TYPE_NAME (a) && TYPE_NAME (b)
2029 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2030}
2031
2032/* If BASE is an ancestor of DCLASS return the distance between them.
2033 otherwise return -1;
2034 eg:
2035
2036 class A {};
2037 class B: public A {};
2038 class C: public B {};
2039 class D: C {};
2040
2041 distance_to_ancestor (A, A, 0) = 0
2042 distance_to_ancestor (A, B, 0) = 1
2043 distance_to_ancestor (A, C, 0) = 2
2044 distance_to_ancestor (A, D, 0) = 3
2045
2046 If PUBLIC is 1 then only public ancestors are considered,
2047 and the function returns the distance only if BASE is a public ancestor
2048 of DCLASS.
2049 Eg:
2050
2051 distance_to_ancestor (A, D, 1) = -1. */
2052
2053static int
2054distance_to_ancestor (struct type *base, struct type *dclass, int public)
2055{
2056 int i;
2057 int d;
2058
2059 CHECK_TYPEDEF (base);
2060 CHECK_TYPEDEF (dclass);
2061
2062 if (class_types_same_p (base, dclass))
2063 return 0;
2064
2065 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2066 {
2067 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2068 continue;
2069
2070 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2071 if (d >= 0)
2072 return 1 + d;
2073 }
2074
2075 return -1;
2076}
2077
2078/* Check whether BASE is an ancestor or base class or DCLASS
2079 Return 1 if so, and 0 if not.
2080 Note: If BASE and DCLASS are of the same type, this function
2081 will return 1. So for some class A, is_ancestor (A, A) will
2082 return 1. */
2083
2084int
2085is_ancestor (struct type *base, struct type *dclass)
2086{
2087 return distance_to_ancestor (base, dclass, 0) >= 0;
2088}
2089
2090/* Like is_ancestor, but only returns true when BASE is a public
2091 ancestor of DCLASS. */
2092
2093int
2094is_public_ancestor (struct type *base, struct type *dclass)
2095{
2096 return distance_to_ancestor (base, dclass, 1) >= 0;
2097}
2098
2099/* A helper function for is_unique_ancestor. */
2100
2101static int
2102is_unique_ancestor_worker (struct type *base, struct type *dclass,
2103 int *offset,
2104 const gdb_byte *valaddr, int embedded_offset,
2105 CORE_ADDR address, struct value *val)
2106{
2107 int i, count = 0;
2108
2109 CHECK_TYPEDEF (base);
2110 CHECK_TYPEDEF (dclass);
2111
2112 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2113 {
2114 struct type *iter;
2115 int this_offset;
2116
2117 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2118
2119 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2120 address, val);
2121
2122 if (class_types_same_p (base, iter))
2123 {
2124 /* If this is the first subclass, set *OFFSET and set count
2125 to 1. Otherwise, if this is at the same offset as
2126 previous instances, do nothing. Otherwise, increment
2127 count. */
2128 if (*offset == -1)
2129 {
2130 *offset = this_offset;
2131 count = 1;
2132 }
2133 else if (this_offset == *offset)
2134 {
2135 /* Nothing. */
2136 }
2137 else
2138 ++count;
2139 }
2140 else
2141 count += is_unique_ancestor_worker (base, iter, offset,
2142 valaddr,
2143 embedded_offset + this_offset,
2144 address, val);
2145 }
2146
2147 return count;
2148}
2149
2150/* Like is_ancestor, but only returns true if BASE is a unique base
2151 class of the type of VAL. */
2152
2153int
2154is_unique_ancestor (struct type *base, struct value *val)
2155{
2156 int offset = -1;
2157
2158 return is_unique_ancestor_worker (base, value_type (val), &offset,
2159 value_contents_for_printing (val),
2160 value_embedded_offset (val),
2161 value_address (val), val) == 1;
2162}
2163
2164\f
2165
2166/* Return the sum of the rank of A with the rank of B. */
2167
2168struct rank
2169sum_ranks (struct rank a, struct rank b)
2170{
2171 struct rank c;
2172 c.rank = a.rank + b.rank;
2173 c.subrank = a.subrank + b.subrank;
2174 return c;
2175}
2176
2177/* Compare rank A and B and return:
2178 0 if a = b
2179 1 if a is better than b
2180 -1 if b is better than a. */
2181
2182int
2183compare_ranks (struct rank a, struct rank b)
2184{
2185 if (a.rank == b.rank)
2186 {
2187 if (a.subrank == b.subrank)
2188 return 0;
2189 if (a.subrank < b.subrank)
2190 return 1;
2191 if (a.subrank > b.subrank)
2192 return -1;
2193 }
2194
2195 if (a.rank < b.rank)
2196 return 1;
2197
2198 /* a.rank > b.rank */
2199 return -1;
2200}
2201
2202/* Functions for overload resolution begin here. */
2203
2204/* Compare two badness vectors A and B and return the result.
2205 0 => A and B are identical
2206 1 => A and B are incomparable
2207 2 => A is better than B
2208 3 => A is worse than B */
2209
2210int
2211compare_badness (struct badness_vector *a, struct badness_vector *b)
2212{
2213 int i;
2214 int tmp;
2215 short found_pos = 0; /* any positives in c? */
2216 short found_neg = 0; /* any negatives in c? */
2217
2218 /* differing lengths => incomparable */
2219 if (a->length != b->length)
2220 return 1;
2221
2222 /* Subtract b from a */
2223 for (i = 0; i < a->length; i++)
2224 {
2225 tmp = compare_ranks (b->rank[i], a->rank[i]);
2226 if (tmp > 0)
2227 found_pos = 1;
2228 else if (tmp < 0)
2229 found_neg = 1;
2230 }
2231
2232 if (found_pos)
2233 {
2234 if (found_neg)
2235 return 1; /* incomparable */
2236 else
2237 return 3; /* A > B */
2238 }
2239 else
2240 /* no positives */
2241 {
2242 if (found_neg)
2243 return 2; /* A < B */
2244 else
2245 return 0; /* A == B */
2246 }
2247}
2248
2249/* Rank a function by comparing its parameter types (PARMS, length
2250 NPARMS), to the types of an argument list (ARGS, length NARGS).
2251 Return a pointer to a badness vector. This has NARGS + 1
2252 entries. */
2253
2254struct badness_vector *
2255rank_function (struct type **parms, int nparms,
2256 struct type **args, int nargs)
2257{
2258 int i;
2259 struct badness_vector *bv;
2260 int min_len = nparms < nargs ? nparms : nargs;
2261
2262 bv = xmalloc (sizeof (struct badness_vector));
2263 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2264 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2265
2266 /* First compare the lengths of the supplied lists.
2267 If there is a mismatch, set it to a high value. */
2268
2269 /* pai/1997-06-03 FIXME: when we have debug info about default
2270 arguments and ellipsis parameter lists, we should consider those
2271 and rank the length-match more finely. */
2272
2273 LENGTH_MATCH (bv) = (nargs != nparms)
2274 ? LENGTH_MISMATCH_BADNESS
2275 : EXACT_MATCH_BADNESS;
2276
2277 /* Now rank all the parameters of the candidate function. */
2278 for (i = 1; i <= min_len; i++)
2279 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2280
2281 /* If more arguments than parameters, add dummy entries. */
2282 for (i = min_len + 1; i <= nargs; i++)
2283 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2284
2285 return bv;
2286}
2287
2288/* Compare the names of two integer types, assuming that any sign
2289 qualifiers have been checked already. We do it this way because
2290 there may be an "int" in the name of one of the types. */
2291
2292static int
2293integer_types_same_name_p (const char *first, const char *second)
2294{
2295 int first_p, second_p;
2296
2297 /* If both are shorts, return 1; if neither is a short, keep
2298 checking. */
2299 first_p = (strstr (first, "short") != NULL);
2300 second_p = (strstr (second, "short") != NULL);
2301 if (first_p && second_p)
2302 return 1;
2303 if (first_p || second_p)
2304 return 0;
2305
2306 /* Likewise for long. */
2307 first_p = (strstr (first, "long") != NULL);
2308 second_p = (strstr (second, "long") != NULL);
2309 if (first_p && second_p)
2310 return 1;
2311 if (first_p || second_p)
2312 return 0;
2313
2314 /* Likewise for char. */
2315 first_p = (strstr (first, "char") != NULL);
2316 second_p = (strstr (second, "char") != NULL);
2317 if (first_p && second_p)
2318 return 1;
2319 if (first_p || second_p)
2320 return 0;
2321
2322 /* They must both be ints. */
2323 return 1;
2324}
2325
2326/* Compares type A to type B returns 1 if the represent the same type
2327 0 otherwise. */
2328
2329static int
2330types_equal (struct type *a, struct type *b)
2331{
2332 /* Identical type pointers. */
2333 /* However, this still doesn't catch all cases of same type for b
2334 and a. The reason is that builtin types are different from
2335 the same ones constructed from the object. */
2336 if (a == b)
2337 return 1;
2338
2339 /* Resolve typedefs */
2340 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2341 a = check_typedef (a);
2342 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2343 b = check_typedef (b);
2344
2345 /* If after resolving typedefs a and b are not of the same type
2346 code then they are not equal. */
2347 if (TYPE_CODE (a) != TYPE_CODE (b))
2348 return 0;
2349
2350 /* If a and b are both pointers types or both reference types then
2351 they are equal of the same type iff the objects they refer to are
2352 of the same type. */
2353 if (TYPE_CODE (a) == TYPE_CODE_PTR
2354 || TYPE_CODE (a) == TYPE_CODE_REF)
2355 return types_equal (TYPE_TARGET_TYPE (a),
2356 TYPE_TARGET_TYPE (b));
2357
2358 /* Well, damnit, if the names are exactly the same, I'll say they
2359 are exactly the same. This happens when we generate method
2360 stubs. The types won't point to the same address, but they
2361 really are the same. */
2362
2363 if (TYPE_NAME (a) && TYPE_NAME (b)
2364 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2365 return 1;
2366
2367 /* Check if identical after resolving typedefs. */
2368 if (a == b)
2369 return 1;
2370
2371 return 0;
2372}
2373
2374/* Compare one type (PARM) for compatibility with another (ARG).
2375 * PARM is intended to be the parameter type of a function; and
2376 * ARG is the supplied argument's type. This function tests if
2377 * the latter can be converted to the former.
2378 *
2379 * Return 0 if they are identical types;
2380 * Otherwise, return an integer which corresponds to how compatible
2381 * PARM is to ARG. The higher the return value, the worse the match.
2382 * Generally the "bad" conversions are all uniformly assigned a 100. */
2383
2384struct rank
2385rank_one_type (struct type *parm, struct type *arg)
2386{
2387 struct rank rank = {0,0};
2388
2389 if (types_equal (parm, arg))
2390 return EXACT_MATCH_BADNESS;
2391
2392 /* Resolve typedefs */
2393 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2394 parm = check_typedef (parm);
2395 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2396 arg = check_typedef (arg);
2397
2398 /* See through references, since we can almost make non-references
2399 references. */
2400 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2401 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg)),
2402 REFERENCE_CONVERSION_BADNESS));
2403 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2404 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg),
2405 REFERENCE_CONVERSION_BADNESS));
2406 if (overload_debug)
2407 /* Debugging only. */
2408 fprintf_filtered (gdb_stderr,
2409 "------ Arg is %s [%d], parm is %s [%d]\n",
2410 TYPE_NAME (arg), TYPE_CODE (arg),
2411 TYPE_NAME (parm), TYPE_CODE (parm));
2412
2413 /* x -> y means arg of type x being supplied for parameter of type y. */
2414
2415 switch (TYPE_CODE (parm))
2416 {
2417 case TYPE_CODE_PTR:
2418 switch (TYPE_CODE (arg))
2419 {
2420 case TYPE_CODE_PTR:
2421
2422 /* Allowed pointer conversions are:
2423 (a) pointer to void-pointer conversion. */
2424 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2425 return VOID_PTR_CONVERSION_BADNESS;
2426
2427 /* (b) pointer to ancestor-pointer conversion. */
2428 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2429 TYPE_TARGET_TYPE (arg),
2430 0);
2431 if (rank.subrank >= 0)
2432 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2433
2434 return INCOMPATIBLE_TYPE_BADNESS;
2435 case TYPE_CODE_ARRAY:
2436 if (types_equal (TYPE_TARGET_TYPE (parm),
2437 TYPE_TARGET_TYPE (arg)))
2438 return EXACT_MATCH_BADNESS;
2439 return INCOMPATIBLE_TYPE_BADNESS;
2440 case TYPE_CODE_FUNC:
2441 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2442 case TYPE_CODE_INT:
2443 case TYPE_CODE_ENUM:
2444 case TYPE_CODE_FLAGS:
2445 case TYPE_CODE_CHAR:
2446 case TYPE_CODE_RANGE:
2447 case TYPE_CODE_BOOL:
2448 default:
2449 return INCOMPATIBLE_TYPE_BADNESS;
2450 }
2451 case TYPE_CODE_ARRAY:
2452 switch (TYPE_CODE (arg))
2453 {
2454 case TYPE_CODE_PTR:
2455 case TYPE_CODE_ARRAY:
2456 return rank_one_type (TYPE_TARGET_TYPE (parm),
2457 TYPE_TARGET_TYPE (arg));
2458 default:
2459 return INCOMPATIBLE_TYPE_BADNESS;
2460 }
2461 case TYPE_CODE_FUNC:
2462 switch (TYPE_CODE (arg))
2463 {
2464 case TYPE_CODE_PTR: /* funcptr -> func */
2465 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2466 default:
2467 return INCOMPATIBLE_TYPE_BADNESS;
2468 }
2469 case TYPE_CODE_INT:
2470 switch (TYPE_CODE (arg))
2471 {
2472 case TYPE_CODE_INT:
2473 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2474 {
2475 /* Deal with signed, unsigned, and plain chars and
2476 signed and unsigned ints. */
2477 if (TYPE_NOSIGN (parm))
2478 {
2479 /* This case only for character types. */
2480 if (TYPE_NOSIGN (arg))
2481 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2482 else /* signed/unsigned char -> plain char */
2483 return INTEGER_CONVERSION_BADNESS;
2484 }
2485 else if (TYPE_UNSIGNED (parm))
2486 {
2487 if (TYPE_UNSIGNED (arg))
2488 {
2489 /* unsigned int -> unsigned int, or
2490 unsigned long -> unsigned long */
2491 if (integer_types_same_name_p (TYPE_NAME (parm),
2492 TYPE_NAME (arg)))
2493 return EXACT_MATCH_BADNESS;
2494 else if (integer_types_same_name_p (TYPE_NAME (arg),
2495 "int")
2496 && integer_types_same_name_p (TYPE_NAME (parm),
2497 "long"))
2498 /* unsigned int -> unsigned long */
2499 return INTEGER_PROMOTION_BADNESS;
2500 else
2501 /* unsigned long -> unsigned int */
2502 return INTEGER_CONVERSION_BADNESS;
2503 }
2504 else
2505 {
2506 if (integer_types_same_name_p (TYPE_NAME (arg),
2507 "long")
2508 && integer_types_same_name_p (TYPE_NAME (parm),
2509 "int"))
2510 /* signed long -> unsigned int */
2511 return INTEGER_CONVERSION_BADNESS;
2512 else
2513 /* signed int/long -> unsigned int/long */
2514 return INTEGER_CONVERSION_BADNESS;
2515 }
2516 }
2517 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2518 {
2519 if (integer_types_same_name_p (TYPE_NAME (parm),
2520 TYPE_NAME (arg)))
2521 return EXACT_MATCH_BADNESS;
2522 else if (integer_types_same_name_p (TYPE_NAME (arg),
2523 "int")
2524 && integer_types_same_name_p (TYPE_NAME (parm),
2525 "long"))
2526 return INTEGER_PROMOTION_BADNESS;
2527 else
2528 return INTEGER_CONVERSION_BADNESS;
2529 }
2530 else
2531 return INTEGER_CONVERSION_BADNESS;
2532 }
2533 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2534 return INTEGER_PROMOTION_BADNESS;
2535 else
2536 return INTEGER_CONVERSION_BADNESS;
2537 case TYPE_CODE_ENUM:
2538 case TYPE_CODE_FLAGS:
2539 case TYPE_CODE_CHAR:
2540 case TYPE_CODE_RANGE:
2541 case TYPE_CODE_BOOL:
2542 return INTEGER_PROMOTION_BADNESS;
2543 case TYPE_CODE_FLT:
2544 return INT_FLOAT_CONVERSION_BADNESS;
2545 case TYPE_CODE_PTR:
2546 return NS_POINTER_CONVERSION_BADNESS;
2547 default:
2548 return INCOMPATIBLE_TYPE_BADNESS;
2549 }
2550 break;
2551 case TYPE_CODE_ENUM:
2552 switch (TYPE_CODE (arg))
2553 {
2554 case TYPE_CODE_INT:
2555 case TYPE_CODE_CHAR:
2556 case TYPE_CODE_RANGE:
2557 case TYPE_CODE_BOOL:
2558 case TYPE_CODE_ENUM:
2559 return INTEGER_CONVERSION_BADNESS;
2560 case TYPE_CODE_FLT:
2561 return INT_FLOAT_CONVERSION_BADNESS;
2562 default:
2563 return INCOMPATIBLE_TYPE_BADNESS;
2564 }
2565 break;
2566 case TYPE_CODE_CHAR:
2567 switch (TYPE_CODE (arg))
2568 {
2569 case TYPE_CODE_RANGE:
2570 case TYPE_CODE_BOOL:
2571 case TYPE_CODE_ENUM:
2572 return INTEGER_CONVERSION_BADNESS;
2573 case TYPE_CODE_FLT:
2574 return INT_FLOAT_CONVERSION_BADNESS;
2575 case TYPE_CODE_INT:
2576 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2577 return INTEGER_CONVERSION_BADNESS;
2578 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2579 return INTEGER_PROMOTION_BADNESS;
2580 /* >>> !! else fall through !! <<< */
2581 case TYPE_CODE_CHAR:
2582 /* Deal with signed, unsigned, and plain chars for C++ and
2583 with int cases falling through from previous case. */
2584 if (TYPE_NOSIGN (parm))
2585 {
2586 if (TYPE_NOSIGN (arg))
2587 return EXACT_MATCH_BADNESS;
2588 else
2589 return INTEGER_CONVERSION_BADNESS;
2590 }
2591 else if (TYPE_UNSIGNED (parm))
2592 {
2593 if (TYPE_UNSIGNED (arg))
2594 return EXACT_MATCH_BADNESS;
2595 else
2596 return INTEGER_PROMOTION_BADNESS;
2597 }
2598 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2599 return EXACT_MATCH_BADNESS;
2600 else
2601 return INTEGER_CONVERSION_BADNESS;
2602 default:
2603 return INCOMPATIBLE_TYPE_BADNESS;
2604 }
2605 break;
2606 case TYPE_CODE_RANGE:
2607 switch (TYPE_CODE (arg))
2608 {
2609 case TYPE_CODE_INT:
2610 case TYPE_CODE_CHAR:
2611 case TYPE_CODE_RANGE:
2612 case TYPE_CODE_BOOL:
2613 case TYPE_CODE_ENUM:
2614 return INTEGER_CONVERSION_BADNESS;
2615 case TYPE_CODE_FLT:
2616 return INT_FLOAT_CONVERSION_BADNESS;
2617 default:
2618 return INCOMPATIBLE_TYPE_BADNESS;
2619 }
2620 break;
2621 case TYPE_CODE_BOOL:
2622 switch (TYPE_CODE (arg))
2623 {
2624 case TYPE_CODE_INT:
2625 case TYPE_CODE_CHAR:
2626 case TYPE_CODE_RANGE:
2627 case TYPE_CODE_ENUM:
2628 case TYPE_CODE_FLT:
2629 return INCOMPATIBLE_TYPE_BADNESS;
2630 case TYPE_CODE_PTR:
2631 return BOOL_PTR_CONVERSION_BADNESS;
2632 case TYPE_CODE_BOOL:
2633 return EXACT_MATCH_BADNESS;
2634 default:
2635 return INCOMPATIBLE_TYPE_BADNESS;
2636 }
2637 break;
2638 case TYPE_CODE_FLT:
2639 switch (TYPE_CODE (arg))
2640 {
2641 case TYPE_CODE_FLT:
2642 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2643 return FLOAT_PROMOTION_BADNESS;
2644 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2645 return EXACT_MATCH_BADNESS;
2646 else
2647 return FLOAT_CONVERSION_BADNESS;
2648 case TYPE_CODE_INT:
2649 case TYPE_CODE_BOOL:
2650 case TYPE_CODE_ENUM:
2651 case TYPE_CODE_RANGE:
2652 case TYPE_CODE_CHAR:
2653 return INT_FLOAT_CONVERSION_BADNESS;
2654 default:
2655 return INCOMPATIBLE_TYPE_BADNESS;
2656 }
2657 break;
2658 case TYPE_CODE_COMPLEX:
2659 switch (TYPE_CODE (arg))
2660 { /* Strictly not needed for C++, but... */
2661 case TYPE_CODE_FLT:
2662 return FLOAT_PROMOTION_BADNESS;
2663 case TYPE_CODE_COMPLEX:
2664 return EXACT_MATCH_BADNESS;
2665 default:
2666 return INCOMPATIBLE_TYPE_BADNESS;
2667 }
2668 break;
2669 case TYPE_CODE_STRUCT:
2670 /* currently same as TYPE_CODE_CLASS. */
2671 switch (TYPE_CODE (arg))
2672 {
2673 case TYPE_CODE_STRUCT:
2674 /* Check for derivation */
2675 rank.subrank = distance_to_ancestor (parm, arg, 0);
2676 if (rank.subrank >= 0)
2677 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2678 /* else fall through */
2679 default:
2680 return INCOMPATIBLE_TYPE_BADNESS;
2681 }
2682 break;
2683 case TYPE_CODE_UNION:
2684 switch (TYPE_CODE (arg))
2685 {
2686 case TYPE_CODE_UNION:
2687 default:
2688 return INCOMPATIBLE_TYPE_BADNESS;
2689 }
2690 break;
2691 case TYPE_CODE_MEMBERPTR:
2692 switch (TYPE_CODE (arg))
2693 {
2694 default:
2695 return INCOMPATIBLE_TYPE_BADNESS;
2696 }
2697 break;
2698 case TYPE_CODE_METHOD:
2699 switch (TYPE_CODE (arg))
2700 {
2701
2702 default:
2703 return INCOMPATIBLE_TYPE_BADNESS;
2704 }
2705 break;
2706 case TYPE_CODE_REF:
2707 switch (TYPE_CODE (arg))
2708 {
2709
2710 default:
2711 return INCOMPATIBLE_TYPE_BADNESS;
2712 }
2713
2714 break;
2715 case TYPE_CODE_SET:
2716 switch (TYPE_CODE (arg))
2717 {
2718 /* Not in C++ */
2719 case TYPE_CODE_SET:
2720 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2721 TYPE_FIELD_TYPE (arg, 0));
2722 default:
2723 return INCOMPATIBLE_TYPE_BADNESS;
2724 }
2725 break;
2726 case TYPE_CODE_VOID:
2727 default:
2728 return INCOMPATIBLE_TYPE_BADNESS;
2729 } /* switch (TYPE_CODE (arg)) */
2730}
2731
2732
2733/* End of functions for overload resolution. */
2734
2735static void
2736print_bit_vector (B_TYPE *bits, int nbits)
2737{
2738 int bitno;
2739
2740 for (bitno = 0; bitno < nbits; bitno++)
2741 {
2742 if ((bitno % 8) == 0)
2743 {
2744 puts_filtered (" ");
2745 }
2746 if (B_TST (bits, bitno))
2747 printf_filtered (("1"));
2748 else
2749 printf_filtered (("0"));
2750 }
2751}
2752
2753/* Note the first arg should be the "this" pointer, we may not want to
2754 include it since we may get into a infinitely recursive
2755 situation. */
2756
2757static void
2758print_arg_types (struct field *args, int nargs, int spaces)
2759{
2760 if (args != NULL)
2761 {
2762 int i;
2763
2764 for (i = 0; i < nargs; i++)
2765 recursive_dump_type (args[i].type, spaces + 2);
2766 }
2767}
2768
2769int
2770field_is_static (struct field *f)
2771{
2772 /* "static" fields are the fields whose location is not relative
2773 to the address of the enclosing struct. It would be nice to
2774 have a dedicated flag that would be set for static fields when
2775 the type is being created. But in practice, checking the field
2776 loc_kind should give us an accurate answer. */
2777 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2778 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2779}
2780
2781static void
2782dump_fn_fieldlists (struct type *type, int spaces)
2783{
2784 int method_idx;
2785 int overload_idx;
2786 struct fn_field *f;
2787
2788 printfi_filtered (spaces, "fn_fieldlists ");
2789 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2790 printf_filtered ("\n");
2791 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2792 {
2793 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2794 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2795 method_idx,
2796 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2797 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2798 gdb_stdout);
2799 printf_filtered (_(") length %d\n"),
2800 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2801 for (overload_idx = 0;
2802 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2803 overload_idx++)
2804 {
2805 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2806 overload_idx,
2807 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2808 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2809 gdb_stdout);
2810 printf_filtered (")\n");
2811 printfi_filtered (spaces + 8, "type ");
2812 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2813 gdb_stdout);
2814 printf_filtered ("\n");
2815
2816 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2817 spaces + 8 + 2);
2818
2819 printfi_filtered (spaces + 8, "args ");
2820 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2821 gdb_stdout);
2822 printf_filtered ("\n");
2823
2824 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2825 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2826 overload_idx)),
2827 spaces);
2828 printfi_filtered (spaces + 8, "fcontext ");
2829 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2830 gdb_stdout);
2831 printf_filtered ("\n");
2832
2833 printfi_filtered (spaces + 8, "is_const %d\n",
2834 TYPE_FN_FIELD_CONST (f, overload_idx));
2835 printfi_filtered (spaces + 8, "is_volatile %d\n",
2836 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2837 printfi_filtered (spaces + 8, "is_private %d\n",
2838 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2839 printfi_filtered (spaces + 8, "is_protected %d\n",
2840 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2841 printfi_filtered (spaces + 8, "is_stub %d\n",
2842 TYPE_FN_FIELD_STUB (f, overload_idx));
2843 printfi_filtered (spaces + 8, "voffset %u\n",
2844 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2845 }
2846 }
2847}
2848
2849static void
2850print_cplus_stuff (struct type *type, int spaces)
2851{
2852 printfi_filtered (spaces, "n_baseclasses %d\n",
2853 TYPE_N_BASECLASSES (type));
2854 printfi_filtered (spaces, "nfn_fields %d\n",
2855 TYPE_NFN_FIELDS (type));
2856 printfi_filtered (spaces, "nfn_fields_total %d\n",
2857 TYPE_NFN_FIELDS_TOTAL (type));
2858 if (TYPE_N_BASECLASSES (type) > 0)
2859 {
2860 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2861 TYPE_N_BASECLASSES (type));
2862 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2863 gdb_stdout);
2864 printf_filtered (")");
2865
2866 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2867 TYPE_N_BASECLASSES (type));
2868 puts_filtered ("\n");
2869 }
2870 if (TYPE_NFIELDS (type) > 0)
2871 {
2872 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2873 {
2874 printfi_filtered (spaces,
2875 "private_field_bits (%d bits at *",
2876 TYPE_NFIELDS (type));
2877 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2878 gdb_stdout);
2879 printf_filtered (")");
2880 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2881 TYPE_NFIELDS (type));
2882 puts_filtered ("\n");
2883 }
2884 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2885 {
2886 printfi_filtered (spaces,
2887 "protected_field_bits (%d bits at *",
2888 TYPE_NFIELDS (type));
2889 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2890 gdb_stdout);
2891 printf_filtered (")");
2892 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2893 TYPE_NFIELDS (type));
2894 puts_filtered ("\n");
2895 }
2896 }
2897 if (TYPE_NFN_FIELDS (type) > 0)
2898 {
2899 dump_fn_fieldlists (type, spaces);
2900 }
2901}
2902
2903/* Print the contents of the TYPE's type_specific union, assuming that
2904 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2905
2906static void
2907print_gnat_stuff (struct type *type, int spaces)
2908{
2909 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2910
2911 recursive_dump_type (descriptive_type, spaces + 2);
2912}
2913
2914static struct obstack dont_print_type_obstack;
2915
2916void
2917recursive_dump_type (struct type *type, int spaces)
2918{
2919 int idx;
2920
2921 if (spaces == 0)
2922 obstack_begin (&dont_print_type_obstack, 0);
2923
2924 if (TYPE_NFIELDS (type) > 0
2925 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2926 {
2927 struct type **first_dont_print
2928 = (struct type **) obstack_base (&dont_print_type_obstack);
2929
2930 int i = (struct type **)
2931 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2932
2933 while (--i >= 0)
2934 {
2935 if (type == first_dont_print[i])
2936 {
2937 printfi_filtered (spaces, "type node ");
2938 gdb_print_host_address (type, gdb_stdout);
2939 printf_filtered (_(" <same as already seen type>\n"));
2940 return;
2941 }
2942 }
2943
2944 obstack_ptr_grow (&dont_print_type_obstack, type);
2945 }
2946
2947 printfi_filtered (spaces, "type node ");
2948 gdb_print_host_address (type, gdb_stdout);
2949 printf_filtered ("\n");
2950 printfi_filtered (spaces, "name '%s' (",
2951 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2952 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2953 printf_filtered (")\n");
2954 printfi_filtered (spaces, "tagname '%s' (",
2955 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2956 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2957 printf_filtered (")\n");
2958 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2959 switch (TYPE_CODE (type))
2960 {
2961 case TYPE_CODE_UNDEF:
2962 printf_filtered ("(TYPE_CODE_UNDEF)");
2963 break;
2964 case TYPE_CODE_PTR:
2965 printf_filtered ("(TYPE_CODE_PTR)");
2966 break;
2967 case TYPE_CODE_ARRAY:
2968 printf_filtered ("(TYPE_CODE_ARRAY)");
2969 break;
2970 case TYPE_CODE_STRUCT:
2971 printf_filtered ("(TYPE_CODE_STRUCT)");
2972 break;
2973 case TYPE_CODE_UNION:
2974 printf_filtered ("(TYPE_CODE_UNION)");
2975 break;
2976 case TYPE_CODE_ENUM:
2977 printf_filtered ("(TYPE_CODE_ENUM)");
2978 break;
2979 case TYPE_CODE_FLAGS:
2980 printf_filtered ("(TYPE_CODE_FLAGS)");
2981 break;
2982 case TYPE_CODE_FUNC:
2983 printf_filtered ("(TYPE_CODE_FUNC)");
2984 break;
2985 case TYPE_CODE_INT:
2986 printf_filtered ("(TYPE_CODE_INT)");
2987 break;
2988 case TYPE_CODE_FLT:
2989 printf_filtered ("(TYPE_CODE_FLT)");
2990 break;
2991 case TYPE_CODE_VOID:
2992 printf_filtered ("(TYPE_CODE_VOID)");
2993 break;
2994 case TYPE_CODE_SET:
2995 printf_filtered ("(TYPE_CODE_SET)");
2996 break;
2997 case TYPE_CODE_RANGE:
2998 printf_filtered ("(TYPE_CODE_RANGE)");
2999 break;
3000 case TYPE_CODE_STRING:
3001 printf_filtered ("(TYPE_CODE_STRING)");
3002 break;
3003 case TYPE_CODE_BITSTRING:
3004 printf_filtered ("(TYPE_CODE_BITSTRING)");
3005 break;
3006 case TYPE_CODE_ERROR:
3007 printf_filtered ("(TYPE_CODE_ERROR)");
3008 break;
3009 case TYPE_CODE_MEMBERPTR:
3010 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3011 break;
3012 case TYPE_CODE_METHODPTR:
3013 printf_filtered ("(TYPE_CODE_METHODPTR)");
3014 break;
3015 case TYPE_CODE_METHOD:
3016 printf_filtered ("(TYPE_CODE_METHOD)");
3017 break;
3018 case TYPE_CODE_REF:
3019 printf_filtered ("(TYPE_CODE_REF)");
3020 break;
3021 case TYPE_CODE_CHAR:
3022 printf_filtered ("(TYPE_CODE_CHAR)");
3023 break;
3024 case TYPE_CODE_BOOL:
3025 printf_filtered ("(TYPE_CODE_BOOL)");
3026 break;
3027 case TYPE_CODE_COMPLEX:
3028 printf_filtered ("(TYPE_CODE_COMPLEX)");
3029 break;
3030 case TYPE_CODE_TYPEDEF:
3031 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3032 break;
3033 case TYPE_CODE_NAMESPACE:
3034 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3035 break;
3036 default:
3037 printf_filtered ("(UNKNOWN TYPE CODE)");
3038 break;
3039 }
3040 puts_filtered ("\n");
3041 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3042 if (TYPE_OBJFILE_OWNED (type))
3043 {
3044 printfi_filtered (spaces, "objfile ");
3045 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3046 }
3047 else
3048 {
3049 printfi_filtered (spaces, "gdbarch ");
3050 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3051 }
3052 printf_filtered ("\n");
3053 printfi_filtered (spaces, "target_type ");
3054 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3055 printf_filtered ("\n");
3056 if (TYPE_TARGET_TYPE (type) != NULL)
3057 {
3058 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3059 }
3060 printfi_filtered (spaces, "pointer_type ");
3061 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3062 printf_filtered ("\n");
3063 printfi_filtered (spaces, "reference_type ");
3064 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3065 printf_filtered ("\n");
3066 printfi_filtered (spaces, "type_chain ");
3067 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3068 printf_filtered ("\n");
3069 printfi_filtered (spaces, "instance_flags 0x%x",
3070 TYPE_INSTANCE_FLAGS (type));
3071 if (TYPE_CONST (type))
3072 {
3073 puts_filtered (" TYPE_FLAG_CONST");
3074 }
3075 if (TYPE_VOLATILE (type))
3076 {
3077 puts_filtered (" TYPE_FLAG_VOLATILE");
3078 }
3079 if (TYPE_CODE_SPACE (type))
3080 {
3081 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3082 }
3083 if (TYPE_DATA_SPACE (type))
3084 {
3085 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3086 }
3087 if (TYPE_ADDRESS_CLASS_1 (type))
3088 {
3089 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3090 }
3091 if (TYPE_ADDRESS_CLASS_2 (type))
3092 {
3093 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3094 }
3095 puts_filtered ("\n");
3096
3097 printfi_filtered (spaces, "flags");
3098 if (TYPE_UNSIGNED (type))
3099 {
3100 puts_filtered (" TYPE_FLAG_UNSIGNED");
3101 }
3102 if (TYPE_NOSIGN (type))
3103 {
3104 puts_filtered (" TYPE_FLAG_NOSIGN");
3105 }
3106 if (TYPE_STUB (type))
3107 {
3108 puts_filtered (" TYPE_FLAG_STUB");
3109 }
3110 if (TYPE_TARGET_STUB (type))
3111 {
3112 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3113 }
3114 if (TYPE_STATIC (type))
3115 {
3116 puts_filtered (" TYPE_FLAG_STATIC");
3117 }
3118 if (TYPE_PROTOTYPED (type))
3119 {
3120 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3121 }
3122 if (TYPE_INCOMPLETE (type))
3123 {
3124 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3125 }
3126 if (TYPE_VARARGS (type))
3127 {
3128 puts_filtered (" TYPE_FLAG_VARARGS");
3129 }
3130 /* This is used for things like AltiVec registers on ppc. Gcc emits
3131 an attribute for the array type, which tells whether or not we
3132 have a vector, instead of a regular array. */
3133 if (TYPE_VECTOR (type))
3134 {
3135 puts_filtered (" TYPE_FLAG_VECTOR");
3136 }
3137 if (TYPE_FIXED_INSTANCE (type))
3138 {
3139 puts_filtered (" TYPE_FIXED_INSTANCE");
3140 }
3141 if (TYPE_STUB_SUPPORTED (type))
3142 {
3143 puts_filtered (" TYPE_STUB_SUPPORTED");
3144 }
3145 if (TYPE_NOTTEXT (type))
3146 {
3147 puts_filtered (" TYPE_NOTTEXT");
3148 }
3149 puts_filtered ("\n");
3150 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3151 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3152 puts_filtered ("\n");
3153 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3154 {
3155 printfi_filtered (spaces + 2,
3156 "[%d] bitpos %d bitsize %d type ",
3157 idx, TYPE_FIELD_BITPOS (type, idx),
3158 TYPE_FIELD_BITSIZE (type, idx));
3159 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3160 printf_filtered (" name '%s' (",
3161 TYPE_FIELD_NAME (type, idx) != NULL
3162 ? TYPE_FIELD_NAME (type, idx)
3163 : "<NULL>");
3164 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3165 printf_filtered (")\n");
3166 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3167 {
3168 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3169 }
3170 }
3171 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3172 {
3173 printfi_filtered (spaces, "low %s%s high %s%s\n",
3174 plongest (TYPE_LOW_BOUND (type)),
3175 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3176 plongest (TYPE_HIGH_BOUND (type)),
3177 TYPE_HIGH_BOUND_UNDEFINED (type)
3178 ? " (undefined)" : "");
3179 }
3180 printfi_filtered (spaces, "vptr_basetype ");
3181 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3182 puts_filtered ("\n");
3183 if (TYPE_VPTR_BASETYPE (type) != NULL)
3184 {
3185 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3186 }
3187 printfi_filtered (spaces, "vptr_fieldno %d\n",
3188 TYPE_VPTR_FIELDNO (type));
3189
3190 switch (TYPE_SPECIFIC_FIELD (type))
3191 {
3192 case TYPE_SPECIFIC_CPLUS_STUFF:
3193 printfi_filtered (spaces, "cplus_stuff ");
3194 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3195 gdb_stdout);
3196 puts_filtered ("\n");
3197 print_cplus_stuff (type, spaces);
3198 break;
3199
3200 case TYPE_SPECIFIC_GNAT_STUFF:
3201 printfi_filtered (spaces, "gnat_stuff ");
3202 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3203 puts_filtered ("\n");
3204 print_gnat_stuff (type, spaces);
3205 break;
3206
3207 case TYPE_SPECIFIC_FLOATFORMAT:
3208 printfi_filtered (spaces, "floatformat ");
3209 if (TYPE_FLOATFORMAT (type) == NULL)
3210 puts_filtered ("(null)");
3211 else
3212 {
3213 puts_filtered ("{ ");
3214 if (TYPE_FLOATFORMAT (type)[0] == NULL
3215 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3216 puts_filtered ("(null)");
3217 else
3218 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3219
3220 puts_filtered (", ");
3221 if (TYPE_FLOATFORMAT (type)[1] == NULL
3222 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3223 puts_filtered ("(null)");
3224 else
3225 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3226
3227 puts_filtered (" }");
3228 }
3229 puts_filtered ("\n");
3230 break;
3231
3232 case TYPE_SPECIFIC_CALLING_CONVENTION:
3233 printfi_filtered (spaces, "calling_convention %d\n",
3234 TYPE_CALLING_CONVENTION (type));
3235 break;
3236 }
3237
3238 if (spaces == 0)
3239 obstack_free (&dont_print_type_obstack, NULL);
3240}
3241
3242/* Trivial helpers for the libiberty hash table, for mapping one
3243 type to another. */
3244
3245struct type_pair
3246{
3247 struct type *old, *new;
3248};
3249
3250static hashval_t
3251type_pair_hash (const void *item)
3252{
3253 const struct type_pair *pair = item;
3254
3255 return htab_hash_pointer (pair->old);
3256}
3257
3258static int
3259type_pair_eq (const void *item_lhs, const void *item_rhs)
3260{
3261 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3262
3263 return lhs->old == rhs->old;
3264}
3265
3266/* Allocate the hash table used by copy_type_recursive to walk
3267 types without duplicates. We use OBJFILE's obstack, because
3268 OBJFILE is about to be deleted. */
3269
3270htab_t
3271create_copied_types_hash (struct objfile *objfile)
3272{
3273 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3274 NULL, &objfile->objfile_obstack,
3275 hashtab_obstack_allocate,
3276 dummy_obstack_deallocate);
3277}
3278
3279/* Recursively copy (deep copy) TYPE, if it is associated with
3280 OBJFILE. Return a new type allocated using malloc, a saved type if
3281 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3282 not associated with OBJFILE. */
3283
3284struct type *
3285copy_type_recursive (struct objfile *objfile,
3286 struct type *type,
3287 htab_t copied_types)
3288{
3289 struct type_pair *stored, pair;
3290 void **slot;
3291 struct type *new_type;
3292
3293 if (! TYPE_OBJFILE_OWNED (type))
3294 return type;
3295
3296 /* This type shouldn't be pointing to any types in other objfiles;
3297 if it did, the type might disappear unexpectedly. */
3298 gdb_assert (TYPE_OBJFILE (type) == objfile);
3299
3300 pair.old = type;
3301 slot = htab_find_slot (copied_types, &pair, INSERT);
3302 if (*slot != NULL)
3303 return ((struct type_pair *) *slot)->new;
3304
3305 new_type = alloc_type_arch (get_type_arch (type));
3306
3307 /* We must add the new type to the hash table immediately, in case
3308 we encounter this type again during a recursive call below. */
3309 stored
3310 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3311 stored->old = type;
3312 stored->new = new_type;
3313 *slot = stored;
3314
3315 /* Copy the common fields of types. For the main type, we simply
3316 copy the entire thing and then update specific fields as needed. */
3317 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3318 TYPE_OBJFILE_OWNED (new_type) = 0;
3319 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3320
3321 if (TYPE_NAME (type))
3322 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3323 if (TYPE_TAG_NAME (type))
3324 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3325
3326 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3327 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3328
3329 /* Copy the fields. */
3330 if (TYPE_NFIELDS (type))
3331 {
3332 int i, nfields;
3333
3334 nfields = TYPE_NFIELDS (type);
3335 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3336 for (i = 0; i < nfields; i++)
3337 {
3338 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3339 TYPE_FIELD_ARTIFICIAL (type, i);
3340 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3341 if (TYPE_FIELD_TYPE (type, i))
3342 TYPE_FIELD_TYPE (new_type, i)
3343 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3344 copied_types);
3345 if (TYPE_FIELD_NAME (type, i))
3346 TYPE_FIELD_NAME (new_type, i) =
3347 xstrdup (TYPE_FIELD_NAME (type, i));
3348 switch (TYPE_FIELD_LOC_KIND (type, i))
3349 {
3350 case FIELD_LOC_KIND_BITPOS:
3351 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3352 TYPE_FIELD_BITPOS (type, i));
3353 break;
3354 case FIELD_LOC_KIND_PHYSADDR:
3355 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3356 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3357 break;
3358 case FIELD_LOC_KIND_PHYSNAME:
3359 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3360 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3361 i)));
3362 break;
3363 default:
3364 internal_error (__FILE__, __LINE__,
3365 _("Unexpected type field location kind: %d"),
3366 TYPE_FIELD_LOC_KIND (type, i));
3367 }
3368 }
3369 }
3370
3371 /* For range types, copy the bounds information. */
3372 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3373 {
3374 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3375 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3376 }
3377
3378 /* Copy pointers to other types. */
3379 if (TYPE_TARGET_TYPE (type))
3380 TYPE_TARGET_TYPE (new_type) =
3381 copy_type_recursive (objfile,
3382 TYPE_TARGET_TYPE (type),
3383 copied_types);
3384 if (TYPE_VPTR_BASETYPE (type))
3385 TYPE_VPTR_BASETYPE (new_type) =
3386 copy_type_recursive (objfile,
3387 TYPE_VPTR_BASETYPE (type),
3388 copied_types);
3389 /* Maybe copy the type_specific bits.
3390
3391 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3392 base classes and methods. There's no fundamental reason why we
3393 can't, but at the moment it is not needed. */
3394
3395 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3396 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3397 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3398 || TYPE_CODE (type) == TYPE_CODE_UNION
3399 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3400 INIT_CPLUS_SPECIFIC (new_type);
3401
3402 return new_type;
3403}
3404
3405/* Make a copy of the given TYPE, except that the pointer & reference
3406 types are not preserved.
3407
3408 This function assumes that the given type has an associated objfile.
3409 This objfile is used to allocate the new type. */
3410
3411struct type *
3412copy_type (const struct type *type)
3413{
3414 struct type *new_type;
3415
3416 gdb_assert (TYPE_OBJFILE_OWNED (type));
3417
3418 new_type = alloc_type_copy (type);
3419 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3420 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3421 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3422 sizeof (struct main_type));
3423
3424 return new_type;
3425}
3426
3427
3428/* Helper functions to initialize architecture-specific types. */
3429
3430/* Allocate a type structure associated with GDBARCH and set its
3431 CODE, LENGTH, and NAME fields. */
3432struct type *
3433arch_type (struct gdbarch *gdbarch,
3434 enum type_code code, int length, char *name)
3435{
3436 struct type *type;
3437
3438 type = alloc_type_arch (gdbarch);
3439 TYPE_CODE (type) = code;
3440 TYPE_LENGTH (type) = length;
3441
3442 if (name)
3443 TYPE_NAME (type) = xstrdup (name);
3444
3445 return type;
3446}
3447
3448/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3449 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3450 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3451struct type *
3452arch_integer_type (struct gdbarch *gdbarch,
3453 int bit, int unsigned_p, char *name)
3454{
3455 struct type *t;
3456
3457 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3458 if (unsigned_p)
3459 TYPE_UNSIGNED (t) = 1;
3460 if (name && strcmp (name, "char") == 0)
3461 TYPE_NOSIGN (t) = 1;
3462
3463 return t;
3464}
3465
3466/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3467 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3468 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3469struct type *
3470arch_character_type (struct gdbarch *gdbarch,
3471 int bit, int unsigned_p, char *name)
3472{
3473 struct type *t;
3474
3475 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3476 if (unsigned_p)
3477 TYPE_UNSIGNED (t) = 1;
3478
3479 return t;
3480}
3481
3482/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3483 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3484 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3485struct type *
3486arch_boolean_type (struct gdbarch *gdbarch,
3487 int bit, int unsigned_p, char *name)
3488{
3489 struct type *t;
3490
3491 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3492 if (unsigned_p)
3493 TYPE_UNSIGNED (t) = 1;
3494
3495 return t;
3496}
3497
3498/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3499 BIT is the type size in bits; if BIT equals -1, the size is
3500 determined by the floatformat. NAME is the type name. Set the
3501 TYPE_FLOATFORMAT from FLOATFORMATS. */
3502struct type *
3503arch_float_type (struct gdbarch *gdbarch,
3504 int bit, char *name, const struct floatformat **floatformats)
3505{
3506 struct type *t;
3507
3508 if (bit == -1)
3509 {
3510 gdb_assert (floatformats != NULL);
3511 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3512 bit = floatformats[0]->totalsize;
3513 }
3514 gdb_assert (bit >= 0);
3515
3516 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3517 TYPE_FLOATFORMAT (t) = floatformats;
3518 return t;
3519}
3520
3521/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3522 NAME is the type name. TARGET_TYPE is the component float type. */
3523struct type *
3524arch_complex_type (struct gdbarch *gdbarch,
3525 char *name, struct type *target_type)
3526{
3527 struct type *t;
3528
3529 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3530 2 * TYPE_LENGTH (target_type), name);
3531 TYPE_TARGET_TYPE (t) = target_type;
3532 return t;
3533}
3534
3535/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3536 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3537struct type *
3538arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3539{
3540 int nfields = length * TARGET_CHAR_BIT;
3541 struct type *type;
3542
3543 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3544 TYPE_UNSIGNED (type) = 1;
3545 TYPE_NFIELDS (type) = nfields;
3546 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3547
3548 return type;
3549}
3550
3551/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3552 position BITPOS is called NAME. */
3553void
3554append_flags_type_flag (struct type *type, int bitpos, char *name)
3555{
3556 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3557 gdb_assert (bitpos < TYPE_NFIELDS (type));
3558 gdb_assert (bitpos >= 0);
3559
3560 if (name)
3561 {
3562 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3563 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3564 }
3565 else
3566 {
3567 /* Don't show this field to the user. */
3568 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3569 }
3570}
3571
3572/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3573 specified by CODE) associated with GDBARCH. NAME is the type name. */
3574struct type *
3575arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3576{
3577 struct type *t;
3578
3579 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3580 t = arch_type (gdbarch, code, 0, NULL);
3581 TYPE_TAG_NAME (t) = name;
3582 INIT_CPLUS_SPECIFIC (t);
3583 return t;
3584}
3585
3586/* Add new field with name NAME and type FIELD to composite type T.
3587 Do not set the field's position or adjust the type's length;
3588 the caller should do so. Return the new field. */
3589struct field *
3590append_composite_type_field_raw (struct type *t, char *name,
3591 struct type *field)
3592{
3593 struct field *f;
3594
3595 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3596 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3597 sizeof (struct field) * TYPE_NFIELDS (t));
3598 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3599 memset (f, 0, sizeof f[0]);
3600 FIELD_TYPE (f[0]) = field;
3601 FIELD_NAME (f[0]) = name;
3602 return f;
3603}
3604
3605/* Add new field with name NAME and type FIELD to composite type T.
3606 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3607void
3608append_composite_type_field_aligned (struct type *t, char *name,
3609 struct type *field, int alignment)
3610{
3611 struct field *f = append_composite_type_field_raw (t, name, field);
3612
3613 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3614 {
3615 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3616 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3617 }
3618 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3619 {
3620 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3621 if (TYPE_NFIELDS (t) > 1)
3622 {
3623 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3624 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3625 * TARGET_CHAR_BIT));
3626
3627 if (alignment)
3628 {
3629 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3630
3631 if (left)
3632 {
3633 FIELD_BITPOS (f[0]) += left;
3634 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3635 }
3636 }
3637 }
3638 }
3639}
3640
3641/* Add new field with name NAME and type FIELD to composite type T. */
3642void
3643append_composite_type_field (struct type *t, char *name,
3644 struct type *field)
3645{
3646 append_composite_type_field_aligned (t, name, field, 0);
3647}
3648
3649
3650static struct gdbarch_data *gdbtypes_data;
3651
3652const struct builtin_type *
3653builtin_type (struct gdbarch *gdbarch)
3654{
3655 return gdbarch_data (gdbarch, gdbtypes_data);
3656}
3657
3658static void *
3659gdbtypes_post_init (struct gdbarch *gdbarch)
3660{
3661 struct builtin_type *builtin_type
3662 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3663
3664 /* Basic types. */
3665 builtin_type->builtin_void
3666 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3667 builtin_type->builtin_char
3668 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3669 !gdbarch_char_signed (gdbarch), "char");
3670 builtin_type->builtin_signed_char
3671 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3672 0, "signed char");
3673 builtin_type->builtin_unsigned_char
3674 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3675 1, "unsigned char");
3676 builtin_type->builtin_short
3677 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3678 0, "short");
3679 builtin_type->builtin_unsigned_short
3680 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3681 1, "unsigned short");
3682 builtin_type->builtin_int
3683 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3684 0, "int");
3685 builtin_type->builtin_unsigned_int
3686 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3687 1, "unsigned int");
3688 builtin_type->builtin_long
3689 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3690 0, "long");
3691 builtin_type->builtin_unsigned_long
3692 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3693 1, "unsigned long");
3694 builtin_type->builtin_long_long
3695 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3696 0, "long long");
3697 builtin_type->builtin_unsigned_long_long
3698 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3699 1, "unsigned long long");
3700 builtin_type->builtin_float
3701 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3702 "float", gdbarch_float_format (gdbarch));
3703 builtin_type->builtin_double
3704 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3705 "double", gdbarch_double_format (gdbarch));
3706 builtin_type->builtin_long_double
3707 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3708 "long double", gdbarch_long_double_format (gdbarch));
3709 builtin_type->builtin_complex
3710 = arch_complex_type (gdbarch, "complex",
3711 builtin_type->builtin_float);
3712 builtin_type->builtin_double_complex
3713 = arch_complex_type (gdbarch, "double complex",
3714 builtin_type->builtin_double);
3715 builtin_type->builtin_string
3716 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3717 builtin_type->builtin_bool
3718 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3719
3720 /* The following three are about decimal floating point types, which
3721 are 32-bits, 64-bits and 128-bits respectively. */
3722 builtin_type->builtin_decfloat
3723 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3724 builtin_type->builtin_decdouble
3725 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3726 builtin_type->builtin_declong
3727 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3728
3729 /* "True" character types. */
3730 builtin_type->builtin_true_char
3731 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3732 builtin_type->builtin_true_unsigned_char
3733 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3734
3735 /* Fixed-size integer types. */
3736 builtin_type->builtin_int0
3737 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3738 builtin_type->builtin_int8
3739 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3740 builtin_type->builtin_uint8
3741 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3742 builtin_type->builtin_int16
3743 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3744 builtin_type->builtin_uint16
3745 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3746 builtin_type->builtin_int32
3747 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3748 builtin_type->builtin_uint32
3749 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3750 builtin_type->builtin_int64
3751 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3752 builtin_type->builtin_uint64
3753 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3754 builtin_type->builtin_int128
3755 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3756 builtin_type->builtin_uint128
3757 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3758 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3759 TYPE_INSTANCE_FLAG_NOTTEXT;
3760 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3761 TYPE_INSTANCE_FLAG_NOTTEXT;
3762
3763 /* Wide character types. */
3764 builtin_type->builtin_char16
3765 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3766 builtin_type->builtin_char32
3767 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3768
3769
3770 /* Default data/code pointer types. */
3771 builtin_type->builtin_data_ptr
3772 = lookup_pointer_type (builtin_type->builtin_void);
3773 builtin_type->builtin_func_ptr
3774 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3775
3776 /* This type represents a GDB internal function. */
3777 builtin_type->internal_fn
3778 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3779 "<internal function>");
3780
3781 return builtin_type;
3782}
3783
3784
3785/* This set of objfile-based types is intended to be used by symbol
3786 readers as basic types. */
3787
3788static const struct objfile_data *objfile_type_data;
3789
3790const struct objfile_type *
3791objfile_type (struct objfile *objfile)
3792{
3793 struct gdbarch *gdbarch;
3794 struct objfile_type *objfile_type
3795 = objfile_data (objfile, objfile_type_data);
3796
3797 if (objfile_type)
3798 return objfile_type;
3799
3800 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3801 1, struct objfile_type);
3802
3803 /* Use the objfile architecture to determine basic type properties. */
3804 gdbarch = get_objfile_arch (objfile);
3805
3806 /* Basic types. */
3807 objfile_type->builtin_void
3808 = init_type (TYPE_CODE_VOID, 1,
3809 0,
3810 "void", objfile);
3811
3812 objfile_type->builtin_char
3813 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3814 (TYPE_FLAG_NOSIGN
3815 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3816 "char", objfile);
3817 objfile_type->builtin_signed_char
3818 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3819 0,
3820 "signed char", objfile);
3821 objfile_type->builtin_unsigned_char
3822 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3823 TYPE_FLAG_UNSIGNED,
3824 "unsigned char", objfile);
3825 objfile_type->builtin_short
3826 = init_type (TYPE_CODE_INT,
3827 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3828 0, "short", objfile);
3829 objfile_type->builtin_unsigned_short
3830 = init_type (TYPE_CODE_INT,
3831 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3832 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3833 objfile_type->builtin_int
3834 = init_type (TYPE_CODE_INT,
3835 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3836 0, "int", objfile);
3837 objfile_type->builtin_unsigned_int
3838 = init_type (TYPE_CODE_INT,
3839 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3840 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3841 objfile_type->builtin_long
3842 = init_type (TYPE_CODE_INT,
3843 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3844 0, "long", objfile);
3845 objfile_type->builtin_unsigned_long
3846 = init_type (TYPE_CODE_INT,
3847 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3848 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3849 objfile_type->builtin_long_long
3850 = init_type (TYPE_CODE_INT,
3851 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3852 0, "long long", objfile);
3853 objfile_type->builtin_unsigned_long_long
3854 = init_type (TYPE_CODE_INT,
3855 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3856 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3857
3858 objfile_type->builtin_float
3859 = init_type (TYPE_CODE_FLT,
3860 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3861 0, "float", objfile);
3862 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3863 = gdbarch_float_format (gdbarch);
3864 objfile_type->builtin_double
3865 = init_type (TYPE_CODE_FLT,
3866 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3867 0, "double", objfile);
3868 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3869 = gdbarch_double_format (gdbarch);
3870 objfile_type->builtin_long_double
3871 = init_type (TYPE_CODE_FLT,
3872 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3873 0, "long double", objfile);
3874 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3875 = gdbarch_long_double_format (gdbarch);
3876
3877 /* This type represents a type that was unrecognized in symbol read-in. */
3878 objfile_type->builtin_error
3879 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3880
3881 /* The following set of types is used for symbols with no
3882 debug information. */
3883 objfile_type->nodebug_text_symbol
3884 = init_type (TYPE_CODE_FUNC, 1, 0,
3885 "<text variable, no debug info>", objfile);
3886 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3887 = objfile_type->builtin_int;
3888 objfile_type->nodebug_data_symbol
3889 = init_type (TYPE_CODE_INT,
3890 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3891 "<data variable, no debug info>", objfile);
3892 objfile_type->nodebug_unknown_symbol
3893 = init_type (TYPE_CODE_INT, 1, 0,
3894 "<variable (not text or data), no debug info>", objfile);
3895 objfile_type->nodebug_tls_symbol
3896 = init_type (TYPE_CODE_INT,
3897 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3898 "<thread local variable, no debug info>", objfile);
3899
3900 /* NOTE: on some targets, addresses and pointers are not necessarily
3901 the same --- for example, on the D10V, pointers are 16 bits long,
3902 but addresses are 32 bits long. See doc/gdbint.texinfo,
3903 ``Pointers Are Not Always Addresses''.
3904
3905 The upshot is:
3906 - gdb's `struct type' always describes the target's
3907 representation.
3908 - gdb's `struct value' objects should always hold values in
3909 target form.
3910 - gdb's CORE_ADDR values are addresses in the unified virtual
3911 address space that the assembler and linker work with. Thus,
3912 since target_read_memory takes a CORE_ADDR as an argument, it
3913 can access any memory on the target, even if the processor has
3914 separate code and data address spaces.
3915
3916 So, for example:
3917 - If v is a value holding a D10V code pointer, its contents are
3918 in target form: a big-endian address left-shifted two bits.
3919 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3920 sizeof (void *) == 2 on the target.
3921
3922 In this context, objfile_type->builtin_core_addr is a bit odd:
3923 it's a target type for a value the target will never see. It's
3924 only used to hold the values of (typeless) linker symbols, which
3925 are indeed in the unified virtual address space. */
3926
3927 objfile_type->builtin_core_addr
3928 = init_type (TYPE_CODE_INT,
3929 gdbarch_addr_bit (gdbarch) / 8,
3930 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3931
3932 set_objfile_data (objfile, objfile_type_data, objfile_type);
3933 return objfile_type;
3934}
3935
3936
3937extern void _initialize_gdbtypes (void);
3938void
3939_initialize_gdbtypes (void)
3940{
3941 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3942 objfile_type_data = register_objfile_data ();
3943
3944 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
3945 _("Set debugging of C++ overloading."),
3946 _("Show debugging of C++ overloading."),
3947 _("When enabled, ranking of the "
3948 "functions is displayed."),
3949 NULL,
3950 show_overload_debug,
3951 &setdebuglist, &showdebuglist);
3952
3953 /* Add user knob for controlling resolution of opaque types. */
3954 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3955 &opaque_type_resolution,
3956 _("Set resolution of opaque struct/class/union"
3957 " types (if set before loading symbols)."),
3958 _("Show resolution of opaque struct/class/union"
3959 " types (if set before loading symbols)."),
3960 NULL, NULL,
3961 show_opaque_type_resolution,
3962 &setlist, &showlist);
3963}
This page took 0.03469 seconds and 4 git commands to generate.