* somread.c (som_symtab_read): Remove some commented out code and
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
... / ...
CommitLineData
1/* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25#include "defs.h"
26#include "frame.h"
27#include "bfd.h"
28#include "inferior.h"
29#include "value.h"
30#include "regcache.h"
31#include "completer.h"
32
33/* For argument passing to the inferior */
34#include "symtab.h"
35
36#ifdef USG
37#include <sys/types.h>
38#endif
39
40#include <dl.h>
41#include <sys/param.h>
42#include <signal.h>
43
44#include <sys/ptrace.h>
45#include <machine/save_state.h>
46
47#ifdef COFF_ENCAPSULATE
48#include "a.out.encap.h"
49#else
50#endif
51
52/*#include <sys/user.h> After a.out.h */
53#include <sys/file.h>
54#include "gdb_stat.h"
55#include "gdb_wait.h"
56
57#include "gdbcore.h"
58#include "gdbcmd.h"
59#include "target.h"
60#include "symfile.h"
61#include "objfiles.h"
62
63/* To support detection of the pseudo-initial frame
64 that threads have. */
65#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
66#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
67
68static int extract_5_load (unsigned int);
69
70static unsigned extract_5R_store (unsigned int);
71
72static unsigned extract_5r_store (unsigned int);
73
74static void find_dummy_frame_regs (struct frame_info *,
75 struct frame_saved_regs *);
76
77static int find_proc_framesize (CORE_ADDR);
78
79static int find_return_regnum (CORE_ADDR);
80
81struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
82
83static int extract_17 (unsigned int);
84
85static unsigned deposit_21 (unsigned int, unsigned int);
86
87static int extract_21 (unsigned);
88
89static unsigned deposit_14 (int, unsigned int);
90
91static int extract_14 (unsigned);
92
93static void unwind_command (char *, int);
94
95static int low_sign_extend (unsigned int, unsigned int);
96
97static int sign_extend (unsigned int, unsigned int);
98
99static int restore_pc_queue (struct frame_saved_regs *);
100
101static int hppa_alignof (struct type *);
102
103/* To support multi-threading and stepping. */
104int hppa_prepare_to_proceed ();
105
106static int prologue_inst_adjust_sp (unsigned long);
107
108static int is_branch (unsigned long);
109
110static int inst_saves_gr (unsigned long);
111
112static int inst_saves_fr (unsigned long);
113
114static int pc_in_interrupt_handler (CORE_ADDR);
115
116static int pc_in_linker_stub (CORE_ADDR);
117
118static int compare_unwind_entries (const void *, const void *);
119
120static void read_unwind_info (struct objfile *);
121
122static void internalize_unwinds (struct objfile *,
123 struct unwind_table_entry *,
124 asection *, unsigned int,
125 unsigned int, CORE_ADDR);
126static void pa_print_registers (char *, int, int);
127static void pa_strcat_registers (char *, int, int, struct ui_file *);
128static void pa_register_look_aside (char *, int, long *);
129static void pa_print_fp_reg (int);
130static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
131static void record_text_segment_lowaddr (bfd *, asection *, void *);
132
133typedef struct
134 {
135 struct minimal_symbol *msym;
136 CORE_ADDR solib_handle;
137 CORE_ADDR return_val;
138 }
139args_for_find_stub;
140
141static int cover_find_stub_with_shl_get (PTR);
142
143static int is_pa_2 = 0; /* False */
144
145/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
146extern int hp_som_som_object_present;
147
148/* In breakpoint.c */
149extern int exception_catchpoints_are_fragile;
150
151/* This is defined in valops.c. */
152extern struct value *find_function_in_inferior (char *);
153
154/* Should call_function allocate stack space for a struct return? */
155int
156hppa_use_struct_convention (int gcc_p, struct type *type)
157{
158 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
159}
160\f
161
162/* Routines to extract various sized constants out of hppa
163 instructions. */
164
165/* This assumes that no garbage lies outside of the lower bits of
166 value. */
167
168static int
169sign_extend (unsigned val, unsigned bits)
170{
171 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
172}
173
174/* For many immediate values the sign bit is the low bit! */
175
176static int
177low_sign_extend (unsigned val, unsigned bits)
178{
179 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
180}
181
182/* extract the immediate field from a ld{bhw}s instruction */
183
184static int
185extract_5_load (unsigned word)
186{
187 return low_sign_extend (word >> 16 & MASK_5, 5);
188}
189
190/* extract the immediate field from a break instruction */
191
192static unsigned
193extract_5r_store (unsigned word)
194{
195 return (word & MASK_5);
196}
197
198/* extract the immediate field from a {sr}sm instruction */
199
200static unsigned
201extract_5R_store (unsigned word)
202{
203 return (word >> 16 & MASK_5);
204}
205
206/* extract a 14 bit immediate field */
207
208static int
209extract_14 (unsigned word)
210{
211 return low_sign_extend (word & MASK_14, 14);
212}
213
214/* deposit a 14 bit constant in a word */
215
216static unsigned
217deposit_14 (int opnd, unsigned word)
218{
219 unsigned sign = (opnd < 0 ? 1 : 0);
220
221 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
222}
223
224/* extract a 21 bit constant */
225
226static int
227extract_21 (unsigned word)
228{
229 int val;
230
231 word &= MASK_21;
232 word <<= 11;
233 val = GET_FIELD (word, 20, 20);
234 val <<= 11;
235 val |= GET_FIELD (word, 9, 19);
236 val <<= 2;
237 val |= GET_FIELD (word, 5, 6);
238 val <<= 5;
239 val |= GET_FIELD (word, 0, 4);
240 val <<= 2;
241 val |= GET_FIELD (word, 7, 8);
242 return sign_extend (val, 21) << 11;
243}
244
245/* deposit a 21 bit constant in a word. Although 21 bit constants are
246 usually the top 21 bits of a 32 bit constant, we assume that only
247 the low 21 bits of opnd are relevant */
248
249static unsigned
250deposit_21 (unsigned opnd, unsigned word)
251{
252 unsigned val = 0;
253
254 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
255 val <<= 2;
256 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
257 val <<= 2;
258 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
259 val <<= 11;
260 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
261 val <<= 1;
262 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
263 return word | val;
264}
265
266/* extract a 17 bit constant from branch instructions, returning the
267 19 bit signed value. */
268
269static int
270extract_17 (unsigned word)
271{
272 return sign_extend (GET_FIELD (word, 19, 28) |
273 GET_FIELD (word, 29, 29) << 10 |
274 GET_FIELD (word, 11, 15) << 11 |
275 (word & 0x1) << 16, 17) << 2;
276}
277\f
278
279/* Compare the start address for two unwind entries returning 1 if
280 the first address is larger than the second, -1 if the second is
281 larger than the first, and zero if they are equal. */
282
283static int
284compare_unwind_entries (const void *arg1, const void *arg2)
285{
286 const struct unwind_table_entry *a = arg1;
287 const struct unwind_table_entry *b = arg2;
288
289 if (a->region_start > b->region_start)
290 return 1;
291 else if (a->region_start < b->region_start)
292 return -1;
293 else
294 return 0;
295}
296
297static CORE_ADDR low_text_segment_address;
298
299static void
300record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
301{
302 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
303 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
304 && section->vma < low_text_segment_address)
305 low_text_segment_address = section->vma;
306}
307
308static void
309internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
310 asection *section, unsigned int entries, unsigned int size,
311 CORE_ADDR text_offset)
312{
313 /* We will read the unwind entries into temporary memory, then
314 fill in the actual unwind table. */
315 if (size > 0)
316 {
317 unsigned long tmp;
318 unsigned i;
319 char *buf = alloca (size);
320
321 low_text_segment_address = -1;
322
323 /* If addresses are 64 bits wide, then unwinds are supposed to
324 be segment relative offsets instead of absolute addresses.
325
326 Note that when loading a shared library (text_offset != 0) the
327 unwinds are already relative to the text_offset that will be
328 passed in. */
329 if (TARGET_PTR_BIT == 64 && text_offset == 0)
330 {
331 bfd_map_over_sections (objfile->obfd,
332 record_text_segment_lowaddr, (PTR) NULL);
333
334 /* ?!? Mask off some low bits. Should this instead subtract
335 out the lowest section's filepos or something like that?
336 This looks very hokey to me. */
337 low_text_segment_address &= ~0xfff;
338 text_offset += low_text_segment_address;
339 }
340
341 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
342
343 /* Now internalize the information being careful to handle host/target
344 endian issues. */
345 for (i = 0; i < entries; i++)
346 {
347 table[i].region_start = bfd_get_32 (objfile->obfd,
348 (bfd_byte *) buf);
349 table[i].region_start += text_offset;
350 buf += 4;
351 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
352 table[i].region_end += text_offset;
353 buf += 4;
354 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
355 buf += 4;
356 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
357 table[i].Millicode = (tmp >> 30) & 0x1;
358 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
359 table[i].Region_description = (tmp >> 27) & 0x3;
360 table[i].reserved1 = (tmp >> 26) & 0x1;
361 table[i].Entry_SR = (tmp >> 25) & 0x1;
362 table[i].Entry_FR = (tmp >> 21) & 0xf;
363 table[i].Entry_GR = (tmp >> 16) & 0x1f;
364 table[i].Args_stored = (tmp >> 15) & 0x1;
365 table[i].Variable_Frame = (tmp >> 14) & 0x1;
366 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
367 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
368 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
369 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
370 table[i].Ada_Region = (tmp >> 9) & 0x1;
371 table[i].cxx_info = (tmp >> 8) & 0x1;
372 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
373 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
374 table[i].reserved2 = (tmp >> 5) & 0x1;
375 table[i].Save_SP = (tmp >> 4) & 0x1;
376 table[i].Save_RP = (tmp >> 3) & 0x1;
377 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
378 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
379 table[i].Cleanup_defined = tmp & 0x1;
380 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
381 buf += 4;
382 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
383 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
384 table[i].Large_frame = (tmp >> 29) & 0x1;
385 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
386 table[i].reserved4 = (tmp >> 27) & 0x1;
387 table[i].Total_frame_size = tmp & 0x7ffffff;
388
389 /* Stub unwinds are handled elsewhere. */
390 table[i].stub_unwind.stub_type = 0;
391 table[i].stub_unwind.padding = 0;
392 }
393 }
394}
395
396/* Read in the backtrace information stored in the `$UNWIND_START$' section of
397 the object file. This info is used mainly by find_unwind_entry() to find
398 out the stack frame size and frame pointer used by procedures. We put
399 everything on the psymbol obstack in the objfile so that it automatically
400 gets freed when the objfile is destroyed. */
401
402static void
403read_unwind_info (struct objfile *objfile)
404{
405 asection *unwind_sec, *stub_unwind_sec;
406 unsigned unwind_size, stub_unwind_size, total_size;
407 unsigned index, unwind_entries;
408 unsigned stub_entries, total_entries;
409 CORE_ADDR text_offset;
410 struct obj_unwind_info *ui;
411 obj_private_data_t *obj_private;
412
413 text_offset = ANOFFSET (objfile->section_offsets, 0);
414 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
415 sizeof (struct obj_unwind_info));
416
417 ui->table = NULL;
418 ui->cache = NULL;
419 ui->last = -1;
420
421 /* For reasons unknown the HP PA64 tools generate multiple unwinder
422 sections in a single executable. So we just iterate over every
423 section in the BFD looking for unwinder sections intead of trying
424 to do a lookup with bfd_get_section_by_name.
425
426 First determine the total size of the unwind tables so that we
427 can allocate memory in a nice big hunk. */
428 total_entries = 0;
429 for (unwind_sec = objfile->obfd->sections;
430 unwind_sec;
431 unwind_sec = unwind_sec->next)
432 {
433 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
434 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
435 {
436 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
437 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
438
439 total_entries += unwind_entries;
440 }
441 }
442
443 /* Now compute the size of the stub unwinds. Note the ELF tools do not
444 use stub unwinds at the curren time. */
445 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
446
447 if (stub_unwind_sec)
448 {
449 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
450 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
451 }
452 else
453 {
454 stub_unwind_size = 0;
455 stub_entries = 0;
456 }
457
458 /* Compute total number of unwind entries and their total size. */
459 total_entries += stub_entries;
460 total_size = total_entries * sizeof (struct unwind_table_entry);
461
462 /* Allocate memory for the unwind table. */
463 ui->table = (struct unwind_table_entry *)
464 obstack_alloc (&objfile->psymbol_obstack, total_size);
465 ui->last = total_entries - 1;
466
467 /* Now read in each unwind section and internalize the standard unwind
468 entries. */
469 index = 0;
470 for (unwind_sec = objfile->obfd->sections;
471 unwind_sec;
472 unwind_sec = unwind_sec->next)
473 {
474 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
475 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
476 {
477 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
478 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
479
480 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
481 unwind_entries, unwind_size, text_offset);
482 index += unwind_entries;
483 }
484 }
485
486 /* Now read in and internalize the stub unwind entries. */
487 if (stub_unwind_size > 0)
488 {
489 unsigned int i;
490 char *buf = alloca (stub_unwind_size);
491
492 /* Read in the stub unwind entries. */
493 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
494 0, stub_unwind_size);
495
496 /* Now convert them into regular unwind entries. */
497 for (i = 0; i < stub_entries; i++, index++)
498 {
499 /* Clear out the next unwind entry. */
500 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
501
502 /* Convert offset & size into region_start and region_end.
503 Stuff away the stub type into "reserved" fields. */
504 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
505 (bfd_byte *) buf);
506 ui->table[index].region_start += text_offset;
507 buf += 4;
508 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
509 (bfd_byte *) buf);
510 buf += 2;
511 ui->table[index].region_end
512 = ui->table[index].region_start + 4 *
513 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
514 buf += 2;
515 }
516
517 }
518
519 /* Unwind table needs to be kept sorted. */
520 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
521 compare_unwind_entries);
522
523 /* Keep a pointer to the unwind information. */
524 if (objfile->obj_private == NULL)
525 {
526 obj_private = (obj_private_data_t *)
527 obstack_alloc (&objfile->psymbol_obstack,
528 sizeof (obj_private_data_t));
529 obj_private->unwind_info = NULL;
530 obj_private->so_info = NULL;
531 obj_private->dp = 0;
532
533 objfile->obj_private = (PTR) obj_private;
534 }
535 obj_private = (obj_private_data_t *) objfile->obj_private;
536 obj_private->unwind_info = ui;
537}
538
539/* Lookup the unwind (stack backtrace) info for the given PC. We search all
540 of the objfiles seeking the unwind table entry for this PC. Each objfile
541 contains a sorted list of struct unwind_table_entry. Since we do a binary
542 search of the unwind tables, we depend upon them to be sorted. */
543
544struct unwind_table_entry *
545find_unwind_entry (CORE_ADDR pc)
546{
547 int first, middle, last;
548 struct objfile *objfile;
549
550 /* A function at address 0? Not in HP-UX! */
551 if (pc == (CORE_ADDR) 0)
552 return NULL;
553
554 ALL_OBJFILES (objfile)
555 {
556 struct obj_unwind_info *ui;
557 ui = NULL;
558 if (objfile->obj_private)
559 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
560
561 if (!ui)
562 {
563 read_unwind_info (objfile);
564 if (objfile->obj_private == NULL)
565 error ("Internal error reading unwind information.");
566 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
567 }
568
569 /* First, check the cache */
570
571 if (ui->cache
572 && pc >= ui->cache->region_start
573 && pc <= ui->cache->region_end)
574 return ui->cache;
575
576 /* Not in the cache, do a binary search */
577
578 first = 0;
579 last = ui->last;
580
581 while (first <= last)
582 {
583 middle = (first + last) / 2;
584 if (pc >= ui->table[middle].region_start
585 && pc <= ui->table[middle].region_end)
586 {
587 ui->cache = &ui->table[middle];
588 return &ui->table[middle];
589 }
590
591 if (pc < ui->table[middle].region_start)
592 last = middle - 1;
593 else
594 first = middle + 1;
595 }
596 } /* ALL_OBJFILES() */
597 return NULL;
598}
599
600/* Return the adjustment necessary to make for addresses on the stack
601 as presented by hpread.c.
602
603 This is necessary because of the stack direction on the PA and the
604 bizarre way in which someone (?) decided they wanted to handle
605 frame pointerless code in GDB. */
606int
607hpread_adjust_stack_address (CORE_ADDR func_addr)
608{
609 struct unwind_table_entry *u;
610
611 u = find_unwind_entry (func_addr);
612 if (!u)
613 return 0;
614 else
615 return u->Total_frame_size << 3;
616}
617
618/* Called to determine if PC is in an interrupt handler of some
619 kind. */
620
621static int
622pc_in_interrupt_handler (CORE_ADDR pc)
623{
624 struct unwind_table_entry *u;
625 struct minimal_symbol *msym_us;
626
627 u = find_unwind_entry (pc);
628 if (!u)
629 return 0;
630
631 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
632 its frame isn't a pure interrupt frame. Deal with this. */
633 msym_us = lookup_minimal_symbol_by_pc (pc);
634
635 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
636}
637
638/* Called when no unwind descriptor was found for PC. Returns 1 if it
639 appears that PC is in a linker stub.
640
641 ?!? Need to handle stubs which appear in PA64 code. */
642
643static int
644pc_in_linker_stub (CORE_ADDR pc)
645{
646 int found_magic_instruction = 0;
647 int i;
648 char buf[4];
649
650 /* If unable to read memory, assume pc is not in a linker stub. */
651 if (target_read_memory (pc, buf, 4) != 0)
652 return 0;
653
654 /* We are looking for something like
655
656 ; $$dyncall jams RP into this special spot in the frame (RP')
657 ; before calling the "call stub"
658 ldw -18(sp),rp
659
660 ldsid (rp),r1 ; Get space associated with RP into r1
661 mtsp r1,sp ; Move it into space register 0
662 be,n 0(sr0),rp) ; back to your regularly scheduled program */
663
664 /* Maximum known linker stub size is 4 instructions. Search forward
665 from the given PC, then backward. */
666 for (i = 0; i < 4; i++)
667 {
668 /* If we hit something with an unwind, stop searching this direction. */
669
670 if (find_unwind_entry (pc + i * 4) != 0)
671 break;
672
673 /* Check for ldsid (rp),r1 which is the magic instruction for a
674 return from a cross-space function call. */
675 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
676 {
677 found_magic_instruction = 1;
678 break;
679 }
680 /* Add code to handle long call/branch and argument relocation stubs
681 here. */
682 }
683
684 if (found_magic_instruction != 0)
685 return 1;
686
687 /* Now look backward. */
688 for (i = 0; i < 4; i++)
689 {
690 /* If we hit something with an unwind, stop searching this direction. */
691
692 if (find_unwind_entry (pc - i * 4) != 0)
693 break;
694
695 /* Check for ldsid (rp),r1 which is the magic instruction for a
696 return from a cross-space function call. */
697 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
698 {
699 found_magic_instruction = 1;
700 break;
701 }
702 /* Add code to handle long call/branch and argument relocation stubs
703 here. */
704 }
705 return found_magic_instruction;
706}
707
708static int
709find_return_regnum (CORE_ADDR pc)
710{
711 struct unwind_table_entry *u;
712
713 u = find_unwind_entry (pc);
714
715 if (!u)
716 return RP_REGNUM;
717
718 if (u->Millicode)
719 return 31;
720
721 return RP_REGNUM;
722}
723
724/* Return size of frame, or -1 if we should use a frame pointer. */
725static int
726find_proc_framesize (CORE_ADDR pc)
727{
728 struct unwind_table_entry *u;
729 struct minimal_symbol *msym_us;
730
731 /* This may indicate a bug in our callers... */
732 if (pc == (CORE_ADDR) 0)
733 return -1;
734
735 u = find_unwind_entry (pc);
736
737 if (!u)
738 {
739 if (pc_in_linker_stub (pc))
740 /* Linker stubs have a zero size frame. */
741 return 0;
742 else
743 return -1;
744 }
745
746 msym_us = lookup_minimal_symbol_by_pc (pc);
747
748 /* If Save_SP is set, and we're not in an interrupt or signal caller,
749 then we have a frame pointer. Use it. */
750 if (u->Save_SP
751 && !pc_in_interrupt_handler (pc)
752 && msym_us
753 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
754 return -1;
755
756 return u->Total_frame_size << 3;
757}
758
759/* Return offset from sp at which rp is saved, or 0 if not saved. */
760static int rp_saved (CORE_ADDR);
761
762static int
763rp_saved (CORE_ADDR pc)
764{
765 struct unwind_table_entry *u;
766
767 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
768 if (pc == (CORE_ADDR) 0)
769 return 0;
770
771 u = find_unwind_entry (pc);
772
773 if (!u)
774 {
775 if (pc_in_linker_stub (pc))
776 /* This is the so-called RP'. */
777 return -24;
778 else
779 return 0;
780 }
781
782 if (u->Save_RP)
783 return (TARGET_PTR_BIT == 64 ? -16 : -20);
784 else if (u->stub_unwind.stub_type != 0)
785 {
786 switch (u->stub_unwind.stub_type)
787 {
788 case EXPORT:
789 case IMPORT:
790 return -24;
791 case PARAMETER_RELOCATION:
792 return -8;
793 default:
794 return 0;
795 }
796 }
797 else
798 return 0;
799}
800\f
801int
802frameless_function_invocation (struct frame_info *frame)
803{
804 struct unwind_table_entry *u;
805
806 u = find_unwind_entry (frame->pc);
807
808 if (u == 0)
809 return 0;
810
811 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
812}
813
814CORE_ADDR
815saved_pc_after_call (struct frame_info *frame)
816{
817 int ret_regnum;
818 CORE_ADDR pc;
819 struct unwind_table_entry *u;
820
821 ret_regnum = find_return_regnum (get_frame_pc (frame));
822 pc = read_register (ret_regnum) & ~0x3;
823
824 /* If PC is in a linker stub, then we need to dig the address
825 the stub will return to out of the stack. */
826 u = find_unwind_entry (pc);
827 if (u && u->stub_unwind.stub_type != 0)
828 return FRAME_SAVED_PC (frame);
829 else
830 return pc;
831}
832\f
833CORE_ADDR
834hppa_frame_saved_pc (struct frame_info *frame)
835{
836 CORE_ADDR pc = get_frame_pc (frame);
837 struct unwind_table_entry *u;
838 CORE_ADDR old_pc;
839 int spun_around_loop = 0;
840 int rp_offset = 0;
841
842 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
843 at the base of the frame in an interrupt handler. Registers within
844 are saved in the exact same order as GDB numbers registers. How
845 convienent. */
846 if (pc_in_interrupt_handler (pc))
847 return read_memory_integer (frame->frame + PC_REGNUM * 4,
848 TARGET_PTR_BIT / 8) & ~0x3;
849
850 if ((frame->pc >= frame->frame
851 && frame->pc <= (frame->frame
852 /* A call dummy is sized in words, but it is
853 actually a series of instructions. Account
854 for that scaling factor. */
855 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
856 * CALL_DUMMY_LENGTH)
857 /* Similarly we have to account for 64bit
858 wide register saves. */
859 + (32 * REGISTER_SIZE)
860 /* We always consider FP regs 8 bytes long. */
861 + (NUM_REGS - FP0_REGNUM) * 8
862 /* Similarly we have to account for 64bit
863 wide register saves. */
864 + (6 * REGISTER_SIZE))))
865 {
866 return read_memory_integer ((frame->frame
867 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
868 TARGET_PTR_BIT / 8) & ~0x3;
869 }
870
871#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
872 /* Deal with signal handler caller frames too. */
873 if (frame->signal_handler_caller)
874 {
875 CORE_ADDR rp;
876 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
877 return rp & ~0x3;
878 }
879#endif
880
881 if (frameless_function_invocation (frame))
882 {
883 int ret_regnum;
884
885 ret_regnum = find_return_regnum (pc);
886
887 /* If the next frame is an interrupt frame or a signal
888 handler caller, then we need to look in the saved
889 register area to get the return pointer (the values
890 in the registers may not correspond to anything useful). */
891 if (frame->next
892 && (frame->next->signal_handler_caller
893 || pc_in_interrupt_handler (frame->next->pc)))
894 {
895 struct frame_saved_regs saved_regs;
896
897 get_frame_saved_regs (frame->next, &saved_regs);
898 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
899 TARGET_PTR_BIT / 8) & 0x2)
900 {
901 pc = read_memory_integer (saved_regs.regs[31],
902 TARGET_PTR_BIT / 8) & ~0x3;
903
904 /* Syscalls are really two frames. The syscall stub itself
905 with a return pointer in %rp and the kernel call with
906 a return pointer in %r31. We return the %rp variant
907 if %r31 is the same as frame->pc. */
908 if (pc == frame->pc)
909 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
910 TARGET_PTR_BIT / 8) & ~0x3;
911 }
912 else
913 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
914 TARGET_PTR_BIT / 8) & ~0x3;
915 }
916 else
917 pc = read_register (ret_regnum) & ~0x3;
918 }
919 else
920 {
921 spun_around_loop = 0;
922 old_pc = pc;
923
924 restart:
925 rp_offset = rp_saved (pc);
926
927 /* Similar to code in frameless function case. If the next
928 frame is a signal or interrupt handler, then dig the right
929 information out of the saved register info. */
930 if (rp_offset == 0
931 && frame->next
932 && (frame->next->signal_handler_caller
933 || pc_in_interrupt_handler (frame->next->pc)))
934 {
935 struct frame_saved_regs saved_regs;
936
937 get_frame_saved_regs (frame->next, &saved_regs);
938 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
939 TARGET_PTR_BIT / 8) & 0x2)
940 {
941 pc = read_memory_integer (saved_regs.regs[31],
942 TARGET_PTR_BIT / 8) & ~0x3;
943
944 /* Syscalls are really two frames. The syscall stub itself
945 with a return pointer in %rp and the kernel call with
946 a return pointer in %r31. We return the %rp variant
947 if %r31 is the same as frame->pc. */
948 if (pc == frame->pc)
949 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
950 TARGET_PTR_BIT / 8) & ~0x3;
951 }
952 else
953 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
954 TARGET_PTR_BIT / 8) & ~0x3;
955 }
956 else if (rp_offset == 0)
957 {
958 old_pc = pc;
959 pc = read_register (RP_REGNUM) & ~0x3;
960 }
961 else
962 {
963 old_pc = pc;
964 pc = read_memory_integer (frame->frame + rp_offset,
965 TARGET_PTR_BIT / 8) & ~0x3;
966 }
967 }
968
969 /* If PC is inside a linker stub, then dig out the address the stub
970 will return to.
971
972 Don't do this for long branch stubs. Why? For some unknown reason
973 _start is marked as a long branch stub in hpux10. */
974 u = find_unwind_entry (pc);
975 if (u && u->stub_unwind.stub_type != 0
976 && u->stub_unwind.stub_type != LONG_BRANCH)
977 {
978 unsigned int insn;
979
980 /* If this is a dynamic executable, and we're in a signal handler,
981 then the call chain will eventually point us into the stub for
982 _sigreturn. Unlike most cases, we'll be pointed to the branch
983 to the real sigreturn rather than the code after the real branch!.
984
985 Else, try to dig the address the stub will return to in the normal
986 fashion. */
987 insn = read_memory_integer (pc, 4);
988 if ((insn & 0xfc00e000) == 0xe8000000)
989 return (pc + extract_17 (insn) + 8) & ~0x3;
990 else
991 {
992 if (old_pc == pc)
993 spun_around_loop++;
994
995 if (spun_around_loop > 1)
996 {
997 /* We're just about to go around the loop again with
998 no more hope of success. Die. */
999 error ("Unable to find return pc for this frame");
1000 }
1001 else
1002 goto restart;
1003 }
1004 }
1005
1006 return pc;
1007}
1008\f
1009/* We need to correct the PC and the FP for the outermost frame when we are
1010 in a system call. */
1011
1012void
1013init_extra_frame_info (int fromleaf, struct frame_info *frame)
1014{
1015 int flags;
1016 int framesize;
1017
1018 if (frame->next && !fromleaf)
1019 return;
1020
1021 /* If the next frame represents a frameless function invocation
1022 then we have to do some adjustments that are normally done by
1023 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1024 if (fromleaf)
1025 {
1026 /* Find the framesize of *this* frame without peeking at the PC
1027 in the current frame structure (it isn't set yet). */
1028 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1029
1030 /* Now adjust our base frame accordingly. If we have a frame pointer
1031 use it, else subtract the size of this frame from the current
1032 frame. (we always want frame->frame to point at the lowest address
1033 in the frame). */
1034 if (framesize == -1)
1035 frame->frame = TARGET_READ_FP ();
1036 else
1037 frame->frame -= framesize;
1038 return;
1039 }
1040
1041 flags = read_register (FLAGS_REGNUM);
1042 if (flags & 2) /* In system call? */
1043 frame->pc = read_register (31) & ~0x3;
1044
1045 /* The outermost frame is always derived from PC-framesize
1046
1047 One might think frameless innermost frames should have
1048 a frame->frame that is the same as the parent's frame->frame.
1049 That is wrong; frame->frame in that case should be the *high*
1050 address of the parent's frame. It's complicated as hell to
1051 explain, but the parent *always* creates some stack space for
1052 the child. So the child actually does have a frame of some
1053 sorts, and its base is the high address in its parent's frame. */
1054 framesize = find_proc_framesize (frame->pc);
1055 if (framesize == -1)
1056 frame->frame = TARGET_READ_FP ();
1057 else
1058 frame->frame = read_register (SP_REGNUM) - framesize;
1059}
1060\f
1061/* Given a GDB frame, determine the address of the calling function's frame.
1062 This will be used to create a new GDB frame struct, and then
1063 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1064
1065 This may involve searching through prologues for several functions
1066 at boundaries where GCC calls HP C code, or where code which has
1067 a frame pointer calls code without a frame pointer. */
1068
1069CORE_ADDR
1070frame_chain (struct frame_info *frame)
1071{
1072 int my_framesize, caller_framesize;
1073 struct unwind_table_entry *u;
1074 CORE_ADDR frame_base;
1075 struct frame_info *tmp_frame;
1076
1077 /* A frame in the current frame list, or zero. */
1078 struct frame_info *saved_regs_frame = 0;
1079 /* Where the registers were saved in saved_regs_frame.
1080 If saved_regs_frame is zero, this is garbage. */
1081 struct frame_saved_regs saved_regs;
1082
1083 CORE_ADDR caller_pc;
1084
1085 struct minimal_symbol *min_frame_symbol;
1086 struct symbol *frame_symbol;
1087 char *frame_symbol_name;
1088
1089 /* If this is a threaded application, and we see the
1090 routine "__pthread_exit", treat it as the stack root
1091 for this thread. */
1092 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1093 frame_symbol = find_pc_function (frame->pc);
1094
1095 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1096 {
1097 /* The test above for "no user function name" would defend
1098 against the slim likelihood that a user might define a
1099 routine named "__pthread_exit" and then try to debug it.
1100
1101 If it weren't commented out, and you tried to debug the
1102 pthread library itself, you'd get errors.
1103
1104 So for today, we don't make that check. */
1105 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1106 if (frame_symbol_name != 0)
1107 {
1108 if (0 == strncmp (frame_symbol_name,
1109 THREAD_INITIAL_FRAME_SYMBOL,
1110 THREAD_INITIAL_FRAME_SYM_LEN))
1111 {
1112 /* Pretend we've reached the bottom of the stack. */
1113 return (CORE_ADDR) 0;
1114 }
1115 }
1116 } /* End of hacky code for threads. */
1117
1118 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1119 are easy; at *sp we have a full save state strucutre which we can
1120 pull the old stack pointer from. Also see frame_saved_pc for
1121 code to dig a saved PC out of the save state structure. */
1122 if (pc_in_interrupt_handler (frame->pc))
1123 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1124 TARGET_PTR_BIT / 8);
1125#ifdef FRAME_BASE_BEFORE_SIGTRAMP
1126 else if (frame->signal_handler_caller)
1127 {
1128 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1129 }
1130#endif
1131 else
1132 frame_base = frame->frame;
1133
1134 /* Get frame sizes for the current frame and the frame of the
1135 caller. */
1136 my_framesize = find_proc_framesize (frame->pc);
1137 caller_pc = FRAME_SAVED_PC (frame);
1138
1139 /* If we can't determine the caller's PC, then it's not likely we can
1140 really determine anything meaningful about its frame. We'll consider
1141 this to be stack bottom. */
1142 if (caller_pc == (CORE_ADDR) 0)
1143 return (CORE_ADDR) 0;
1144
1145 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
1146
1147 /* If caller does not have a frame pointer, then its frame
1148 can be found at current_frame - caller_framesize. */
1149 if (caller_framesize != -1)
1150 {
1151 return frame_base - caller_framesize;
1152 }
1153 /* Both caller and callee have frame pointers and are GCC compiled
1154 (SAVE_SP bit in unwind descriptor is on for both functions.
1155 The previous frame pointer is found at the top of the current frame. */
1156 if (caller_framesize == -1 && my_framesize == -1)
1157 {
1158 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1159 }
1160 /* Caller has a frame pointer, but callee does not. This is a little
1161 more difficult as GCC and HP C lay out locals and callee register save
1162 areas very differently.
1163
1164 The previous frame pointer could be in a register, or in one of
1165 several areas on the stack.
1166
1167 Walk from the current frame to the innermost frame examining
1168 unwind descriptors to determine if %r3 ever gets saved into the
1169 stack. If so return whatever value got saved into the stack.
1170 If it was never saved in the stack, then the value in %r3 is still
1171 valid, so use it.
1172
1173 We use information from unwind descriptors to determine if %r3
1174 is saved into the stack (Entry_GR field has this information). */
1175
1176 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
1177 {
1178 u = find_unwind_entry (tmp_frame->pc);
1179
1180 if (!u)
1181 {
1182 /* We could find this information by examining prologues. I don't
1183 think anyone has actually written any tools (not even "strip")
1184 which leave them out of an executable, so maybe this is a moot
1185 point. */
1186 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1187 code that doesn't have unwind entries. For example, stepping into
1188 the dynamic linker will give you a PC that has none. Thus, I've
1189 disabled this warning. */
1190#if 0
1191 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1192#endif
1193 return (CORE_ADDR) 0;
1194 }
1195
1196 if (u->Save_SP
1197 || tmp_frame->signal_handler_caller
1198 || pc_in_interrupt_handler (tmp_frame->pc))
1199 break;
1200
1201 /* Entry_GR specifies the number of callee-saved general registers
1202 saved in the stack. It starts at %r3, so %r3 would be 1. */
1203 if (u->Entry_GR >= 1)
1204 {
1205 /* The unwind entry claims that r3 is saved here. However,
1206 in optimized code, GCC often doesn't actually save r3.
1207 We'll discover this if we look at the prologue. */
1208 get_frame_saved_regs (tmp_frame, &saved_regs);
1209 saved_regs_frame = tmp_frame;
1210
1211 /* If we have an address for r3, that's good. */
1212 if (saved_regs.regs[FP_REGNUM])
1213 break;
1214 }
1215 }
1216
1217 if (tmp_frame)
1218 {
1219 /* We may have walked down the chain into a function with a frame
1220 pointer. */
1221 if (u->Save_SP
1222 && !tmp_frame->signal_handler_caller
1223 && !pc_in_interrupt_handler (tmp_frame->pc))
1224 {
1225 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
1226 }
1227 /* %r3 was saved somewhere in the stack. Dig it out. */
1228 else
1229 {
1230 /* Sick.
1231
1232 For optimization purposes many kernels don't have the
1233 callee saved registers into the save_state structure upon
1234 entry into the kernel for a syscall; the optimization
1235 is usually turned off if the process is being traced so
1236 that the debugger can get full register state for the
1237 process.
1238
1239 This scheme works well except for two cases:
1240
1241 * Attaching to a process when the process is in the
1242 kernel performing a system call (debugger can't get
1243 full register state for the inferior process since
1244 the process wasn't being traced when it entered the
1245 system call).
1246
1247 * Register state is not complete if the system call
1248 causes the process to core dump.
1249
1250
1251 The following heinous code is an attempt to deal with
1252 the lack of register state in a core dump. It will
1253 fail miserably if the function which performs the
1254 system call has a variable sized stack frame. */
1255
1256 if (tmp_frame != saved_regs_frame)
1257 get_frame_saved_regs (tmp_frame, &saved_regs);
1258
1259 /* Abominable hack. */
1260 if (current_target.to_has_execution == 0
1261 && ((saved_regs.regs[FLAGS_REGNUM]
1262 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1263 TARGET_PTR_BIT / 8)
1264 & 0x2))
1265 || (saved_regs.regs[FLAGS_REGNUM] == 0
1266 && read_register (FLAGS_REGNUM) & 0x2)))
1267 {
1268 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1269 if (!u)
1270 {
1271 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1272 TARGET_PTR_BIT / 8);
1273 }
1274 else
1275 {
1276 return frame_base - (u->Total_frame_size << 3);
1277 }
1278 }
1279
1280 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1281 TARGET_PTR_BIT / 8);
1282 }
1283 }
1284 else
1285 {
1286 /* Get the innermost frame. */
1287 tmp_frame = frame;
1288 while (tmp_frame->next != NULL)
1289 tmp_frame = tmp_frame->next;
1290
1291 if (tmp_frame != saved_regs_frame)
1292 get_frame_saved_regs (tmp_frame, &saved_regs);
1293
1294 /* Abominable hack. See above. */
1295 if (current_target.to_has_execution == 0
1296 && ((saved_regs.regs[FLAGS_REGNUM]
1297 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1298 TARGET_PTR_BIT / 8)
1299 & 0x2))
1300 || (saved_regs.regs[FLAGS_REGNUM] == 0
1301 && read_register (FLAGS_REGNUM) & 0x2)))
1302 {
1303 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1304 if (!u)
1305 {
1306 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1307 TARGET_PTR_BIT / 8);
1308 }
1309 else
1310 {
1311 return frame_base - (u->Total_frame_size << 3);
1312 }
1313 }
1314
1315 /* The value in %r3 was never saved into the stack (thus %r3 still
1316 holds the value of the previous frame pointer). */
1317 return TARGET_READ_FP ();
1318 }
1319}
1320\f
1321
1322/* To see if a frame chain is valid, see if the caller looks like it
1323 was compiled with gcc. */
1324
1325int
1326hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1327{
1328 struct minimal_symbol *msym_us;
1329 struct minimal_symbol *msym_start;
1330 struct unwind_table_entry *u, *next_u = NULL;
1331 struct frame_info *next;
1332
1333 if (!chain)
1334 return 0;
1335
1336 u = find_unwind_entry (thisframe->pc);
1337
1338 if (u == NULL)
1339 return 1;
1340
1341 /* We can't just check that the same of msym_us is "_start", because
1342 someone idiotically decided that they were going to make a Ltext_end
1343 symbol with the same address. This Ltext_end symbol is totally
1344 indistinguishable (as nearly as I can tell) from the symbol for a function
1345 which is (legitimately, since it is in the user's namespace)
1346 named Ltext_end, so we can't just ignore it. */
1347 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1348 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1349 if (msym_us
1350 && msym_start
1351 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1352 return 0;
1353
1354 /* Grrrr. Some new idiot decided that they don't want _start for the
1355 PRO configurations; $START$ calls main directly.... Deal with it. */
1356 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1357 if (msym_us
1358 && msym_start
1359 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1360 return 0;
1361
1362 next = get_next_frame (thisframe);
1363 if (next)
1364 next_u = find_unwind_entry (next->pc);
1365
1366 /* If this frame does not save SP, has no stack, isn't a stub,
1367 and doesn't "call" an interrupt routine or signal handler caller,
1368 then its not valid. */
1369 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1370 || (thisframe->next && thisframe->next->signal_handler_caller)
1371 || (next_u && next_u->HP_UX_interrupt_marker))
1372 return 1;
1373
1374 if (pc_in_linker_stub (thisframe->pc))
1375 return 1;
1376
1377 return 0;
1378}
1379
1380/*
1381 These functions deal with saving and restoring register state
1382 around a function call in the inferior. They keep the stack
1383 double-word aligned; eventually, on an hp700, the stack will have
1384 to be aligned to a 64-byte boundary. */
1385
1386void
1387push_dummy_frame (struct inferior_status *inf_status)
1388{
1389 CORE_ADDR sp, pc, pcspace;
1390 register int regnum;
1391 CORE_ADDR int_buffer;
1392 double freg_buffer;
1393
1394 /* Oh, what a hack. If we're trying to perform an inferior call
1395 while the inferior is asleep, we have to make sure to clear
1396 the "in system call" bit in the flag register (the call will
1397 start after the syscall returns, so we're no longer in the system
1398 call!) This state is kept in "inf_status", change it there.
1399
1400 We also need a number of horrid hacks to deal with lossage in the
1401 PC queue registers (apparently they're not valid when the in syscall
1402 bit is set). */
1403 pc = target_read_pc (inferior_ptid);
1404 int_buffer = read_register (FLAGS_REGNUM);
1405 if (int_buffer & 0x2)
1406 {
1407 unsigned int sid;
1408 int_buffer &= ~0x2;
1409 write_inferior_status_register (inf_status, 0, int_buffer);
1410 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1411 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
1412 sid = (pc >> 30) & 0x3;
1413 if (sid == 0)
1414 pcspace = read_register (SR4_REGNUM);
1415 else
1416 pcspace = read_register (SR4_REGNUM + 4 + sid);
1417 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1418 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
1419 }
1420 else
1421 pcspace = read_register (PCSQ_HEAD_REGNUM);
1422
1423 /* Space for "arguments"; the RP goes in here. */
1424 sp = read_register (SP_REGNUM) + 48;
1425 int_buffer = read_register (RP_REGNUM) | 0x3;
1426
1427 /* The 32bit and 64bit ABIs save the return pointer into different
1428 stack slots. */
1429 if (REGISTER_SIZE == 8)
1430 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1431 else
1432 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
1433
1434 int_buffer = TARGET_READ_FP ();
1435 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
1436
1437 write_register (FP_REGNUM, sp);
1438
1439 sp += 2 * REGISTER_SIZE;
1440
1441 for (regnum = 1; regnum < 32; regnum++)
1442 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1443 sp = push_word (sp, read_register (regnum));
1444
1445 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1446 if (REGISTER_SIZE != 8)
1447 sp += 4;
1448
1449 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1450 {
1451 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1452 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1453 }
1454 sp = push_word (sp, read_register (IPSW_REGNUM));
1455 sp = push_word (sp, read_register (SAR_REGNUM));
1456 sp = push_word (sp, pc);
1457 sp = push_word (sp, pcspace);
1458 sp = push_word (sp, pc + 4);
1459 sp = push_word (sp, pcspace);
1460 write_register (SP_REGNUM, sp);
1461}
1462
1463static void
1464find_dummy_frame_regs (struct frame_info *frame,
1465 struct frame_saved_regs *frame_saved_regs)
1466{
1467 CORE_ADDR fp = frame->frame;
1468 int i;
1469
1470 /* The 32bit and 64bit ABIs save RP into different locations. */
1471 if (REGISTER_SIZE == 8)
1472 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1473 else
1474 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1475
1476 frame_saved_regs->regs[FP_REGNUM] = fp;
1477
1478 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1479
1480 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
1481 {
1482 if (i != FP_REGNUM)
1483 {
1484 frame_saved_regs->regs[i] = fp;
1485 fp += REGISTER_SIZE;
1486 }
1487 }
1488
1489 /* This is not necessary or desirable for the 64bit ABI. */
1490 if (REGISTER_SIZE != 8)
1491 fp += 4;
1492
1493 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1494 frame_saved_regs->regs[i] = fp;
1495
1496 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1497 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1498 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1499 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1500 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1501 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
1502}
1503
1504void
1505hppa_pop_frame (void)
1506{
1507 register struct frame_info *frame = get_current_frame ();
1508 register CORE_ADDR fp, npc, target_pc;
1509 register int regnum;
1510 struct frame_saved_regs fsr;
1511 double freg_buffer;
1512
1513 fp = FRAME_FP (frame);
1514 get_frame_saved_regs (frame, &fsr);
1515
1516#ifndef NO_PC_SPACE_QUEUE_RESTORE
1517 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1518 restore_pc_queue (&fsr);
1519#endif
1520
1521 for (regnum = 31; regnum > 0; regnum--)
1522 if (fsr.regs[regnum])
1523 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1524 REGISTER_SIZE));
1525
1526 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1527 if (fsr.regs[regnum])
1528 {
1529 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1530 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1531 }
1532
1533 if (fsr.regs[IPSW_REGNUM])
1534 write_register (IPSW_REGNUM,
1535 read_memory_integer (fsr.regs[IPSW_REGNUM],
1536 REGISTER_SIZE));
1537
1538 if (fsr.regs[SAR_REGNUM])
1539 write_register (SAR_REGNUM,
1540 read_memory_integer (fsr.regs[SAR_REGNUM],
1541 REGISTER_SIZE));
1542
1543 /* If the PC was explicitly saved, then just restore it. */
1544 if (fsr.regs[PCOQ_TAIL_REGNUM])
1545 {
1546 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1547 REGISTER_SIZE);
1548 write_register (PCOQ_TAIL_REGNUM, npc);
1549 }
1550 /* Else use the value in %rp to set the new PC. */
1551 else
1552 {
1553 npc = read_register (RP_REGNUM);
1554 write_pc (npc);
1555 }
1556
1557 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
1558
1559 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1560 write_register (SP_REGNUM, fp - 48);
1561 else
1562 write_register (SP_REGNUM, fp);
1563
1564 /* The PC we just restored may be inside a return trampoline. If so
1565 we want to restart the inferior and run it through the trampoline.
1566
1567 Do this by setting a momentary breakpoint at the location the
1568 trampoline returns to.
1569
1570 Don't skip through the trampoline if we're popping a dummy frame. */
1571 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1572 if (target_pc && !fsr.regs[IPSW_REGNUM])
1573 {
1574 struct symtab_and_line sal;
1575 struct breakpoint *breakpoint;
1576 struct cleanup *old_chain;
1577
1578 /* Set up our breakpoint. Set it to be silent as the MI code
1579 for "return_command" will print the frame we returned to. */
1580 sal = find_pc_line (target_pc, 0);
1581 sal.pc = target_pc;
1582 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1583 breakpoint->silent = 1;
1584
1585 /* So we can clean things up. */
1586 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1587
1588 /* Start up the inferior. */
1589 clear_proceed_status ();
1590 proceed_to_finish = 1;
1591 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1592
1593 /* Perform our cleanups. */
1594 do_cleanups (old_chain);
1595 }
1596 flush_cached_frames ();
1597}
1598
1599/* After returning to a dummy on the stack, restore the instruction
1600 queue space registers. */
1601
1602static int
1603restore_pc_queue (struct frame_saved_regs *fsr)
1604{
1605 CORE_ADDR pc = read_pc ();
1606 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1607 TARGET_PTR_BIT / 8);
1608 struct target_waitstatus w;
1609 int insn_count;
1610
1611 /* Advance past break instruction in the call dummy. */
1612 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1613 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1614
1615 /* HPUX doesn't let us set the space registers or the space
1616 registers of the PC queue through ptrace. Boo, hiss.
1617 Conveniently, the call dummy has this sequence of instructions
1618 after the break:
1619 mtsp r21, sr0
1620 ble,n 0(sr0, r22)
1621
1622 So, load up the registers and single step until we are in the
1623 right place. */
1624
1625 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1626 REGISTER_SIZE));
1627 write_register (22, new_pc);
1628
1629 for (insn_count = 0; insn_count < 3; insn_count++)
1630 {
1631 /* FIXME: What if the inferior gets a signal right now? Want to
1632 merge this into wait_for_inferior (as a special kind of
1633 watchpoint? By setting a breakpoint at the end? Is there
1634 any other choice? Is there *any* way to do this stuff with
1635 ptrace() or some equivalent?). */
1636 resume (1, 0);
1637 target_wait (inferior_ptid, &w);
1638
1639 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1640 {
1641 stop_signal = w.value.sig;
1642 terminal_ours_for_output ();
1643 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1644 target_signal_to_name (stop_signal),
1645 target_signal_to_string (stop_signal));
1646 gdb_flush (gdb_stdout);
1647 return 0;
1648 }
1649 }
1650 target_terminal_ours ();
1651 target_fetch_registers (-1);
1652 return 1;
1653}
1654
1655
1656#ifdef PA20W_CALLING_CONVENTIONS
1657
1658/* This function pushes a stack frame with arguments as part of the
1659 inferior function calling mechanism.
1660
1661 This is the version for the PA64, in which later arguments appear
1662 at higher addresses. (The stack always grows towards higher
1663 addresses.)
1664
1665 We simply allocate the appropriate amount of stack space and put
1666 arguments into their proper slots. The call dummy code will copy
1667 arguments into registers as needed by the ABI.
1668
1669 This ABI also requires that the caller provide an argument pointer
1670 to the callee, so we do that too. */
1671
1672CORE_ADDR
1673hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1674 int struct_return, CORE_ADDR struct_addr)
1675{
1676 /* array of arguments' offsets */
1677 int *offset = (int *) alloca (nargs * sizeof (int));
1678
1679 /* array of arguments' lengths: real lengths in bytes, not aligned to
1680 word size */
1681 int *lengths = (int *) alloca (nargs * sizeof (int));
1682
1683 /* The value of SP as it was passed into this function after
1684 aligning. */
1685 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1686
1687 /* The number of stack bytes occupied by the current argument. */
1688 int bytes_reserved;
1689
1690 /* The total number of bytes reserved for the arguments. */
1691 int cum_bytes_reserved = 0;
1692
1693 /* Similarly, but aligned. */
1694 int cum_bytes_aligned = 0;
1695 int i;
1696
1697 /* Iterate over each argument provided by the user. */
1698 for (i = 0; i < nargs; i++)
1699 {
1700 struct type *arg_type = VALUE_TYPE (args[i]);
1701
1702 /* Integral scalar values smaller than a register are padded on
1703 the left. We do this by promoting them to full-width,
1704 although the ABI says to pad them with garbage. */
1705 if (is_integral_type (arg_type)
1706 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1707 {
1708 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1709 ? builtin_type_unsigned_long
1710 : builtin_type_long),
1711 args[i]);
1712 arg_type = VALUE_TYPE (args[i]);
1713 }
1714
1715 lengths[i] = TYPE_LENGTH (arg_type);
1716
1717 /* Align the size of the argument to the word size for this
1718 target. */
1719 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1720
1721 offset[i] = cum_bytes_reserved;
1722
1723 /* Aggregates larger than eight bytes (the only types larger
1724 than eight bytes we have) are aligned on a 16-byte boundary,
1725 possibly padded on the right with garbage. This may leave an
1726 empty word on the stack, and thus an unused register, as per
1727 the ABI. */
1728 if (bytes_reserved > 8)
1729 {
1730 /* Round up the offset to a multiple of two slots. */
1731 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1732 & -(2*REGISTER_SIZE));
1733
1734 /* Note the space we've wasted, if any. */
1735 bytes_reserved += new_offset - offset[i];
1736 offset[i] = new_offset;
1737 }
1738
1739 cum_bytes_reserved += bytes_reserved;
1740 }
1741
1742 /* CUM_BYTES_RESERVED already accounts for all the arguments
1743 passed by the user. However, the ABIs mandate minimum stack space
1744 allocations for outgoing arguments.
1745
1746 The ABIs also mandate minimum stack alignments which we must
1747 preserve. */
1748 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1749 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1750
1751 /* Now write each of the args at the proper offset down the stack. */
1752 for (i = 0; i < nargs; i++)
1753 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1754
1755 /* If a structure has to be returned, set up register 28 to hold its
1756 address */
1757 if (struct_return)
1758 write_register (28, struct_addr);
1759
1760 /* For the PA64 we must pass a pointer to the outgoing argument list.
1761 The ABI mandates that the pointer should point to the first byte of
1762 storage beyond the register flushback area.
1763
1764 However, the call dummy expects the outgoing argument pointer to
1765 be passed in register %r4. */
1766 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1767
1768 /* ?!? This needs further work. We need to set up the global data
1769 pointer for this procedure. This assumes the same global pointer
1770 for every procedure. The call dummy expects the dp value to
1771 be passed in register %r6. */
1772 write_register (6, read_register (27));
1773
1774 /* The stack will have 64 bytes of additional space for a frame marker. */
1775 return sp + 64;
1776}
1777
1778#else
1779
1780/* This function pushes a stack frame with arguments as part of the
1781 inferior function calling mechanism.
1782
1783 This is the version of the function for the 32-bit PA machines, in
1784 which later arguments appear at lower addresses. (The stack always
1785 grows towards higher addresses.)
1786
1787 We simply allocate the appropriate amount of stack space and put
1788 arguments into their proper slots. The call dummy code will copy
1789 arguments into registers as needed by the ABI. */
1790
1791CORE_ADDR
1792hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1793 int struct_return, CORE_ADDR struct_addr)
1794{
1795 /* array of arguments' offsets */
1796 int *offset = (int *) alloca (nargs * sizeof (int));
1797
1798 /* array of arguments' lengths: real lengths in bytes, not aligned to
1799 word size */
1800 int *lengths = (int *) alloca (nargs * sizeof (int));
1801
1802 /* The number of stack bytes occupied by the current argument. */
1803 int bytes_reserved;
1804
1805 /* The total number of bytes reserved for the arguments. */
1806 int cum_bytes_reserved = 0;
1807
1808 /* Similarly, but aligned. */
1809 int cum_bytes_aligned = 0;
1810 int i;
1811
1812 /* Iterate over each argument provided by the user. */
1813 for (i = 0; i < nargs; i++)
1814 {
1815 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1816
1817 /* Align the size of the argument to the word size for this
1818 target. */
1819 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1820
1821 offset[i] = (cum_bytes_reserved
1822 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
1823
1824 /* If the argument is a double word argument, then it needs to be
1825 double word aligned. */
1826 if ((bytes_reserved == 2 * REGISTER_SIZE)
1827 && (offset[i] % 2 * REGISTER_SIZE))
1828 {
1829 int new_offset = 0;
1830 /* BYTES_RESERVED is already aligned to the word, so we put
1831 the argument at one word more down the stack.
1832
1833 This will leave one empty word on the stack, and one unused
1834 register as mandated by the ABI. */
1835 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1836 & -(2 * REGISTER_SIZE));
1837
1838 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
1839 {
1840 bytes_reserved += REGISTER_SIZE;
1841 offset[i] += REGISTER_SIZE;
1842 }
1843 }
1844
1845 cum_bytes_reserved += bytes_reserved;
1846
1847 }
1848
1849 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1850 by the user. However, the ABI mandates minimum stack space
1851 allocations for outgoing arguments.
1852
1853 The ABI also mandates minimum stack alignments which we must
1854 preserve. */
1855 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1856 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1857
1858 /* Now write each of the args at the proper offset down the stack.
1859 ?!? We need to promote values to a full register instead of skipping
1860 words in the stack. */
1861 for (i = 0; i < nargs; i++)
1862 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1863
1864 /* If a structure has to be returned, set up register 28 to hold its
1865 address */
1866 if (struct_return)
1867 write_register (28, struct_addr);
1868
1869 /* The stack will have 32 bytes of additional space for a frame marker. */
1870 return sp + 32;
1871}
1872
1873#endif
1874
1875/* elz: this function returns a value which is built looking at the given address.
1876 It is called from call_function_by_hand, in case we need to return a
1877 value which is larger than 64 bits, and it is stored in the stack rather than
1878 in the registers r28 and r29 or fr4.
1879 This function does the same stuff as value_being_returned in values.c, but
1880 gets the value from the stack rather than from the buffer where all the
1881 registers were saved when the function called completed. */
1882struct value *
1883hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1884{
1885 register struct value *val;
1886
1887 val = allocate_value (valtype);
1888 CHECK_TYPEDEF (valtype);
1889 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1890
1891 return val;
1892}
1893
1894
1895
1896/* elz: Used to lookup a symbol in the shared libraries.
1897 This function calls shl_findsym, indirectly through a
1898 call to __d_shl_get. __d_shl_get is in end.c, which is always
1899 linked in by the hp compilers/linkers.
1900 The call to shl_findsym cannot be made directly because it needs
1901 to be active in target address space.
1902 inputs: - minimal symbol pointer for the function we want to look up
1903 - address in target space of the descriptor for the library
1904 where we want to look the symbol up.
1905 This address is retrieved using the
1906 som_solib_get_solib_by_pc function (somsolib.c).
1907 output: - real address in the library of the function.
1908 note: the handle can be null, in which case shl_findsym will look for
1909 the symbol in all the loaded shared libraries.
1910 files to look at if you need reference on this stuff:
1911 dld.c, dld_shl_findsym.c
1912 end.c
1913 man entry for shl_findsym */
1914
1915CORE_ADDR
1916find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
1917{
1918 struct symbol *get_sym, *symbol2;
1919 struct minimal_symbol *buff_minsym, *msymbol;
1920 struct type *ftype;
1921 struct value **args;
1922 struct value *funcval;
1923 struct value *val;
1924
1925 int x, namelen, err_value, tmp = -1;
1926 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1927 CORE_ADDR stub_addr;
1928
1929
1930 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
1931 funcval = find_function_in_inferior ("__d_shl_get");
1932 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1933 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1934 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1935 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1936 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1937 namelen = strlen (SYMBOL_NAME (function));
1938 value_return_addr = endo_buff_addr + namelen;
1939 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1940
1941 /* do alignment */
1942 if ((x = value_return_addr % 64) != 0)
1943 value_return_addr = value_return_addr + 64 - x;
1944
1945 errno_return_addr = value_return_addr + 64;
1946
1947
1948 /* set up stuff needed by __d_shl_get in buffer in end.o */
1949
1950 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1951
1952 target_write_memory (value_return_addr, (char *) &tmp, 4);
1953
1954 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1955
1956 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1957 (char *) &handle, 4);
1958
1959 /* now prepare the arguments for the call */
1960
1961 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
1962 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1963 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
1964 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
1965 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1966 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
1967
1968 /* now call the function */
1969
1970 val = call_function_by_hand (funcval, 6, args);
1971
1972 /* now get the results */
1973
1974 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1975
1976 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1977 if (stub_addr <= 0)
1978 error ("call to __d_shl_get failed, error code is %d", err_value);
1979
1980 return (stub_addr);
1981}
1982
1983/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
1984static int
1985cover_find_stub_with_shl_get (PTR args_untyped)
1986{
1987 args_for_find_stub *args = args_untyped;
1988 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
1989 return 0;
1990}
1991
1992/* Insert the specified number of args and function address
1993 into a call sequence of the above form stored at DUMMYNAME.
1994
1995 On the hppa we need to call the stack dummy through $$dyncall.
1996 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1997 real_pc, which is the location where gdb should start up the
1998 inferior to do the function call.
1999
2000 This has to work across several versions of hpux, bsd, osf1. It has to
2001 work regardless of what compiler was used to build the inferior program.
2002 It should work regardless of whether or not end.o is available. It has
2003 to work even if gdb can not call into the dynamic loader in the inferior
2004 to query it for symbol names and addresses.
2005
2006 Yes, all those cases should work. Luckily code exists to handle most
2007 of them. The complexity is in selecting exactly what scheme should
2008 be used to perform the inferior call.
2009
2010 At the current time this routine is known not to handle cases where
2011 the program was linked with HP's compiler without including end.o.
2012
2013 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2014
2015CORE_ADDR
2016hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2017 struct value **args, struct type *type, int gcc_p)
2018{
2019 CORE_ADDR dyncall_addr;
2020 struct minimal_symbol *msymbol;
2021 struct minimal_symbol *trampoline;
2022 int flags = read_register (FLAGS_REGNUM);
2023 struct unwind_table_entry *u = NULL;
2024 CORE_ADDR new_stub = 0;
2025 CORE_ADDR solib_handle = 0;
2026
2027 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2028 passed an import stub, not a PLABEL. It is also necessary to set %r19
2029 (the PIC register) before performing the call.
2030
2031 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2032 are calling the target directly. When using __d_plt_call we want to
2033 use a PLABEL instead of an import stub. */
2034 int using_gcc_plt_call = 1;
2035
2036#ifdef GDB_TARGET_IS_HPPA_20W
2037 /* We currently use completely different code for the PA2.0W inferior
2038 function call sequences. This needs to be cleaned up. */
2039 {
2040 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2041 struct target_waitstatus w;
2042 int inst1, inst2;
2043 char buf[4];
2044 int status;
2045 struct objfile *objfile;
2046
2047 /* We can not modify the PC space queues directly, so we start
2048 up the inferior and execute a couple instructions to set the
2049 space queues so that they point to the call dummy in the stack. */
2050 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2051 sr5 = read_register (SR5_REGNUM);
2052 if (1)
2053 {
2054 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2055 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2056 if (target_read_memory (pcoqh, buf, 4) != 0)
2057 error ("Couldn't modify space queue\n");
2058 inst1 = extract_unsigned_integer (buf, 4);
2059
2060 if (target_read_memory (pcoqt, buf, 4) != 0)
2061 error ("Couldn't modify space queue\n");
2062 inst2 = extract_unsigned_integer (buf, 4);
2063
2064 /* BVE (r1) */
2065 *((int *) buf) = 0xe820d000;
2066 if (target_write_memory (pcoqh, buf, 4) != 0)
2067 error ("Couldn't modify space queue\n");
2068
2069 /* NOP */
2070 *((int *) buf) = 0x08000240;
2071 if (target_write_memory (pcoqt, buf, 4) != 0)
2072 {
2073 *((int *) buf) = inst1;
2074 target_write_memory (pcoqh, buf, 4);
2075 error ("Couldn't modify space queue\n");
2076 }
2077
2078 write_register (1, pc);
2079
2080 /* Single step twice, the BVE instruction will set the space queue
2081 such that it points to the PC value written immediately above
2082 (ie the call dummy). */
2083 resume (1, 0);
2084 target_wait (inferior_ptid, &w);
2085 resume (1, 0);
2086 target_wait (inferior_ptid, &w);
2087
2088 /* Restore the two instructions at the old PC locations. */
2089 *((int *) buf) = inst1;
2090 target_write_memory (pcoqh, buf, 4);
2091 *((int *) buf) = inst2;
2092 target_write_memory (pcoqt, buf, 4);
2093 }
2094
2095 /* The call dummy wants the ultimate destination address initially
2096 in register %r5. */
2097 write_register (5, fun);
2098
2099 /* We need to see if this objfile has a different DP value than our
2100 own (it could be a shared library for example). */
2101 ALL_OBJFILES (objfile)
2102 {
2103 struct obj_section *s;
2104 obj_private_data_t *obj_private;
2105
2106 /* See if FUN is in any section within this shared library. */
2107 for (s = objfile->sections; s < objfile->sections_end; s++)
2108 if (s->addr <= fun && fun < s->endaddr)
2109 break;
2110
2111 if (s >= objfile->sections_end)
2112 continue;
2113
2114 obj_private = (obj_private_data_t *) objfile->obj_private;
2115
2116 /* The DP value may be different for each objfile. But within an
2117 objfile each function uses the same dp value. Thus we do not need
2118 to grope around the opd section looking for dp values.
2119
2120 ?!? This is not strictly correct since we may be in a shared library
2121 and want to call back into the main program. To make that case
2122 work correctly we need to set obj_private->dp for the main program's
2123 objfile, then remove this conditional. */
2124 if (obj_private->dp)
2125 write_register (27, obj_private->dp);
2126 break;
2127 }
2128 return pc;
2129 }
2130#endif
2131
2132#ifndef GDB_TARGET_IS_HPPA_20W
2133 /* Prefer __gcc_plt_call over the HP supplied routine because
2134 __gcc_plt_call works for any number of arguments. */
2135 trampoline = NULL;
2136 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2137 using_gcc_plt_call = 0;
2138
2139 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2140 if (msymbol == NULL)
2141 error ("Can't find an address for $$dyncall trampoline");
2142
2143 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2144
2145 /* FUN could be a procedure label, in which case we have to get
2146 its real address and the value of its GOT/DP if we plan to
2147 call the routine via gcc_plt_call. */
2148 if ((fun & 0x2) && using_gcc_plt_call)
2149 {
2150 /* Get the GOT/DP value for the target function. It's
2151 at *(fun+4). Note the call dummy is *NOT* allowed to
2152 trash %r19 before calling the target function. */
2153 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2154 REGISTER_SIZE));
2155
2156 /* Now get the real address for the function we are calling, it's
2157 at *fun. */
2158 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2159 TARGET_PTR_BIT / 8);
2160 }
2161 else
2162 {
2163
2164#ifndef GDB_TARGET_IS_PA_ELF
2165 /* FUN could be an export stub, the real address of a function, or
2166 a PLABEL. When using gcc's PLT call routine we must call an import
2167 stub rather than the export stub or real function for lazy binding
2168 to work correctly
2169
2170 If we are using the gcc PLT call routine, then we need to
2171 get the import stub for the target function. */
2172 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2173 {
2174 struct objfile *objfile;
2175 struct minimal_symbol *funsymbol, *stub_symbol;
2176 CORE_ADDR newfun = 0;
2177
2178 funsymbol = lookup_minimal_symbol_by_pc (fun);
2179 if (!funsymbol)
2180 error ("Unable to find minimal symbol for target function.\n");
2181
2182 /* Search all the object files for an import symbol with the
2183 right name. */
2184 ALL_OBJFILES (objfile)
2185 {
2186 stub_symbol
2187 = lookup_minimal_symbol_solib_trampoline
2188 (SYMBOL_NAME (funsymbol), NULL, objfile);
2189
2190 if (!stub_symbol)
2191 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2192 NULL, objfile);
2193
2194 /* Found a symbol with the right name. */
2195 if (stub_symbol)
2196 {
2197 struct unwind_table_entry *u;
2198 /* It must be a shared library trampoline. */
2199 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2200 continue;
2201
2202 /* It must also be an import stub. */
2203 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2204 if (u == NULL
2205 || (u->stub_unwind.stub_type != IMPORT
2206#ifdef GDB_NATIVE_HPUX_11
2207 /* Sigh. The hpux 10.20 dynamic linker will blow
2208 chunks if we perform a call to an unbound function
2209 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2210 linker will blow chunks if we do not call the
2211 unbound function via the IMPORT_SHLIB stub.
2212
2213 We currently have no way to select bevahior on just
2214 the target. However, we only support HPUX/SOM in
2215 native mode. So we conditinalize on a native
2216 #ifdef. Ugly. Ugly. Ugly */
2217 && u->stub_unwind.stub_type != IMPORT_SHLIB
2218#endif
2219 ))
2220 continue;
2221
2222 /* OK. Looks like the correct import stub. */
2223 newfun = SYMBOL_VALUE (stub_symbol);
2224 fun = newfun;
2225
2226 /* If we found an IMPORT stub, then we want to stop
2227 searching now. If we found an IMPORT_SHLIB, we want
2228 to continue the search in the hopes that we will find
2229 an IMPORT stub. */
2230 if (u->stub_unwind.stub_type == IMPORT)
2231 break;
2232 }
2233 }
2234
2235 /* Ouch. We did not find an import stub. Make an attempt to
2236 do the right thing instead of just croaking. Most of the
2237 time this will actually work. */
2238 if (newfun == 0)
2239 write_register (19, som_solib_get_got_by_pc (fun));
2240
2241 u = find_unwind_entry (fun);
2242 if (u
2243 && (u->stub_unwind.stub_type == IMPORT
2244 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2245 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2246
2247 /* If we found the import stub in the shared library, then we have
2248 to set %r19 before we call the stub. */
2249 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2250 write_register (19, som_solib_get_got_by_pc (fun));
2251 }
2252#endif
2253 }
2254
2255 /* If we are calling into another load module then have sr4export call the
2256 magic __d_plt_call routine which is linked in from end.o.
2257
2258 You can't use _sr4export to make the call as the value in sp-24 will get
2259 fried and you end up returning to the wrong location. You can't call the
2260 target as the code to bind the PLT entry to a function can't return to a
2261 stack address.
2262
2263 Also, query the dynamic linker in the inferior to provide a suitable
2264 PLABEL for the target function. */
2265 if (!using_gcc_plt_call)
2266 {
2267 CORE_ADDR new_fun;
2268
2269 /* Get a handle for the shared library containing FUN. Given the
2270 handle we can query the shared library for a PLABEL. */
2271 solib_handle = som_solib_get_solib_by_pc (fun);
2272
2273 if (solib_handle)
2274 {
2275 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2276
2277 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2278
2279 if (trampoline == NULL)
2280 {
2281 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2282 }
2283
2284 /* This is where sr4export will jump to. */
2285 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2286
2287 /* If the function is in a shared library, then call __d_shl_get to
2288 get a PLABEL for the target function. */
2289 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2290
2291 if (new_stub == 0)
2292 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
2293
2294 /* We have to store the address of the stub in __shlib_funcptr. */
2295 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2296 (struct objfile *) NULL);
2297
2298 if (msymbol == NULL)
2299 error ("Can't find an address for __shlib_funcptr");
2300 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2301 (char *) &new_stub, 4);
2302
2303 /* We want sr4export to call __d_plt_call, so we claim it is
2304 the final target. Clear trampoline. */
2305 fun = new_fun;
2306 trampoline = NULL;
2307 }
2308 }
2309
2310 /* Store upper 21 bits of function address into ldil. fun will either be
2311 the final target (most cases) or __d_plt_call when calling into a shared
2312 library and __gcc_plt_call is not available. */
2313 store_unsigned_integer
2314 (&dummy[FUNC_LDIL_OFFSET],
2315 INSTRUCTION_SIZE,
2316 deposit_21 (fun >> 11,
2317 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2318 INSTRUCTION_SIZE)));
2319
2320 /* Store lower 11 bits of function address into ldo */
2321 store_unsigned_integer
2322 (&dummy[FUNC_LDO_OFFSET],
2323 INSTRUCTION_SIZE,
2324 deposit_14 (fun & MASK_11,
2325 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2326 INSTRUCTION_SIZE)));
2327#ifdef SR4EXPORT_LDIL_OFFSET
2328
2329 {
2330 CORE_ADDR trampoline_addr;
2331
2332 /* We may still need sr4export's address too. */
2333
2334 if (trampoline == NULL)
2335 {
2336 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2337 if (msymbol == NULL)
2338 error ("Can't find an address for _sr4export trampoline");
2339
2340 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2341 }
2342 else
2343 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2344
2345
2346 /* Store upper 21 bits of trampoline's address into ldil */
2347 store_unsigned_integer
2348 (&dummy[SR4EXPORT_LDIL_OFFSET],
2349 INSTRUCTION_SIZE,
2350 deposit_21 (trampoline_addr >> 11,
2351 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2352 INSTRUCTION_SIZE)));
2353
2354 /* Store lower 11 bits of trampoline's address into ldo */
2355 store_unsigned_integer
2356 (&dummy[SR4EXPORT_LDO_OFFSET],
2357 INSTRUCTION_SIZE,
2358 deposit_14 (trampoline_addr & MASK_11,
2359 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2360 INSTRUCTION_SIZE)));
2361 }
2362#endif
2363
2364 write_register (22, pc);
2365
2366 /* If we are in a syscall, then we should call the stack dummy
2367 directly. $$dyncall is not needed as the kernel sets up the
2368 space id registers properly based on the value in %r31. In
2369 fact calling $$dyncall will not work because the value in %r22
2370 will be clobbered on the syscall exit path.
2371
2372 Similarly if the current PC is in a shared library. Note however,
2373 this scheme won't work if the shared library isn't mapped into
2374 the same space as the stack. */
2375 if (flags & 2)
2376 return pc;
2377#ifndef GDB_TARGET_IS_PA_ELF
2378 else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid)))
2379 return pc;
2380#endif
2381 else
2382 return dyncall_addr;
2383#endif
2384}
2385
2386
2387
2388
2389/* If the pid is in a syscall, then the FP register is not readable.
2390 We'll return zero in that case, rather than attempting to read it
2391 and cause a warning. */
2392CORE_ADDR
2393target_read_fp (int pid)
2394{
2395 int flags = read_register (FLAGS_REGNUM);
2396
2397 if (flags & 2)
2398 {
2399 return (CORE_ADDR) 0;
2400 }
2401
2402 /* This is the only site that may directly read_register () the FP
2403 register. All others must use TARGET_READ_FP (). */
2404 return read_register (FP_REGNUM);
2405}
2406
2407
2408/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2409 bits. */
2410
2411CORE_ADDR
2412target_read_pc (ptid_t ptid)
2413{
2414 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2415
2416 /* The following test does not belong here. It is OS-specific, and belongs
2417 in native code. */
2418 /* Test SS_INSYSCALL */
2419 if (flags & 2)
2420 return read_register_pid (31, ptid) & ~0x3;
2421
2422 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2423}
2424
2425/* Write out the PC. If currently in a syscall, then also write the new
2426 PC value into %r31. */
2427
2428void
2429target_write_pc (CORE_ADDR v, ptid_t ptid)
2430{
2431 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2432
2433 /* The following test does not belong here. It is OS-specific, and belongs
2434 in native code. */
2435 /* If in a syscall, then set %r31. Also make sure to get the
2436 privilege bits set correctly. */
2437 /* Test SS_INSYSCALL */
2438 if (flags & 2)
2439 write_register_pid (31, v | 0x3, ptid);
2440
2441 write_register_pid (PC_REGNUM, v, ptid);
2442 write_register_pid (NPC_REGNUM, v + 4, ptid);
2443}
2444
2445/* return the alignment of a type in bytes. Structures have the maximum
2446 alignment required by their fields. */
2447
2448static int
2449hppa_alignof (struct type *type)
2450{
2451 int max_align, align, i;
2452 CHECK_TYPEDEF (type);
2453 switch (TYPE_CODE (type))
2454 {
2455 case TYPE_CODE_PTR:
2456 case TYPE_CODE_INT:
2457 case TYPE_CODE_FLT:
2458 return TYPE_LENGTH (type);
2459 case TYPE_CODE_ARRAY:
2460 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2461 case TYPE_CODE_STRUCT:
2462 case TYPE_CODE_UNION:
2463 max_align = 1;
2464 for (i = 0; i < TYPE_NFIELDS (type); i++)
2465 {
2466 /* Bit fields have no real alignment. */
2467 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2468 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2469 {
2470 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2471 max_align = max (max_align, align);
2472 }
2473 }
2474 return max_align;
2475 default:
2476 return 4;
2477 }
2478}
2479
2480/* Print the register regnum, or all registers if regnum is -1 */
2481
2482void
2483pa_do_registers_info (int regnum, int fpregs)
2484{
2485 char raw_regs[REGISTER_BYTES];
2486 int i;
2487
2488 /* Make a copy of gdb's save area (may cause actual
2489 reads from the target). */
2490 for (i = 0; i < NUM_REGS; i++)
2491 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2492
2493 if (regnum == -1)
2494 pa_print_registers (raw_regs, regnum, fpregs);
2495 else if (regnum < FP4_REGNUM)
2496 {
2497 long reg_val[2];
2498
2499 /* Why is the value not passed through "extract_signed_integer"
2500 as in "pa_print_registers" below? */
2501 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2502
2503 if (!is_pa_2)
2504 {
2505 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2506 }
2507 else
2508 {
2509 /* Fancy % formats to prevent leading zeros. */
2510 if (reg_val[0] == 0)
2511 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2512 else
2513 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2514 reg_val[0], reg_val[1]);
2515 }
2516 }
2517 else
2518 /* Note that real floating point values only start at
2519 FP4_REGNUM. FP0 and up are just status and error
2520 registers, which have integral (bit) values. */
2521 pa_print_fp_reg (regnum);
2522}
2523
2524/********** new function ********************/
2525void
2526pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2527 enum precision_type precision)
2528{
2529 char raw_regs[REGISTER_BYTES];
2530 int i;
2531
2532 /* Make a copy of gdb's save area (may cause actual
2533 reads from the target). */
2534 for (i = 0; i < NUM_REGS; i++)
2535 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2536
2537 if (regnum == -1)
2538 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2539
2540 else if (regnum < FP4_REGNUM)
2541 {
2542 long reg_val[2];
2543
2544 /* Why is the value not passed through "extract_signed_integer"
2545 as in "pa_print_registers" below? */
2546 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2547
2548 if (!is_pa_2)
2549 {
2550 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2551 }
2552 else
2553 {
2554 /* Fancy % formats to prevent leading zeros. */
2555 if (reg_val[0] == 0)
2556 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2557 reg_val[1]);
2558 else
2559 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2560 reg_val[0], reg_val[1]);
2561 }
2562 }
2563 else
2564 /* Note that real floating point values only start at
2565 FP4_REGNUM. FP0 and up are just status and error
2566 registers, which have integral (bit) values. */
2567 pa_strcat_fp_reg (regnum, stream, precision);
2568}
2569
2570/* If this is a PA2.0 machine, fetch the real 64-bit register
2571 value. Otherwise use the info from gdb's saved register area.
2572
2573 Note that reg_val is really expected to be an array of longs,
2574 with two elements. */
2575static void
2576pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2577{
2578 static int know_which = 0; /* False */
2579
2580 int regaddr;
2581 unsigned int offset;
2582 register int i;
2583 int start;
2584
2585
2586 char buf[MAX_REGISTER_RAW_SIZE];
2587 long long reg_val;
2588
2589 if (!know_which)
2590 {
2591 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2592 {
2593 is_pa_2 = (1 == 1);
2594 }
2595
2596 know_which = 1; /* True */
2597 }
2598
2599 raw_val[0] = 0;
2600 raw_val[1] = 0;
2601
2602 if (!is_pa_2)
2603 {
2604 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2605 return;
2606 }
2607
2608 /* Code below copied from hppah-nat.c, with fixes for wide
2609 registers, using different area of save_state, etc. */
2610 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2611 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2612 {
2613 /* Use narrow regs area of save_state and default macro. */
2614 offset = U_REGS_OFFSET;
2615 regaddr = register_addr (regnum, offset);
2616 start = 1;
2617 }
2618 else
2619 {
2620 /* Use wide regs area, and calculate registers as 8 bytes wide.
2621
2622 We'd like to do this, but current version of "C" doesn't
2623 permit "offsetof":
2624
2625 offset = offsetof(save_state_t, ss_wide);
2626
2627 Note that to avoid "C" doing typed pointer arithmetic, we
2628 have to cast away the type in our offset calculation:
2629 otherwise we get an offset of 1! */
2630
2631 /* NB: save_state_t is not available before HPUX 9.
2632 The ss_wide field is not available previous to HPUX 10.20,
2633 so to avoid compile-time warnings, we only compile this for
2634 PA 2.0 processors. This control path should only be followed
2635 if we're debugging a PA 2.0 processor, so this should not cause
2636 problems. */
2637
2638 /* #if the following code out so that this file can still be
2639 compiled on older HPUX boxes (< 10.20) which don't have
2640 this structure/structure member. */
2641#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2642 save_state_t temp;
2643
2644 offset = ((int) &temp.ss_wide) - ((int) &temp);
2645 regaddr = offset + regnum * 8;
2646 start = 0;
2647#endif
2648 }
2649
2650 for (i = start; i < 2; i++)
2651 {
2652 errno = 0;
2653 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2654 (PTRACE_ARG3_TYPE) regaddr, 0);
2655 if (errno != 0)
2656 {
2657 /* Warning, not error, in case we are attached; sometimes the
2658 kernel doesn't let us at the registers. */
2659 char *err = safe_strerror (errno);
2660 char *msg = alloca (strlen (err) + 128);
2661 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2662 warning (msg);
2663 goto error_exit;
2664 }
2665
2666 regaddr += sizeof (long);
2667 }
2668
2669 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2670 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2671
2672error_exit:
2673 ;
2674}
2675
2676/* "Info all-reg" command */
2677
2678static void
2679pa_print_registers (char *raw_regs, int regnum, int fpregs)
2680{
2681 int i, j;
2682 /* Alas, we are compiled so that "long long" is 32 bits */
2683 long raw_val[2];
2684 long long_val;
2685 int rows = 48, columns = 2;
2686
2687 for (i = 0; i < rows; i++)
2688 {
2689 for (j = 0; j < columns; j++)
2690 {
2691 /* We display registers in column-major order. */
2692 int regnum = i + j * rows;
2693
2694 /* Q: Why is the value passed through "extract_signed_integer",
2695 while above, in "pa_do_registers_info" it isn't?
2696 A: ? */
2697 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2698
2699 /* Even fancier % formats to prevent leading zeros
2700 and still maintain the output in columns. */
2701 if (!is_pa_2)
2702 {
2703 /* Being big-endian, on this machine the low bits
2704 (the ones we want to look at) are in the second longword. */
2705 long_val = extract_signed_integer (&raw_val[1], 4);
2706 printf_filtered ("%10.10s: %8lx ",
2707 REGISTER_NAME (regnum), long_val);
2708 }
2709 else
2710 {
2711 /* raw_val = extract_signed_integer(&raw_val, 8); */
2712 if (raw_val[0] == 0)
2713 printf_filtered ("%10.10s: %8lx ",
2714 REGISTER_NAME (regnum), raw_val[1]);
2715 else
2716 printf_filtered ("%10.10s: %8lx%8.8lx ",
2717 REGISTER_NAME (regnum),
2718 raw_val[0], raw_val[1]);
2719 }
2720 }
2721 printf_unfiltered ("\n");
2722 }
2723
2724 if (fpregs)
2725 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2726 pa_print_fp_reg (i);
2727}
2728
2729/************* new function ******************/
2730static void
2731pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2732 struct ui_file *stream)
2733{
2734 int i, j;
2735 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2736 long long_val;
2737 enum precision_type precision;
2738
2739 precision = unspecified_precision;
2740
2741 for (i = 0; i < 18; i++)
2742 {
2743 for (j = 0; j < 4; j++)
2744 {
2745 /* Q: Why is the value passed through "extract_signed_integer",
2746 while above, in "pa_do_registers_info" it isn't?
2747 A: ? */
2748 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2749
2750 /* Even fancier % formats to prevent leading zeros
2751 and still maintain the output in columns. */
2752 if (!is_pa_2)
2753 {
2754 /* Being big-endian, on this machine the low bits
2755 (the ones we want to look at) are in the second longword. */
2756 long_val = extract_signed_integer (&raw_val[1], 4);
2757 fprintf_filtered (stream, "%8.8s: %8lx ",
2758 REGISTER_NAME (i + (j * 18)), long_val);
2759 }
2760 else
2761 {
2762 /* raw_val = extract_signed_integer(&raw_val, 8); */
2763 if (raw_val[0] == 0)
2764 fprintf_filtered (stream, "%8.8s: %8lx ",
2765 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2766 else
2767 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2768 REGISTER_NAME (i + (j * 18)), raw_val[0],
2769 raw_val[1]);
2770 }
2771 }
2772 fprintf_unfiltered (stream, "\n");
2773 }
2774
2775 if (fpregs)
2776 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2777 pa_strcat_fp_reg (i, stream, precision);
2778}
2779
2780static void
2781pa_print_fp_reg (int i)
2782{
2783 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2784 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2785
2786 /* Get 32bits of data. */
2787 read_relative_register_raw_bytes (i, raw_buffer);
2788
2789 /* Put it in the buffer. No conversions are ever necessary. */
2790 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2791
2792 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2793 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2794 fputs_filtered ("(single precision) ", gdb_stdout);
2795
2796 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2797 1, 0, Val_pretty_default);
2798 printf_filtered ("\n");
2799
2800 /* If "i" is even, then this register can also be a double-precision
2801 FP register. Dump it out as such. */
2802 if ((i % 2) == 0)
2803 {
2804 /* Get the data in raw format for the 2nd half. */
2805 read_relative_register_raw_bytes (i + 1, raw_buffer);
2806
2807 /* Copy it into the appropriate part of the virtual buffer. */
2808 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2809 REGISTER_RAW_SIZE (i));
2810
2811 /* Dump it as a double. */
2812 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2813 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2814 fputs_filtered ("(double precision) ", gdb_stdout);
2815
2816 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2817 1, 0, Val_pretty_default);
2818 printf_filtered ("\n");
2819 }
2820}
2821
2822/*************** new function ***********************/
2823static void
2824pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2825{
2826 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2827 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2828
2829 fputs_filtered (REGISTER_NAME (i), stream);
2830 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2831
2832 /* Get 32bits of data. */
2833 read_relative_register_raw_bytes (i, raw_buffer);
2834
2835 /* Put it in the buffer. No conversions are ever necessary. */
2836 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2837
2838 if (precision == double_precision && (i % 2) == 0)
2839 {
2840
2841 char raw_buf[MAX_REGISTER_RAW_SIZE];
2842
2843 /* Get the data in raw format for the 2nd half. */
2844 read_relative_register_raw_bytes (i + 1, raw_buf);
2845
2846 /* Copy it into the appropriate part of the virtual buffer. */
2847 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2848
2849 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2850 1, 0, Val_pretty_default);
2851
2852 }
2853 else
2854 {
2855 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2856 1, 0, Val_pretty_default);
2857 }
2858
2859}
2860
2861/* Return one if PC is in the call path of a trampoline, else return zero.
2862
2863 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2864 just shared library trampolines (import, export). */
2865
2866int
2867in_solib_call_trampoline (CORE_ADDR pc, char *name)
2868{
2869 struct minimal_symbol *minsym;
2870 struct unwind_table_entry *u;
2871 static CORE_ADDR dyncall = 0;
2872 static CORE_ADDR sr4export = 0;
2873
2874#ifdef GDB_TARGET_IS_HPPA_20W
2875 /* PA64 has a completely different stub/trampoline scheme. Is it
2876 better? Maybe. It's certainly harder to determine with any
2877 certainty that we are in a stub because we can not refer to the
2878 unwinders to help.
2879
2880 The heuristic is simple. Try to lookup the current PC value in th
2881 minimal symbol table. If that fails, then assume we are not in a
2882 stub and return.
2883
2884 Then see if the PC value falls within the section bounds for the
2885 section containing the minimal symbol we found in the first
2886 step. If it does, then assume we are not in a stub and return.
2887
2888 Finally peek at the instructions to see if they look like a stub. */
2889 {
2890 struct minimal_symbol *minsym;
2891 asection *sec;
2892 CORE_ADDR addr;
2893 int insn, i;
2894
2895 minsym = lookup_minimal_symbol_by_pc (pc);
2896 if (! minsym)
2897 return 0;
2898
2899 sec = SYMBOL_BFD_SECTION (minsym);
2900
2901 if (sec->vma <= pc
2902 && sec->vma + sec->_cooked_size < pc)
2903 return 0;
2904
2905 /* We might be in a stub. Peek at the instructions. Stubs are 3
2906 instructions long. */
2907 insn = read_memory_integer (pc, 4);
2908
2909 /* Find out where we think we are within the stub. */
2910 if ((insn & 0xffffc00e) == 0x53610000)
2911 addr = pc;
2912 else if ((insn & 0xffffffff) == 0xe820d000)
2913 addr = pc - 4;
2914 else if ((insn & 0xffffc00e) == 0x537b0000)
2915 addr = pc - 8;
2916 else
2917 return 0;
2918
2919 /* Now verify each insn in the range looks like a stub instruction. */
2920 insn = read_memory_integer (addr, 4);
2921 if ((insn & 0xffffc00e) != 0x53610000)
2922 return 0;
2923
2924 /* Now verify each insn in the range looks like a stub instruction. */
2925 insn = read_memory_integer (addr + 4, 4);
2926 if ((insn & 0xffffffff) != 0xe820d000)
2927 return 0;
2928
2929 /* Now verify each insn in the range looks like a stub instruction. */
2930 insn = read_memory_integer (addr + 8, 4);
2931 if ((insn & 0xffffc00e) != 0x537b0000)
2932 return 0;
2933
2934 /* Looks like a stub. */
2935 return 1;
2936 }
2937#endif
2938
2939 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2940 new exec file */
2941
2942 /* First see if PC is in one of the two C-library trampolines. */
2943 if (!dyncall)
2944 {
2945 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2946 if (minsym)
2947 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2948 else
2949 dyncall = -1;
2950 }
2951
2952 if (!sr4export)
2953 {
2954 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2955 if (minsym)
2956 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2957 else
2958 sr4export = -1;
2959 }
2960
2961 if (pc == dyncall || pc == sr4export)
2962 return 1;
2963
2964 minsym = lookup_minimal_symbol_by_pc (pc);
2965 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
2966 return 1;
2967
2968 /* Get the unwind descriptor corresponding to PC, return zero
2969 if no unwind was found. */
2970 u = find_unwind_entry (pc);
2971 if (!u)
2972 return 0;
2973
2974 /* If this isn't a linker stub, then return now. */
2975 if (u->stub_unwind.stub_type == 0)
2976 return 0;
2977
2978 /* By definition a long-branch stub is a call stub. */
2979 if (u->stub_unwind.stub_type == LONG_BRANCH)
2980 return 1;
2981
2982 /* The call and return path execute the same instructions within
2983 an IMPORT stub! So an IMPORT stub is both a call and return
2984 trampoline. */
2985 if (u->stub_unwind.stub_type == IMPORT)
2986 return 1;
2987
2988 /* Parameter relocation stubs always have a call path and may have a
2989 return path. */
2990 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2991 || u->stub_unwind.stub_type == EXPORT)
2992 {
2993 CORE_ADDR addr;
2994
2995 /* Search forward from the current PC until we hit a branch
2996 or the end of the stub. */
2997 for (addr = pc; addr <= u->region_end; addr += 4)
2998 {
2999 unsigned long insn;
3000
3001 insn = read_memory_integer (addr, 4);
3002
3003 /* Does it look like a bl? If so then it's the call path, if
3004 we find a bv or be first, then we're on the return path. */
3005 if ((insn & 0xfc00e000) == 0xe8000000)
3006 return 1;
3007 else if ((insn & 0xfc00e001) == 0xe800c000
3008 || (insn & 0xfc000000) == 0xe0000000)
3009 return 0;
3010 }
3011
3012 /* Should never happen. */
3013 warning ("Unable to find branch in parameter relocation stub.\n");
3014 return 0;
3015 }
3016
3017 /* Unknown stub type. For now, just return zero. */
3018 return 0;
3019}
3020
3021/* Return one if PC is in the return path of a trampoline, else return zero.
3022
3023 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3024 just shared library trampolines (import, export). */
3025
3026int
3027in_solib_return_trampoline (CORE_ADDR pc, char *name)
3028{
3029 struct unwind_table_entry *u;
3030
3031 /* Get the unwind descriptor corresponding to PC, return zero
3032 if no unwind was found. */
3033 u = find_unwind_entry (pc);
3034 if (!u)
3035 return 0;
3036
3037 /* If this isn't a linker stub or it's just a long branch stub, then
3038 return zero. */
3039 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3040 return 0;
3041
3042 /* The call and return path execute the same instructions within
3043 an IMPORT stub! So an IMPORT stub is both a call and return
3044 trampoline. */
3045 if (u->stub_unwind.stub_type == IMPORT)
3046 return 1;
3047
3048 /* Parameter relocation stubs always have a call path and may have a
3049 return path. */
3050 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3051 || u->stub_unwind.stub_type == EXPORT)
3052 {
3053 CORE_ADDR addr;
3054
3055 /* Search forward from the current PC until we hit a branch
3056 or the end of the stub. */
3057 for (addr = pc; addr <= u->region_end; addr += 4)
3058 {
3059 unsigned long insn;
3060
3061 insn = read_memory_integer (addr, 4);
3062
3063 /* Does it look like a bl? If so then it's the call path, if
3064 we find a bv or be first, then we're on the return path. */
3065 if ((insn & 0xfc00e000) == 0xe8000000)
3066 return 0;
3067 else if ((insn & 0xfc00e001) == 0xe800c000
3068 || (insn & 0xfc000000) == 0xe0000000)
3069 return 1;
3070 }
3071
3072 /* Should never happen. */
3073 warning ("Unable to find branch in parameter relocation stub.\n");
3074 return 0;
3075 }
3076
3077 /* Unknown stub type. For now, just return zero. */
3078 return 0;
3079
3080}
3081
3082/* Figure out if PC is in a trampoline, and if so find out where
3083 the trampoline will jump to. If not in a trampoline, return zero.
3084
3085 Simple code examination probably is not a good idea since the code
3086 sequences in trampolines can also appear in user code.
3087
3088 We use unwinds and information from the minimal symbol table to
3089 determine when we're in a trampoline. This won't work for ELF
3090 (yet) since it doesn't create stub unwind entries. Whether or
3091 not ELF will create stub unwinds or normal unwinds for linker
3092 stubs is still being debated.
3093
3094 This should handle simple calls through dyncall or sr4export,
3095 long calls, argument relocation stubs, and dyncall/sr4export
3096 calling an argument relocation stub. It even handles some stubs
3097 used in dynamic executables. */
3098
3099CORE_ADDR
3100skip_trampoline_code (CORE_ADDR pc, char *name)
3101{
3102 long orig_pc = pc;
3103 long prev_inst, curr_inst, loc;
3104 static CORE_ADDR dyncall = 0;
3105 static CORE_ADDR dyncall_external = 0;
3106 static CORE_ADDR sr4export = 0;
3107 struct minimal_symbol *msym;
3108 struct unwind_table_entry *u;
3109
3110 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3111 new exec file */
3112
3113 if (!dyncall)
3114 {
3115 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3116 if (msym)
3117 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3118 else
3119 dyncall = -1;
3120 }
3121
3122 if (!dyncall_external)
3123 {
3124 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3125 if (msym)
3126 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3127 else
3128 dyncall_external = -1;
3129 }
3130
3131 if (!sr4export)
3132 {
3133 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3134 if (msym)
3135 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3136 else
3137 sr4export = -1;
3138 }
3139
3140 /* Addresses passed to dyncall may *NOT* be the actual address
3141 of the function. So we may have to do something special. */
3142 if (pc == dyncall)
3143 {
3144 pc = (CORE_ADDR) read_register (22);
3145
3146 /* If bit 30 (counting from the left) is on, then pc is the address of
3147 the PLT entry for this function, not the address of the function
3148 itself. Bit 31 has meaning too, but only for MPE. */
3149 if (pc & 0x2)
3150 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3151 }
3152 if (pc == dyncall_external)
3153 {
3154 pc = (CORE_ADDR) read_register (22);
3155 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3156 }
3157 else if (pc == sr4export)
3158 pc = (CORE_ADDR) (read_register (22));
3159
3160 /* Get the unwind descriptor corresponding to PC, return zero
3161 if no unwind was found. */
3162 u = find_unwind_entry (pc);
3163 if (!u)
3164 return 0;
3165
3166 /* If this isn't a linker stub, then return now. */
3167 /* elz: attention here! (FIXME) because of a compiler/linker
3168 error, some stubs which should have a non zero stub_unwind.stub_type
3169 have unfortunately a value of zero. So this function would return here
3170 as if we were not in a trampoline. To fix this, we go look at the partial
3171 symbol information, which reports this guy as a stub.
3172 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3173 partial symbol information is also wrong sometimes. This is because
3174 when it is entered (somread.c::som_symtab_read()) it can happen that
3175 if the type of the symbol (from the som) is Entry, and the symbol is
3176 in a shared library, then it can also be a trampoline. This would
3177 be OK, except that I believe the way they decide if we are ina shared library
3178 does not work. SOOOO..., even if we have a regular function w/o trampolines
3179 its minimal symbol can be assigned type mst_solib_trampoline.
3180 Also, if we find that the symbol is a real stub, then we fix the unwind
3181 descriptor, and define the stub type to be EXPORT.
3182 Hopefully this is correct most of the times. */
3183 if (u->stub_unwind.stub_type == 0)
3184 {
3185
3186/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3187 we can delete all the code which appears between the lines */
3188/*--------------------------------------------------------------------------*/
3189 msym = lookup_minimal_symbol_by_pc (pc);
3190
3191 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3192 return orig_pc == pc ? 0 : pc & ~0x3;
3193
3194 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3195 {
3196 struct objfile *objfile;
3197 struct minimal_symbol *msymbol;
3198 int function_found = 0;
3199
3200 /* go look if there is another minimal symbol with the same name as
3201 this one, but with type mst_text. This would happen if the msym
3202 is an actual trampoline, in which case there would be another
3203 symbol with the same name corresponding to the real function */
3204
3205 ALL_MSYMBOLS (objfile, msymbol)
3206 {
3207 if (MSYMBOL_TYPE (msymbol) == mst_text
3208 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3209 {
3210 function_found = 1;
3211 break;
3212 }
3213 }
3214
3215 if (function_found)
3216 /* the type of msym is correct (mst_solib_trampoline), but
3217 the unwind info is wrong, so set it to the correct value */
3218 u->stub_unwind.stub_type = EXPORT;
3219 else
3220 /* the stub type info in the unwind is correct (this is not a
3221 trampoline), but the msym type information is wrong, it
3222 should be mst_text. So we need to fix the msym, and also
3223 get out of this function */
3224 {
3225 MSYMBOL_TYPE (msym) = mst_text;
3226 return orig_pc == pc ? 0 : pc & ~0x3;
3227 }
3228 }
3229
3230/*--------------------------------------------------------------------------*/
3231 }
3232
3233 /* It's a stub. Search for a branch and figure out where it goes.
3234 Note we have to handle multi insn branch sequences like ldil;ble.
3235 Most (all?) other branches can be determined by examining the contents
3236 of certain registers and the stack. */
3237
3238 loc = pc;
3239 curr_inst = 0;
3240 prev_inst = 0;
3241 while (1)
3242 {
3243 /* Make sure we haven't walked outside the range of this stub. */
3244 if (u != find_unwind_entry (loc))
3245 {
3246 warning ("Unable to find branch in linker stub");
3247 return orig_pc == pc ? 0 : pc & ~0x3;
3248 }
3249
3250 prev_inst = curr_inst;
3251 curr_inst = read_memory_integer (loc, 4);
3252
3253 /* Does it look like a branch external using %r1? Then it's the
3254 branch from the stub to the actual function. */
3255 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3256 {
3257 /* Yup. See if the previous instruction loaded
3258 a value into %r1. If so compute and return the jump address. */
3259 if ((prev_inst & 0xffe00000) == 0x20200000)
3260 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3261 else
3262 {
3263 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3264 return orig_pc == pc ? 0 : pc & ~0x3;
3265 }
3266 }
3267
3268 /* Does it look like a be 0(sr0,%r21)? OR
3269 Does it look like a be, n 0(sr0,%r21)? OR
3270 Does it look like a bve (r21)? (this is on PA2.0)
3271 Does it look like a bve, n(r21)? (this is also on PA2.0)
3272 That's the branch from an
3273 import stub to an export stub.
3274
3275 It is impossible to determine the target of the branch via
3276 simple examination of instructions and/or data (consider
3277 that the address in the plabel may be the address of the
3278 bind-on-reference routine in the dynamic loader).
3279
3280 So we have try an alternative approach.
3281
3282 Get the name of the symbol at our current location; it should
3283 be a stub symbol with the same name as the symbol in the
3284 shared library.
3285
3286 Then lookup a minimal symbol with the same name; we should
3287 get the minimal symbol for the target routine in the shared
3288 library as those take precedence of import/export stubs. */
3289 if ((curr_inst == 0xe2a00000) ||
3290 (curr_inst == 0xe2a00002) ||
3291 (curr_inst == 0xeaa0d000) ||
3292 (curr_inst == 0xeaa0d002))
3293 {
3294 struct minimal_symbol *stubsym, *libsym;
3295
3296 stubsym = lookup_minimal_symbol_by_pc (loc);
3297 if (stubsym == NULL)
3298 {
3299 warning ("Unable to find symbol for 0x%lx", loc);
3300 return orig_pc == pc ? 0 : pc & ~0x3;
3301 }
3302
3303 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3304 if (libsym == NULL)
3305 {
3306 warning ("Unable to find library symbol for %s\n",
3307 SYMBOL_NAME (stubsym));
3308 return orig_pc == pc ? 0 : pc & ~0x3;
3309 }
3310
3311 return SYMBOL_VALUE (libsym);
3312 }
3313
3314 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3315 branch from the stub to the actual function. */
3316 /*elz */
3317 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3318 || (curr_inst & 0xffe0e000) == 0xe8000000
3319 || (curr_inst & 0xffe0e000) == 0xe800A000)
3320 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3321
3322 /* Does it look like bv (rp)? Note this depends on the
3323 current stack pointer being the same as the stack
3324 pointer in the stub itself! This is a branch on from the
3325 stub back to the original caller. */
3326 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3327 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3328 {
3329 /* Yup. See if the previous instruction loaded
3330 rp from sp - 8. */
3331 if (prev_inst == 0x4bc23ff1)
3332 return (read_memory_integer
3333 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3334 else
3335 {
3336 warning ("Unable to find restore of %%rp before bv (%%rp).");
3337 return orig_pc == pc ? 0 : pc & ~0x3;
3338 }
3339 }
3340
3341 /* elz: added this case to capture the new instruction
3342 at the end of the return part of an export stub used by
3343 the PA2.0: BVE, n (rp) */
3344 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3345 {
3346 return (read_memory_integer
3347 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3348 }
3349
3350 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3351 the original caller from the stub. Used in dynamic executables. */
3352 else if (curr_inst == 0xe0400002)
3353 {
3354 /* The value we jump to is sitting in sp - 24. But that's
3355 loaded several instructions before the be instruction.
3356 I guess we could check for the previous instruction being
3357 mtsp %r1,%sr0 if we want to do sanity checking. */
3358 return (read_memory_integer
3359 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3360 }
3361
3362 /* Haven't found the branch yet, but we're still in the stub.
3363 Keep looking. */
3364 loc += 4;
3365 }
3366}
3367
3368
3369/* For the given instruction (INST), return any adjustment it makes
3370 to the stack pointer or zero for no adjustment.
3371
3372 This only handles instructions commonly found in prologues. */
3373
3374static int
3375prologue_inst_adjust_sp (unsigned long inst)
3376{
3377 /* This must persist across calls. */
3378 static int save_high21;
3379
3380 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3381 if ((inst & 0xffffc000) == 0x37de0000)
3382 return extract_14 (inst);
3383
3384 /* stwm X,D(sp) */
3385 if ((inst & 0xffe00000) == 0x6fc00000)
3386 return extract_14 (inst);
3387
3388 /* std,ma X,D(sp) */
3389 if ((inst & 0xffe00008) == 0x73c00008)
3390 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3391
3392 /* addil high21,%r1; ldo low11,(%r1),%r30)
3393 save high bits in save_high21 for later use. */
3394 if ((inst & 0xffe00000) == 0x28200000)
3395 {
3396 save_high21 = extract_21 (inst);
3397 return 0;
3398 }
3399
3400 if ((inst & 0xffff0000) == 0x343e0000)
3401 return save_high21 + extract_14 (inst);
3402
3403 /* fstws as used by the HP compilers. */
3404 if ((inst & 0xffffffe0) == 0x2fd01220)
3405 return extract_5_load (inst);
3406
3407 /* No adjustment. */
3408 return 0;
3409}
3410
3411/* Return nonzero if INST is a branch of some kind, else return zero. */
3412
3413static int
3414is_branch (unsigned long inst)
3415{
3416 switch (inst >> 26)
3417 {
3418 case 0x20:
3419 case 0x21:
3420 case 0x22:
3421 case 0x23:
3422 case 0x27:
3423 case 0x28:
3424 case 0x29:
3425 case 0x2a:
3426 case 0x2b:
3427 case 0x2f:
3428 case 0x30:
3429 case 0x31:
3430 case 0x32:
3431 case 0x33:
3432 case 0x38:
3433 case 0x39:
3434 case 0x3a:
3435 case 0x3b:
3436 return 1;
3437
3438 default:
3439 return 0;
3440 }
3441}
3442
3443/* Return the register number for a GR which is saved by INST or
3444 zero it INST does not save a GR. */
3445
3446static int
3447inst_saves_gr (unsigned long inst)
3448{
3449 /* Does it look like a stw? */
3450 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3451 || (inst >> 26) == 0x1f
3452 || ((inst >> 26) == 0x1f
3453 && ((inst >> 6) == 0xa)))
3454 return extract_5R_store (inst);
3455
3456 /* Does it look like a std? */
3457 if ((inst >> 26) == 0x1c
3458 || ((inst >> 26) == 0x03
3459 && ((inst >> 6) & 0xf) == 0xb))
3460 return extract_5R_store (inst);
3461
3462 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3463 if ((inst >> 26) == 0x1b)
3464 return extract_5R_store (inst);
3465
3466 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3467 too. */
3468 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3469 || ((inst >> 26) == 0x3
3470 && (((inst >> 6) & 0xf) == 0x8
3471 || (inst >> 6) & 0xf) == 0x9))
3472 return extract_5R_store (inst);
3473
3474 return 0;
3475}
3476
3477/* Return the register number for a FR which is saved by INST or
3478 zero it INST does not save a FR.
3479
3480 Note we only care about full 64bit register stores (that's the only
3481 kind of stores the prologue will use).
3482
3483 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3484
3485static int
3486inst_saves_fr (unsigned long inst)
3487{
3488 /* is this an FSTD ? */
3489 if ((inst & 0xfc00dfc0) == 0x2c001200)
3490 return extract_5r_store (inst);
3491 if ((inst & 0xfc000002) == 0x70000002)
3492 return extract_5R_store (inst);
3493 /* is this an FSTW ? */
3494 if ((inst & 0xfc00df80) == 0x24001200)
3495 return extract_5r_store (inst);
3496 if ((inst & 0xfc000002) == 0x7c000000)
3497 return extract_5R_store (inst);
3498 return 0;
3499}
3500
3501/* Advance PC across any function entry prologue instructions
3502 to reach some "real" code.
3503
3504 Use information in the unwind table to determine what exactly should
3505 be in the prologue. */
3506
3507
3508CORE_ADDR
3509skip_prologue_hard_way (CORE_ADDR pc)
3510{
3511 char buf[4];
3512 CORE_ADDR orig_pc = pc;
3513 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3514 unsigned long args_stored, status, i, restart_gr, restart_fr;
3515 struct unwind_table_entry *u;
3516
3517 restart_gr = 0;
3518 restart_fr = 0;
3519
3520restart:
3521 u = find_unwind_entry (pc);
3522 if (!u)
3523 return pc;
3524
3525 /* If we are not at the beginning of a function, then return now. */
3526 if ((pc & ~0x3) != u->region_start)
3527 return pc;
3528
3529 /* This is how much of a frame adjustment we need to account for. */
3530 stack_remaining = u->Total_frame_size << 3;
3531
3532 /* Magic register saves we want to know about. */
3533 save_rp = u->Save_RP;
3534 save_sp = u->Save_SP;
3535
3536 /* An indication that args may be stored into the stack. Unfortunately
3537 the HPUX compilers tend to set this in cases where no args were
3538 stored too!. */
3539 args_stored = 1;
3540
3541 /* Turn the Entry_GR field into a bitmask. */
3542 save_gr = 0;
3543 for (i = 3; i < u->Entry_GR + 3; i++)
3544 {
3545 /* Frame pointer gets saved into a special location. */
3546 if (u->Save_SP && i == FP_REGNUM)
3547 continue;
3548
3549 save_gr |= (1 << i);
3550 }
3551 save_gr &= ~restart_gr;
3552
3553 /* Turn the Entry_FR field into a bitmask too. */
3554 save_fr = 0;
3555 for (i = 12; i < u->Entry_FR + 12; i++)
3556 save_fr |= (1 << i);
3557 save_fr &= ~restart_fr;
3558
3559 /* Loop until we find everything of interest or hit a branch.
3560
3561 For unoptimized GCC code and for any HP CC code this will never ever
3562 examine any user instructions.
3563
3564 For optimzied GCC code we're faced with problems. GCC will schedule
3565 its prologue and make prologue instructions available for delay slot
3566 filling. The end result is user code gets mixed in with the prologue
3567 and a prologue instruction may be in the delay slot of the first branch
3568 or call.
3569
3570 Some unexpected things are expected with debugging optimized code, so
3571 we allow this routine to walk past user instructions in optimized
3572 GCC code. */
3573 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3574 || args_stored)
3575 {
3576 unsigned int reg_num;
3577 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3578 unsigned long old_save_rp, old_save_sp, next_inst;
3579
3580 /* Save copies of all the triggers so we can compare them later
3581 (only for HPC). */
3582 old_save_gr = save_gr;
3583 old_save_fr = save_fr;
3584 old_save_rp = save_rp;
3585 old_save_sp = save_sp;
3586 old_stack_remaining = stack_remaining;
3587
3588 status = target_read_memory (pc, buf, 4);
3589 inst = extract_unsigned_integer (buf, 4);
3590
3591 /* Yow! */
3592 if (status != 0)
3593 return pc;
3594
3595 /* Note the interesting effects of this instruction. */
3596 stack_remaining -= prologue_inst_adjust_sp (inst);
3597
3598 /* There are limited ways to store the return pointer into the
3599 stack. */
3600 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3601 save_rp = 0;
3602
3603 /* These are the only ways we save SP into the stack. At this time
3604 the HP compilers never bother to save SP into the stack. */
3605 if ((inst & 0xffffc000) == 0x6fc10000
3606 || (inst & 0xffffc00c) == 0x73c10008)
3607 save_sp = 0;
3608
3609 /* Are we loading some register with an offset from the argument
3610 pointer? */
3611 if ((inst & 0xffe00000) == 0x37a00000
3612 || (inst & 0xffffffe0) == 0x081d0240)
3613 {
3614 pc += 4;
3615 continue;
3616 }
3617
3618 /* Account for general and floating-point register saves. */
3619 reg_num = inst_saves_gr (inst);
3620 save_gr &= ~(1 << reg_num);
3621
3622 /* Ugh. Also account for argument stores into the stack.
3623 Unfortunately args_stored only tells us that some arguments
3624 where stored into the stack. Not how many or what kind!
3625
3626 This is a kludge as on the HP compiler sets this bit and it
3627 never does prologue scheduling. So once we see one, skip past
3628 all of them. We have similar code for the fp arg stores below.
3629
3630 FIXME. Can still die if we have a mix of GR and FR argument
3631 stores! */
3632 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3633 {
3634 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3635 {
3636 pc += 4;
3637 status = target_read_memory (pc, buf, 4);
3638 inst = extract_unsigned_integer (buf, 4);
3639 if (status != 0)
3640 return pc;
3641 reg_num = inst_saves_gr (inst);
3642 }
3643 args_stored = 0;
3644 continue;
3645 }
3646
3647 reg_num = inst_saves_fr (inst);
3648 save_fr &= ~(1 << reg_num);
3649
3650 status = target_read_memory (pc + 4, buf, 4);
3651 next_inst = extract_unsigned_integer (buf, 4);
3652
3653 /* Yow! */
3654 if (status != 0)
3655 return pc;
3656
3657 /* We've got to be read to handle the ldo before the fp register
3658 save. */
3659 if ((inst & 0xfc000000) == 0x34000000
3660 && inst_saves_fr (next_inst) >= 4
3661 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3662 {
3663 /* So we drop into the code below in a reasonable state. */
3664 reg_num = inst_saves_fr (next_inst);
3665 pc -= 4;
3666 }
3667
3668 /* Ugh. Also account for argument stores into the stack.
3669 This is a kludge as on the HP compiler sets this bit and it
3670 never does prologue scheduling. So once we see one, skip past
3671 all of them. */
3672 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3673 {
3674 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3675 {
3676 pc += 8;
3677 status = target_read_memory (pc, buf, 4);
3678 inst = extract_unsigned_integer (buf, 4);
3679 if (status != 0)
3680 return pc;
3681 if ((inst & 0xfc000000) != 0x34000000)
3682 break;
3683 status = target_read_memory (pc + 4, buf, 4);
3684 next_inst = extract_unsigned_integer (buf, 4);
3685 if (status != 0)
3686 return pc;
3687 reg_num = inst_saves_fr (next_inst);
3688 }
3689 args_stored = 0;
3690 continue;
3691 }
3692
3693 /* Quit if we hit any kind of branch. This can happen if a prologue
3694 instruction is in the delay slot of the first call/branch. */
3695 if (is_branch (inst))
3696 break;
3697
3698 /* What a crock. The HP compilers set args_stored even if no
3699 arguments were stored into the stack (boo hiss). This could
3700 cause this code to then skip a bunch of user insns (up to the
3701 first branch).
3702
3703 To combat this we try to identify when args_stored was bogusly
3704 set and clear it. We only do this when args_stored is nonzero,
3705 all other resources are accounted for, and nothing changed on
3706 this pass. */
3707 if (args_stored
3708 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3709 && old_save_gr == save_gr && old_save_fr == save_fr
3710 && old_save_rp == save_rp && old_save_sp == save_sp
3711 && old_stack_remaining == stack_remaining)
3712 break;
3713
3714 /* Bump the PC. */
3715 pc += 4;
3716 }
3717
3718 /* We've got a tenative location for the end of the prologue. However
3719 because of limitations in the unwind descriptor mechanism we may
3720 have went too far into user code looking for the save of a register
3721 that does not exist. So, if there registers we expected to be saved
3722 but never were, mask them out and restart.
3723
3724 This should only happen in optimized code, and should be very rare. */
3725 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3726 {
3727 pc = orig_pc;
3728 restart_gr = save_gr;
3729 restart_fr = save_fr;
3730 goto restart;
3731 }
3732
3733 return pc;
3734}
3735
3736
3737/* Return the address of the PC after the last prologue instruction if
3738 we can determine it from the debug symbols. Else return zero. */
3739
3740static CORE_ADDR
3741after_prologue (CORE_ADDR pc)
3742{
3743 struct symtab_and_line sal;
3744 CORE_ADDR func_addr, func_end;
3745 struct symbol *f;
3746
3747 /* If we can not find the symbol in the partial symbol table, then
3748 there is no hope we can determine the function's start address
3749 with this code. */
3750 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3751 return 0;
3752
3753 /* Get the line associated with FUNC_ADDR. */
3754 sal = find_pc_line (func_addr, 0);
3755
3756 /* There are only two cases to consider. First, the end of the source line
3757 is within the function bounds. In that case we return the end of the
3758 source line. Second is the end of the source line extends beyond the
3759 bounds of the current function. We need to use the slow code to
3760 examine instructions in that case.
3761
3762 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3763 the wrong thing to do. In fact, it should be entirely possible for this
3764 function to always return zero since the slow instruction scanning code
3765 is supposed to *always* work. If it does not, then it is a bug. */
3766 if (sal.end < func_end)
3767 return sal.end;
3768 else
3769 return 0;
3770}
3771
3772/* To skip prologues, I use this predicate. Returns either PC itself
3773 if the code at PC does not look like a function prologue; otherwise
3774 returns an address that (if we're lucky) follows the prologue. If
3775 LENIENT, then we must skip everything which is involved in setting
3776 up the frame (it's OK to skip more, just so long as we don't skip
3777 anything which might clobber the registers which are being saved.
3778 Currently we must not skip more on the alpha, but we might the lenient
3779 stuff some day. */
3780
3781CORE_ADDR
3782hppa_skip_prologue (CORE_ADDR pc)
3783{
3784 unsigned long inst;
3785 int offset;
3786 CORE_ADDR post_prologue_pc;
3787 char buf[4];
3788
3789 /* See if we can determine the end of the prologue via the symbol table.
3790 If so, then return either PC, or the PC after the prologue, whichever
3791 is greater. */
3792
3793 post_prologue_pc = after_prologue (pc);
3794
3795 /* If after_prologue returned a useful address, then use it. Else
3796 fall back on the instruction skipping code.
3797
3798 Some folks have claimed this causes problems because the breakpoint
3799 may be the first instruction of the prologue. If that happens, then
3800 the instruction skipping code has a bug that needs to be fixed. */
3801 if (post_prologue_pc != 0)
3802 return max (pc, post_prologue_pc);
3803 else
3804 return (skip_prologue_hard_way (pc));
3805}
3806
3807/* Put here the code to store, into a struct frame_saved_regs,
3808 the addresses of the saved registers of frame described by FRAME_INFO.
3809 This includes special registers such as pc and fp saved in special
3810 ways in the stack frame. sp is even more special:
3811 the address we return for it IS the sp for the next frame. */
3812
3813void
3814hppa_frame_find_saved_regs (struct frame_info *frame_info,
3815 struct frame_saved_regs *frame_saved_regs)
3816{
3817 CORE_ADDR pc;
3818 struct unwind_table_entry *u;
3819 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3820 int status, i, reg;
3821 char buf[4];
3822 int fp_loc = -1;
3823 int final_iteration;
3824
3825 /* Zero out everything. */
3826 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3827
3828 /* Call dummy frames always look the same, so there's no need to
3829 examine the dummy code to determine locations of saved registers;
3830 instead, let find_dummy_frame_regs fill in the correct offsets
3831 for the saved registers. */
3832 if ((frame_info->pc >= frame_info->frame
3833 && frame_info->pc <= (frame_info->frame
3834 /* A call dummy is sized in words, but it is
3835 actually a series of instructions. Account
3836 for that scaling factor. */
3837 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3838 * CALL_DUMMY_LENGTH)
3839 /* Similarly we have to account for 64bit
3840 wide register saves. */
3841 + (32 * REGISTER_SIZE)
3842 /* We always consider FP regs 8 bytes long. */
3843 + (NUM_REGS - FP0_REGNUM) * 8
3844 /* Similarly we have to account for 64bit
3845 wide register saves. */
3846 + (6 * REGISTER_SIZE))))
3847 find_dummy_frame_regs (frame_info, frame_saved_regs);
3848
3849 /* Interrupt handlers are special too. They lay out the register
3850 state in the exact same order as the register numbers in GDB. */
3851 if (pc_in_interrupt_handler (frame_info->pc))
3852 {
3853 for (i = 0; i < NUM_REGS; i++)
3854 {
3855 /* SP is a little special. */
3856 if (i == SP_REGNUM)
3857 frame_saved_regs->regs[SP_REGNUM]
3858 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3859 TARGET_PTR_BIT / 8);
3860 else
3861 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3862 }
3863 return;
3864 }
3865
3866#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3867 /* Handle signal handler callers. */
3868 if (frame_info->signal_handler_caller)
3869 {
3870 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3871 return;
3872 }
3873#endif
3874
3875 /* Get the starting address of the function referred to by the PC
3876 saved in frame. */
3877 pc = get_pc_function_start (frame_info->pc);
3878
3879 /* Yow! */
3880 u = find_unwind_entry (pc);
3881 if (!u)
3882 return;
3883
3884 /* This is how much of a frame adjustment we need to account for. */
3885 stack_remaining = u->Total_frame_size << 3;
3886
3887 /* Magic register saves we want to know about. */
3888 save_rp = u->Save_RP;
3889 save_sp = u->Save_SP;
3890
3891 /* Turn the Entry_GR field into a bitmask. */
3892 save_gr = 0;
3893 for (i = 3; i < u->Entry_GR + 3; i++)
3894 {
3895 /* Frame pointer gets saved into a special location. */
3896 if (u->Save_SP && i == FP_REGNUM)
3897 continue;
3898
3899 save_gr |= (1 << i);
3900 }
3901
3902 /* Turn the Entry_FR field into a bitmask too. */
3903 save_fr = 0;
3904 for (i = 12; i < u->Entry_FR + 12; i++)
3905 save_fr |= (1 << i);
3906
3907 /* The frame always represents the value of %sp at entry to the
3908 current function (and is thus equivalent to the "saved" stack
3909 pointer. */
3910 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3911
3912 /* Loop until we find everything of interest or hit a branch.
3913
3914 For unoptimized GCC code and for any HP CC code this will never ever
3915 examine any user instructions.
3916
3917 For optimized GCC code we're faced with problems. GCC will schedule
3918 its prologue and make prologue instructions available for delay slot
3919 filling. The end result is user code gets mixed in with the prologue
3920 and a prologue instruction may be in the delay slot of the first branch
3921 or call.
3922
3923 Some unexpected things are expected with debugging optimized code, so
3924 we allow this routine to walk past user instructions in optimized
3925 GCC code. */
3926 final_iteration = 0;
3927 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3928 && pc <= frame_info->pc)
3929 {
3930 status = target_read_memory (pc, buf, 4);
3931 inst = extract_unsigned_integer (buf, 4);
3932
3933 /* Yow! */
3934 if (status != 0)
3935 return;
3936
3937 /* Note the interesting effects of this instruction. */
3938 stack_remaining -= prologue_inst_adjust_sp (inst);
3939
3940 /* There are limited ways to store the return pointer into the
3941 stack. */
3942 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
3943 {
3944 save_rp = 0;
3945 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3946 }
3947 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3948 {
3949 save_rp = 0;
3950 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
3951 }
3952
3953 /* Note if we saved SP into the stack. This also happens to indicate
3954 the location of the saved frame pointer. */
3955 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
3956 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
3957 {
3958 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
3959 save_sp = 0;
3960 }
3961
3962 /* Account for general and floating-point register saves. */
3963 reg = inst_saves_gr (inst);
3964 if (reg >= 3 && reg <= 18
3965 && (!u->Save_SP || reg != FP_REGNUM))
3966 {
3967 save_gr &= ~(1 << reg);
3968
3969 /* stwm with a positive displacement is a *post modify*. */
3970 if ((inst >> 26) == 0x1b
3971 && extract_14 (inst) >= 0)
3972 frame_saved_regs->regs[reg] = frame_info->frame;
3973 /* A std has explicit post_modify forms. */
3974 else if ((inst & 0xfc00000c0) == 0x70000008)
3975 frame_saved_regs->regs[reg] = frame_info->frame;
3976 else
3977 {
3978 CORE_ADDR offset;
3979
3980 if ((inst >> 26) == 0x1c)
3981 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3982 else if ((inst >> 26) == 0x03)
3983 offset = low_sign_extend (inst & 0x1f, 5);
3984 else
3985 offset = extract_14 (inst);
3986
3987 /* Handle code with and without frame pointers. */
3988 if (u->Save_SP)
3989 frame_saved_regs->regs[reg]
3990 = frame_info->frame + offset;
3991 else
3992 frame_saved_regs->regs[reg]
3993 = (frame_info->frame + (u->Total_frame_size << 3)
3994 + offset);
3995 }
3996 }
3997
3998
3999 /* GCC handles callee saved FP regs a little differently.
4000
4001 It emits an instruction to put the value of the start of
4002 the FP store area into %r1. It then uses fstds,ma with
4003 a basereg of %r1 for the stores.
4004
4005 HP CC emits them at the current stack pointer modifying
4006 the stack pointer as it stores each register. */
4007
4008 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4009 if ((inst & 0xffffc000) == 0x34610000
4010 || (inst & 0xffffc000) == 0x37c10000)
4011 fp_loc = extract_14 (inst);
4012
4013 reg = inst_saves_fr (inst);
4014 if (reg >= 12 && reg <= 21)
4015 {
4016 /* Note +4 braindamage below is necessary because the FP status
4017 registers are internally 8 registers rather than the expected
4018 4 registers. */
4019 save_fr &= ~(1 << reg);
4020 if (fp_loc == -1)
4021 {
4022 /* 1st HP CC FP register store. After this instruction
4023 we've set enough state that the GCC and HPCC code are
4024 both handled in the same manner. */
4025 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4026 fp_loc = 8;
4027 }
4028 else
4029 {
4030 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4031 = frame_info->frame + fp_loc;
4032 fp_loc += 8;
4033 }
4034 }
4035
4036 /* Quit if we hit any kind of branch the previous iteration. */
4037 if (final_iteration)
4038 break;
4039
4040 /* We want to look precisely one instruction beyond the branch
4041 if we have not found everything yet. */
4042 if (is_branch (inst))
4043 final_iteration = 1;
4044
4045 /* Bump the PC. */
4046 pc += 4;
4047 }
4048}
4049
4050
4051/* Exception handling support for the HP-UX ANSI C++ compiler.
4052 The compiler (aCC) provides a callback for exception events;
4053 GDB can set a breakpoint on this callback and find out what
4054 exception event has occurred. */
4055
4056/* The name of the hook to be set to point to the callback function */
4057static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4058/* The name of the function to be used to set the hook value */
4059static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4060/* The name of the callback function in end.o */
4061static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4062/* Name of function in end.o on which a break is set (called by above) */
4063static char HP_ACC_EH_break[] = "__d_eh_break";
4064/* Name of flag (in end.o) that enables catching throws */
4065static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4066/* Name of flag (in end.o) that enables catching catching */
4067static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4068/* The enum used by aCC */
4069typedef enum
4070 {
4071 __EH_NOTIFY_THROW,
4072 __EH_NOTIFY_CATCH
4073 }
4074__eh_notification;
4075
4076/* Is exception-handling support available with this executable? */
4077static int hp_cxx_exception_support = 0;
4078/* Has the initialize function been run? */
4079int hp_cxx_exception_support_initialized = 0;
4080/* Similar to above, but imported from breakpoint.c -- non-target-specific */
4081extern int exception_support_initialized;
4082/* Address of __eh_notify_hook */
4083static CORE_ADDR eh_notify_hook_addr = 0;
4084/* Address of __d_eh_notify_callback */
4085static CORE_ADDR eh_notify_callback_addr = 0;
4086/* Address of __d_eh_break */
4087static CORE_ADDR eh_break_addr = 0;
4088/* Address of __d_eh_catch_catch */
4089static CORE_ADDR eh_catch_catch_addr = 0;
4090/* Address of __d_eh_catch_throw */
4091static CORE_ADDR eh_catch_throw_addr = 0;
4092/* Sal for __d_eh_break */
4093static struct symtab_and_line *break_callback_sal = 0;
4094
4095/* Code in end.c expects __d_pid to be set in the inferior,
4096 otherwise __d_eh_notify_callback doesn't bother to call
4097 __d_eh_break! So we poke the pid into this symbol
4098 ourselves.
4099 0 => success
4100 1 => failure */
4101int
4102setup_d_pid_in_inferior (void)
4103{
4104 CORE_ADDR anaddr;
4105 struct minimal_symbol *msymbol;
4106 char buf[4]; /* FIXME 32x64? */
4107
4108 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4109 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4110 if (msymbol == NULL)
4111 {
4112 warning ("Unable to find __d_pid symbol in object file.");
4113 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4114 return 1;
4115 }
4116
4117 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4118 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4119 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4120 {
4121 warning ("Unable to write __d_pid");
4122 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4123 return 1;
4124 }
4125 return 0;
4126}
4127
4128/* Initialize exception catchpoint support by looking for the
4129 necessary hooks/callbacks in end.o, etc., and set the hook value to
4130 point to the required debug function
4131
4132 Return 0 => failure
4133 1 => success */
4134
4135static int
4136initialize_hp_cxx_exception_support (void)
4137{
4138 struct symtabs_and_lines sals;
4139 struct cleanup *old_chain;
4140 struct cleanup *canonical_strings_chain = NULL;
4141 int i;
4142 char *addr_start;
4143 char *addr_end = NULL;
4144 char **canonical = (char **) NULL;
4145 int thread = -1;
4146 struct symbol *sym = NULL;
4147 struct minimal_symbol *msym = NULL;
4148 struct objfile *objfile;
4149 asection *shlib_info;
4150
4151 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4152 recursion is a possibility because finding the hook for exception
4153 callbacks involves making a call in the inferior, which means
4154 re-inserting breakpoints which can re-invoke this code */
4155
4156 static int recurse = 0;
4157 if (recurse > 0)
4158 {
4159 hp_cxx_exception_support_initialized = 0;
4160 exception_support_initialized = 0;
4161 return 0;
4162 }
4163
4164 hp_cxx_exception_support = 0;
4165
4166 /* First check if we have seen any HP compiled objects; if not,
4167 it is very unlikely that HP's idiosyncratic callback mechanism
4168 for exception handling debug support will be available!
4169 This will percolate back up to breakpoint.c, where our callers
4170 will decide to try the g++ exception-handling support instead. */
4171 if (!hp_som_som_object_present)
4172 return 0;
4173
4174 /* We have a SOM executable with SOM debug info; find the hooks */
4175
4176 /* First look for the notify hook provided by aCC runtime libs */
4177 /* If we find this symbol, we conclude that the executable must
4178 have HP aCC exception support built in. If this symbol is not
4179 found, even though we're a HP SOM-SOM file, we may have been
4180 built with some other compiler (not aCC). This results percolates
4181 back up to our callers in breakpoint.c which can decide to
4182 try the g++ style of exception support instead.
4183 If this symbol is found but the other symbols we require are
4184 not found, there is something weird going on, and g++ support
4185 should *not* be tried as an alternative.
4186
4187 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4188 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4189
4190 /* libCsup has this hook; it'll usually be non-debuggable */
4191 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4192 if (msym)
4193 {
4194 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4195 hp_cxx_exception_support = 1;
4196 }
4197 else
4198 {
4199 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4200 warning ("Executable may not have been compiled debuggable with HP aCC.");
4201 warning ("GDB will be unable to intercept exception events.");
4202 eh_notify_hook_addr = 0;
4203 hp_cxx_exception_support = 0;
4204 return 0;
4205 }
4206
4207 /* Next look for the notify callback routine in end.o */
4208 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4209 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4210 if (msym)
4211 {
4212 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4213 hp_cxx_exception_support = 1;
4214 }
4215 else
4216 {
4217 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4218 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4219 warning ("GDB will be unable to intercept exception events.");
4220 eh_notify_callback_addr = 0;
4221 return 0;
4222 }
4223
4224#ifndef GDB_TARGET_IS_HPPA_20W
4225 /* Check whether the executable is dynamically linked or archive bound */
4226 /* With an archive-bound executable we can use the raw addresses we find
4227 for the callback function, etc. without modification. For an executable
4228 with shared libraries, we have to do more work to find the plabel, which
4229 can be the target of a call through $$dyncall from the aCC runtime support
4230 library (libCsup) which is linked shared by default by aCC. */
4231 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4232 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4233 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4234 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4235 {
4236 /* The minsym we have has the local code address, but that's not the
4237 plabel that can be used by an inter-load-module call. */
4238 /* Find solib handle for main image (which has end.o), and use that
4239 and the min sym as arguments to __d_shl_get() (which does the equivalent
4240 of shl_findsym()) to find the plabel. */
4241
4242 args_for_find_stub args;
4243 static char message[] = "Error while finding exception callback hook:\n";
4244
4245 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4246 args.msym = msym;
4247 args.return_val = 0;
4248
4249 recurse++;
4250 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4251 RETURN_MASK_ALL);
4252 eh_notify_callback_addr = args.return_val;
4253 recurse--;
4254
4255 exception_catchpoints_are_fragile = 1;
4256
4257 if (!eh_notify_callback_addr)
4258 {
4259 /* We can get here either if there is no plabel in the export list
4260 for the main image, or if something strange happened (?) */
4261 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4262 warning ("GDB will not be able to intercept exception events.");
4263 return 0;
4264 }
4265 }
4266 else
4267 exception_catchpoints_are_fragile = 0;
4268#endif
4269
4270 /* Now, look for the breakpointable routine in end.o */
4271 /* This should also be available in the SOM symbol dict. if end.o linked in */
4272 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4273 if (msym)
4274 {
4275 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4276 hp_cxx_exception_support = 1;
4277 }
4278 else
4279 {
4280 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4281 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4282 warning ("GDB will be unable to intercept exception events.");
4283 eh_break_addr = 0;
4284 return 0;
4285 }
4286
4287 /* Next look for the catch enable flag provided in end.o */
4288 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4289 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4290 if (sym) /* sometimes present in debug info */
4291 {
4292 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4293 hp_cxx_exception_support = 1;
4294 }
4295 else
4296 /* otherwise look in SOM symbol dict. */
4297 {
4298 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4299 if (msym)
4300 {
4301 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4302 hp_cxx_exception_support = 1;
4303 }
4304 else
4305 {
4306 warning ("Unable to enable interception of exception catches.");
4307 warning ("Executable may not have been compiled debuggable with HP aCC.");
4308 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4309 return 0;
4310 }
4311 }
4312
4313 /* Next look for the catch enable flag provided end.o */
4314 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4315 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4316 if (sym) /* sometimes present in debug info */
4317 {
4318 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4319 hp_cxx_exception_support = 1;
4320 }
4321 else
4322 /* otherwise look in SOM symbol dict. */
4323 {
4324 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4325 if (msym)
4326 {
4327 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4328 hp_cxx_exception_support = 1;
4329 }
4330 else
4331 {
4332 warning ("Unable to enable interception of exception throws.");
4333 warning ("Executable may not have been compiled debuggable with HP aCC.");
4334 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4335 return 0;
4336 }
4337 }
4338
4339 /* Set the flags */
4340 hp_cxx_exception_support = 2; /* everything worked so far */
4341 hp_cxx_exception_support_initialized = 1;
4342 exception_support_initialized = 1;
4343
4344 return 1;
4345}
4346
4347/* Target operation for enabling or disabling interception of
4348 exception events.
4349 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4350 ENABLE is either 0 (disable) or 1 (enable).
4351 Return value is NULL if no support found;
4352 -1 if something went wrong,
4353 or a pointer to a symtab/line struct if the breakpointable
4354 address was found. */
4355
4356struct symtab_and_line *
4357child_enable_exception_callback (enum exception_event_kind kind, int enable)
4358{
4359 char buf[4];
4360
4361 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4362 if (!initialize_hp_cxx_exception_support ())
4363 return NULL;
4364
4365 switch (hp_cxx_exception_support)
4366 {
4367 case 0:
4368 /* Assuming no HP support at all */
4369 return NULL;
4370 case 1:
4371 /* HP support should be present, but something went wrong */
4372 return (struct symtab_and_line *) -1; /* yuck! */
4373 /* there may be other cases in the future */
4374 }
4375
4376 /* Set the EH hook to point to the callback routine */
4377 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4378 /* pai: (temp) FIXME should there be a pack operation first? */
4379 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4380 {
4381 warning ("Could not write to target memory for exception event callback.");
4382 warning ("Interception of exception events may not work.");
4383 return (struct symtab_and_line *) -1;
4384 }
4385 if (enable)
4386 {
4387 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4388 if (PIDGET (inferior_ptid) > 0)
4389 {
4390 if (setup_d_pid_in_inferior ())
4391 return (struct symtab_and_line *) -1;
4392 }
4393 else
4394 {
4395 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4396 return (struct symtab_and_line *) -1;
4397 }
4398 }
4399
4400 switch (kind)
4401 {
4402 case EX_EVENT_THROW:
4403 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4404 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4405 {
4406 warning ("Couldn't enable exception throw interception.");
4407 return (struct symtab_and_line *) -1;
4408 }
4409 break;
4410 case EX_EVENT_CATCH:
4411 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4412 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4413 {
4414 warning ("Couldn't enable exception catch interception.");
4415 return (struct symtab_and_line *) -1;
4416 }
4417 break;
4418 default:
4419 error ("Request to enable unknown or unsupported exception event.");
4420 }
4421
4422 /* Copy break address into new sal struct, malloc'ing if needed. */
4423 if (!break_callback_sal)
4424 {
4425 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4426 }
4427 INIT_SAL (break_callback_sal);
4428 break_callback_sal->symtab = NULL;
4429 break_callback_sal->pc = eh_break_addr;
4430 break_callback_sal->line = 0;
4431 break_callback_sal->end = eh_break_addr;
4432
4433 return break_callback_sal;
4434}
4435
4436/* Record some information about the current exception event */
4437static struct exception_event_record current_ex_event;
4438/* Convenience struct */
4439static struct symtab_and_line null_symtab_and_line =
4440{NULL, 0, 0, 0};
4441
4442/* Report current exception event. Returns a pointer to a record
4443 that describes the kind of the event, where it was thrown from,
4444 and where it will be caught. More information may be reported
4445 in the future */
4446struct exception_event_record *
4447child_get_current_exception_event (void)
4448{
4449 CORE_ADDR event_kind;
4450 CORE_ADDR throw_addr;
4451 CORE_ADDR catch_addr;
4452 struct frame_info *fi, *curr_frame;
4453 int level = 1;
4454
4455 curr_frame = get_current_frame ();
4456 if (!curr_frame)
4457 return (struct exception_event_record *) NULL;
4458
4459 /* Go up one frame to __d_eh_notify_callback, because at the
4460 point when this code is executed, there's garbage in the
4461 arguments of __d_eh_break. */
4462 fi = find_relative_frame (curr_frame, &level);
4463 if (level != 0)
4464 return (struct exception_event_record *) NULL;
4465
4466 select_frame (fi, -1);
4467
4468 /* Read in the arguments */
4469 /* __d_eh_notify_callback() is called with 3 arguments:
4470 1. event kind catch or throw
4471 2. the target address if known
4472 3. a flag -- not sure what this is. pai/1997-07-17 */
4473 event_kind = read_register (ARG0_REGNUM);
4474 catch_addr = read_register (ARG1_REGNUM);
4475
4476 /* Now go down to a user frame */
4477 /* For a throw, __d_eh_break is called by
4478 __d_eh_notify_callback which is called by
4479 __notify_throw which is called
4480 from user code.
4481 For a catch, __d_eh_break is called by
4482 __d_eh_notify_callback which is called by
4483 <stackwalking stuff> which is called by
4484 __throw__<stuff> or __rethrow_<stuff> which is called
4485 from user code. */
4486 /* FIXME: Don't use such magic numbers; search for the frames */
4487 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4488 fi = find_relative_frame (curr_frame, &level);
4489 if (level != 0)
4490 return (struct exception_event_record *) NULL;
4491
4492 select_frame (fi, -1);
4493 throw_addr = fi->pc;
4494
4495 /* Go back to original (top) frame */
4496 select_frame (curr_frame, -1);
4497
4498 current_ex_event.kind = (enum exception_event_kind) event_kind;
4499 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4500 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4501
4502 return &current_ex_event;
4503}
4504
4505static void
4506unwind_command (char *exp, int from_tty)
4507{
4508 CORE_ADDR address;
4509 struct unwind_table_entry *u;
4510
4511 /* If we have an expression, evaluate it and use it as the address. */
4512
4513 if (exp != 0 && *exp != 0)
4514 address = parse_and_eval_address (exp);
4515 else
4516 return;
4517
4518 u = find_unwind_entry (address);
4519
4520 if (!u)
4521 {
4522 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4523 return;
4524 }
4525
4526 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4527 paddr_nz (host_pointer_to_address (u)));
4528
4529 printf_unfiltered ("\tregion_start = ");
4530 print_address (u->region_start, gdb_stdout);
4531
4532 printf_unfiltered ("\n\tregion_end = ");
4533 print_address (u->region_end, gdb_stdout);
4534
4535#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4536
4537 printf_unfiltered ("\n\tflags =");
4538 pif (Cannot_unwind);
4539 pif (Millicode);
4540 pif (Millicode_save_sr0);
4541 pif (Entry_SR);
4542 pif (Args_stored);
4543 pif (Variable_Frame);
4544 pif (Separate_Package_Body);
4545 pif (Frame_Extension_Millicode);
4546 pif (Stack_Overflow_Check);
4547 pif (Two_Instruction_SP_Increment);
4548 pif (Ada_Region);
4549 pif (Save_SP);
4550 pif (Save_RP);
4551 pif (Save_MRP_in_frame);
4552 pif (extn_ptr_defined);
4553 pif (Cleanup_defined);
4554 pif (MPE_XL_interrupt_marker);
4555 pif (HP_UX_interrupt_marker);
4556 pif (Large_frame);
4557
4558 putchar_unfiltered ('\n');
4559
4560#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4561
4562 pin (Region_description);
4563 pin (Entry_FR);
4564 pin (Entry_GR);
4565 pin (Total_frame_size);
4566}
4567
4568#ifdef PREPARE_TO_PROCEED
4569
4570/* If the user has switched threads, and there is a breakpoint
4571 at the old thread's pc location, then switch to that thread
4572 and return TRUE, else return FALSE and don't do a thread
4573 switch (or rather, don't seem to have done a thread switch).
4574
4575 Ptrace-based gdb will always return FALSE to the thread-switch
4576 query, and thus also to PREPARE_TO_PROCEED.
4577
4578 The important thing is whether there is a BPT instruction,
4579 not how many user breakpoints there are. So we have to worry
4580 about things like these:
4581
4582 o Non-bp stop -- NO
4583
4584 o User hits bp, no switch -- NO
4585
4586 o User hits bp, switches threads -- YES
4587
4588 o User hits bp, deletes bp, switches threads -- NO
4589
4590 o User hits bp, deletes one of two or more bps
4591 at that PC, user switches threads -- YES
4592
4593 o Plus, since we're buffering events, the user may have hit a
4594 breakpoint, deleted the breakpoint and then gotten another
4595 hit on that same breakpoint on another thread which
4596 actually hit before the delete. (FIXME in breakpoint.c
4597 so that "dead" breakpoints are ignored?) -- NO
4598
4599 For these reasons, we have to violate information hiding and
4600 call "breakpoint_here_p". If core gdb thinks there is a bpt
4601 here, that's what counts, as core gdb is the one which is
4602 putting the BPT instruction in and taking it out.
4603
4604 Note that this implementation is potentially redundant now that
4605 default_prepare_to_proceed() has been added.
4606
4607 FIXME This may not support switching threads after Ctrl-C
4608 correctly. The default implementation does support this. */
4609int
4610hppa_prepare_to_proceed (void)
4611{
4612 pid_t old_thread;
4613 pid_t current_thread;
4614
4615 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
4616 if (old_thread != 0)
4617 {
4618 /* Switched over from "old_thread". Try to do
4619 as little work as possible, 'cause mostly
4620 we're going to switch back. */
4621 CORE_ADDR new_pc;
4622 CORE_ADDR old_pc = read_pc ();
4623
4624 /* Yuk, shouldn't use global to specify current
4625 thread. But that's how gdb does it. */
4626 current_thread = PIDGET (inferior_ptid);
4627 inferior_ptid = pid_to_ptid (old_thread);
4628
4629 new_pc = read_pc ();
4630 if (new_pc != old_pc /* If at same pc, no need */
4631 && breakpoint_here_p (new_pc))
4632 {
4633 /* User hasn't deleted the BP.
4634 Return TRUE, finishing switch to "old_thread". */
4635 flush_cached_frames ();
4636 registers_changed ();
4637#if 0
4638 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4639 current_thread, PIDGET (inferior_ptid));
4640#endif
4641
4642 return 1;
4643 }
4644
4645 /* Otherwise switch back to the user-chosen thread. */
4646 inferior_ptid = pid_to_ptid (current_thread);
4647 new_pc = read_pc (); /* Re-prime register cache */
4648 }
4649
4650 return 0;
4651}
4652#endif /* PREPARE_TO_PROCEED */
4653
4654void
4655hppa_skip_permanent_breakpoint (void)
4656{
4657 /* To step over a breakpoint instruction on the PA takes some
4658 fiddling with the instruction address queue.
4659
4660 When we stop at a breakpoint, the IA queue front (the instruction
4661 we're executing now) points at the breakpoint instruction, and
4662 the IA queue back (the next instruction to execute) points to
4663 whatever instruction we would execute after the breakpoint, if it
4664 were an ordinary instruction. This is the case even if the
4665 breakpoint is in the delay slot of a branch instruction.
4666
4667 Clearly, to step past the breakpoint, we need to set the queue
4668 front to the back. But what do we put in the back? What
4669 instruction comes after that one? Because of the branch delay
4670 slot, the next insn is always at the back + 4. */
4671 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4672 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4673
4674 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4675 /* We can leave the tail's space the same, since there's no jump. */
4676}
4677
4678void
4679_initialize_hppa_tdep (void)
4680{
4681 struct cmd_list_element *c;
4682 void break_at_finish_command (char *arg, int from_tty);
4683 void tbreak_at_finish_command (char *arg, int from_tty);
4684 void break_at_finish_at_depth_command (char *arg, int from_tty);
4685
4686 tm_print_insn = print_insn_hppa;
4687
4688 add_cmd ("unwind", class_maintenance, unwind_command,
4689 "Print unwind table entry at given address.",
4690 &maintenanceprintlist);
4691
4692 deprecate_cmd (add_com ("xbreak", class_breakpoint,
4693 break_at_finish_command,
4694 concat ("Set breakpoint at procedure exit. \n\
4695Argument may be function name, or \"*\" and an address.\n\
4696If function is specified, break at end of code for that function.\n\
4697If an address is specified, break at the end of the function that contains \n\
4698that exact address.\n",
4699 "With no arg, uses current execution address of selected stack frame.\n\
4700This is useful for breaking on return to a stack frame.\n\
4701\n\
4702Multiple breakpoints at one place are permitted, and useful if conditional.\n\
4703\n\
4704Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
4705 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
4706 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
4707 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
4708 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
4709
4710 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
4711 tbreak_at_finish_command,
4712"Set temporary breakpoint at procedure exit. Either there should\n\
4713be no argument or the argument must be a depth.\n"), NULL);
4714 set_cmd_completer (c, location_completer);
4715
4716 if (xdb_commands)
4717 deprecate_cmd (add_com ("bx", class_breakpoint,
4718 break_at_finish_at_depth_command,
4719"Set breakpoint at procedure exit. Either there should\n\
4720be no argument or the argument must be a depth.\n"), NULL);
4721}
4722
4723/* Copy the function value from VALBUF into the proper location
4724 for a function return.
4725
4726 Called only in the context of the "return" command. */
4727
4728void
4729hppa_store_return_value (struct type *type, char *valbuf)
4730{
4731 /* For software floating point, the return value goes into the
4732 integer registers. But we do not have any flag to key this on,
4733 so we always store the value into the integer registers.
4734
4735 If its a float value, then we also store it into the floating
4736 point registers. */
4737 write_register_bytes (REGISTER_BYTE (28)
4738 + (TYPE_LENGTH (type) > 4
4739 ? (8 - TYPE_LENGTH (type))
4740 : (4 - TYPE_LENGTH (type))),
4741 valbuf,
4742 TYPE_LENGTH (type));
4743 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4744 write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4745 valbuf,
4746 TYPE_LENGTH (type));
4747}
4748
4749/* Copy the function's return value into VALBUF.
4750
4751 This function is called only in the context of "target function calls",
4752 ie. when the debugger forces a function to be called in the child, and
4753 when the debugger forces a fucntion to return prematurely via the
4754 "return" command. */
4755
4756void
4757hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4758{
4759 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4760 memcpy (valbuf,
4761 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4762 TYPE_LENGTH (type));
4763 else
4764 memcpy (valbuf,
4765 ((char *)regbuf
4766 + REGISTER_BYTE (28)
4767 + (TYPE_LENGTH (type) > 4
4768 ? (8 - TYPE_LENGTH (type))
4769 : (4 - TYPE_LENGTH (type)))),
4770 TYPE_LENGTH (type));
4771}
This page took 0.045689 seconds and 4 git commands to generate.