* i386gnu-nat.c: Include "gdb_assert.h" instead of <assert.h>.
[deliverable/binutils-gdb.git] / gdb / i386-linux-nat.c
... / ...
CommitLineData
1/* Native-dependent code for Linux/x86.
2 Copyright 1999, 2000 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21#include "defs.h"
22#include "inferior.h"
23#include "gdbcore.h"
24
25#include <sys/ptrace.h>
26#include <sys/user.h>
27#include <sys/procfs.h>
28
29#ifdef HAVE_SYS_REG_H
30#include <sys/reg.h>
31#endif
32
33/* Prototypes for supply_gregset etc. */
34#include "gregset.h"
35
36/* Prototypes for i387_supply_fsave etc. */
37#include "i387-nat.h"
38
39/* Prototypes for local functions. */
40static void dummy_sse_values (void);
41
42/* On Linux, threads are implemented as pseudo-processes, in which
43 case we may be tracing more than one process at a time. In that
44 case, inferior_pid will contain the main process ID and the
45 individual thread (process) ID mashed together. These macros are
46 used to separate them out. These definitions should be overridden
47 if thread support is included. */
48
49#if !defined (PIDGET) /* Default definition for PIDGET/TIDGET. */
50#define PIDGET(PID) PID
51#define TIDGET(PID) 0
52#endif
53\f
54
55/* The register sets used in Linux ELF core-dumps are identical to the
56 register sets in `struct user' that is used for a.out core-dumps,
57 and is also used by `ptrace'. The corresponding types are
58 `elf_gregset_t' for the general-purpose registers (with
59 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
60 for the floating-point registers.
61
62 Those types used to be available under the names `gregset_t' and
63 `fpregset_t' too, and this file used those names in the past. But
64 those names are now used for the register sets used in the
65 `mcontext_t' type, and have a different size and layout. */
66
67/* Mapping between the general-purpose registers in `struct user'
68 format and GDB's register array layout. */
69static int regmap[] =
70{
71 EAX, ECX, EDX, EBX,
72 UESP, EBP, ESI, EDI,
73 EIP, EFL, CS, SS,
74 DS, ES, FS, GS
75};
76
77/* Which ptrace request retrieves which registers?
78 These apply to the corresponding SET requests as well. */
79#define GETREGS_SUPPLIES(regno) \
80 (0 <= (regno) && (regno) <= 15)
81#define GETFPREGS_SUPPLIES(regno) \
82 (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
83#define GETFPXREGS_SUPPLIES(regno) \
84 (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
85
86/* Does the current host support the GETREGS request? */
87int have_ptrace_getregs =
88#ifdef HAVE_PTRACE_GETREGS
89 1
90#else
91 0
92#endif
93;
94
95/* Does the current host support the GETFPXREGS request? The header
96 file may or may not define it, and even if it is defined, the
97 kernel will return EIO if it's running on a pre-SSE processor.
98
99 My instinct is to attach this to some architecture- or
100 target-specific data structure, but really, a particular GDB
101 process can only run on top of one kernel at a time. So it's okay
102 for this to be a simple variable. */
103int have_ptrace_getfpxregs =
104#ifdef HAVE_PTRACE_GETFPXREGS
105 1
106#else
107 0
108#endif
109;
110\f
111
112/* Fetching registers directly from the U area, one at a time. */
113
114/* FIXME: kettenis/2000-03-05: This duplicates code from `inptrace.c'.
115 The problem is that we define FETCH_INFERIOR_REGISTERS since we
116 want to use our own versions of {fetch,store}_inferior_registers
117 that use the GETREGS request. This means that the code in
118 `infptrace.c' is #ifdef'd out. But we need to fall back on that
119 code when GDB is running on top of a kernel that doesn't support
120 the GETREGS request. I want to avoid changing `infptrace.c' right
121 now. */
122
123#ifndef PT_READ_U
124#define PT_READ_U PTRACE_PEEKUSR
125#endif
126#ifndef PT_WRITE_U
127#define PT_WRITE_U PTRACE_POKEUSR
128#endif
129
130/* Default the type of the ptrace transfer to int. */
131#ifndef PTRACE_XFER_TYPE
132#define PTRACE_XFER_TYPE int
133#endif
134
135/* Registers we shouldn't try to fetch. */
136#define OLD_CANNOT_FETCH_REGISTER(regno) ((regno) >= NUM_GREGS)
137
138/* Fetch one register. */
139
140static void
141fetch_register (int regno)
142{
143 /* This isn't really an address. But ptrace thinks of it as one. */
144 CORE_ADDR regaddr;
145 char mess[128]; /* For messages */
146 register int i;
147 unsigned int offset; /* Offset of registers within the u area. */
148 char buf[MAX_REGISTER_RAW_SIZE];
149 int tid;
150
151 if (OLD_CANNOT_FETCH_REGISTER (regno))
152 {
153 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
154 supply_register (regno, buf);
155 return;
156 }
157
158 /* Overload thread id onto process id */
159 if ((tid = TIDGET (inferior_pid)) == 0)
160 tid = inferior_pid; /* no thread id, just use process id */
161
162 offset = U_REGS_OFFSET;
163
164 regaddr = register_addr (regno, offset);
165 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
166 {
167 errno = 0;
168 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
169 (PTRACE_ARG3_TYPE) regaddr, 0);
170 regaddr += sizeof (PTRACE_XFER_TYPE);
171 if (errno != 0)
172 {
173 sprintf (mess, "reading register %s (#%d)",
174 REGISTER_NAME (regno), regno);
175 perror_with_name (mess);
176 }
177 }
178 supply_register (regno, buf);
179}
180
181/* Fetch register values from the inferior.
182 If REGNO is negative, do this for all registers.
183 Otherwise, REGNO specifies which register (so we can save time). */
184
185void
186old_fetch_inferior_registers (int regno)
187{
188 if (regno >= 0)
189 {
190 fetch_register (regno);
191 }
192 else
193 {
194 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
195 {
196 fetch_register (regno);
197 }
198 }
199}
200
201/* Registers we shouldn't try to store. */
202#define OLD_CANNOT_STORE_REGISTER(regno) ((regno) >= NUM_GREGS)
203
204/* Store one register. */
205
206static void
207store_register (int regno)
208{
209 /* This isn't really an address. But ptrace thinks of it as one. */
210 CORE_ADDR regaddr;
211 char mess[128]; /* For messages */
212 register int i;
213 unsigned int offset; /* Offset of registers within the u area. */
214 int tid;
215
216 if (OLD_CANNOT_STORE_REGISTER (regno))
217 {
218 return;
219 }
220
221 /* Overload thread id onto process id */
222 if ((tid = TIDGET (inferior_pid)) == 0)
223 tid = inferior_pid; /* no thread id, just use process id */
224
225 offset = U_REGS_OFFSET;
226
227 regaddr = register_addr (regno, offset);
228 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
229 {
230 errno = 0;
231 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
232 *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
233 regaddr += sizeof (PTRACE_XFER_TYPE);
234 if (errno != 0)
235 {
236 sprintf (mess, "writing register %s (#%d)",
237 REGISTER_NAME (regno), regno);
238 perror_with_name (mess);
239 }
240 }
241}
242
243/* Store our register values back into the inferior.
244 If REGNO is negative, do this for all registers.
245 Otherwise, REGNO specifies which register (so we can save time). */
246
247void
248old_store_inferior_registers (int regno)
249{
250 if (regno >= 0)
251 {
252 store_register (regno);
253 }
254 else
255 {
256 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
257 {
258 store_register (regno);
259 }
260 }
261}
262\f
263
264/* Transfering the general-purpose registers between GDB, inferiors
265 and core files. */
266
267/* Fill GDB's register array with the genereal-purpose register values
268 in *GREGSETP. */
269
270void
271supply_gregset (elf_gregset_t *gregsetp)
272{
273 elf_greg_t *regp = (elf_greg_t *) gregsetp;
274 int i;
275
276 for (i = 0; i < NUM_GREGS; i++)
277 supply_register (i, (char *) (regp + regmap[i]));
278}
279
280/* Fill register REGNO (if it is a general-purpose register) in
281 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
282 do this for all registers. */
283
284void
285fill_gregset (elf_gregset_t *gregsetp, int regno)
286{
287 elf_greg_t *regp = (elf_greg_t *) gregsetp;
288 int i;
289
290 for (i = 0; i < NUM_GREGS; i++)
291 if ((regno == -1 || regno == i))
292 *(regp + regmap[i]) = *(elf_greg_t *) &registers[REGISTER_BYTE (i)];
293}
294
295#ifdef HAVE_PTRACE_GETREGS
296
297/* Fetch all general-purpose registers from process/thread TID and
298 store their values in GDB's register array. */
299
300static void
301fetch_regs (int tid)
302{
303 elf_gregset_t regs;
304
305 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
306 {
307 if (errno == EIO)
308 {
309 /* The kernel we're running on doesn't support the GETREGS
310 request. Reset `have_ptrace_getregs'. */
311 have_ptrace_getregs = 0;
312 return;
313 }
314
315 perror_with_name ("Couldn't get registers");
316 }
317
318 supply_gregset (&regs);
319}
320
321/* Store all valid general-purpose registers in GDB's register array
322 into the process/thread specified by TID. */
323
324static void
325store_regs (int tid, int regno)
326{
327 elf_gregset_t regs;
328
329 if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
330 perror_with_name ("Couldn't get registers");
331
332 fill_gregset (&regs, regno);
333
334 if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
335 perror_with_name ("Couldn't write registers");
336}
337
338#else
339
340static void fetch_regs (int tid) {}
341static void store_regs (int tid, int regno) {}
342
343#endif
344\f
345
346/* Transfering floating-point registers between GDB, inferiors and cores. */
347
348/* Fill GDB's register array with the floating-point register values in
349 *FPREGSETP. */
350
351void
352supply_fpregset (elf_fpregset_t *fpregsetp)
353{
354 i387_supply_fsave ((char *) fpregsetp);
355 dummy_sse_values ();
356}
357
358/* Fill register REGNO (if it is a floating-point register) in
359 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
360 do this for all registers. */
361
362void
363fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
364{
365 i387_fill_fsave ((char *) fpregsetp, regno);
366}
367
368#ifdef HAVE_PTRACE_GETREGS
369
370/* Fetch all floating-point registers from process/thread TID and store
371 thier values in GDB's register array. */
372
373static void
374fetch_fpregs (int tid)
375{
376 elf_fpregset_t fpregs;
377
378 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
379 perror_with_name ("Couldn't get floating point status");
380
381 supply_fpregset (&fpregs);
382}
383
384/* Store all valid floating-point registers in GDB's register array
385 into the process/thread specified by TID. */
386
387static void
388store_fpregs (int tid, int regno)
389{
390 elf_fpregset_t fpregs;
391
392 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
393 perror_with_name ("Couldn't get floating point status");
394
395 fill_fpregset (&fpregs, regno);
396
397 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
398 perror_with_name ("Couldn't write floating point status");
399}
400
401#else
402
403static void fetch_fpregs (int tid) {}
404static void store_fpregs (int tid, int regno) {}
405
406#endif
407\f
408
409/* Transfering floating-point and SSE registers to and from GDB. */
410
411#ifdef HAVE_PTRACE_GETFPXREGS
412
413/* Fill GDB's register array with the floating-point and SSE register
414 values in *FPXREGSETP. */
415
416static void
417supply_fpxregset (elf_fpxregset_t *fpxregsetp)
418{
419 i387_supply_fxsave ((char *) fpxregsetp);
420}
421
422/* Fill register REGNO (if it is a floating-point or SSE register) in
423 *FPXREGSETP with the value in GDB's register array. If REGNO is
424 -1, do this for all registers. */
425
426static void
427fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno)
428{
429 i387_fill_fxsave ((char *) fpxregsetp, regno);
430}
431
432/* Fetch all registers covered by the PTRACE_GETFPXREGS request from
433 process/thread TID and store their values in GDB's register array.
434 Return non-zero if successful, zero otherwise. */
435
436static int
437fetch_fpxregs (int tid)
438{
439 elf_fpxregset_t fpxregs;
440
441 if (! have_ptrace_getfpxregs)
442 return 0;
443
444 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
445 {
446 if (errno == EIO)
447 {
448 have_ptrace_getfpxregs = 0;
449 return 0;
450 }
451
452 perror_with_name ("Couldn't read floating-point and SSE registers");
453 }
454
455 supply_fpxregset (&fpxregs);
456 return 1;
457}
458
459/* Store all valid registers in GDB's register array covered by the
460 PTRACE_SETFPXREGS request into the process/thread specified by TID.
461 Return non-zero if successful, zero otherwise. */
462
463static int
464store_fpxregs (int tid, int regno)
465{
466 elf_fpxregset_t fpxregs;
467
468 if (! have_ptrace_getfpxregs)
469 return 0;
470
471 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
472 perror_with_name ("Couldn't read floating-point and SSE registers");
473
474 fill_fpxregset (&fpxregs, regno);
475
476 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
477 perror_with_name ("Couldn't write floating-point and SSE registers");
478
479 return 1;
480}
481
482/* Fill the XMM registers in the register array with dummy values. For
483 cases where we don't have access to the XMM registers. I think
484 this is cleaner than printing a warning. For a cleaner solution,
485 we should gdbarchify the i386 family. */
486
487static void
488dummy_sse_values (void)
489{
490 /* C doesn't have a syntax for NaN's, so write it out as an array of
491 longs. */
492 static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
493 static long mxcsr = 0x1f80;
494 int reg;
495
496 for (reg = 0; reg < 8; reg++)
497 supply_register (XMM0_REGNUM + reg, (char *) dummy);
498 supply_register (MXCSR_REGNUM, (char *) &mxcsr);
499}
500
501#else
502
503static int fetch_fpxregs (int tid) { return 0; }
504static int store_fpxregs (int tid, int regno) { return 0; }
505static void dummy_sse_values (void) {}
506
507#endif /* HAVE_PTRACE_GETFPXREGS */
508\f
509
510/* Transferring arbitrary registers between GDB and inferior. */
511
512/* Check if register REGNO in the child process is accessible.
513 If we are accessing registers directly via the U area, only the
514 general-purpose registers are available.
515 All registers should be accessible if we have GETREGS support. */
516
517int
518cannot_fetch_register (int regno)
519{
520 if (! have_ptrace_getregs)
521 return OLD_CANNOT_FETCH_REGISTER (regno);
522 return 0;
523}
524int
525cannot_store_register (int regno)
526{
527 if (! have_ptrace_getregs)
528 return OLD_CANNOT_STORE_REGISTER (regno);
529 return 0;
530}
531
532/* Fetch register REGNO from the child process. If REGNO is -1, do
533 this for all registers (including the floating point and SSE
534 registers). */
535
536void
537fetch_inferior_registers (int regno)
538{
539 int tid;
540
541 /* Use the old method of peeking around in `struct user' if the
542 GETREGS request isn't available. */
543 if (! have_ptrace_getregs)
544 {
545 old_fetch_inferior_registers (regno);
546 return;
547 }
548
549 /* Linux LWP ID's are process ID's. */
550 if ((tid = TIDGET (inferior_pid)) == 0)
551 tid = inferior_pid; /* Not a threaded program. */
552
553 /* Use the PTRACE_GETFPXREGS request whenever possible, since it
554 transfers more registers in one system call, and we'll cache the
555 results. But remember that fetch_fpxregs can fail, and return
556 zero. */
557 if (regno == -1)
558 {
559 fetch_regs (tid);
560
561 /* The call above might reset `have_ptrace_getregs'. */
562 if (! have_ptrace_getregs)
563 {
564 old_fetch_inferior_registers (-1);
565 return;
566 }
567
568 if (fetch_fpxregs (tid))
569 return;
570 fetch_fpregs (tid);
571 return;
572 }
573
574 if (GETREGS_SUPPLIES (regno))
575 {
576 fetch_regs (tid);
577 return;
578 }
579
580 if (GETFPXREGS_SUPPLIES (regno))
581 {
582 if (fetch_fpxregs (tid))
583 return;
584
585 /* Either our processor or our kernel doesn't support the SSE
586 registers, so read the FP registers in the traditional way,
587 and fill the SSE registers with dummy values. It would be
588 more graceful to handle differences in the register set using
589 gdbarch. Until then, this will at least make things work
590 plausibly. */
591 fetch_fpregs (tid);
592 return;
593 }
594
595 internal_error ("Got request for bad register number %d.", regno);
596}
597
598/* Store register REGNO back into the child process. If REGNO is -1,
599 do this for all registers (including the floating point and SSE
600 registers). */
601void
602store_inferior_registers (int regno)
603{
604 int tid;
605
606 /* Use the old method of poking around in `struct user' if the
607 SETREGS request isn't available. */
608 if (! have_ptrace_getregs)
609 {
610 old_store_inferior_registers (regno);
611 return;
612 }
613
614 /* Linux LWP ID's are process ID's. */
615 if ((tid = TIDGET (inferior_pid)) == 0)
616 tid = inferior_pid; /* Not a threaded program. */
617
618 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
619 transfers more registers in one system call. But remember that
620 store_fpxregs can fail, and return zero. */
621 if (regno == -1)
622 {
623 store_regs (tid, regno);
624 if (store_fpxregs (tid, regno))
625 return;
626 store_fpregs (tid, regno);
627 return;
628 }
629
630 if (GETREGS_SUPPLIES (regno))
631 {
632 store_regs (tid, regno);
633 return;
634 }
635
636 if (GETFPXREGS_SUPPLIES (regno))
637 {
638 if (store_fpxregs (tid, regno))
639 return;
640
641 /* Either our processor or our kernel doesn't support the SSE
642 registers, so just write the FP registers in the traditional
643 way. */
644 store_fpregs (tid, regno);
645 return;
646 }
647
648 internal_error ("Got request to store bad register number %d.", regno);
649}
650\f
651
652/* Interpreting register set info found in core files. */
653
654/* Provide registers to GDB from a core file.
655
656 (We can't use the generic version of this function in
657 core-regset.c, because Linux has *three* different kinds of
658 register set notes. core-regset.c would have to call
659 supply_fpxregset, which most platforms don't have.)
660
661 CORE_REG_SECT points to an array of bytes, which are the contents
662 of a `note' from a core file which BFD thinks might contain
663 register contents. CORE_REG_SIZE is its size.
664
665 WHICH says which register set corelow suspects this is:
666 0 --- the general-purpose register set, in elf_gregset_t format
667 2 --- the floating-point register set, in elf_fpregset_t format
668 3 --- the extended floating-point register set, in elf_fpxregset_t format
669
670 REG_ADDR isn't used on Linux. */
671
672static void
673fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
674 int which, CORE_ADDR reg_addr)
675{
676 elf_gregset_t gregset;
677 elf_fpregset_t fpregset;
678
679 switch (which)
680 {
681 case 0:
682 if (core_reg_size != sizeof (gregset))
683 warning ("Wrong size gregset in core file.");
684 else
685 {
686 memcpy (&gregset, core_reg_sect, sizeof (gregset));
687 supply_gregset (&gregset);
688 }
689 break;
690
691 case 2:
692 if (core_reg_size != sizeof (fpregset))
693 warning ("Wrong size fpregset in core file.");
694 else
695 {
696 memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
697 supply_fpregset (&fpregset);
698 }
699 break;
700
701#ifdef HAVE_PTRACE_GETFPXREGS
702 {
703 elf_fpxregset_t fpxregset;
704
705 case 3:
706 if (core_reg_size != sizeof (fpxregset))
707 warning ("Wrong size fpxregset in core file.");
708 else
709 {
710 memcpy (&fpxregset, core_reg_sect, sizeof (fpxregset));
711 supply_fpxregset (&fpxregset);
712 }
713 break;
714 }
715#endif
716
717 default:
718 /* We've covered all the kinds of registers we know about here,
719 so this must be something we wouldn't know what to do with
720 anyway. Just ignore it. */
721 break;
722 }
723}
724\f
725
726/* The instruction for a Linux system call is:
727 int $0x80
728 or 0xcd 0x80. */
729
730static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
731
732#define LINUX_SYSCALL_LEN (sizeof linux_syscall)
733
734/* The system call number is stored in the %eax register. */
735#define LINUX_SYSCALL_REGNUM 0 /* %eax */
736
737/* We are specifically interested in the sigreturn and rt_sigreturn
738 system calls. */
739
740#ifndef SYS_sigreturn
741#define SYS_sigreturn 0x77
742#endif
743#ifndef SYS_rt_sigreturn
744#define SYS_rt_sigreturn 0xad
745#endif
746
747/* Offset to saved processor flags, from <asm/sigcontext.h>. */
748#define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
749
750/* Resume execution of the inferior process.
751 If STEP is nonzero, single-step it.
752 If SIGNAL is nonzero, give it that signal. */
753
754void
755child_resume (int pid, int step, enum target_signal signal)
756{
757 int request = PTRACE_CONT;
758
759 if (pid == -1)
760 /* Resume all threads. */
761 /* I think this only gets used in the non-threaded case, where "resume
762 all threads" and "resume inferior_pid" are the same. */
763 pid = inferior_pid;
764
765 if (step)
766 {
767 CORE_ADDR pc = read_pc_pid (pid);
768 unsigned char buf[LINUX_SYSCALL_LEN];
769
770 request = PTRACE_SINGLESTEP;
771
772 /* Returning from a signal trampoline is done by calling a
773 special system call (sigreturn or rt_sigreturn, see
774 i386-linux-tdep.c for more information). This system call
775 restores the registers that were saved when the signal was
776 raised, including %eflags. That means that single-stepping
777 won't work. Instead, we'll have to modify the signal context
778 that's about to be restored, and set the trace flag there. */
779
780 /* First check if PC is at a system call. */
781 if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
782 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
783 {
784 int syscall = read_register_pid (LINUX_SYSCALL_REGNUM, pid);
785
786 /* Then check the system call number. */
787 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
788 {
789 CORE_ADDR sp = read_register (SP_REGNUM);
790 CORE_ADDR addr = sp;
791 unsigned long int eflags;
792
793 if (syscall == SYS_rt_sigreturn)
794 addr = read_memory_integer (sp + 8, 4) + 20;
795
796 /* Set the trace flag in the context that's about to be
797 restored. */
798 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
799 read_memory (addr, (char *) &eflags, 4);
800 eflags |= 0x0100;
801 write_memory (addr, (char *) &eflags, 4);
802 }
803 }
804 }
805
806 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
807 perror_with_name ("ptrace");
808}
809\f
810
811/* Register that we are able to handle Linux ELF core file formats. */
812
813static struct core_fns linux_elf_core_fns =
814{
815 bfd_target_elf_flavour, /* core_flavour */
816 default_check_format, /* check_format */
817 default_core_sniffer, /* core_sniffer */
818 fetch_core_registers, /* core_read_registers */
819 NULL /* next */
820};
821
822void
823_initialize_i386_linux_nat (void)
824{
825 add_core_fns (&linux_elf_core_fns);
826}
This page took 0.024182 seconds and 4 git commands to generate.