* remote-nindy.c: Declare ninMemGet and ninMemPut.
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5This file is part of GDB.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Notes on the algorithm used in wait_for_inferior to determine if we
22 just did a subroutine call when stepping. We have the following
23 information at that point:
24
25 Current and previous (just before this step) pc.
26 Current and previous sp.
27 Current and previous start of current function.
28
29 If the starts of the functions don't match, then
30
31 a) We did a subroutine call.
32
33 In this case, the pc will be at the beginning of a function.
34
35 b) We did a subroutine return.
36
37 Otherwise.
38
39 c) We did a longjmp.
40
41 If we did a longjump, we were doing "nexti", since a next would
42 have attempted to skip over the assembly language routine in which
43 the longjmp is coded and would have simply been the equivalent of a
44 continue. I consider this ok behaivior. We'd like one of two
45 things to happen if we are doing a nexti through the longjmp()
46 routine: 1) It behaves as a stepi, or 2) It acts like a continue as
47 above. Given that this is a special case, and that anybody who
48 thinks that the concept of sub calls is meaningful in the context
49 of a longjmp, I'll take either one. Let's see what happens.
50
51 Acts like a subroutine return. I can handle that with no problem
52 at all.
53
54 -->So: If the current and previous beginnings of the current
55 function don't match, *and* the pc is at the start of a function,
56 we've done a subroutine call. If the pc is not at the start of a
57 function, we *didn't* do a subroutine call.
58
59 -->If the beginnings of the current and previous function do match,
60 either:
61
62 a) We just did a recursive call.
63
64 In this case, we would be at the very beginning of a
65 function and 1) it will have a prologue (don't jump to
66 before prologue, or 2) (we assume here that it doesn't have
67 a prologue) there will have been a change in the stack
68 pointer over the last instruction. (Ie. it's got to put
69 the saved pc somewhere. The stack is the usual place. In
70 a recursive call a register is only an option if there's a
71 prologue to do something with it. This is even true on
72 register window machines; the prologue sets up the new
73 window. It might not be true on a register window machine
74 where the call instruction moved the register window
75 itself. Hmmm. One would hope that the stack pointer would
76 also change. If it doesn't, somebody send me a note, and
77 I'll work out a more general theory.
78 bug-gdb@prep.ai.mit.edu). This is true (albeit slipperly
79 so) on all machines I'm aware of:
80
81 m68k: Call changes stack pointer. Regular jumps don't.
82
83 sparc: Recursive calls must have frames and therefor,
84 prologues.
85
86 vax: All calls have frames and hence change the
87 stack pointer.
88
89 b) We did a return from a recursive call. I don't see that we
90 have either the ability or the need to distinguish this
91 from an ordinary jump. The stack frame will be printed
92 when and if the frame pointer changes; if we are in a
93 function without a frame pointer, it's the users own
94 lookout.
95
96 c) We did a jump within a function. We assume that this is
97 true if we didn't do a recursive call.
98
99 d) We are in no-man's land ("I see no symbols here"). We
100 don't worry about this; it will make calls look like simple
101 jumps (and the stack frames will be printed when the frame
102 pointer moves), which is a reasonably non-violent response.
103*/
104
105#include "defs.h"
106#include <string.h>
107#include <ctype.h>
108#include "symtab.h"
109#include "frame.h"
110#include "inferior.h"
111#include "breakpoint.h"
112#include "wait.h"
113#include "gdbcore.h"
114#include "gdbcmd.h"
115#include "target.h"
116
117#include <signal.h>
118
119/* unistd.h is needed to #define X_OK */
120#ifdef USG
121#include <unistd.h>
122#else
123#include <sys/file.h>
124#endif
125
126/* Prototypes for local functions */
127
128static void
129signals_info PARAMS ((char *, int));
130
131static void
132handle_command PARAMS ((char *, int));
133
134static void
135sig_print_info PARAMS ((int));
136
137static void
138sig_print_header PARAMS ((void));
139
140static void
141resume_cleanups PARAMS ((int));
142
143static int
144hook_stop_stub PARAMS ((char *));
145
146/* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
147 program. It needs to examine the jmp_buf argument and extract the PC
148 from it. The return value is non-zero on success, zero otherwise. */
149#ifndef GET_LONGJMP_TARGET
150#define GET_LONGJMP_TARGET(PC_ADDR) 0
151#endif
152
153
154/* Some machines have trampoline code that sits between function callers
155 and the actual functions themselves. If this machine doesn't have
156 such things, disable their processing. */
157#ifndef SKIP_TRAMPOLINE_CODE
158#define SKIP_TRAMPOLINE_CODE(pc) 0
159#endif
160
161/* For SVR4 shared libraries, each call goes through a small piece of
162 trampoline code in the ".init" section. IN_SOLIB_TRAMPOLINE evaluates
163 to nonzero if we are current stopped in one of these. */
164#ifndef IN_SOLIB_TRAMPOLINE
165#define IN_SOLIB_TRAMPOLINE(pc,name) 0
166#endif
167
168/* On some systems, the PC may be left pointing at an instruction that won't
169 actually be executed. This is usually indicated by a bit in the PSW. If
170 we find ourselves in such a state, then we step the target beyond the
171 nullified instruction before returning control to the user so as to avoid
172 confusion. */
173
174#ifndef INSTRUCTION_NULLIFIED
175#define INSTRUCTION_NULLIFIED 0
176#endif
177
178/* Tables of how to react to signals; the user sets them. */
179
180static unsigned char *signal_stop;
181static unsigned char *signal_print;
182static unsigned char *signal_program;
183
184#define SET_SIGS(nsigs,sigs,flags) \
185 do { \
186 int signum = (nsigs); \
187 while (signum-- > 0) \
188 if ((sigs)[signum]) \
189 (flags)[signum] = 1; \
190 } while (0)
191
192#define UNSET_SIGS(nsigs,sigs,flags) \
193 do { \
194 int signum = (nsigs); \
195 while (signum-- > 0) \
196 if ((sigs)[signum]) \
197 (flags)[signum] = 0; \
198 } while (0)
199
200
201/* Command list pointer for the "stop" placeholder. */
202
203static struct cmd_list_element *stop_command;
204
205/* Nonzero if breakpoints are now inserted in the inferior. */
206
207static int breakpoints_inserted;
208
209/* Function inferior was in as of last step command. */
210
211static struct symbol *step_start_function;
212
213/* Nonzero if we are expecting a trace trap and should proceed from it. */
214
215static int trap_expected;
216
217/* Nonzero if the next time we try to continue the inferior, it will
218 step one instruction and generate a spurious trace trap.
219 This is used to compensate for a bug in HP-UX. */
220
221static int trap_expected_after_continue;
222
223/* Nonzero means expecting a trace trap
224 and should stop the inferior and return silently when it happens. */
225
226int stop_after_trap;
227
228/* Nonzero means expecting a trap and caller will handle it themselves.
229 It is used after attach, due to attaching to a process;
230 when running in the shell before the child program has been exec'd;
231 and when running some kinds of remote stuff (FIXME?). */
232
233int stop_soon_quietly;
234
235/* Nonzero if proceed is being used for a "finish" command or a similar
236 situation when stop_registers should be saved. */
237
238int proceed_to_finish;
239
240/* Save register contents here when about to pop a stack dummy frame,
241 if-and-only-if proceed_to_finish is set.
242 Thus this contains the return value from the called function (assuming
243 values are returned in a register). */
244
245char stop_registers[REGISTER_BYTES];
246
247/* Nonzero if program stopped due to error trying to insert breakpoints. */
248
249static int breakpoints_failed;
250
251/* Nonzero after stop if current stack frame should be printed. */
252
253static int stop_print_frame;
254
255#ifdef NO_SINGLE_STEP
256extern int one_stepped; /* From machine dependent code */
257extern void single_step (); /* Same. */
258#endif /* NO_SINGLE_STEP */
259
260\f
261/* Things to clean up if we QUIT out of resume (). */
262/* ARGSUSED */
263static void
264resume_cleanups (arg)
265 int arg;
266{
267 normal_stop ();
268}
269
270/* Resume the inferior, but allow a QUIT. This is useful if the user
271 wants to interrupt some lengthy single-stepping operation
272 (for child processes, the SIGINT goes to the inferior, and so
273 we get a SIGINT random_signal, but for remote debugging and perhaps
274 other targets, that's not true).
275
276 STEP nonzero if we should step (zero to continue instead).
277 SIG is the signal to give the inferior (zero for none). */
278void
279resume (step, sig)
280 int step;
281 int sig;
282{
283 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
284 QUIT;
285
286#ifdef NO_SINGLE_STEP
287 if (step) {
288 single_step(sig); /* Do it the hard way, w/temp breakpoints */
289 step = 0; /* ...and don't ask hardware to do it. */
290 }
291#endif
292
293 /* Handle any optimized stores to the inferior NOW... */
294#ifdef DO_DEFERRED_STORES
295 DO_DEFERRED_STORES;
296#endif
297
298 target_resume (inferior_pid, step, sig);
299 discard_cleanups (old_cleanups);
300}
301
302\f
303/* Clear out all variables saying what to do when inferior is continued.
304 First do this, then set the ones you want, then call `proceed'. */
305
306void
307clear_proceed_status ()
308{
309 trap_expected = 0;
310 step_range_start = 0;
311 step_range_end = 0;
312 step_frame_address = 0;
313 step_over_calls = -1;
314 stop_after_trap = 0;
315 stop_soon_quietly = 0;
316 proceed_to_finish = 0;
317 breakpoint_proceeded = 1; /* We're about to proceed... */
318
319 /* Discard any remaining commands or status from previous stop. */
320 bpstat_clear (&stop_bpstat);
321}
322
323/* Basic routine for continuing the program in various fashions.
324
325 ADDR is the address to resume at, or -1 for resume where stopped.
326 SIGGNAL is the signal to give it, or 0 for none,
327 or -1 for act according to how it stopped.
328 STEP is nonzero if should trap after one instruction.
329 -1 means return after that and print nothing.
330 You should probably set various step_... variables
331 before calling here, if you are stepping.
332
333 You should call clear_proceed_status before calling proceed. */
334
335void
336proceed (addr, siggnal, step)
337 CORE_ADDR addr;
338 int siggnal;
339 int step;
340{
341 int oneproc = 0;
342
343 if (step > 0)
344 step_start_function = find_pc_function (read_pc ());
345 if (step < 0)
346 stop_after_trap = 1;
347
348 if (addr == (CORE_ADDR)-1)
349 {
350 /* If there is a breakpoint at the address we will resume at,
351 step one instruction before inserting breakpoints
352 so that we do not stop right away. */
353
354 if (breakpoint_here_p (read_pc ()))
355 oneproc = 1;
356 }
357 else
358 write_pc (addr);
359
360 if (trap_expected_after_continue)
361 {
362 /* If (step == 0), a trap will be automatically generated after
363 the first instruction is executed. Force step one
364 instruction to clear this condition. This should not occur
365 if step is nonzero, but it is harmless in that case. */
366 oneproc = 1;
367 trap_expected_after_continue = 0;
368 }
369
370 if (oneproc)
371 /* We will get a trace trap after one instruction.
372 Continue it automatically and insert breakpoints then. */
373 trap_expected = 1;
374 else
375 {
376 int temp = insert_breakpoints ();
377 if (temp)
378 {
379 print_sys_errmsg ("ptrace", temp);
380 error ("Cannot insert breakpoints.\n\
381The same program may be running in another process.");
382 }
383 breakpoints_inserted = 1;
384 }
385
386 /* Install inferior's terminal modes. */
387 target_terminal_inferior ();
388
389 if (siggnal >= 0)
390 stop_signal = siggnal;
391 /* If this signal should not be seen by program,
392 give it zero. Used for debugging signals. */
393 else if (stop_signal < NSIG && !signal_program[stop_signal])
394 stop_signal= 0;
395
396 /* Resume inferior. */
397 resume (oneproc || step || bpstat_should_step (), stop_signal);
398
399 /* Wait for it to stop (if not standalone)
400 and in any case decode why it stopped, and act accordingly. */
401
402 wait_for_inferior ();
403 normal_stop ();
404}
405
406/* Record the pc and sp of the program the last time it stopped.
407 These are just used internally by wait_for_inferior, but need
408 to be preserved over calls to it and cleared when the inferior
409 is started. */
410static CORE_ADDR prev_pc;
411static CORE_ADDR prev_sp;
412static CORE_ADDR prev_func_start;
413static char *prev_func_name;
414
415\f
416/* Start remote-debugging of a machine over a serial link. */
417
418void
419start_remote ()
420{
421 init_wait_for_inferior ();
422 clear_proceed_status ();
423 stop_soon_quietly = 1;
424 trap_expected = 0;
425 wait_for_inferior ();
426 normal_stop ();
427}
428
429/* Initialize static vars when a new inferior begins. */
430
431void
432init_wait_for_inferior ()
433{
434 /* These are meaningless until the first time through wait_for_inferior. */
435 prev_pc = 0;
436 prev_sp = 0;
437 prev_func_start = 0;
438 prev_func_name = NULL;
439
440 trap_expected_after_continue = 0;
441 breakpoints_inserted = 0;
442 mark_breakpoints_out ();
443 stop_signal = 0; /* Don't confuse first call to proceed(). */
444}
445
446static void
447delete_breakpoint_current_contents (arg)
448 PTR arg;
449{
450 struct breakpoint **breakpointp = (struct breakpoint **)arg;
451 if (*breakpointp != NULL)
452 delete_breakpoint (*breakpointp);
453}
454\f
455/* Wait for control to return from inferior to debugger.
456 If inferior gets a signal, we may decide to start it up again
457 instead of returning. That is why there is a loop in this function.
458 When this function actually returns it means the inferior
459 should be left stopped and GDB should read more commands. */
460
461void
462wait_for_inferior ()
463{
464 struct cleanup *old_cleanups;
465 WAITTYPE w;
466 int another_trap;
467 int random_signal;
468 CORE_ADDR stop_sp = 0;
469 CORE_ADDR stop_func_start;
470 char *stop_func_name;
471 CORE_ADDR prologue_pc = 0, tmp;
472 struct symtab_and_line sal;
473 int remove_breakpoints_on_following_step = 0;
474 int current_line;
475 int handling_longjmp = 0; /* FIXME */
476 struct breakpoint *step_resume_breakpoint = NULL;
477 int pid;
478
479 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
480 &step_resume_breakpoint);
481 sal = find_pc_line(prev_pc, 0);
482 current_line = sal.line;
483
484 /* Are we stepping? */
485#define CURRENTLY_STEPPING() ((step_resume_breakpoint == NULL \
486 && !handling_longjmp \
487 && (step_range_end \
488 || trap_expected)) \
489 || bpstat_should_step ())
490
491 while (1)
492 {
493 /* Clean up saved state that will become invalid. */
494 flush_cached_frames ();
495 registers_changed ();
496
497 pid = target_wait (&w);
498
499#ifdef SIGTRAP_STOP_AFTER_LOAD
500
501 /* Somebody called load(2), and it gave us a "trap signal after load".
502 Ignore it gracefully. */
503
504 SIGTRAP_STOP_AFTER_LOAD (w);
505#endif
506
507 /* See if the process still exists; clean up if it doesn't. */
508 if (WIFEXITED (w))
509 {
510 target_terminal_ours (); /* Must do this before mourn anyway */
511 if (WEXITSTATUS (w))
512 printf_filtered ("\nProgram exited with code 0%o.\n",
513 (unsigned int)WEXITSTATUS (w));
514 else
515 if (!batch_mode())
516 printf_filtered ("\nProgram exited normally.\n");
517 fflush (stdout);
518 target_mourn_inferior ();
519#ifdef NO_SINGLE_STEP
520 one_stepped = 0;
521#endif
522 stop_print_frame = 0;
523 break;
524 }
525 else if (!WIFSTOPPED (w))
526 {
527 char *signame;
528
529 stop_print_frame = 0;
530 stop_signal = WTERMSIG (w);
531 target_terminal_ours (); /* Must do this before mourn anyway */
532 target_kill (); /* kill mourns as well */
533#ifdef PRINT_RANDOM_SIGNAL
534 printf_filtered ("\nProgram terminated: ");
535 PRINT_RANDOM_SIGNAL (stop_signal);
536#else
537 printf_filtered ("\nProgram terminated with signal ");
538 signame = strsigno (stop_signal);
539 if (signame == NULL)
540 printf_filtered ("%d", stop_signal);
541 else
542 /* Do we need to print the number in addition to the name? */
543 printf_filtered ("%s (%d)", signame, stop_signal);
544 printf_filtered (", %s\n", safe_strsignal (stop_signal));
545#endif
546 printf_filtered ("The program no longer exists.\n");
547 fflush (stdout);
548#ifdef NO_SINGLE_STEP
549 one_stepped = 0;
550#endif
551 break;
552 }
553
554 if (pid != inferior_pid)
555 {
556 int printed = 0;
557
558 if (!in_thread_list (pid))
559 {
560 fprintf (stderr, "[New %s]\n", target_pid_to_str (pid));
561 add_thread (pid);
562
563 target_resume (pid, 0, 0);
564 continue;
565 }
566 else
567 {
568 stop_signal = WSTOPSIG (w);
569
570 if (stop_signal >= NSIG || signal_print[stop_signal])
571 {
572 char *signame;
573
574 printed = 1;
575 target_terminal_ours_for_output ();
576 printf_filtered ("\nProgram received signal ");
577 signame = strsigno (stop_signal);
578 if (signame == NULL)
579 printf_filtered ("%d", stop_signal);
580 else
581 printf_filtered ("%s (%d)", signame, stop_signal);
582 printf_filtered (", %s\n", safe_strsignal (stop_signal));
583
584 fflush (stdout);
585 }
586
587 if (stop_signal >= NSIG || signal_stop[stop_signal])
588 {
589 inferior_pid = pid;
590 printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
591
592 flush_cached_frames ();
593 registers_changed ();
594 trap_expected = 0;
595 if (step_resume_breakpoint)
596 {
597 delete_breakpoint (step_resume_breakpoint);
598 step_resume_breakpoint = NULL;
599 }
600 prev_pc = 0;
601 prev_sp = 0;
602 prev_func_name = NULL;
603 step_range_start = 0;
604 step_range_end = 0;
605 step_frame_address = 0;
606 handling_longjmp = 0;
607 another_trap = 0;
608 }
609 else
610 {
611 if (printed)
612 target_terminal_inferior ();
613
614 /* Clear the signal if it should not be passed. */
615 if (signal_program[stop_signal] == 0)
616 stop_signal = 0;
617
618 target_resume (pid, 0, stop_signal);
619 continue;
620 }
621 }
622 }
623
624#ifdef NO_SINGLE_STEP
625 if (one_stepped)
626 single_step (0); /* This actually cleans up the ss */
627#endif /* NO_SINGLE_STEP */
628
629/* If PC is pointing at a nullified instruction, then step beyond it so that
630 the user won't be confused when GDB appears to be ready to execute it. */
631
632 if (INSTRUCTION_NULLIFIED)
633 {
634 resume (1, 0);
635 continue;
636 }
637
638 stop_pc = read_pc ();
639 set_current_frame ( create_new_frame (read_fp (), stop_pc));
640
641 stop_frame_address = FRAME_FP (get_current_frame ());
642 stop_sp = read_sp ();
643 stop_func_start = 0;
644 stop_func_name = 0;
645 /* Don't care about return value; stop_func_start and stop_func_name
646 will both be 0 if it doesn't work. */
647 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
648 (CORE_ADDR *)NULL);
649 stop_func_start += FUNCTION_START_OFFSET;
650 another_trap = 0;
651 bpstat_clear (&stop_bpstat);
652 stop_step = 0;
653 stop_stack_dummy = 0;
654 stop_print_frame = 1;
655 random_signal = 0;
656 stopped_by_random_signal = 0;
657 breakpoints_failed = 0;
658
659 /* Look at the cause of the stop, and decide what to do.
660 The alternatives are:
661 1) break; to really stop and return to the debugger,
662 2) drop through to start up again
663 (set another_trap to 1 to single step once)
664 3) set random_signal to 1, and the decision between 1 and 2
665 will be made according to the signal handling tables. */
666
667 stop_signal = WSTOPSIG (w);
668
669 /* First, distinguish signals caused by the debugger from signals
670 that have to do with the program's own actions.
671 Note that breakpoint insns may cause SIGTRAP or SIGILL
672 or SIGEMT, depending on the operating system version.
673 Here we detect when a SIGILL or SIGEMT is really a breakpoint
674 and change it to SIGTRAP. */
675
676 if (stop_signal == SIGTRAP
677 || (breakpoints_inserted &&
678 (stop_signal == SIGILL
679#ifdef SIGEMT
680 || stop_signal == SIGEMT
681#endif
682 ))
683 || stop_soon_quietly)
684 {
685 if (stop_signal == SIGTRAP && stop_after_trap)
686 {
687 stop_print_frame = 0;
688 break;
689 }
690 if (stop_soon_quietly)
691 break;
692
693 /* Don't even think about breakpoints
694 if just proceeded over a breakpoint.
695
696 However, if we are trying to proceed over a breakpoint
697 and end up in sigtramp, then step_resume_breakpoint
698 will be set and we should check whether we've hit the
699 step breakpoint. */
700 if (stop_signal == SIGTRAP && trap_expected
701 && step_resume_breakpoint == NULL)
702 bpstat_clear (&stop_bpstat);
703 else
704 {
705 /* See if there is a breakpoint at the current PC. */
706 stop_bpstat = bpstat_stop_status
707 (&stop_pc, stop_frame_address,
708#if DECR_PC_AFTER_BREAK
709 /* Notice the case of stepping through a jump
710 that lands just after a breakpoint.
711 Don't confuse that with hitting the breakpoint.
712 What we check for is that 1) stepping is going on
713 and 2) the pc before the last insn does not match
714 the address of the breakpoint before the current pc. */
715 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
716 && CURRENTLY_STEPPING ())
717#else /* DECR_PC_AFTER_BREAK zero */
718 0
719#endif /* DECR_PC_AFTER_BREAK zero */
720 );
721 /* Following in case break condition called a
722 function. */
723 stop_print_frame = 1;
724 }
725
726 if (stop_signal == SIGTRAP)
727 random_signal
728 = !(bpstat_explains_signal (stop_bpstat)
729 || trap_expected
730#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
731 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
732#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
733 || (step_range_end && step_resume_breakpoint == NULL));
734 else
735 {
736 random_signal
737 = !(bpstat_explains_signal (stop_bpstat)
738 /* End of a stack dummy. Some systems (e.g. Sony
739 news) give another signal besides SIGTRAP,
740 so check here as well as above. */
741#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
742 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
743#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
744 );
745 if (!random_signal)
746 stop_signal = SIGTRAP;
747 }
748 }
749 else
750 random_signal = 1;
751
752 /* For the program's own signals, act according to
753 the signal handling tables. */
754
755 if (random_signal)
756 {
757 /* Signal not for debugging purposes. */
758 int printed = 0;
759
760 stopped_by_random_signal = 1;
761
762 if (stop_signal >= NSIG
763 || signal_print[stop_signal])
764 {
765 char *signame;
766 printed = 1;
767 target_terminal_ours_for_output ();
768#ifdef PRINT_RANDOM_SIGNAL
769 PRINT_RANDOM_SIGNAL (stop_signal);
770#else
771 printf_filtered ("\nProgram received signal ");
772 signame = strsigno (stop_signal);
773 if (signame == NULL)
774 printf_filtered ("%d", stop_signal);
775 else
776 /* Do we need to print the number as well as the name? */
777 printf_filtered ("%s (%d)", signame, stop_signal);
778 printf_filtered (", %s\n", safe_strsignal (stop_signal));
779#endif /* PRINT_RANDOM_SIGNAL */
780 fflush (stdout);
781 }
782 if (stop_signal >= NSIG
783 || signal_stop[stop_signal])
784 break;
785 /* If not going to stop, give terminal back
786 if we took it away. */
787 else if (printed)
788 target_terminal_inferior ();
789
790 /* Clear the signal if it should not be passed. */
791 if (signal_program[stop_signal] == 0)
792 stop_signal = 0;
793
794 /* I'm not sure whether this needs to be check_sigtramp2 or
795 whether it could/should be keep_going. */
796 goto check_sigtramp2;
797 }
798
799 /* Handle cases caused by hitting a breakpoint. */
800 {
801 CORE_ADDR jmp_buf_pc;
802 struct bpstat_what what;
803
804 what = bpstat_what (stop_bpstat);
805
806 if (what.call_dummy)
807 {
808 stop_stack_dummy = 1;
809#ifdef HP_OS_BUG
810 trap_expected_after_continue = 1;
811#endif
812 }
813
814 switch (what.main_action)
815 {
816 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
817 /* If we hit the breakpoint at longjmp, disable it for the
818 duration of this command. Then, install a temporary
819 breakpoint at the target of the jmp_buf. */
820 disable_longjmp_breakpoint();
821 remove_breakpoints ();
822 breakpoints_inserted = 0;
823 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
824
825 /* Need to blow away step-resume breakpoint, as it
826 interferes with us */
827 if (step_resume_breakpoint != NULL)
828 {
829 delete_breakpoint (step_resume_breakpoint);
830 step_resume_breakpoint = NULL;
831 what.step_resume = 0;
832 }
833
834#if 0
835 /* FIXME - Need to implement nested temporary breakpoints */
836 if (step_over_calls > 0)
837 set_longjmp_resume_breakpoint(jmp_buf_pc,
838 get_current_frame());
839 else
840#endif /* 0 */
841 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
842 handling_longjmp = 1; /* FIXME */
843 goto keep_going;
844
845 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
846 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
847 remove_breakpoints ();
848 breakpoints_inserted = 0;
849#if 0
850 /* FIXME - Need to implement nested temporary breakpoints */
851 if (step_over_calls
852 && (stop_frame_address
853 INNER_THAN step_frame_address))
854 {
855 another_trap = 1;
856 goto keep_going;
857 }
858#endif /* 0 */
859 disable_longjmp_breakpoint();
860 handling_longjmp = 0; /* FIXME */
861 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
862 break;
863 /* else fallthrough */
864
865 case BPSTAT_WHAT_SINGLE:
866 if (breakpoints_inserted)
867 remove_breakpoints ();
868 breakpoints_inserted = 0;
869 another_trap = 1;
870 /* Still need to check other stuff, at least the case
871 where we are stepping and step out of the right range. */
872 break;
873
874 case BPSTAT_WHAT_STOP_NOISY:
875 stop_print_frame = 1;
876 /* We are about to nuke the step_resume_breakpoint via the
877 cleanup chain, so no need to worry about it here. */
878 goto stop_stepping;
879
880 case BPSTAT_WHAT_STOP_SILENT:
881 stop_print_frame = 0;
882 /* We are about to nuke the step_resume_breakpoint via the
883 cleanup chain, so no need to worry about it here. */
884 goto stop_stepping;
885
886 case BPSTAT_WHAT_KEEP_CHECKING:
887 break;
888 }
889
890 if (what.step_resume)
891 {
892 delete_breakpoint (step_resume_breakpoint);
893 step_resume_breakpoint = NULL;
894
895 /* If were waiting for a trap, hitting the step_resume_break
896 doesn't count as getting it. */
897 if (trap_expected)
898 another_trap = 1;
899 }
900 }
901
902 /* We come here if we hit a breakpoint but should not
903 stop for it. Possibly we also were stepping
904 and should stop for that. So fall through and
905 test for stepping. But, if not stepping,
906 do not stop. */
907
908#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
909 /* This is the old way of detecting the end of the stack dummy.
910 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
911 handled above. As soon as we can test it on all of them, all
912 architectures should define it. */
913
914 /* If this is the breakpoint at the end of a stack dummy,
915 just stop silently, unless the user was doing an si/ni, in which
916 case she'd better know what she's doing. */
917
918 if (PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
919 && !step_range_end)
920 {
921 stop_print_frame = 0;
922 stop_stack_dummy = 1;
923#ifdef HP_OS_BUG
924 trap_expected_after_continue = 1;
925#endif
926 break;
927 }
928#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
929
930 if (step_resume_breakpoint)
931 /* Having a step-resume breakpoint overrides anything
932 else having to do with stepping commands until
933 that breakpoint is reached. */
934 /* I suspect this could/should be keep_going, because if the
935 check_sigtramp2 check succeeds, then it will put in another
936 step_resume_breakpoint, and we aren't (yet) prepared to nest
937 them. */
938 goto check_sigtramp2;
939
940 if (step_range_end == 0)
941 /* Likewise if we aren't even stepping. */
942 /* I'm not sure whether this needs to be check_sigtramp2 or
943 whether it could/should be keep_going. */
944 goto check_sigtramp2;
945
946 /* If stepping through a line, keep going if still within it. */
947 if (stop_pc >= step_range_start
948 && stop_pc < step_range_end
949 /* The step range might include the start of the
950 function, so if we are at the start of the
951 step range and either the stack or frame pointers
952 just changed, we've stepped outside */
953 && !(stop_pc == step_range_start
954 && stop_frame_address
955 && (stop_sp INNER_THAN prev_sp
956 || stop_frame_address != step_frame_address)))
957 {
958 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
959 So definately need to check for sigtramp here. */
960 goto check_sigtramp2;
961 }
962
963 /* We stepped out of the stepping range. See if that was due
964 to a subroutine call that we should proceed to the end of. */
965
966 /* Did we just take a signal? */
967 if (IN_SIGTRAMP (stop_pc, stop_func_name)
968 && !IN_SIGTRAMP (prev_pc, prev_func_name))
969 {
970 /* This code is needed at least in the following case:
971 The user types "next" and then a signal arrives (before
972 the "next" is done). */
973 /* We've just taken a signal; go until we are back to
974 the point where we took it and one more. */
975 {
976 struct symtab_and_line sr_sal;
977
978 sr_sal.pc = prev_pc;
979 sr_sal.symtab = NULL;
980 sr_sal.line = 0;
981 step_resume_breakpoint =
982 set_momentary_breakpoint (sr_sal, get_current_frame (),
983 bp_step_resume);
984 if (breakpoints_inserted)
985 insert_breakpoints ();
986 }
987
988 /* If this is stepi or nexti, make sure that the stepping range
989 gets us past that instruction. */
990 if (step_range_end == 1)
991 /* FIXME: Does this run afoul of the code below which, if
992 we step into the middle of a line, resets the stepping
993 range? */
994 step_range_end = (step_range_start = prev_pc) + 1;
995
996 remove_breakpoints_on_following_step = 1;
997 goto keep_going;
998 }
999
1000 if (stop_func_start)
1001 {
1002 /* Do this after the IN_SIGTRAMP check; it might give
1003 an error. */
1004 prologue_pc = stop_func_start;
1005 SKIP_PROLOGUE (prologue_pc);
1006 }
1007
1008 /* ==> See comments at top of file on this algorithm. <==*/
1009
1010 if ((stop_pc == stop_func_start
1011 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name))
1012 && (stop_func_start != prev_func_start
1013 || prologue_pc != stop_func_start
1014 || stop_sp != prev_sp))
1015 {
1016 /* It's a subroutine call. */
1017
1018 if (step_over_calls == 0)
1019 {
1020 /* I presume that step_over_calls is only 0 when we're
1021 supposed to be stepping at the assembly language level
1022 ("stepi"). Just stop. */
1023 stop_step = 1;
1024 break;
1025 }
1026
1027 if (step_over_calls > 0)
1028 /* We're doing a "next". */
1029 goto step_over_function;
1030
1031 /* If we are in a function call trampoline (a stub between
1032 the calling routine and the real function), locate the real
1033 function. That's what tells us (a) whether we want to step
1034 into it at all, and (b) what prologue we want to run to
1035 the end of, if we do step into it. */
1036 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1037 if (tmp != 0)
1038 stop_func_start = tmp;
1039
1040 /* If we have line number information for the function we
1041 are thinking of stepping into, step into it.
1042
1043 If there are several symtabs at that PC (e.g. with include
1044 files), just want to know whether *any* of them have line
1045 numbers. find_pc_line handles this. */
1046 {
1047 struct symtab_and_line tmp_sal;
1048
1049 tmp_sal = find_pc_line (stop_func_start, 0);
1050 if (tmp_sal.line != 0)
1051 goto step_into_function;
1052 }
1053
1054step_over_function:
1055 /* A subroutine call has happened. */
1056 {
1057 /* Set a special breakpoint after the return */
1058 struct symtab_and_line sr_sal;
1059 sr_sal.pc =
1060 ADDR_BITS_REMOVE
1061 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1062 sr_sal.symtab = NULL;
1063 sr_sal.line = 0;
1064 step_resume_breakpoint =
1065 set_momentary_breakpoint (sr_sal, get_current_frame (),
1066 bp_step_resume);
1067 if (breakpoints_inserted)
1068 insert_breakpoints ();
1069 }
1070 goto keep_going;
1071
1072step_into_function:
1073 /* Subroutine call with source code we should not step over.
1074 Do step to the first line of code in it. */
1075 SKIP_PROLOGUE (stop_func_start);
1076 sal = find_pc_line (stop_func_start, 0);
1077 /* Use the step_resume_break to step until
1078 the end of the prologue, even if that involves jumps
1079 (as it seems to on the vax under 4.2). */
1080 /* If the prologue ends in the middle of a source line,
1081 continue to the end of that source line.
1082 Otherwise, just go to end of prologue. */
1083#ifdef PROLOGUE_FIRSTLINE_OVERLAP
1084 /* no, don't either. It skips any code that's
1085 legitimately on the first line. */
1086#else
1087 if (sal.end && sal.pc != stop_func_start)
1088 stop_func_start = sal.end;
1089#endif
1090
1091 if (stop_func_start == stop_pc)
1092 {
1093 /* We are already there: stop now. */
1094 stop_step = 1;
1095 break;
1096 }
1097 else
1098 /* Put the step-breakpoint there and go until there. */
1099 {
1100 struct symtab_and_line sr_sal;
1101
1102 sr_sal.pc = stop_func_start;
1103 sr_sal.symtab = NULL;
1104 sr_sal.line = 0;
1105 /* Do not specify what the fp should be when we stop
1106 since on some machines the prologue
1107 is where the new fp value is established. */
1108 step_resume_breakpoint =
1109 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1110 if (breakpoints_inserted)
1111 insert_breakpoints ();
1112
1113 /* And make sure stepping stops right away then. */
1114 step_range_end = step_range_start;
1115 }
1116 goto keep_going;
1117 }
1118
1119 /* We've wandered out of the step range (but haven't done a
1120 subroutine call or return). (Is that true? I think we get
1121 here if we did a return and maybe a longjmp). */
1122
1123 sal = find_pc_line(stop_pc, 0);
1124
1125 if (step_range_end == 1)
1126 {
1127 /* It is stepi or nexti. We always want to stop stepping after
1128 one instruction. */
1129 stop_step = 1;
1130 break;
1131 }
1132
1133 if (sal.line == 0)
1134 {
1135 /* We have no line number information. That means to stop
1136 stepping (does this always happen right after one instruction,
1137 when we do "s" in a function with no line numbers,
1138 or can this happen as a result of a return or longjmp?). */
1139 stop_step = 1;
1140 break;
1141 }
1142
1143 if (stop_pc == sal.pc && current_line != sal.line)
1144 {
1145 /* We are at the start of a different line. So stop. Note that
1146 we don't stop if we step into the middle of a different line.
1147 That is said to make things like for (;;) statements work
1148 better. */
1149 stop_step = 1;
1150 break;
1151 }
1152
1153 /* We aren't done stepping.
1154
1155 Optimize by setting the stepping range to the line.
1156 (We might not be in the original line, but if we entered a
1157 new line in mid-statement, we continue stepping. This makes
1158 things like for(;;) statements work better.) */
1159 step_range_start = sal.pc;
1160 step_range_end = sal.end;
1161 goto keep_going;
1162
1163 check_sigtramp2:
1164 if (trap_expected
1165 && IN_SIGTRAMP (stop_pc, stop_func_name)
1166 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1167 {
1168 /* What has happened here is that we have just stepped the inferior
1169 with a signal (because it is a signal which shouldn't make
1170 us stop), thus stepping into sigtramp.
1171
1172 So we need to set a step_resume_break_address breakpoint
1173 and continue until we hit it, and then step. FIXME: This should
1174 be more enduring than a step_resume breakpoint; we should know
1175 that we will later need to keep going rather than re-hitting
1176 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1177 it says "exceedingly difficult"). */
1178 struct symtab_and_line sr_sal;
1179
1180 sr_sal.pc = prev_pc;
1181 sr_sal.symtab = NULL;
1182 sr_sal.line = 0;
1183 step_resume_breakpoint =
1184 set_momentary_breakpoint (sr_sal, get_current_frame (),
1185 bp_step_resume);
1186 if (breakpoints_inserted)
1187 insert_breakpoints ();
1188
1189 remove_breakpoints_on_following_step = 1;
1190 another_trap = 1;
1191 }
1192
1193 keep_going:
1194 /* Come to this label when you need to resume the inferior.
1195 It's really much cleaner to do a goto than a maze of if-else
1196 conditions. */
1197
1198 /* Save the pc before execution, to compare with pc after stop. */
1199 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1200 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1201 BREAK is defined, the
1202 original pc would not have
1203 been at the start of a
1204 function. */
1205 prev_func_name = stop_func_name;
1206 prev_sp = stop_sp;
1207
1208 /* If we did not do break;, it means we should keep
1209 running the inferior and not return to debugger. */
1210
1211 if (trap_expected && stop_signal != SIGTRAP)
1212 {
1213 /* We took a signal (which we are supposed to pass through to
1214 the inferior, else we'd have done a break above) and we
1215 haven't yet gotten our trap. Simply continue. */
1216 resume (CURRENTLY_STEPPING (), stop_signal);
1217 }
1218 else
1219 {
1220 /* Either the trap was not expected, but we are continuing
1221 anyway (the user asked that this signal be passed to the
1222 child)
1223 -- or --
1224 The signal was SIGTRAP, e.g. it was our signal, but we
1225 decided we should resume from it.
1226
1227 We're going to run this baby now!
1228
1229 Insert breakpoints now, unless we are trying
1230 to one-proceed past a breakpoint. */
1231 /* If we've just finished a special step resume and we don't
1232 want to hit a breakpoint, pull em out. */
1233 if (step_resume_breakpoint == NULL &&
1234 remove_breakpoints_on_following_step)
1235 {
1236 remove_breakpoints_on_following_step = 0;
1237 remove_breakpoints ();
1238 breakpoints_inserted = 0;
1239 }
1240 else if (!breakpoints_inserted &&
1241 (step_resume_breakpoint != NULL || !another_trap))
1242 {
1243 breakpoints_failed = insert_breakpoints ();
1244 if (breakpoints_failed)
1245 break;
1246 breakpoints_inserted = 1;
1247 }
1248
1249 trap_expected = another_trap;
1250
1251 if (stop_signal == SIGTRAP)
1252 stop_signal = 0;
1253
1254#ifdef SHIFT_INST_REGS
1255 /* I'm not sure when this following segment applies. I do know, now,
1256 that we shouldn't rewrite the regs when we were stopped by a
1257 random signal from the inferior process. */
1258
1259 if (!bpstat_explains_signal (stop_bpstat)
1260 && (stop_signal != SIGCLD)
1261 && !stopped_by_random_signal)
1262 {
1263 CORE_ADDR pc_contents = read_register (PC_REGNUM);
1264 CORE_ADDR npc_contents = read_register (NPC_REGNUM);
1265 if (pc_contents != npc_contents)
1266 {
1267 write_register (NNPC_REGNUM, npc_contents);
1268 write_register (NPC_REGNUM, pc_contents);
1269 }
1270 }
1271#endif /* SHIFT_INST_REGS */
1272
1273 resume (CURRENTLY_STEPPING (), stop_signal);
1274 }
1275 }
1276
1277 stop_stepping:
1278 if (target_has_execution)
1279 {
1280 /* Assuming the inferior still exists, set these up for next
1281 time, just like we did above if we didn't break out of the
1282 loop. */
1283 prev_pc = read_pc ();
1284 prev_func_start = stop_func_start;
1285 prev_func_name = stop_func_name;
1286 prev_sp = stop_sp;
1287 }
1288 do_cleanups (old_cleanups);
1289}
1290\f
1291/* Here to return control to GDB when the inferior stops for real.
1292 Print appropriate messages, remove breakpoints, give terminal our modes.
1293
1294 STOP_PRINT_FRAME nonzero means print the executing frame
1295 (pc, function, args, file, line number and line text).
1296 BREAKPOINTS_FAILED nonzero means stop was due to error
1297 attempting to insert breakpoints. */
1298
1299void
1300normal_stop ()
1301{
1302 /* Make sure that the current_frame's pc is correct. This
1303 is a correction for setting up the frame info before doing
1304 DECR_PC_AFTER_BREAK */
1305 if (target_has_execution)
1306 (get_current_frame ())->pc = read_pc ();
1307
1308 if (breakpoints_failed)
1309 {
1310 target_terminal_ours_for_output ();
1311 print_sys_errmsg ("ptrace", breakpoints_failed);
1312 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1313The same program may be running in another process.\n");
1314 }
1315
1316 if (target_has_execution && breakpoints_inserted)
1317 if (remove_breakpoints ())
1318 {
1319 target_terminal_ours_for_output ();
1320 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1321It might be running in another process.\n\
1322Further execution is probably impossible.\n");
1323 }
1324
1325 breakpoints_inserted = 0;
1326
1327 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1328 Delete any breakpoint that is to be deleted at the next stop. */
1329
1330 breakpoint_auto_delete (stop_bpstat);
1331
1332 /* If an auto-display called a function and that got a signal,
1333 delete that auto-display to avoid an infinite recursion. */
1334
1335 if (stopped_by_random_signal)
1336 disable_current_display ();
1337
1338 if (step_multi && stop_step)
1339 return;
1340
1341 target_terminal_ours ();
1342
1343 /* Look up the hook_stop and run it if it exists. */
1344
1345 if (stop_command->hook)
1346 {
1347 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1348 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1349 }
1350
1351 if (!target_has_stack)
1352 return;
1353
1354 /* Select innermost stack frame except on return from a stack dummy routine,
1355 or if the program has exited. Print it without a level number if
1356 we have changed functions or hit a breakpoint. Print source line
1357 if we have one. */
1358 if (!stop_stack_dummy)
1359 {
1360 select_frame (get_current_frame (), 0);
1361
1362 if (stop_print_frame)
1363 {
1364 int source_only;
1365
1366 source_only = bpstat_print (stop_bpstat);
1367 source_only = source_only ||
1368 ( stop_step
1369 && step_frame_address == stop_frame_address
1370 && step_start_function == find_pc_function (stop_pc));
1371
1372 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1373
1374 /* Display the auto-display expressions. */
1375 do_displays ();
1376 }
1377 }
1378
1379 /* Save the function value return registers, if we care.
1380 We might be about to restore their previous contents. */
1381 if (proceed_to_finish)
1382 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1383
1384 if (stop_stack_dummy)
1385 {
1386 /* Pop the empty frame that contains the stack dummy.
1387 POP_FRAME ends with a setting of the current frame, so we
1388 can use that next. */
1389 POP_FRAME;
1390 select_frame (get_current_frame (), 0);
1391 }
1392}
1393
1394static int
1395hook_stop_stub (cmd)
1396 char *cmd;
1397{
1398 execute_user_command ((struct cmd_list_element *)cmd, 0);
1399 return (0);
1400}
1401\f
1402int signal_stop_state (signo)
1403 int signo;
1404{
1405 return ((signo >= 0 && signo < NSIG) ? signal_stop[signo] : 0);
1406}
1407
1408int signal_print_state (signo)
1409 int signo;
1410{
1411 return ((signo >= 0 && signo < NSIG) ? signal_print[signo] : 0);
1412}
1413
1414int signal_pass_state (signo)
1415 int signo;
1416{
1417 return ((signo >= 0 && signo < NSIG) ? signal_program[signo] : 0);
1418}
1419
1420static void
1421sig_print_header ()
1422{
1423 printf_filtered ("Signal\t\tStop\tPrint\tPass to program\tDescription\n");
1424}
1425
1426static void
1427sig_print_info (number)
1428 int number;
1429{
1430 char *name;
1431
1432 if ((name = strsigno (number)) == NULL)
1433 printf_filtered ("%d\t\t", number);
1434 else
1435 printf_filtered ("%s (%d)\t", name, number);
1436 printf_filtered ("%s\t", signal_stop[number] ? "Yes" : "No");
1437 printf_filtered ("%s\t", signal_print[number] ? "Yes" : "No");
1438 printf_filtered ("%s\t\t", signal_program[number] ? "Yes" : "No");
1439 printf_filtered ("%s\n", safe_strsignal (number));
1440}
1441
1442/* Specify how various signals in the inferior should be handled. */
1443
1444static void
1445handle_command (args, from_tty)
1446 char *args;
1447 int from_tty;
1448{
1449 char **argv;
1450 int digits, wordlen;
1451 int sigfirst, signum, siglast;
1452 int allsigs;
1453 int nsigs;
1454 unsigned char *sigs;
1455 struct cleanup *old_chain;
1456
1457 if (args == NULL)
1458 {
1459 error_no_arg ("signal to handle");
1460 }
1461
1462 /* Allocate and zero an array of flags for which signals to handle. */
1463
1464 nsigs = signo_max () + 1;
1465 sigs = (unsigned char *) alloca (nsigs);
1466 memset (sigs, 0, nsigs);
1467
1468 /* Break the command line up into args. */
1469
1470 argv = buildargv (args);
1471 if (argv == NULL)
1472 {
1473 nomem (0);
1474 }
1475 old_chain = make_cleanup (freeargv, (char *) argv);
1476
1477 /* Walk through the args, looking for signal numbers, signal names, and
1478 actions. Signal numbers and signal names may be interspersed with
1479 actions, with the actions being performed for all signals cumulatively
1480 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1481
1482 while (*argv != NULL)
1483 {
1484 wordlen = strlen (*argv);
1485 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1486 allsigs = 0;
1487 sigfirst = siglast = -1;
1488
1489 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1490 {
1491 /* Apply action to all signals except those used by the
1492 debugger. Silently skip those. */
1493 allsigs = 1;
1494 sigfirst = 0;
1495 siglast = nsigs - 1;
1496 }
1497 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1498 {
1499 SET_SIGS (nsigs, sigs, signal_stop);
1500 SET_SIGS (nsigs, sigs, signal_print);
1501 }
1502 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1503 {
1504 UNSET_SIGS (nsigs, sigs, signal_program);
1505 }
1506 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1507 {
1508 SET_SIGS (nsigs, sigs, signal_print);
1509 }
1510 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1511 {
1512 SET_SIGS (nsigs, sigs, signal_program);
1513 }
1514 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1515 {
1516 UNSET_SIGS (nsigs, sigs, signal_stop);
1517 }
1518 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1519 {
1520 SET_SIGS (nsigs, sigs, signal_program);
1521 }
1522 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1523 {
1524 UNSET_SIGS (nsigs, sigs, signal_print);
1525 UNSET_SIGS (nsigs, sigs, signal_stop);
1526 }
1527 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1528 {
1529 UNSET_SIGS (nsigs, sigs, signal_program);
1530 }
1531 else if (digits > 0)
1532 {
1533 sigfirst = siglast = atoi (*argv);
1534 if ((*argv)[digits] == '-')
1535 {
1536 siglast = atoi ((*argv) + digits + 1);
1537 }
1538 if (sigfirst > siglast)
1539 {
1540 /* Bet he didn't figure we'd think of this case... */
1541 signum = sigfirst;
1542 sigfirst = siglast;
1543 siglast = signum;
1544 }
1545 if (sigfirst < 0 || sigfirst >= nsigs)
1546 {
1547 error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
1548 }
1549 if (siglast < 0 || siglast >= nsigs)
1550 {
1551 error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1552 }
1553 }
1554 else if ((signum = strtosigno (*argv)) != 0)
1555 {
1556 sigfirst = siglast = signum;
1557 }
1558 else
1559 {
1560 /* Not a number and not a recognized flag word => complain. */
1561 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1562 }
1563
1564 /* If any signal numbers or symbol names were found, set flags for
1565 which signals to apply actions to. */
1566
1567 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1568 {
1569 switch (signum)
1570 {
1571 case SIGTRAP:
1572 case SIGINT:
1573 if (!allsigs && !sigs[signum])
1574 {
1575 if (query ("%s is used by the debugger.\nAre you sure you want to change it? ", strsigno (signum)))
1576 {
1577 sigs[signum] = 1;
1578 }
1579 else
1580 {
1581 printf ("Not confirmed, unchanged.\n");
1582 fflush (stdout);
1583 }
1584 }
1585 break;
1586 default:
1587 sigs[signum] = 1;
1588 break;
1589 }
1590 }
1591
1592 argv++;
1593 }
1594
1595 target_notice_signals();
1596
1597 if (from_tty)
1598 {
1599 /* Show the results. */
1600 sig_print_header ();
1601 for (signum = 0; signum < nsigs; signum++)
1602 {
1603 if (sigs[signum])
1604 {
1605 sig_print_info (signum);
1606 }
1607 }
1608 }
1609
1610 do_cleanups (old_chain);
1611}
1612
1613/* Print current contents of the tables set by the handle command. */
1614
1615static void
1616signals_info (signum_exp, from_tty)
1617 char *signum_exp;
1618 int from_tty;
1619{
1620 register int i;
1621 sig_print_header ();
1622
1623 if (signum_exp)
1624 {
1625 /* First see if this is a symbol name. */
1626 i = strtosigno (signum_exp);
1627 if (i == 0)
1628 {
1629 /* Nope, maybe it's an address which evaluates to a signal
1630 number. */
1631 i = parse_and_eval_address (signum_exp);
1632 if (i >= NSIG || i < 0)
1633 error ("Signal number out of bounds.");
1634 }
1635 sig_print_info (i);
1636 return;
1637 }
1638
1639 printf_filtered ("\n");
1640 for (i = 0; i < NSIG; i++)
1641 {
1642 QUIT;
1643
1644 sig_print_info (i);
1645 }
1646
1647 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1648}
1649\f
1650/* Save all of the information associated with the inferior<==>gdb
1651 connection. INF_STATUS is a pointer to a "struct inferior_status"
1652 (defined in inferior.h). */
1653
1654void
1655save_inferior_status (inf_status, restore_stack_info)
1656 struct inferior_status *inf_status;
1657 int restore_stack_info;
1658{
1659 inf_status->stop_signal = stop_signal;
1660 inf_status->stop_pc = stop_pc;
1661 inf_status->stop_frame_address = stop_frame_address;
1662 inf_status->stop_step = stop_step;
1663 inf_status->stop_stack_dummy = stop_stack_dummy;
1664 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1665 inf_status->trap_expected = trap_expected;
1666 inf_status->step_range_start = step_range_start;
1667 inf_status->step_range_end = step_range_end;
1668 inf_status->step_frame_address = step_frame_address;
1669 inf_status->step_over_calls = step_over_calls;
1670 inf_status->stop_after_trap = stop_after_trap;
1671 inf_status->stop_soon_quietly = stop_soon_quietly;
1672 /* Save original bpstat chain here; replace it with copy of chain.
1673 If caller's caller is walking the chain, they'll be happier if we
1674 hand them back the original chain when restore_i_s is called. */
1675 inf_status->stop_bpstat = stop_bpstat;
1676 stop_bpstat = bpstat_copy (stop_bpstat);
1677 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1678 inf_status->restore_stack_info = restore_stack_info;
1679 inf_status->proceed_to_finish = proceed_to_finish;
1680
1681 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1682
1683 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1684
1685 record_selected_frame (&(inf_status->selected_frame_address),
1686 &(inf_status->selected_level));
1687 return;
1688}
1689
1690struct restore_selected_frame_args {
1691 FRAME_ADDR frame_address;
1692 int level;
1693};
1694
1695static int restore_selected_frame PARAMS ((char *));
1696
1697/* Restore the selected frame. args is really a struct
1698 restore_selected_frame_args * (declared as char * for catch_errors)
1699 telling us what frame to restore. Returns 1 for success, or 0 for
1700 failure. An error message will have been printed on error. */
1701static int
1702restore_selected_frame (args)
1703 char *args;
1704{
1705 struct restore_selected_frame_args *fr =
1706 (struct restore_selected_frame_args *) args;
1707 FRAME fid;
1708 int level = fr->level;
1709
1710 fid = find_relative_frame (get_current_frame (), &level);
1711
1712 /* If inf_status->selected_frame_address is NULL, there was no
1713 previously selected frame. */
1714 if (fid == 0 ||
1715 FRAME_FP (fid) != fr->frame_address ||
1716 level != 0)
1717 {
1718 warning ("Unable to restore previously selected frame.\n");
1719 return 0;
1720 }
1721 select_frame (fid, fr->level);
1722 return(1);
1723}
1724
1725void
1726restore_inferior_status (inf_status)
1727 struct inferior_status *inf_status;
1728{
1729 stop_signal = inf_status->stop_signal;
1730 stop_pc = inf_status->stop_pc;
1731 stop_frame_address = inf_status->stop_frame_address;
1732 stop_step = inf_status->stop_step;
1733 stop_stack_dummy = inf_status->stop_stack_dummy;
1734 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1735 trap_expected = inf_status->trap_expected;
1736 step_range_start = inf_status->step_range_start;
1737 step_range_end = inf_status->step_range_end;
1738 step_frame_address = inf_status->step_frame_address;
1739 step_over_calls = inf_status->step_over_calls;
1740 stop_after_trap = inf_status->stop_after_trap;
1741 stop_soon_quietly = inf_status->stop_soon_quietly;
1742 bpstat_clear (&stop_bpstat);
1743 stop_bpstat = inf_status->stop_bpstat;
1744 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1745 proceed_to_finish = inf_status->proceed_to_finish;
1746
1747 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1748
1749 /* The inferior can be gone if the user types "print exit(0)"
1750 (and perhaps other times). */
1751 if (target_has_execution)
1752 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1753
1754 /* The inferior can be gone if the user types "print exit(0)"
1755 (and perhaps other times). */
1756
1757 /* FIXME: If we are being called after stopping in a function which
1758 is called from gdb, we should not be trying to restore the
1759 selected frame; it just prints a spurious error message (The
1760 message is useful, however, in detecting bugs in gdb (like if gdb
1761 clobbers the stack)). In fact, should we be restoring the
1762 inferior status at all in that case? . */
1763
1764 if (target_has_stack && inf_status->restore_stack_info)
1765 {
1766 struct restore_selected_frame_args fr;
1767 fr.level = inf_status->selected_level;
1768 fr.frame_address = inf_status->selected_frame_address;
1769 /* The point of catch_errors is that if the stack is clobbered,
1770 walking the stack might encounter a garbage pointer and error()
1771 trying to dereference it. */
1772 if (catch_errors (restore_selected_frame, &fr,
1773 "Unable to restore previously selected frame:\n",
1774 RETURN_MASK_ERROR) == 0)
1775 /* Error in restoring the selected frame. Select the innermost
1776 frame. */
1777 select_frame (get_current_frame (), 0);
1778 }
1779}
1780
1781\f
1782void
1783_initialize_infrun ()
1784{
1785 register int i;
1786 register int numsigs;
1787
1788 add_info ("signals", signals_info,
1789 "What debugger does when program gets various signals.\n\
1790Specify a signal number as argument to print info on that signal only.");
1791 add_info_alias ("handle", "signals", 0);
1792
1793 add_com ("handle", class_run, handle_command,
1794 "Specify how to handle a signal.\n\
1795Args are signal numbers and actions to apply to those signals.\n\
1796Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
1797Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
1798The special arg \"all\" is recognized to mean all signals except those\n\
1799used by the debugger, typically SIGTRAP and SIGINT.\n\
1800Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
1801\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1802Stop means reenter debugger if this signal happens (implies print).\n\
1803Print means print a message if this signal happens.\n\
1804Pass means let program see this signal; otherwise program doesn't know.\n\
1805Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1806Pass and Stop may be combined.");
1807
1808 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
1809 "There is no `stop' command, but you can set a hook on `stop'.\n\
1810This allows you to set a list of commands to be run each time execution\n\
1811of the program stops.", &cmdlist);
1812
1813 numsigs = signo_max () + 1;
1814 signal_stop = (unsigned char *)
1815 xmalloc (sizeof (signal_stop[0]) * numsigs);
1816 signal_print = (unsigned char *)
1817 xmalloc (sizeof (signal_print[0]) * numsigs);
1818 signal_program = (unsigned char *)
1819 xmalloc (sizeof (signal_program[0]) * numsigs);
1820 for (i = 0; i < numsigs; i++)
1821 {
1822 signal_stop[i] = 1;
1823 signal_print[i] = 1;
1824 signal_program[i] = 1;
1825 }
1826
1827 /* Signals caused by debugger's own actions
1828 should not be given to the program afterwards. */
1829 signal_program[SIGTRAP] = 0;
1830 signal_program[SIGINT] = 0;
1831
1832 /* Signals that are not errors should not normally enter the debugger. */
1833#ifdef SIGALRM
1834 signal_stop[SIGALRM] = 0;
1835 signal_print[SIGALRM] = 0;
1836#endif /* SIGALRM */
1837#ifdef SIGVTALRM
1838 signal_stop[SIGVTALRM] = 0;
1839 signal_print[SIGVTALRM] = 0;
1840#endif /* SIGVTALRM */
1841#ifdef SIGPROF
1842 signal_stop[SIGPROF] = 0;
1843 signal_print[SIGPROF] = 0;
1844#endif /* SIGPROF */
1845#ifdef SIGCHLD
1846 signal_stop[SIGCHLD] = 0;
1847 signal_print[SIGCHLD] = 0;
1848#endif /* SIGCHLD */
1849#ifdef SIGCLD
1850 signal_stop[SIGCLD] = 0;
1851 signal_print[SIGCLD] = 0;
1852#endif /* SIGCLD */
1853#ifdef SIGIO
1854 signal_stop[SIGIO] = 0;
1855 signal_print[SIGIO] = 0;
1856#endif /* SIGIO */
1857#ifdef SIGURG
1858 signal_stop[SIGURG] = 0;
1859 signal_print[SIGURG] = 0;
1860#endif /* SIGURG */
1861}
This page took 0.028209 seconds and 4 git commands to generate.