Extended-remote follow-exec
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "infrun.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
28#include "gdb_wait.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "cli/cli-script.h"
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
35#include "symfile.h"
36#include "top.h"
37#include <signal.h>
38#include "inf-loop.h"
39#include "regcache.h"
40#include "value.h"
41#include "observer.h"
42#include "language.h"
43#include "solib.h"
44#include "main.h"
45#include "dictionary.h"
46#include "block.h"
47#include "mi/mi-common.h"
48#include "event-top.h"
49#include "record.h"
50#include "record-full.h"
51#include "inline-frame.h"
52#include "jit.h"
53#include "tracepoint.h"
54#include "continuations.h"
55#include "interps.h"
56#include "skip.h"
57#include "probe.h"
58#include "objfiles.h"
59#include "completer.h"
60#include "target-descriptions.h"
61#include "target-dcache.h"
62#include "terminal.h"
63#include "solist.h"
64#include "event-loop.h"
65#include "thread-fsm.h"
66
67/* Prototypes for local functions */
68
69static void signals_info (char *, int);
70
71static void handle_command (char *, int);
72
73static void sig_print_info (enum gdb_signal);
74
75static void sig_print_header (void);
76
77static void resume_cleanups (void *);
78
79static int hook_stop_stub (void *);
80
81static int restore_selected_frame (void *);
82
83static int follow_fork (void);
84
85static int follow_fork_inferior (int follow_child, int detach_fork);
86
87static void follow_inferior_reset_breakpoints (void);
88
89static void set_schedlock_func (char *args, int from_tty,
90 struct cmd_list_element *c);
91
92static int currently_stepping (struct thread_info *tp);
93
94void _initialize_infrun (void);
95
96void nullify_last_target_wait_ptid (void);
97
98static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
99
100static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
102static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
104static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
106/* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108static struct async_event_handler *infrun_async_inferior_event_token;
109
110/* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112static int infrun_is_async = -1;
113
114/* See infrun.h. */
115
116void
117infrun_async (int enable)
118{
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133}
134
135/* See infrun.h. */
136
137void
138mark_infrun_async_event_handler (void)
139{
140 mark_async_event_handler (infrun_async_inferior_event_token);
141}
142
143/* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146int step_stop_if_no_debug = 0;
147static void
148show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152}
153
154/* In asynchronous mode, but simulating synchronous execution. */
155
156int sync_execution = 0;
157
158/* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
161
162static ptid_t previous_inferior_ptid;
163
164/* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169static int detach_fork = 1;
170
171int debug_displaced = 0;
172static void
173show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177}
178
179unsigned int debug_infrun = 0;
180static void
181show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185}
186
187
188/* Support for disabling address space randomization. */
189
190int disable_randomization = 1;
191
192static void
193show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205}
206
207static void
208set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210{
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215}
216
217/* User interface for non-stop mode. */
218
219int non_stop = 0;
220static int non_stop_1 = 0;
221
222static void
223set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233}
234
235static void
236show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242}
243
244/* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
248int observer_mode = 0;
249static int observer_mode_1 = 0;
250
251static void
252set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254{
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285}
286
287static void
288show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290{
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292}
293
294/* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300void
301update_observer_mode (void)
302{
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
318
319/* Tables of how to react to signals; the user sets them. */
320
321static unsigned char *signal_stop;
322static unsigned char *signal_print;
323static unsigned char *signal_program;
324
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329static unsigned char *signal_catch;
330
331/* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334static unsigned char *signal_pass;
335
336#define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344#define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
352/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355void
356update_signals_program_target (void)
357{
358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
359}
360
361/* Value to pass to target_resume() to cause all threads to resume. */
362
363#define RESUME_ALL minus_one_ptid
364
365/* Command list pointer for the "stop" placeholder. */
366
367static struct cmd_list_element *stop_command;
368
369/* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
371int stop_on_solib_events;
372
373/* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376static void
377set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378{
379 update_solib_breakpoints ();
380}
381
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
389
390/* Nonzero means expecting a trace trap
391 and should stop the inferior and return silently when it happens. */
392
393int stop_after_trap;
394
395/* Nonzero after stop if current stack frame should be printed. */
396
397static int stop_print_frame;
398
399/* This is a cached copy of the pid/waitstatus of the last event
400 returned by target_wait()/deprecated_target_wait_hook(). This
401 information is returned by get_last_target_status(). */
402static ptid_t target_last_wait_ptid;
403static struct target_waitstatus target_last_waitstatus;
404
405static void context_switch (ptid_t ptid);
406
407void init_thread_stepping_state (struct thread_info *tss);
408
409static const char follow_fork_mode_child[] = "child";
410static const char follow_fork_mode_parent[] = "parent";
411
412static const char *const follow_fork_mode_kind_names[] = {
413 follow_fork_mode_child,
414 follow_fork_mode_parent,
415 NULL
416};
417
418static const char *follow_fork_mode_string = follow_fork_mode_parent;
419static void
420show_follow_fork_mode_string (struct ui_file *file, int from_tty,
421 struct cmd_list_element *c, const char *value)
422{
423 fprintf_filtered (file,
424 _("Debugger response to a program "
425 "call of fork or vfork is \"%s\".\n"),
426 value);
427}
428\f
429
430/* Handle changes to the inferior list based on the type of fork,
431 which process is being followed, and whether the other process
432 should be detached. On entry inferior_ptid must be the ptid of
433 the fork parent. At return inferior_ptid is the ptid of the
434 followed inferior. */
435
436static int
437follow_fork_inferior (int follow_child, int detach_fork)
438{
439 int has_vforked;
440 ptid_t parent_ptid, child_ptid;
441
442 has_vforked = (inferior_thread ()->pending_follow.kind
443 == TARGET_WAITKIND_VFORKED);
444 parent_ptid = inferior_ptid;
445 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
446
447 if (has_vforked
448 && !non_stop /* Non-stop always resumes both branches. */
449 && (!target_is_async_p () || sync_execution)
450 && !(follow_child || detach_fork || sched_multi))
451 {
452 /* The parent stays blocked inside the vfork syscall until the
453 child execs or exits. If we don't let the child run, then
454 the parent stays blocked. If we're telling the parent to run
455 in the foreground, the user will not be able to ctrl-c to get
456 back the terminal, effectively hanging the debug session. */
457 fprintf_filtered (gdb_stderr, _("\
458Can not resume the parent process over vfork in the foreground while\n\
459holding the child stopped. Try \"set detach-on-fork\" or \
460\"set schedule-multiple\".\n"));
461 /* FIXME output string > 80 columns. */
462 return 1;
463 }
464
465 if (!follow_child)
466 {
467 /* Detach new forked process? */
468 if (detach_fork)
469 {
470 struct cleanup *old_chain;
471
472 /* Before detaching from the child, remove all breakpoints
473 from it. If we forked, then this has already been taken
474 care of by infrun.c. If we vforked however, any
475 breakpoint inserted in the parent is visible in the
476 child, even those added while stopped in a vfork
477 catchpoint. This will remove the breakpoints from the
478 parent also, but they'll be reinserted below. */
479 if (has_vforked)
480 {
481 /* Keep breakpoints list in sync. */
482 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
483 }
484
485 if (info_verbose || debug_infrun)
486 {
487 /* Ensure that we have a process ptid. */
488 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
489
490 target_terminal_ours_for_output ();
491 fprintf_filtered (gdb_stdlog,
492 _("Detaching after %s from child %s.\n"),
493 has_vforked ? "vfork" : "fork",
494 target_pid_to_str (process_ptid));
495 }
496 }
497 else
498 {
499 struct inferior *parent_inf, *child_inf;
500 struct cleanup *old_chain;
501
502 /* Add process to GDB's tables. */
503 child_inf = add_inferior (ptid_get_pid (child_ptid));
504
505 parent_inf = current_inferior ();
506 child_inf->attach_flag = parent_inf->attach_flag;
507 copy_terminal_info (child_inf, parent_inf);
508 child_inf->gdbarch = parent_inf->gdbarch;
509 copy_inferior_target_desc_info (child_inf, parent_inf);
510
511 old_chain = save_inferior_ptid ();
512 save_current_program_space ();
513
514 inferior_ptid = child_ptid;
515 add_thread (inferior_ptid);
516 child_inf->symfile_flags = SYMFILE_NO_READ;
517
518 /* If this is a vfork child, then the address-space is
519 shared with the parent. */
520 if (has_vforked)
521 {
522 child_inf->pspace = parent_inf->pspace;
523 child_inf->aspace = parent_inf->aspace;
524
525 /* The parent will be frozen until the child is done
526 with the shared region. Keep track of the
527 parent. */
528 child_inf->vfork_parent = parent_inf;
529 child_inf->pending_detach = 0;
530 parent_inf->vfork_child = child_inf;
531 parent_inf->pending_detach = 0;
532 }
533 else
534 {
535 child_inf->aspace = new_address_space ();
536 child_inf->pspace = add_program_space (child_inf->aspace);
537 child_inf->removable = 1;
538 set_current_program_space (child_inf->pspace);
539 clone_program_space (child_inf->pspace, parent_inf->pspace);
540
541 /* Let the shared library layer (e.g., solib-svr4) learn
542 about this new process, relocate the cloned exec, pull
543 in shared libraries, and install the solib event
544 breakpoint. If a "cloned-VM" event was propagated
545 better throughout the core, this wouldn't be
546 required. */
547 solib_create_inferior_hook (0);
548 }
549
550 do_cleanups (old_chain);
551 }
552
553 if (has_vforked)
554 {
555 struct inferior *parent_inf;
556
557 parent_inf = current_inferior ();
558
559 /* If we detached from the child, then we have to be careful
560 to not insert breakpoints in the parent until the child
561 is done with the shared memory region. However, if we're
562 staying attached to the child, then we can and should
563 insert breakpoints, so that we can debug it. A
564 subsequent child exec or exit is enough to know when does
565 the child stops using the parent's address space. */
566 parent_inf->waiting_for_vfork_done = detach_fork;
567 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
568 }
569 }
570 else
571 {
572 /* Follow the child. */
573 struct inferior *parent_inf, *child_inf;
574 struct program_space *parent_pspace;
575
576 if (info_verbose || debug_infrun)
577 {
578 target_terminal_ours_for_output ();
579 fprintf_filtered (gdb_stdlog,
580 _("Attaching after %s %s to child %s.\n"),
581 target_pid_to_str (parent_ptid),
582 has_vforked ? "vfork" : "fork",
583 target_pid_to_str (child_ptid));
584 }
585
586 /* Add the new inferior first, so that the target_detach below
587 doesn't unpush the target. */
588
589 child_inf = add_inferior (ptid_get_pid (child_ptid));
590
591 parent_inf = current_inferior ();
592 child_inf->attach_flag = parent_inf->attach_flag;
593 copy_terminal_info (child_inf, parent_inf);
594 child_inf->gdbarch = parent_inf->gdbarch;
595 copy_inferior_target_desc_info (child_inf, parent_inf);
596
597 parent_pspace = parent_inf->pspace;
598
599 /* If we're vforking, we want to hold on to the parent until the
600 child exits or execs. At child exec or exit time we can
601 remove the old breakpoints from the parent and detach or
602 resume debugging it. Otherwise, detach the parent now; we'll
603 want to reuse it's program/address spaces, but we can't set
604 them to the child before removing breakpoints from the
605 parent, otherwise, the breakpoints module could decide to
606 remove breakpoints from the wrong process (since they'd be
607 assigned to the same address space). */
608
609 if (has_vforked)
610 {
611 gdb_assert (child_inf->vfork_parent == NULL);
612 gdb_assert (parent_inf->vfork_child == NULL);
613 child_inf->vfork_parent = parent_inf;
614 child_inf->pending_detach = 0;
615 parent_inf->vfork_child = child_inf;
616 parent_inf->pending_detach = detach_fork;
617 parent_inf->waiting_for_vfork_done = 0;
618 }
619 else if (detach_fork)
620 {
621 if (info_verbose || debug_infrun)
622 {
623 /* Ensure that we have a process ptid. */
624 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
625
626 target_terminal_ours_for_output ();
627 fprintf_filtered (gdb_stdlog,
628 _("Detaching after fork from "
629 "child %s.\n"),
630 target_pid_to_str (process_ptid));
631 }
632
633 target_detach (NULL, 0);
634 }
635
636 /* Note that the detach above makes PARENT_INF dangling. */
637
638 /* Add the child thread to the appropriate lists, and switch to
639 this new thread, before cloning the program space, and
640 informing the solib layer about this new process. */
641
642 inferior_ptid = child_ptid;
643 add_thread (inferior_ptid);
644
645 /* If this is a vfork child, then the address-space is shared
646 with the parent. If we detached from the parent, then we can
647 reuse the parent's program/address spaces. */
648 if (has_vforked || detach_fork)
649 {
650 child_inf->pspace = parent_pspace;
651 child_inf->aspace = child_inf->pspace->aspace;
652 }
653 else
654 {
655 child_inf->aspace = new_address_space ();
656 child_inf->pspace = add_program_space (child_inf->aspace);
657 child_inf->removable = 1;
658 child_inf->symfile_flags = SYMFILE_NO_READ;
659 set_current_program_space (child_inf->pspace);
660 clone_program_space (child_inf->pspace, parent_pspace);
661
662 /* Let the shared library layer (e.g., solib-svr4) learn
663 about this new process, relocate the cloned exec, pull in
664 shared libraries, and install the solib event breakpoint.
665 If a "cloned-VM" event was propagated better throughout
666 the core, this wouldn't be required. */
667 solib_create_inferior_hook (0);
668 }
669 }
670
671 return target_follow_fork (follow_child, detach_fork);
672}
673
674/* Tell the target to follow the fork we're stopped at. Returns true
675 if the inferior should be resumed; false, if the target for some
676 reason decided it's best not to resume. */
677
678static int
679follow_fork (void)
680{
681 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
682 int should_resume = 1;
683 struct thread_info *tp;
684
685 /* Copy user stepping state to the new inferior thread. FIXME: the
686 followed fork child thread should have a copy of most of the
687 parent thread structure's run control related fields, not just these.
688 Initialized to avoid "may be used uninitialized" warnings from gcc. */
689 struct breakpoint *step_resume_breakpoint = NULL;
690 struct breakpoint *exception_resume_breakpoint = NULL;
691 CORE_ADDR step_range_start = 0;
692 CORE_ADDR step_range_end = 0;
693 struct frame_id step_frame_id = { 0 };
694 struct interp *command_interp = NULL;
695
696 if (!non_stop)
697 {
698 ptid_t wait_ptid;
699 struct target_waitstatus wait_status;
700
701 /* Get the last target status returned by target_wait(). */
702 get_last_target_status (&wait_ptid, &wait_status);
703
704 /* If not stopped at a fork event, then there's nothing else to
705 do. */
706 if (wait_status.kind != TARGET_WAITKIND_FORKED
707 && wait_status.kind != TARGET_WAITKIND_VFORKED)
708 return 1;
709
710 /* Check if we switched over from WAIT_PTID, since the event was
711 reported. */
712 if (!ptid_equal (wait_ptid, minus_one_ptid)
713 && !ptid_equal (inferior_ptid, wait_ptid))
714 {
715 /* We did. Switch back to WAIT_PTID thread, to tell the
716 target to follow it (in either direction). We'll
717 afterwards refuse to resume, and inform the user what
718 happened. */
719 switch_to_thread (wait_ptid);
720 should_resume = 0;
721 }
722 }
723
724 tp = inferior_thread ();
725
726 /* If there were any forks/vforks that were caught and are now to be
727 followed, then do so now. */
728 switch (tp->pending_follow.kind)
729 {
730 case TARGET_WAITKIND_FORKED:
731 case TARGET_WAITKIND_VFORKED:
732 {
733 ptid_t parent, child;
734
735 /* If the user did a next/step, etc, over a fork call,
736 preserve the stepping state in the fork child. */
737 if (follow_child && should_resume)
738 {
739 step_resume_breakpoint = clone_momentary_breakpoint
740 (tp->control.step_resume_breakpoint);
741 step_range_start = tp->control.step_range_start;
742 step_range_end = tp->control.step_range_end;
743 step_frame_id = tp->control.step_frame_id;
744 exception_resume_breakpoint
745 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
746 command_interp = tp->control.command_interp;
747
748 /* For now, delete the parent's sr breakpoint, otherwise,
749 parent/child sr breakpoints are considered duplicates,
750 and the child version will not be installed. Remove
751 this when the breakpoints module becomes aware of
752 inferiors and address spaces. */
753 delete_step_resume_breakpoint (tp);
754 tp->control.step_range_start = 0;
755 tp->control.step_range_end = 0;
756 tp->control.step_frame_id = null_frame_id;
757 delete_exception_resume_breakpoint (tp);
758 tp->control.command_interp = NULL;
759 }
760
761 parent = inferior_ptid;
762 child = tp->pending_follow.value.related_pid;
763
764 /* Set up inferior(s) as specified by the caller, and tell the
765 target to do whatever is necessary to follow either parent
766 or child. */
767 if (follow_fork_inferior (follow_child, detach_fork))
768 {
769 /* Target refused to follow, or there's some other reason
770 we shouldn't resume. */
771 should_resume = 0;
772 }
773 else
774 {
775 /* This pending follow fork event is now handled, one way
776 or another. The previous selected thread may be gone
777 from the lists by now, but if it is still around, need
778 to clear the pending follow request. */
779 tp = find_thread_ptid (parent);
780 if (tp)
781 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
782
783 /* This makes sure we don't try to apply the "Switched
784 over from WAIT_PID" logic above. */
785 nullify_last_target_wait_ptid ();
786
787 /* If we followed the child, switch to it... */
788 if (follow_child)
789 {
790 switch_to_thread (child);
791
792 /* ... and preserve the stepping state, in case the
793 user was stepping over the fork call. */
794 if (should_resume)
795 {
796 tp = inferior_thread ();
797 tp->control.step_resume_breakpoint
798 = step_resume_breakpoint;
799 tp->control.step_range_start = step_range_start;
800 tp->control.step_range_end = step_range_end;
801 tp->control.step_frame_id = step_frame_id;
802 tp->control.exception_resume_breakpoint
803 = exception_resume_breakpoint;
804 tp->control.command_interp = command_interp;
805 }
806 else
807 {
808 /* If we get here, it was because we're trying to
809 resume from a fork catchpoint, but, the user
810 has switched threads away from the thread that
811 forked. In that case, the resume command
812 issued is most likely not applicable to the
813 child, so just warn, and refuse to resume. */
814 warning (_("Not resuming: switched threads "
815 "before following fork child."));
816 }
817
818 /* Reset breakpoints in the child as appropriate. */
819 follow_inferior_reset_breakpoints ();
820 }
821 else
822 switch_to_thread (parent);
823 }
824 }
825 break;
826 case TARGET_WAITKIND_SPURIOUS:
827 /* Nothing to follow. */
828 break;
829 default:
830 internal_error (__FILE__, __LINE__,
831 "Unexpected pending_follow.kind %d\n",
832 tp->pending_follow.kind);
833 break;
834 }
835
836 return should_resume;
837}
838
839static void
840follow_inferior_reset_breakpoints (void)
841{
842 struct thread_info *tp = inferior_thread ();
843
844 /* Was there a step_resume breakpoint? (There was if the user
845 did a "next" at the fork() call.) If so, explicitly reset its
846 thread number. Cloned step_resume breakpoints are disabled on
847 creation, so enable it here now that it is associated with the
848 correct thread.
849
850 step_resumes are a form of bp that are made to be per-thread.
851 Since we created the step_resume bp when the parent process
852 was being debugged, and now are switching to the child process,
853 from the breakpoint package's viewpoint, that's a switch of
854 "threads". We must update the bp's notion of which thread
855 it is for, or it'll be ignored when it triggers. */
856
857 if (tp->control.step_resume_breakpoint)
858 {
859 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
860 tp->control.step_resume_breakpoint->loc->enabled = 1;
861 }
862
863 /* Treat exception_resume breakpoints like step_resume breakpoints. */
864 if (tp->control.exception_resume_breakpoint)
865 {
866 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
867 tp->control.exception_resume_breakpoint->loc->enabled = 1;
868 }
869
870 /* Reinsert all breakpoints in the child. The user may have set
871 breakpoints after catching the fork, in which case those
872 were never set in the child, but only in the parent. This makes
873 sure the inserted breakpoints match the breakpoint list. */
874
875 breakpoint_re_set ();
876 insert_breakpoints ();
877}
878
879/* The child has exited or execed: resume threads of the parent the
880 user wanted to be executing. */
881
882static int
883proceed_after_vfork_done (struct thread_info *thread,
884 void *arg)
885{
886 int pid = * (int *) arg;
887
888 if (ptid_get_pid (thread->ptid) == pid
889 && is_running (thread->ptid)
890 && !is_executing (thread->ptid)
891 && !thread->stop_requested
892 && thread->suspend.stop_signal == GDB_SIGNAL_0)
893 {
894 if (debug_infrun)
895 fprintf_unfiltered (gdb_stdlog,
896 "infrun: resuming vfork parent thread %s\n",
897 target_pid_to_str (thread->ptid));
898
899 switch_to_thread (thread->ptid);
900 clear_proceed_status (0);
901 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
902 }
903
904 return 0;
905}
906
907/* Called whenever we notice an exec or exit event, to handle
908 detaching or resuming a vfork parent. */
909
910static void
911handle_vfork_child_exec_or_exit (int exec)
912{
913 struct inferior *inf = current_inferior ();
914
915 if (inf->vfork_parent)
916 {
917 int resume_parent = -1;
918
919 /* This exec or exit marks the end of the shared memory region
920 between the parent and the child. If the user wanted to
921 detach from the parent, now is the time. */
922
923 if (inf->vfork_parent->pending_detach)
924 {
925 struct thread_info *tp;
926 struct cleanup *old_chain;
927 struct program_space *pspace;
928 struct address_space *aspace;
929
930 /* follow-fork child, detach-on-fork on. */
931
932 inf->vfork_parent->pending_detach = 0;
933
934 if (!exec)
935 {
936 /* If we're handling a child exit, then inferior_ptid
937 points at the inferior's pid, not to a thread. */
938 old_chain = save_inferior_ptid ();
939 save_current_program_space ();
940 save_current_inferior ();
941 }
942 else
943 old_chain = save_current_space_and_thread ();
944
945 /* We're letting loose of the parent. */
946 tp = any_live_thread_of_process (inf->vfork_parent->pid);
947 switch_to_thread (tp->ptid);
948
949 /* We're about to detach from the parent, which implicitly
950 removes breakpoints from its address space. There's a
951 catch here: we want to reuse the spaces for the child,
952 but, parent/child are still sharing the pspace at this
953 point, although the exec in reality makes the kernel give
954 the child a fresh set of new pages. The problem here is
955 that the breakpoints module being unaware of this, would
956 likely chose the child process to write to the parent
957 address space. Swapping the child temporarily away from
958 the spaces has the desired effect. Yes, this is "sort
959 of" a hack. */
960
961 pspace = inf->pspace;
962 aspace = inf->aspace;
963 inf->aspace = NULL;
964 inf->pspace = NULL;
965
966 if (debug_infrun || info_verbose)
967 {
968 target_terminal_ours_for_output ();
969
970 if (exec)
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exec.\n"),
975 inf->vfork_parent->pid);
976 }
977 else
978 {
979 fprintf_filtered (gdb_stdlog,
980 _("Detaching vfork parent process "
981 "%d after child exit.\n"),
982 inf->vfork_parent->pid);
983 }
984 }
985
986 target_detach (NULL, 0);
987
988 /* Put it back. */
989 inf->pspace = pspace;
990 inf->aspace = aspace;
991
992 do_cleanups (old_chain);
993 }
994 else if (exec)
995 {
996 /* We're staying attached to the parent, so, really give the
997 child a new address space. */
998 inf->pspace = add_program_space (maybe_new_address_space ());
999 inf->aspace = inf->pspace->aspace;
1000 inf->removable = 1;
1001 set_current_program_space (inf->pspace);
1002
1003 resume_parent = inf->vfork_parent->pid;
1004
1005 /* Break the bonds. */
1006 inf->vfork_parent->vfork_child = NULL;
1007 }
1008 else
1009 {
1010 struct cleanup *old_chain;
1011 struct program_space *pspace;
1012
1013 /* If this is a vfork child exiting, then the pspace and
1014 aspaces were shared with the parent. Since we're
1015 reporting the process exit, we'll be mourning all that is
1016 found in the address space, and switching to null_ptid,
1017 preparing to start a new inferior. But, since we don't
1018 want to clobber the parent's address/program spaces, we
1019 go ahead and create a new one for this exiting
1020 inferior. */
1021
1022 /* Switch to null_ptid, so that clone_program_space doesn't want
1023 to read the selected frame of a dead process. */
1024 old_chain = save_inferior_ptid ();
1025 inferior_ptid = null_ptid;
1026
1027 /* This inferior is dead, so avoid giving the breakpoints
1028 module the option to write through to it (cloning a
1029 program space resets breakpoints). */
1030 inf->aspace = NULL;
1031 inf->pspace = NULL;
1032 pspace = add_program_space (maybe_new_address_space ());
1033 set_current_program_space (pspace);
1034 inf->removable = 1;
1035 inf->symfile_flags = SYMFILE_NO_READ;
1036 clone_program_space (pspace, inf->vfork_parent->pspace);
1037 inf->pspace = pspace;
1038 inf->aspace = pspace->aspace;
1039
1040 /* Put back inferior_ptid. We'll continue mourning this
1041 inferior. */
1042 do_cleanups (old_chain);
1043
1044 resume_parent = inf->vfork_parent->pid;
1045 /* Break the bonds. */
1046 inf->vfork_parent->vfork_child = NULL;
1047 }
1048
1049 inf->vfork_parent = NULL;
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1058
1059 if (debug_infrun)
1060 fprintf_unfiltered (gdb_stdlog,
1061 "infrun: resuming vfork parent process %d\n",
1062 resume_parent);
1063
1064 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1065
1066 do_cleanups (old_chain);
1067 }
1068 }
1069}
1070
1071/* Enum strings for "set|show follow-exec-mode". */
1072
1073static const char follow_exec_mode_new[] = "new";
1074static const char follow_exec_mode_same[] = "same";
1075static const char *const follow_exec_mode_names[] =
1076{
1077 follow_exec_mode_new,
1078 follow_exec_mode_same,
1079 NULL,
1080};
1081
1082static const char *follow_exec_mode_string = follow_exec_mode_same;
1083static void
1084show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1085 struct cmd_list_element *c, const char *value)
1086{
1087 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1088}
1089
1090/* EXECD_PATHNAME is assumed to be non-NULL. */
1091
1092static void
1093follow_exec (ptid_t ptid, char *execd_pathname)
1094{
1095 struct thread_info *th, *tmp;
1096 struct inferior *inf = current_inferior ();
1097 int pid = ptid_get_pid (ptid);
1098 ptid_t process_ptid;
1099
1100 /* This is an exec event that we actually wish to pay attention to.
1101 Refresh our symbol table to the newly exec'd program, remove any
1102 momentary bp's, etc.
1103
1104 If there are breakpoints, they aren't really inserted now,
1105 since the exec() transformed our inferior into a fresh set
1106 of instructions.
1107
1108 We want to preserve symbolic breakpoints on the list, since
1109 we have hopes that they can be reset after the new a.out's
1110 symbol table is read.
1111
1112 However, any "raw" breakpoints must be removed from the list
1113 (e.g., the solib bp's), since their address is probably invalid
1114 now.
1115
1116 And, we DON'T want to call delete_breakpoints() here, since
1117 that may write the bp's "shadow contents" (the instruction
1118 value that was overwritten witha TRAP instruction). Since
1119 we now have a new a.out, those shadow contents aren't valid. */
1120
1121 mark_breakpoints_out ();
1122
1123 /* The target reports the exec event to the main thread, even if
1124 some other thread does the exec, and even if the main thread was
1125 stopped or already gone. We may still have non-leader threads of
1126 the process on our list. E.g., on targets that don't have thread
1127 exit events (like remote); or on native Linux in non-stop mode if
1128 there were only two threads in the inferior and the non-leader
1129 one is the one that execs (and nothing forces an update of the
1130 thread list up to here). When debugging remotely, it's best to
1131 avoid extra traffic, when possible, so avoid syncing the thread
1132 list with the target, and instead go ahead and delete all threads
1133 of the process but one that reported the event. Note this must
1134 be done before calling update_breakpoints_after_exec, as
1135 otherwise clearing the threads' resources would reference stale
1136 thread breakpoints -- it may have been one of these threads that
1137 stepped across the exec. We could just clear their stepping
1138 states, but as long as we're iterating, might as well delete
1139 them. Deleting them now rather than at the next user-visible
1140 stop provides a nicer sequence of events for user and MI
1141 notifications. */
1142 ALL_THREADS_SAFE (th, tmp)
1143 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1144 delete_thread (th->ptid);
1145
1146 /* We also need to clear any left over stale state for the
1147 leader/event thread. E.g., if there was any step-resume
1148 breakpoint or similar, it's gone now. We cannot truly
1149 step-to-next statement through an exec(). */
1150 th = inferior_thread ();
1151 th->control.step_resume_breakpoint = NULL;
1152 th->control.exception_resume_breakpoint = NULL;
1153 th->control.single_step_breakpoints = NULL;
1154 th->control.step_range_start = 0;
1155 th->control.step_range_end = 0;
1156
1157 /* The user may have had the main thread held stopped in the
1158 previous image (e.g., schedlock on, or non-stop). Release
1159 it now. */
1160 th->stop_requested = 0;
1161
1162 update_breakpoints_after_exec ();
1163
1164 /* What is this a.out's name? */
1165 process_ptid = pid_to_ptid (pid);
1166 printf_unfiltered (_("%s is executing new program: %s\n"),
1167 target_pid_to_str (process_ptid),
1168 execd_pathname);
1169
1170 /* We've followed the inferior through an exec. Therefore, the
1171 inferior has essentially been killed & reborn. */
1172
1173 gdb_flush (gdb_stdout);
1174
1175 breakpoint_init_inferior (inf_execd);
1176
1177 if (*gdb_sysroot != '\0')
1178 {
1179 char *name = exec_file_find (execd_pathname, NULL);
1180
1181 execd_pathname = alloca (strlen (name) + 1);
1182 strcpy (execd_pathname, name);
1183 xfree (name);
1184 }
1185
1186 /* Reset the shared library package. This ensures that we get a
1187 shlib event when the child reaches "_start", at which point the
1188 dld will have had a chance to initialize the child. */
1189 /* Also, loading a symbol file below may trigger symbol lookups, and
1190 we don't want those to be satisfied by the libraries of the
1191 previous incarnation of this process. */
1192 no_shared_libraries (NULL, 0);
1193
1194 if (follow_exec_mode_string == follow_exec_mode_new)
1195 {
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
1199 /* Do exit processing for the original inferior before adding
1200 the new inferior so we don't have two active inferiors with
1201 the same ptid, which can confuse find_inferior_ptid. */
1202 exit_inferior_num_silent (current_inferior ()->num);
1203
1204 inf = add_inferior_with_spaces ();
1205 inf->pid = pid;
1206 target_follow_exec (inf, execd_pathname);
1207
1208 set_current_inferior (inf);
1209 set_current_program_space (inf->pspace);
1210 add_thread (ptid);
1211 }
1212 else
1213 {
1214 /* The old description may no longer be fit for the new image.
1215 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1216 old description; we'll read a new one below. No need to do
1217 this on "follow-exec-mode new", as the old inferior stays
1218 around (its description is later cleared/refetched on
1219 restart). */
1220 target_clear_description ();
1221 }
1222
1223 gdb_assert (current_program_space == inf->pspace);
1224
1225 /* That a.out is now the one to use. */
1226 exec_file_attach (execd_pathname, 0);
1227
1228 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1229 (Position Independent Executable) main symbol file will get applied by
1230 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1231 the breakpoints with the zero displacement. */
1232
1233 symbol_file_add (execd_pathname,
1234 (inf->symfile_flags
1235 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1236 NULL, 0);
1237
1238 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1239 set_initial_language ();
1240
1241 /* If the target can specify a description, read it. Must do this
1242 after flipping to the new executable (because the target supplied
1243 description must be compatible with the executable's
1244 architecture, and the old executable may e.g., be 32-bit, while
1245 the new one 64-bit), and before anything involving memory or
1246 registers. */
1247 target_find_description ();
1248
1249 solib_create_inferior_hook (0);
1250
1251 jit_inferior_created_hook ();
1252
1253 breakpoint_re_set ();
1254
1255 /* Reinsert all breakpoints. (Those which were symbolic have
1256 been reset to the proper address in the new a.out, thanks
1257 to symbol_file_command...). */
1258 insert_breakpoints ();
1259
1260 /* The next resume of this inferior should bring it to the shlib
1261 startup breakpoints. (If the user had also set bp's on
1262 "main" from the old (parent) process, then they'll auto-
1263 matically get reset there in the new process.). */
1264}
1265
1266/* The queue of threads that need to do a step-over operation to get
1267 past e.g., a breakpoint. What technique is used to step over the
1268 breakpoint/watchpoint does not matter -- all threads end up in the
1269 same queue, to maintain rough temporal order of execution, in order
1270 to avoid starvation, otherwise, we could e.g., find ourselves
1271 constantly stepping the same couple threads past their breakpoints
1272 over and over, if the single-step finish fast enough. */
1273struct thread_info *step_over_queue_head;
1274
1275/* Bit flags indicating what the thread needs to step over. */
1276
1277enum step_over_what
1278 {
1279 /* Step over a breakpoint. */
1280 STEP_OVER_BREAKPOINT = 1,
1281
1282 /* Step past a non-continuable watchpoint, in order to let the
1283 instruction execute so we can evaluate the watchpoint
1284 expression. */
1285 STEP_OVER_WATCHPOINT = 2
1286 };
1287
1288/* Info about an instruction that is being stepped over. */
1289
1290struct step_over_info
1291{
1292 /* If we're stepping past a breakpoint, this is the address space
1293 and address of the instruction the breakpoint is set at. We'll
1294 skip inserting all breakpoints here. Valid iff ASPACE is
1295 non-NULL. */
1296 struct address_space *aspace;
1297 CORE_ADDR address;
1298
1299 /* The instruction being stepped over triggers a nonsteppable
1300 watchpoint. If true, we'll skip inserting watchpoints. */
1301 int nonsteppable_watchpoint_p;
1302};
1303
1304/* The step-over info of the location that is being stepped over.
1305
1306 Note that with async/breakpoint always-inserted mode, a user might
1307 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1308 being stepped over. As setting a new breakpoint inserts all
1309 breakpoints, we need to make sure the breakpoint being stepped over
1310 isn't inserted then. We do that by only clearing the step-over
1311 info when the step-over is actually finished (or aborted).
1312
1313 Presently GDB can only step over one breakpoint at any given time.
1314 Given threads that can't run code in the same address space as the
1315 breakpoint's can't really miss the breakpoint, GDB could be taught
1316 to step-over at most one breakpoint per address space (so this info
1317 could move to the address space object if/when GDB is extended).
1318 The set of breakpoints being stepped over will normally be much
1319 smaller than the set of all breakpoints, so a flag in the
1320 breakpoint location structure would be wasteful. A separate list
1321 also saves complexity and run-time, as otherwise we'd have to go
1322 through all breakpoint locations clearing their flag whenever we
1323 start a new sequence. Similar considerations weigh against storing
1324 this info in the thread object. Plus, not all step overs actually
1325 have breakpoint locations -- e.g., stepping past a single-step
1326 breakpoint, or stepping to complete a non-continuable
1327 watchpoint. */
1328static struct step_over_info step_over_info;
1329
1330/* Record the address of the breakpoint/instruction we're currently
1331 stepping over. */
1332
1333static void
1334set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1335 int nonsteppable_watchpoint_p)
1336{
1337 step_over_info.aspace = aspace;
1338 step_over_info.address = address;
1339 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1340}
1341
1342/* Called when we're not longer stepping over a breakpoint / an
1343 instruction, so all breakpoints are free to be (re)inserted. */
1344
1345static void
1346clear_step_over_info (void)
1347{
1348 if (debug_infrun)
1349 fprintf_unfiltered (gdb_stdlog,
1350 "infrun: clear_step_over_info\n");
1351 step_over_info.aspace = NULL;
1352 step_over_info.address = 0;
1353 step_over_info.nonsteppable_watchpoint_p = 0;
1354}
1355
1356/* See infrun.h. */
1357
1358int
1359stepping_past_instruction_at (struct address_space *aspace,
1360 CORE_ADDR address)
1361{
1362 return (step_over_info.aspace != NULL
1363 && breakpoint_address_match (aspace, address,
1364 step_over_info.aspace,
1365 step_over_info.address));
1366}
1367
1368/* See infrun.h. */
1369
1370int
1371stepping_past_nonsteppable_watchpoint (void)
1372{
1373 return step_over_info.nonsteppable_watchpoint_p;
1374}
1375
1376/* Returns true if step-over info is valid. */
1377
1378static int
1379step_over_info_valid_p (void)
1380{
1381 return (step_over_info.aspace != NULL
1382 || stepping_past_nonsteppable_watchpoint ());
1383}
1384
1385\f
1386/* Displaced stepping. */
1387
1388/* In non-stop debugging mode, we must take special care to manage
1389 breakpoints properly; in particular, the traditional strategy for
1390 stepping a thread past a breakpoint it has hit is unsuitable.
1391 'Displaced stepping' is a tactic for stepping one thread past a
1392 breakpoint it has hit while ensuring that other threads running
1393 concurrently will hit the breakpoint as they should.
1394
1395 The traditional way to step a thread T off a breakpoint in a
1396 multi-threaded program in all-stop mode is as follows:
1397
1398 a0) Initially, all threads are stopped, and breakpoints are not
1399 inserted.
1400 a1) We single-step T, leaving breakpoints uninserted.
1401 a2) We insert breakpoints, and resume all threads.
1402
1403 In non-stop debugging, however, this strategy is unsuitable: we
1404 don't want to have to stop all threads in the system in order to
1405 continue or step T past a breakpoint. Instead, we use displaced
1406 stepping:
1407
1408 n0) Initially, T is stopped, other threads are running, and
1409 breakpoints are inserted.
1410 n1) We copy the instruction "under" the breakpoint to a separate
1411 location, outside the main code stream, making any adjustments
1412 to the instruction, register, and memory state as directed by
1413 T's architecture.
1414 n2) We single-step T over the instruction at its new location.
1415 n3) We adjust the resulting register and memory state as directed
1416 by T's architecture. This includes resetting T's PC to point
1417 back into the main instruction stream.
1418 n4) We resume T.
1419
1420 This approach depends on the following gdbarch methods:
1421
1422 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1423 indicate where to copy the instruction, and how much space must
1424 be reserved there. We use these in step n1.
1425
1426 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1427 address, and makes any necessary adjustments to the instruction,
1428 register contents, and memory. We use this in step n1.
1429
1430 - gdbarch_displaced_step_fixup adjusts registers and memory after
1431 we have successfuly single-stepped the instruction, to yield the
1432 same effect the instruction would have had if we had executed it
1433 at its original address. We use this in step n3.
1434
1435 - gdbarch_displaced_step_free_closure provides cleanup.
1436
1437 The gdbarch_displaced_step_copy_insn and
1438 gdbarch_displaced_step_fixup functions must be written so that
1439 copying an instruction with gdbarch_displaced_step_copy_insn,
1440 single-stepping across the copied instruction, and then applying
1441 gdbarch_displaced_insn_fixup should have the same effects on the
1442 thread's memory and registers as stepping the instruction in place
1443 would have. Exactly which responsibilities fall to the copy and
1444 which fall to the fixup is up to the author of those functions.
1445
1446 See the comments in gdbarch.sh for details.
1447
1448 Note that displaced stepping and software single-step cannot
1449 currently be used in combination, although with some care I think
1450 they could be made to. Software single-step works by placing
1451 breakpoints on all possible subsequent instructions; if the
1452 displaced instruction is a PC-relative jump, those breakpoints
1453 could fall in very strange places --- on pages that aren't
1454 executable, or at addresses that are not proper instruction
1455 boundaries. (We do generally let other threads run while we wait
1456 to hit the software single-step breakpoint, and they might
1457 encounter such a corrupted instruction.) One way to work around
1458 this would be to have gdbarch_displaced_step_copy_insn fully
1459 simulate the effect of PC-relative instructions (and return NULL)
1460 on architectures that use software single-stepping.
1461
1462 In non-stop mode, we can have independent and simultaneous step
1463 requests, so more than one thread may need to simultaneously step
1464 over a breakpoint. The current implementation assumes there is
1465 only one scratch space per process. In this case, we have to
1466 serialize access to the scratch space. If thread A wants to step
1467 over a breakpoint, but we are currently waiting for some other
1468 thread to complete a displaced step, we leave thread A stopped and
1469 place it in the displaced_step_request_queue. Whenever a displaced
1470 step finishes, we pick the next thread in the queue and start a new
1471 displaced step operation on it. See displaced_step_prepare and
1472 displaced_step_fixup for details. */
1473
1474/* Per-inferior displaced stepping state. */
1475struct displaced_step_inferior_state
1476{
1477 /* Pointer to next in linked list. */
1478 struct displaced_step_inferior_state *next;
1479
1480 /* The process this displaced step state refers to. */
1481 int pid;
1482
1483 /* True if preparing a displaced step ever failed. If so, we won't
1484 try displaced stepping for this inferior again. */
1485 int failed_before;
1486
1487 /* If this is not null_ptid, this is the thread carrying out a
1488 displaced single-step in process PID. This thread's state will
1489 require fixing up once it has completed its step. */
1490 ptid_t step_ptid;
1491
1492 /* The architecture the thread had when we stepped it. */
1493 struct gdbarch *step_gdbarch;
1494
1495 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1496 for post-step cleanup. */
1497 struct displaced_step_closure *step_closure;
1498
1499 /* The address of the original instruction, and the copy we
1500 made. */
1501 CORE_ADDR step_original, step_copy;
1502
1503 /* Saved contents of copy area. */
1504 gdb_byte *step_saved_copy;
1505};
1506
1507/* The list of states of processes involved in displaced stepping
1508 presently. */
1509static struct displaced_step_inferior_state *displaced_step_inferior_states;
1510
1511/* Get the displaced stepping state of process PID. */
1512
1513static struct displaced_step_inferior_state *
1514get_displaced_stepping_state (int pid)
1515{
1516 struct displaced_step_inferior_state *state;
1517
1518 for (state = displaced_step_inferior_states;
1519 state != NULL;
1520 state = state->next)
1521 if (state->pid == pid)
1522 return state;
1523
1524 return NULL;
1525}
1526
1527/* Returns true if any inferior has a thread doing a displaced
1528 step. */
1529
1530static int
1531displaced_step_in_progress_any_inferior (void)
1532{
1533 struct displaced_step_inferior_state *state;
1534
1535 for (state = displaced_step_inferior_states;
1536 state != NULL;
1537 state = state->next)
1538 if (!ptid_equal (state->step_ptid, null_ptid))
1539 return 1;
1540
1541 return 0;
1542}
1543
1544/* Return true if process PID has a thread doing a displaced step. */
1545
1546static int
1547displaced_step_in_progress (int pid)
1548{
1549 struct displaced_step_inferior_state *displaced;
1550
1551 displaced = get_displaced_stepping_state (pid);
1552 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1553 return 1;
1554
1555 return 0;
1556}
1557
1558/* Add a new displaced stepping state for process PID to the displaced
1559 stepping state list, or return a pointer to an already existing
1560 entry, if it already exists. Never returns NULL. */
1561
1562static struct displaced_step_inferior_state *
1563add_displaced_stepping_state (int pid)
1564{
1565 struct displaced_step_inferior_state *state;
1566
1567 for (state = displaced_step_inferior_states;
1568 state != NULL;
1569 state = state->next)
1570 if (state->pid == pid)
1571 return state;
1572
1573 state = XCNEW (struct displaced_step_inferior_state);
1574 state->pid = pid;
1575 state->next = displaced_step_inferior_states;
1576 displaced_step_inferior_states = state;
1577
1578 return state;
1579}
1580
1581/* If inferior is in displaced stepping, and ADDR equals to starting address
1582 of copy area, return corresponding displaced_step_closure. Otherwise,
1583 return NULL. */
1584
1585struct displaced_step_closure*
1586get_displaced_step_closure_by_addr (CORE_ADDR addr)
1587{
1588 struct displaced_step_inferior_state *displaced
1589 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1590
1591 /* If checking the mode of displaced instruction in copy area. */
1592 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1593 && (displaced->step_copy == addr))
1594 return displaced->step_closure;
1595
1596 return NULL;
1597}
1598
1599/* Remove the displaced stepping state of process PID. */
1600
1601static void
1602remove_displaced_stepping_state (int pid)
1603{
1604 struct displaced_step_inferior_state *it, **prev_next_p;
1605
1606 gdb_assert (pid != 0);
1607
1608 it = displaced_step_inferior_states;
1609 prev_next_p = &displaced_step_inferior_states;
1610 while (it)
1611 {
1612 if (it->pid == pid)
1613 {
1614 *prev_next_p = it->next;
1615 xfree (it);
1616 return;
1617 }
1618
1619 prev_next_p = &it->next;
1620 it = *prev_next_p;
1621 }
1622}
1623
1624static void
1625infrun_inferior_exit (struct inferior *inf)
1626{
1627 remove_displaced_stepping_state (inf->pid);
1628}
1629
1630/* If ON, and the architecture supports it, GDB will use displaced
1631 stepping to step over breakpoints. If OFF, or if the architecture
1632 doesn't support it, GDB will instead use the traditional
1633 hold-and-step approach. If AUTO (which is the default), GDB will
1634 decide which technique to use to step over breakpoints depending on
1635 which of all-stop or non-stop mode is active --- displaced stepping
1636 in non-stop mode; hold-and-step in all-stop mode. */
1637
1638static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1639
1640static void
1641show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1642 struct cmd_list_element *c,
1643 const char *value)
1644{
1645 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1646 fprintf_filtered (file,
1647 _("Debugger's willingness to use displaced stepping "
1648 "to step over breakpoints is %s (currently %s).\n"),
1649 value, target_is_non_stop_p () ? "on" : "off");
1650 else
1651 fprintf_filtered (file,
1652 _("Debugger's willingness to use displaced stepping "
1653 "to step over breakpoints is %s.\n"), value);
1654}
1655
1656/* Return non-zero if displaced stepping can/should be used to step
1657 over breakpoints of thread TP. */
1658
1659static int
1660use_displaced_stepping (struct thread_info *tp)
1661{
1662 struct regcache *regcache = get_thread_regcache (tp->ptid);
1663 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1664 struct displaced_step_inferior_state *displaced_state;
1665
1666 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1667
1668 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1669 && target_is_non_stop_p ())
1670 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1671 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1672 && find_record_target () == NULL
1673 && (displaced_state == NULL
1674 || !displaced_state->failed_before));
1675}
1676
1677/* Clean out any stray displaced stepping state. */
1678static void
1679displaced_step_clear (struct displaced_step_inferior_state *displaced)
1680{
1681 /* Indicate that there is no cleanup pending. */
1682 displaced->step_ptid = null_ptid;
1683
1684 if (displaced->step_closure)
1685 {
1686 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1687 displaced->step_closure);
1688 displaced->step_closure = NULL;
1689 }
1690}
1691
1692static void
1693displaced_step_clear_cleanup (void *arg)
1694{
1695 struct displaced_step_inferior_state *state = arg;
1696
1697 displaced_step_clear (state);
1698}
1699
1700/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1701void
1702displaced_step_dump_bytes (struct ui_file *file,
1703 const gdb_byte *buf,
1704 size_t len)
1705{
1706 int i;
1707
1708 for (i = 0; i < len; i++)
1709 fprintf_unfiltered (file, "%02x ", buf[i]);
1710 fputs_unfiltered ("\n", file);
1711}
1712
1713/* Prepare to single-step, using displaced stepping.
1714
1715 Note that we cannot use displaced stepping when we have a signal to
1716 deliver. If we have a signal to deliver and an instruction to step
1717 over, then after the step, there will be no indication from the
1718 target whether the thread entered a signal handler or ignored the
1719 signal and stepped over the instruction successfully --- both cases
1720 result in a simple SIGTRAP. In the first case we mustn't do a
1721 fixup, and in the second case we must --- but we can't tell which.
1722 Comments in the code for 'random signals' in handle_inferior_event
1723 explain how we handle this case instead.
1724
1725 Returns 1 if preparing was successful -- this thread is going to be
1726 stepped now; 0 if displaced stepping this thread got queued; or -1
1727 if this instruction can't be displaced stepped. */
1728
1729static int
1730displaced_step_prepare_throw (ptid_t ptid)
1731{
1732 struct cleanup *old_cleanups, *ignore_cleanups;
1733 struct thread_info *tp = find_thread_ptid (ptid);
1734 struct regcache *regcache = get_thread_regcache (ptid);
1735 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1736 CORE_ADDR original, copy;
1737 ULONGEST len;
1738 struct displaced_step_closure *closure;
1739 struct displaced_step_inferior_state *displaced;
1740 int status;
1741
1742 /* We should never reach this function if the architecture does not
1743 support displaced stepping. */
1744 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1745
1746 /* Nor if the thread isn't meant to step over a breakpoint. */
1747 gdb_assert (tp->control.trap_expected);
1748
1749 /* Disable range stepping while executing in the scratch pad. We
1750 want a single-step even if executing the displaced instruction in
1751 the scratch buffer lands within the stepping range (e.g., a
1752 jump/branch). */
1753 tp->control.may_range_step = 0;
1754
1755 /* We have to displaced step one thread at a time, as we only have
1756 access to a single scratch space per inferior. */
1757
1758 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1759
1760 if (!ptid_equal (displaced->step_ptid, null_ptid))
1761 {
1762 /* Already waiting for a displaced step to finish. Defer this
1763 request and place in queue. */
1764
1765 if (debug_displaced)
1766 fprintf_unfiltered (gdb_stdlog,
1767 "displaced: deferring step of %s\n",
1768 target_pid_to_str (ptid));
1769
1770 thread_step_over_chain_enqueue (tp);
1771 return 0;
1772 }
1773 else
1774 {
1775 if (debug_displaced)
1776 fprintf_unfiltered (gdb_stdlog,
1777 "displaced: stepping %s now\n",
1778 target_pid_to_str (ptid));
1779 }
1780
1781 displaced_step_clear (displaced);
1782
1783 old_cleanups = save_inferior_ptid ();
1784 inferior_ptid = ptid;
1785
1786 original = regcache_read_pc (regcache);
1787
1788 copy = gdbarch_displaced_step_location (gdbarch);
1789 len = gdbarch_max_insn_length (gdbarch);
1790
1791 /* Save the original contents of the copy area. */
1792 displaced->step_saved_copy = xmalloc (len);
1793 ignore_cleanups = make_cleanup (free_current_contents,
1794 &displaced->step_saved_copy);
1795 status = target_read_memory (copy, displaced->step_saved_copy, len);
1796 if (status != 0)
1797 throw_error (MEMORY_ERROR,
1798 _("Error accessing memory address %s (%s) for "
1799 "displaced-stepping scratch space."),
1800 paddress (gdbarch, copy), safe_strerror (status));
1801 if (debug_displaced)
1802 {
1803 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1804 paddress (gdbarch, copy));
1805 displaced_step_dump_bytes (gdb_stdlog,
1806 displaced->step_saved_copy,
1807 len);
1808 };
1809
1810 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1811 original, copy, regcache);
1812 if (closure == NULL)
1813 {
1814 /* The architecture doesn't know how or want to displaced step
1815 this instruction or instruction sequence. Fallback to
1816 stepping over the breakpoint in-line. */
1817 do_cleanups (old_cleanups);
1818 return -1;
1819 }
1820
1821 /* Save the information we need to fix things up if the step
1822 succeeds. */
1823 displaced->step_ptid = ptid;
1824 displaced->step_gdbarch = gdbarch;
1825 displaced->step_closure = closure;
1826 displaced->step_original = original;
1827 displaced->step_copy = copy;
1828
1829 make_cleanup (displaced_step_clear_cleanup, displaced);
1830
1831 /* Resume execution at the copy. */
1832 regcache_write_pc (regcache, copy);
1833
1834 discard_cleanups (ignore_cleanups);
1835
1836 do_cleanups (old_cleanups);
1837
1838 if (debug_displaced)
1839 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1840 paddress (gdbarch, copy));
1841
1842 return 1;
1843}
1844
1845/* Wrapper for displaced_step_prepare_throw that disabled further
1846 attempts at displaced stepping if we get a memory error. */
1847
1848static int
1849displaced_step_prepare (ptid_t ptid)
1850{
1851 int prepared = -1;
1852
1853 TRY
1854 {
1855 prepared = displaced_step_prepare_throw (ptid);
1856 }
1857 CATCH (ex, RETURN_MASK_ERROR)
1858 {
1859 struct displaced_step_inferior_state *displaced_state;
1860
1861 if (ex.error != MEMORY_ERROR)
1862 throw_exception (ex);
1863
1864 if (debug_infrun)
1865 {
1866 fprintf_unfiltered (gdb_stdlog,
1867 "infrun: disabling displaced stepping: %s\n",
1868 ex.message);
1869 }
1870
1871 /* Be verbose if "set displaced-stepping" is "on", silent if
1872 "auto". */
1873 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1874 {
1875 warning (_("disabling displaced stepping: %s"),
1876 ex.message);
1877 }
1878
1879 /* Disable further displaced stepping attempts. */
1880 displaced_state
1881 = get_displaced_stepping_state (ptid_get_pid (ptid));
1882 displaced_state->failed_before = 1;
1883 }
1884 END_CATCH
1885
1886 return prepared;
1887}
1888
1889static void
1890write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1891 const gdb_byte *myaddr, int len)
1892{
1893 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1894
1895 inferior_ptid = ptid;
1896 write_memory (memaddr, myaddr, len);
1897 do_cleanups (ptid_cleanup);
1898}
1899
1900/* Restore the contents of the copy area for thread PTID. */
1901
1902static void
1903displaced_step_restore (struct displaced_step_inferior_state *displaced,
1904 ptid_t ptid)
1905{
1906 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1907
1908 write_memory_ptid (ptid, displaced->step_copy,
1909 displaced->step_saved_copy, len);
1910 if (debug_displaced)
1911 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1912 target_pid_to_str (ptid),
1913 paddress (displaced->step_gdbarch,
1914 displaced->step_copy));
1915}
1916
1917/* If we displaced stepped an instruction successfully, adjust
1918 registers and memory to yield the same effect the instruction would
1919 have had if we had executed it at its original address, and return
1920 1. If the instruction didn't complete, relocate the PC and return
1921 -1. If the thread wasn't displaced stepping, return 0. */
1922
1923static int
1924displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1925{
1926 struct cleanup *old_cleanups;
1927 struct displaced_step_inferior_state *displaced
1928 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1929 int ret;
1930
1931 /* Was any thread of this process doing a displaced step? */
1932 if (displaced == NULL)
1933 return 0;
1934
1935 /* Was this event for the pid we displaced? */
1936 if (ptid_equal (displaced->step_ptid, null_ptid)
1937 || ! ptid_equal (displaced->step_ptid, event_ptid))
1938 return 0;
1939
1940 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1941
1942 displaced_step_restore (displaced, displaced->step_ptid);
1943
1944 /* Fixup may need to read memory/registers. Switch to the thread
1945 that we're fixing up. Also, target_stopped_by_watchpoint checks
1946 the current thread. */
1947 switch_to_thread (event_ptid);
1948
1949 /* Did the instruction complete successfully? */
1950 if (signal == GDB_SIGNAL_TRAP
1951 && !(target_stopped_by_watchpoint ()
1952 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1953 || target_have_steppable_watchpoint)))
1954 {
1955 /* Fix up the resulting state. */
1956 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1957 displaced->step_closure,
1958 displaced->step_original,
1959 displaced->step_copy,
1960 get_thread_regcache (displaced->step_ptid));
1961 ret = 1;
1962 }
1963 else
1964 {
1965 /* Since the instruction didn't complete, all we can do is
1966 relocate the PC. */
1967 struct regcache *regcache = get_thread_regcache (event_ptid);
1968 CORE_ADDR pc = regcache_read_pc (regcache);
1969
1970 pc = displaced->step_original + (pc - displaced->step_copy);
1971 regcache_write_pc (regcache, pc);
1972 ret = -1;
1973 }
1974
1975 do_cleanups (old_cleanups);
1976
1977 displaced->step_ptid = null_ptid;
1978
1979 return ret;
1980}
1981
1982/* Data to be passed around while handling an event. This data is
1983 discarded between events. */
1984struct execution_control_state
1985{
1986 ptid_t ptid;
1987 /* The thread that got the event, if this was a thread event; NULL
1988 otherwise. */
1989 struct thread_info *event_thread;
1990
1991 struct target_waitstatus ws;
1992 int stop_func_filled_in;
1993 CORE_ADDR stop_func_start;
1994 CORE_ADDR stop_func_end;
1995 const char *stop_func_name;
1996 int wait_some_more;
1997
1998 /* True if the event thread hit the single-step breakpoint of
1999 another thread. Thus the event doesn't cause a stop, the thread
2000 needs to be single-stepped past the single-step breakpoint before
2001 we can switch back to the original stepping thread. */
2002 int hit_singlestep_breakpoint;
2003};
2004
2005/* Clear ECS and set it to point at TP. */
2006
2007static void
2008reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2009{
2010 memset (ecs, 0, sizeof (*ecs));
2011 ecs->event_thread = tp;
2012 ecs->ptid = tp->ptid;
2013}
2014
2015static void keep_going_pass_signal (struct execution_control_state *ecs);
2016static void prepare_to_wait (struct execution_control_state *ecs);
2017static int keep_going_stepped_thread (struct thread_info *tp);
2018static int thread_still_needs_step_over (struct thread_info *tp);
2019static void stop_all_threads (void);
2020
2021/* Are there any pending step-over requests? If so, run all we can
2022 now and return true. Otherwise, return false. */
2023
2024static int
2025start_step_over (void)
2026{
2027 struct thread_info *tp, *next;
2028
2029 /* Don't start a new step-over if we already have an in-line
2030 step-over operation ongoing. */
2031 if (step_over_info_valid_p ())
2032 return 0;
2033
2034 for (tp = step_over_queue_head; tp != NULL; tp = next)
2035 {
2036 struct execution_control_state ecss;
2037 struct execution_control_state *ecs = &ecss;
2038 enum step_over_what step_what;
2039 int must_be_in_line;
2040
2041 next = thread_step_over_chain_next (tp);
2042
2043 /* If this inferior already has a displaced step in process,
2044 don't start a new one. */
2045 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2046 continue;
2047
2048 step_what = thread_still_needs_step_over (tp);
2049 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2050 || ((step_what & STEP_OVER_BREAKPOINT)
2051 && !use_displaced_stepping (tp)));
2052
2053 /* We currently stop all threads of all processes to step-over
2054 in-line. If we need to start a new in-line step-over, let
2055 any pending displaced steps finish first. */
2056 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2057 return 0;
2058
2059 thread_step_over_chain_remove (tp);
2060
2061 if (step_over_queue_head == NULL)
2062 {
2063 if (debug_infrun)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "infrun: step-over queue now empty\n");
2066 }
2067
2068 if (tp->control.trap_expected
2069 || tp->resumed
2070 || tp->executing)
2071 {
2072 internal_error (__FILE__, __LINE__,
2073 "[%s] has inconsistent state: "
2074 "trap_expected=%d, resumed=%d, executing=%d\n",
2075 target_pid_to_str (tp->ptid),
2076 tp->control.trap_expected,
2077 tp->resumed,
2078 tp->executing);
2079 }
2080
2081 if (debug_infrun)
2082 fprintf_unfiltered (gdb_stdlog,
2083 "infrun: resuming [%s] for step-over\n",
2084 target_pid_to_str (tp->ptid));
2085
2086 /* keep_going_pass_signal skips the step-over if the breakpoint
2087 is no longer inserted. In all-stop, we want to keep looking
2088 for a thread that needs a step-over instead of resuming TP,
2089 because we wouldn't be able to resume anything else until the
2090 target stops again. In non-stop, the resume always resumes
2091 only TP, so it's OK to let the thread resume freely. */
2092 if (!target_is_non_stop_p () && !step_what)
2093 continue;
2094
2095 switch_to_thread (tp->ptid);
2096 reset_ecs (ecs, tp);
2097 keep_going_pass_signal (ecs);
2098
2099 if (!ecs->wait_some_more)
2100 error (_("Command aborted."));
2101
2102 gdb_assert (tp->resumed);
2103
2104 /* If we started a new in-line step-over, we're done. */
2105 if (step_over_info_valid_p ())
2106 {
2107 gdb_assert (tp->control.trap_expected);
2108 return 1;
2109 }
2110
2111 if (!target_is_non_stop_p ())
2112 {
2113 /* On all-stop, shouldn't have resumed unless we needed a
2114 step over. */
2115 gdb_assert (tp->control.trap_expected
2116 || tp->step_after_step_resume_breakpoint);
2117
2118 /* With remote targets (at least), in all-stop, we can't
2119 issue any further remote commands until the program stops
2120 again. */
2121 return 1;
2122 }
2123
2124 /* Either the thread no longer needed a step-over, or a new
2125 displaced stepping sequence started. Even in the latter
2126 case, continue looking. Maybe we can also start another
2127 displaced step on a thread of other process. */
2128 }
2129
2130 return 0;
2131}
2132
2133/* Update global variables holding ptids to hold NEW_PTID if they were
2134 holding OLD_PTID. */
2135static void
2136infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2137{
2138 struct displaced_step_request *it;
2139 struct displaced_step_inferior_state *displaced;
2140
2141 if (ptid_equal (inferior_ptid, old_ptid))
2142 inferior_ptid = new_ptid;
2143
2144 for (displaced = displaced_step_inferior_states;
2145 displaced;
2146 displaced = displaced->next)
2147 {
2148 if (ptid_equal (displaced->step_ptid, old_ptid))
2149 displaced->step_ptid = new_ptid;
2150 }
2151}
2152
2153\f
2154/* Resuming. */
2155
2156/* Things to clean up if we QUIT out of resume (). */
2157static void
2158resume_cleanups (void *ignore)
2159{
2160 if (!ptid_equal (inferior_ptid, null_ptid))
2161 delete_single_step_breakpoints (inferior_thread ());
2162
2163 normal_stop ();
2164}
2165
2166static const char schedlock_off[] = "off";
2167static const char schedlock_on[] = "on";
2168static const char schedlock_step[] = "step";
2169static const char *const scheduler_enums[] = {
2170 schedlock_off,
2171 schedlock_on,
2172 schedlock_step,
2173 NULL
2174};
2175static const char *scheduler_mode = schedlock_off;
2176static void
2177show_scheduler_mode (struct ui_file *file, int from_tty,
2178 struct cmd_list_element *c, const char *value)
2179{
2180 fprintf_filtered (file,
2181 _("Mode for locking scheduler "
2182 "during execution is \"%s\".\n"),
2183 value);
2184}
2185
2186static void
2187set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2188{
2189 if (!target_can_lock_scheduler)
2190 {
2191 scheduler_mode = schedlock_off;
2192 error (_("Target '%s' cannot support this command."), target_shortname);
2193 }
2194}
2195
2196/* True if execution commands resume all threads of all processes by
2197 default; otherwise, resume only threads of the current inferior
2198 process. */
2199int sched_multi = 0;
2200
2201/* Try to setup for software single stepping over the specified location.
2202 Return 1 if target_resume() should use hardware single step.
2203
2204 GDBARCH the current gdbarch.
2205 PC the location to step over. */
2206
2207static int
2208maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2209{
2210 int hw_step = 1;
2211
2212 if (execution_direction == EXEC_FORWARD
2213 && gdbarch_software_single_step_p (gdbarch)
2214 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2215 {
2216 hw_step = 0;
2217 }
2218 return hw_step;
2219}
2220
2221/* See infrun.h. */
2222
2223ptid_t
2224user_visible_resume_ptid (int step)
2225{
2226 ptid_t resume_ptid;
2227
2228 if (non_stop)
2229 {
2230 /* With non-stop mode on, threads are always handled
2231 individually. */
2232 resume_ptid = inferior_ptid;
2233 }
2234 else if ((scheduler_mode == schedlock_on)
2235 || (scheduler_mode == schedlock_step && step))
2236 {
2237 /* User-settable 'scheduler' mode requires solo thread
2238 resume. */
2239 resume_ptid = inferior_ptid;
2240 }
2241 else if (!sched_multi && target_supports_multi_process ())
2242 {
2243 /* Resume all threads of the current process (and none of other
2244 processes). */
2245 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2246 }
2247 else
2248 {
2249 /* Resume all threads of all processes. */
2250 resume_ptid = RESUME_ALL;
2251 }
2252
2253 return resume_ptid;
2254}
2255
2256/* Return a ptid representing the set of threads that we will resume,
2257 in the perspective of the target, assuming run control handling
2258 does not require leaving some threads stopped (e.g., stepping past
2259 breakpoint). USER_STEP indicates whether we're about to start the
2260 target for a stepping command. */
2261
2262static ptid_t
2263internal_resume_ptid (int user_step)
2264{
2265 /* In non-stop, we always control threads individually. Note that
2266 the target may always work in non-stop mode even with "set
2267 non-stop off", in which case user_visible_resume_ptid could
2268 return a wildcard ptid. */
2269 if (target_is_non_stop_p ())
2270 return inferior_ptid;
2271 else
2272 return user_visible_resume_ptid (user_step);
2273}
2274
2275/* Wrapper for target_resume, that handles infrun-specific
2276 bookkeeping. */
2277
2278static void
2279do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2280{
2281 struct thread_info *tp = inferior_thread ();
2282
2283 /* Install inferior's terminal modes. */
2284 target_terminal_inferior ();
2285
2286 /* Avoid confusing the next resume, if the next stop/resume
2287 happens to apply to another thread. */
2288 tp->suspend.stop_signal = GDB_SIGNAL_0;
2289
2290 /* Advise target which signals may be handled silently.
2291
2292 If we have removed breakpoints because we are stepping over one
2293 in-line (in any thread), we need to receive all signals to avoid
2294 accidentally skipping a breakpoint during execution of a signal
2295 handler.
2296
2297 Likewise if we're displaced stepping, otherwise a trap for a
2298 breakpoint in a signal handler might be confused with the
2299 displaced step finishing. We don't make the displaced_step_fixup
2300 step distinguish the cases instead, because:
2301
2302 - a backtrace while stopped in the signal handler would show the
2303 scratch pad as frame older than the signal handler, instead of
2304 the real mainline code.
2305
2306 - when the thread is later resumed, the signal handler would
2307 return to the scratch pad area, which would no longer be
2308 valid. */
2309 if (step_over_info_valid_p ()
2310 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2311 target_pass_signals (0, NULL);
2312 else
2313 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2314
2315 target_resume (resume_ptid, step, sig);
2316}
2317
2318/* Resume the inferior, but allow a QUIT. This is useful if the user
2319 wants to interrupt some lengthy single-stepping operation
2320 (for child processes, the SIGINT goes to the inferior, and so
2321 we get a SIGINT random_signal, but for remote debugging and perhaps
2322 other targets, that's not true).
2323
2324 SIG is the signal to give the inferior (zero for none). */
2325void
2326resume (enum gdb_signal sig)
2327{
2328 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2329 struct regcache *regcache = get_current_regcache ();
2330 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2331 struct thread_info *tp = inferior_thread ();
2332 CORE_ADDR pc = regcache_read_pc (regcache);
2333 struct address_space *aspace = get_regcache_aspace (regcache);
2334 ptid_t resume_ptid;
2335 /* This represents the user's step vs continue request. When
2336 deciding whether "set scheduler-locking step" applies, it's the
2337 user's intention that counts. */
2338 const int user_step = tp->control.stepping_command;
2339 /* This represents what we'll actually request the target to do.
2340 This can decay from a step to a continue, if e.g., we need to
2341 implement single-stepping with breakpoints (software
2342 single-step). */
2343 int step;
2344
2345 gdb_assert (!thread_is_in_step_over_chain (tp));
2346
2347 QUIT;
2348
2349 if (tp->suspend.waitstatus_pending_p)
2350 {
2351 if (debug_infrun)
2352 {
2353 char *statstr;
2354
2355 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2356 fprintf_unfiltered (gdb_stdlog,
2357 "infrun: resume: thread %s has pending wait status %s "
2358 "(currently_stepping=%d).\n",
2359 target_pid_to_str (tp->ptid), statstr,
2360 currently_stepping (tp));
2361 xfree (statstr);
2362 }
2363
2364 tp->resumed = 1;
2365
2366 /* FIXME: What should we do if we are supposed to resume this
2367 thread with a signal? Maybe we should maintain a queue of
2368 pending signals to deliver. */
2369 if (sig != GDB_SIGNAL_0)
2370 {
2371 warning (_("Couldn't deliver signal %s to %s."),
2372 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2373 }
2374
2375 tp->suspend.stop_signal = GDB_SIGNAL_0;
2376 discard_cleanups (old_cleanups);
2377
2378 if (target_can_async_p ())
2379 target_async (1);
2380 return;
2381 }
2382
2383 tp->stepped_breakpoint = 0;
2384
2385 /* Depends on stepped_breakpoint. */
2386 step = currently_stepping (tp);
2387
2388 if (current_inferior ()->waiting_for_vfork_done)
2389 {
2390 /* Don't try to single-step a vfork parent that is waiting for
2391 the child to get out of the shared memory region (by exec'ing
2392 or exiting). This is particularly important on software
2393 single-step archs, as the child process would trip on the
2394 software single step breakpoint inserted for the parent
2395 process. Since the parent will not actually execute any
2396 instruction until the child is out of the shared region (such
2397 are vfork's semantics), it is safe to simply continue it.
2398 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2399 the parent, and tell it to `keep_going', which automatically
2400 re-sets it stepping. */
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog,
2403 "infrun: resume : clear step\n");
2404 step = 0;
2405 }
2406
2407 if (debug_infrun)
2408 fprintf_unfiltered (gdb_stdlog,
2409 "infrun: resume (step=%d, signal=%s), "
2410 "trap_expected=%d, current thread [%s] at %s\n",
2411 step, gdb_signal_to_symbol_string (sig),
2412 tp->control.trap_expected,
2413 target_pid_to_str (inferior_ptid),
2414 paddress (gdbarch, pc));
2415
2416 /* Normally, by the time we reach `resume', the breakpoints are either
2417 removed or inserted, as appropriate. The exception is if we're sitting
2418 at a permanent breakpoint; we need to step over it, but permanent
2419 breakpoints can't be removed. So we have to test for it here. */
2420 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2421 {
2422 if (sig != GDB_SIGNAL_0)
2423 {
2424 /* We have a signal to pass to the inferior. The resume
2425 may, or may not take us to the signal handler. If this
2426 is a step, we'll need to stop in the signal handler, if
2427 there's one, (if the target supports stepping into
2428 handlers), or in the next mainline instruction, if
2429 there's no handler. If this is a continue, we need to be
2430 sure to run the handler with all breakpoints inserted.
2431 In all cases, set a breakpoint at the current address
2432 (where the handler returns to), and once that breakpoint
2433 is hit, resume skipping the permanent breakpoint. If
2434 that breakpoint isn't hit, then we've stepped into the
2435 signal handler (or hit some other event). We'll delete
2436 the step-resume breakpoint then. */
2437
2438 if (debug_infrun)
2439 fprintf_unfiltered (gdb_stdlog,
2440 "infrun: resume: skipping permanent breakpoint, "
2441 "deliver signal first\n");
2442
2443 clear_step_over_info ();
2444 tp->control.trap_expected = 0;
2445
2446 if (tp->control.step_resume_breakpoint == NULL)
2447 {
2448 /* Set a "high-priority" step-resume, as we don't want
2449 user breakpoints at PC to trigger (again) when this
2450 hits. */
2451 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2452 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2453
2454 tp->step_after_step_resume_breakpoint = step;
2455 }
2456
2457 insert_breakpoints ();
2458 }
2459 else
2460 {
2461 /* There's no signal to pass, we can go ahead and skip the
2462 permanent breakpoint manually. */
2463 if (debug_infrun)
2464 fprintf_unfiltered (gdb_stdlog,
2465 "infrun: resume: skipping permanent breakpoint\n");
2466 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2467 /* Update pc to reflect the new address from which we will
2468 execute instructions. */
2469 pc = regcache_read_pc (regcache);
2470
2471 if (step)
2472 {
2473 /* We've already advanced the PC, so the stepping part
2474 is done. Now we need to arrange for a trap to be
2475 reported to handle_inferior_event. Set a breakpoint
2476 at the current PC, and run to it. Don't update
2477 prev_pc, because if we end in
2478 switch_back_to_stepped_thread, we want the "expected
2479 thread advanced also" branch to be taken. IOW, we
2480 don't want this thread to step further from PC
2481 (overstep). */
2482 gdb_assert (!step_over_info_valid_p ());
2483 insert_single_step_breakpoint (gdbarch, aspace, pc);
2484 insert_breakpoints ();
2485
2486 resume_ptid = internal_resume_ptid (user_step);
2487 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2488 discard_cleanups (old_cleanups);
2489 tp->resumed = 1;
2490 return;
2491 }
2492 }
2493 }
2494
2495 /* If we have a breakpoint to step over, make sure to do a single
2496 step only. Same if we have software watchpoints. */
2497 if (tp->control.trap_expected || bpstat_should_step ())
2498 tp->control.may_range_step = 0;
2499
2500 /* If enabled, step over breakpoints by executing a copy of the
2501 instruction at a different address.
2502
2503 We can't use displaced stepping when we have a signal to deliver;
2504 the comments for displaced_step_prepare explain why. The
2505 comments in the handle_inferior event for dealing with 'random
2506 signals' explain what we do instead.
2507
2508 We can't use displaced stepping when we are waiting for vfork_done
2509 event, displaced stepping breaks the vfork child similarly as single
2510 step software breakpoint. */
2511 if (tp->control.trap_expected
2512 && use_displaced_stepping (tp)
2513 && !step_over_info_valid_p ()
2514 && sig == GDB_SIGNAL_0
2515 && !current_inferior ()->waiting_for_vfork_done)
2516 {
2517 int prepared = displaced_step_prepare (inferior_ptid);
2518
2519 if (prepared == 0)
2520 {
2521 if (debug_infrun)
2522 fprintf_unfiltered (gdb_stdlog,
2523 "Got placed in step-over queue\n");
2524
2525 tp->control.trap_expected = 0;
2526 discard_cleanups (old_cleanups);
2527 return;
2528 }
2529 else if (prepared < 0)
2530 {
2531 /* Fallback to stepping over the breakpoint in-line. */
2532
2533 if (target_is_non_stop_p ())
2534 stop_all_threads ();
2535
2536 set_step_over_info (get_regcache_aspace (regcache),
2537 regcache_read_pc (regcache), 0);
2538
2539 step = maybe_software_singlestep (gdbarch, pc);
2540
2541 insert_breakpoints ();
2542 }
2543 else if (prepared > 0)
2544 {
2545 struct displaced_step_inferior_state *displaced;
2546
2547 /* Update pc to reflect the new address from which we will
2548 execute instructions due to displaced stepping. */
2549 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2550
2551 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2552 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2553 displaced->step_closure);
2554 }
2555 }
2556
2557 /* Do we need to do it the hard way, w/temp breakpoints? */
2558 else if (step)
2559 step = maybe_software_singlestep (gdbarch, pc);
2560
2561 /* Currently, our software single-step implementation leads to different
2562 results than hardware single-stepping in one situation: when stepping
2563 into delivering a signal which has an associated signal handler,
2564 hardware single-step will stop at the first instruction of the handler,
2565 while software single-step will simply skip execution of the handler.
2566
2567 For now, this difference in behavior is accepted since there is no
2568 easy way to actually implement single-stepping into a signal handler
2569 without kernel support.
2570
2571 However, there is one scenario where this difference leads to follow-on
2572 problems: if we're stepping off a breakpoint by removing all breakpoints
2573 and then single-stepping. In this case, the software single-step
2574 behavior means that even if there is a *breakpoint* in the signal
2575 handler, GDB still would not stop.
2576
2577 Fortunately, we can at least fix this particular issue. We detect
2578 here the case where we are about to deliver a signal while software
2579 single-stepping with breakpoints removed. In this situation, we
2580 revert the decisions to remove all breakpoints and insert single-
2581 step breakpoints, and instead we install a step-resume breakpoint
2582 at the current address, deliver the signal without stepping, and
2583 once we arrive back at the step-resume breakpoint, actually step
2584 over the breakpoint we originally wanted to step over. */
2585 if (thread_has_single_step_breakpoints_set (tp)
2586 && sig != GDB_SIGNAL_0
2587 && step_over_info_valid_p ())
2588 {
2589 /* If we have nested signals or a pending signal is delivered
2590 immediately after a handler returns, might might already have
2591 a step-resume breakpoint set on the earlier handler. We cannot
2592 set another step-resume breakpoint; just continue on until the
2593 original breakpoint is hit. */
2594 if (tp->control.step_resume_breakpoint == NULL)
2595 {
2596 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2597 tp->step_after_step_resume_breakpoint = 1;
2598 }
2599
2600 delete_single_step_breakpoints (tp);
2601
2602 clear_step_over_info ();
2603 tp->control.trap_expected = 0;
2604
2605 insert_breakpoints ();
2606 }
2607
2608 /* If STEP is set, it's a request to use hardware stepping
2609 facilities. But in that case, we should never
2610 use singlestep breakpoint. */
2611 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2612
2613 /* Decide the set of threads to ask the target to resume. */
2614 if ((step || thread_has_single_step_breakpoints_set (tp))
2615 && tp->control.trap_expected)
2616 {
2617 /* We're allowing a thread to run past a breakpoint it has
2618 hit, by single-stepping the thread with the breakpoint
2619 removed. In which case, we need to single-step only this
2620 thread, and keep others stopped, as they can miss this
2621 breakpoint if allowed to run. */
2622 resume_ptid = inferior_ptid;
2623 }
2624 else
2625 resume_ptid = internal_resume_ptid (user_step);
2626
2627 if (execution_direction != EXEC_REVERSE
2628 && step && breakpoint_inserted_here_p (aspace, pc))
2629 {
2630 /* There are two cases where we currently need to step a
2631 breakpoint instruction when we have a signal to deliver:
2632
2633 - See handle_signal_stop where we handle random signals that
2634 could take out us out of the stepping range. Normally, in
2635 that case we end up continuing (instead of stepping) over the
2636 signal handler with a breakpoint at PC, but there are cases
2637 where we should _always_ single-step, even if we have a
2638 step-resume breakpoint, like when a software watchpoint is
2639 set. Assuming single-stepping and delivering a signal at the
2640 same time would takes us to the signal handler, then we could
2641 have removed the breakpoint at PC to step over it. However,
2642 some hardware step targets (like e.g., Mac OS) can't step
2643 into signal handlers, and for those, we need to leave the
2644 breakpoint at PC inserted, as otherwise if the handler
2645 recurses and executes PC again, it'll miss the breakpoint.
2646 So we leave the breakpoint inserted anyway, but we need to
2647 record that we tried to step a breakpoint instruction, so
2648 that adjust_pc_after_break doesn't end up confused.
2649
2650 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2651 in one thread after another thread that was stepping had been
2652 momentarily paused for a step-over. When we re-resume the
2653 stepping thread, it may be resumed from that address with a
2654 breakpoint that hasn't trapped yet. Seen with
2655 gdb.threads/non-stop-fair-events.exp, on targets that don't
2656 do displaced stepping. */
2657
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "infrun: resume: [%s] stepped breakpoint\n",
2661 target_pid_to_str (tp->ptid));
2662
2663 tp->stepped_breakpoint = 1;
2664
2665 /* Most targets can step a breakpoint instruction, thus
2666 executing it normally. But if this one cannot, just
2667 continue and we will hit it anyway. */
2668 if (gdbarch_cannot_step_breakpoint (gdbarch))
2669 step = 0;
2670 }
2671
2672 if (debug_displaced
2673 && tp->control.trap_expected
2674 && use_displaced_stepping (tp)
2675 && !step_over_info_valid_p ())
2676 {
2677 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2678 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2679 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2680 gdb_byte buf[4];
2681
2682 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2683 paddress (resume_gdbarch, actual_pc));
2684 read_memory (actual_pc, buf, sizeof (buf));
2685 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2686 }
2687
2688 if (tp->control.may_range_step)
2689 {
2690 /* If we're resuming a thread with the PC out of the step
2691 range, then we're doing some nested/finer run control
2692 operation, like stepping the thread out of the dynamic
2693 linker or the displaced stepping scratch pad. We
2694 shouldn't have allowed a range step then. */
2695 gdb_assert (pc_in_thread_step_range (pc, tp));
2696 }
2697
2698 do_target_resume (resume_ptid, step, sig);
2699 tp->resumed = 1;
2700 discard_cleanups (old_cleanups);
2701}
2702\f
2703/* Proceeding. */
2704
2705/* Clear out all variables saying what to do when inferior is continued.
2706 First do this, then set the ones you want, then call `proceed'. */
2707
2708static void
2709clear_proceed_status_thread (struct thread_info *tp)
2710{
2711 if (debug_infrun)
2712 fprintf_unfiltered (gdb_stdlog,
2713 "infrun: clear_proceed_status_thread (%s)\n",
2714 target_pid_to_str (tp->ptid));
2715
2716 /* If we're starting a new sequence, then the previous finished
2717 single-step is no longer relevant. */
2718 if (tp->suspend.waitstatus_pending_p)
2719 {
2720 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2721 {
2722 if (debug_infrun)
2723 fprintf_unfiltered (gdb_stdlog,
2724 "infrun: clear_proceed_status: pending "
2725 "event of %s was a finished step. "
2726 "Discarding.\n",
2727 target_pid_to_str (tp->ptid));
2728
2729 tp->suspend.waitstatus_pending_p = 0;
2730 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2731 }
2732 else if (debug_infrun)
2733 {
2734 char *statstr;
2735
2736 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2737 fprintf_unfiltered (gdb_stdlog,
2738 "infrun: clear_proceed_status_thread: thread %s "
2739 "has pending wait status %s "
2740 "(currently_stepping=%d).\n",
2741 target_pid_to_str (tp->ptid), statstr,
2742 currently_stepping (tp));
2743 xfree (statstr);
2744 }
2745 }
2746
2747 /* If this signal should not be seen by program, give it zero.
2748 Used for debugging signals. */
2749 if (!signal_pass_state (tp->suspend.stop_signal))
2750 tp->suspend.stop_signal = GDB_SIGNAL_0;
2751
2752 thread_fsm_delete (tp->thread_fsm);
2753 tp->thread_fsm = NULL;
2754
2755 tp->control.trap_expected = 0;
2756 tp->control.step_range_start = 0;
2757 tp->control.step_range_end = 0;
2758 tp->control.may_range_step = 0;
2759 tp->control.step_frame_id = null_frame_id;
2760 tp->control.step_stack_frame_id = null_frame_id;
2761 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2762 tp->control.step_start_function = NULL;
2763 tp->stop_requested = 0;
2764
2765 tp->control.stop_step = 0;
2766
2767 tp->control.proceed_to_finish = 0;
2768
2769 tp->control.command_interp = NULL;
2770 tp->control.stepping_command = 0;
2771
2772 /* Discard any remaining commands or status from previous stop. */
2773 bpstat_clear (&tp->control.stop_bpstat);
2774}
2775
2776void
2777clear_proceed_status (int step)
2778{
2779 if (!non_stop)
2780 {
2781 struct thread_info *tp;
2782 ptid_t resume_ptid;
2783
2784 resume_ptid = user_visible_resume_ptid (step);
2785
2786 /* In all-stop mode, delete the per-thread status of all threads
2787 we're about to resume, implicitly and explicitly. */
2788 ALL_NON_EXITED_THREADS (tp)
2789 {
2790 if (!ptid_match (tp->ptid, resume_ptid))
2791 continue;
2792 clear_proceed_status_thread (tp);
2793 }
2794 }
2795
2796 if (!ptid_equal (inferior_ptid, null_ptid))
2797 {
2798 struct inferior *inferior;
2799
2800 if (non_stop)
2801 {
2802 /* If in non-stop mode, only delete the per-thread status of
2803 the current thread. */
2804 clear_proceed_status_thread (inferior_thread ());
2805 }
2806
2807 inferior = current_inferior ();
2808 inferior->control.stop_soon = NO_STOP_QUIETLY;
2809 }
2810
2811 stop_after_trap = 0;
2812
2813 observer_notify_about_to_proceed ();
2814}
2815
2816/* Returns true if TP is still stopped at a breakpoint that needs
2817 stepping-over in order to make progress. If the breakpoint is gone
2818 meanwhile, we can skip the whole step-over dance. */
2819
2820static int
2821thread_still_needs_step_over_bp (struct thread_info *tp)
2822{
2823 if (tp->stepping_over_breakpoint)
2824 {
2825 struct regcache *regcache = get_thread_regcache (tp->ptid);
2826
2827 if (breakpoint_here_p (get_regcache_aspace (regcache),
2828 regcache_read_pc (regcache))
2829 == ordinary_breakpoint_here)
2830 return 1;
2831
2832 tp->stepping_over_breakpoint = 0;
2833 }
2834
2835 return 0;
2836}
2837
2838/* Check whether thread TP still needs to start a step-over in order
2839 to make progress when resumed. Returns an bitwise or of enum
2840 step_over_what bits, indicating what needs to be stepped over. */
2841
2842static int
2843thread_still_needs_step_over (struct thread_info *tp)
2844{
2845 struct inferior *inf = find_inferior_ptid (tp->ptid);
2846 int what = 0;
2847
2848 if (thread_still_needs_step_over_bp (tp))
2849 what |= STEP_OVER_BREAKPOINT;
2850
2851 if (tp->stepping_over_watchpoint
2852 && !target_have_steppable_watchpoint)
2853 what |= STEP_OVER_WATCHPOINT;
2854
2855 return what;
2856}
2857
2858/* Returns true if scheduler locking applies. STEP indicates whether
2859 we're about to do a step/next-like command to a thread. */
2860
2861static int
2862schedlock_applies (struct thread_info *tp)
2863{
2864 return (scheduler_mode == schedlock_on
2865 || (scheduler_mode == schedlock_step
2866 && tp->control.stepping_command));
2867}
2868
2869/* Basic routine for continuing the program in various fashions.
2870
2871 ADDR is the address to resume at, or -1 for resume where stopped.
2872 SIGGNAL is the signal to give it, or 0 for none,
2873 or -1 for act according to how it stopped.
2874 STEP is nonzero if should trap after one instruction.
2875 -1 means return after that and print nothing.
2876 You should probably set various step_... variables
2877 before calling here, if you are stepping.
2878
2879 You should call clear_proceed_status before calling proceed. */
2880
2881void
2882proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2883{
2884 struct regcache *regcache;
2885 struct gdbarch *gdbarch;
2886 struct thread_info *tp;
2887 CORE_ADDR pc;
2888 struct address_space *aspace;
2889 ptid_t resume_ptid;
2890 struct execution_control_state ecss;
2891 struct execution_control_state *ecs = &ecss;
2892 struct cleanup *old_chain;
2893 int started;
2894
2895 /* If we're stopped at a fork/vfork, follow the branch set by the
2896 "set follow-fork-mode" command; otherwise, we'll just proceed
2897 resuming the current thread. */
2898 if (!follow_fork ())
2899 {
2900 /* The target for some reason decided not to resume. */
2901 normal_stop ();
2902 if (target_can_async_p ())
2903 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2904 return;
2905 }
2906
2907 /* We'll update this if & when we switch to a new thread. */
2908 previous_inferior_ptid = inferior_ptid;
2909
2910 regcache = get_current_regcache ();
2911 gdbarch = get_regcache_arch (regcache);
2912 aspace = get_regcache_aspace (regcache);
2913 pc = regcache_read_pc (regcache);
2914 tp = inferior_thread ();
2915
2916 /* Fill in with reasonable starting values. */
2917 init_thread_stepping_state (tp);
2918
2919 gdb_assert (!thread_is_in_step_over_chain (tp));
2920
2921 if (addr == (CORE_ADDR) -1)
2922 {
2923 if (pc == stop_pc
2924 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2925 && execution_direction != EXEC_REVERSE)
2926 /* There is a breakpoint at the address we will resume at,
2927 step one instruction before inserting breakpoints so that
2928 we do not stop right away (and report a second hit at this
2929 breakpoint).
2930
2931 Note, we don't do this in reverse, because we won't
2932 actually be executing the breakpoint insn anyway.
2933 We'll be (un-)executing the previous instruction. */
2934 tp->stepping_over_breakpoint = 1;
2935 else if (gdbarch_single_step_through_delay_p (gdbarch)
2936 && gdbarch_single_step_through_delay (gdbarch,
2937 get_current_frame ()))
2938 /* We stepped onto an instruction that needs to be stepped
2939 again before re-inserting the breakpoint, do so. */
2940 tp->stepping_over_breakpoint = 1;
2941 }
2942 else
2943 {
2944 regcache_write_pc (regcache, addr);
2945 }
2946
2947 if (siggnal != GDB_SIGNAL_DEFAULT)
2948 tp->suspend.stop_signal = siggnal;
2949
2950 /* Record the interpreter that issued the execution command that
2951 caused this thread to resume. If the top level interpreter is
2952 MI/async, and the execution command was a CLI command
2953 (next/step/etc.), we'll want to print stop event output to the MI
2954 console channel (the stepped-to line, etc.), as if the user
2955 entered the execution command on a real GDB console. */
2956 tp->control.command_interp = command_interp ();
2957
2958 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
2959
2960 /* If an exception is thrown from this point on, make sure to
2961 propagate GDB's knowledge of the executing state to the
2962 frontend/user running state. */
2963 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
2964
2965 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2966 threads (e.g., we might need to set threads stepping over
2967 breakpoints first), from the user/frontend's point of view, all
2968 threads in RESUME_PTID are now running. Unless we're calling an
2969 inferior function, as in that case we pretend the inferior
2970 doesn't run at all. */
2971 if (!tp->control.in_infcall)
2972 set_running (resume_ptid, 1);
2973
2974 if (debug_infrun)
2975 fprintf_unfiltered (gdb_stdlog,
2976 "infrun: proceed (addr=%s, signal=%s)\n",
2977 paddress (gdbarch, addr),
2978 gdb_signal_to_symbol_string (siggnal));
2979
2980 annotate_starting ();
2981
2982 /* Make sure that output from GDB appears before output from the
2983 inferior. */
2984 gdb_flush (gdb_stdout);
2985
2986 /* In a multi-threaded task we may select another thread and
2987 then continue or step.
2988
2989 But if a thread that we're resuming had stopped at a breakpoint,
2990 it will immediately cause another breakpoint stop without any
2991 execution (i.e. it will report a breakpoint hit incorrectly). So
2992 we must step over it first.
2993
2994 Look for threads other than the current (TP) that reported a
2995 breakpoint hit and haven't been resumed yet since. */
2996
2997 /* If scheduler locking applies, we can avoid iterating over all
2998 threads. */
2999 if (!non_stop && !schedlock_applies (tp))
3000 {
3001 struct thread_info *current = tp;
3002
3003 ALL_NON_EXITED_THREADS (tp)
3004 {
3005 /* Ignore the current thread here. It's handled
3006 afterwards. */
3007 if (tp == current)
3008 continue;
3009
3010 /* Ignore threads of processes we're not resuming. */
3011 if (!ptid_match (tp->ptid, resume_ptid))
3012 continue;
3013
3014 if (!thread_still_needs_step_over (tp))
3015 continue;
3016
3017 gdb_assert (!thread_is_in_step_over_chain (tp));
3018
3019 if (debug_infrun)
3020 fprintf_unfiltered (gdb_stdlog,
3021 "infrun: need to step-over [%s] first\n",
3022 target_pid_to_str (tp->ptid));
3023
3024 thread_step_over_chain_enqueue (tp);
3025 }
3026
3027 tp = current;
3028 }
3029
3030 /* Enqueue the current thread last, so that we move all other
3031 threads over their breakpoints first. */
3032 if (tp->stepping_over_breakpoint)
3033 thread_step_over_chain_enqueue (tp);
3034
3035 /* If the thread isn't started, we'll still need to set its prev_pc,
3036 so that switch_back_to_stepped_thread knows the thread hasn't
3037 advanced. Must do this before resuming any thread, as in
3038 all-stop/remote, once we resume we can't send any other packet
3039 until the target stops again. */
3040 tp->prev_pc = regcache_read_pc (regcache);
3041
3042 started = start_step_over ();
3043
3044 if (step_over_info_valid_p ())
3045 {
3046 /* Either this thread started a new in-line step over, or some
3047 other thread was already doing one. In either case, don't
3048 resume anything else until the step-over is finished. */
3049 }
3050 else if (started && !target_is_non_stop_p ())
3051 {
3052 /* A new displaced stepping sequence was started. In all-stop,
3053 we can't talk to the target anymore until it next stops. */
3054 }
3055 else if (!non_stop && target_is_non_stop_p ())
3056 {
3057 /* In all-stop, but the target is always in non-stop mode.
3058 Start all other threads that are implicitly resumed too. */
3059 ALL_NON_EXITED_THREADS (tp)
3060 {
3061 /* Ignore threads of processes we're not resuming. */
3062 if (!ptid_match (tp->ptid, resume_ptid))
3063 continue;
3064
3065 if (tp->resumed)
3066 {
3067 if (debug_infrun)
3068 fprintf_unfiltered (gdb_stdlog,
3069 "infrun: proceed: [%s] resumed\n",
3070 target_pid_to_str (tp->ptid));
3071 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3072 continue;
3073 }
3074
3075 if (thread_is_in_step_over_chain (tp))
3076 {
3077 if (debug_infrun)
3078 fprintf_unfiltered (gdb_stdlog,
3079 "infrun: proceed: [%s] needs step-over\n",
3080 target_pid_to_str (tp->ptid));
3081 continue;
3082 }
3083
3084 if (debug_infrun)
3085 fprintf_unfiltered (gdb_stdlog,
3086 "infrun: proceed: resuming %s\n",
3087 target_pid_to_str (tp->ptid));
3088
3089 reset_ecs (ecs, tp);
3090 switch_to_thread (tp->ptid);
3091 keep_going_pass_signal (ecs);
3092 if (!ecs->wait_some_more)
3093 error (_("Command aborted."));
3094 }
3095 }
3096 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3097 {
3098 /* The thread wasn't started, and isn't queued, run it now. */
3099 reset_ecs (ecs, tp);
3100 switch_to_thread (tp->ptid);
3101 keep_going_pass_signal (ecs);
3102 if (!ecs->wait_some_more)
3103 error (_("Command aborted."));
3104 }
3105
3106 discard_cleanups (old_chain);
3107
3108 /* Tell the event loop to wait for it to stop. If the target
3109 supports asynchronous execution, it'll do this from within
3110 target_resume. */
3111 if (!target_can_async_p ())
3112 mark_async_event_handler (infrun_async_inferior_event_token);
3113}
3114\f
3115
3116/* Start remote-debugging of a machine over a serial link. */
3117
3118void
3119start_remote (int from_tty)
3120{
3121 struct inferior *inferior;
3122
3123 inferior = current_inferior ();
3124 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3125
3126 /* Always go on waiting for the target, regardless of the mode. */
3127 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3128 indicate to wait_for_inferior that a target should timeout if
3129 nothing is returned (instead of just blocking). Because of this,
3130 targets expecting an immediate response need to, internally, set
3131 things up so that the target_wait() is forced to eventually
3132 timeout. */
3133 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3134 differentiate to its caller what the state of the target is after
3135 the initial open has been performed. Here we're assuming that
3136 the target has stopped. It should be possible to eventually have
3137 target_open() return to the caller an indication that the target
3138 is currently running and GDB state should be set to the same as
3139 for an async run. */
3140 wait_for_inferior ();
3141
3142 /* Now that the inferior has stopped, do any bookkeeping like
3143 loading shared libraries. We want to do this before normal_stop,
3144 so that the displayed frame is up to date. */
3145 post_create_inferior (&current_target, from_tty);
3146
3147 normal_stop ();
3148}
3149
3150/* Initialize static vars when a new inferior begins. */
3151
3152void
3153init_wait_for_inferior (void)
3154{
3155 /* These are meaningless until the first time through wait_for_inferior. */
3156
3157 breakpoint_init_inferior (inf_starting);
3158
3159 clear_proceed_status (0);
3160
3161 target_last_wait_ptid = minus_one_ptid;
3162
3163 previous_inferior_ptid = inferior_ptid;
3164
3165 /* Discard any skipped inlined frames. */
3166 clear_inline_frame_state (minus_one_ptid);
3167}
3168
3169\f
3170
3171static void handle_inferior_event (struct execution_control_state *ecs);
3172
3173static void handle_step_into_function (struct gdbarch *gdbarch,
3174 struct execution_control_state *ecs);
3175static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3176 struct execution_control_state *ecs);
3177static void handle_signal_stop (struct execution_control_state *ecs);
3178static void check_exception_resume (struct execution_control_state *,
3179 struct frame_info *);
3180
3181static void end_stepping_range (struct execution_control_state *ecs);
3182static void stop_waiting (struct execution_control_state *ecs);
3183static void keep_going (struct execution_control_state *ecs);
3184static void process_event_stop_test (struct execution_control_state *ecs);
3185static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3186
3187/* Callback for iterate over threads. If the thread is stopped, but
3188 the user/frontend doesn't know about that yet, go through
3189 normal_stop, as if the thread had just stopped now. ARG points at
3190 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3191 ptid_is_pid(PTID) is true, applies to all threads of the process
3192 pointed at by PTID. Otherwise, apply only to the thread pointed by
3193 PTID. */
3194
3195static int
3196infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3197{
3198 ptid_t ptid = * (ptid_t *) arg;
3199
3200 if ((ptid_equal (info->ptid, ptid)
3201 || ptid_equal (minus_one_ptid, ptid)
3202 || (ptid_is_pid (ptid)
3203 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3204 && is_running (info->ptid)
3205 && !is_executing (info->ptid))
3206 {
3207 struct cleanup *old_chain;
3208 struct execution_control_state ecss;
3209 struct execution_control_state *ecs = &ecss;
3210
3211 memset (ecs, 0, sizeof (*ecs));
3212
3213 old_chain = make_cleanup_restore_current_thread ();
3214
3215 overlay_cache_invalid = 1;
3216 /* Flush target cache before starting to handle each event.
3217 Target was running and cache could be stale. This is just a
3218 heuristic. Running threads may modify target memory, but we
3219 don't get any event. */
3220 target_dcache_invalidate ();
3221
3222 /* Go through handle_inferior_event/normal_stop, so we always
3223 have consistent output as if the stop event had been
3224 reported. */
3225 ecs->ptid = info->ptid;
3226 ecs->event_thread = info;
3227 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3228 ecs->ws.value.sig = GDB_SIGNAL_0;
3229
3230 handle_inferior_event (ecs);
3231
3232 if (!ecs->wait_some_more)
3233 {
3234 /* Cancel any running execution command. */
3235 thread_cancel_execution_command (info);
3236
3237 normal_stop ();
3238 }
3239
3240 do_cleanups (old_chain);
3241 }
3242
3243 return 0;
3244}
3245
3246/* This function is attached as a "thread_stop_requested" observer.
3247 Cleanup local state that assumed the PTID was to be resumed, and
3248 report the stop to the frontend. */
3249
3250static void
3251infrun_thread_stop_requested (ptid_t ptid)
3252{
3253 struct thread_info *tp;
3254
3255 /* PTID was requested to stop. Remove matching threads from the
3256 step-over queue, so we don't try to resume them
3257 automatically. */
3258 ALL_NON_EXITED_THREADS (tp)
3259 if (ptid_match (tp->ptid, ptid))
3260 {
3261 if (thread_is_in_step_over_chain (tp))
3262 thread_step_over_chain_remove (tp);
3263 }
3264
3265 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3266}
3267
3268static void
3269infrun_thread_thread_exit (struct thread_info *tp, int silent)
3270{
3271 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3272 nullify_last_target_wait_ptid ();
3273}
3274
3275/* Delete the step resume, single-step and longjmp/exception resume
3276 breakpoints of TP. */
3277
3278static void
3279delete_thread_infrun_breakpoints (struct thread_info *tp)
3280{
3281 delete_step_resume_breakpoint (tp);
3282 delete_exception_resume_breakpoint (tp);
3283 delete_single_step_breakpoints (tp);
3284}
3285
3286/* If the target still has execution, call FUNC for each thread that
3287 just stopped. In all-stop, that's all the non-exited threads; in
3288 non-stop, that's the current thread, only. */
3289
3290typedef void (*for_each_just_stopped_thread_callback_func)
3291 (struct thread_info *tp);
3292
3293static void
3294for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3295{
3296 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3297 return;
3298
3299 if (target_is_non_stop_p ())
3300 {
3301 /* If in non-stop mode, only the current thread stopped. */
3302 func (inferior_thread ());
3303 }
3304 else
3305 {
3306 struct thread_info *tp;
3307
3308 /* In all-stop mode, all threads have stopped. */
3309 ALL_NON_EXITED_THREADS (tp)
3310 {
3311 func (tp);
3312 }
3313 }
3314}
3315
3316/* Delete the step resume and longjmp/exception resume breakpoints of
3317 the threads that just stopped. */
3318
3319static void
3320delete_just_stopped_threads_infrun_breakpoints (void)
3321{
3322 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3323}
3324
3325/* Delete the single-step breakpoints of the threads that just
3326 stopped. */
3327
3328static void
3329delete_just_stopped_threads_single_step_breakpoints (void)
3330{
3331 for_each_just_stopped_thread (delete_single_step_breakpoints);
3332}
3333
3334/* A cleanup wrapper. */
3335
3336static void
3337delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3338{
3339 delete_just_stopped_threads_infrun_breakpoints ();
3340}
3341
3342/* See infrun.h. */
3343
3344void
3345print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3346 const struct target_waitstatus *ws)
3347{
3348 char *status_string = target_waitstatus_to_string (ws);
3349 struct ui_file *tmp_stream = mem_fileopen ();
3350 char *text;
3351
3352 /* The text is split over several lines because it was getting too long.
3353 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3354 output as a unit; we want only one timestamp printed if debug_timestamp
3355 is set. */
3356
3357 fprintf_unfiltered (tmp_stream,
3358 "infrun: target_wait (%d.%ld.%ld",
3359 ptid_get_pid (waiton_ptid),
3360 ptid_get_lwp (waiton_ptid),
3361 ptid_get_tid (waiton_ptid));
3362 if (ptid_get_pid (waiton_ptid) != -1)
3363 fprintf_unfiltered (tmp_stream,
3364 " [%s]", target_pid_to_str (waiton_ptid));
3365 fprintf_unfiltered (tmp_stream, ", status) =\n");
3366 fprintf_unfiltered (tmp_stream,
3367 "infrun: %d.%ld.%ld [%s],\n",
3368 ptid_get_pid (result_ptid),
3369 ptid_get_lwp (result_ptid),
3370 ptid_get_tid (result_ptid),
3371 target_pid_to_str (result_ptid));
3372 fprintf_unfiltered (tmp_stream,
3373 "infrun: %s\n",
3374 status_string);
3375
3376 text = ui_file_xstrdup (tmp_stream, NULL);
3377
3378 /* This uses %s in part to handle %'s in the text, but also to avoid
3379 a gcc error: the format attribute requires a string literal. */
3380 fprintf_unfiltered (gdb_stdlog, "%s", text);
3381
3382 xfree (status_string);
3383 xfree (text);
3384 ui_file_delete (tmp_stream);
3385}
3386
3387/* Select a thread at random, out of those which are resumed and have
3388 had events. */
3389
3390static struct thread_info *
3391random_pending_event_thread (ptid_t waiton_ptid)
3392{
3393 struct thread_info *event_tp;
3394 int num_events = 0;
3395 int random_selector;
3396
3397 /* First see how many events we have. Count only resumed threads
3398 that have an event pending. */
3399 ALL_NON_EXITED_THREADS (event_tp)
3400 if (ptid_match (event_tp->ptid, waiton_ptid)
3401 && event_tp->resumed
3402 && event_tp->suspend.waitstatus_pending_p)
3403 num_events++;
3404
3405 if (num_events == 0)
3406 return NULL;
3407
3408 /* Now randomly pick a thread out of those that have had events. */
3409 random_selector = (int)
3410 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3411
3412 if (debug_infrun && num_events > 1)
3413 fprintf_unfiltered (gdb_stdlog,
3414 "infrun: Found %d events, selecting #%d\n",
3415 num_events, random_selector);
3416
3417 /* Select the Nth thread that has had an event. */
3418 ALL_NON_EXITED_THREADS (event_tp)
3419 if (ptid_match (event_tp->ptid, waiton_ptid)
3420 && event_tp->resumed
3421 && event_tp->suspend.waitstatus_pending_p)
3422 if (random_selector-- == 0)
3423 break;
3424
3425 return event_tp;
3426}
3427
3428/* Wrapper for target_wait that first checks whether threads have
3429 pending statuses to report before actually asking the target for
3430 more events. */
3431
3432static ptid_t
3433do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3434{
3435 ptid_t event_ptid;
3436 struct thread_info *tp;
3437
3438 /* First check if there is a resumed thread with a wait status
3439 pending. */
3440 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3441 {
3442 tp = random_pending_event_thread (ptid);
3443 }
3444 else
3445 {
3446 if (debug_infrun)
3447 fprintf_unfiltered (gdb_stdlog,
3448 "infrun: Waiting for specific thread %s.\n",
3449 target_pid_to_str (ptid));
3450
3451 /* We have a specific thread to check. */
3452 tp = find_thread_ptid (ptid);
3453 gdb_assert (tp != NULL);
3454 if (!tp->suspend.waitstatus_pending_p)
3455 tp = NULL;
3456 }
3457
3458 if (tp != NULL
3459 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3460 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3461 {
3462 struct regcache *regcache = get_thread_regcache (tp->ptid);
3463 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3464 CORE_ADDR pc;
3465 int discard = 0;
3466
3467 pc = regcache_read_pc (regcache);
3468
3469 if (pc != tp->suspend.stop_pc)
3470 {
3471 if (debug_infrun)
3472 fprintf_unfiltered (gdb_stdlog,
3473 "infrun: PC of %s changed. was=%s, now=%s\n",
3474 target_pid_to_str (tp->ptid),
3475 paddress (gdbarch, tp->prev_pc),
3476 paddress (gdbarch, pc));
3477 discard = 1;
3478 }
3479 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3480 {
3481 if (debug_infrun)
3482 fprintf_unfiltered (gdb_stdlog,
3483 "infrun: previous breakpoint of %s, at %s gone\n",
3484 target_pid_to_str (tp->ptid),
3485 paddress (gdbarch, pc));
3486
3487 discard = 1;
3488 }
3489
3490 if (discard)
3491 {
3492 if (debug_infrun)
3493 fprintf_unfiltered (gdb_stdlog,
3494 "infrun: pending event of %s cancelled.\n",
3495 target_pid_to_str (tp->ptid));
3496
3497 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3498 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3499 }
3500 }
3501
3502 if (tp != NULL)
3503 {
3504 if (debug_infrun)
3505 {
3506 char *statstr;
3507
3508 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3509 fprintf_unfiltered (gdb_stdlog,
3510 "infrun: Using pending wait status %s for %s.\n",
3511 statstr,
3512 target_pid_to_str (tp->ptid));
3513 xfree (statstr);
3514 }
3515
3516 /* Now that we've selected our final event LWP, un-adjust its PC
3517 if it was a software breakpoint (and the target doesn't
3518 always adjust the PC itself). */
3519 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3520 && !target_supports_stopped_by_sw_breakpoint ())
3521 {
3522 struct regcache *regcache;
3523 struct gdbarch *gdbarch;
3524 int decr_pc;
3525
3526 regcache = get_thread_regcache (tp->ptid);
3527 gdbarch = get_regcache_arch (regcache);
3528
3529 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3530 if (decr_pc != 0)
3531 {
3532 CORE_ADDR pc;
3533
3534 pc = regcache_read_pc (regcache);
3535 regcache_write_pc (regcache, pc + decr_pc);
3536 }
3537 }
3538
3539 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3540 *status = tp->suspend.waitstatus;
3541 tp->suspend.waitstatus_pending_p = 0;
3542
3543 /* Wake up the event loop again, until all pending events are
3544 processed. */
3545 if (target_is_async_p ())
3546 mark_async_event_handler (infrun_async_inferior_event_token);
3547 return tp->ptid;
3548 }
3549
3550 /* But if we don't find one, we'll have to wait. */
3551
3552 if (deprecated_target_wait_hook)
3553 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3554 else
3555 event_ptid = target_wait (ptid, status, options);
3556
3557 return event_ptid;
3558}
3559
3560/* Prepare and stabilize the inferior for detaching it. E.g.,
3561 detaching while a thread is displaced stepping is a recipe for
3562 crashing it, as nothing would readjust the PC out of the scratch
3563 pad. */
3564
3565void
3566prepare_for_detach (void)
3567{
3568 struct inferior *inf = current_inferior ();
3569 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3570 struct cleanup *old_chain_1;
3571 struct displaced_step_inferior_state *displaced;
3572
3573 displaced = get_displaced_stepping_state (inf->pid);
3574
3575 /* Is any thread of this process displaced stepping? If not,
3576 there's nothing else to do. */
3577 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3578 return;
3579
3580 if (debug_infrun)
3581 fprintf_unfiltered (gdb_stdlog,
3582 "displaced-stepping in-process while detaching");
3583
3584 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3585 inf->detaching = 1;
3586
3587 while (!ptid_equal (displaced->step_ptid, null_ptid))
3588 {
3589 struct cleanup *old_chain_2;
3590 struct execution_control_state ecss;
3591 struct execution_control_state *ecs;
3592
3593 ecs = &ecss;
3594 memset (ecs, 0, sizeof (*ecs));
3595
3596 overlay_cache_invalid = 1;
3597 /* Flush target cache before starting to handle each event.
3598 Target was running and cache could be stale. This is just a
3599 heuristic. Running threads may modify target memory, but we
3600 don't get any event. */
3601 target_dcache_invalidate ();
3602
3603 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3604
3605 if (debug_infrun)
3606 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3607
3608 /* If an error happens while handling the event, propagate GDB's
3609 knowledge of the executing state to the frontend/user running
3610 state. */
3611 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3612 &minus_one_ptid);
3613
3614 /* Now figure out what to do with the result of the result. */
3615 handle_inferior_event (ecs);
3616
3617 /* No error, don't finish the state yet. */
3618 discard_cleanups (old_chain_2);
3619
3620 /* Breakpoints and watchpoints are not installed on the target
3621 at this point, and signals are passed directly to the
3622 inferior, so this must mean the process is gone. */
3623 if (!ecs->wait_some_more)
3624 {
3625 discard_cleanups (old_chain_1);
3626 error (_("Program exited while detaching"));
3627 }
3628 }
3629
3630 discard_cleanups (old_chain_1);
3631}
3632
3633/* Wait for control to return from inferior to debugger.
3634
3635 If inferior gets a signal, we may decide to start it up again
3636 instead of returning. That is why there is a loop in this function.
3637 When this function actually returns it means the inferior
3638 should be left stopped and GDB should read more commands. */
3639
3640void
3641wait_for_inferior (void)
3642{
3643 struct cleanup *old_cleanups;
3644 struct cleanup *thread_state_chain;
3645
3646 if (debug_infrun)
3647 fprintf_unfiltered
3648 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3649
3650 old_cleanups
3651 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3652 NULL);
3653
3654 /* If an error happens while handling the event, propagate GDB's
3655 knowledge of the executing state to the frontend/user running
3656 state. */
3657 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3658
3659 while (1)
3660 {
3661 struct execution_control_state ecss;
3662 struct execution_control_state *ecs = &ecss;
3663 ptid_t waiton_ptid = minus_one_ptid;
3664
3665 memset (ecs, 0, sizeof (*ecs));
3666
3667 overlay_cache_invalid = 1;
3668
3669 /* Flush target cache before starting to handle each event.
3670 Target was running and cache could be stale. This is just a
3671 heuristic. Running threads may modify target memory, but we
3672 don't get any event. */
3673 target_dcache_invalidate ();
3674
3675 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3676
3677 if (debug_infrun)
3678 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3679
3680 /* Now figure out what to do with the result of the result. */
3681 handle_inferior_event (ecs);
3682
3683 if (!ecs->wait_some_more)
3684 break;
3685 }
3686
3687 /* No error, don't finish the state yet. */
3688 discard_cleanups (thread_state_chain);
3689
3690 do_cleanups (old_cleanups);
3691}
3692
3693/* Cleanup that reinstalls the readline callback handler, if the
3694 target is running in the background. If while handling the target
3695 event something triggered a secondary prompt, like e.g., a
3696 pagination prompt, we'll have removed the callback handler (see
3697 gdb_readline_wrapper_line). Need to do this as we go back to the
3698 event loop, ready to process further input. Note this has no
3699 effect if the handler hasn't actually been removed, because calling
3700 rl_callback_handler_install resets the line buffer, thus losing
3701 input. */
3702
3703static void
3704reinstall_readline_callback_handler_cleanup (void *arg)
3705{
3706 if (!interpreter_async)
3707 {
3708 /* We're not going back to the top level event loop yet. Don't
3709 install the readline callback, as it'd prep the terminal,
3710 readline-style (raw, noecho) (e.g., --batch). We'll install
3711 it the next time the prompt is displayed, when we're ready
3712 for input. */
3713 return;
3714 }
3715
3716 if (async_command_editing_p && !sync_execution)
3717 gdb_rl_callback_handler_reinstall ();
3718}
3719
3720/* Clean up the FSMs of threads that are now stopped. In non-stop,
3721 that's just the event thread. In all-stop, that's all threads. */
3722
3723static void
3724clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3725{
3726 struct thread_info *thr = ecs->event_thread;
3727
3728 if (thr != NULL && thr->thread_fsm != NULL)
3729 thread_fsm_clean_up (thr->thread_fsm);
3730
3731 if (!non_stop)
3732 {
3733 ALL_NON_EXITED_THREADS (thr)
3734 {
3735 if (thr->thread_fsm == NULL)
3736 continue;
3737 if (thr == ecs->event_thread)
3738 continue;
3739
3740 switch_to_thread (thr->ptid);
3741 thread_fsm_clean_up (thr->thread_fsm);
3742 }
3743
3744 if (ecs->event_thread != NULL)
3745 switch_to_thread (ecs->event_thread->ptid);
3746 }
3747}
3748
3749/* Asynchronous version of wait_for_inferior. It is called by the
3750 event loop whenever a change of state is detected on the file
3751 descriptor corresponding to the target. It can be called more than
3752 once to complete a single execution command. In such cases we need
3753 to keep the state in a global variable ECSS. If it is the last time
3754 that this function is called for a single execution command, then
3755 report to the user that the inferior has stopped, and do the
3756 necessary cleanups. */
3757
3758void
3759fetch_inferior_event (void *client_data)
3760{
3761 struct execution_control_state ecss;
3762 struct execution_control_state *ecs = &ecss;
3763 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3764 struct cleanup *ts_old_chain;
3765 int was_sync = sync_execution;
3766 int cmd_done = 0;
3767 ptid_t waiton_ptid = minus_one_ptid;
3768
3769 memset (ecs, 0, sizeof (*ecs));
3770
3771 /* End up with readline processing input, if necessary. */
3772 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3773
3774 /* We're handling a live event, so make sure we're doing live
3775 debugging. If we're looking at traceframes while the target is
3776 running, we're going to need to get back to that mode after
3777 handling the event. */
3778 if (non_stop)
3779 {
3780 make_cleanup_restore_current_traceframe ();
3781 set_current_traceframe (-1);
3782 }
3783
3784 if (non_stop)
3785 /* In non-stop mode, the user/frontend should not notice a thread
3786 switch due to internal events. Make sure we reverse to the
3787 user selected thread and frame after handling the event and
3788 running any breakpoint commands. */
3789 make_cleanup_restore_current_thread ();
3790
3791 overlay_cache_invalid = 1;
3792 /* Flush target cache before starting to handle each event. Target
3793 was running and cache could be stale. This is just a heuristic.
3794 Running threads may modify target memory, but we don't get any
3795 event. */
3796 target_dcache_invalidate ();
3797
3798 make_cleanup_restore_integer (&execution_direction);
3799 execution_direction = target_execution_direction ();
3800
3801 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3802 target_can_async_p () ? TARGET_WNOHANG : 0);
3803
3804 if (debug_infrun)
3805 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3806
3807 /* If an error happens while handling the event, propagate GDB's
3808 knowledge of the executing state to the frontend/user running
3809 state. */
3810 if (!target_is_non_stop_p ())
3811 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3812 else
3813 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3814
3815 /* Get executed before make_cleanup_restore_current_thread above to apply
3816 still for the thread which has thrown the exception. */
3817 make_bpstat_clear_actions_cleanup ();
3818
3819 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3820
3821 /* Now figure out what to do with the result of the result. */
3822 handle_inferior_event (ecs);
3823
3824 if (!ecs->wait_some_more)
3825 {
3826 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3827 int should_stop = 1;
3828 struct thread_info *thr = ecs->event_thread;
3829 int should_notify_stop = 1;
3830
3831 delete_just_stopped_threads_infrun_breakpoints ();
3832
3833 if (thr != NULL)
3834 {
3835 struct thread_fsm *thread_fsm = thr->thread_fsm;
3836
3837 if (thread_fsm != NULL)
3838 should_stop = thread_fsm_should_stop (thread_fsm);
3839 }
3840
3841 if (!should_stop)
3842 {
3843 keep_going (ecs);
3844 }
3845 else
3846 {
3847 clean_up_just_stopped_threads_fsms (ecs);
3848
3849 if (thr != NULL && thr->thread_fsm != NULL)
3850 {
3851 should_notify_stop
3852 = thread_fsm_should_notify_stop (thr->thread_fsm);
3853 }
3854
3855 if (should_notify_stop)
3856 {
3857 /* We may not find an inferior if this was a process exit. */
3858 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3859 normal_stop ();
3860
3861 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3862 cmd_done = 1;
3863 }
3864 }
3865 }
3866
3867 /* No error, don't finish the thread states yet. */
3868 discard_cleanups (ts_old_chain);
3869
3870 /* Revert thread and frame. */
3871 do_cleanups (old_chain);
3872
3873 /* If the inferior was in sync execution mode, and now isn't,
3874 restore the prompt (a synchronous execution command has finished,
3875 and we're ready for input). */
3876 if (interpreter_async && was_sync && !sync_execution)
3877 observer_notify_sync_execution_done ();
3878
3879 if (cmd_done
3880 && !was_sync
3881 && exec_done_display_p
3882 && (ptid_equal (inferior_ptid, null_ptid)
3883 || !is_running (inferior_ptid)))
3884 printf_unfiltered (_("completed.\n"));
3885}
3886
3887/* Record the frame and location we're currently stepping through. */
3888void
3889set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3890{
3891 struct thread_info *tp = inferior_thread ();
3892
3893 tp->control.step_frame_id = get_frame_id (frame);
3894 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3895
3896 tp->current_symtab = sal.symtab;
3897 tp->current_line = sal.line;
3898}
3899
3900/* Clear context switchable stepping state. */
3901
3902void
3903init_thread_stepping_state (struct thread_info *tss)
3904{
3905 tss->stepped_breakpoint = 0;
3906 tss->stepping_over_breakpoint = 0;
3907 tss->stepping_over_watchpoint = 0;
3908 tss->step_after_step_resume_breakpoint = 0;
3909}
3910
3911/* Set the cached copy of the last ptid/waitstatus. */
3912
3913static void
3914set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3915{
3916 target_last_wait_ptid = ptid;
3917 target_last_waitstatus = status;
3918}
3919
3920/* Return the cached copy of the last pid/waitstatus returned by
3921 target_wait()/deprecated_target_wait_hook(). The data is actually
3922 cached by handle_inferior_event(), which gets called immediately
3923 after target_wait()/deprecated_target_wait_hook(). */
3924
3925void
3926get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3927{
3928 *ptidp = target_last_wait_ptid;
3929 *status = target_last_waitstatus;
3930}
3931
3932void
3933nullify_last_target_wait_ptid (void)
3934{
3935 target_last_wait_ptid = minus_one_ptid;
3936}
3937
3938/* Switch thread contexts. */
3939
3940static void
3941context_switch (ptid_t ptid)
3942{
3943 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3944 {
3945 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3946 target_pid_to_str (inferior_ptid));
3947 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3948 target_pid_to_str (ptid));
3949 }
3950
3951 switch_to_thread (ptid);
3952}
3953
3954/* If the target can't tell whether we've hit breakpoints
3955 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3956 check whether that could have been caused by a breakpoint. If so,
3957 adjust the PC, per gdbarch_decr_pc_after_break. */
3958
3959static void
3960adjust_pc_after_break (struct thread_info *thread,
3961 struct target_waitstatus *ws)
3962{
3963 struct regcache *regcache;
3964 struct gdbarch *gdbarch;
3965 struct address_space *aspace;
3966 CORE_ADDR breakpoint_pc, decr_pc;
3967
3968 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3969 we aren't, just return.
3970
3971 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3972 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3973 implemented by software breakpoints should be handled through the normal
3974 breakpoint layer.
3975
3976 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3977 different signals (SIGILL or SIGEMT for instance), but it is less
3978 clear where the PC is pointing afterwards. It may not match
3979 gdbarch_decr_pc_after_break. I don't know any specific target that
3980 generates these signals at breakpoints (the code has been in GDB since at
3981 least 1992) so I can not guess how to handle them here.
3982
3983 In earlier versions of GDB, a target with
3984 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3985 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3986 target with both of these set in GDB history, and it seems unlikely to be
3987 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3988
3989 if (ws->kind != TARGET_WAITKIND_STOPPED)
3990 return;
3991
3992 if (ws->value.sig != GDB_SIGNAL_TRAP)
3993 return;
3994
3995 /* In reverse execution, when a breakpoint is hit, the instruction
3996 under it has already been de-executed. The reported PC always
3997 points at the breakpoint address, so adjusting it further would
3998 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3999 architecture:
4000
4001 B1 0x08000000 : INSN1
4002 B2 0x08000001 : INSN2
4003 0x08000002 : INSN3
4004 PC -> 0x08000003 : INSN4
4005
4006 Say you're stopped at 0x08000003 as above. Reverse continuing
4007 from that point should hit B2 as below. Reading the PC when the
4008 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4009 been de-executed already.
4010
4011 B1 0x08000000 : INSN1
4012 B2 PC -> 0x08000001 : INSN2
4013 0x08000002 : INSN3
4014 0x08000003 : INSN4
4015
4016 We can't apply the same logic as for forward execution, because
4017 we would wrongly adjust the PC to 0x08000000, since there's a
4018 breakpoint at PC - 1. We'd then report a hit on B1, although
4019 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4020 behaviour. */
4021 if (execution_direction == EXEC_REVERSE)
4022 return;
4023
4024 /* If the target can tell whether the thread hit a SW breakpoint,
4025 trust it. Targets that can tell also adjust the PC
4026 themselves. */
4027 if (target_supports_stopped_by_sw_breakpoint ())
4028 return;
4029
4030 /* Note that relying on whether a breakpoint is planted in memory to
4031 determine this can fail. E.g,. the breakpoint could have been
4032 removed since. Or the thread could have been told to step an
4033 instruction the size of a breakpoint instruction, and only
4034 _after_ was a breakpoint inserted at its address. */
4035
4036 /* If this target does not decrement the PC after breakpoints, then
4037 we have nothing to do. */
4038 regcache = get_thread_regcache (thread->ptid);
4039 gdbarch = get_regcache_arch (regcache);
4040
4041 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4042 if (decr_pc == 0)
4043 return;
4044
4045 aspace = get_regcache_aspace (regcache);
4046
4047 /* Find the location where (if we've hit a breakpoint) the
4048 breakpoint would be. */
4049 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4050
4051 /* If the target can't tell whether a software breakpoint triggered,
4052 fallback to figuring it out based on breakpoints we think were
4053 inserted in the target, and on whether the thread was stepped or
4054 continued. */
4055
4056 /* Check whether there actually is a software breakpoint inserted at
4057 that location.
4058
4059 If in non-stop mode, a race condition is possible where we've
4060 removed a breakpoint, but stop events for that breakpoint were
4061 already queued and arrive later. To suppress those spurious
4062 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4063 and retire them after a number of stop events are reported. Note
4064 this is an heuristic and can thus get confused. The real fix is
4065 to get the "stopped by SW BP and needs adjustment" info out of
4066 the target/kernel (and thus never reach here; see above). */
4067 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4068 || (target_is_non_stop_p ()
4069 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4070 {
4071 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4072
4073 if (record_full_is_used ())
4074 record_full_gdb_operation_disable_set ();
4075
4076 /* When using hardware single-step, a SIGTRAP is reported for both
4077 a completed single-step and a software breakpoint. Need to
4078 differentiate between the two, as the latter needs adjusting
4079 but the former does not.
4080
4081 The SIGTRAP can be due to a completed hardware single-step only if
4082 - we didn't insert software single-step breakpoints
4083 - this thread is currently being stepped
4084
4085 If any of these events did not occur, we must have stopped due
4086 to hitting a software breakpoint, and have to back up to the
4087 breakpoint address.
4088
4089 As a special case, we could have hardware single-stepped a
4090 software breakpoint. In this case (prev_pc == breakpoint_pc),
4091 we also need to back up to the breakpoint address. */
4092
4093 if (thread_has_single_step_breakpoints_set (thread)
4094 || !currently_stepping (thread)
4095 || (thread->stepped_breakpoint
4096 && thread->prev_pc == breakpoint_pc))
4097 regcache_write_pc (regcache, breakpoint_pc);
4098
4099 do_cleanups (old_cleanups);
4100 }
4101}
4102
4103static int
4104stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4105{
4106 for (frame = get_prev_frame (frame);
4107 frame != NULL;
4108 frame = get_prev_frame (frame))
4109 {
4110 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4111 return 1;
4112 if (get_frame_type (frame) != INLINE_FRAME)
4113 break;
4114 }
4115
4116 return 0;
4117}
4118
4119/* Auxiliary function that handles syscall entry/return events.
4120 It returns 1 if the inferior should keep going (and GDB
4121 should ignore the event), or 0 if the event deserves to be
4122 processed. */
4123
4124static int
4125handle_syscall_event (struct execution_control_state *ecs)
4126{
4127 struct regcache *regcache;
4128 int syscall_number;
4129
4130 if (!ptid_equal (ecs->ptid, inferior_ptid))
4131 context_switch (ecs->ptid);
4132
4133 regcache = get_thread_regcache (ecs->ptid);
4134 syscall_number = ecs->ws.value.syscall_number;
4135 stop_pc = regcache_read_pc (regcache);
4136
4137 if (catch_syscall_enabled () > 0
4138 && catching_syscall_number (syscall_number) > 0)
4139 {
4140 if (debug_infrun)
4141 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4142 syscall_number);
4143
4144 ecs->event_thread->control.stop_bpstat
4145 = bpstat_stop_status (get_regcache_aspace (regcache),
4146 stop_pc, ecs->ptid, &ecs->ws);
4147
4148 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4149 {
4150 /* Catchpoint hit. */
4151 return 0;
4152 }
4153 }
4154
4155 /* If no catchpoint triggered for this, then keep going. */
4156 keep_going (ecs);
4157 return 1;
4158}
4159
4160/* Lazily fill in the execution_control_state's stop_func_* fields. */
4161
4162static void
4163fill_in_stop_func (struct gdbarch *gdbarch,
4164 struct execution_control_state *ecs)
4165{
4166 if (!ecs->stop_func_filled_in)
4167 {
4168 /* Don't care about return value; stop_func_start and stop_func_name
4169 will both be 0 if it doesn't work. */
4170 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4171 &ecs->stop_func_start, &ecs->stop_func_end);
4172 ecs->stop_func_start
4173 += gdbarch_deprecated_function_start_offset (gdbarch);
4174
4175 if (gdbarch_skip_entrypoint_p (gdbarch))
4176 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4177 ecs->stop_func_start);
4178
4179 ecs->stop_func_filled_in = 1;
4180 }
4181}
4182
4183
4184/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4185
4186static enum stop_kind
4187get_inferior_stop_soon (ptid_t ptid)
4188{
4189 struct inferior *inf = find_inferior_ptid (ptid);
4190
4191 gdb_assert (inf != NULL);
4192 return inf->control.stop_soon;
4193}
4194
4195/* Wait for one event. Store the resulting waitstatus in WS, and
4196 return the event ptid. */
4197
4198static ptid_t
4199wait_one (struct target_waitstatus *ws)
4200{
4201 ptid_t event_ptid;
4202 ptid_t wait_ptid = minus_one_ptid;
4203
4204 overlay_cache_invalid = 1;
4205
4206 /* Flush target cache before starting to handle each event.
4207 Target was running and cache could be stale. This is just a
4208 heuristic. Running threads may modify target memory, but we
4209 don't get any event. */
4210 target_dcache_invalidate ();
4211
4212 if (deprecated_target_wait_hook)
4213 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4214 else
4215 event_ptid = target_wait (wait_ptid, ws, 0);
4216
4217 if (debug_infrun)
4218 print_target_wait_results (wait_ptid, event_ptid, ws);
4219
4220 return event_ptid;
4221}
4222
4223/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4224 instead of the current thread. */
4225#define THREAD_STOPPED_BY(REASON) \
4226static int \
4227thread_stopped_by_ ## REASON (ptid_t ptid) \
4228{ \
4229 struct cleanup *old_chain; \
4230 int res; \
4231 \
4232 old_chain = save_inferior_ptid (); \
4233 inferior_ptid = ptid; \
4234 \
4235 res = target_stopped_by_ ## REASON (); \
4236 \
4237 do_cleanups (old_chain); \
4238 \
4239 return res; \
4240}
4241
4242/* Generate thread_stopped_by_watchpoint. */
4243THREAD_STOPPED_BY (watchpoint)
4244/* Generate thread_stopped_by_sw_breakpoint. */
4245THREAD_STOPPED_BY (sw_breakpoint)
4246/* Generate thread_stopped_by_hw_breakpoint. */
4247THREAD_STOPPED_BY (hw_breakpoint)
4248
4249/* Cleanups that switches to the PTID pointed at by PTID_P. */
4250
4251static void
4252switch_to_thread_cleanup (void *ptid_p)
4253{
4254 ptid_t ptid = *(ptid_t *) ptid_p;
4255
4256 switch_to_thread (ptid);
4257}
4258
4259/* Save the thread's event and stop reason to process it later. */
4260
4261static void
4262save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4263{
4264 struct regcache *regcache;
4265 struct address_space *aspace;
4266
4267 if (debug_infrun)
4268 {
4269 char *statstr;
4270
4271 statstr = target_waitstatus_to_string (ws);
4272 fprintf_unfiltered (gdb_stdlog,
4273 "infrun: saving status %s for %d.%ld.%ld\n",
4274 statstr,
4275 ptid_get_pid (tp->ptid),
4276 ptid_get_lwp (tp->ptid),
4277 ptid_get_tid (tp->ptid));
4278 xfree (statstr);
4279 }
4280
4281 /* Record for later. */
4282 tp->suspend.waitstatus = *ws;
4283 tp->suspend.waitstatus_pending_p = 1;
4284
4285 regcache = get_thread_regcache (tp->ptid);
4286 aspace = get_regcache_aspace (regcache);
4287
4288 if (ws->kind == TARGET_WAITKIND_STOPPED
4289 && ws->value.sig == GDB_SIGNAL_TRAP)
4290 {
4291 CORE_ADDR pc = regcache_read_pc (regcache);
4292
4293 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4294
4295 if (thread_stopped_by_watchpoint (tp->ptid))
4296 {
4297 tp->suspend.stop_reason
4298 = TARGET_STOPPED_BY_WATCHPOINT;
4299 }
4300 else if (target_supports_stopped_by_sw_breakpoint ()
4301 && thread_stopped_by_sw_breakpoint (tp->ptid))
4302 {
4303 tp->suspend.stop_reason
4304 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4305 }
4306 else if (target_supports_stopped_by_hw_breakpoint ()
4307 && thread_stopped_by_hw_breakpoint (tp->ptid))
4308 {
4309 tp->suspend.stop_reason
4310 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4311 }
4312 else if (!target_supports_stopped_by_hw_breakpoint ()
4313 && hardware_breakpoint_inserted_here_p (aspace,
4314 pc))
4315 {
4316 tp->suspend.stop_reason
4317 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4318 }
4319 else if (!target_supports_stopped_by_sw_breakpoint ()
4320 && software_breakpoint_inserted_here_p (aspace,
4321 pc))
4322 {
4323 tp->suspend.stop_reason
4324 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4325 }
4326 else if (!thread_has_single_step_breakpoints_set (tp)
4327 && currently_stepping (tp))
4328 {
4329 tp->suspend.stop_reason
4330 = TARGET_STOPPED_BY_SINGLE_STEP;
4331 }
4332 }
4333}
4334
4335/* Stop all threads. */
4336
4337static void
4338stop_all_threads (void)
4339{
4340 /* We may need multiple passes to discover all threads. */
4341 int pass;
4342 int iterations = 0;
4343 ptid_t entry_ptid;
4344 struct cleanup *old_chain;
4345
4346 gdb_assert (target_is_non_stop_p ());
4347
4348 if (debug_infrun)
4349 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4350
4351 entry_ptid = inferior_ptid;
4352 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4353
4354 /* Request threads to stop, and then wait for the stops. Because
4355 threads we already know about can spawn more threads while we're
4356 trying to stop them, and we only learn about new threads when we
4357 update the thread list, do this in a loop, and keep iterating
4358 until two passes find no threads that need to be stopped. */
4359 for (pass = 0; pass < 2; pass++, iterations++)
4360 {
4361 if (debug_infrun)
4362 fprintf_unfiltered (gdb_stdlog,
4363 "infrun: stop_all_threads, pass=%d, "
4364 "iterations=%d\n", pass, iterations);
4365 while (1)
4366 {
4367 ptid_t event_ptid;
4368 struct target_waitstatus ws;
4369 int need_wait = 0;
4370 struct thread_info *t;
4371
4372 update_thread_list ();
4373
4374 /* Go through all threads looking for threads that we need
4375 to tell the target to stop. */
4376 ALL_NON_EXITED_THREADS (t)
4377 {
4378 if (t->executing)
4379 {
4380 /* If already stopping, don't request a stop again.
4381 We just haven't seen the notification yet. */
4382 if (!t->stop_requested)
4383 {
4384 if (debug_infrun)
4385 fprintf_unfiltered (gdb_stdlog,
4386 "infrun: %s executing, "
4387 "need stop\n",
4388 target_pid_to_str (t->ptid));
4389 target_stop (t->ptid);
4390 t->stop_requested = 1;
4391 }
4392 else
4393 {
4394 if (debug_infrun)
4395 fprintf_unfiltered (gdb_stdlog,
4396 "infrun: %s executing, "
4397 "already stopping\n",
4398 target_pid_to_str (t->ptid));
4399 }
4400
4401 if (t->stop_requested)
4402 need_wait = 1;
4403 }
4404 else
4405 {
4406 if (debug_infrun)
4407 fprintf_unfiltered (gdb_stdlog,
4408 "infrun: %s not executing\n",
4409 target_pid_to_str (t->ptid));
4410
4411 /* The thread may be not executing, but still be
4412 resumed with a pending status to process. */
4413 t->resumed = 0;
4414 }
4415 }
4416
4417 if (!need_wait)
4418 break;
4419
4420 /* If we find new threads on the second iteration, restart
4421 over. We want to see two iterations in a row with all
4422 threads stopped. */
4423 if (pass > 0)
4424 pass = -1;
4425
4426 event_ptid = wait_one (&ws);
4427 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4428 {
4429 /* All resumed threads exited. */
4430 }
4431 else if (ws.kind == TARGET_WAITKIND_EXITED
4432 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4433 {
4434 if (debug_infrun)
4435 {
4436 ptid_t ptid = pid_to_ptid (ws.value.integer);
4437
4438 fprintf_unfiltered (gdb_stdlog,
4439 "infrun: %s exited while "
4440 "stopping threads\n",
4441 target_pid_to_str (ptid));
4442 }
4443 }
4444 else
4445 {
4446 t = find_thread_ptid (event_ptid);
4447 if (t == NULL)
4448 t = add_thread (event_ptid);
4449
4450 t->stop_requested = 0;
4451 t->executing = 0;
4452 t->resumed = 0;
4453 t->control.may_range_step = 0;
4454
4455 if (ws.kind == TARGET_WAITKIND_STOPPED
4456 && ws.value.sig == GDB_SIGNAL_0)
4457 {
4458 /* We caught the event that we intended to catch, so
4459 there's no event pending. */
4460 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4461 t->suspend.waitstatus_pending_p = 0;
4462
4463 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4464 {
4465 /* Add it back to the step-over queue. */
4466 if (debug_infrun)
4467 {
4468 fprintf_unfiltered (gdb_stdlog,
4469 "infrun: displaced-step of %s "
4470 "canceled: adding back to the "
4471 "step-over queue\n",
4472 target_pid_to_str (t->ptid));
4473 }
4474 t->control.trap_expected = 0;
4475 thread_step_over_chain_enqueue (t);
4476 }
4477 }
4478 else
4479 {
4480 enum gdb_signal sig;
4481 struct regcache *regcache;
4482 struct address_space *aspace;
4483
4484 if (debug_infrun)
4485 {
4486 char *statstr;
4487
4488 statstr = target_waitstatus_to_string (&ws);
4489 fprintf_unfiltered (gdb_stdlog,
4490 "infrun: target_wait %s, saving "
4491 "status for %d.%ld.%ld\n",
4492 statstr,
4493 ptid_get_pid (t->ptid),
4494 ptid_get_lwp (t->ptid),
4495 ptid_get_tid (t->ptid));
4496 xfree (statstr);
4497 }
4498
4499 /* Record for later. */
4500 save_waitstatus (t, &ws);
4501
4502 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4503 ? ws.value.sig : GDB_SIGNAL_0);
4504
4505 if (displaced_step_fixup (t->ptid, sig) < 0)
4506 {
4507 /* Add it back to the step-over queue. */
4508 t->control.trap_expected = 0;
4509 thread_step_over_chain_enqueue (t);
4510 }
4511
4512 regcache = get_thread_regcache (t->ptid);
4513 t->suspend.stop_pc = regcache_read_pc (regcache);
4514
4515 if (debug_infrun)
4516 {
4517 fprintf_unfiltered (gdb_stdlog,
4518 "infrun: saved stop_pc=%s for %s "
4519 "(currently_stepping=%d)\n",
4520 paddress (target_gdbarch (),
4521 t->suspend.stop_pc),
4522 target_pid_to_str (t->ptid),
4523 currently_stepping (t));
4524 }
4525 }
4526 }
4527 }
4528 }
4529
4530 do_cleanups (old_chain);
4531
4532 if (debug_infrun)
4533 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4534}
4535
4536/* Given an execution control state that has been freshly filled in by
4537 an event from the inferior, figure out what it means and take
4538 appropriate action.
4539
4540 The alternatives are:
4541
4542 1) stop_waiting and return; to really stop and return to the
4543 debugger.
4544
4545 2) keep_going and return; to wait for the next event (set
4546 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4547 once). */
4548
4549static void
4550handle_inferior_event_1 (struct execution_control_state *ecs)
4551{
4552 enum stop_kind stop_soon;
4553
4554 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4555 {
4556 /* We had an event in the inferior, but we are not interested in
4557 handling it at this level. The lower layers have already
4558 done what needs to be done, if anything.
4559
4560 One of the possible circumstances for this is when the
4561 inferior produces output for the console. The inferior has
4562 not stopped, and we are ignoring the event. Another possible
4563 circumstance is any event which the lower level knows will be
4564 reported multiple times without an intervening resume. */
4565 if (debug_infrun)
4566 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4567 prepare_to_wait (ecs);
4568 return;
4569 }
4570
4571 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4572 && target_can_async_p () && !sync_execution)
4573 {
4574 /* There were no unwaited-for children left in the target, but,
4575 we're not synchronously waiting for events either. Just
4576 ignore. Otherwise, if we were running a synchronous
4577 execution command, we need to cancel it and give the user
4578 back the terminal. */
4579 if (debug_infrun)
4580 fprintf_unfiltered (gdb_stdlog,
4581 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4582 prepare_to_wait (ecs);
4583 return;
4584 }
4585
4586 /* Cache the last pid/waitstatus. */
4587 set_last_target_status (ecs->ptid, ecs->ws);
4588
4589 /* Always clear state belonging to the previous time we stopped. */
4590 stop_stack_dummy = STOP_NONE;
4591
4592 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4593 {
4594 /* No unwaited-for children left. IOW, all resumed children
4595 have exited. */
4596 if (debug_infrun)
4597 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4598
4599 stop_print_frame = 0;
4600 stop_waiting (ecs);
4601 return;
4602 }
4603
4604 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4605 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4606 {
4607 ecs->event_thread = find_thread_ptid (ecs->ptid);
4608 /* If it's a new thread, add it to the thread database. */
4609 if (ecs->event_thread == NULL)
4610 ecs->event_thread = add_thread (ecs->ptid);
4611
4612 /* Disable range stepping. If the next step request could use a
4613 range, this will be end up re-enabled then. */
4614 ecs->event_thread->control.may_range_step = 0;
4615 }
4616
4617 /* Dependent on valid ECS->EVENT_THREAD. */
4618 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4619
4620 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4621 reinit_frame_cache ();
4622
4623 breakpoint_retire_moribund ();
4624
4625 /* First, distinguish signals caused by the debugger from signals
4626 that have to do with the program's own actions. Note that
4627 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4628 on the operating system version. Here we detect when a SIGILL or
4629 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4630 something similar for SIGSEGV, since a SIGSEGV will be generated
4631 when we're trying to execute a breakpoint instruction on a
4632 non-executable stack. This happens for call dummy breakpoints
4633 for architectures like SPARC that place call dummies on the
4634 stack. */
4635 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4636 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4637 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4638 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4639 {
4640 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4641
4642 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4643 regcache_read_pc (regcache)))
4644 {
4645 if (debug_infrun)
4646 fprintf_unfiltered (gdb_stdlog,
4647 "infrun: Treating signal as SIGTRAP\n");
4648 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4649 }
4650 }
4651
4652 /* Mark the non-executing threads accordingly. In all-stop, all
4653 threads of all processes are stopped when we get any event
4654 reported. In non-stop mode, only the event thread stops. */
4655 {
4656 ptid_t mark_ptid;
4657
4658 if (!target_is_non_stop_p ())
4659 mark_ptid = minus_one_ptid;
4660 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4661 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4662 {
4663 /* If we're handling a process exit in non-stop mode, even
4664 though threads haven't been deleted yet, one would think
4665 that there is nothing to do, as threads of the dead process
4666 will be soon deleted, and threads of any other process were
4667 left running. However, on some targets, threads survive a
4668 process exit event. E.g., for the "checkpoint" command,
4669 when the current checkpoint/fork exits, linux-fork.c
4670 automatically switches to another fork from within
4671 target_mourn_inferior, by associating the same
4672 inferior/thread to another fork. We haven't mourned yet at
4673 this point, but we must mark any threads left in the
4674 process as not-executing so that finish_thread_state marks
4675 them stopped (in the user's perspective) if/when we present
4676 the stop to the user. */
4677 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4678 }
4679 else
4680 mark_ptid = ecs->ptid;
4681
4682 set_executing (mark_ptid, 0);
4683
4684 /* Likewise the resumed flag. */
4685 set_resumed (mark_ptid, 0);
4686 }
4687
4688 switch (ecs->ws.kind)
4689 {
4690 case TARGET_WAITKIND_LOADED:
4691 if (debug_infrun)
4692 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4693 if (!ptid_equal (ecs->ptid, inferior_ptid))
4694 context_switch (ecs->ptid);
4695 /* Ignore gracefully during startup of the inferior, as it might
4696 be the shell which has just loaded some objects, otherwise
4697 add the symbols for the newly loaded objects. Also ignore at
4698 the beginning of an attach or remote session; we will query
4699 the full list of libraries once the connection is
4700 established. */
4701
4702 stop_soon = get_inferior_stop_soon (ecs->ptid);
4703 if (stop_soon == NO_STOP_QUIETLY)
4704 {
4705 struct regcache *regcache;
4706
4707 regcache = get_thread_regcache (ecs->ptid);
4708
4709 handle_solib_event ();
4710
4711 ecs->event_thread->control.stop_bpstat
4712 = bpstat_stop_status (get_regcache_aspace (regcache),
4713 stop_pc, ecs->ptid, &ecs->ws);
4714
4715 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4716 {
4717 /* A catchpoint triggered. */
4718 process_event_stop_test (ecs);
4719 return;
4720 }
4721
4722 /* If requested, stop when the dynamic linker notifies
4723 gdb of events. This allows the user to get control
4724 and place breakpoints in initializer routines for
4725 dynamically loaded objects (among other things). */
4726 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4727 if (stop_on_solib_events)
4728 {
4729 /* Make sure we print "Stopped due to solib-event" in
4730 normal_stop. */
4731 stop_print_frame = 1;
4732
4733 stop_waiting (ecs);
4734 return;
4735 }
4736 }
4737
4738 /* If we are skipping through a shell, or through shared library
4739 loading that we aren't interested in, resume the program. If
4740 we're running the program normally, also resume. */
4741 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4742 {
4743 /* Loading of shared libraries might have changed breakpoint
4744 addresses. Make sure new breakpoints are inserted. */
4745 if (stop_soon == NO_STOP_QUIETLY)
4746 insert_breakpoints ();
4747 resume (GDB_SIGNAL_0);
4748 prepare_to_wait (ecs);
4749 return;
4750 }
4751
4752 /* But stop if we're attaching or setting up a remote
4753 connection. */
4754 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4755 || stop_soon == STOP_QUIETLY_REMOTE)
4756 {
4757 if (debug_infrun)
4758 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4759 stop_waiting (ecs);
4760 return;
4761 }
4762
4763 internal_error (__FILE__, __LINE__,
4764 _("unhandled stop_soon: %d"), (int) stop_soon);
4765
4766 case TARGET_WAITKIND_SPURIOUS:
4767 if (debug_infrun)
4768 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4769 if (!ptid_equal (ecs->ptid, inferior_ptid))
4770 context_switch (ecs->ptid);
4771 resume (GDB_SIGNAL_0);
4772 prepare_to_wait (ecs);
4773 return;
4774
4775 case TARGET_WAITKIND_EXITED:
4776 case TARGET_WAITKIND_SIGNALLED:
4777 if (debug_infrun)
4778 {
4779 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4780 fprintf_unfiltered (gdb_stdlog,
4781 "infrun: TARGET_WAITKIND_EXITED\n");
4782 else
4783 fprintf_unfiltered (gdb_stdlog,
4784 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4785 }
4786
4787 inferior_ptid = ecs->ptid;
4788 set_current_inferior (find_inferior_ptid (ecs->ptid));
4789 set_current_program_space (current_inferior ()->pspace);
4790 handle_vfork_child_exec_or_exit (0);
4791 target_terminal_ours (); /* Must do this before mourn anyway. */
4792
4793 /* Clearing any previous state of convenience variables. */
4794 clear_exit_convenience_vars ();
4795
4796 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4797 {
4798 /* Record the exit code in the convenience variable $_exitcode, so
4799 that the user can inspect this again later. */
4800 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4801 (LONGEST) ecs->ws.value.integer);
4802
4803 /* Also record this in the inferior itself. */
4804 current_inferior ()->has_exit_code = 1;
4805 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4806
4807 /* Support the --return-child-result option. */
4808 return_child_result_value = ecs->ws.value.integer;
4809
4810 observer_notify_exited (ecs->ws.value.integer);
4811 }
4812 else
4813 {
4814 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4815 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4816
4817 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4818 {
4819 /* Set the value of the internal variable $_exitsignal,
4820 which holds the signal uncaught by the inferior. */
4821 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4822 gdbarch_gdb_signal_to_target (gdbarch,
4823 ecs->ws.value.sig));
4824 }
4825 else
4826 {
4827 /* We don't have access to the target's method used for
4828 converting between signal numbers (GDB's internal
4829 representation <-> target's representation).
4830 Therefore, we cannot do a good job at displaying this
4831 information to the user. It's better to just warn
4832 her about it (if infrun debugging is enabled), and
4833 give up. */
4834 if (debug_infrun)
4835 fprintf_filtered (gdb_stdlog, _("\
4836Cannot fill $_exitsignal with the correct signal number.\n"));
4837 }
4838
4839 observer_notify_signal_exited (ecs->ws.value.sig);
4840 }
4841
4842 gdb_flush (gdb_stdout);
4843 target_mourn_inferior ();
4844 stop_print_frame = 0;
4845 stop_waiting (ecs);
4846 return;
4847
4848 /* The following are the only cases in which we keep going;
4849 the above cases end in a continue or goto. */
4850 case TARGET_WAITKIND_FORKED:
4851 case TARGET_WAITKIND_VFORKED:
4852 if (debug_infrun)
4853 {
4854 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4855 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4856 else
4857 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4858 }
4859
4860 /* Check whether the inferior is displaced stepping. */
4861 {
4862 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4863 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4864 struct displaced_step_inferior_state *displaced
4865 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4866
4867 /* If checking displaced stepping is supported, and thread
4868 ecs->ptid is displaced stepping. */
4869 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4870 {
4871 struct inferior *parent_inf
4872 = find_inferior_ptid (ecs->ptid);
4873 struct regcache *child_regcache;
4874 CORE_ADDR parent_pc;
4875
4876 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4877 indicating that the displaced stepping of syscall instruction
4878 has been done. Perform cleanup for parent process here. Note
4879 that this operation also cleans up the child process for vfork,
4880 because their pages are shared. */
4881 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
4882 /* Start a new step-over in another thread if there's one
4883 that needs it. */
4884 start_step_over ();
4885
4886 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4887 {
4888 /* Restore scratch pad for child process. */
4889 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4890 }
4891
4892 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4893 the child's PC is also within the scratchpad. Set the child's PC
4894 to the parent's PC value, which has already been fixed up.
4895 FIXME: we use the parent's aspace here, although we're touching
4896 the child, because the child hasn't been added to the inferior
4897 list yet at this point. */
4898
4899 child_regcache
4900 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4901 gdbarch,
4902 parent_inf->aspace);
4903 /* Read PC value of parent process. */
4904 parent_pc = regcache_read_pc (regcache);
4905
4906 if (debug_displaced)
4907 fprintf_unfiltered (gdb_stdlog,
4908 "displaced: write child pc from %s to %s\n",
4909 paddress (gdbarch,
4910 regcache_read_pc (child_regcache)),
4911 paddress (gdbarch, parent_pc));
4912
4913 regcache_write_pc (child_regcache, parent_pc);
4914 }
4915 }
4916
4917 if (!ptid_equal (ecs->ptid, inferior_ptid))
4918 context_switch (ecs->ptid);
4919
4920 /* Immediately detach breakpoints from the child before there's
4921 any chance of letting the user delete breakpoints from the
4922 breakpoint lists. If we don't do this early, it's easy to
4923 leave left over traps in the child, vis: "break foo; catch
4924 fork; c; <fork>; del; c; <child calls foo>". We only follow
4925 the fork on the last `continue', and by that time the
4926 breakpoint at "foo" is long gone from the breakpoint table.
4927 If we vforked, then we don't need to unpatch here, since both
4928 parent and child are sharing the same memory pages; we'll
4929 need to unpatch at follow/detach time instead to be certain
4930 that new breakpoints added between catchpoint hit time and
4931 vfork follow are detached. */
4932 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4933 {
4934 /* This won't actually modify the breakpoint list, but will
4935 physically remove the breakpoints from the child. */
4936 detach_breakpoints (ecs->ws.value.related_pid);
4937 }
4938
4939 delete_just_stopped_threads_single_step_breakpoints ();
4940
4941 /* In case the event is caught by a catchpoint, remember that
4942 the event is to be followed at the next resume of the thread,
4943 and not immediately. */
4944 ecs->event_thread->pending_follow = ecs->ws;
4945
4946 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4947
4948 ecs->event_thread->control.stop_bpstat
4949 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4950 stop_pc, ecs->ptid, &ecs->ws);
4951
4952 /* If no catchpoint triggered for this, then keep going. Note
4953 that we're interested in knowing the bpstat actually causes a
4954 stop, not just if it may explain the signal. Software
4955 watchpoints, for example, always appear in the bpstat. */
4956 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4957 {
4958 ptid_t parent;
4959 ptid_t child;
4960 int should_resume;
4961 int follow_child
4962 = (follow_fork_mode_string == follow_fork_mode_child);
4963
4964 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4965
4966 should_resume = follow_fork ();
4967
4968 parent = ecs->ptid;
4969 child = ecs->ws.value.related_pid;
4970
4971 /* In non-stop mode, also resume the other branch. */
4972 if (!detach_fork && (non_stop
4973 || (sched_multi && target_is_non_stop_p ())))
4974 {
4975 if (follow_child)
4976 switch_to_thread (parent);
4977 else
4978 switch_to_thread (child);
4979
4980 ecs->event_thread = inferior_thread ();
4981 ecs->ptid = inferior_ptid;
4982 keep_going (ecs);
4983 }
4984
4985 if (follow_child)
4986 switch_to_thread (child);
4987 else
4988 switch_to_thread (parent);
4989
4990 ecs->event_thread = inferior_thread ();
4991 ecs->ptid = inferior_ptid;
4992
4993 if (should_resume)
4994 keep_going (ecs);
4995 else
4996 stop_waiting (ecs);
4997 return;
4998 }
4999 process_event_stop_test (ecs);
5000 return;
5001
5002 case TARGET_WAITKIND_VFORK_DONE:
5003 /* Done with the shared memory region. Re-insert breakpoints in
5004 the parent, and keep going. */
5005
5006 if (debug_infrun)
5007 fprintf_unfiltered (gdb_stdlog,
5008 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5009
5010 if (!ptid_equal (ecs->ptid, inferior_ptid))
5011 context_switch (ecs->ptid);
5012
5013 current_inferior ()->waiting_for_vfork_done = 0;
5014 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5015 /* This also takes care of reinserting breakpoints in the
5016 previously locked inferior. */
5017 keep_going (ecs);
5018 return;
5019
5020 case TARGET_WAITKIND_EXECD:
5021 if (debug_infrun)
5022 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5023
5024 if (!ptid_equal (ecs->ptid, inferior_ptid))
5025 context_switch (ecs->ptid);
5026
5027 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5028
5029 /* Do whatever is necessary to the parent branch of the vfork. */
5030 handle_vfork_child_exec_or_exit (1);
5031
5032 /* This causes the eventpoints and symbol table to be reset.
5033 Must do this now, before trying to determine whether to
5034 stop. */
5035 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5036
5037 /* In follow_exec we may have deleted the original thread and
5038 created a new one. Make sure that the event thread is the
5039 execd thread for that case (this is a nop otherwise). */
5040 ecs->event_thread = inferior_thread ();
5041
5042 ecs->event_thread->control.stop_bpstat
5043 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5044 stop_pc, ecs->ptid, &ecs->ws);
5045
5046 /* Note that this may be referenced from inside
5047 bpstat_stop_status above, through inferior_has_execd. */
5048 xfree (ecs->ws.value.execd_pathname);
5049 ecs->ws.value.execd_pathname = NULL;
5050
5051 /* If no catchpoint triggered for this, then keep going. */
5052 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5053 {
5054 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5055 keep_going (ecs);
5056 return;
5057 }
5058 process_event_stop_test (ecs);
5059 return;
5060
5061 /* Be careful not to try to gather much state about a thread
5062 that's in a syscall. It's frequently a losing proposition. */
5063 case TARGET_WAITKIND_SYSCALL_ENTRY:
5064 if (debug_infrun)
5065 fprintf_unfiltered (gdb_stdlog,
5066 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5067 /* Getting the current syscall number. */
5068 if (handle_syscall_event (ecs) == 0)
5069 process_event_stop_test (ecs);
5070 return;
5071
5072 /* Before examining the threads further, step this thread to
5073 get it entirely out of the syscall. (We get notice of the
5074 event when the thread is just on the verge of exiting a
5075 syscall. Stepping one instruction seems to get it back
5076 into user code.) */
5077 case TARGET_WAITKIND_SYSCALL_RETURN:
5078 if (debug_infrun)
5079 fprintf_unfiltered (gdb_stdlog,
5080 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5081 if (handle_syscall_event (ecs) == 0)
5082 process_event_stop_test (ecs);
5083 return;
5084
5085 case TARGET_WAITKIND_STOPPED:
5086 if (debug_infrun)
5087 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5088 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5089 handle_signal_stop (ecs);
5090 return;
5091
5092 case TARGET_WAITKIND_NO_HISTORY:
5093 if (debug_infrun)
5094 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5095 /* Reverse execution: target ran out of history info. */
5096
5097 delete_just_stopped_threads_single_step_breakpoints ();
5098 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5099 observer_notify_no_history ();
5100 stop_waiting (ecs);
5101 return;
5102 }
5103}
5104
5105/* A wrapper around handle_inferior_event_1, which also makes sure
5106 that all temporary struct value objects that were created during
5107 the handling of the event get deleted at the end. */
5108
5109static void
5110handle_inferior_event (struct execution_control_state *ecs)
5111{
5112 struct value *mark = value_mark ();
5113
5114 handle_inferior_event_1 (ecs);
5115 /* Purge all temporary values created during the event handling,
5116 as it could be a long time before we return to the command level
5117 where such values would otherwise be purged. */
5118 value_free_to_mark (mark);
5119}
5120
5121/* Restart threads back to what they were trying to do back when we
5122 paused them for an in-line step-over. The EVENT_THREAD thread is
5123 ignored. */
5124
5125static void
5126restart_threads (struct thread_info *event_thread)
5127{
5128 struct thread_info *tp;
5129 struct thread_info *step_over = NULL;
5130
5131 /* In case the instruction just stepped spawned a new thread. */
5132 update_thread_list ();
5133
5134 ALL_NON_EXITED_THREADS (tp)
5135 {
5136 if (tp == event_thread)
5137 {
5138 if (debug_infrun)
5139 fprintf_unfiltered (gdb_stdlog,
5140 "infrun: restart threads: "
5141 "[%s] is event thread\n",
5142 target_pid_to_str (tp->ptid));
5143 continue;
5144 }
5145
5146 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5147 {
5148 if (debug_infrun)
5149 fprintf_unfiltered (gdb_stdlog,
5150 "infrun: restart threads: "
5151 "[%s] not meant to be running\n",
5152 target_pid_to_str (tp->ptid));
5153 continue;
5154 }
5155
5156 if (tp->resumed)
5157 {
5158 if (debug_infrun)
5159 fprintf_unfiltered (gdb_stdlog,
5160 "infrun: restart threads: [%s] resumed\n",
5161 target_pid_to_str (tp->ptid));
5162 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5163 continue;
5164 }
5165
5166 if (thread_is_in_step_over_chain (tp))
5167 {
5168 if (debug_infrun)
5169 fprintf_unfiltered (gdb_stdlog,
5170 "infrun: restart threads: "
5171 "[%s] needs step-over\n",
5172 target_pid_to_str (tp->ptid));
5173 gdb_assert (!tp->resumed);
5174 continue;
5175 }
5176
5177
5178 if (tp->suspend.waitstatus_pending_p)
5179 {
5180 if (debug_infrun)
5181 fprintf_unfiltered (gdb_stdlog,
5182 "infrun: restart threads: "
5183 "[%s] has pending status\n",
5184 target_pid_to_str (tp->ptid));
5185 tp->resumed = 1;
5186 continue;
5187 }
5188
5189 /* If some thread needs to start a step-over at this point, it
5190 should still be in the step-over queue, and thus skipped
5191 above. */
5192 if (thread_still_needs_step_over (tp))
5193 {
5194 internal_error (__FILE__, __LINE__,
5195 "thread [%s] needs a step-over, but not in "
5196 "step-over queue\n",
5197 target_pid_to_str (tp->ptid));
5198 }
5199
5200 if (currently_stepping (tp))
5201 {
5202 if (debug_infrun)
5203 fprintf_unfiltered (gdb_stdlog,
5204 "infrun: restart threads: [%s] was stepping\n",
5205 target_pid_to_str (tp->ptid));
5206 keep_going_stepped_thread (tp);
5207 }
5208 else
5209 {
5210 struct execution_control_state ecss;
5211 struct execution_control_state *ecs = &ecss;
5212
5213 if (debug_infrun)
5214 fprintf_unfiltered (gdb_stdlog,
5215 "infrun: restart threads: [%s] continuing\n",
5216 target_pid_to_str (tp->ptid));
5217 reset_ecs (ecs, tp);
5218 switch_to_thread (tp->ptid);
5219 keep_going_pass_signal (ecs);
5220 }
5221 }
5222}
5223
5224/* Callback for iterate_over_threads. Find a resumed thread that has
5225 a pending waitstatus. */
5226
5227static int
5228resumed_thread_with_pending_status (struct thread_info *tp,
5229 void *arg)
5230{
5231 return (tp->resumed
5232 && tp->suspend.waitstatus_pending_p);
5233}
5234
5235/* Called when we get an event that may finish an in-line or
5236 out-of-line (displaced stepping) step-over started previously.
5237 Return true if the event is processed and we should go back to the
5238 event loop; false if the caller should continue processing the
5239 event. */
5240
5241static int
5242finish_step_over (struct execution_control_state *ecs)
5243{
5244 int had_step_over_info;
5245
5246 displaced_step_fixup (ecs->ptid,
5247 ecs->event_thread->suspend.stop_signal);
5248
5249 had_step_over_info = step_over_info_valid_p ();
5250
5251 if (had_step_over_info)
5252 {
5253 /* If we're stepping over a breakpoint with all threads locked,
5254 then only the thread that was stepped should be reporting
5255 back an event. */
5256 gdb_assert (ecs->event_thread->control.trap_expected);
5257
5258 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5259 clear_step_over_info ();
5260 }
5261
5262 if (!target_is_non_stop_p ())
5263 return 0;
5264
5265 /* Start a new step-over in another thread if there's one that
5266 needs it. */
5267 start_step_over ();
5268
5269 /* If we were stepping over a breakpoint before, and haven't started
5270 a new in-line step-over sequence, then restart all other threads
5271 (except the event thread). We can't do this in all-stop, as then
5272 e.g., we wouldn't be able to issue any other remote packet until
5273 these other threads stop. */
5274 if (had_step_over_info && !step_over_info_valid_p ())
5275 {
5276 struct thread_info *pending;
5277
5278 /* If we only have threads with pending statuses, the restart
5279 below won't restart any thread and so nothing re-inserts the
5280 breakpoint we just stepped over. But we need it inserted
5281 when we later process the pending events, otherwise if
5282 another thread has a pending event for this breakpoint too,
5283 we'd discard its event (because the breakpoint that
5284 originally caused the event was no longer inserted). */
5285 context_switch (ecs->ptid);
5286 insert_breakpoints ();
5287
5288 restart_threads (ecs->event_thread);
5289
5290 /* If we have events pending, go through handle_inferior_event
5291 again, picking up a pending event at random. This avoids
5292 thread starvation. */
5293
5294 /* But not if we just stepped over a watchpoint in order to let
5295 the instruction execute so we can evaluate its expression.
5296 The set of watchpoints that triggered is recorded in the
5297 breakpoint objects themselves (see bp->watchpoint_triggered).
5298 If we processed another event first, that other event could
5299 clobber this info. */
5300 if (ecs->event_thread->stepping_over_watchpoint)
5301 return 0;
5302
5303 pending = iterate_over_threads (resumed_thread_with_pending_status,
5304 NULL);
5305 if (pending != NULL)
5306 {
5307 struct thread_info *tp = ecs->event_thread;
5308 struct regcache *regcache;
5309
5310 if (debug_infrun)
5311 {
5312 fprintf_unfiltered (gdb_stdlog,
5313 "infrun: found resumed threads with "
5314 "pending events, saving status\n");
5315 }
5316
5317 gdb_assert (pending != tp);
5318
5319 /* Record the event thread's event for later. */
5320 save_waitstatus (tp, &ecs->ws);
5321 /* This was cleared early, by handle_inferior_event. Set it
5322 so this pending event is considered by
5323 do_target_wait. */
5324 tp->resumed = 1;
5325
5326 gdb_assert (!tp->executing);
5327
5328 regcache = get_thread_regcache (tp->ptid);
5329 tp->suspend.stop_pc = regcache_read_pc (regcache);
5330
5331 if (debug_infrun)
5332 {
5333 fprintf_unfiltered (gdb_stdlog,
5334 "infrun: saved stop_pc=%s for %s "
5335 "(currently_stepping=%d)\n",
5336 paddress (target_gdbarch (),
5337 tp->suspend.stop_pc),
5338 target_pid_to_str (tp->ptid),
5339 currently_stepping (tp));
5340 }
5341
5342 /* This in-line step-over finished; clear this so we won't
5343 start a new one. This is what handle_signal_stop would
5344 do, if we returned false. */
5345 tp->stepping_over_breakpoint = 0;
5346
5347 /* Wake up the event loop again. */
5348 mark_async_event_handler (infrun_async_inferior_event_token);
5349
5350 prepare_to_wait (ecs);
5351 return 1;
5352 }
5353 }
5354
5355 return 0;
5356}
5357
5358/* Come here when the program has stopped with a signal. */
5359
5360static void
5361handle_signal_stop (struct execution_control_state *ecs)
5362{
5363 struct frame_info *frame;
5364 struct gdbarch *gdbarch;
5365 int stopped_by_watchpoint;
5366 enum stop_kind stop_soon;
5367 int random_signal;
5368
5369 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5370
5371 /* Do we need to clean up the state of a thread that has
5372 completed a displaced single-step? (Doing so usually affects
5373 the PC, so do it here, before we set stop_pc.) */
5374 if (finish_step_over (ecs))
5375 return;
5376
5377 /* If we either finished a single-step or hit a breakpoint, but
5378 the user wanted this thread to be stopped, pretend we got a
5379 SIG0 (generic unsignaled stop). */
5380 if (ecs->event_thread->stop_requested
5381 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5382 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5383
5384 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5385
5386 if (debug_infrun)
5387 {
5388 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5389 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5390 struct cleanup *old_chain = save_inferior_ptid ();
5391
5392 inferior_ptid = ecs->ptid;
5393
5394 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5395 paddress (gdbarch, stop_pc));
5396 if (target_stopped_by_watchpoint ())
5397 {
5398 CORE_ADDR addr;
5399
5400 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5401
5402 if (target_stopped_data_address (&current_target, &addr))
5403 fprintf_unfiltered (gdb_stdlog,
5404 "infrun: stopped data address = %s\n",
5405 paddress (gdbarch, addr));
5406 else
5407 fprintf_unfiltered (gdb_stdlog,
5408 "infrun: (no data address available)\n");
5409 }
5410
5411 do_cleanups (old_chain);
5412 }
5413
5414 /* This is originated from start_remote(), start_inferior() and
5415 shared libraries hook functions. */
5416 stop_soon = get_inferior_stop_soon (ecs->ptid);
5417 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5418 {
5419 if (!ptid_equal (ecs->ptid, inferior_ptid))
5420 context_switch (ecs->ptid);
5421 if (debug_infrun)
5422 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5423 stop_print_frame = 1;
5424 stop_waiting (ecs);
5425 return;
5426 }
5427
5428 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5429 && stop_after_trap)
5430 {
5431 if (!ptid_equal (ecs->ptid, inferior_ptid))
5432 context_switch (ecs->ptid);
5433 if (debug_infrun)
5434 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5435 stop_print_frame = 0;
5436 stop_waiting (ecs);
5437 return;
5438 }
5439
5440 /* This originates from attach_command(). We need to overwrite
5441 the stop_signal here, because some kernels don't ignore a
5442 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5443 See more comments in inferior.h. On the other hand, if we
5444 get a non-SIGSTOP, report it to the user - assume the backend
5445 will handle the SIGSTOP if it should show up later.
5446
5447 Also consider that the attach is complete when we see a
5448 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5449 target extended-remote report it instead of a SIGSTOP
5450 (e.g. gdbserver). We already rely on SIGTRAP being our
5451 signal, so this is no exception.
5452
5453 Also consider that the attach is complete when we see a
5454 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5455 the target to stop all threads of the inferior, in case the
5456 low level attach operation doesn't stop them implicitly. If
5457 they weren't stopped implicitly, then the stub will report a
5458 GDB_SIGNAL_0, meaning: stopped for no particular reason
5459 other than GDB's request. */
5460 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5461 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5462 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5463 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5464 {
5465 stop_print_frame = 1;
5466 stop_waiting (ecs);
5467 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5468 return;
5469 }
5470
5471 /* See if something interesting happened to the non-current thread. If
5472 so, then switch to that thread. */
5473 if (!ptid_equal (ecs->ptid, inferior_ptid))
5474 {
5475 if (debug_infrun)
5476 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5477
5478 context_switch (ecs->ptid);
5479
5480 if (deprecated_context_hook)
5481 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
5482 }
5483
5484 /* At this point, get hold of the now-current thread's frame. */
5485 frame = get_current_frame ();
5486 gdbarch = get_frame_arch (frame);
5487
5488 /* Pull the single step breakpoints out of the target. */
5489 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5490 {
5491 struct regcache *regcache;
5492 struct address_space *aspace;
5493 CORE_ADDR pc;
5494
5495 regcache = get_thread_regcache (ecs->ptid);
5496 aspace = get_regcache_aspace (regcache);
5497 pc = regcache_read_pc (regcache);
5498
5499 /* However, before doing so, if this single-step breakpoint was
5500 actually for another thread, set this thread up for moving
5501 past it. */
5502 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5503 aspace, pc))
5504 {
5505 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5506 {
5507 if (debug_infrun)
5508 {
5509 fprintf_unfiltered (gdb_stdlog,
5510 "infrun: [%s] hit another thread's "
5511 "single-step breakpoint\n",
5512 target_pid_to_str (ecs->ptid));
5513 }
5514 ecs->hit_singlestep_breakpoint = 1;
5515 }
5516 }
5517 else
5518 {
5519 if (debug_infrun)
5520 {
5521 fprintf_unfiltered (gdb_stdlog,
5522 "infrun: [%s] hit its "
5523 "single-step breakpoint\n",
5524 target_pid_to_str (ecs->ptid));
5525 }
5526 }
5527 }
5528 delete_just_stopped_threads_single_step_breakpoints ();
5529
5530 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5531 && ecs->event_thread->control.trap_expected
5532 && ecs->event_thread->stepping_over_watchpoint)
5533 stopped_by_watchpoint = 0;
5534 else
5535 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5536
5537 /* If necessary, step over this watchpoint. We'll be back to display
5538 it in a moment. */
5539 if (stopped_by_watchpoint
5540 && (target_have_steppable_watchpoint
5541 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5542 {
5543 /* At this point, we are stopped at an instruction which has
5544 attempted to write to a piece of memory under control of
5545 a watchpoint. The instruction hasn't actually executed
5546 yet. If we were to evaluate the watchpoint expression
5547 now, we would get the old value, and therefore no change
5548 would seem to have occurred.
5549
5550 In order to make watchpoints work `right', we really need
5551 to complete the memory write, and then evaluate the
5552 watchpoint expression. We do this by single-stepping the
5553 target.
5554
5555 It may not be necessary to disable the watchpoint to step over
5556 it. For example, the PA can (with some kernel cooperation)
5557 single step over a watchpoint without disabling the watchpoint.
5558
5559 It is far more common to need to disable a watchpoint to step
5560 the inferior over it. If we have non-steppable watchpoints,
5561 we must disable the current watchpoint; it's simplest to
5562 disable all watchpoints.
5563
5564 Any breakpoint at PC must also be stepped over -- if there's
5565 one, it will have already triggered before the watchpoint
5566 triggered, and we either already reported it to the user, or
5567 it didn't cause a stop and we called keep_going. In either
5568 case, if there was a breakpoint at PC, we must be trying to
5569 step past it. */
5570 ecs->event_thread->stepping_over_watchpoint = 1;
5571 keep_going (ecs);
5572 return;
5573 }
5574
5575 ecs->event_thread->stepping_over_breakpoint = 0;
5576 ecs->event_thread->stepping_over_watchpoint = 0;
5577 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5578 ecs->event_thread->control.stop_step = 0;
5579 stop_print_frame = 1;
5580 stopped_by_random_signal = 0;
5581
5582 /* Hide inlined functions starting here, unless we just performed stepi or
5583 nexti. After stepi and nexti, always show the innermost frame (not any
5584 inline function call sites). */
5585 if (ecs->event_thread->control.step_range_end != 1)
5586 {
5587 struct address_space *aspace =
5588 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5589
5590 /* skip_inline_frames is expensive, so we avoid it if we can
5591 determine that the address is one where functions cannot have
5592 been inlined. This improves performance with inferiors that
5593 load a lot of shared libraries, because the solib event
5594 breakpoint is defined as the address of a function (i.e. not
5595 inline). Note that we have to check the previous PC as well
5596 as the current one to catch cases when we have just
5597 single-stepped off a breakpoint prior to reinstating it.
5598 Note that we're assuming that the code we single-step to is
5599 not inline, but that's not definitive: there's nothing
5600 preventing the event breakpoint function from containing
5601 inlined code, and the single-step ending up there. If the
5602 user had set a breakpoint on that inlined code, the missing
5603 skip_inline_frames call would break things. Fortunately
5604 that's an extremely unlikely scenario. */
5605 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5606 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5607 && ecs->event_thread->control.trap_expected
5608 && pc_at_non_inline_function (aspace,
5609 ecs->event_thread->prev_pc,
5610 &ecs->ws)))
5611 {
5612 skip_inline_frames (ecs->ptid);
5613
5614 /* Re-fetch current thread's frame in case that invalidated
5615 the frame cache. */
5616 frame = get_current_frame ();
5617 gdbarch = get_frame_arch (frame);
5618 }
5619 }
5620
5621 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5622 && ecs->event_thread->control.trap_expected
5623 && gdbarch_single_step_through_delay_p (gdbarch)
5624 && currently_stepping (ecs->event_thread))
5625 {
5626 /* We're trying to step off a breakpoint. Turns out that we're
5627 also on an instruction that needs to be stepped multiple
5628 times before it's been fully executing. E.g., architectures
5629 with a delay slot. It needs to be stepped twice, once for
5630 the instruction and once for the delay slot. */
5631 int step_through_delay
5632 = gdbarch_single_step_through_delay (gdbarch, frame);
5633
5634 if (debug_infrun && step_through_delay)
5635 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5636 if (ecs->event_thread->control.step_range_end == 0
5637 && step_through_delay)
5638 {
5639 /* The user issued a continue when stopped at a breakpoint.
5640 Set up for another trap and get out of here. */
5641 ecs->event_thread->stepping_over_breakpoint = 1;
5642 keep_going (ecs);
5643 return;
5644 }
5645 else if (step_through_delay)
5646 {
5647 /* The user issued a step when stopped at a breakpoint.
5648 Maybe we should stop, maybe we should not - the delay
5649 slot *might* correspond to a line of source. In any
5650 case, don't decide that here, just set
5651 ecs->stepping_over_breakpoint, making sure we
5652 single-step again before breakpoints are re-inserted. */
5653 ecs->event_thread->stepping_over_breakpoint = 1;
5654 }
5655 }
5656
5657 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5658 handles this event. */
5659 ecs->event_thread->control.stop_bpstat
5660 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5661 stop_pc, ecs->ptid, &ecs->ws);
5662
5663 /* Following in case break condition called a
5664 function. */
5665 stop_print_frame = 1;
5666
5667 /* This is where we handle "moribund" watchpoints. Unlike
5668 software breakpoints traps, hardware watchpoint traps are
5669 always distinguishable from random traps. If no high-level
5670 watchpoint is associated with the reported stop data address
5671 anymore, then the bpstat does not explain the signal ---
5672 simply make sure to ignore it if `stopped_by_watchpoint' is
5673 set. */
5674
5675 if (debug_infrun
5676 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5677 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5678 GDB_SIGNAL_TRAP)
5679 && stopped_by_watchpoint)
5680 fprintf_unfiltered (gdb_stdlog,
5681 "infrun: no user watchpoint explains "
5682 "watchpoint SIGTRAP, ignoring\n");
5683
5684 /* NOTE: cagney/2003-03-29: These checks for a random signal
5685 at one stage in the past included checks for an inferior
5686 function call's call dummy's return breakpoint. The original
5687 comment, that went with the test, read:
5688
5689 ``End of a stack dummy. Some systems (e.g. Sony news) give
5690 another signal besides SIGTRAP, so check here as well as
5691 above.''
5692
5693 If someone ever tries to get call dummys on a
5694 non-executable stack to work (where the target would stop
5695 with something like a SIGSEGV), then those tests might need
5696 to be re-instated. Given, however, that the tests were only
5697 enabled when momentary breakpoints were not being used, I
5698 suspect that it won't be the case.
5699
5700 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5701 be necessary for call dummies on a non-executable stack on
5702 SPARC. */
5703
5704 /* See if the breakpoints module can explain the signal. */
5705 random_signal
5706 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5707 ecs->event_thread->suspend.stop_signal);
5708
5709 /* Maybe this was a trap for a software breakpoint that has since
5710 been removed. */
5711 if (random_signal && target_stopped_by_sw_breakpoint ())
5712 {
5713 if (program_breakpoint_here_p (gdbarch, stop_pc))
5714 {
5715 struct regcache *regcache;
5716 int decr_pc;
5717
5718 /* Re-adjust PC to what the program would see if GDB was not
5719 debugging it. */
5720 regcache = get_thread_regcache (ecs->event_thread->ptid);
5721 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5722 if (decr_pc != 0)
5723 {
5724 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5725
5726 if (record_full_is_used ())
5727 record_full_gdb_operation_disable_set ();
5728
5729 regcache_write_pc (regcache, stop_pc + decr_pc);
5730
5731 do_cleanups (old_cleanups);
5732 }
5733 }
5734 else
5735 {
5736 /* A delayed software breakpoint event. Ignore the trap. */
5737 if (debug_infrun)
5738 fprintf_unfiltered (gdb_stdlog,
5739 "infrun: delayed software breakpoint "
5740 "trap, ignoring\n");
5741 random_signal = 0;
5742 }
5743 }
5744
5745 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5746 has since been removed. */
5747 if (random_signal && target_stopped_by_hw_breakpoint ())
5748 {
5749 /* A delayed hardware breakpoint event. Ignore the trap. */
5750 if (debug_infrun)
5751 fprintf_unfiltered (gdb_stdlog,
5752 "infrun: delayed hardware breakpoint/watchpoint "
5753 "trap, ignoring\n");
5754 random_signal = 0;
5755 }
5756
5757 /* If not, perhaps stepping/nexting can. */
5758 if (random_signal)
5759 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5760 && currently_stepping (ecs->event_thread));
5761
5762 /* Perhaps the thread hit a single-step breakpoint of _another_
5763 thread. Single-step breakpoints are transparent to the
5764 breakpoints module. */
5765 if (random_signal)
5766 random_signal = !ecs->hit_singlestep_breakpoint;
5767
5768 /* No? Perhaps we got a moribund watchpoint. */
5769 if (random_signal)
5770 random_signal = !stopped_by_watchpoint;
5771
5772 /* For the program's own signals, act according to
5773 the signal handling tables. */
5774
5775 if (random_signal)
5776 {
5777 /* Signal not for debugging purposes. */
5778 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5779 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5780
5781 if (debug_infrun)
5782 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5783 gdb_signal_to_symbol_string (stop_signal));
5784
5785 stopped_by_random_signal = 1;
5786
5787 /* Always stop on signals if we're either just gaining control
5788 of the program, or the user explicitly requested this thread
5789 to remain stopped. */
5790 if (stop_soon != NO_STOP_QUIETLY
5791 || ecs->event_thread->stop_requested
5792 || (!inf->detaching
5793 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5794 {
5795 stop_waiting (ecs);
5796 return;
5797 }
5798
5799 /* Notify observers the signal has "handle print" set. Note we
5800 returned early above if stopping; normal_stop handles the
5801 printing in that case. */
5802 if (signal_print[ecs->event_thread->suspend.stop_signal])
5803 {
5804 /* The signal table tells us to print about this signal. */
5805 target_terminal_ours_for_output ();
5806 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5807 target_terminal_inferior ();
5808 }
5809
5810 /* Clear the signal if it should not be passed. */
5811 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5812 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5813
5814 if (ecs->event_thread->prev_pc == stop_pc
5815 && ecs->event_thread->control.trap_expected
5816 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5817 {
5818 int was_in_line;
5819
5820 /* We were just starting a new sequence, attempting to
5821 single-step off of a breakpoint and expecting a SIGTRAP.
5822 Instead this signal arrives. This signal will take us out
5823 of the stepping range so GDB needs to remember to, when
5824 the signal handler returns, resume stepping off that
5825 breakpoint. */
5826 /* To simplify things, "continue" is forced to use the same
5827 code paths as single-step - set a breakpoint at the
5828 signal return address and then, once hit, step off that
5829 breakpoint. */
5830 if (debug_infrun)
5831 fprintf_unfiltered (gdb_stdlog,
5832 "infrun: signal arrived while stepping over "
5833 "breakpoint\n");
5834
5835 was_in_line = step_over_info_valid_p ();
5836 clear_step_over_info ();
5837 insert_hp_step_resume_breakpoint_at_frame (frame);
5838 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5839 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5840 ecs->event_thread->control.trap_expected = 0;
5841
5842 if (target_is_non_stop_p ())
5843 {
5844 /* Either "set non-stop" is "on", or the target is
5845 always in non-stop mode. In this case, we have a bit
5846 more work to do. Resume the current thread, and if
5847 we had paused all threads, restart them while the
5848 signal handler runs. */
5849 keep_going (ecs);
5850
5851 if (was_in_line)
5852 {
5853 restart_threads (ecs->event_thread);
5854 }
5855 else if (debug_infrun)
5856 {
5857 fprintf_unfiltered (gdb_stdlog,
5858 "infrun: no need to restart threads\n");
5859 }
5860 return;
5861 }
5862
5863 /* If we were nexting/stepping some other thread, switch to
5864 it, so that we don't continue it, losing control. */
5865 if (!switch_back_to_stepped_thread (ecs))
5866 keep_going (ecs);
5867 return;
5868 }
5869
5870 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5871 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5872 || ecs->event_thread->control.step_range_end == 1)
5873 && frame_id_eq (get_stack_frame_id (frame),
5874 ecs->event_thread->control.step_stack_frame_id)
5875 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5876 {
5877 /* The inferior is about to take a signal that will take it
5878 out of the single step range. Set a breakpoint at the
5879 current PC (which is presumably where the signal handler
5880 will eventually return) and then allow the inferior to
5881 run free.
5882
5883 Note that this is only needed for a signal delivered
5884 while in the single-step range. Nested signals aren't a
5885 problem as they eventually all return. */
5886 if (debug_infrun)
5887 fprintf_unfiltered (gdb_stdlog,
5888 "infrun: signal may take us out of "
5889 "single-step range\n");
5890
5891 clear_step_over_info ();
5892 insert_hp_step_resume_breakpoint_at_frame (frame);
5893 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5894 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5895 ecs->event_thread->control.trap_expected = 0;
5896 keep_going (ecs);
5897 return;
5898 }
5899
5900 /* Note: step_resume_breakpoint may be non-NULL. This occures
5901 when either there's a nested signal, or when there's a
5902 pending signal enabled just as the signal handler returns
5903 (leaving the inferior at the step-resume-breakpoint without
5904 actually executing it). Either way continue until the
5905 breakpoint is really hit. */
5906
5907 if (!switch_back_to_stepped_thread (ecs))
5908 {
5909 if (debug_infrun)
5910 fprintf_unfiltered (gdb_stdlog,
5911 "infrun: random signal, keep going\n");
5912
5913 keep_going (ecs);
5914 }
5915 return;
5916 }
5917
5918 process_event_stop_test (ecs);
5919}
5920
5921/* Come here when we've got some debug event / signal we can explain
5922 (IOW, not a random signal), and test whether it should cause a
5923 stop, or whether we should resume the inferior (transparently).
5924 E.g., could be a breakpoint whose condition evaluates false; we
5925 could be still stepping within the line; etc. */
5926
5927static void
5928process_event_stop_test (struct execution_control_state *ecs)
5929{
5930 struct symtab_and_line stop_pc_sal;
5931 struct frame_info *frame;
5932 struct gdbarch *gdbarch;
5933 CORE_ADDR jmp_buf_pc;
5934 struct bpstat_what what;
5935
5936 /* Handle cases caused by hitting a breakpoint. */
5937
5938 frame = get_current_frame ();
5939 gdbarch = get_frame_arch (frame);
5940
5941 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
5942
5943 if (what.call_dummy)
5944 {
5945 stop_stack_dummy = what.call_dummy;
5946 }
5947
5948 /* A few breakpoint types have callbacks associated (e.g.,
5949 bp_jit_event). Run them now. */
5950 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
5951
5952 /* If we hit an internal event that triggers symbol changes, the
5953 current frame will be invalidated within bpstat_what (e.g., if we
5954 hit an internal solib event). Re-fetch it. */
5955 frame = get_current_frame ();
5956 gdbarch = get_frame_arch (frame);
5957
5958 switch (what.main_action)
5959 {
5960 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5961 /* If we hit the breakpoint at longjmp while stepping, we
5962 install a momentary breakpoint at the target of the
5963 jmp_buf. */
5964
5965 if (debug_infrun)
5966 fprintf_unfiltered (gdb_stdlog,
5967 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
5968
5969 ecs->event_thread->stepping_over_breakpoint = 1;
5970
5971 if (what.is_longjmp)
5972 {
5973 struct value *arg_value;
5974
5975 /* If we set the longjmp breakpoint via a SystemTap probe,
5976 then use it to extract the arguments. The destination PC
5977 is the third argument to the probe. */
5978 arg_value = probe_safe_evaluate_at_pc (frame, 2);
5979 if (arg_value)
5980 {
5981 jmp_buf_pc = value_as_address (arg_value);
5982 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
5983 }
5984 else if (!gdbarch_get_longjmp_target_p (gdbarch)
5985 || !gdbarch_get_longjmp_target (gdbarch,
5986 frame, &jmp_buf_pc))
5987 {
5988 if (debug_infrun)
5989 fprintf_unfiltered (gdb_stdlog,
5990 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
5991 "(!gdbarch_get_longjmp_target)\n");
5992 keep_going (ecs);
5993 return;
5994 }
5995
5996 /* Insert a breakpoint at resume address. */
5997 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
5998 }
5999 else
6000 check_exception_resume (ecs, frame);
6001 keep_going (ecs);
6002 return;
6003
6004 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6005 {
6006 struct frame_info *init_frame;
6007
6008 /* There are several cases to consider.
6009
6010 1. The initiating frame no longer exists. In this case we
6011 must stop, because the exception or longjmp has gone too
6012 far.
6013
6014 2. The initiating frame exists, and is the same as the
6015 current frame. We stop, because the exception or longjmp
6016 has been caught.
6017
6018 3. The initiating frame exists and is different from the
6019 current frame. This means the exception or longjmp has
6020 been caught beneath the initiating frame, so keep going.
6021
6022 4. longjmp breakpoint has been placed just to protect
6023 against stale dummy frames and user is not interested in
6024 stopping around longjmps. */
6025
6026 if (debug_infrun)
6027 fprintf_unfiltered (gdb_stdlog,
6028 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6029
6030 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6031 != NULL);
6032 delete_exception_resume_breakpoint (ecs->event_thread);
6033
6034 if (what.is_longjmp)
6035 {
6036 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6037
6038 if (!frame_id_p (ecs->event_thread->initiating_frame))
6039 {
6040 /* Case 4. */
6041 keep_going (ecs);
6042 return;
6043 }
6044 }
6045
6046 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6047
6048 if (init_frame)
6049 {
6050 struct frame_id current_id
6051 = get_frame_id (get_current_frame ());
6052 if (frame_id_eq (current_id,
6053 ecs->event_thread->initiating_frame))
6054 {
6055 /* Case 2. Fall through. */
6056 }
6057 else
6058 {
6059 /* Case 3. */
6060 keep_going (ecs);
6061 return;
6062 }
6063 }
6064
6065 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6066 exists. */
6067 delete_step_resume_breakpoint (ecs->event_thread);
6068
6069 end_stepping_range (ecs);
6070 }
6071 return;
6072
6073 case BPSTAT_WHAT_SINGLE:
6074 if (debug_infrun)
6075 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6076 ecs->event_thread->stepping_over_breakpoint = 1;
6077 /* Still need to check other stuff, at least the case where we
6078 are stepping and step out of the right range. */
6079 break;
6080
6081 case BPSTAT_WHAT_STEP_RESUME:
6082 if (debug_infrun)
6083 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6084
6085 delete_step_resume_breakpoint (ecs->event_thread);
6086 if (ecs->event_thread->control.proceed_to_finish
6087 && execution_direction == EXEC_REVERSE)
6088 {
6089 struct thread_info *tp = ecs->event_thread;
6090
6091 /* We are finishing a function in reverse, and just hit the
6092 step-resume breakpoint at the start address of the
6093 function, and we're almost there -- just need to back up
6094 by one more single-step, which should take us back to the
6095 function call. */
6096 tp->control.step_range_start = tp->control.step_range_end = 1;
6097 keep_going (ecs);
6098 return;
6099 }
6100 fill_in_stop_func (gdbarch, ecs);
6101 if (stop_pc == ecs->stop_func_start
6102 && execution_direction == EXEC_REVERSE)
6103 {
6104 /* We are stepping over a function call in reverse, and just
6105 hit the step-resume breakpoint at the start address of
6106 the function. Go back to single-stepping, which should
6107 take us back to the function call. */
6108 ecs->event_thread->stepping_over_breakpoint = 1;
6109 keep_going (ecs);
6110 return;
6111 }
6112 break;
6113
6114 case BPSTAT_WHAT_STOP_NOISY:
6115 if (debug_infrun)
6116 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6117 stop_print_frame = 1;
6118
6119 /* Assume the thread stopped for a breapoint. We'll still check
6120 whether a/the breakpoint is there when the thread is next
6121 resumed. */
6122 ecs->event_thread->stepping_over_breakpoint = 1;
6123
6124 stop_waiting (ecs);
6125 return;
6126
6127 case BPSTAT_WHAT_STOP_SILENT:
6128 if (debug_infrun)
6129 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6130 stop_print_frame = 0;
6131
6132 /* Assume the thread stopped for a breapoint. We'll still check
6133 whether a/the breakpoint is there when the thread is next
6134 resumed. */
6135 ecs->event_thread->stepping_over_breakpoint = 1;
6136 stop_waiting (ecs);
6137 return;
6138
6139 case BPSTAT_WHAT_HP_STEP_RESUME:
6140 if (debug_infrun)
6141 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6142
6143 delete_step_resume_breakpoint (ecs->event_thread);
6144 if (ecs->event_thread->step_after_step_resume_breakpoint)
6145 {
6146 /* Back when the step-resume breakpoint was inserted, we
6147 were trying to single-step off a breakpoint. Go back to
6148 doing that. */
6149 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6150 ecs->event_thread->stepping_over_breakpoint = 1;
6151 keep_going (ecs);
6152 return;
6153 }
6154 break;
6155
6156 case BPSTAT_WHAT_KEEP_CHECKING:
6157 break;
6158 }
6159
6160 /* If we stepped a permanent breakpoint and we had a high priority
6161 step-resume breakpoint for the address we stepped, but we didn't
6162 hit it, then we must have stepped into the signal handler. The
6163 step-resume was only necessary to catch the case of _not_
6164 stepping into the handler, so delete it, and fall through to
6165 checking whether the step finished. */
6166 if (ecs->event_thread->stepped_breakpoint)
6167 {
6168 struct breakpoint *sr_bp
6169 = ecs->event_thread->control.step_resume_breakpoint;
6170
6171 if (sr_bp != NULL
6172 && sr_bp->loc->permanent
6173 && sr_bp->type == bp_hp_step_resume
6174 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6175 {
6176 if (debug_infrun)
6177 fprintf_unfiltered (gdb_stdlog,
6178 "infrun: stepped permanent breakpoint, stopped in "
6179 "handler\n");
6180 delete_step_resume_breakpoint (ecs->event_thread);
6181 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6182 }
6183 }
6184
6185 /* We come here if we hit a breakpoint but should not stop for it.
6186 Possibly we also were stepping and should stop for that. So fall
6187 through and test for stepping. But, if not stepping, do not
6188 stop. */
6189
6190 /* In all-stop mode, if we're currently stepping but have stopped in
6191 some other thread, we need to switch back to the stepped thread. */
6192 if (switch_back_to_stepped_thread (ecs))
6193 return;
6194
6195 if (ecs->event_thread->control.step_resume_breakpoint)
6196 {
6197 if (debug_infrun)
6198 fprintf_unfiltered (gdb_stdlog,
6199 "infrun: step-resume breakpoint is inserted\n");
6200
6201 /* Having a step-resume breakpoint overrides anything
6202 else having to do with stepping commands until
6203 that breakpoint is reached. */
6204 keep_going (ecs);
6205 return;
6206 }
6207
6208 if (ecs->event_thread->control.step_range_end == 0)
6209 {
6210 if (debug_infrun)
6211 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6212 /* Likewise if we aren't even stepping. */
6213 keep_going (ecs);
6214 return;
6215 }
6216
6217 /* Re-fetch current thread's frame in case the code above caused
6218 the frame cache to be re-initialized, making our FRAME variable
6219 a dangling pointer. */
6220 frame = get_current_frame ();
6221 gdbarch = get_frame_arch (frame);
6222 fill_in_stop_func (gdbarch, ecs);
6223
6224 /* If stepping through a line, keep going if still within it.
6225
6226 Note that step_range_end is the address of the first instruction
6227 beyond the step range, and NOT the address of the last instruction
6228 within it!
6229
6230 Note also that during reverse execution, we may be stepping
6231 through a function epilogue and therefore must detect when
6232 the current-frame changes in the middle of a line. */
6233
6234 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6235 && (execution_direction != EXEC_REVERSE
6236 || frame_id_eq (get_frame_id (frame),
6237 ecs->event_thread->control.step_frame_id)))
6238 {
6239 if (debug_infrun)
6240 fprintf_unfiltered
6241 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6242 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6243 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6244
6245 /* Tentatively re-enable range stepping; `resume' disables it if
6246 necessary (e.g., if we're stepping over a breakpoint or we
6247 have software watchpoints). */
6248 ecs->event_thread->control.may_range_step = 1;
6249
6250 /* When stepping backward, stop at beginning of line range
6251 (unless it's the function entry point, in which case
6252 keep going back to the call point). */
6253 if (stop_pc == ecs->event_thread->control.step_range_start
6254 && stop_pc != ecs->stop_func_start
6255 && execution_direction == EXEC_REVERSE)
6256 end_stepping_range (ecs);
6257 else
6258 keep_going (ecs);
6259
6260 return;
6261 }
6262
6263 /* We stepped out of the stepping range. */
6264
6265 /* If we are stepping at the source level and entered the runtime
6266 loader dynamic symbol resolution code...
6267
6268 EXEC_FORWARD: we keep on single stepping until we exit the run
6269 time loader code and reach the callee's address.
6270
6271 EXEC_REVERSE: we've already executed the callee (backward), and
6272 the runtime loader code is handled just like any other
6273 undebuggable function call. Now we need only keep stepping
6274 backward through the trampoline code, and that's handled further
6275 down, so there is nothing for us to do here. */
6276
6277 if (execution_direction != EXEC_REVERSE
6278 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6279 && in_solib_dynsym_resolve_code (stop_pc))
6280 {
6281 CORE_ADDR pc_after_resolver =
6282 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6283
6284 if (debug_infrun)
6285 fprintf_unfiltered (gdb_stdlog,
6286 "infrun: stepped into dynsym resolve code\n");
6287
6288 if (pc_after_resolver)
6289 {
6290 /* Set up a step-resume breakpoint at the address
6291 indicated by SKIP_SOLIB_RESOLVER. */
6292 struct symtab_and_line sr_sal;
6293
6294 init_sal (&sr_sal);
6295 sr_sal.pc = pc_after_resolver;
6296 sr_sal.pspace = get_frame_program_space (frame);
6297
6298 insert_step_resume_breakpoint_at_sal (gdbarch,
6299 sr_sal, null_frame_id);
6300 }
6301
6302 keep_going (ecs);
6303 return;
6304 }
6305
6306 if (ecs->event_thread->control.step_range_end != 1
6307 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6308 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6309 && get_frame_type (frame) == SIGTRAMP_FRAME)
6310 {
6311 if (debug_infrun)
6312 fprintf_unfiltered (gdb_stdlog,
6313 "infrun: stepped into signal trampoline\n");
6314 /* The inferior, while doing a "step" or "next", has ended up in
6315 a signal trampoline (either by a signal being delivered or by
6316 the signal handler returning). Just single-step until the
6317 inferior leaves the trampoline (either by calling the handler
6318 or returning). */
6319 keep_going (ecs);
6320 return;
6321 }
6322
6323 /* If we're in the return path from a shared library trampoline,
6324 we want to proceed through the trampoline when stepping. */
6325 /* macro/2012-04-25: This needs to come before the subroutine
6326 call check below as on some targets return trampolines look
6327 like subroutine calls (MIPS16 return thunks). */
6328 if (gdbarch_in_solib_return_trampoline (gdbarch,
6329 stop_pc, ecs->stop_func_name)
6330 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6331 {
6332 /* Determine where this trampoline returns. */
6333 CORE_ADDR real_stop_pc;
6334
6335 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6336
6337 if (debug_infrun)
6338 fprintf_unfiltered (gdb_stdlog,
6339 "infrun: stepped into solib return tramp\n");
6340
6341 /* Only proceed through if we know where it's going. */
6342 if (real_stop_pc)
6343 {
6344 /* And put the step-breakpoint there and go until there. */
6345 struct symtab_and_line sr_sal;
6346
6347 init_sal (&sr_sal); /* initialize to zeroes */
6348 sr_sal.pc = real_stop_pc;
6349 sr_sal.section = find_pc_overlay (sr_sal.pc);
6350 sr_sal.pspace = get_frame_program_space (frame);
6351
6352 /* Do not specify what the fp should be when we stop since
6353 on some machines the prologue is where the new fp value
6354 is established. */
6355 insert_step_resume_breakpoint_at_sal (gdbarch,
6356 sr_sal, null_frame_id);
6357
6358 /* Restart without fiddling with the step ranges or
6359 other state. */
6360 keep_going (ecs);
6361 return;
6362 }
6363 }
6364
6365 /* Check for subroutine calls. The check for the current frame
6366 equalling the step ID is not necessary - the check of the
6367 previous frame's ID is sufficient - but it is a common case and
6368 cheaper than checking the previous frame's ID.
6369
6370 NOTE: frame_id_eq will never report two invalid frame IDs as
6371 being equal, so to get into this block, both the current and
6372 previous frame must have valid frame IDs. */
6373 /* The outer_frame_id check is a heuristic to detect stepping
6374 through startup code. If we step over an instruction which
6375 sets the stack pointer from an invalid value to a valid value,
6376 we may detect that as a subroutine call from the mythical
6377 "outermost" function. This could be fixed by marking
6378 outermost frames as !stack_p,code_p,special_p. Then the
6379 initial outermost frame, before sp was valid, would
6380 have code_addr == &_start. See the comment in frame_id_eq
6381 for more. */
6382 if (!frame_id_eq (get_stack_frame_id (frame),
6383 ecs->event_thread->control.step_stack_frame_id)
6384 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6385 ecs->event_thread->control.step_stack_frame_id)
6386 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6387 outer_frame_id)
6388 || (ecs->event_thread->control.step_start_function
6389 != find_pc_function (stop_pc)))))
6390 {
6391 CORE_ADDR real_stop_pc;
6392
6393 if (debug_infrun)
6394 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6395
6396 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6397 {
6398 /* I presume that step_over_calls is only 0 when we're
6399 supposed to be stepping at the assembly language level
6400 ("stepi"). Just stop. */
6401 /* And this works the same backward as frontward. MVS */
6402 end_stepping_range (ecs);
6403 return;
6404 }
6405
6406 /* Reverse stepping through solib trampolines. */
6407
6408 if (execution_direction == EXEC_REVERSE
6409 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6410 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6411 || (ecs->stop_func_start == 0
6412 && in_solib_dynsym_resolve_code (stop_pc))))
6413 {
6414 /* Any solib trampoline code can be handled in reverse
6415 by simply continuing to single-step. We have already
6416 executed the solib function (backwards), and a few
6417 steps will take us back through the trampoline to the
6418 caller. */
6419 keep_going (ecs);
6420 return;
6421 }
6422
6423 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6424 {
6425 /* We're doing a "next".
6426
6427 Normal (forward) execution: set a breakpoint at the
6428 callee's return address (the address at which the caller
6429 will resume).
6430
6431 Reverse (backward) execution. set the step-resume
6432 breakpoint at the start of the function that we just
6433 stepped into (backwards), and continue to there. When we
6434 get there, we'll need to single-step back to the caller. */
6435
6436 if (execution_direction == EXEC_REVERSE)
6437 {
6438 /* If we're already at the start of the function, we've either
6439 just stepped backward into a single instruction function,
6440 or stepped back out of a signal handler to the first instruction
6441 of the function. Just keep going, which will single-step back
6442 to the caller. */
6443 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6444 {
6445 struct symtab_and_line sr_sal;
6446
6447 /* Normal function call return (static or dynamic). */
6448 init_sal (&sr_sal);
6449 sr_sal.pc = ecs->stop_func_start;
6450 sr_sal.pspace = get_frame_program_space (frame);
6451 insert_step_resume_breakpoint_at_sal (gdbarch,
6452 sr_sal, null_frame_id);
6453 }
6454 }
6455 else
6456 insert_step_resume_breakpoint_at_caller (frame);
6457
6458 keep_going (ecs);
6459 return;
6460 }
6461
6462 /* If we are in a function call trampoline (a stub between the
6463 calling routine and the real function), locate the real
6464 function. That's what tells us (a) whether we want to step
6465 into it at all, and (b) what prologue we want to run to the
6466 end of, if we do step into it. */
6467 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6468 if (real_stop_pc == 0)
6469 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6470 if (real_stop_pc != 0)
6471 ecs->stop_func_start = real_stop_pc;
6472
6473 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6474 {
6475 struct symtab_and_line sr_sal;
6476
6477 init_sal (&sr_sal);
6478 sr_sal.pc = ecs->stop_func_start;
6479 sr_sal.pspace = get_frame_program_space (frame);
6480
6481 insert_step_resume_breakpoint_at_sal (gdbarch,
6482 sr_sal, null_frame_id);
6483 keep_going (ecs);
6484 return;
6485 }
6486
6487 /* If we have line number information for the function we are
6488 thinking of stepping into and the function isn't on the skip
6489 list, step into it.
6490
6491 If there are several symtabs at that PC (e.g. with include
6492 files), just want to know whether *any* of them have line
6493 numbers. find_pc_line handles this. */
6494 {
6495 struct symtab_and_line tmp_sal;
6496
6497 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6498 if (tmp_sal.line != 0
6499 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6500 &tmp_sal))
6501 {
6502 if (execution_direction == EXEC_REVERSE)
6503 handle_step_into_function_backward (gdbarch, ecs);
6504 else
6505 handle_step_into_function (gdbarch, ecs);
6506 return;
6507 }
6508 }
6509
6510 /* If we have no line number and the step-stop-if-no-debug is
6511 set, we stop the step so that the user has a chance to switch
6512 in assembly mode. */
6513 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6514 && step_stop_if_no_debug)
6515 {
6516 end_stepping_range (ecs);
6517 return;
6518 }
6519
6520 if (execution_direction == EXEC_REVERSE)
6521 {
6522 /* If we're already at the start of the function, we've either just
6523 stepped backward into a single instruction function without line
6524 number info, or stepped back out of a signal handler to the first
6525 instruction of the function without line number info. Just keep
6526 going, which will single-step back to the caller. */
6527 if (ecs->stop_func_start != stop_pc)
6528 {
6529 /* Set a breakpoint at callee's start address.
6530 From there we can step once and be back in the caller. */
6531 struct symtab_and_line sr_sal;
6532
6533 init_sal (&sr_sal);
6534 sr_sal.pc = ecs->stop_func_start;
6535 sr_sal.pspace = get_frame_program_space (frame);
6536 insert_step_resume_breakpoint_at_sal (gdbarch,
6537 sr_sal, null_frame_id);
6538 }
6539 }
6540 else
6541 /* Set a breakpoint at callee's return address (the address
6542 at which the caller will resume). */
6543 insert_step_resume_breakpoint_at_caller (frame);
6544
6545 keep_going (ecs);
6546 return;
6547 }
6548
6549 /* Reverse stepping through solib trampolines. */
6550
6551 if (execution_direction == EXEC_REVERSE
6552 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6553 {
6554 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6555 || (ecs->stop_func_start == 0
6556 && in_solib_dynsym_resolve_code (stop_pc)))
6557 {
6558 /* Any solib trampoline code can be handled in reverse
6559 by simply continuing to single-step. We have already
6560 executed the solib function (backwards), and a few
6561 steps will take us back through the trampoline to the
6562 caller. */
6563 keep_going (ecs);
6564 return;
6565 }
6566 else if (in_solib_dynsym_resolve_code (stop_pc))
6567 {
6568 /* Stepped backward into the solib dynsym resolver.
6569 Set a breakpoint at its start and continue, then
6570 one more step will take us out. */
6571 struct symtab_and_line sr_sal;
6572
6573 init_sal (&sr_sal);
6574 sr_sal.pc = ecs->stop_func_start;
6575 sr_sal.pspace = get_frame_program_space (frame);
6576 insert_step_resume_breakpoint_at_sal (gdbarch,
6577 sr_sal, null_frame_id);
6578 keep_going (ecs);
6579 return;
6580 }
6581 }
6582
6583 stop_pc_sal = find_pc_line (stop_pc, 0);
6584
6585 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6586 the trampoline processing logic, however, there are some trampolines
6587 that have no names, so we should do trampoline handling first. */
6588 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6589 && ecs->stop_func_name == NULL
6590 && stop_pc_sal.line == 0)
6591 {
6592 if (debug_infrun)
6593 fprintf_unfiltered (gdb_stdlog,
6594 "infrun: stepped into undebuggable function\n");
6595
6596 /* The inferior just stepped into, or returned to, an
6597 undebuggable function (where there is no debugging information
6598 and no line number corresponding to the address where the
6599 inferior stopped). Since we want to skip this kind of code,
6600 we keep going until the inferior returns from this
6601 function - unless the user has asked us not to (via
6602 set step-mode) or we no longer know how to get back
6603 to the call site. */
6604 if (step_stop_if_no_debug
6605 || !frame_id_p (frame_unwind_caller_id (frame)))
6606 {
6607 /* If we have no line number and the step-stop-if-no-debug
6608 is set, we stop the step so that the user has a chance to
6609 switch in assembly mode. */
6610 end_stepping_range (ecs);
6611 return;
6612 }
6613 else
6614 {
6615 /* Set a breakpoint at callee's return address (the address
6616 at which the caller will resume). */
6617 insert_step_resume_breakpoint_at_caller (frame);
6618 keep_going (ecs);
6619 return;
6620 }
6621 }
6622
6623 if (ecs->event_thread->control.step_range_end == 1)
6624 {
6625 /* It is stepi or nexti. We always want to stop stepping after
6626 one instruction. */
6627 if (debug_infrun)
6628 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6629 end_stepping_range (ecs);
6630 return;
6631 }
6632
6633 if (stop_pc_sal.line == 0)
6634 {
6635 /* We have no line number information. That means to stop
6636 stepping (does this always happen right after one instruction,
6637 when we do "s" in a function with no line numbers,
6638 or can this happen as a result of a return or longjmp?). */
6639 if (debug_infrun)
6640 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6641 end_stepping_range (ecs);
6642 return;
6643 }
6644
6645 /* Look for "calls" to inlined functions, part one. If the inline
6646 frame machinery detected some skipped call sites, we have entered
6647 a new inline function. */
6648
6649 if (frame_id_eq (get_frame_id (get_current_frame ()),
6650 ecs->event_thread->control.step_frame_id)
6651 && inline_skipped_frames (ecs->ptid))
6652 {
6653 struct symtab_and_line call_sal;
6654
6655 if (debug_infrun)
6656 fprintf_unfiltered (gdb_stdlog,
6657 "infrun: stepped into inlined function\n");
6658
6659 find_frame_sal (get_current_frame (), &call_sal);
6660
6661 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6662 {
6663 /* For "step", we're going to stop. But if the call site
6664 for this inlined function is on the same source line as
6665 we were previously stepping, go down into the function
6666 first. Otherwise stop at the call site. */
6667
6668 if (call_sal.line == ecs->event_thread->current_line
6669 && call_sal.symtab == ecs->event_thread->current_symtab)
6670 step_into_inline_frame (ecs->ptid);
6671
6672 end_stepping_range (ecs);
6673 return;
6674 }
6675 else
6676 {
6677 /* For "next", we should stop at the call site if it is on a
6678 different source line. Otherwise continue through the
6679 inlined function. */
6680 if (call_sal.line == ecs->event_thread->current_line
6681 && call_sal.symtab == ecs->event_thread->current_symtab)
6682 keep_going (ecs);
6683 else
6684 end_stepping_range (ecs);
6685 return;
6686 }
6687 }
6688
6689 /* Look for "calls" to inlined functions, part two. If we are still
6690 in the same real function we were stepping through, but we have
6691 to go further up to find the exact frame ID, we are stepping
6692 through a more inlined call beyond its call site. */
6693
6694 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6695 && !frame_id_eq (get_frame_id (get_current_frame ()),
6696 ecs->event_thread->control.step_frame_id)
6697 && stepped_in_from (get_current_frame (),
6698 ecs->event_thread->control.step_frame_id))
6699 {
6700 if (debug_infrun)
6701 fprintf_unfiltered (gdb_stdlog,
6702 "infrun: stepping through inlined function\n");
6703
6704 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6705 keep_going (ecs);
6706 else
6707 end_stepping_range (ecs);
6708 return;
6709 }
6710
6711 if ((stop_pc == stop_pc_sal.pc)
6712 && (ecs->event_thread->current_line != stop_pc_sal.line
6713 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6714 {
6715 /* We are at the start of a different line. So stop. Note that
6716 we don't stop if we step into the middle of a different line.
6717 That is said to make things like for (;;) statements work
6718 better. */
6719 if (debug_infrun)
6720 fprintf_unfiltered (gdb_stdlog,
6721 "infrun: stepped to a different line\n");
6722 end_stepping_range (ecs);
6723 return;
6724 }
6725
6726 /* We aren't done stepping.
6727
6728 Optimize by setting the stepping range to the line.
6729 (We might not be in the original line, but if we entered a
6730 new line in mid-statement, we continue stepping. This makes
6731 things like for(;;) statements work better.) */
6732
6733 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6734 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6735 ecs->event_thread->control.may_range_step = 1;
6736 set_step_info (frame, stop_pc_sal);
6737
6738 if (debug_infrun)
6739 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6740 keep_going (ecs);
6741}
6742
6743/* In all-stop mode, if we're currently stepping but have stopped in
6744 some other thread, we may need to switch back to the stepped
6745 thread. Returns true we set the inferior running, false if we left
6746 it stopped (and the event needs further processing). */
6747
6748static int
6749switch_back_to_stepped_thread (struct execution_control_state *ecs)
6750{
6751 if (!target_is_non_stop_p ())
6752 {
6753 struct thread_info *tp;
6754 struct thread_info *stepping_thread;
6755
6756 /* If any thread is blocked on some internal breakpoint, and we
6757 simply need to step over that breakpoint to get it going
6758 again, do that first. */
6759
6760 /* However, if we see an event for the stepping thread, then we
6761 know all other threads have been moved past their breakpoints
6762 already. Let the caller check whether the step is finished,
6763 etc., before deciding to move it past a breakpoint. */
6764 if (ecs->event_thread->control.step_range_end != 0)
6765 return 0;
6766
6767 /* Check if the current thread is blocked on an incomplete
6768 step-over, interrupted by a random signal. */
6769 if (ecs->event_thread->control.trap_expected
6770 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6771 {
6772 if (debug_infrun)
6773 {
6774 fprintf_unfiltered (gdb_stdlog,
6775 "infrun: need to finish step-over of [%s]\n",
6776 target_pid_to_str (ecs->event_thread->ptid));
6777 }
6778 keep_going (ecs);
6779 return 1;
6780 }
6781
6782 /* Check if the current thread is blocked by a single-step
6783 breakpoint of another thread. */
6784 if (ecs->hit_singlestep_breakpoint)
6785 {
6786 if (debug_infrun)
6787 {
6788 fprintf_unfiltered (gdb_stdlog,
6789 "infrun: need to step [%s] over single-step "
6790 "breakpoint\n",
6791 target_pid_to_str (ecs->ptid));
6792 }
6793 keep_going (ecs);
6794 return 1;
6795 }
6796
6797 /* If this thread needs yet another step-over (e.g., stepping
6798 through a delay slot), do it first before moving on to
6799 another thread. */
6800 if (thread_still_needs_step_over (ecs->event_thread))
6801 {
6802 if (debug_infrun)
6803 {
6804 fprintf_unfiltered (gdb_stdlog,
6805 "infrun: thread [%s] still needs step-over\n",
6806 target_pid_to_str (ecs->event_thread->ptid));
6807 }
6808 keep_going (ecs);
6809 return 1;
6810 }
6811
6812 /* If scheduler locking applies even if not stepping, there's no
6813 need to walk over threads. Above we've checked whether the
6814 current thread is stepping. If some other thread not the
6815 event thread is stepping, then it must be that scheduler
6816 locking is not in effect. */
6817 if (schedlock_applies (ecs->event_thread))
6818 return 0;
6819
6820 /* Otherwise, we no longer expect a trap in the current thread.
6821 Clear the trap_expected flag before switching back -- this is
6822 what keep_going does as well, if we call it. */
6823 ecs->event_thread->control.trap_expected = 0;
6824
6825 /* Likewise, clear the signal if it should not be passed. */
6826 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6827 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6828
6829 /* Do all pending step-overs before actually proceeding with
6830 step/next/etc. */
6831 if (start_step_over ())
6832 {
6833 prepare_to_wait (ecs);
6834 return 1;
6835 }
6836
6837 /* Look for the stepping/nexting thread. */
6838 stepping_thread = NULL;
6839
6840 ALL_NON_EXITED_THREADS (tp)
6841 {
6842 /* Ignore threads of processes the caller is not
6843 resuming. */
6844 if (!sched_multi
6845 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
6846 continue;
6847
6848 /* When stepping over a breakpoint, we lock all threads
6849 except the one that needs to move past the breakpoint.
6850 If a non-event thread has this set, the "incomplete
6851 step-over" check above should have caught it earlier. */
6852 if (tp->control.trap_expected)
6853 {
6854 internal_error (__FILE__, __LINE__,
6855 "[%s] has inconsistent state: "
6856 "trap_expected=%d\n",
6857 target_pid_to_str (tp->ptid),
6858 tp->control.trap_expected);
6859 }
6860
6861 /* Did we find the stepping thread? */
6862 if (tp->control.step_range_end)
6863 {
6864 /* Yep. There should only one though. */
6865 gdb_assert (stepping_thread == NULL);
6866
6867 /* The event thread is handled at the top, before we
6868 enter this loop. */
6869 gdb_assert (tp != ecs->event_thread);
6870
6871 /* If some thread other than the event thread is
6872 stepping, then scheduler locking can't be in effect,
6873 otherwise we wouldn't have resumed the current event
6874 thread in the first place. */
6875 gdb_assert (!schedlock_applies (tp));
6876
6877 stepping_thread = tp;
6878 }
6879 }
6880
6881 if (stepping_thread != NULL)
6882 {
6883 if (debug_infrun)
6884 fprintf_unfiltered (gdb_stdlog,
6885 "infrun: switching back to stepped thread\n");
6886
6887 if (keep_going_stepped_thread (stepping_thread))
6888 {
6889 prepare_to_wait (ecs);
6890 return 1;
6891 }
6892 }
6893 }
6894
6895 return 0;
6896}
6897
6898/* Set a previously stepped thread back to stepping. Returns true on
6899 success, false if the resume is not possible (e.g., the thread
6900 vanished). */
6901
6902static int
6903keep_going_stepped_thread (struct thread_info *tp)
6904{
6905 struct frame_info *frame;
6906 struct gdbarch *gdbarch;
6907 struct execution_control_state ecss;
6908 struct execution_control_state *ecs = &ecss;
6909
6910 /* If the stepping thread exited, then don't try to switch back and
6911 resume it, which could fail in several different ways depending
6912 on the target. Instead, just keep going.
6913
6914 We can find a stepping dead thread in the thread list in two
6915 cases:
6916
6917 - The target supports thread exit events, and when the target
6918 tries to delete the thread from the thread list, inferior_ptid
6919 pointed at the exiting thread. In such case, calling
6920 delete_thread does not really remove the thread from the list;
6921 instead, the thread is left listed, with 'exited' state.
6922
6923 - The target's debug interface does not support thread exit
6924 events, and so we have no idea whatsoever if the previously
6925 stepping thread is still alive. For that reason, we need to
6926 synchronously query the target now. */
6927
6928 if (is_exited (tp->ptid)
6929 || !target_thread_alive (tp->ptid))
6930 {
6931 if (debug_infrun)
6932 fprintf_unfiltered (gdb_stdlog,
6933 "infrun: not resuming previously "
6934 "stepped thread, it has vanished\n");
6935
6936 delete_thread (tp->ptid);
6937 return 0;
6938 }
6939
6940 if (debug_infrun)
6941 fprintf_unfiltered (gdb_stdlog,
6942 "infrun: resuming previously stepped thread\n");
6943
6944 reset_ecs (ecs, tp);
6945 switch_to_thread (tp->ptid);
6946
6947 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
6948 frame = get_current_frame ();
6949 gdbarch = get_frame_arch (frame);
6950
6951 /* If the PC of the thread we were trying to single-step has
6952 changed, then that thread has trapped or been signaled, but the
6953 event has not been reported to GDB yet. Re-poll the target
6954 looking for this particular thread's event (i.e. temporarily
6955 enable schedlock) by:
6956
6957 - setting a break at the current PC
6958 - resuming that particular thread, only (by setting trap
6959 expected)
6960
6961 This prevents us continuously moving the single-step breakpoint
6962 forward, one instruction at a time, overstepping. */
6963
6964 if (stop_pc != tp->prev_pc)
6965 {
6966 ptid_t resume_ptid;
6967
6968 if (debug_infrun)
6969 fprintf_unfiltered (gdb_stdlog,
6970 "infrun: expected thread advanced also (%s -> %s)\n",
6971 paddress (target_gdbarch (), tp->prev_pc),
6972 paddress (target_gdbarch (), stop_pc));
6973
6974 /* Clear the info of the previous step-over, as it's no longer
6975 valid (if the thread was trying to step over a breakpoint, it
6976 has already succeeded). It's what keep_going would do too,
6977 if we called it. Do this before trying to insert the sss
6978 breakpoint, otherwise if we were previously trying to step
6979 over this exact address in another thread, the breakpoint is
6980 skipped. */
6981 clear_step_over_info ();
6982 tp->control.trap_expected = 0;
6983
6984 insert_single_step_breakpoint (get_frame_arch (frame),
6985 get_frame_address_space (frame),
6986 stop_pc);
6987
6988 tp->resumed = 1;
6989 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
6990 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
6991 }
6992 else
6993 {
6994 if (debug_infrun)
6995 fprintf_unfiltered (gdb_stdlog,
6996 "infrun: expected thread still hasn't advanced\n");
6997
6998 keep_going_pass_signal (ecs);
6999 }
7000 return 1;
7001}
7002
7003/* Is thread TP in the middle of (software or hardware)
7004 single-stepping? (Note the result of this function must never be
7005 passed directly as target_resume's STEP parameter.) */
7006
7007static int
7008currently_stepping (struct thread_info *tp)
7009{
7010 return ((tp->control.step_range_end
7011 && tp->control.step_resume_breakpoint == NULL)
7012 || tp->control.trap_expected
7013 || tp->stepped_breakpoint
7014 || bpstat_should_step ());
7015}
7016
7017/* Inferior has stepped into a subroutine call with source code that
7018 we should not step over. Do step to the first line of code in
7019 it. */
7020
7021static void
7022handle_step_into_function (struct gdbarch *gdbarch,
7023 struct execution_control_state *ecs)
7024{
7025 struct compunit_symtab *cust;
7026 struct symtab_and_line stop_func_sal, sr_sal;
7027
7028 fill_in_stop_func (gdbarch, ecs);
7029
7030 cust = find_pc_compunit_symtab (stop_pc);
7031 if (cust != NULL && compunit_language (cust) != language_asm)
7032 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7033 ecs->stop_func_start);
7034
7035 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7036 /* Use the step_resume_break to step until the end of the prologue,
7037 even if that involves jumps (as it seems to on the vax under
7038 4.2). */
7039 /* If the prologue ends in the middle of a source line, continue to
7040 the end of that source line (if it is still within the function).
7041 Otherwise, just go to end of prologue. */
7042 if (stop_func_sal.end
7043 && stop_func_sal.pc != ecs->stop_func_start
7044 && stop_func_sal.end < ecs->stop_func_end)
7045 ecs->stop_func_start = stop_func_sal.end;
7046
7047 /* Architectures which require breakpoint adjustment might not be able
7048 to place a breakpoint at the computed address. If so, the test
7049 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7050 ecs->stop_func_start to an address at which a breakpoint may be
7051 legitimately placed.
7052
7053 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7054 made, GDB will enter an infinite loop when stepping through
7055 optimized code consisting of VLIW instructions which contain
7056 subinstructions corresponding to different source lines. On
7057 FR-V, it's not permitted to place a breakpoint on any but the
7058 first subinstruction of a VLIW instruction. When a breakpoint is
7059 set, GDB will adjust the breakpoint address to the beginning of
7060 the VLIW instruction. Thus, we need to make the corresponding
7061 adjustment here when computing the stop address. */
7062
7063 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7064 {
7065 ecs->stop_func_start
7066 = gdbarch_adjust_breakpoint_address (gdbarch,
7067 ecs->stop_func_start);
7068 }
7069
7070 if (ecs->stop_func_start == stop_pc)
7071 {
7072 /* We are already there: stop now. */
7073 end_stepping_range (ecs);
7074 return;
7075 }
7076 else
7077 {
7078 /* Put the step-breakpoint there and go until there. */
7079 init_sal (&sr_sal); /* initialize to zeroes */
7080 sr_sal.pc = ecs->stop_func_start;
7081 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7082 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7083
7084 /* Do not specify what the fp should be when we stop since on
7085 some machines the prologue is where the new fp value is
7086 established. */
7087 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7088
7089 /* And make sure stepping stops right away then. */
7090 ecs->event_thread->control.step_range_end
7091 = ecs->event_thread->control.step_range_start;
7092 }
7093 keep_going (ecs);
7094}
7095
7096/* Inferior has stepped backward into a subroutine call with source
7097 code that we should not step over. Do step to the beginning of the
7098 last line of code in it. */
7099
7100static void
7101handle_step_into_function_backward (struct gdbarch *gdbarch,
7102 struct execution_control_state *ecs)
7103{
7104 struct compunit_symtab *cust;
7105 struct symtab_and_line stop_func_sal;
7106
7107 fill_in_stop_func (gdbarch, ecs);
7108
7109 cust = find_pc_compunit_symtab (stop_pc);
7110 if (cust != NULL && compunit_language (cust) != language_asm)
7111 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7112 ecs->stop_func_start);
7113
7114 stop_func_sal = find_pc_line (stop_pc, 0);
7115
7116 /* OK, we're just going to keep stepping here. */
7117 if (stop_func_sal.pc == stop_pc)
7118 {
7119 /* We're there already. Just stop stepping now. */
7120 end_stepping_range (ecs);
7121 }
7122 else
7123 {
7124 /* Else just reset the step range and keep going.
7125 No step-resume breakpoint, they don't work for
7126 epilogues, which can have multiple entry paths. */
7127 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7128 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7129 keep_going (ecs);
7130 }
7131 return;
7132}
7133
7134/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7135 This is used to both functions and to skip over code. */
7136
7137static void
7138insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7139 struct symtab_and_line sr_sal,
7140 struct frame_id sr_id,
7141 enum bptype sr_type)
7142{
7143 /* There should never be more than one step-resume or longjmp-resume
7144 breakpoint per thread, so we should never be setting a new
7145 step_resume_breakpoint when one is already active. */
7146 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7147 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7148
7149 if (debug_infrun)
7150 fprintf_unfiltered (gdb_stdlog,
7151 "infrun: inserting step-resume breakpoint at %s\n",
7152 paddress (gdbarch, sr_sal.pc));
7153
7154 inferior_thread ()->control.step_resume_breakpoint
7155 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7156}
7157
7158void
7159insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7160 struct symtab_and_line sr_sal,
7161 struct frame_id sr_id)
7162{
7163 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7164 sr_sal, sr_id,
7165 bp_step_resume);
7166}
7167
7168/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7169 This is used to skip a potential signal handler.
7170
7171 This is called with the interrupted function's frame. The signal
7172 handler, when it returns, will resume the interrupted function at
7173 RETURN_FRAME.pc. */
7174
7175static void
7176insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7177{
7178 struct symtab_and_line sr_sal;
7179 struct gdbarch *gdbarch;
7180
7181 gdb_assert (return_frame != NULL);
7182 init_sal (&sr_sal); /* initialize to zeros */
7183
7184 gdbarch = get_frame_arch (return_frame);
7185 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7186 sr_sal.section = find_pc_overlay (sr_sal.pc);
7187 sr_sal.pspace = get_frame_program_space (return_frame);
7188
7189 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7190 get_stack_frame_id (return_frame),
7191 bp_hp_step_resume);
7192}
7193
7194/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7195 is used to skip a function after stepping into it (for "next" or if
7196 the called function has no debugging information).
7197
7198 The current function has almost always been reached by single
7199 stepping a call or return instruction. NEXT_FRAME belongs to the
7200 current function, and the breakpoint will be set at the caller's
7201 resume address.
7202
7203 This is a separate function rather than reusing
7204 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7205 get_prev_frame, which may stop prematurely (see the implementation
7206 of frame_unwind_caller_id for an example). */
7207
7208static void
7209insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7210{
7211 struct symtab_and_line sr_sal;
7212 struct gdbarch *gdbarch;
7213
7214 /* We shouldn't have gotten here if we don't know where the call site
7215 is. */
7216 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7217
7218 init_sal (&sr_sal); /* initialize to zeros */
7219
7220 gdbarch = frame_unwind_caller_arch (next_frame);
7221 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7222 frame_unwind_caller_pc (next_frame));
7223 sr_sal.section = find_pc_overlay (sr_sal.pc);
7224 sr_sal.pspace = frame_unwind_program_space (next_frame);
7225
7226 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7227 frame_unwind_caller_id (next_frame));
7228}
7229
7230/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7231 new breakpoint at the target of a jmp_buf. The handling of
7232 longjmp-resume uses the same mechanisms used for handling
7233 "step-resume" breakpoints. */
7234
7235static void
7236insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7237{
7238 /* There should never be more than one longjmp-resume breakpoint per
7239 thread, so we should never be setting a new
7240 longjmp_resume_breakpoint when one is already active. */
7241 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7242
7243 if (debug_infrun)
7244 fprintf_unfiltered (gdb_stdlog,
7245 "infrun: inserting longjmp-resume breakpoint at %s\n",
7246 paddress (gdbarch, pc));
7247
7248 inferior_thread ()->control.exception_resume_breakpoint =
7249 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7250}
7251
7252/* Insert an exception resume breakpoint. TP is the thread throwing
7253 the exception. The block B is the block of the unwinder debug hook
7254 function. FRAME is the frame corresponding to the call to this
7255 function. SYM is the symbol of the function argument holding the
7256 target PC of the exception. */
7257
7258static void
7259insert_exception_resume_breakpoint (struct thread_info *tp,
7260 const struct block *b,
7261 struct frame_info *frame,
7262 struct symbol *sym)
7263{
7264 TRY
7265 {
7266 struct block_symbol vsym;
7267 struct value *value;
7268 CORE_ADDR handler;
7269 struct breakpoint *bp;
7270
7271 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7272 value = read_var_value (vsym.symbol, vsym.block, frame);
7273 /* If the value was optimized out, revert to the old behavior. */
7274 if (! value_optimized_out (value))
7275 {
7276 handler = value_as_address (value);
7277
7278 if (debug_infrun)
7279 fprintf_unfiltered (gdb_stdlog,
7280 "infrun: exception resume at %lx\n",
7281 (unsigned long) handler);
7282
7283 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7284 handler, bp_exception_resume);
7285
7286 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7287 frame = NULL;
7288
7289 bp->thread = tp->num;
7290 inferior_thread ()->control.exception_resume_breakpoint = bp;
7291 }
7292 }
7293 CATCH (e, RETURN_MASK_ERROR)
7294 {
7295 /* We want to ignore errors here. */
7296 }
7297 END_CATCH
7298}
7299
7300/* A helper for check_exception_resume that sets an
7301 exception-breakpoint based on a SystemTap probe. */
7302
7303static void
7304insert_exception_resume_from_probe (struct thread_info *tp,
7305 const struct bound_probe *probe,
7306 struct frame_info *frame)
7307{
7308 struct value *arg_value;
7309 CORE_ADDR handler;
7310 struct breakpoint *bp;
7311
7312 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7313 if (!arg_value)
7314 return;
7315
7316 handler = value_as_address (arg_value);
7317
7318 if (debug_infrun)
7319 fprintf_unfiltered (gdb_stdlog,
7320 "infrun: exception resume at %s\n",
7321 paddress (get_objfile_arch (probe->objfile),
7322 handler));
7323
7324 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7325 handler, bp_exception_resume);
7326 bp->thread = tp->num;
7327 inferior_thread ()->control.exception_resume_breakpoint = bp;
7328}
7329
7330/* This is called when an exception has been intercepted. Check to
7331 see whether the exception's destination is of interest, and if so,
7332 set an exception resume breakpoint there. */
7333
7334static void
7335check_exception_resume (struct execution_control_state *ecs,
7336 struct frame_info *frame)
7337{
7338 struct bound_probe probe;
7339 struct symbol *func;
7340
7341 /* First see if this exception unwinding breakpoint was set via a
7342 SystemTap probe point. If so, the probe has two arguments: the
7343 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7344 set a breakpoint there. */
7345 probe = find_probe_by_pc (get_frame_pc (frame));
7346 if (probe.probe)
7347 {
7348 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7349 return;
7350 }
7351
7352 func = get_frame_function (frame);
7353 if (!func)
7354 return;
7355
7356 TRY
7357 {
7358 const struct block *b;
7359 struct block_iterator iter;
7360 struct symbol *sym;
7361 int argno = 0;
7362
7363 /* The exception breakpoint is a thread-specific breakpoint on
7364 the unwinder's debug hook, declared as:
7365
7366 void _Unwind_DebugHook (void *cfa, void *handler);
7367
7368 The CFA argument indicates the frame to which control is
7369 about to be transferred. HANDLER is the destination PC.
7370
7371 We ignore the CFA and set a temporary breakpoint at HANDLER.
7372 This is not extremely efficient but it avoids issues in gdb
7373 with computing the DWARF CFA, and it also works even in weird
7374 cases such as throwing an exception from inside a signal
7375 handler. */
7376
7377 b = SYMBOL_BLOCK_VALUE (func);
7378 ALL_BLOCK_SYMBOLS (b, iter, sym)
7379 {
7380 if (!SYMBOL_IS_ARGUMENT (sym))
7381 continue;
7382
7383 if (argno == 0)
7384 ++argno;
7385 else
7386 {
7387 insert_exception_resume_breakpoint (ecs->event_thread,
7388 b, frame, sym);
7389 break;
7390 }
7391 }
7392 }
7393 CATCH (e, RETURN_MASK_ERROR)
7394 {
7395 }
7396 END_CATCH
7397}
7398
7399static void
7400stop_waiting (struct execution_control_state *ecs)
7401{
7402 if (debug_infrun)
7403 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7404
7405 clear_step_over_info ();
7406
7407 /* Let callers know we don't want to wait for the inferior anymore. */
7408 ecs->wait_some_more = 0;
7409
7410 /* If all-stop, but the target is always in non-stop mode, stop all
7411 threads now that we're presenting the stop to the user. */
7412 if (!non_stop && target_is_non_stop_p ())
7413 stop_all_threads ();
7414}
7415
7416/* Like keep_going, but passes the signal to the inferior, even if the
7417 signal is set to nopass. */
7418
7419static void
7420keep_going_pass_signal (struct execution_control_state *ecs)
7421{
7422 /* Make sure normal_stop is called if we get a QUIT handled before
7423 reaching resume. */
7424 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7425
7426 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7427 gdb_assert (!ecs->event_thread->resumed);
7428
7429 /* Save the pc before execution, to compare with pc after stop. */
7430 ecs->event_thread->prev_pc
7431 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7432
7433 if (ecs->event_thread->control.trap_expected)
7434 {
7435 struct thread_info *tp = ecs->event_thread;
7436
7437 if (debug_infrun)
7438 fprintf_unfiltered (gdb_stdlog,
7439 "infrun: %s has trap_expected set, "
7440 "resuming to collect trap\n",
7441 target_pid_to_str (tp->ptid));
7442
7443 /* We haven't yet gotten our trap, and either: intercepted a
7444 non-signal event (e.g., a fork); or took a signal which we
7445 are supposed to pass through to the inferior. Simply
7446 continue. */
7447 discard_cleanups (old_cleanups);
7448 resume (ecs->event_thread->suspend.stop_signal);
7449 }
7450 else if (step_over_info_valid_p ())
7451 {
7452 /* Another thread is stepping over a breakpoint in-line. If
7453 this thread needs a step-over too, queue the request. In
7454 either case, this resume must be deferred for later. */
7455 struct thread_info *tp = ecs->event_thread;
7456
7457 if (ecs->hit_singlestep_breakpoint
7458 || thread_still_needs_step_over (tp))
7459 {
7460 if (debug_infrun)
7461 fprintf_unfiltered (gdb_stdlog,
7462 "infrun: step-over already in progress: "
7463 "step-over for %s deferred\n",
7464 target_pid_to_str (tp->ptid));
7465 thread_step_over_chain_enqueue (tp);
7466 }
7467 else
7468 {
7469 if (debug_infrun)
7470 fprintf_unfiltered (gdb_stdlog,
7471 "infrun: step-over in progress: "
7472 "resume of %s deferred\n",
7473 target_pid_to_str (tp->ptid));
7474 }
7475
7476 discard_cleanups (old_cleanups);
7477 }
7478 else
7479 {
7480 struct regcache *regcache = get_current_regcache ();
7481 int remove_bp;
7482 int remove_wps;
7483 enum step_over_what step_what;
7484
7485 /* Either the trap was not expected, but we are continuing
7486 anyway (if we got a signal, the user asked it be passed to
7487 the child)
7488 -- or --
7489 We got our expected trap, but decided we should resume from
7490 it.
7491
7492 We're going to run this baby now!
7493
7494 Note that insert_breakpoints won't try to re-insert
7495 already inserted breakpoints. Therefore, we don't
7496 care if breakpoints were already inserted, or not. */
7497
7498 /* If we need to step over a breakpoint, and we're not using
7499 displaced stepping to do so, insert all breakpoints
7500 (watchpoints, etc.) but the one we're stepping over, step one
7501 instruction, and then re-insert the breakpoint when that step
7502 is finished. */
7503
7504 step_what = thread_still_needs_step_over (ecs->event_thread);
7505
7506 remove_bp = (ecs->hit_singlestep_breakpoint
7507 || (step_what & STEP_OVER_BREAKPOINT));
7508 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7509
7510 /* We can't use displaced stepping if we need to step past a
7511 watchpoint. The instruction copied to the scratch pad would
7512 still trigger the watchpoint. */
7513 if (remove_bp
7514 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7515 {
7516 set_step_over_info (get_regcache_aspace (regcache),
7517 regcache_read_pc (regcache), remove_wps);
7518 }
7519 else if (remove_wps)
7520 set_step_over_info (NULL, 0, remove_wps);
7521
7522 /* If we now need to do an in-line step-over, we need to stop
7523 all other threads. Note this must be done before
7524 insert_breakpoints below, because that removes the breakpoint
7525 we're about to step over, otherwise other threads could miss
7526 it. */
7527 if (step_over_info_valid_p () && target_is_non_stop_p ())
7528 stop_all_threads ();
7529
7530 /* Stop stepping if inserting breakpoints fails. */
7531 TRY
7532 {
7533 insert_breakpoints ();
7534 }
7535 CATCH (e, RETURN_MASK_ERROR)
7536 {
7537 exception_print (gdb_stderr, e);
7538 stop_waiting (ecs);
7539 discard_cleanups (old_cleanups);
7540 return;
7541 }
7542 END_CATCH
7543
7544 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7545
7546 discard_cleanups (old_cleanups);
7547 resume (ecs->event_thread->suspend.stop_signal);
7548 }
7549
7550 prepare_to_wait (ecs);
7551}
7552
7553/* Called when we should continue running the inferior, because the
7554 current event doesn't cause a user visible stop. This does the
7555 resuming part; waiting for the next event is done elsewhere. */
7556
7557static void
7558keep_going (struct execution_control_state *ecs)
7559{
7560 if (ecs->event_thread->control.trap_expected
7561 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7562 ecs->event_thread->control.trap_expected = 0;
7563
7564 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7565 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7566 keep_going_pass_signal (ecs);
7567}
7568
7569/* This function normally comes after a resume, before
7570 handle_inferior_event exits. It takes care of any last bits of
7571 housekeeping, and sets the all-important wait_some_more flag. */
7572
7573static void
7574prepare_to_wait (struct execution_control_state *ecs)
7575{
7576 if (debug_infrun)
7577 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7578
7579 ecs->wait_some_more = 1;
7580
7581 if (!target_is_async_p ())
7582 mark_infrun_async_event_handler ();
7583}
7584
7585/* We are done with the step range of a step/next/si/ni command.
7586 Called once for each n of a "step n" operation. */
7587
7588static void
7589end_stepping_range (struct execution_control_state *ecs)
7590{
7591 ecs->event_thread->control.stop_step = 1;
7592 stop_waiting (ecs);
7593}
7594
7595/* Several print_*_reason functions to print why the inferior has stopped.
7596 We always print something when the inferior exits, or receives a signal.
7597 The rest of the cases are dealt with later on in normal_stop and
7598 print_it_typical. Ideally there should be a call to one of these
7599 print_*_reason functions functions from handle_inferior_event each time
7600 stop_waiting is called.
7601
7602 Note that we don't call these directly, instead we delegate that to
7603 the interpreters, through observers. Interpreters then call these
7604 with whatever uiout is right. */
7605
7606void
7607print_end_stepping_range_reason (struct ui_out *uiout)
7608{
7609 /* For CLI-like interpreters, print nothing. */
7610
7611 if (ui_out_is_mi_like_p (uiout))
7612 {
7613 ui_out_field_string (uiout, "reason",
7614 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7615 }
7616}
7617
7618void
7619print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7620{
7621 annotate_signalled ();
7622 if (ui_out_is_mi_like_p (uiout))
7623 ui_out_field_string
7624 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7625 ui_out_text (uiout, "\nProgram terminated with signal ");
7626 annotate_signal_name ();
7627 ui_out_field_string (uiout, "signal-name",
7628 gdb_signal_to_name (siggnal));
7629 annotate_signal_name_end ();
7630 ui_out_text (uiout, ", ");
7631 annotate_signal_string ();
7632 ui_out_field_string (uiout, "signal-meaning",
7633 gdb_signal_to_string (siggnal));
7634 annotate_signal_string_end ();
7635 ui_out_text (uiout, ".\n");
7636 ui_out_text (uiout, "The program no longer exists.\n");
7637}
7638
7639void
7640print_exited_reason (struct ui_out *uiout, int exitstatus)
7641{
7642 struct inferior *inf = current_inferior ();
7643 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7644
7645 annotate_exited (exitstatus);
7646 if (exitstatus)
7647 {
7648 if (ui_out_is_mi_like_p (uiout))
7649 ui_out_field_string (uiout, "reason",
7650 async_reason_lookup (EXEC_ASYNC_EXITED));
7651 ui_out_text (uiout, "[Inferior ");
7652 ui_out_text (uiout, plongest (inf->num));
7653 ui_out_text (uiout, " (");
7654 ui_out_text (uiout, pidstr);
7655 ui_out_text (uiout, ") exited with code ");
7656 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7657 ui_out_text (uiout, "]\n");
7658 }
7659 else
7660 {
7661 if (ui_out_is_mi_like_p (uiout))
7662 ui_out_field_string
7663 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7664 ui_out_text (uiout, "[Inferior ");
7665 ui_out_text (uiout, plongest (inf->num));
7666 ui_out_text (uiout, " (");
7667 ui_out_text (uiout, pidstr);
7668 ui_out_text (uiout, ") exited normally]\n");
7669 }
7670}
7671
7672void
7673print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7674{
7675 annotate_signal ();
7676
7677 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7678 {
7679 struct thread_info *t = inferior_thread ();
7680
7681 ui_out_text (uiout, "\n[");
7682 ui_out_field_string (uiout, "thread-name",
7683 target_pid_to_str (t->ptid));
7684 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7685 ui_out_text (uiout, " stopped");
7686 }
7687 else
7688 {
7689 ui_out_text (uiout, "\nProgram received signal ");
7690 annotate_signal_name ();
7691 if (ui_out_is_mi_like_p (uiout))
7692 ui_out_field_string
7693 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7694 ui_out_field_string (uiout, "signal-name",
7695 gdb_signal_to_name (siggnal));
7696 annotate_signal_name_end ();
7697 ui_out_text (uiout, ", ");
7698 annotate_signal_string ();
7699 ui_out_field_string (uiout, "signal-meaning",
7700 gdb_signal_to_string (siggnal));
7701 annotate_signal_string_end ();
7702 }
7703 ui_out_text (uiout, ".\n");
7704}
7705
7706void
7707print_no_history_reason (struct ui_out *uiout)
7708{
7709 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
7710}
7711
7712/* Print current location without a level number, if we have changed
7713 functions or hit a breakpoint. Print source line if we have one.
7714 bpstat_print contains the logic deciding in detail what to print,
7715 based on the event(s) that just occurred. */
7716
7717static void
7718print_stop_location (struct target_waitstatus *ws)
7719{
7720 int bpstat_ret;
7721 enum print_what source_flag;
7722 int do_frame_printing = 1;
7723 struct thread_info *tp = inferior_thread ();
7724
7725 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7726 switch (bpstat_ret)
7727 {
7728 case PRINT_UNKNOWN:
7729 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7730 should) carry around the function and does (or should) use
7731 that when doing a frame comparison. */
7732 if (tp->control.stop_step
7733 && frame_id_eq (tp->control.step_frame_id,
7734 get_frame_id (get_current_frame ()))
7735 && tp->control.step_start_function == find_pc_function (stop_pc))
7736 {
7737 /* Finished step, just print source line. */
7738 source_flag = SRC_LINE;
7739 }
7740 else
7741 {
7742 /* Print location and source line. */
7743 source_flag = SRC_AND_LOC;
7744 }
7745 break;
7746 case PRINT_SRC_AND_LOC:
7747 /* Print location and source line. */
7748 source_flag = SRC_AND_LOC;
7749 break;
7750 case PRINT_SRC_ONLY:
7751 source_flag = SRC_LINE;
7752 break;
7753 case PRINT_NOTHING:
7754 /* Something bogus. */
7755 source_flag = SRC_LINE;
7756 do_frame_printing = 0;
7757 break;
7758 default:
7759 internal_error (__FILE__, __LINE__, _("Unknown value."));
7760 }
7761
7762 /* The behavior of this routine with respect to the source
7763 flag is:
7764 SRC_LINE: Print only source line
7765 LOCATION: Print only location
7766 SRC_AND_LOC: Print location and source line. */
7767 if (do_frame_printing)
7768 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7769}
7770
7771/* Cleanup that restores a previous current uiout. */
7772
7773static void
7774restore_current_uiout_cleanup (void *arg)
7775{
7776 struct ui_out *saved_uiout = arg;
7777
7778 current_uiout = saved_uiout;
7779}
7780
7781/* See infrun.h. */
7782
7783void
7784print_stop_event (struct ui_out *uiout)
7785{
7786 struct cleanup *old_chain;
7787 struct target_waitstatus last;
7788 ptid_t last_ptid;
7789 struct thread_info *tp;
7790
7791 get_last_target_status (&last_ptid, &last);
7792
7793 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7794 current_uiout = uiout;
7795
7796 print_stop_location (&last);
7797
7798 /* Display the auto-display expressions. */
7799 do_displays ();
7800
7801 do_cleanups (old_chain);
7802
7803 tp = inferior_thread ();
7804 if (tp->thread_fsm != NULL
7805 && thread_fsm_finished_p (tp->thread_fsm))
7806 {
7807 struct return_value_info *rv;
7808
7809 rv = thread_fsm_return_value (tp->thread_fsm);
7810 if (rv != NULL)
7811 print_return_value (uiout, rv);
7812 }
7813}
7814
7815/* See infrun.h. */
7816
7817void
7818maybe_remove_breakpoints (void)
7819{
7820 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7821 {
7822 if (remove_breakpoints ())
7823 {
7824 target_terminal_ours_for_output ();
7825 printf_filtered (_("Cannot remove breakpoints because "
7826 "program is no longer writable.\nFurther "
7827 "execution is probably impossible.\n"));
7828 }
7829 }
7830}
7831
7832/* Here to return control to GDB when the inferior stops for real.
7833 Print appropriate messages, remove breakpoints, give terminal our modes.
7834
7835 STOP_PRINT_FRAME nonzero means print the executing frame
7836 (pc, function, args, file, line number and line text).
7837 BREAKPOINTS_FAILED nonzero means stop was due to error
7838 attempting to insert breakpoints. */
7839
7840void
7841normal_stop (void)
7842{
7843 struct target_waitstatus last;
7844 ptid_t last_ptid;
7845 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
7846 ptid_t pid_ptid;
7847
7848 get_last_target_status (&last_ptid, &last);
7849
7850 /* If an exception is thrown from this point on, make sure to
7851 propagate GDB's knowledge of the executing state to the
7852 frontend/user running state. A QUIT is an easy exception to see
7853 here, so do this before any filtered output. */
7854 if (!non_stop)
7855 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
7856 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7857 || last.kind == TARGET_WAITKIND_EXITED)
7858 {
7859 /* On some targets, we may still have live threads in the
7860 inferior when we get a process exit event. E.g., for
7861 "checkpoint", when the current checkpoint/fork exits,
7862 linux-fork.c automatically switches to another fork from
7863 within target_mourn_inferior. */
7864 if (!ptid_equal (inferior_ptid, null_ptid))
7865 {
7866 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
7867 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
7868 }
7869 }
7870 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
7871 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
7872
7873 /* As we're presenting a stop, and potentially removing breakpoints,
7874 update the thread list so we can tell whether there are threads
7875 running on the target. With target remote, for example, we can
7876 only learn about new threads when we explicitly update the thread
7877 list. Do this before notifying the interpreters about signal
7878 stops, end of stepping ranges, etc., so that the "new thread"
7879 output is emitted before e.g., "Program received signal FOO",
7880 instead of after. */
7881 update_thread_list ();
7882
7883 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7884 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
7885
7886 /* As with the notification of thread events, we want to delay
7887 notifying the user that we've switched thread context until
7888 the inferior actually stops.
7889
7890 There's no point in saying anything if the inferior has exited.
7891 Note that SIGNALLED here means "exited with a signal", not
7892 "received a signal".
7893
7894 Also skip saying anything in non-stop mode. In that mode, as we
7895 don't want GDB to switch threads behind the user's back, to avoid
7896 races where the user is typing a command to apply to thread x,
7897 but GDB switches to thread y before the user finishes entering
7898 the command, fetch_inferior_event installs a cleanup to restore
7899 the current thread back to the thread the user had selected right
7900 after this event is handled, so we're not really switching, only
7901 informing of a stop. */
7902 if (!non_stop
7903 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
7904 && target_has_execution
7905 && last.kind != TARGET_WAITKIND_SIGNALLED
7906 && last.kind != TARGET_WAITKIND_EXITED
7907 && last.kind != TARGET_WAITKIND_NO_RESUMED)
7908 {
7909 target_terminal_ours_for_output ();
7910 printf_filtered (_("[Switching to %s]\n"),
7911 target_pid_to_str (inferior_ptid));
7912 annotate_thread_changed ();
7913 previous_inferior_ptid = inferior_ptid;
7914 }
7915
7916 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
7917 {
7918 gdb_assert (sync_execution || !target_can_async_p ());
7919
7920 target_terminal_ours_for_output ();
7921 printf_filtered (_("No unwaited-for children left.\n"));
7922 }
7923
7924 /* Note: this depends on the update_thread_list call above. */
7925 maybe_remove_breakpoints ();
7926
7927 /* If an auto-display called a function and that got a signal,
7928 delete that auto-display to avoid an infinite recursion. */
7929
7930 if (stopped_by_random_signal)
7931 disable_current_display ();
7932
7933 target_terminal_ours ();
7934 async_enable_stdin ();
7935
7936 /* Let the user/frontend see the threads as stopped. */
7937 do_cleanups (old_chain);
7938
7939 /* Select innermost stack frame - i.e., current frame is frame 0,
7940 and current location is based on that. Handle the case where the
7941 dummy call is returning after being stopped. E.g. the dummy call
7942 previously hit a breakpoint. (If the dummy call returns
7943 normally, we won't reach here.) Do this before the stop hook is
7944 run, so that it doesn't get to see the temporary dummy frame,
7945 which is not where we'll present the stop. */
7946 if (has_stack_frames ())
7947 {
7948 if (stop_stack_dummy == STOP_STACK_DUMMY)
7949 {
7950 /* Pop the empty frame that contains the stack dummy. This
7951 also restores inferior state prior to the call (struct
7952 infcall_suspend_state). */
7953 struct frame_info *frame = get_current_frame ();
7954
7955 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
7956 frame_pop (frame);
7957 /* frame_pop calls reinit_frame_cache as the last thing it
7958 does which means there's now no selected frame. */
7959 }
7960
7961 select_frame (get_current_frame ());
7962
7963 /* Set the current source location. */
7964 set_current_sal_from_frame (get_current_frame ());
7965 }
7966
7967 /* Look up the hook_stop and run it (CLI internally handles problem
7968 of stop_command's pre-hook not existing). */
7969 if (stop_command)
7970 catch_errors (hook_stop_stub, stop_command,
7971 "Error while running hook_stop:\n", RETURN_MASK_ALL);
7972
7973 /* Notify observers about the stop. This is where the interpreters
7974 print the stop event. */
7975 if (!ptid_equal (inferior_ptid, null_ptid))
7976 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
7977 stop_print_frame);
7978 else
7979 observer_notify_normal_stop (NULL, stop_print_frame);
7980
7981 annotate_stopped ();
7982
7983 if (target_has_execution)
7984 {
7985 if (last.kind != TARGET_WAITKIND_SIGNALLED
7986 && last.kind != TARGET_WAITKIND_EXITED)
7987 /* Delete the breakpoint we stopped at, if it wants to be deleted.
7988 Delete any breakpoint that is to be deleted at the next stop. */
7989 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
7990 }
7991
7992 /* Try to get rid of automatically added inferiors that are no
7993 longer needed. Keeping those around slows down things linearly.
7994 Note that this never removes the current inferior. */
7995 prune_inferiors ();
7996}
7997
7998static int
7999hook_stop_stub (void *cmd)
8000{
8001 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8002 return (0);
8003}
8004\f
8005int
8006signal_stop_state (int signo)
8007{
8008 return signal_stop[signo];
8009}
8010
8011int
8012signal_print_state (int signo)
8013{
8014 return signal_print[signo];
8015}
8016
8017int
8018signal_pass_state (int signo)
8019{
8020 return signal_program[signo];
8021}
8022
8023static void
8024signal_cache_update (int signo)
8025{
8026 if (signo == -1)
8027 {
8028 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8029 signal_cache_update (signo);
8030
8031 return;
8032 }
8033
8034 signal_pass[signo] = (signal_stop[signo] == 0
8035 && signal_print[signo] == 0
8036 && signal_program[signo] == 1
8037 && signal_catch[signo] == 0);
8038}
8039
8040int
8041signal_stop_update (int signo, int state)
8042{
8043 int ret = signal_stop[signo];
8044
8045 signal_stop[signo] = state;
8046 signal_cache_update (signo);
8047 return ret;
8048}
8049
8050int
8051signal_print_update (int signo, int state)
8052{
8053 int ret = signal_print[signo];
8054
8055 signal_print[signo] = state;
8056 signal_cache_update (signo);
8057 return ret;
8058}
8059
8060int
8061signal_pass_update (int signo, int state)
8062{
8063 int ret = signal_program[signo];
8064
8065 signal_program[signo] = state;
8066 signal_cache_update (signo);
8067 return ret;
8068}
8069
8070/* Update the global 'signal_catch' from INFO and notify the
8071 target. */
8072
8073void
8074signal_catch_update (const unsigned int *info)
8075{
8076 int i;
8077
8078 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8079 signal_catch[i] = info[i] > 0;
8080 signal_cache_update (-1);
8081 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8082}
8083
8084static void
8085sig_print_header (void)
8086{
8087 printf_filtered (_("Signal Stop\tPrint\tPass "
8088 "to program\tDescription\n"));
8089}
8090
8091static void
8092sig_print_info (enum gdb_signal oursig)
8093{
8094 const char *name = gdb_signal_to_name (oursig);
8095 int name_padding = 13 - strlen (name);
8096
8097 if (name_padding <= 0)
8098 name_padding = 0;
8099
8100 printf_filtered ("%s", name);
8101 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8102 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8103 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8104 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8105 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8106}
8107
8108/* Specify how various signals in the inferior should be handled. */
8109
8110static void
8111handle_command (char *args, int from_tty)
8112{
8113 char **argv;
8114 int digits, wordlen;
8115 int sigfirst, signum, siglast;
8116 enum gdb_signal oursig;
8117 int allsigs;
8118 int nsigs;
8119 unsigned char *sigs;
8120 struct cleanup *old_chain;
8121
8122 if (args == NULL)
8123 {
8124 error_no_arg (_("signal to handle"));
8125 }
8126
8127 /* Allocate and zero an array of flags for which signals to handle. */
8128
8129 nsigs = (int) GDB_SIGNAL_LAST;
8130 sigs = (unsigned char *) alloca (nsigs);
8131 memset (sigs, 0, nsigs);
8132
8133 /* Break the command line up into args. */
8134
8135 argv = gdb_buildargv (args);
8136 old_chain = make_cleanup_freeargv (argv);
8137
8138 /* Walk through the args, looking for signal oursigs, signal names, and
8139 actions. Signal numbers and signal names may be interspersed with
8140 actions, with the actions being performed for all signals cumulatively
8141 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8142
8143 while (*argv != NULL)
8144 {
8145 wordlen = strlen (*argv);
8146 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8147 {;
8148 }
8149 allsigs = 0;
8150 sigfirst = siglast = -1;
8151
8152 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8153 {
8154 /* Apply action to all signals except those used by the
8155 debugger. Silently skip those. */
8156 allsigs = 1;
8157 sigfirst = 0;
8158 siglast = nsigs - 1;
8159 }
8160 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8161 {
8162 SET_SIGS (nsigs, sigs, signal_stop);
8163 SET_SIGS (nsigs, sigs, signal_print);
8164 }
8165 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8166 {
8167 UNSET_SIGS (nsigs, sigs, signal_program);
8168 }
8169 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8170 {
8171 SET_SIGS (nsigs, sigs, signal_print);
8172 }
8173 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8174 {
8175 SET_SIGS (nsigs, sigs, signal_program);
8176 }
8177 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8178 {
8179 UNSET_SIGS (nsigs, sigs, signal_stop);
8180 }
8181 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8182 {
8183 SET_SIGS (nsigs, sigs, signal_program);
8184 }
8185 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8186 {
8187 UNSET_SIGS (nsigs, sigs, signal_print);
8188 UNSET_SIGS (nsigs, sigs, signal_stop);
8189 }
8190 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8191 {
8192 UNSET_SIGS (nsigs, sigs, signal_program);
8193 }
8194 else if (digits > 0)
8195 {
8196 /* It is numeric. The numeric signal refers to our own
8197 internal signal numbering from target.h, not to host/target
8198 signal number. This is a feature; users really should be
8199 using symbolic names anyway, and the common ones like
8200 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8201
8202 sigfirst = siglast = (int)
8203 gdb_signal_from_command (atoi (*argv));
8204 if ((*argv)[digits] == '-')
8205 {
8206 siglast = (int)
8207 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8208 }
8209 if (sigfirst > siglast)
8210 {
8211 /* Bet he didn't figure we'd think of this case... */
8212 signum = sigfirst;
8213 sigfirst = siglast;
8214 siglast = signum;
8215 }
8216 }
8217 else
8218 {
8219 oursig = gdb_signal_from_name (*argv);
8220 if (oursig != GDB_SIGNAL_UNKNOWN)
8221 {
8222 sigfirst = siglast = (int) oursig;
8223 }
8224 else
8225 {
8226 /* Not a number and not a recognized flag word => complain. */
8227 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8228 }
8229 }
8230
8231 /* If any signal numbers or symbol names were found, set flags for
8232 which signals to apply actions to. */
8233
8234 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8235 {
8236 switch ((enum gdb_signal) signum)
8237 {
8238 case GDB_SIGNAL_TRAP:
8239 case GDB_SIGNAL_INT:
8240 if (!allsigs && !sigs[signum])
8241 {
8242 if (query (_("%s is used by the debugger.\n\
8243Are you sure you want to change it? "),
8244 gdb_signal_to_name ((enum gdb_signal) signum)))
8245 {
8246 sigs[signum] = 1;
8247 }
8248 else
8249 {
8250 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8251 gdb_flush (gdb_stdout);
8252 }
8253 }
8254 break;
8255 case GDB_SIGNAL_0:
8256 case GDB_SIGNAL_DEFAULT:
8257 case GDB_SIGNAL_UNKNOWN:
8258 /* Make sure that "all" doesn't print these. */
8259 break;
8260 default:
8261 sigs[signum] = 1;
8262 break;
8263 }
8264 }
8265
8266 argv++;
8267 }
8268
8269 for (signum = 0; signum < nsigs; signum++)
8270 if (sigs[signum])
8271 {
8272 signal_cache_update (-1);
8273 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8274 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8275
8276 if (from_tty)
8277 {
8278 /* Show the results. */
8279 sig_print_header ();
8280 for (; signum < nsigs; signum++)
8281 if (sigs[signum])
8282 sig_print_info ((enum gdb_signal) signum);
8283 }
8284
8285 break;
8286 }
8287
8288 do_cleanups (old_chain);
8289}
8290
8291/* Complete the "handle" command. */
8292
8293static VEC (char_ptr) *
8294handle_completer (struct cmd_list_element *ignore,
8295 const char *text, const char *word)
8296{
8297 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8298 static const char * const keywords[] =
8299 {
8300 "all",
8301 "stop",
8302 "ignore",
8303 "print",
8304 "pass",
8305 "nostop",
8306 "noignore",
8307 "noprint",
8308 "nopass",
8309 NULL,
8310 };
8311
8312 vec_signals = signal_completer (ignore, text, word);
8313 vec_keywords = complete_on_enum (keywords, word, word);
8314
8315 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8316 VEC_free (char_ptr, vec_signals);
8317 VEC_free (char_ptr, vec_keywords);
8318 return return_val;
8319}
8320
8321enum gdb_signal
8322gdb_signal_from_command (int num)
8323{
8324 if (num >= 1 && num <= 15)
8325 return (enum gdb_signal) num;
8326 error (_("Only signals 1-15 are valid as numeric signals.\n\
8327Use \"info signals\" for a list of symbolic signals."));
8328}
8329
8330/* Print current contents of the tables set by the handle command.
8331 It is possible we should just be printing signals actually used
8332 by the current target (but for things to work right when switching
8333 targets, all signals should be in the signal tables). */
8334
8335static void
8336signals_info (char *signum_exp, int from_tty)
8337{
8338 enum gdb_signal oursig;
8339
8340 sig_print_header ();
8341
8342 if (signum_exp)
8343 {
8344 /* First see if this is a symbol name. */
8345 oursig = gdb_signal_from_name (signum_exp);
8346 if (oursig == GDB_SIGNAL_UNKNOWN)
8347 {
8348 /* No, try numeric. */
8349 oursig =
8350 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8351 }
8352 sig_print_info (oursig);
8353 return;
8354 }
8355
8356 printf_filtered ("\n");
8357 /* These ugly casts brought to you by the native VAX compiler. */
8358 for (oursig = GDB_SIGNAL_FIRST;
8359 (int) oursig < (int) GDB_SIGNAL_LAST;
8360 oursig = (enum gdb_signal) ((int) oursig + 1))
8361 {
8362 QUIT;
8363
8364 if (oursig != GDB_SIGNAL_UNKNOWN
8365 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8366 sig_print_info (oursig);
8367 }
8368
8369 printf_filtered (_("\nUse the \"handle\" command "
8370 "to change these tables.\n"));
8371}
8372
8373/* Check if it makes sense to read $_siginfo from the current thread
8374 at this point. If not, throw an error. */
8375
8376static void
8377validate_siginfo_access (void)
8378{
8379 /* No current inferior, no siginfo. */
8380 if (ptid_equal (inferior_ptid, null_ptid))
8381 error (_("No thread selected."));
8382
8383 /* Don't try to read from a dead thread. */
8384 if (is_exited (inferior_ptid))
8385 error (_("The current thread has terminated"));
8386
8387 /* ... or from a spinning thread. */
8388 if (is_running (inferior_ptid))
8389 error (_("Selected thread is running."));
8390}
8391
8392/* The $_siginfo convenience variable is a bit special. We don't know
8393 for sure the type of the value until we actually have a chance to
8394 fetch the data. The type can change depending on gdbarch, so it is
8395 also dependent on which thread you have selected.
8396
8397 1. making $_siginfo be an internalvar that creates a new value on
8398 access.
8399
8400 2. making the value of $_siginfo be an lval_computed value. */
8401
8402/* This function implements the lval_computed support for reading a
8403 $_siginfo value. */
8404
8405static void
8406siginfo_value_read (struct value *v)
8407{
8408 LONGEST transferred;
8409
8410 validate_siginfo_access ();
8411
8412 transferred =
8413 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8414 NULL,
8415 value_contents_all_raw (v),
8416 value_offset (v),
8417 TYPE_LENGTH (value_type (v)));
8418
8419 if (transferred != TYPE_LENGTH (value_type (v)))
8420 error (_("Unable to read siginfo"));
8421}
8422
8423/* This function implements the lval_computed support for writing a
8424 $_siginfo value. */
8425
8426static void
8427siginfo_value_write (struct value *v, struct value *fromval)
8428{
8429 LONGEST transferred;
8430
8431 validate_siginfo_access ();
8432
8433 transferred = target_write (&current_target,
8434 TARGET_OBJECT_SIGNAL_INFO,
8435 NULL,
8436 value_contents_all_raw (fromval),
8437 value_offset (v),
8438 TYPE_LENGTH (value_type (fromval)));
8439
8440 if (transferred != TYPE_LENGTH (value_type (fromval)))
8441 error (_("Unable to write siginfo"));
8442}
8443
8444static const struct lval_funcs siginfo_value_funcs =
8445 {
8446 siginfo_value_read,
8447 siginfo_value_write
8448 };
8449
8450/* Return a new value with the correct type for the siginfo object of
8451 the current thread using architecture GDBARCH. Return a void value
8452 if there's no object available. */
8453
8454static struct value *
8455siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8456 void *ignore)
8457{
8458 if (target_has_stack
8459 && !ptid_equal (inferior_ptid, null_ptid)
8460 && gdbarch_get_siginfo_type_p (gdbarch))
8461 {
8462 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8463
8464 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8465 }
8466
8467 return allocate_value (builtin_type (gdbarch)->builtin_void);
8468}
8469
8470\f
8471/* infcall_suspend_state contains state about the program itself like its
8472 registers and any signal it received when it last stopped.
8473 This state must be restored regardless of how the inferior function call
8474 ends (either successfully, or after it hits a breakpoint or signal)
8475 if the program is to properly continue where it left off. */
8476
8477struct infcall_suspend_state
8478{
8479 struct thread_suspend_state thread_suspend;
8480
8481 /* Other fields: */
8482 CORE_ADDR stop_pc;
8483 struct regcache *registers;
8484
8485 /* Format of SIGINFO_DATA or NULL if it is not present. */
8486 struct gdbarch *siginfo_gdbarch;
8487
8488 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8489 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8490 content would be invalid. */
8491 gdb_byte *siginfo_data;
8492};
8493
8494struct infcall_suspend_state *
8495save_infcall_suspend_state (void)
8496{
8497 struct infcall_suspend_state *inf_state;
8498 struct thread_info *tp = inferior_thread ();
8499 struct regcache *regcache = get_current_regcache ();
8500 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8501 gdb_byte *siginfo_data = NULL;
8502
8503 if (gdbarch_get_siginfo_type_p (gdbarch))
8504 {
8505 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8506 size_t len = TYPE_LENGTH (type);
8507 struct cleanup *back_to;
8508
8509 siginfo_data = xmalloc (len);
8510 back_to = make_cleanup (xfree, siginfo_data);
8511
8512 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8513 siginfo_data, 0, len) == len)
8514 discard_cleanups (back_to);
8515 else
8516 {
8517 /* Errors ignored. */
8518 do_cleanups (back_to);
8519 siginfo_data = NULL;
8520 }
8521 }
8522
8523 inf_state = XCNEW (struct infcall_suspend_state);
8524
8525 if (siginfo_data)
8526 {
8527 inf_state->siginfo_gdbarch = gdbarch;
8528 inf_state->siginfo_data = siginfo_data;
8529 }
8530
8531 inf_state->thread_suspend = tp->suspend;
8532
8533 /* run_inferior_call will not use the signal due to its `proceed' call with
8534 GDB_SIGNAL_0 anyway. */
8535 tp->suspend.stop_signal = GDB_SIGNAL_0;
8536
8537 inf_state->stop_pc = stop_pc;
8538
8539 inf_state->registers = regcache_dup (regcache);
8540
8541 return inf_state;
8542}
8543
8544/* Restore inferior session state to INF_STATE. */
8545
8546void
8547restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8548{
8549 struct thread_info *tp = inferior_thread ();
8550 struct regcache *regcache = get_current_regcache ();
8551 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8552
8553 tp->suspend = inf_state->thread_suspend;
8554
8555 stop_pc = inf_state->stop_pc;
8556
8557 if (inf_state->siginfo_gdbarch == gdbarch)
8558 {
8559 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8560
8561 /* Errors ignored. */
8562 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8563 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8564 }
8565
8566 /* The inferior can be gone if the user types "print exit(0)"
8567 (and perhaps other times). */
8568 if (target_has_execution)
8569 /* NB: The register write goes through to the target. */
8570 regcache_cpy (regcache, inf_state->registers);
8571
8572 discard_infcall_suspend_state (inf_state);
8573}
8574
8575static void
8576do_restore_infcall_suspend_state_cleanup (void *state)
8577{
8578 restore_infcall_suspend_state (state);
8579}
8580
8581struct cleanup *
8582make_cleanup_restore_infcall_suspend_state
8583 (struct infcall_suspend_state *inf_state)
8584{
8585 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8586}
8587
8588void
8589discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8590{
8591 regcache_xfree (inf_state->registers);
8592 xfree (inf_state->siginfo_data);
8593 xfree (inf_state);
8594}
8595
8596struct regcache *
8597get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8598{
8599 return inf_state->registers;
8600}
8601
8602/* infcall_control_state contains state regarding gdb's control of the
8603 inferior itself like stepping control. It also contains session state like
8604 the user's currently selected frame. */
8605
8606struct infcall_control_state
8607{
8608 struct thread_control_state thread_control;
8609 struct inferior_control_state inferior_control;
8610
8611 /* Other fields: */
8612 enum stop_stack_kind stop_stack_dummy;
8613 int stopped_by_random_signal;
8614 int stop_after_trap;
8615
8616 /* ID if the selected frame when the inferior function call was made. */
8617 struct frame_id selected_frame_id;
8618};
8619
8620/* Save all of the information associated with the inferior<==>gdb
8621 connection. */
8622
8623struct infcall_control_state *
8624save_infcall_control_state (void)
8625{
8626 struct infcall_control_state *inf_status =
8627 XNEW (struct infcall_control_state);
8628 struct thread_info *tp = inferior_thread ();
8629 struct inferior *inf = current_inferior ();
8630
8631 inf_status->thread_control = tp->control;
8632 inf_status->inferior_control = inf->control;
8633
8634 tp->control.step_resume_breakpoint = NULL;
8635 tp->control.exception_resume_breakpoint = NULL;
8636
8637 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8638 chain. If caller's caller is walking the chain, they'll be happier if we
8639 hand them back the original chain when restore_infcall_control_state is
8640 called. */
8641 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8642
8643 /* Other fields: */
8644 inf_status->stop_stack_dummy = stop_stack_dummy;
8645 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8646 inf_status->stop_after_trap = stop_after_trap;
8647
8648 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8649
8650 return inf_status;
8651}
8652
8653static int
8654restore_selected_frame (void *args)
8655{
8656 struct frame_id *fid = (struct frame_id *) args;
8657 struct frame_info *frame;
8658
8659 frame = frame_find_by_id (*fid);
8660
8661 /* If inf_status->selected_frame_id is NULL, there was no previously
8662 selected frame. */
8663 if (frame == NULL)
8664 {
8665 warning (_("Unable to restore previously selected frame."));
8666 return 0;
8667 }
8668
8669 select_frame (frame);
8670
8671 return (1);
8672}
8673
8674/* Restore inferior session state to INF_STATUS. */
8675
8676void
8677restore_infcall_control_state (struct infcall_control_state *inf_status)
8678{
8679 struct thread_info *tp = inferior_thread ();
8680 struct inferior *inf = current_inferior ();
8681
8682 if (tp->control.step_resume_breakpoint)
8683 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8684
8685 if (tp->control.exception_resume_breakpoint)
8686 tp->control.exception_resume_breakpoint->disposition
8687 = disp_del_at_next_stop;
8688
8689 /* Handle the bpstat_copy of the chain. */
8690 bpstat_clear (&tp->control.stop_bpstat);
8691
8692 tp->control = inf_status->thread_control;
8693 inf->control = inf_status->inferior_control;
8694
8695 /* Other fields: */
8696 stop_stack_dummy = inf_status->stop_stack_dummy;
8697 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8698 stop_after_trap = inf_status->stop_after_trap;
8699
8700 if (target_has_stack)
8701 {
8702 /* The point of catch_errors is that if the stack is clobbered,
8703 walking the stack might encounter a garbage pointer and
8704 error() trying to dereference it. */
8705 if (catch_errors
8706 (restore_selected_frame, &inf_status->selected_frame_id,
8707 "Unable to restore previously selected frame:\n",
8708 RETURN_MASK_ERROR) == 0)
8709 /* Error in restoring the selected frame. Select the innermost
8710 frame. */
8711 select_frame (get_current_frame ());
8712 }
8713
8714 xfree (inf_status);
8715}
8716
8717static void
8718do_restore_infcall_control_state_cleanup (void *sts)
8719{
8720 restore_infcall_control_state (sts);
8721}
8722
8723struct cleanup *
8724make_cleanup_restore_infcall_control_state
8725 (struct infcall_control_state *inf_status)
8726{
8727 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
8728}
8729
8730void
8731discard_infcall_control_state (struct infcall_control_state *inf_status)
8732{
8733 if (inf_status->thread_control.step_resume_breakpoint)
8734 inf_status->thread_control.step_resume_breakpoint->disposition
8735 = disp_del_at_next_stop;
8736
8737 if (inf_status->thread_control.exception_resume_breakpoint)
8738 inf_status->thread_control.exception_resume_breakpoint->disposition
8739 = disp_del_at_next_stop;
8740
8741 /* See save_infcall_control_state for info on stop_bpstat. */
8742 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8743
8744 xfree (inf_status);
8745}
8746\f
8747/* restore_inferior_ptid() will be used by the cleanup machinery
8748 to restore the inferior_ptid value saved in a call to
8749 save_inferior_ptid(). */
8750
8751static void
8752restore_inferior_ptid (void *arg)
8753{
8754 ptid_t *saved_ptid_ptr = arg;
8755
8756 inferior_ptid = *saved_ptid_ptr;
8757 xfree (arg);
8758}
8759
8760/* Save the value of inferior_ptid so that it may be restored by a
8761 later call to do_cleanups(). Returns the struct cleanup pointer
8762 needed for later doing the cleanup. */
8763
8764struct cleanup *
8765save_inferior_ptid (void)
8766{
8767 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
8768
8769 *saved_ptid_ptr = inferior_ptid;
8770 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8771}
8772
8773/* See infrun.h. */
8774
8775void
8776clear_exit_convenience_vars (void)
8777{
8778 clear_internalvar (lookup_internalvar ("_exitsignal"));
8779 clear_internalvar (lookup_internalvar ("_exitcode"));
8780}
8781\f
8782
8783/* User interface for reverse debugging:
8784 Set exec-direction / show exec-direction commands
8785 (returns error unless target implements to_set_exec_direction method). */
8786
8787int execution_direction = EXEC_FORWARD;
8788static const char exec_forward[] = "forward";
8789static const char exec_reverse[] = "reverse";
8790static const char *exec_direction = exec_forward;
8791static const char *const exec_direction_names[] = {
8792 exec_forward,
8793 exec_reverse,
8794 NULL
8795};
8796
8797static void
8798set_exec_direction_func (char *args, int from_tty,
8799 struct cmd_list_element *cmd)
8800{
8801 if (target_can_execute_reverse)
8802 {
8803 if (!strcmp (exec_direction, exec_forward))
8804 execution_direction = EXEC_FORWARD;
8805 else if (!strcmp (exec_direction, exec_reverse))
8806 execution_direction = EXEC_REVERSE;
8807 }
8808 else
8809 {
8810 exec_direction = exec_forward;
8811 error (_("Target does not support this operation."));
8812 }
8813}
8814
8815static void
8816show_exec_direction_func (struct ui_file *out, int from_tty,
8817 struct cmd_list_element *cmd, const char *value)
8818{
8819 switch (execution_direction) {
8820 case EXEC_FORWARD:
8821 fprintf_filtered (out, _("Forward.\n"));
8822 break;
8823 case EXEC_REVERSE:
8824 fprintf_filtered (out, _("Reverse.\n"));
8825 break;
8826 default:
8827 internal_error (__FILE__, __LINE__,
8828 _("bogus execution_direction value: %d"),
8829 (int) execution_direction);
8830 }
8831}
8832
8833static void
8834show_schedule_multiple (struct ui_file *file, int from_tty,
8835 struct cmd_list_element *c, const char *value)
8836{
8837 fprintf_filtered (file, _("Resuming the execution of threads "
8838 "of all processes is %s.\n"), value);
8839}
8840
8841/* Implementation of `siginfo' variable. */
8842
8843static const struct internalvar_funcs siginfo_funcs =
8844{
8845 siginfo_make_value,
8846 NULL,
8847 NULL
8848};
8849
8850/* Callback for infrun's target events source. This is marked when a
8851 thread has a pending status to process. */
8852
8853static void
8854infrun_async_inferior_event_handler (gdb_client_data data)
8855{
8856 inferior_event_handler (INF_REG_EVENT, NULL);
8857}
8858
8859void
8860_initialize_infrun (void)
8861{
8862 int i;
8863 int numsigs;
8864 struct cmd_list_element *c;
8865
8866 /* Register extra event sources in the event loop. */
8867 infrun_async_inferior_event_token
8868 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8869
8870 add_info ("signals", signals_info, _("\
8871What debugger does when program gets various signals.\n\
8872Specify a signal as argument to print info on that signal only."));
8873 add_info_alias ("handle", "signals", 0);
8874
8875 c = add_com ("handle", class_run, handle_command, _("\
8876Specify how to handle signals.\n\
8877Usage: handle SIGNAL [ACTIONS]\n\
8878Args are signals and actions to apply to those signals.\n\
8879If no actions are specified, the current settings for the specified signals\n\
8880will be displayed instead.\n\
8881\n\
8882Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8883from 1-15 are allowed for compatibility with old versions of GDB.\n\
8884Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8885The special arg \"all\" is recognized to mean all signals except those\n\
8886used by the debugger, typically SIGTRAP and SIGINT.\n\
8887\n\
8888Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8889\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8890Stop means reenter debugger if this signal happens (implies print).\n\
8891Print means print a message if this signal happens.\n\
8892Pass means let program see this signal; otherwise program doesn't know.\n\
8893Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8894Pass and Stop may be combined.\n\
8895\n\
8896Multiple signals may be specified. Signal numbers and signal names\n\
8897may be interspersed with actions, with the actions being performed for\n\
8898all signals cumulatively specified."));
8899 set_cmd_completer (c, handle_completer);
8900
8901 if (!dbx_commands)
8902 stop_command = add_cmd ("stop", class_obscure,
8903 not_just_help_class_command, _("\
8904There is no `stop' command, but you can set a hook on `stop'.\n\
8905This allows you to set a list of commands to be run each time execution\n\
8906of the program stops."), &cmdlist);
8907
8908 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8909Set inferior debugging."), _("\
8910Show inferior debugging."), _("\
8911When non-zero, inferior specific debugging is enabled."),
8912 NULL,
8913 show_debug_infrun,
8914 &setdebuglist, &showdebuglist);
8915
8916 add_setshow_boolean_cmd ("displaced", class_maintenance,
8917 &debug_displaced, _("\
8918Set displaced stepping debugging."), _("\
8919Show displaced stepping debugging."), _("\
8920When non-zero, displaced stepping specific debugging is enabled."),
8921 NULL,
8922 show_debug_displaced,
8923 &setdebuglist, &showdebuglist);
8924
8925 add_setshow_boolean_cmd ("non-stop", no_class,
8926 &non_stop_1, _("\
8927Set whether gdb controls the inferior in non-stop mode."), _("\
8928Show whether gdb controls the inferior in non-stop mode."), _("\
8929When debugging a multi-threaded program and this setting is\n\
8930off (the default, also called all-stop mode), when one thread stops\n\
8931(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8932all other threads in the program while you interact with the thread of\n\
8933interest. When you continue or step a thread, you can allow the other\n\
8934threads to run, or have them remain stopped, but while you inspect any\n\
8935thread's state, all threads stop.\n\
8936\n\
8937In non-stop mode, when one thread stops, other threads can continue\n\
8938to run freely. You'll be able to step each thread independently,\n\
8939leave it stopped or free to run as needed."),
8940 set_non_stop,
8941 show_non_stop,
8942 &setlist,
8943 &showlist);
8944
8945 numsigs = (int) GDB_SIGNAL_LAST;
8946 signal_stop = XNEWVEC (unsigned char, numsigs);
8947 signal_print = XNEWVEC (unsigned char, numsigs);
8948 signal_program = XNEWVEC (unsigned char, numsigs);
8949 signal_catch = XNEWVEC (unsigned char, numsigs);
8950 signal_pass = XNEWVEC (unsigned char, numsigs);
8951 for (i = 0; i < numsigs; i++)
8952 {
8953 signal_stop[i] = 1;
8954 signal_print[i] = 1;
8955 signal_program[i] = 1;
8956 signal_catch[i] = 0;
8957 }
8958
8959 /* Signals caused by debugger's own actions should not be given to
8960 the program afterwards.
8961
8962 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8963 explicitly specifies that it should be delivered to the target
8964 program. Typically, that would occur when a user is debugging a
8965 target monitor on a simulator: the target monitor sets a
8966 breakpoint; the simulator encounters this breakpoint and halts
8967 the simulation handing control to GDB; GDB, noting that the stop
8968 address doesn't map to any known breakpoint, returns control back
8969 to the simulator; the simulator then delivers the hardware
8970 equivalent of a GDB_SIGNAL_TRAP to the program being
8971 debugged. */
8972 signal_program[GDB_SIGNAL_TRAP] = 0;
8973 signal_program[GDB_SIGNAL_INT] = 0;
8974
8975 /* Signals that are not errors should not normally enter the debugger. */
8976 signal_stop[GDB_SIGNAL_ALRM] = 0;
8977 signal_print[GDB_SIGNAL_ALRM] = 0;
8978 signal_stop[GDB_SIGNAL_VTALRM] = 0;
8979 signal_print[GDB_SIGNAL_VTALRM] = 0;
8980 signal_stop[GDB_SIGNAL_PROF] = 0;
8981 signal_print[GDB_SIGNAL_PROF] = 0;
8982 signal_stop[GDB_SIGNAL_CHLD] = 0;
8983 signal_print[GDB_SIGNAL_CHLD] = 0;
8984 signal_stop[GDB_SIGNAL_IO] = 0;
8985 signal_print[GDB_SIGNAL_IO] = 0;
8986 signal_stop[GDB_SIGNAL_POLL] = 0;
8987 signal_print[GDB_SIGNAL_POLL] = 0;
8988 signal_stop[GDB_SIGNAL_URG] = 0;
8989 signal_print[GDB_SIGNAL_URG] = 0;
8990 signal_stop[GDB_SIGNAL_WINCH] = 0;
8991 signal_print[GDB_SIGNAL_WINCH] = 0;
8992 signal_stop[GDB_SIGNAL_PRIO] = 0;
8993 signal_print[GDB_SIGNAL_PRIO] = 0;
8994
8995 /* These signals are used internally by user-level thread
8996 implementations. (See signal(5) on Solaris.) Like the above
8997 signals, a healthy program receives and handles them as part of
8998 its normal operation. */
8999 signal_stop[GDB_SIGNAL_LWP] = 0;
9000 signal_print[GDB_SIGNAL_LWP] = 0;
9001 signal_stop[GDB_SIGNAL_WAITING] = 0;
9002 signal_print[GDB_SIGNAL_WAITING] = 0;
9003 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9004 signal_print[GDB_SIGNAL_CANCEL] = 0;
9005
9006 /* Update cached state. */
9007 signal_cache_update (-1);
9008
9009 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9010 &stop_on_solib_events, _("\
9011Set stopping for shared library events."), _("\
9012Show stopping for shared library events."), _("\
9013If nonzero, gdb will give control to the user when the dynamic linker\n\
9014notifies gdb of shared library events. The most common event of interest\n\
9015to the user would be loading/unloading of a new library."),
9016 set_stop_on_solib_events,
9017 show_stop_on_solib_events,
9018 &setlist, &showlist);
9019
9020 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9021 follow_fork_mode_kind_names,
9022 &follow_fork_mode_string, _("\
9023Set debugger response to a program call of fork or vfork."), _("\
9024Show debugger response to a program call of fork or vfork."), _("\
9025A fork or vfork creates a new process. follow-fork-mode can be:\n\
9026 parent - the original process is debugged after a fork\n\
9027 child - the new process is debugged after a fork\n\
9028The unfollowed process will continue to run.\n\
9029By default, the debugger will follow the parent process."),
9030 NULL,
9031 show_follow_fork_mode_string,
9032 &setlist, &showlist);
9033
9034 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9035 follow_exec_mode_names,
9036 &follow_exec_mode_string, _("\
9037Set debugger response to a program call of exec."), _("\
9038Show debugger response to a program call of exec."), _("\
9039An exec call replaces the program image of a process.\n\
9040\n\
9041follow-exec-mode can be:\n\
9042\n\
9043 new - the debugger creates a new inferior and rebinds the process\n\
9044to this new inferior. The program the process was running before\n\
9045the exec call can be restarted afterwards by restarting the original\n\
9046inferior.\n\
9047\n\
9048 same - the debugger keeps the process bound to the same inferior.\n\
9049The new executable image replaces the previous executable loaded in\n\
9050the inferior. Restarting the inferior after the exec call restarts\n\
9051the executable the process was running after the exec call.\n\
9052\n\
9053By default, the debugger will use the same inferior."),
9054 NULL,
9055 show_follow_exec_mode_string,
9056 &setlist, &showlist);
9057
9058 add_setshow_enum_cmd ("scheduler-locking", class_run,
9059 scheduler_enums, &scheduler_mode, _("\
9060Set mode for locking scheduler during execution."), _("\
9061Show mode for locking scheduler during execution."), _("\
9062off == no locking (threads may preempt at any time)\n\
9063on == full locking (no thread except the current thread may run)\n\
9064step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9065 In this mode, other threads may run during other commands."),
9066 set_schedlock_func, /* traps on target vector */
9067 show_scheduler_mode,
9068 &setlist, &showlist);
9069
9070 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9071Set mode for resuming threads of all processes."), _("\
9072Show mode for resuming threads of all processes."), _("\
9073When on, execution commands (such as 'continue' or 'next') resume all\n\
9074threads of all processes. When off (which is the default), execution\n\
9075commands only resume the threads of the current process. The set of\n\
9076threads that are resumed is further refined by the scheduler-locking\n\
9077mode (see help set scheduler-locking)."),
9078 NULL,
9079 show_schedule_multiple,
9080 &setlist, &showlist);
9081
9082 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9083Set mode of the step operation."), _("\
9084Show mode of the step operation."), _("\
9085When set, doing a step over a function without debug line information\n\
9086will stop at the first instruction of that function. Otherwise, the\n\
9087function is skipped and the step command stops at a different source line."),
9088 NULL,
9089 show_step_stop_if_no_debug,
9090 &setlist, &showlist);
9091
9092 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9093 &can_use_displaced_stepping, _("\
9094Set debugger's willingness to use displaced stepping."), _("\
9095Show debugger's willingness to use displaced stepping."), _("\
9096If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9097supported by the target architecture. If off, gdb will not use displaced\n\
9098stepping to step over breakpoints, even if such is supported by the target\n\
9099architecture. If auto (which is the default), gdb will use displaced stepping\n\
9100if the target architecture supports it and non-stop mode is active, but will not\n\
9101use it in all-stop mode (see help set non-stop)."),
9102 NULL,
9103 show_can_use_displaced_stepping,
9104 &setlist, &showlist);
9105
9106 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9107 &exec_direction, _("Set direction of execution.\n\
9108Options are 'forward' or 'reverse'."),
9109 _("Show direction of execution (forward/reverse)."),
9110 _("Tells gdb whether to execute forward or backward."),
9111 set_exec_direction_func, show_exec_direction_func,
9112 &setlist, &showlist);
9113
9114 /* Set/show detach-on-fork: user-settable mode. */
9115
9116 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9117Set whether gdb will detach the child of a fork."), _("\
9118Show whether gdb will detach the child of a fork."), _("\
9119Tells gdb whether to detach the child of a fork."),
9120 NULL, NULL, &setlist, &showlist);
9121
9122 /* Set/show disable address space randomization mode. */
9123
9124 add_setshow_boolean_cmd ("disable-randomization", class_support,
9125 &disable_randomization, _("\
9126Set disabling of debuggee's virtual address space randomization."), _("\
9127Show disabling of debuggee's virtual address space randomization."), _("\
9128When this mode is on (which is the default), randomization of the virtual\n\
9129address space is disabled. Standalone programs run with the randomization\n\
9130enabled by default on some platforms."),
9131 &set_disable_randomization,
9132 &show_disable_randomization,
9133 &setlist, &showlist);
9134
9135 /* ptid initializations */
9136 inferior_ptid = null_ptid;
9137 target_last_wait_ptid = minus_one_ptid;
9138
9139 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9140 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9141 observer_attach_thread_exit (infrun_thread_thread_exit);
9142 observer_attach_inferior_exit (infrun_inferior_exit);
9143
9144 /* Explicitly create without lookup, since that tries to create a
9145 value with a void typed value, and when we get here, gdbarch
9146 isn't initialized yet. At this point, we're quite sure there
9147 isn't another convenience variable of the same name. */
9148 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9149
9150 add_setshow_boolean_cmd ("observer", no_class,
9151 &observer_mode_1, _("\
9152Set whether gdb controls the inferior in observer mode."), _("\
9153Show whether gdb controls the inferior in observer mode."), _("\
9154In observer mode, GDB can get data from the inferior, but not\n\
9155affect its execution. Registers and memory may not be changed,\n\
9156breakpoints may not be set, and the program cannot be interrupted\n\
9157or signalled."),
9158 set_observer_mode,
9159 show_observer_mode,
9160 &setlist,
9161 &showlist);
9162}
This page took 0.052421 seconds and 4 git commands to generate.