Fix whitespace problem in my most recent entry.
[deliverable/binutils-gdb.git] / gdb / lynx-nat.c
... / ...
CommitLineData
1/* Native-dependent code for LynxOS.
2 Copyright 1993, 1994, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21#include "defs.h"
22#include "frame.h"
23#include "inferior.h"
24#include "target.h"
25#include "gdbcore.h"
26#include "regcache.h"
27
28#include <sys/ptrace.h>
29#include <sys/wait.h>
30#include <sys/fpp.h>
31
32static unsigned long registers_addr (int pid);
33static void fetch_core_registers (char *, unsigned, int, CORE_ADDR);
34
35#define X(ENTRY)(offsetof(struct econtext, ENTRY))
36
37#ifdef I386
38/* Mappings from tm-i386v.h */
39
40static int regmap[] =
41{
42 X (eax),
43 X (ecx),
44 X (edx),
45 X (ebx),
46 X (esp), /* sp */
47 X (ebp), /* fp */
48 X (esi),
49 X (edi),
50 X (eip), /* pc */
51 X (flags), /* ps */
52 X (cs),
53 X (ss),
54 X (ds),
55 X (es),
56 X (ecode), /* Lynx doesn't give us either fs or gs, so */
57 X (fault), /* we just substitute these two in the hopes
58 that they are useful. */
59};
60#endif /* I386 */
61
62#ifdef M68K
63/* Mappings from tm-m68k.h */
64
65static int regmap[] =
66{
67 X (regs[0]), /* d0 */
68 X (regs[1]), /* d1 */
69 X (regs[2]), /* d2 */
70 X (regs[3]), /* d3 */
71 X (regs[4]), /* d4 */
72 X (regs[5]), /* d5 */
73 X (regs[6]), /* d6 */
74 X (regs[7]), /* d7 */
75 X (regs[8]), /* a0 */
76 X (regs[9]), /* a1 */
77 X (regs[10]), /* a2 */
78 X (regs[11]), /* a3 */
79 X (regs[12]), /* a4 */
80 X (regs[13]), /* a5 */
81 X (regs[14]), /* fp */
82 offsetof (st_t, usp) - offsetof (st_t, ec), /* sp */
83 X (status), /* ps */
84 X (pc),
85
86 X (fregs[0 * 3]), /* fp0 */
87 X (fregs[1 * 3]), /* fp1 */
88 X (fregs[2 * 3]), /* fp2 */
89 X (fregs[3 * 3]), /* fp3 */
90 X (fregs[4 * 3]), /* fp4 */
91 X (fregs[5 * 3]), /* fp5 */
92 X (fregs[6 * 3]), /* fp6 */
93 X (fregs[7 * 3]), /* fp7 */
94
95 X (fcregs[0]), /* fpcontrol */
96 X (fcregs[1]), /* fpstatus */
97 X (fcregs[2]), /* fpiaddr */
98 X (ssw), /* fpcode */
99 X (fault), /* fpflags */
100};
101#endif /* M68K */
102
103#ifdef SPARC
104/* Mappings from tm-sparc.h */
105
106#define FX(ENTRY)(offsetof(struct fcontext, ENTRY))
107
108static int regmap[] =
109{
110 -1, /* g0 */
111 X (g1),
112 X (g2),
113 X (g3),
114 X (g4),
115 -1, /* g5->g7 aren't saved by Lynx */
116 -1,
117 -1,
118
119 X (o[0]),
120 X (o[1]),
121 X (o[2]),
122 X (o[3]),
123 X (o[4]),
124 X (o[5]),
125 X (o[6]), /* sp */
126 X (o[7]), /* ra */
127
128 -1, -1, -1, -1, -1, -1, -1, -1, /* l0 -> l7 */
129
130 -1, -1, -1, -1, -1, -1, -1, -1, /* i0 -> i7 */
131
132 FX (f.fregs[0]), /* f0 */
133 FX (f.fregs[1]),
134 FX (f.fregs[2]),
135 FX (f.fregs[3]),
136 FX (f.fregs[4]),
137 FX (f.fregs[5]),
138 FX (f.fregs[6]),
139 FX (f.fregs[7]),
140 FX (f.fregs[8]),
141 FX (f.fregs[9]),
142 FX (f.fregs[10]),
143 FX (f.fregs[11]),
144 FX (f.fregs[12]),
145 FX (f.fregs[13]),
146 FX (f.fregs[14]),
147 FX (f.fregs[15]),
148 FX (f.fregs[16]),
149 FX (f.fregs[17]),
150 FX (f.fregs[18]),
151 FX (f.fregs[19]),
152 FX (f.fregs[20]),
153 FX (f.fregs[21]),
154 FX (f.fregs[22]),
155 FX (f.fregs[23]),
156 FX (f.fregs[24]),
157 FX (f.fregs[25]),
158 FX (f.fregs[26]),
159 FX (f.fregs[27]),
160 FX (f.fregs[28]),
161 FX (f.fregs[29]),
162 FX (f.fregs[30]),
163 FX (f.fregs[31]),
164
165 X (y),
166 X (psr),
167 X (wim),
168 X (tbr),
169 X (pc),
170 X (npc),
171 FX (fsr), /* fpsr */
172 -1, /* cpsr */
173};
174#endif /* SPARC */
175
176#ifdef rs6000
177
178static int regmap[] =
179{
180 X (iregs[0]), /* r0 */
181 X (iregs[1]),
182 X (iregs[2]),
183 X (iregs[3]),
184 X (iregs[4]),
185 X (iregs[5]),
186 X (iregs[6]),
187 X (iregs[7]),
188 X (iregs[8]),
189 X (iregs[9]),
190 X (iregs[10]),
191 X (iregs[11]),
192 X (iregs[12]),
193 X (iregs[13]),
194 X (iregs[14]),
195 X (iregs[15]),
196 X (iregs[16]),
197 X (iregs[17]),
198 X (iregs[18]),
199 X (iregs[19]),
200 X (iregs[20]),
201 X (iregs[21]),
202 X (iregs[22]),
203 X (iregs[23]),
204 X (iregs[24]),
205 X (iregs[25]),
206 X (iregs[26]),
207 X (iregs[27]),
208 X (iregs[28]),
209 X (iregs[29]),
210 X (iregs[30]),
211 X (iregs[31]),
212
213 X (fregs[0]), /* f0 */
214 X (fregs[1]),
215 X (fregs[2]),
216 X (fregs[3]),
217 X (fregs[4]),
218 X (fregs[5]),
219 X (fregs[6]),
220 X (fregs[7]),
221 X (fregs[8]),
222 X (fregs[9]),
223 X (fregs[10]),
224 X (fregs[11]),
225 X (fregs[12]),
226 X (fregs[13]),
227 X (fregs[14]),
228 X (fregs[15]),
229 X (fregs[16]),
230 X (fregs[17]),
231 X (fregs[18]),
232 X (fregs[19]),
233 X (fregs[20]),
234 X (fregs[21]),
235 X (fregs[22]),
236 X (fregs[23]),
237 X (fregs[24]),
238 X (fregs[25]),
239 X (fregs[26]),
240 X (fregs[27]),
241 X (fregs[28]),
242 X (fregs[29]),
243 X (fregs[30]),
244 X (fregs[31]),
245
246 X (srr0), /* IAR (PC) */
247 X (srr1), /* MSR (PS) */
248 X (cr), /* CR */
249 X (lr), /* LR */
250 X (ctr), /* CTR */
251 X (xer), /* XER */
252 X (mq) /* MQ */
253};
254
255#endif /* rs6000 */
256
257#ifdef SPARC
258
259/* This routine handles some oddball cases for Sparc registers and LynxOS.
260 In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
261 It also handles knows where to find the I & L regs on the stack. */
262
263void
264fetch_inferior_registers (int regno)
265{
266 int whatregs = 0;
267
268#define WHATREGS_FLOAT 1
269#define WHATREGS_GEN 2
270#define WHATREGS_STACK 4
271
272 if (regno == -1)
273 whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
274 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
275 whatregs = WHATREGS_STACK;
276 else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
277 whatregs = WHATREGS_FLOAT;
278 else
279 whatregs = WHATREGS_GEN;
280
281 if (whatregs & WHATREGS_GEN)
282 {
283 struct econtext ec; /* general regs */
284 char buf[MAX_REGISTER_RAW_SIZE];
285 int retval;
286 int i;
287
288 errno = 0;
289 retval = ptrace (PTRACE_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE) & ec,
290 0);
291 if (errno)
292 perror_with_name ("ptrace(PTRACE_GETREGS)");
293
294 memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
295 supply_register (G0_REGNUM, buf);
296 supply_register (TBR_REGNUM, (char *) &ec.tbr);
297
298 memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
299 4 * REGISTER_RAW_SIZE (G1_REGNUM));
300 for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
301 register_valid[i] = 1;
302
303 supply_register (PS_REGNUM, (char *) &ec.psr);
304 supply_register (Y_REGNUM, (char *) &ec.y);
305 supply_register (PC_REGNUM, (char *) &ec.pc);
306 supply_register (NPC_REGNUM, (char *) &ec.npc);
307 supply_register (WIM_REGNUM, (char *) &ec.wim);
308
309 memcpy (&registers[REGISTER_BYTE (O0_REGNUM)], ec.o,
310 8 * REGISTER_RAW_SIZE (O0_REGNUM));
311 for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
312 register_valid[i] = 1;
313 }
314
315 if (whatregs & WHATREGS_STACK)
316 {
317 CORE_ADDR sp;
318 int i;
319
320 sp = read_register (SP_REGNUM);
321
322 target_read_memory (sp + FRAME_SAVED_I0,
323 &registers[REGISTER_BYTE (I0_REGNUM)],
324 8 * REGISTER_RAW_SIZE (I0_REGNUM));
325 for (i = I0_REGNUM; i <= I7_REGNUM; i++)
326 register_valid[i] = 1;
327
328 target_read_memory (sp + FRAME_SAVED_L0,
329 &registers[REGISTER_BYTE (L0_REGNUM)],
330 8 * REGISTER_RAW_SIZE (L0_REGNUM));
331 for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
332 register_valid[i] = 1;
333 }
334
335 if (whatregs & WHATREGS_FLOAT)
336 {
337 struct fcontext fc; /* fp regs */
338 int retval;
339 int i;
340
341 errno = 0;
342 retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
343 0);
344 if (errno)
345 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
346
347 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
348 32 * REGISTER_RAW_SIZE (FP0_REGNUM));
349 for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
350 register_valid[i] = 1;
351
352 supply_register (FPS_REGNUM, (char *) &fc.fsr);
353 }
354}
355
356/* This routine handles storing of the I & L regs for the Sparc. The trick
357 here is that they actually live on the stack. The really tricky part is
358 that when changing the stack pointer, the I & L regs must be written to
359 where the new SP points, otherwise the regs will be incorrect when the
360 process is started up again. We assume that the I & L regs are valid at
361 this point. */
362
363void
364store_inferior_registers (int regno)
365{
366 int whatregs = 0;
367
368 if (regno == -1)
369 whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
370 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
371 whatregs = WHATREGS_STACK;
372 else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
373 whatregs = WHATREGS_FLOAT;
374 else if (regno == SP_REGNUM)
375 whatregs = WHATREGS_STACK | WHATREGS_GEN;
376 else
377 whatregs = WHATREGS_GEN;
378
379 if (whatregs & WHATREGS_GEN)
380 {
381 struct econtext ec; /* general regs */
382 int retval;
383
384 ec.tbr = read_register (TBR_REGNUM);
385 memcpy (&ec.g1, &registers[REGISTER_BYTE (G1_REGNUM)],
386 4 * REGISTER_RAW_SIZE (G1_REGNUM));
387
388 ec.psr = read_register (PS_REGNUM);
389 ec.y = read_register (Y_REGNUM);
390 ec.pc = read_register (PC_REGNUM);
391 ec.npc = read_register (NPC_REGNUM);
392 ec.wim = read_register (WIM_REGNUM);
393
394 memcpy (ec.o, &registers[REGISTER_BYTE (O0_REGNUM)],
395 8 * REGISTER_RAW_SIZE (O0_REGNUM));
396
397 errno = 0;
398 retval = ptrace (PTRACE_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE) & ec,
399 0);
400 if (errno)
401 perror_with_name ("ptrace(PTRACE_SETREGS)");
402 }
403
404 if (whatregs & WHATREGS_STACK)
405 {
406 int regoffset;
407 CORE_ADDR sp;
408
409 sp = read_register (SP_REGNUM);
410
411 if (regno == -1 || regno == SP_REGNUM)
412 {
413 if (!register_valid[L0_REGNUM + 5])
414 internal_error (__FILE__, __LINE__, "failed internal consistency check");
415 target_write_memory (sp + FRAME_SAVED_I0,
416 &registers[REGISTER_BYTE (I0_REGNUM)],
417 8 * REGISTER_RAW_SIZE (I0_REGNUM));
418
419 target_write_memory (sp + FRAME_SAVED_L0,
420 &registers[REGISTER_BYTE (L0_REGNUM)],
421 8 * REGISTER_RAW_SIZE (L0_REGNUM));
422 }
423 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
424 {
425 if (!register_valid[regno])
426 internal_error (__FILE__, __LINE__, "failed internal consistency check");
427 if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
428 regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
429 + FRAME_SAVED_L0;
430 else
431 regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
432 + FRAME_SAVED_I0;
433 target_write_memory (sp + regoffset,
434 &registers[REGISTER_BYTE (regno)],
435 REGISTER_RAW_SIZE (regno));
436 }
437 }
438
439 if (whatregs & WHATREGS_FLOAT)
440 {
441 struct fcontext fc; /* fp regs */
442 int retval;
443
444/* We read fcontext first so that we can get good values for fq_t... */
445 errno = 0;
446 retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
447 0);
448 if (errno)
449 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
450
451 memcpy (fc.f.fregs, &registers[REGISTER_BYTE (FP0_REGNUM)],
452 32 * REGISTER_RAW_SIZE (FP0_REGNUM));
453
454 fc.fsr = read_register (FPS_REGNUM);
455
456 errno = 0;
457 retval = ptrace (PTRACE_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
458 0);
459 if (errno)
460 perror_with_name ("ptrace(PTRACE_SETFPREGS)");
461 }
462}
463#endif /* SPARC */
464
465#if defined (I386) || defined (M68K) || defined (rs6000)
466
467/* Return the offset relative to the start of the per-thread data to the
468 saved context block. */
469
470static unsigned long
471registers_addr (int pid)
472{
473 CORE_ADDR stblock;
474 int ecpoff = offsetof (st_t, ecp);
475 CORE_ADDR ecp;
476
477 errno = 0;
478 stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, pid, (PTRACE_ARG3_TYPE) 0,
479 0);
480 if (errno)
481 perror_with_name ("ptrace(PTRACE_THREADUSER)");
482
483 ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, pid, (PTRACE_ARG3_TYPE) ecpoff,
484 0);
485 if (errno)
486 perror_with_name ("ptrace(PTRACE_PEEKTHREAD)");
487
488 return ecp - stblock;
489}
490
491/* Fetch one or more registers from the inferior. REGNO == -1 to get
492 them all. We actually fetch more than requested, when convenient,
493 marking them as valid so we won't fetch them again. */
494
495void
496fetch_inferior_registers (int regno)
497{
498 int reglo, reghi;
499 int i;
500 unsigned long ecp;
501
502 if (regno == -1)
503 {
504 reglo = 0;
505 reghi = NUM_REGS - 1;
506 }
507 else
508 reglo = reghi = regno;
509
510 ecp = registers_addr (inferior_pid);
511
512 for (regno = reglo; regno <= reghi; regno++)
513 {
514 char buf[MAX_REGISTER_RAW_SIZE];
515 int ptrace_fun = PTRACE_PEEKTHREAD;
516
517#ifdef M68K
518 ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
519#endif
520
521 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
522 {
523 unsigned int reg;
524
525 errno = 0;
526 reg = ptrace (ptrace_fun, inferior_pid,
527 (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), 0);
528 if (errno)
529 perror_with_name ("ptrace(PTRACE_PEEKUSP)");
530
531 *(int *) &buf[i] = reg;
532 }
533 supply_register (regno, buf);
534 }
535}
536
537/* Store our register values back into the inferior.
538 If REGNO is -1, do this for all registers.
539 Otherwise, REGNO specifies which register (so we can save time). */
540
541/* Registers we shouldn't try to store. */
542#if !defined (CANNOT_STORE_REGISTER)
543#define CANNOT_STORE_REGISTER(regno) 0
544#endif
545
546void
547store_inferior_registers (int regno)
548{
549 int reglo, reghi;
550 int i;
551 unsigned long ecp;
552
553 if (regno == -1)
554 {
555 reglo = 0;
556 reghi = NUM_REGS - 1;
557 }
558 else
559 reglo = reghi = regno;
560
561 ecp = registers_addr (inferior_pid);
562
563 for (regno = reglo; regno <= reghi; regno++)
564 {
565 int ptrace_fun = PTRACE_POKEUSER;
566
567 if (CANNOT_STORE_REGISTER (regno))
568 continue;
569
570#ifdef M68K
571 ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
572#endif
573
574 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
575 {
576 unsigned int reg;
577
578 reg = *(unsigned int *) &registers[REGISTER_BYTE (regno) + i];
579
580 errno = 0;
581 ptrace (ptrace_fun, inferior_pid,
582 (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), reg);
583 if (errno)
584 perror_with_name ("ptrace(PTRACE_POKEUSP)");
585 }
586 }
587}
588#endif /* defined (I386) || defined (M68K) || defined (rs6000) */
589
590/* Wait for child to do something. Return pid of child, or -1 in case
591 of error; store status through argument pointer OURSTATUS. */
592
593int
594child_wait (int pid, struct target_waitstatus *ourstatus)
595{
596 int save_errno;
597 int thread;
598 union wait status;
599
600 while (1)
601 {
602 int sig;
603
604 set_sigint_trap (); /* Causes SIGINT to be passed on to the
605 attached process. */
606 pid = wait (&status);
607
608 save_errno = errno;
609
610 clear_sigint_trap ();
611
612 if (pid == -1)
613 {
614 if (save_errno == EINTR)
615 continue;
616 fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n",
617 safe_strerror (save_errno));
618 /* Claim it exited with unknown signal. */
619 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
620 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
621 return -1;
622 }
623
624 if (pid != PIDGET (inferior_pid)) /* Some other process?!? */
625 continue;
626
627 thread = status.w_tid; /* Get thread id from status */
628
629 /* Initial thread value can only be acquired via wait, so we have to
630 resort to this hack. */
631
632 if (TIDGET (inferior_pid) == 0 && thread != 0)
633 {
634 inferior_pid = BUILDPID (inferior_pid, thread);
635 add_thread (inferior_pid);
636 }
637
638 pid = BUILDPID (pid, thread);
639
640 /* We've become a single threaded process again. */
641 if (thread == 0)
642 inferior_pid = pid;
643
644 /* Check for thread creation. */
645 if (WIFSTOPPED (status)
646 && WSTOPSIG (status) == SIGTRAP
647 && !in_thread_list (pid))
648 {
649 int realsig;
650
651 realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE) 0, 0);
652
653 if (realsig == SIGNEWTHREAD)
654 {
655 /* It's a new thread notification. We don't want to much with
656 realsig -- the code in wait_for_inferior expects SIGTRAP. */
657 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
658 ourstatus->value.sig = TARGET_SIGNAL_0;
659 return pid;
660 }
661 else
662 error ("Signal for unknown thread was not SIGNEWTHREAD");
663 }
664
665 /* Check for thread termination. */
666 else if (WIFSTOPPED (status)
667 && WSTOPSIG (status) == SIGTRAP
668 && in_thread_list (pid))
669 {
670 int realsig;
671
672 realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE) 0, 0);
673
674 if (realsig == SIGTHREADEXIT)
675 {
676 ptrace (PTRACE_CONT, PIDGET (pid), (PTRACE_ARG3_TYPE) 0, 0);
677 continue;
678 }
679 }
680
681#ifdef SPARC
682 /* SPARC Lynx uses an byte reversed wait status; we must use the
683 host macros to access it. These lines just a copy of
684 store_waitstatus. We can't use CHILD_SPECIAL_WAITSTATUS
685 because target.c can't include the Lynx <sys/wait.h>. */
686 if (WIFEXITED (status))
687 {
688 ourstatus->kind = TARGET_WAITKIND_EXITED;
689 ourstatus->value.integer = WEXITSTATUS (status);
690 }
691 else if (!WIFSTOPPED (status))
692 {
693 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
694 ourstatus->value.sig =
695 target_signal_from_host (WTERMSIG (status));
696 }
697 else
698 {
699 ourstatus->kind = TARGET_WAITKIND_STOPPED;
700 ourstatus->value.sig =
701 target_signal_from_host (WSTOPSIG (status));
702 }
703#else
704 store_waitstatus (ourstatus, status.w_status);
705#endif
706
707 return pid;
708 }
709}
710
711/* Return nonzero if the given thread is still alive. */
712int
713child_thread_alive (int pid)
714{
715 /* Arggh. Apparently pthread_kill only works for threads within
716 the process that calls pthread_kill.
717
718 We want to avoid the lynx signal extensions as they simply don't
719 map well to the generic gdb interface we want to keep.
720
721 All we want to do is determine if a particular thread is alive;
722 it appears as if we can just make a harmless thread specific
723 ptrace call to do that. */
724 return (ptrace (PTRACE_THREADUSER, pid, 0, 0) != -1);
725}
726
727/* Resume execution of the inferior process.
728 If STEP is nonzero, single-step it.
729 If SIGNAL is nonzero, give it that signal. */
730
731void
732child_resume (int pid, int step, enum target_signal signal)
733{
734 int func;
735
736 errno = 0;
737
738 /* If pid == -1, then we want to step/continue all threads, else
739 we only want to step/continue a single thread. */
740 if (pid == -1)
741 {
742 pid = inferior_pid;
743 func = step ? PTRACE_SINGLESTEP : PTRACE_CONT;
744 }
745 else
746 func = step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT_ONE;
747
748
749 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
750 it was. (If GDB wanted it to start some other way, we have already
751 written a new PC value to the child.)
752
753 If this system does not support PT_STEP, a higher level function will
754 have called single_step() to transmute the step request into a
755 continue request (by setting breakpoints on all possible successor
756 instructions), so we don't have to worry about that here. */
757
758 ptrace (func, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal));
759
760 if (errno)
761 perror_with_name ("ptrace");
762}
763
764/* Convert a Lynx process ID to a string. Returns the string in a static
765 buffer. */
766
767char *
768child_pid_to_str (int pid)
769{
770 static char buf[40];
771
772 sprintf (buf, "process %d thread %d", PIDGET (pid), TIDGET (pid));
773
774 return buf;
775}
776
777/* Extract the register values out of the core file and store
778 them where `read_register' will find them.
779
780 CORE_REG_SECT points to the register values themselves, read into memory.
781 CORE_REG_SIZE is the size of that area.
782 WHICH says which set of registers we are handling (0 = int, 2 = float
783 on machines where they are discontiguous).
784 REG_ADDR is the offset from u.u_ar0 to the register values relative to
785 core_reg_sect. This is used with old-fashioned core files to
786 locate the registers in a large upage-plus-stack ".reg" section.
787 Original upage address X is at location core_reg_sect+x+reg_addr.
788 */
789
790static void
791fetch_core_registers (char *core_reg_sect, unsigned core_reg_size, int which,
792 CORE_ADDR reg_addr)
793{
794 struct st_entry s;
795 unsigned int regno;
796
797 for (regno = 0; regno < NUM_REGS; regno++)
798 if (regmap[regno] != -1)
799 supply_register (regno, core_reg_sect + offsetof (st_t, ec)
800 + regmap[regno]);
801
802#ifdef SPARC
803/* Fetching this register causes all of the I & L regs to be read from the
804 stack and validated. */
805
806 fetch_inferior_registers (I0_REGNUM);
807#endif
808}
809\f
810
811/* Register that we are able to handle lynx core file formats.
812 FIXME: is this really bfd_target_unknown_flavour? */
813
814static struct core_fns lynx_core_fns =
815{
816 bfd_target_unknown_flavour, /* core_flavour */
817 default_check_format, /* check_format */
818 default_core_sniffer, /* core_sniffer */
819 fetch_core_registers, /* core_read_registers */
820 NULL /* next */
821};
822
823void
824_initialize_core_lynx (void)
825{
826 add_core_fns (&lynx_core_fns);
827}
This page took 0.024698 seconds and 4 git commands to generate.